Sample records for quantitative myocardial contrast

  1. Real time myocardial contrast echocardiography during supine bicycle stress and continuous infusion of contrast agent. Cutoff values for myocardial contrast replenishment discriminating abnormal myocardial perfusion.

    PubMed

    Miszalski-Jamka, Tomasz; Kuntz-Hehner, Stefanie; Schmidt, Harald; Hammerstingl, Christoph; Tiemann, Klaus; Ghanem, Alexander; Troatz, Clemens; Lüderitz, Berndt; Omran, Heyder

    2007-07-01

    Myocardial contrast echocardiography (MCE) is a new imaging modality for diagnosing coronary artery disease (CAD). The aim of our study was to evaluate feasibility of qualitative myocardial contrast replenishment (RP) assessment during supine bicycle stress MCE and find out cutoff values for such analysis, which could allow accurate detection of CAD. Forty-four consecutive patients, scheduled for coronary angiography (CA) underwent supine bicycle stress two-dimensional echocardiography (2DE). During the same session, MCE was performed at peak stress and post stress. Ultrasound contrast agent (SonoVue) was administered in continuous mode using an infusion pump (BR-INF 100, Bracco Research). Seventeen-segment model of left ventricle was used in analysis. MCE was assessed off-line in terms of myocardial contrast opacification and RP. RP was evaluated on the basis of the number of cardiac cycles required to refill the segment with contrast after its prior destruction with high-power frames. Determination of cutoff values for RP assessment was performed by means of reference intervals and receiver operating characteristic analysis. Quantitative CA was carried out using CAAS system. MCE could be assessed in 42 patients. CA revealed CAD in 25 patients. Calculated cutoff values for RP-analysis (peak-stress RP >3 cardiac cycles and difference between peak stress and post stress RP >0 cardiac cycles) provided sensitive (88%) and accurate (88%) detection of CAD. Sensitivity and accuracy of 2DE were 76% and 79%, respectively. Qualitative RP-analysis based on the number of cardiac cycles required to refill myocardium with contrast is feasible during supine bicycle stress MCE and enables accurate detection of CAD.

  2. Measurement of myocardial perfusion and infarction size using computer-aided diagnosis system for myocardial contrast echocardiography.

    PubMed

    Du, Guo-Qing; Xue, Jing-Yi; Guo, Yanhui; Chen, Shuang; Du, Pei; Wu, Yan; Wang, Yu-Hang; Zong, Li-Qiu; Tian, Jia-Wei

    2015-09-01

    Proper evaluation of myocardial microvascular perfusion and assessment of infarct size is critical for clinicians. We have developed a novel computer-aided diagnosis (CAD) approach for myocardial contrast echocardiography (MCE) to measure myocardial perfusion and infarct size. Rabbits underwent 15 min of coronary occlusion followed by reperfusion (group I, n = 15) or 60 min of coronary occlusion followed by reperfusion (group II, n = 15). Myocardial contrast echocardiography was performed before and 7 d after ischemia/reperfusion, and images were analyzed with the CAD system on the basis of eliminating particle swarm optimization clustering analysis. The myocardium was quickly and accurately detected using contrast-enhanced images, myocardial perfusion was quantitatively calibrated and a color-coded map calibrated by contrast intensity and automatically produced by the CAD system was used to outline the infarction region. Calibrated contrast intensity was significantly lower in infarct regions than in non-infarct regions, allowing differentiation of abnormal and normal myocardial perfusion. Receiver operating characteristic curve analysis documented that -54-pixel contrast intensity was an optimal cutoff point for the identification of infarcted myocardium with a sensitivity of 95.45% and specificity of 87.50%. Infarct sizes obtained using myocardial perfusion defect analysis of original contrast images and the contrast intensity-based color-coded map in computerized images were compared with infarct sizes measured using triphenyltetrazolium chloride staining. Use of the proposed CAD approach provided observers with more information. The infarct sizes obtained with myocardial perfusion defect analysis, the contrast intensity-based color-coded map and triphenyltetrazolium chloride staining were 23.72 ± 8.41%, 21.77 ± 7.8% and 18.21 ± 4.40% (% left ventricle) respectively (p > 0.05), indicating that computerized myocardial contrast echocardiography can

  3. Quantitative myocardial perfusion from static cardiac and dynamic arterial CT

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Branch, Kelley R.; Alessio, Adam M.

    2018-05-01

    Quantitative myocardial blood flow (MBF) estimation by dynamic contrast enhanced cardiac computed tomography (CT) requires multi-frame acquisition of contrast transit through the blood pool and myocardium to inform the arterial input and tissue response functions. Both the input and the tissue response functions for the entire myocardium are sampled with each acquisition. However, the long breath holds and frequent sampling can result in significant motion artifacts and relatively high radiation dose. To address these limitations, we propose and evaluate a new static cardiac and dynamic arterial (SCDA) quantitative MBF approach where (1) the input function is well sampled using either prediction from pre-scan timing bolus data or measured from dynamic thin slice ‘bolus tracking’ acquisitions, and (2) the whole-heart tissue response data is limited to one contrast enhanced CT acquisition. A perfusion model uses the dynamic arterial input function to generate a family of possible myocardial contrast enhancement curves corresponding to a range of MBF values. Combined with the timing of the single whole-heart acquisition, these curves generate a lookup table relating myocardial contrast enhancement to quantitative MBF. We tested the SCDA approach in 28 patients that underwent a full dynamic CT protocol both at rest and vasodilator stress conditions. Using measured input function plus single (enhanced CT only) or plus double (enhanced and contrast free baseline CT’s) myocardial acquisitions yielded MBF estimates with root mean square (RMS) error of 1.2 ml/min/g and 0.35 ml/min/g, and radiation dose reductions of 90% and 83%, respectively. The prediction of the input function based on timing bolus data and the static acquisition had an RMS error compared to the measured input function of 26.0% which led to MBF estimation errors greater than threefold higher than using the measured input function. SCDA presents a new, simplified approach for quantitative

  4. Relationship Between Coronary Contrast-Flow Quantitative Flow Ratio and Myocardial Ischemia Assessed by SPECT MPI.

    PubMed

    Smit, Jeff M; Koning, Gerhard; van Rosendael, Alexander R; Dibbets-Schneider, Petra; Mertens, Bart J; Jukema, J Wouter; Delgado, Victoria; Reiber, Johan H C; Bax, Jeroen J; Scholte, Arthur J

    2017-10-01

    A new method has been developed to calculate fractional flow reserve (FFR) from invasive coronary angiography, the so-called "contrast-flow quantitative flow ratio (cQFR)". Recently, cQFR was compared to invasive FFR in intermediate coronary lesions showing an overall diagnostic accuracy of 85%. The purpose of this study was to investigate the relationship between cQFR and myocardial ischemia assessed by single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). Patients who underwent SPECT MPI and coronary angiography within 3 months were included. The cQFR computation was performed offline, using dedicated software. The cQFR computation was based on 3-dimensional quantitative coronary angiography (QCA) and computational fluid dynamics. The standard 17-segment model was used to determine the vascular territories. Myocardial ischemia was defined as a summed difference score ≥2 in a vascular territory. A cQFR of ≤0.80 was considered abnormal. Two hundred and twenty-four coronary arteries were analysed in 85 patients. Overall accuracy of cQFR to detect ischemia on SPECT MPI was 90%. In multivariable analysis, cQFR was independently associated with ischemia on SPECT MPI (OR per 0.01 decrease of cQFR: 1.10; 95% CI 1.04-1.18, p = 0.002), whereas clinical and QCA parameters were not. Furthermore, cQFR showed incremental value for the detection of ischemia compared to clinical and QCA parameters (global chi square 48.7 to 62.6; p <0.001). A good relationship between cQFR and SPECT MPI was found. cQFR was independently associated with ischemia on SPECT MPI and showed incremental value to detect ischemia compared to clinical and QCA parameters.

  5. Effectiveness of Myocardial Contrast Echocardiography Quantitative Analysis during Adenosine Stress versus Visual Analysis before Percutaneous Therapy in Acute Coronary Pain: A Coronary Artery TIMI Grading Comparing Study

    PubMed Central

    Yang, Lixia; Mu, Yuming; Quaglia, Luiz Augusto; Tang, Qi; Guan, Lina; Wang, Chunmei; Shih, Ming Chi

    2012-01-01

    The study aim was to compare two different stress echocardiography interpretation techniques based on the correlation with thrombosis in myocardial infarction (TIMI ) flow grading from acute coronary syndrome (ACS) patients. Forty-one patients with suspected ACS were studied before diagnostic coronary angiography with myocardial contrast echocardiography (MCE) at rest and at stress. The correlation of visual interpretation of MCE and TIMI flow grade was significant. The quantitative analysis (myocardial perfusion parameters: A, β, and A × β) and TIMI flow grade were significant. MCE visual interpretation and TIMI flow grade had a high degree of agreement, on diagnosing myocardial perfusion abnormality. If one considers TIMI flow grade <3 as abnormal, MCE visual interpretation at rest had 73.1% accuracy with 58.2% sensitivity and 84.2% specificity and at stress had 80.4% accuracy with 76.6% sensitivity and 83.3% specificity. The MCE quantitative analysis has better accuracy with 100% of agreement with different level of TIMI flow grading. MCE quantitative analysis at stress has showed a direct correlation with TIMI flow grade, more significant than the visual interpretation technique. Further studies could measure the clinical relevance of this more objective approach to managing acute coronary syndrome patient before percutaneous coronary intervention (PCI). PMID:22778555

  6. Evaluation of heart perfusion in patients with acute myocardial infarction using dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Nielsen, Gitte; Fritz-Hansen, Thomas; Dirks, Christina G; Jensen, Gorm B; Larsson, Henrik B W

    2004-09-01

    To investigate the diagnostic ability of quantitative magnetic resonance imaging (MRI) heart perfusion in acute heart patients, a fast, multislice dynamic contrast-enhanced MRI sequence was applied to patients with acute myocardial infarction. Seven patients with acute transmural myocardial infarction were studied using a Turbo-fast low angle shot (FLASH) MRI sequence to monitor the first pass of an extravascular contrast agent (CA), gadolinium diethylene triamine pentaacetic acid (Gd-DTPA). Quantitation of perfusion, expressed as Ki (mL/100 g/minute), in five slices, each having 60 sectors, provided an estimation of the severity and extent of the perfusion deficiency. Reperfusion was assessed both by noninvasive criteria and by coronary angiography (CAG). The Ki maps clearly delineated the infarction in all patients. Thrombolytic treatment was clearly beneficial in one case, but had no effect in the two other cases. Over the time-course of the study, normal perfusion values were not reestablished following thrombolytic treatment in all cases investigated. This study shows that quantitative MRI perfusion values can be obtained from acutely ill patients following acute myocardial infarction. The technique provides information on both the volume and severity of affected myocardial tissue, enabling the power of treatment regimes to be assessed objectively, and this approach should aid individual patient stratification and prognosis. Copyright 2004 Wiley-Liss, Inc.

  7. Quantitative Myocardial Perfusion Imaging Versus Visual Analysis in Diagnosing Myocardial Ischemia: A CE-MARC Substudy.

    PubMed

    Biglands, John D; Ibraheem, Montasir; Magee, Derek R; Radjenovic, Aleksandra; Plein, Sven; Greenwood, John P

    2018-05-01

    This study sought to compare the diagnostic accuracy of visual and quantitative analyses of myocardial perfusion cardiovascular magnetic resonance against a reference standard of quantitative coronary angiography. Visual analysis of perfusion cardiovascular magnetic resonance studies for assessing myocardial perfusion has been shown to have high diagnostic accuracy for coronary artery disease. However, only a few small studies have assessed the diagnostic accuracy of quantitative myocardial perfusion. This retrospective study included 128 patients randomly selected from the CE-MARC (Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease) study population such that the distribution of risk factors and disease status was proportionate to the full population. Visual analysis results of cardiovascular magnetic resonance perfusion images, by consensus of 2 expert readers, were taken from the original study reports. Quantitative myocardial blood flow estimates were obtained using Fermi-constrained deconvolution. The reference standard for myocardial ischemia was a quantitative coronary x-ray angiogram stenosis severity of ≥70% diameter in any coronary artery of >2 mm diameter, or ≥50% in the left main stem. Diagnostic performance was calculated using receiver-operating characteristic curve analysis. The area under the curve for visual analysis was 0.88 (95% confidence interval: 0.81 to 0.95) with a sensitivity of 81.0% (95% confidence interval: 69.1% to 92.8%) and specificity of 86.0% (95% confidence interval: 78.7% to 93.4%). For quantitative stress myocardial blood flow the area under the curve was 0.89 (95% confidence interval: 0.83 to 0.96) with a sensitivity of 87.5% (95% confidence interval: 77.3% to 97.7%) and specificity of 84.5% (95% confidence interval: 76.8% to 92.3%). There was no statistically significant difference between the diagnostic performance of quantitative and visual analyses (p = 0.72). Incorporating rest myocardial

  8. Quantitative Analysis of First-Pass Contrast-Enhanced Myocardial Perfusion Multidetector CT Using a Patlak Plot Method and Extraction Fraction Correction During Adenosine Stress

    NASA Astrophysics Data System (ADS)

    Ichihara, Takashi; George, Richard T.; Silva, Caterina; Lima, Joao A. C.; Lardo, Albert C.

    2011-02-01

    The purpose of this study was to develop a quantitative method for myocardial blood flow (MBF) measurement that can be used to derive accurate myocardial perfusion measurements from dynamic multidetector computed tomography (MDCT) images by using a compartment model for calculating the first-order transfer constant (K1) with correction for the capillary transit extraction fraction (E). Six canine models of left anterior descending (LAD) artery stenosis were prepared and underwent first-pass contrast-enhanced MDCT perfusion imaging during adenosine infusion (0.14-0.21 mg/kg/min). K1 , which is the first-order transfer constant from left ventricular (LV) blood to myocardium, was measured using the Patlak plot method applied to time-attenuation curve data of the LV blood pool and myocardium. The results were compared against microsphere MBF measurements, and the extraction fraction of contrast agent was calculated. K1 is related to the regional MBF as K1=EF, E=(1-exp(-PS/F)), where PS is the permeability-surface area product and F is myocardial flow. Based on the above relationship, a look-up table from K1 to MBF can be generated and Patlak plot-derived K1 values can be converted to the calculated MBF. The calculated MBF and microsphere MBF showed a strong linear association. The extraction fraction in dogs as a function of flow (F) was E=(1-exp(-(0.2532F+0.7871)/F)) . Regional MBF can be measured accurately using the Patlak plot method based on a compartment model and look-up table with extraction fraction correction from K1 to MBF.

  9. Influence of contrast agent dose and ultrasound exposure on cardiomyocyte injury induced by myocardial contrast echocardiography in rats.

    PubMed

    Miller, Douglas L; Li, Peng; Dou, Chunyan; Gordon, David; Edwards, Chris A; Armstrong, William F

    2005-10-01

    To detect specific cardiomyocyte injury induced by myocardial contrast material-enhanced echocardiography (ie, myocardial contrast echocardiography) in rats and to ascertain the influences of contrast material dose and ultrasound exposure on this injury. All animal procedures were approved by the university committee for the use and care of animals. Myocardial contrast echocardiography with 1:4 electrocardiographic (ECG) triggering was performed at 1.5 MHz in 61 anesthetized rats. Evans blue (EB) dye was injected as the vital stain for cardiomyocyte injury. At the start of myocardial contrast echocardiography, which lasted 10 minutes, perflutren lipid microsphere-based contrast material was infused through the tail vein for 5 minutes. Premature heartbeats were counted from the ECG record. The numbers of EB-stained cells counted on sections of heart specimens obtained 24 hours after myocardial contrast echocardiography and then either fresh frozen or embedded in paraffin were determined by using fluorescence microscopy. Results were compared statistically by using t tests and Mann-Whitney rank sum tests. EB-stained cells were concentrated in the anterior region of the myocardium. In the paraffin-embedded specimens, EB-stained cells were often accompanied by but largely separate from areas of inflammatory cell infiltration. At end-systolic triggering with a 50 microL/kg dose of microsphere contrast material, the EB-stained cell count increased with increasing peak rarefactional pressure amplitude, with significantly increased cell counts at 1.6 MPa (P < .02) and 2.0 MPa (P < .005) relative to the cell counts at sham myocardial contrast echocardiography. Premature heartbeats had a similar exposure-response relationship; however, number of premature heartbeats and EB-stained cell count did not appear to be directly related (coefficient of determination r2 = 0.03). The EB-stained cell counts at end-diastolic triggering were not significantly different from those at end

  10. New imaging technology: measurement of myocardial perfusion by contrast echocardiography

    NASA Technical Reports Server (NTRS)

    Rubin, D. N.; Thomas, J. D.

    2000-01-01

    Myocardial perfusion imaging has long been a goal for the non-invasive echocardiographic assessment of the heart. However, many factors at play in perfusion imaging have made this goal elusive. Harmonic imaging and triggered imaging with newer contrast agents have made myocardial perfusion imaging potentially practical in the very near future. The application of indicator dilution theory to the coronary circulation and bubble contrast agents is fraught with complexities and sources of error. Therefore, quantification of myocardial perfusion by non-invasive echocardiographic imaging requires further investigation in order to make this technique clinically viable.

  11. Myocardial contrast echocardiography in mice: technical and physiological aspects.

    PubMed

    Verkaik, Melissa; van Poelgeest, Erik M; Kwekkeboom, Rick F J; Ter Wee, Piet M; van den Brom, Charissa E; Vervloet, Marc G; Eringa, Etto C

    2018-03-01

    Myocardial contrast echocardiography (MCE) offers the opportunity to study myocardial perfusion defects in mice in detail. The value of MCE compared with single-photon emission computed tomography, positron emission tomography, and computed tomography consists of high spatial resolution, the possibility of quantification of blood volume, and relatively low costs. Nevertheless, a number of technical and physiological aspects should be considered to ensure reproducibility among research groups. The aim of this overview is to describe technical aspects of MCE and the physiological parameters that influence myocardial perfusion data obtained with this technique. First, technical aspects of MCE discussed in this technical review are logarithmic compression of ultrasound data by ultrasound systems, saturation of the contrast signal, and acquisition of images during different phases of the cardiac cycle. Second, physiological aspects of myocardial perfusion that are affected by the experimental design are discussed, including the anesthesia regimen, systemic cardiovascular effects of vasoactive agents used, and fluctuations in body temperature that alter myocardial perfusion. When these technical and physiological aspects of MCE are taken into account and adequately standardized, MCE is an easily accessible technique for mice that can be used to study the control of myocardial perfusion by a wide range of factors.

  12. Myocardial blood flow estimates from dynamic contrast-enhanced magnetic resonance imaging: three quantitative methods

    NASA Astrophysics Data System (ADS)

    Borrazzo, Cristian; Galea, Nicola; Pacilio, Massimiliano; Altabella, Luisa; Preziosi, Enrico; Carnì, Marco; Ciolina, Federica; Vullo, Francesco; Francone, Marco; Catalano, Carlo; Carbone, Iacopo

    2018-02-01

    Dynamic contrast-enhanced cardiovascular magnetic resonance imaging can be used to quantitatively assess the myocardial blood flow (MBF), recovering the tissue impulse response function for the transit of a gadolinium bolus through the myocardium. Several deconvolution techniques are available, using various models for the impulse response. The method of choice may influence the results, producing differences that have not been deeply investigated yet. Three methods for quantifying myocardial perfusion have been compared: Fermi function modelling (FFM), the Tofts model (TM) and the gamma function model (GF), with the latter traditionally used in brain perfusion MRI. Thirty human subjects were studied at rest as well as under cold pressor test stress (submerging hands in ice-cold water), and a single bolus of gadolinium weighing 0.1  ±  0.05 mmol kg-1 was injected. Perfusion estimate differences between the methods were analysed by paired comparisons with Student’s t-test, linear regression analysis, and Bland-Altman plots, as well as also using the two-way ANOVA, considering the MBF values of all patients grouped according to two categories: calculation method and rest/stress conditions. Perfusion estimates obtained by various methods in both rest and stress conditions were not significantly different, and were in good agreement with the literature. The results obtained during the first-pass transit time (20 s) yielded p-values in the range 0.20-0.28 for Student’s t-test, linear regression analysis slopes between 0.98-1.03, and R values between 0.92-1.01. From the Bland-Altman plots, the paired comparisons yielded a bias (and a 95% CI)—expressed as ml/min/g—for FFM versus TM, -0.01 (-0.20, 0.17) or 0.02 (-0.49, 0.52) at rest or under stress respectively, for FFM versus GF, -0.05 (-0.29, 0.20) or  -0.07 (-0.55, 0.41) at rest or under stress, and for TM versus GF, -0.03 (-0.30, 0.24) or  -0.09 (-0.43, 0.26) at rest or under stress. With the

  13. Promote quantitative ischemia imaging via myocardial perfusion CT iterative reconstruction with tensor total generalized variation regularization

    NASA Astrophysics Data System (ADS)

    Gu, Chengwei; Zeng, Dong; Lin, Jiahui; Li, Sui; He, Ji; Zhang, Hao; Bian, Zhaoying; Niu, Shanzhou; Zhang, Zhang; Huang, Jing; Chen, Bo; Zhao, Dazhe; Chen, Wufan; Ma, Jianhua

    2018-06-01

    Myocardial perfusion computed tomography (MPCT) imaging is commonly used to detect myocardial ischemia quantitatively. A limitation in MPCT is that an additional radiation dose is required compared to unenhanced CT due to its repeated dynamic data acquisition. Meanwhile, noise and streak artifacts in low-dose cases are the main factors that degrade the accuracy of quantifying myocardial ischemia and hamper the diagnostic utility of the filtered backprojection reconstructed MPCT images. Moreover, it is noted that the MPCT images are composed of a series of 2/3D images, which can be naturally regarded as a 3/4-order tensor, and the MPCT images are globally correlated along time and are sparse across space. To obtain higher fidelity ischemia from low-dose MPCT acquisitions quantitatively, we propose a robust statistical iterative MPCT image reconstruction algorithm by incorporating tensor total generalized variation (TTGV) regularization into a penalized weighted least-squares framework. Specifically, the TTGV regularization fuses the spatial correlation of the myocardial structure and the temporal continuation of the contrast agent intake during the perfusion. Then, an efficient iterative strategy is developed for the objective function optimization. Comprehensive evaluations have been conducted on a digital XCAT phantom and a preclinical porcine dataset regarding the accuracy of the reconstructed MPCT images, the quantitative differentiation of ischemia and the algorithm’s robustness and efficiency.

  14. Image registration and analysis for quantitative myocardial perfusion: application to dynamic circular cardiac CT.

    PubMed

    Isola, A A; Schmitt, H; van Stevendaal, U; Begemann, P G; Coulon, P; Boussel, L; Grass, M

    2011-09-21

    Large area detector computed tomography systems with fast rotating gantries enable volumetric dynamic cardiac perfusion studies. Prospectively, ECG-triggered acquisitions limit the data acquisition to a predefined cardiac phase and thereby reduce x-ray dose and limit motion artefacts. Even in the case of highly accurate prospective triggering and stable heart rate, spatial misalignment of the cardiac volumes acquired and reconstructed per cardiac cycle may occur due to small motion pattern variations from cycle to cycle. These misalignments reduce the accuracy of the quantitative analysis of myocardial perfusion parameters on a per voxel basis. An image-based solution to this problem is elastic 3D image registration of dynamic volume sequences with variable contrast, as it is introduced in this contribution. After circular cone-beam CT reconstruction of cardiac volumes covering large areas of the myocardial tissue, the complete series is aligned with respect to a chosen reference volume. The results of the registration process and the perfusion analysis with and without registration are evaluated quantitatively in this paper. The spatial alignment leads to improved quantification of myocardial perfusion for three different pig data sets.

  15. Functional CT assessment of extravascular contrast distribution volume and myocardial perfusion in acute myocardial infarction.

    PubMed

    So, Aaron; Wisenberg, Gerald; Teefy, Patrick; Yadegari, Andrew; Bagur, Rodrigo; Hadway, Jennifer; Morrison, Laura; MacDonald, Anna; Gaskin, Dave; Butler, John; Biernaski, Heather; Skanes, Stephanie; Park, Stella DohYeoun; Islam, Ali; Hsieh, Jiang; Lee, Ting-Yim

    2018-04-26

    In a pig model of acute myocardial infarction (AMI), we validated a functional computed tomography (CT) technique for concomitant assessment of myocardial edema and ischemia through extravscualar contrast distribution volume (ECDV) and myocardial perfusion (MP) measurements from a single dynamic imaging session using a single contrast bolus injection. In seven pigs, balloon catheter was used to occlude the distal left anterior descending artery for one hour followed by reperfusion. CT and cardiac magnetic resonance (CMR) imaging studies were acquired on 3 days and 12 ± 3 day post ischemic insult. In each CT study, 0.7 ml/kg of iodinated contrast was intravenously injected at 3-4 ml/s before dynamic contrast-enhanced (DCE) cardiac images were acquired with breath-hold using a 64-row CT scanner. DCE cardiac images were analyzed with a model-based deconvolution to generate ECDV and MP maps. ECDV as an imaging marker of edema was validated against CMR T2 weighted imaging in normal and infarcted myocardium delineated from ex-vivo histological staining. ECDV in infarcted myocardium was significantly higher (p < 0.05) than that in normal myocardium on both days post AMI and was in agreement with the findings of CMR T2 weighted imaging. MP was significantly lower (p < 0.05) in the infarcted region compared to normal on both days post AMI. This imaging technique can rapidly and simultaneously assess myocardial edema and ischemia through ECDV and MP measurements, and may be useful for delineation of salvageable tissue within at-risk myocardium to guide reperfusion therapy. Copyright © 2017. Published by Elsevier B.V.

  16. SPECT Myocardial Blood Flow Quantitation Concludes Equivocal Myocardial Perfusion SPECT Studies to Increase Diagnostic Benefits.

    PubMed

    Chen, Lung-Ching; Lin, Chih-Yuan; Chen, Ing-Jou; Ku, Chi-Tai; Chen, Yen-Kung; Hsu, Bailing

    2016-01-01

    Recently, myocardial blood flow quantitation with dynamic SPECT/CT has been reported to enhance the detection of coronary artery disease in human. This advance has created important clinical applications to coronary artery disease diagnosis and management for areas where myocardial perfusion PET tracers are not available. We present 2 clinical cases that undergone a combined test of 1-day rest/dipyridamole-stress dynamic SPECT and ECG-gated myocardial perfusion SPECT scans using an integrated imaging protocol and demonstrate that flow parameters are capable to conclude equivocal myocardial perfusion SPECT studies, therefore increasing diagnostic benefits to add value in making clinical decisions.

  17. Geographic and demographic variabilities of quantitative parameters in stress myocardial computed tomography perfusion.

    PubMed

    Park, Jinoh; Kim, Hyun-Sook; Hwang, Hye Jeon; Yang, Dong Hyun; Koo, Hyun Jung; Kang, Joon-Won; Kim, Young-Hak

    2017-09-01

    To evaluate the geographic and demographic variabilities of the quantitative parameters of computed tomography perfusion (CTP) of the left ventricular (LV) myocardium in patients with normal coronary artery on computed tomography angiography (CTA). From a multicenter CTP registry of stress and static computed tomography, we retrospectively recruited 113 patients (mean age, 60 years; 57 men) without perfusion defect on visual assessment and minimal (< 20% of diameter stenosis) or no coronary artery disease on CTA. Using semiautomatic analysis software, quantitative parameters of the LV myocardium, including the myocardial attenuation in stress and rest phases, transmural perfusion ratio (TPR), and myocardial perfusion reserve index (MPRI), were evaluated in 16 myocardial segments. In the lateral wall of the LV myocardium, all quantitative parameters except for MPRI were significantly higher compared with those in the other walls. The MPRI showed consistent values in all myocardial walls (anterior to lateral wall: range, 25% to 27%; p = 0.401). At the basal level of the myocardium, all quantitative parameters were significantly lower than those at the mid- and apical levels. Compared with men, women had significantly higher values of myocardial attenuation and TPR. Age, body mass index, and Framingham risk score were significantly associated with the difference in myocardial attenuation. Geographic and demographic variabilities of quantitative parameters in stress myocardial CTP exist in healthy subjects without significant coronary artery disease. This information may be helpful when assessing myocardial perfusion defects in CTP.

  18. Impact of iso-osmolar versus low-osmolar contrast agents on contrast-induced nephropathy and tissue reperfusion in unselected patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention (from the Contrast Media and Nephrotoxicity Following Primary Angioplasty for Acute Myocardial Infarction [CONTRAST-AMI] Trial).

    PubMed

    Bolognese, Leonardo; Falsini, Giovanni; Schwenke, Carsten; Grotti, Simone; Limbruno, Ugo; Liistro, Francesco; Carrera, Arcangelo; Angioli, Paolo; Picchi, Andrea; Ducci, Kenneth; Pierli, Carlo

    2012-01-01

    Conflicting data have been reported on the effects of low-osmolar and iso-osmolar contrast media on contrast-induced acute kidney injury (CI-AKI). In particular, no clinical trial has yet focused on the effect of contemporary contrast media on CI-AKI, epicardial flow, and microcirculatory function in patients with ST-segment elevation acute myocardial infarction who undergo primary percutaneous coronary intervention. The Contrast Media and Nephrotoxicity Following Coronary Revascularization by Angioplasty for Acute Myocardial Infarction (CONTRAST-AMI) trial is a prospective, randomized, single-blind, parallel-group, noninferiority study aiming to evaluate the effects of the low-osmolar contrast medium iopromide compared to the iso-osmolar agent iodixanol on CI-AKI and tissue-level perfusion in patients with ST-segment elevation acute myocardial infarction. Four hundred seventy-five consecutive, unselected patients who underwent primary percutaneous coronary intervention were randomized to iopromide (n = 239) or iodixanol (n = 236). All patients received high-dose N-acetylcysteine and hydration. The primary end point was the proportion of patients with serum creatinine (sCr) increases ≥25% from baseline to 72 hours. Secondary end points were Thrombolysis In Myocardial Infarction (TIMI) myocardial perfusion grade, increase in sCr ≥50%, increase in sCr ≥0.5 or ≥1 mg/dl, and 1-month major adverse cardiac events. The primary end point occurred in 10% of the iopromide group and in 13% of the iodixanol group (95% confidence interval -9% to 3%, p for noninferiority = 0.0002). A TIMI myocardial perfusion grade of 0 or 1 was present in 14% of patients in the 2 groups. No differences between the 2 groups were found in any of the secondary analyses of sCr increase. No significant difference in 1-month major adverse cardiac events was found (8% vs 6%, p = 0.37). In conclusion, in a population of unselected patients with ST-segment elevation acute myocardial infarction

  19. Simultaneous Assessment of Myocardial Perfusion, Wall Motion, and Deformation during Myocardial Contrast Echocardiography: A Feasibility Study.

    PubMed

    Zoppellaro, Giacomo; Venneri, Lucia; Khattar, Rajdeep S; Li, Wei; Senior, Roxy

    2016-06-01

    Ultrasound contrast agents may be used for the assessment of regional wall motion and myocardial perfusion, but are generally considered not suitable for deformation analysis. The aim of our study was to assess the feasibility of deformation imaging on contrast-enhanced images using a novel methodology. We prospectively enrolled 40 patients who underwent stress echocardiography with continuous intravenous infusion of SonoVue for the assessment of myocardial perfusion imaging with flash replenishment technique. We compared longitudinal strain (Lε) values, assessed with a vendor-independent software (2D CPA), on 68 resting contrast-enhanced and 68 resting noncontrast recordings. Strain analysis on contrast recordings was evaluated in the first cardiac cycles after the flash. Tracking of contrast images was deemed feasible in all subjects and in all views. Contrast administration improved image quality and increased the number of segments used for deformation analysis. Lε of noncontrast and contrast-enhanced images were statistically different (-18.8 ± 4.5% and -22.8 ± 5.4%, respectively; P < 0.001), but their correlation was good (ICC 0.65, 95%CI 0.42-0.78). Patients with resting wall-motion abnormalities showed lower Lε values on contrast recordings (-18.6 ± 6.0% vs. -24.2 ± 5.5%, respectively; P < 0.01). Intra-operator and inter-operator reproducibility was good for both noncontrast and contrast images with no statistical differences. Our study shows that deformation analysis on postflash contrast-enhanced images is feasible and reproducible. Therefore, it would be possible to perform a simultaneous evaluation of wall-motion abnormalities, volumes, ejection fraction, perfusion defects, and cardiac deformation on the same contrast recording. © 2016, Wiley Periodicals, Inc.

  20. Theoretical considerations in measurement of time discrepancies between input and myocardial time-signal intensity curves in estimates of regional myocardial perfusion with first-pass contrast-enhanced MRI.

    PubMed

    Natsume, Takahiro; Ishida, Masaki; Kitagawa, Kakuya; Nagata, Motonori; Sakuma, Hajime; Ichihara, Takashi

    2015-11-01

    The purpose of this study was to develop a method to determine time discrepancies between input and myocardial time-signal intensity (TSI) curves for accurate estimation of myocardial perfusion with first-pass contrast-enhanced MRI. Estimation of myocardial perfusion with contrast-enhanced MRI using kinetic models requires faithful recording of contrast content in the blood and myocardium. Typically, the arterial input function (AIF) is obtained by setting a region of interest in the left ventricular cavity. However, there is a small delay between the AIF and the myocardial curves, and such time discrepancies can lead to errors in flow estimation using Patlak plot analysis. In this study, the time discrepancies between the arterial TSI curve and the myocardial tissue TSI curve were estimated based on the compartment model. In the early phase after the arrival of the contrast agent in the myocardium, the relationship between rate constant K1 and the concentrations of Gd-DTPA contrast agent in the myocardium and arterial blood (LV blood) can be described by the equation K1={dCmyo(tpeak)/dt}/Ca(tpeak), where Cmyo(t) and Ca(t) are the relative concentrations of Gd-DTPA contrast agent in the myocardium and in the LV blood, respectively, and tpeak is the time corresponding to the peak of Ca(t). In the ideal case, the time corresponding to the maximum upslope of Cmyo(t), tmax, is equal to tpeak. In practice, however, there is a small difference in the arrival times of the contrast agent into the LV and into the myocardium. This difference was estimated to correspond to the difference between tpeak and tmax. The magnitudes of such time discrepancies and the effectiveness of the correction for these time discrepancies were measured in 18 subjects who underwent myocardial perfusion MRI under rest and stress conditions. The effects of the time discrepancies could be corrected effectively in the myocardial perfusion estimates. Copyright © 2015 Elsevier Inc. All rights

  1. Myocardial perfusion assessment with contrast echocardiography

    NASA Astrophysics Data System (ADS)

    Desco, Manuel; Ledesma-Carbayo, Maria J.; Santos, Andres; Garcia-Fernandez, Miguel A.; Marcos-Alberca, Pedro; Malpica, Norberto; Antoranz, Jose C.; Garcia-Barreno, Pedro

    2001-05-01

    Assessment of intramyocardial perfusion by contrast echocardiography is a promising new technique that allows to obtain quantitative parameters for the assessment of ischemic disease. In this work, a new methodology and a software prototype developed for this task are presented. It has been validated with Coherent Contrast Imaging (CCI) images acquired with an Acuson Sequoia scanner. Contrast (Optison microbubbles) is injected continuously during the scan. 150 images are acquired using low mechanical index U/S pulses. A burst of high mechanical index pulses is used to destroy bubbles, thus allowing to detect the contrast wash-in. The stud is performed in two conditions: rest and pharmacologically induced stress. The software developed allows to visualized the study (cine) and to select several ROIs within the heart wall. The position of these ROIs along the cardiac cycle is automatically corrected on the basis of the gradient field, and they can also be manually corrected in case the automatic procedure fails. Time curves are analyzed according to a parametric model that incorporates both contrast inflow rate and cyclic variations. Preliminary clinical results on 80 patients have allowed us to identify normal and pathological patterns and to establish the correlation of quantitative parameters with the real diagnosis.

  2. 3D perfusion mapping in the intact mouse heart after myocardial infarction using myocardial contrast echocardiography

    NASA Astrophysics Data System (ADS)

    Li, Yinbo; Yang, Zequan; French, Brent A.; Hossack, John A.

    2005-04-01

    An intact mouse model of surgically-induced myocardial infarction (MI) caused by permanent occlusion of the Left Anterior Descending (LAD) coronary artery was studied. Normal mice with no occlusion were also studied as controls. For each mouse, contrast enhanced ultrasound images of the heart were acquired in parallel cross-sections perpendicular to the sternum at millimeter increments. For accurate 3D reconstruction, ECG gating and a tri-axial adjustable micromanipulator were used for temporal and spatial registration. Ultrasound images at steady-state of blood refilling were color-coded in each slice to show relative perfusion. Myocardial perfusion defects and necrosis were also examined postmortem by staining with Phthalo blue and TTC red dyes. Good correlation (R>0.93) in perfused area size was observed between in vivo measurements and histological staining. A 3D multi-slice model and a 3D rendering of perfusion distribution were created and showed a promising match with postmortem results, lending further credence to its use as a more comprehensive and more reliable tool for in vivo assessment of myocardial perfusion than 2D tomographic analysis.

  3. Prognostic significance of infarct core pathology revealed by quantitative non-contrast in comparison with contrast cardiac magnetic resonance imaging in reperfused ST-elevation myocardial infarction survivors.

    PubMed

    Carrick, David; Haig, Caroline; Rauhalammi, Sam; Ahmed, Nadeem; Mordi, Ify; McEntegart, Margaret; Petrie, Mark C; Eteiba, Hany; Hood, Stuart; Watkins, Stuart; Lindsay, Mitchell; Mahrous, Ahmed; Ford, Ian; Tzemos, Niko; Sattar, Naveed; Welsh, Paul; Radjenovic, Aleksandra; Oldroyd, Keith G; Berry, Colin

    2016-04-01

    To assess the prognostic significance of infarct core tissue characteristics using cardiac magnetic resonance (CMR) imaging in survivors of acute ST-elevation myocardial infarction (STEMI). We performed an observational prospective single centre cohort study in 300 reperfused STEMI patients (mean ± SD age 59 ± 12 years, 74% male) who underwent CMR 2 days and 6 months post-myocardial infarction (n = 267). Native T1 was measured in myocardial regions of interest (n = 288). Adverse remodelling was defined as an increase in left ventricular (LV) end-diastolic volume ≥20% at 6 months. All-cause death or first heart failure hospitalization was a pre-specified outcome that was assessed during follow-up (median duration 845 days). One hundred and sixty (56%) patients had a hypo-intense infarct core disclosed by native T1. In multivariable regression, infarct core native T1 was inversely associated with adverse remodelling [odds ratio (95% confidence interval (CI)] per 10 ms reduction in native T1: 0.91 (0.82, 0.00); P = 0.061). Thirty (10.4%) of 288 patients died or experienced a heart failure event and 13 of these events occurred post-discharge. Native T1 values (ms) within the hypo-intense infarct core (n = 160 STEMI patients) were inversely associated with the risk of all-cause death or first hospitalization for heart failure post-discharge (for a 10 ms increase in native T1: hazard ratio 0.730, 95% CI 0.617, 0.863; P < 0.001) including after adjustment for left ventricular ejection fraction, infarct core T2 and myocardial haemorrhage. The prognostic results for microvascular obstruction were similar. Infarct core native T1 represents a novel non-contrast CMR biomarker with potential for infarct characterization and prognostication in STEMI survivors. Confirmatory studies are warranted. CLINICALTRIALS. NCT02072850. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  4. Current Understanding of the Pathophysiology of Myocardial Fibrosis and Its Quantitative Assessment in Heart Failure

    PubMed Central

    Liu, Tong; Song, Deli; Dong, Jianzeng; Zhu, Pinghui; Liu, Jie; Liu, Wei; Ma, Xiaohai; Zhao, Lei; Ling, Shukuan

    2017-01-01

    Myocardial fibrosis is an important part of cardiac remodeling that leads to heart failure and death. Myocardial fibrosis results from increased myofibroblast activity and excessive extracellular matrix deposition. Various cells and molecules are involved in this process, providing targets for potential drug therapies. Currently, the main detection methods of myocardial fibrosis rely on serum markers, cardiac magnetic resonance imaging, and endomyocardial biopsy. This review summarizes our current knowledge regarding the pathophysiology, quantitative assessment, and novel therapeutic strategies of myocardial fibrosis. PMID:28484397

  5. Quantitative contrast-enhanced mammography for contrast medium kinetics studies

    NASA Astrophysics Data System (ADS)

    Arvanitis, C. D.; Speller, R.

    2009-10-01

    Quantitative contrast-enhanced mammography, based on a dual-energy approach, aims to extract quantitative and temporal information of the tumour enhancement after administration of iodinated vascular contrast media. Simulations using analytical expressions and optimization of critical parameters essential for the development of quantitative contrast-enhanced mammography are presented. The procedure has been experimentally evaluated using a tissue-equivalent phantom and an amorphous silicon active matrix flat panel imager. The x-ray beams were produced by a tungsten target tube and spectrally shaped using readily available materials. Measurement of iodine projected thickness in mg cm-2 has been performed. The effect of beam hardening does not introduce nonlinearities in the measurement of iodine projected thickness for values of thicknesses found in clinical investigations. However, scattered radiation introduces significant deviations from slope equal to unity when compared with the actual iodine projected thickness. Scatter correction before the analysis of the dual-energy images provides accurate iodine projected thickness measurements. At 10% of the exposure used in clinical mammography, signal-to-noise ratios in excess of 5 were achieved for iodine projected thicknesses less than 3 mg cm-2 within a 4 cm thick phantom. For the extraction of temporal information, a limited number of low-dose images were used with the phantom incorporating a flow of iodinated contrast medium. The results suggest that spatial and temporal information of iodinated contrast media can be used to indirectly measure the tumour microvessel density and determine its uptake and washout from breast tumours. The proposed method can significantly improve tumour detection in dense breasts. Its application to perform in situ x-ray biopsy and assessment of the oncolytic effect of anticancer agents is foreseeable.

  6. Comparison of blood flow models and acquisitions for quantitative myocardial perfusion estimation from dynamic CT

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-04-01

    Myocardial blood flow (MBF) can be estimated from dynamic contrast enhanced (DCE) cardiac CT acquisitions, leading to quantitative assessment of regional perfusion. The need for low radiation dose and the lack of consensus on MBF estimation methods motivates this study to refine the selection of acquisition protocols and models for CT-derived MBF. DCE cardiac CT acquisitions were simulated for a range of flow states (MBF = 0.5, 1, 2, 3 ml (min g)-1, cardiac output = 3, 5, 8 L min-1). Patient kinetics were generated by a mathematical model of iodine exchange incorporating numerous physiological features including heterogenenous microvascular flow, permeability and capillary contrast gradients. CT acquisitions were simulated for multiple realizations of realistic x-ray flux levels. CT acquisitions that reduce radiation exposure were implemented by varying both temporal sampling (1, 2, and 3 s sampling intervals) and tube currents (140, 70, and 25 mAs). For all acquisitions, we compared three quantitative MBF estimation methods (two-compartment model, an axially-distributed model, and the adiabatic approximation to the tissue homogeneous model) and a qualitative slope-based method. In total, over 11 000 time attenuation curves were used to evaluate MBF estimation in multiple patient and imaging scenarios. After iodine-based beam hardening correction, the slope method consistently underestimated flow by on average 47.5% and the quantitative models provided estimates with less than 6.5% average bias and increasing variance with increasing dose reductions. The three quantitative models performed equally well, offering estimates with essentially identical root mean squared error (RMSE) for matched acquisitions. MBF estimates using the qualitative slope method were inferior in terms of bias and RMSE compared to the quantitative methods. MBF estimate error was equal at matched dose reductions for all quantitative methods and range of techniques evaluated. This suggests that

  7. Detection and differentiation of early acute and following age stages of myocardial infarction with quantitative post-mortem cardiac 1.5T MR.

    PubMed

    Schwendener, Nicole; Jackowski, Christian; Persson, Anders; Warntjes, Marcel J; Schuster, Frederick; Riva, Fabiano; Zech, Wolf-Dieter

    2017-01-01

    Recently, quantitative MR sequences have started being used in post-mortem imaging. The goal of the present study was to evaluate if early acute and following age stages of myocardial infarction can be detected and discerned by quantitative 1.5T post-mortem cardiac magnetic resonance (PMCMR) based on quantitative T1, T2 and PD values. In 80 deceased individuals (25 female, 55 male), a cardiac MR quantification sequence was performed prior to cardiac dissection at autopsy in a prospective study. Focal myocardial signal alterations detected in synthetically generated MR images were MR quantified for their T1, T2 and PD values. The locations of signal alteration measurements in PMCMR were targeted at autopsy heart dissection and cardiac tissue specimens were taken for histologic examinations. Quantified signal alterations in PMCMR were correlated to their according histologic age stage of myocardial infarction. In PMCMR seventy-three focal myocardial signal alterations were detected in 49 of 80 investigated hearts. These signal alterations were diagnosed histologically as early acute (n=39), acute (n=14), subacute (n=10) and chronic (n=10) age stages of myocardial infarction. Statistical analysis revealed that based on their quantitative T1, T2 and PD values, a significant difference between all defined age groups of myocardial infarction can be determined. It can be concluded that quantitative 1.5T PMCMR quantification based on quantitative T1, T2 and PD values is feasible for characterization and differentiation of early acute and following age stages of myocardial infarction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Differential MR Delayed Enhancement Patterns of Chronic Myocardial Infarction between Extracellular and Intravascular Contrast Media

    PubMed Central

    Wang, Jian; Xiang, Bo; Lin, Hung Yu; Liu, Hongyu; Freed, Darren; Arora, Rakesh C.; Tian, Ganghong

    2015-01-01

    Objectives Because the distribution volume and mechanism of extracellular and intravascular MR contrast media differ considerably, the enhancement pattern of chronic myocardial infarction with extracellular or intravascular media might also be different. This study aims to investigate the differences in MR enhancement patterns of chronic myocardial infarction between extracellular and intravascular contrast media. Materials and Methods Twenty pigs with myocardial infarction underwent cine MRI, first pass perfusion MRI and delayed enhancement MRI with extracellular or intravascular media at four weeks after coronary occlusion. Myocardial blood flow (MBF) was determined with microsphere measurement. The infarction histopathological changes were evaluated by hematoxylin and eosin staining and Masson's trichrome method. Results Cine MRI revealed the reduced wall thickening in chronic infarction compared with normal myocardium. Moreover, significant wall thinning in chronic infarction was observed in cine MRI. Peak first-pass signal intensity didn’t significantly differ between chronic infarction and normal myocardium no matter what kinds of contrast media. At the following delayed enhancement phase, extracellular media-enhanced signal intensity was significantly higher in chronic infarction than in normal myocardium. Conversely, intravascular media-enhanced signal intensity was almost equivalent among chronic infarction and normal myocardium. At four weeks after infarction, MBF in chronic infarction approached to that in normal myocardium. Large thick-walled vessels were detected at peri-infarction zones. The cardiomyocytes were replaced by scar tissue consisting of dilated blood vessels and discrete fibers of collagen. Conclusions Chronic infarction was characterized by the significantly reduced wall thickening and the definite wall thinning. First-pass myocardial perfusion defect was not detected in chronic infarction with two media due to the significantly

  9. Usefulness of myocardial parametric imaging to evaluate myocardial viability in experimental and in clinical studies

    PubMed Central

    Korosoglou, G; Hansen, A; Bekeredjian, R; Filusch, A; Hardt, S; Wolf, D; Schellberg, D; Katus, H A; Kuecherer, H

    2006-01-01

    Objective To evaluate whether myocardial parametric imaging (MPI) is superior to visual assessment for the evaluation of myocardial viability. Methods and results Myocardial contrast echocardiography (MCE) was assessed in 11 pigs before, during, and after left anterior descending coronary artery occlusion and in 32 patients with ischaemic heart disease by using intravenous SonoVue administration. In experimental studies perfusion defect area assessment by MPI was compared with visually guided perfusion defect planimetry. Histological assessment of necrotic tissue was the standard reference. In clinical studies viability was assessed on a segmental level by (1) visual analysis of myocardial opacification; (2) quantitative estimation of myocardial blood flow in regions of interest; and (3) MPI. Functional recovery between three and six months after revascularisation was the standard reference. In experimental studies, compared with visually guided perfusion defect planimetry, planimetric assessment of infarct size by MPI correlated more significantly with histology (r2  =  0.92 versus r2  =  0.56) and had a lower intraobserver variability (4% v 15%, p < 0.05). In clinical studies, MPI had higher specificity (66% v 43%, p < 0.05) than visual MCE and good accuracy (81%) for viability detection. It was less time consuming (3.4 (1.6) v 9.2 (2.4) minutes per image, p < 0.05) than quantitative blood flow estimation by regions of interest and increased the agreement between observers interpreting myocardial perfusion (κ  =  0.87 v κ  =  0.75, p < 0.05). Conclusion MPI is useful for the evaluation of myocardial viability both in animals and in patients. It is less time consuming than quantification analysis by regions of interest and less observer dependent than visual analysis. Thus, strategies incorporating this technique may be valuable for the evaluation of myocardial viability in clinical routine. PMID:15939722

  10. Usefulness of myocardial parametric imaging to evaluate myocardial viability in experimental and in clinical studies.

    PubMed

    Korosoglou, G; Hansen, A; Bekeredjian, R; Filusch, A; Hardt, S; Wolf, D; Schellberg, D; Katus, H A; Kuecherer, H

    2006-03-01

    To evaluate whether myocardial parametric imaging (MPI) is superior to visual assessment for the evaluation of myocardial viability. Myocardial contrast echocardiography (MCE) was assessed in 11 pigs before, during, and after left anterior descending coronary artery occlusion and in 32 patients with ischaemic heart disease by using intravenous SonoVue administration. In experimental studies perfusion defect area assessment by MPI was compared with visually guided perfusion defect planimetry. Histological assessment of necrotic tissue was the standard reference. In clinical studies viability was assessed on a segmental level by (1) visual analysis of myocardial opacification; (2) quantitative estimation of myocardial blood flow in regions of interest; and (3) MPI. Functional recovery between three and six months after revascularisation was the standard reference. In experimental studies, compared with visually guided perfusion defect planimetry, planimetric assessment of infarct size by MPI correlated more significantly with histology (r2 = 0.92 versus r2 = 0.56) and had a lower intraobserver variability (4% v 15%, p < 0.05). In clinical studies, MPI had higher specificity (66% v 43%, p < 0.05) than visual MCE and good accuracy (81%) for viability detection. It was less time consuming (3.4 (1.6) v 9.2 (2.4) minutes per image, p < 0.05) than quantitative blood flow estimation by regions of interest and increased the agreement between observers interpreting myocardial perfusion (kappa = 0.87 v kappa = 0.75, p < 0.05). MPI is useful for the evaluation of myocardial viability both in animals and in patients. It is less time consuming than quantification analysis by regions of interest and less observer dependent than visual analysis. Thus, strategies incorporating this technique may be valuable for the evaluation of myocardial viability in clinical routine.

  11. Quantitative X-ray Differential Interference Contrast Microscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    Full-field soft x-ray microscopes are widely used in many fields of sciences. Advances in nanofabrication technology enabled short wavelength focusing elements with significantly improved spatial resolution. In the soft x-ray spectral region, samples as small as 12 nm can be resolved using micro zone-plates as the objective lens. In addition to conventional x-ray microscopy in which x-ray absorption difference provides the image contrast, phase contrast mechanisms such as differential phase contrast (DIC) and Zernike phase contrast have also been demonstrated These phase contrast imaging mechanisms are especially attractive at the x-ray wavelengths where phase contrast of most materials is typically 10 times stronger than the absorption contrast. With recent progresses in plasma-based x- ray sources and increasing accessibility to synchrotron user facilities, x-ray microscopes are quickly becoming standard measurement equipment in the laboratory. To further the usefulness of x-ray DIC microscopy this thesis explicitly addresses three known issues with this imaging modality by introducing new techniques and devices First, as opposed to its visible-light counterpart, no quantitative phase imaging technique exists for x-ray DIC microscopy. To address this issue, two nanoscale x-ray quantitative phase imaging techniques, using exclusive OR (XOR) patterns and zone-plate doublets, respectively, are proposed. Unlike existing x-ray quantitative phase imaging techniques such as Talbot interferometry and ptychography, no dedicated experimental setups or stringent illumination coherence are needed for quantitative phase retrieval. Second, to the best of our knowledge, no quantitative performance characterization of DIC microscopy exists to date. Therefore the imaging system's response to sample's spatial frequency is not known In order to gain in-depth understanding of this imaging modality, performance of x-ray DIC microscopy is quantified using modulation transfer function

  12. A relative quantitative assessment of myocardial perfusion by first-pass technique: animal study

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Zhang, Zhang; Yu, Xuefang; Zhou, Kenneth J.

    2015-03-01

    The purpose of this study is to quantitatively assess the myocardial perfusion by first-pass technique in swine model. Numerous techniques based on the analysis of Computed Tomography (CT) Hounsfield Unit (HU) density have emerged. Although these methods proposed to be able to assess haemodynamically significant coronary artery stenosis, their limitations are noticed. There are still needs to develop some new techniques. Experiments were performed upon five (5) closed-chest swine. Balloon catheters were placed into the coronary artery to simulate different degrees of luminal stenosis. Myocardial Blood Flow (MBF) was measured using color microsphere technique. Fractional Flow Reserve (FFR) was measured using pressure wire. CT examinations were performed twice during First-pass phase under adenosine-stress condition. CT HU Density (HUDCT) and CT HU Density Ratio (HUDRCT) were calculated using the acquired CT images. Our study presents that HUDRCT shows a good (y=0.07245+0.09963x, r2=0.898) correlation with MBF and FFR. In receiver operating characteristic (ROC) curve analyses, HUDRCT provides excellent diagnostic performance for the detection of significant ischemia during adenosine-stress as defined by FFR indicated by the value of Area Under the Curve (AUC) of 0.927. HUDRCT has the potential to be developed as a useful indicator of quantitative assessment of myocardial perfusion.

  13. Cardiac contraction motion compensation in gated myocardial perfusion SPECT: A comparative study.

    PubMed

    Salehi, Narges; Rahmim, Arman; Fatemizadeh, Emad; Akbarzadeh, Afshin; Farahani, Mohammad Hossein; Farzanefar, Saeed; Ay, Mohammad Reza

    2018-05-01

    Cardiac contraction significantly degrades quality and quantitative accuracy of gated myocardial perfusion SPECT (MPS) images. In this study, we aimed to explore different techniques in motion-compensated temporal processing of MPS images and their impact on image quality and quantitative accuracy. 50 patients without known heart condition underwent gated MPS. 3D motion compensation methods using Motion Freezing by Cedars Sinai (MF), Log-domain Diffeomorphic Demons (LDD) and Free-Form Deformation (FFD) were applied to warp all image phases to fit the end-diastolic (ED) phase. Afterwards, myocardial wall thickness, myocardial to blood pool contrast, and image contrast-to noise ratio (CNR) were measured in summed images with no motion compensation (NoMC) and compensated images (MF, LDD and FFD). Total Perfusion Defect (TPD) was derived from Cedars-Sinai software, on the basis of sex-specific normal limits. Left ventricle (LV) lateral wall thickness was reduced after applying motion compensation (p < 0.05). Myocardial to blood pool contrast and CNR in compensated images were greater than NoMC (p < 0.05). TPD_LDD was in good agreement with the corresponding TPD_MF (p = 0.13). All methods have improved image quality and quantitative performance relative to NoMC. LDD and FFD are fully automatic and do not require any manual intervention, while MF is dependent on contour definition. In terms of diagnostic parameters LDD is in good agreement with MF which is a clinically accepted method. Further investigation along with diagnostic reference standards, in order to specify diagnostic value of each technique is recommended. Copyright © 2018 Associazione Italiana di Fisica Medica. All rights reserved.

  14. Quantitative analysis of regional myocardial performance in coronary artery disease

    NASA Technical Reports Server (NTRS)

    Stewart, D. K.; Dodge, H. T.; Frimer, M.

    1975-01-01

    Findings from a group of subjects with significant coronary artery stenosis are given. A group of controls determined by use of a quantitative method for the study of regional myocardial performance based on the frame-by-frame analysis of biplane left ventricular angiograms are presented. Particular emphasis was placed upon the analysis of wall motion in terms of normalized segment dimensions, timing and velocity of contraction. The results were compared with the method of subjective assessment used clinically.

  15. MR contrast media for myocardial viability, microvascular integrity and perfusion.

    PubMed

    Saeed, M; Wendland, M F; Watzinger, N; Akbari, H; Higgins, C B

    2000-06-01

    Cardiovascular imaging requires an appreciation of rapidly evolving MR imaging sequences as well as careful utilization of intravascular, extracellular and intracellular MR contrast media. At the present time, clinical studies are restricted to the use of extracellular MR contrast media. MR imaging has the potential to noninvasively measure multiple parameters of the cardiovascular system in a single imaging session. Recent advances in fast and ultrafast MR imaging have considerably enhanced the capability of this technique, beyond the assessment of left ventricular wall motion and morphology into visualization of the coronary arteries and measurement of blood flow. During the course of the last several years, multiple strategies for imaging viable myocardium have been developed and validated using MR contrast media. Contrast enhanced dynamic MR imaging provides information regarding microvascular integrity and perfusion. Because these information can be provided noninvasively by MR imaging, repeated measurements can be performed in longitudinal studies to monitor the progression or regression of myocardial injury. Similar studies are needed to examine the effects of newly developed cardioprotective therapeutics. Development of suitable intravascular MR contrast medium may be essential for visualization of the coronary arteries and interventional therapies. MR imaging may emerge as one-stop-shop for evaluating the heart and coronary system. This capability will make MR imaging cost-effective in the first decade of this millennium.

  16. Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings.

    PubMed

    Bandula, Steve; White, Steven K; Flett, Andrew S; Lawrence, David; Pugliese, Francesca; Ashworth, Michael T; Punwani, Shonit; Taylor, Stuart A; Moon, James C

    2013-11-01

    To develop and validate equilibrium contrast material-enhanced computed tomography (CT) to measure myocardial extracellular volume (ECV) fraction by using a histologic reference standard and to compare equilibrium CT with equilibrium contrast-enhanced magnetic resonance (MR) imaging. A local ethics committee approved the study, and all subjects gave fully informed written consent. An equilibrium CT protocol was developed using iohexol at 300 mg of iodine per milliliter (bolus of 1 mg per kilogram of body weight administered at a rate of 3 mL/sec, followed immediately by an infusion of 1.88 mL/kg per hour with CT imaging before and at 25 minutes after injection of bolus of contrast agent) and ECV within the myocardial septum measured using both equilibrium CT and equilibrium MR imaging in patients with severe aortic stenosis. Biopsy samples of the myocardial septum collected during valve replacement surgery were used for histologic quantification of extracellular fibrosis with picrosirius red staining. Equilibrium CT- and equilibrium MR imaging-derived ECV measurements were compared with histologically quantified fibrosis by using Pearson correlation. Agreement between equilibrium CT and equilibrium MR imaging was assessed by using Bland-Altman comparison. Twenty-three patients (16 male, seven female; mean age, 70.8 years; standard deviation, 8.3) were recruited. The mean percentage of histologic fibrosis was 18% (intersubject range, 5%-40%). There was a significant correlation between both equilibrium CT- and equilibrium MR imaging-derived ECV and percentage of histologic fibrosis (r = 0.71 [P < .001] and r = 0.84 [P < .0001], respectively). Equilibrium CT-derived ECV was significantly correlated to equilibrium MR imaging-derived ECV (r = 0.73). ECV measured by using equilibrium CT in patients with aortic stenosis correlates with histologic quantification of myocardial fibrosis and with ECV derived by using equilibrium MR imaging. RSNA, 2013

  17. Novel cardiac magnetic resonance biomarkers: native T1 and extracellular volume myocardial mapping.

    PubMed

    Cannaò, Paola Maria; Altabella, Luisa; Petrini, Marcello; Alì, Marco; Secchi, Francesco; Sardanelli, Francesco

    2016-04-28

    Cardiac magnetic resonance (CMR) is a non-invasive diagnostic tool playing a key role in the assessment of cardiac morphology and function as well as in tissue characterization. Late gadolinium enhancement is a fundamental CMR technique for detecting focal or regional abnormalities such as scar tissue, replacement fibrosis, or inflammation using qualitative, semi-quantitative, or quantitative methods, but not allowing for evaluating the whole myocardium in the presence of diffuse disease. The novel T1 mapping approach permits a quantitative assessment of the entire myocardium providing a voxel-by-voxel map of native T1 relaxation time, obtained before the intravenous administration of gadolinium-based contrast material. Combining T1 data obtained before and after contrast injection, it is also possible to calculate the voxel-by-voxel extracellular volume (ECV), resulting in another myocardial parametric map. This article describes technical challenges and clinical perspectives of these two novel CMR biomarkers: myocardial native T1 and ECV mapping.

  18. Interrupted infusion of echocardiographic contrast as a basis for accurate measurement of myocardial perfusion: ex vivo validation and analysis procedures.

    PubMed

    Toledo, Eran; Collins, Keith A; Williams, Ursula; Lammertin, Georgeanne; Bolotin, Gil; Raman, Jai; Lang, Roberto M; Mor-Avi, Victor

    2005-12-01

    Echocardiographic quantification of myocardial perfusion is based on analysis of contrast replenishment after destructive high-energy ultrasound impulses (flash-echo). This technique is limited by nonuniform microbubble destruction and the dependency on exponential fitting of a small number of noisy time points. We hypothesized that brief interruptions of contrast infusion (ICI) would result in uniform contrast clearance followed by slow replenishment and, thus, would allow analysis from multiple data points without exponential fitting. Electrocardiographic-triggered images were acquired in 14 isolated rabbit hearts (Langendorff) at 3 levels of coronary flow (baseline, 50%, and 15%) during contrast infusion (Definity) with flash-echo and with a 20-second infusion interruption. Myocardial videointensity was measured over time from flash-echo sequences, from which characteristic constant beta was calculated using an exponential fit. Peak contrast inflow rate was calculated from ICI data using analysis of local time derivatives. Computer simulations were used to investigate the effects of noise on the accuracy of peak contrast inflow rate and beta calculations. ICI resulted in uniform contrast clearance and baseline replenishment times of 15 to 25 cardiac cycles. Calculated peak contrast inflow rate followed the changes in coronary flow in all hearts at both levels of reduced flow (P < .05) and had a low intermeasurement variability of 7 +/- 6%. With flash-echo, contrast clearance was less uniform and baseline replenishment times were only 4 to 6 cardiac cycles. beta Decreased significantly only at 15% flow, and had intermeasurement variability of 42 +/- 33%. Computer simulations showed that measurement errors in both perfusion indices increased with noise, but beta had larger errors at higher rates of contrast inflow. ICI provides the basis for accurate and reproducible quantification of myocardial perfusion using fast and robust numeric analysis, and may constitute

  19. Low-dose dynamic myocardial perfusion CT image reconstruction using pre-contrast normal-dose CT scan induced structure tensor total variation regularization

    NASA Astrophysics Data System (ADS)

    Gong, Changfei; Han, Ce; Gan, Guanghui; Deng, Zhenxiang; Zhou, Yongqiang; Yi, Jinling; Zheng, Xiaomin; Xie, Congying; Jin, Xiance

    2017-04-01

    Dynamic myocardial perfusion CT (DMP-CT) imaging provides quantitative functional information for diagnosis and risk stratification of coronary artery disease by calculating myocardial perfusion hemodynamic parameter (MPHP) maps. However, the level of radiation delivered by dynamic sequential scan protocol can be potentially high. The purpose of this work is to develop a pre-contrast normal-dose scan induced structure tensor total variation regularization based on the penalized weighted least-squares (PWLS) criteria to improve the image quality of DMP-CT with a low-mAs CT acquisition. For simplicity, the present approach was termed as ‘PWLS-ndiSTV’. Specifically, the ndiSTV regularization takes into account the spatial-temporal structure information of DMP-CT data and further exploits the higher order derivatives of the objective images to enhance denoising performance. Subsequently, an effective optimization algorithm based on the split-Bregman approach was adopted to minimize the associative objective function. Evaluations with modified dynamic XCAT phantom and preclinical porcine datasets have demonstrated that the proposed PWLS-ndiSTV approach can achieve promising gains over other existing approaches in terms of noise-induced artifacts mitigation, edge details preservation, and accurate MPHP maps calculation.

  20. Routine Clinical Quantitative Rest Stress Myocardial Perfusion for Managing Coronary Artery Disease: Clinical Relevance of Test-Retest Variability.

    PubMed

    Kitkungvan, Danai; Johnson, Nils P; Roby, Amanda E; Patel, Monika B; Kirkeeide, Richard; Gould, K Lance

    2017-05-01

    Positron emission tomography (PET) quantifies stress myocardial perfusion (in cc/min/g) and coronary flow reserve to guide noninvasively the management of coronary artery disease. This study determined their test-retest precision within minutes and daily biological variability essential for bounding clinical decision-making or risk stratification based on low flow ischemic thresholds or follow-up changes. Randomized trials of fractional flow reserve-guided percutaneous coronary interventions established an objective, quantitative, outcomes-driven standard of physiological stenosis severity. However, pressure-derived fractional flow reserve requires invasive coronary angiogram and was originally validated by comparison to noninvasive PET. The time course and test-retest precision of serial quantitative rest-rest and stress-stress global myocardial perfusion by PET within minutes and days apart in the same patient were compared in 120 volunteers undergoing serial 708 quantitative PET perfusion scans using rubidium 82 (Rb-82) and dipyridamole stress with a 2-dimensional PET-computed tomography scanner (GE DST 16) and University of Texas HeartSee software with our validated perfusion model. Test-retest methodological precision (coefficient of variance) for serial quantitative global myocardial perfusion minutes apart is ±10% (mean ΔSD at rest ±0.09, at stress ±0.23 cc/min/g) and for days apart is ±21% (mean ΔSD at rest ±0.2, at stress ±0.46 cc/min/g) reflecting added biological variability. Global myocardial perfusion at 8 min after 4-min dipyridamole infusion is 10% higher than at standard 4 min after dipyridamole. Test-retest methodological precision of global PET myocardial perfusion by serial rest or stress PET minutes apart is ±10%. Day-to-different-day biological plus methodological variability is ±21%, thereby establishing boundaries of variability on physiological severity to guide or follow coronary artery disease management. Maximum stress

  1. Technical Note: Evaluation of a 160-mm/256-row CT scanner for whole-heart quantitative myocardial perfusion imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    So, Aaron, E-mail: aso@robarts.ca

    Purpose: The authors investigated the performance of a recently introduced 160-mm/256-row CT system for low dose quantitative myocardial perfusion (MP) imaging of the whole heart. This platform is equipped with a gantry capable of rotating at 280 ms per full cycle, a second generation of adaptive statistical iterative reconstruction (ASiR-V) to correct for image noise arising from low tube voltage potential/tube current dynamic scanning, and image reconstruction algorithms to tackle beam-hardening, cone-beam, and partial-scan effects. Methods: Phantom studies were performed to investigate the effectiveness of image noise and artifact reduction with a GE Healthcare Revolution CT system for three acquisitionmore » protocols used in quantitative CT MP imaging: 100, 120, and 140 kVp/25 mAs. The heart chambers of an anthropomorphic chest phantom were filled with iodinated contrast solution at different concentrations (contrast levels) to simulate the circulation of contrast through the heart in quantitative CT MP imaging. To evaluate beam-hardening correction, the phantom was scanned at each contrast level to measure the changes in CT number (in Hounsfield unit or HU) in the water-filled region surrounding the heart chambers with respect to baseline. To evaluate cone-beam artifact correction, differences in mean water HU between the central and peripheral slices were compared. Partial-scan artifact correction was evaluated from the fluctuation of mean water HU in successive partial scans. To evaluate image noise reduction, a small hollow region adjacent to the heart chambers was filled with diluted contrast, and contrast-to-noise ratio in the region before and after noise correction with ASiR-V was compared. The quality of MP maps acquired with the CT system was also evaluated in porcine CT MP studies. Myocardial infarct was induced in a farm pig from a transient occlusion of the distal left anterior descending (LAD) artery with a catheter-based interventional

  2. Technical Note: Evaluation of a 160-mm/256-row CT scanner for whole-heart quantitative myocardial perfusion imaging.

    PubMed

    So, Aaron; Imai, Yasuhiro; Nett, Brian; Jackson, John; Nett, Liz; Hsieh, Jiang; Wisenberg, Gerald; Teefy, Patrick; Yadegari, Andrew; Islam, Ali; Lee, Ting-Yim

    2016-08-01

    The authors investigated the performance of a recently introduced 160-mm/256-row CT system for low dose quantitative myocardial perfusion (MP) imaging of the whole heart. This platform is equipped with a gantry capable of rotating at 280 ms per full cycle, a second generation of adaptive statistical iterative reconstruction (ASiR-V) to correct for image noise arising from low tube voltage potential/tube current dynamic scanning, and image reconstruction algorithms to tackle beam-hardening, cone-beam, and partial-scan effects. Phantom studies were performed to investigate the effectiveness of image noise and artifact reduction with a GE Healthcare Revolution CT system for three acquisition protocols used in quantitative CT MP imaging: 100, 120, and 140 kVp/25 mAs. The heart chambers of an anthropomorphic chest phantom were filled with iodinated contrast solution at different concentrations (contrast levels) to simulate the circulation of contrast through the heart in quantitative CT MP imaging. To evaluate beam-hardening correction, the phantom was scanned at each contrast level to measure the changes in CT number (in Hounsfield unit or HU) in the water-filled region surrounding the heart chambers with respect to baseline. To evaluate cone-beam artifact correction, differences in mean water HU between the central and peripheral slices were compared. Partial-scan artifact correction was evaluated from the fluctuation of mean water HU in successive partial scans. To evaluate image noise reduction, a small hollow region adjacent to the heart chambers was filled with diluted contrast, and contrast-to-noise ratio in the region before and after noise correction with ASiR-V was compared. The quality of MP maps acquired with the CT system was also evaluated in porcine CT MP studies. Myocardial infarct was induced in a farm pig from a transient occlusion of the distal left anterior descending (LAD) artery with a catheter-based interventional procedure. MP maps were generated

  3. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    PubMed

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted. © 2016 American Heart Association, Inc.

  4. Quantitative phase-contrast digital holographic microscopy for cell dynamic evaluation

    NASA Astrophysics Data System (ADS)

    Yu, Lingfeng; Mohanty, Samarendra; Berns, Michael W.; Chen, Zhongping

    2009-02-01

    The laser microbeam uses lasers to alter and/or to ablate intracellular organelles and cellular and tissue samples, and, today, has become an important tool for cell biologists to study the molecular mechanism of complex biological systems by removing individual cells or sub-cellular organelles. However, absolute quantitation of the localized alteration/damage to transparent phase objects, such as the cell membrane or chromosomes, was not possible using conventional phase-contrast or differential interference contrast microscopy. We report the development of phase-contrast digital holographic microscopy for quantitative evaluation of cell dynamic changes in real time during laser microsurgery. Quantitative phase images are recorded during the process of laser microsurgery and thus, the dynamic change in phase can be continuously evaluated. Out-of-focus organelles are re-focused by numerical reconstruction algorithms.

  5. Comparison of quantitative myocardial perfusion imaging CT to fluorescent microsphere-based flow from high-resolution cryo-images

    NASA Astrophysics Data System (ADS)

    Eck, Brendan L.; Fahmi, Rachid; Levi, Jacob; Fares, Anas; Wu, Hao; Li, Yuemeng; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    Myocardial perfusion imaging using CT (MPI-CT) has the potential to provide quantitative measures of myocardial blood flow (MBF) which can aid the diagnosis of coronary artery disease. We evaluated the quantitative accuracy of MPI-CT in a porcine model of balloon-induced LAD coronary artery ischemia guided by fractional flow reserve (FFR). We quantified MBF at baseline (FFR=1.0) and under moderate ischemia (FFR=0.7) using MPI-CT and compared to fluorescent microsphere-based MBF from high-resolution cryo-images. Dynamic, contrast-enhanced CT images were obtained using a spectral detector CT (Philips Healthcare). Projection-based mono-energetic images were reconstructed and processed to obtain MBF. Three MBF quantification approaches were evaluated: singular value decomposition (SVD) with fixed Tikhonov regularization (ThSVD), SVD with regularization determined by the L-Curve criterion (LSVD), and Johnson-Wilson parameter estimation (JW). The three approaches over-estimated MBF compared to cryo-images. JW produced the most accurate MBF, with average error 33.3+/-19.2mL/min/100g, whereas LSVD and ThSVD had greater over-estimation, 59.5+/-28.3mL/min/100g and 78.3+/-25.6 mL/min/100g, respectively. Relative blood flow as assessed by a flow ratio of LAD-to-remote myocardium was strongly correlated between JW and cryo-imaging, with R2=0.97, compared to R2=0.88 and 0.78 for LSVD and ThSVD, respectively. We assessed tissue impulse response functions (IRFs) from each approach for sources of error. While JW was constrained to physiologic solutions, both LSVD and ThSVD produced IRFs with non-physiologic properties due to noise. The L-curve provided noise-adaptive regularization but did not eliminate non-physiologic IRF properties or optimize for MBF accuracy. These findings suggest that model-based MPI-CT approaches may be more appropriate for quantitative MBF estimation and that cryo-imaging can support the development of MPI-CT by providing spatial distributions of MBF.

  6. Prognostic Value of Real Time Myocardial Contrast Echocardiography after Percutaneous Coronary Intervention.

    PubMed

    Yang, Lixia; Xia, Chunmei; Mu, Yuming; Guan, Lina; Wang, Chunmei; Tang, Qi; Verocai, Flavia Gomes; Fonseca, Lea Mirian Barbosa da; Shih, Ming Chi

    2016-03-01

    Real time myocardial contrast echocardiography (RTMCE) is a cost-effective and simple method to quantify coronary flow reserve (CFR). We aimed to determine the value of RTMCE to predict cardiac events after percutaneous coronary intervention (PCI). We have studied myocardial blood volume (A), velocity (β), flow indexes (MBF, A × β), and vasodilator reserve (stress-to-rest ratios) in 36 patients with acute coronary syndrome (ACS) who underwent PCI. CFR (MBF at stress/MBF at rest) was calculated for each patient. Perfusion scores were used for visual interpretation by MCE and correlation with TIMI flow grade. In qualitative RTMCE assessment, post-PCI visual perfusion scores were higher than pre-PCI (Z = -7.26, P < 0.01). Among 271 arteries with TIMI flow grade 3 post-PCI, 72 (36%) did not reach visual perfusion score 1. The β- and A × β-reserve of the abnormal segments supplied by obstructed arteries increased after PCI comparing to pre-PCI values (P < 0.01). Patients with adverse cardiac events had significantly lower β- and lower A × β-reserve than patients without adverse cardiac events. In the former group, the CFR was ≥ 1.5 both pre- and post-PCI. CFR estimation by RTMCE can quantify myocardial perfusion in patients with ACS who underwent PCI. The parameters β-reserve and CFR combined might predict cardiac events on the follow-up. © 2015, Wiley Periodicals, Inc.

  7. Improvements in Diagnostic Accuracy with Quantitative Dynamic Contrast-Enhanced MRI

    DTIC Science & Technology

    2011-12-01

    Magnetic   Resonance   Imaging  during  the  Menstrual  Cylce:  Perfusion   Imaging  Signal   Enhanceent,  and  Influence  of...acquisition of quantitative images displaying the concentration of contrast media as well as MRI -detectable proton density. To date 21 patients have...truly  quantitative   images  of  a  dynamic  contrast-­‐enhanced  (DCE)   MRI  of  the

  8. The contrast media and nephrotoxicity following coronary revascularization by primary angioplasty for acute myocardial infarction study: design and rationale of the CONTRAST-AMI study.

    PubMed

    Bolognese, Leonardo; Falsini, Giovanni; Grotti, Simone; Limbruno, Ugo; Liistro, Francesco; Carrera, Arcangelo; Angioli, Paolo; Picchi, Andrea; Ducci, Kenneth; Pierli, Carlo

    2010-03-01

    Contrast-induced acute kidney injury (CI-AKI) is a complex syndrome of acute renal failure occurring after the administration of contrast media and contributing to prolonged hospital stay and mortality. The risk of CI-AKI is higher among patients undergoing primary percutaneous coronary interventions for acute myocardial infarction (AMI), but its clinical relevance in such setting has only been evaluated by small sample size single-center studies and retrospective or observational analyses. Furthermore, whereas high-osmolar contrast media was shown to have direct nephrotoxicity, the role of low-osmolar and iso-osmolar agents is still debated. The CONTRAST-AMI study is a prospective, multicenter, controlled, randomized, single-blind, parallel-group trial, designed to show the noninferiority of the effects of iopromide (low-osmolar) compared with iodixanol (iso-osmolar) contrast media on the incidence of CI-AKI and tissue-level perfusion in patients with AMI. All consecutive patients admitted to participating centers for ST-segment elevation AMI undergoing primary percutaneous coronary intervention will be enrolled. All patients will be treated with high-dose N-acetylcysteine (1200 mg intravenously during the procedure and 1200 mg orally two times daily for the next 48 h after percutaneous coronary intervention) and hydration according to a standardized protocol. The primary endpoint is the proportion of patients with a relative increase in serum creatinine (sCr) of at least 25% from baseline to 72 h after agent administration. The secondary endpoints are absolute and relative increases in sCr of at least 50%, thrombolysis in myocardial infarction (TIMI) perfusion grade, and major adverse cardiac events at 1, 6, and 12 months. The CONTRAST-AMI study will provide information on the effects of iodixanol and iopromide on the incidence of CI-AKI and tissue-level perfusion in patients with AMI.

  9. Contrast-Enhanced C-arm Computed Tomography Imaging of Myocardial Infarction in the Interventional Suite

    PubMed Central

    Girard, Erin E; Al-Ahmad, Amin; Rosenberg, Jarrett; Luong, Richard; Moore, Teri; Lauritsch, Günter; Chan, Frandics; Lee, David P.; Fahrig, Rebecca

    2014-01-01

    Objectives Cardiac C-arm CT uses a standard C-arm fluoroscopy system rotating around the patient to provide CT-like images during interventional procedures without moving the patient to a conventional CT scanner. We hypothesize that C-arm computed tomography (CT) can be used to visualize and quantify the size of perfusion defects and late enhancement resulting from a myocardial infarction (MI) using contrast enhanced techniques similar to previous CT and magnetic resonance imaging studies. Materials and Methods A balloon occlusion followed by reperfusion in a coronary artery was used to study acute and subacute MI in 12 swine. ECG-gated C-arm CT images were acquired the day of infarct creation (n=6) or 4 weeks after infarct creation (n = 6). Images were acquired immediately following contrast injection, then at 1 minute, and every 5 minutes up to 30 minutes with no additional contrast. The volume of the infarct as measured on C-arm CT was compared against pathology. Results The volume of acute MI, visualized as a combined region of hyperenhancement with a hypoenhanced core, correlated well with pathologic staining (concordance correlation = 0.89, p<0.0001, mean difference = 0.67±2.98 cm3). The volume of subacute MI, visualized as a region of hyperenhancement, correlated well with pathologic staining at imaging times 5–15 minutes following contrast injection (concordance correlation = 0.82, p<.001, mean difference = −0.64±1.94 cm3). Conclusions C-arm CT visualization of acute and subacute myocardial infarction is possible in a porcine model but improvement in the imaging technique is important before clinical use. Visualization of MI in the catheterization lab may be possible and could provide 3D images for guidance during interventional procedures. PMID:25635589

  10. Reproducibility and Accuracy of Quantitative Myocardial Blood Flow Using 82Rb-PET: Comparison with 13N-Ammonia

    PubMed Central

    Fakhri, Georges El

    2011-01-01

    82Rb cardiac PET allows the assessment of myocardial perfusion using a column generator in clinics that lack a cyclotron. We and others have previously shown that quantitation of myocardial blood flow (MBF) and coronary flow reserve (CFR) is feasible using dynamic 82Rb PET and factor and compartment analyses. The aim of the present work was to determine the intra- and inter-observer variability of MBF estimation using 82Rb PET as well as the reproducibility of our generalized factor + compartment analyses methodology to estimate MBF and assess its accuracy by comparing, in the same subjects, 82Rb estimates of MBF to those obtained using 13N-ammonia. Methods Twenty-two subjects were included in the reproducibility and twenty subjects in the validation study. Patients were injected with 60±5mCi of 82Rb and imaged dynamically for 6 minutes at rest and during dipyridamole stress Left and right ventricular (LV+RV) time-activity curves were estimated by GFADS and used as input to a 2-compartment kinetic analysis that estimates parametric maps of myocardial tissue extraction (K1) and egress (k2), as well as LV+RV contributions (fv,rv). Results Our results show excellent reproducibility of the quantitative dynamic approach itself with coefficients of repeatability of 1.7% for estimation of MBF at rest, 1.4% for MBF at peak stress and 2.8% for CFR estimation. The inter-observer reproducibility between the four observers that participated in this study was also very good with correlation coefficients greater than 0.87 between any two given observers when estimating coronary flow reserve. The reproducibility of MBF in repeated 82Rb studies was good at rest and excellent at peak stress (r2=0.835). Furthermore, the slope of the correlation line was very close to 1 when estimating stress MBF and CFR in repeated 82Rb studies. The correlation between myocardial flow estimates obtained at rest and during peak stress in 82Rb and 13N-ammonia studies was very good at rest (r2

  11. Assessment of myocardial viability: comparison of echocardiography versus cardiac magnetic resonance imaging in the current era.

    PubMed

    Tomlinson, David R; Becher, Harald; Selvanayagam, Joseph B

    2008-06-01

    Detecting viable myocardium, whether hibernating or stunned, is of clinical significance in patients with coronary artery disease and left ventricular dysfunction. Echocardiographic assessments of myocardial thickening and endocardial excursion during dobutamine infusion provide a highly specific marker for myocardial viability, but with relatively less sensitivity. The additional modalities of myocardial contrast echocardiography and tissue Doppler have recently been proposed to provide further, quantitative measures of myocardial viability assessment. Cardiac magnetic resonance (CMR) has become popular for the assessment of myocardial viability as it can assess cardiac function, volumes, myocardial scar, and perfusion with high-spatial resolution. Both 'delayed enhancement' CMR and dobutamine stress CMR have important roles in the assessment of patients with ischaemic cardiomyopathy. This article reviews the recent advances in both echocardiography and CMR for the clinical assessment of myocardial viability. It attempts to provide a pragmatic approach toward the patient-specific assessment of this important clinical problem.

  12. Cardiovascular magnetic resonance of myocardial edema using a short inversion time inversion recovery (STIR) black-blood technique: Diagnostic accuracy of visual and semi-quantitative assessment

    PubMed Central

    2012-01-01

    Background The short inversion time inversion recovery (STIR) black-blood technique has been used to visualize myocardial edema, and thus to differentiate acute from chronic myocardial lesions. However, some cardiovascular magnetic resonance (CMR) groups have reported variable image quality, and hence the diagnostic value of STIR in routine clinical practice has been put into question. The aim of our study was to analyze image quality and diagnostic performance of STIR using a set of pulse sequence parameters dedicated to edema detection, and to discuss possible factors that influence image quality. We hypothesized that STIR imaging is an accurate and robust way of detecting myocardial edema in non-selected patients with acute myocardial infarction. Methods Forty-six consecutive patients with acute myocardial infarction underwent CMR (day 4.5, +/- 1.6) including STIR for the assessment of myocardial edema and late gadolinium enhancement (LGE) for quantification of myocardial necrosis. Thirty of these patients underwent a follow-up CMR at approximately six months (195 +/- 39 days). Both STIR and LGE images were evaluated separately on a segmental basis for image quality as well as for presence and extent of myocardial hyper-intensity, with both visual and semi-quantitative (threshold-based) analysis. LGE was used as a reference standard for localization and extent of myocardial necrosis (acute) or scar (chronic). Results Image quality of STIR images was rated as diagnostic in 99.5% of cases. At the acute stage, the sensitivity and specificity of STIR to detect infarcted segments on visual assessment was 95% and 78% respectively, and on semi-quantitative assessment was 99% and 83%, respectively. STIR differentiated acutely from chronically infarcted segments with a sensitivity of 95% by both methods and with a specificity of 99% by visual assessment and 97% by semi-quantitative assessment. The extent of hyper-intense areas on acute STIR images was 85% larger than

  13. [The development of a computer model in the quantitative assessment of thallium-201 myocardial scintigraphy].

    PubMed

    Raineri, M; Traina, M; Rotolo, A; Candela, B; Lombardo, R M; Raineri, A A

    1993-05-01

    Thallium-201 scintigraphy is a widely used noninvasive procedure for the detection and prognostic assessment of patients with suspected or proven coronary artery disease. Thallium uptake can be evaluated by a visual analysis or by a quantitative interpretation. Quantitative scintigraphy enhances disease detection in individual coronary arteries, provides a more precise estimate of the amount of ischemic myocardium, distinguishing scar from hypoperfused tissue. Due to the great deal of data, analysis, interpretation and comparison of thallium uptake can be very complex. We designed a computer-based system for the interpretation of quantitative thallium-201 scintigraphy data uptake. We used a database (DataEase 4.2-DataEase Italia). Our software has the following functions: data storage; calculation; conversion of numerical data into different definitions classifying myocardial perfusion; uptake data comparison; automatic conclusion; comparison of different scintigrams for the same patient. Our software is made up by 4 sections: numeric analysis, descriptive analysis, automatic conclusion, clinical remarks. We introduced in the computer system appropriate information, "logical paths", that use the "IF ... THEN" rules. The software executes these rules in order to analyze the myocardial regions in the 3 phases of scintigraphic analysis (stress, redistribution, re-injection), in the 3 projections (LAO 45 degrees, LAT,ANT), considering our uptake cutoff, obtaining, finally, the automatic conclusions. For these reasons, our computer-based system could be considered a real "expert system".

  14. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance

    PubMed Central

    2012-01-01

    Background T2w-CMR is used widely to assess myocardial edema. Quantitative T1-mapping is also sensitive to changes in free water content. We hypothesized that T1-mapping would have a higher diagnostic performance in detecting acute edema than dark-blood and bright-blood T2w-CMR. Methods We investigated 21 controls (55 ± 13 years) and 21 patients (61 ± 10 years) with Takotsubo cardiomyopathy or acute regional myocardial edema without infarction. CMR performed within 7 days included cine, T1-mapping using ShMOLLI, dark-blood T2-STIR, bright-blood ACUT2E and LGE imaging. We analyzed wall motion, myocardial T1 values and T2 signal intensity (SI) ratio relative to both skeletal muscle and remote myocardium. Results All patients had acute cardiac symptoms, increased Troponin I (0.15-36.80 ug/L) and acute wall motion abnormalities but no LGE. T1 was increased in patient segments with abnormal and normal wall motion compared to controls (1113 ± 94 ms, 1029 ± 59 ms and 944 ± 17 ms, respectively; p < 0.001). T2 SI ratio using STIR and ACUT2E was also increased in patient segments with abnormal and normal wall motion compared to controls (all p < 0.02). Receiver operator characteristics analysis showed that T1-mapping had a significantly larger area-under-the-curve (AUC = 0.94) compared to T2-weighted methods, whether the reference ROI was skeletal muscle or remote myocardium (AUC = 0.58-0.89; p < 0.03). A T1 value of greater than 990 ms most optimally differentiated segments affected by edema from normal segments at 1.5 T, with a sensitivity and specificity of 92 %. Conclusions Non-contrast T1-mapping using ShMOLLI is a novel method for objectively detecting myocardial edema with a high diagnostic performance. T1-mapping may serve as a complementary technique to T2-weighted imaging for assessing myocardial edema in ischemic and non-ischemic heart disease, such as quantifying area-at-risk and diagnosing

  15. Quantitative diagnostic performance of myocardial perfusion SPECT with attenuation correction in women.

    PubMed

    Wolak, Arik; Slomka, Piotr J; Fish, Mathews B; Lorenzo, Santiago; Berman, Daniel S; Germano, Guido

    2008-06-01

    Attenuation correction (AC) for myocardial perfusion SPECT (MPS) had not been evaluated separately in women despite specific considerations in this group because of breast photon attenuation. We aimed to evaluate the performance of AC in women by using automated quantitative analysis of MPS to avoid any bias. Consecutive female patients--134 with a low likelihood (LLk) of coronary artery disease (CAD) and 114 with coronary angiography performed within less than 3 mo of MPS--who were referred for rest-stress electrocardiography-gated 99mTc-sestamibi MPS with AC were considered. Imaging data were evaluated for contour quality control. An additional 50 LLk studies in women were used to create equivalent normal limits for studies with AC and with no correction (NC). An experienced technologist unaware of the angiography and other results performed the contour quality control. All other processing was performed in a fully automated manner. Quantitative analysis was performed with the Cedars-Sinai myocardial perfusion analysis package. All automated segmental analyses were performed with the 17-segment, 5-point American Heart Association model. Summed stress scores (SSS) of > or =3 were considered abnormal. CAD (> or =70% stenosis) was present in 69 of 114 patients (60%). The normalcy rates were 93% for both NC and AC studies. The SSS for patients with CAD and without CAD for NC versus AC were 10.0 +/- 9.0 (mean +/- SD) versus 10.2 +/- 8.5 and 1.6 +/- 2.3 versus 1.8 +/- 2.5, respectively; P was not significant (NS) for all comparisons of NC versus AC. The SSS for LLk patients for NC versus AC were 0.51 +/- 1.0 versus 0.6 +/- 1.1, respectively; P was NS. The specificity for both NC and AC was 73%. The sensitivities for NC and AC were 80% and 81%, respectively, and the accuracies for NC and AC were 77% and 78%, respectively; P was NS for both comparisons. There are no significant diagnostic differences between automated quantitative MPS analyses performed in studies

  16. Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications

    PubMed Central

    Liu, Chunlei; Wei, Hongjiang; Gong, Nan-Jie; Cronin, Matthew; Dibb, Russel; Decker, Kyle

    2016-01-01

    Quantitative susceptibility mapping (QSM) is a recently developed MRI technique for quantifying the spatial distribution of magnetic susceptibility within biological tissues. It first uses the frequency shift in the MRI signal to map the magnetic field profile within the tissue. The resulting field map is then used to determine the spatial distribution of the underlying magnetic susceptibility by solving an inverse problem. The solution is achieved by deconvolving the field map with a dipole field, under the assumption that the magnetic field is a result of the superposition of the dipole fields generated by all voxels and that each voxel has its unique magnetic susceptibility. QSM provides improved contrast to noise ratio for certain tissues and structures compared to its magnitude counterpart. More importantly, magnetic susceptibility is a direct reflection of the molecular composition and cellular architecture of the tissue. Consequently, by quantifying magnetic susceptibility, QSM is becoming a quantitative imaging approach for characterizing normal and pathological tissue properties. This article reviews the mechanism generating susceptibility contrast within tissues and some associated applications. PMID:26844301

  17. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  18. Diffraction enhance x-ray imaging for quantitative phase contrast studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, A. K.; Singh, B., E-mail: balwants@rrcat.gov.in; Kashyap, Y. S.

    2016-05-23

    Conventional X-ray imaging based on absorption contrast permits limited visibility of feature having small density and thickness variations. For imaging of weakly absorbing material or materials possessing similar densities, a novel phase contrast imaging techniques called diffraction enhanced imaging has been designed and developed at imaging beamline Indus-2 RRCAT Indore. The technique provides improved visibility of the interfaces and show high contrast in the image forsmall density or thickness gradients in the bulk. This paper presents basic principle, instrumentation and analysis methods for this technique. Initial results of quantitative phase retrieval carried out on various samples have also been presented.

  19. Dynamic iterative beam hardening correction (DIBHC) in myocardial perfusion imaging using contrast-enhanced computed tomography.

    PubMed

    Stenner, Philip; Schmidt, Bernhard; Allmendinger, Thomas; Flohr, Thomas; Kachelrie, Marc

    2010-06-01

    In cardiac perfusion examinations with computed tomography (CT) large concentrations of iodine in the ventricle and in the descending aorta cause beam hardening artifacts that can lead to incorrect perfusion parameters. The aim of this study is to reduce these artifacts by performing an iterative correction and by accounting for the 3 materials soft tissue, bone, and iodine. Beam hardening corrections are either implemented as simple precorrections which cannot account for higher order beam hardening effects, or as iterative approaches that are based on segmenting the original image into material distribution images. Conventional segmentation algorithms fail to clearly distinguish between iodine and bone. Our new algorithm, DIBHC, calculates the time-dependent iodine distribution by analyzing the voxel changes of a cardiac perfusion examination (typically N approximately 15 electrocardiogram-correlated scans distributed over a total scan time up to T approximately 30 s). These voxel dynamics are due to changes in contrast agent. This prior information allows to precisely distinguish between bone and iodine and is key to DIBHC where each iteration consists of a multimaterial (soft tissue, bone, iodine) polychromatic forward projection, a raw data comparison and a filtered backprojection. Simulations with a semi-anthropomorphic dynamic phantom and clinical scans using a dual source CT scanner with 2 x 128 slices, a tube voltage of 100 kV, a tube current of 180 mAs, and a rotation time of 0.28 seconds have been carried out. The uncorrected images suffer from beam hardening artifacts that appear as dark bands connecting large concentrations of iodine in the ventricle, aorta, and bony structures. The CT-values of the affected tissue are usually underestimated by roughly 20 HU although deviations of up to 61 HU have been observed. For a quantitative evaluation circular regions of interest have been analyzed. After application of DIBHC the mean values obtained deviate by

  20. A Novel Feature-Tracking Echocardiographic Method for the Quantitation of Regional Myocardial Function

    PubMed Central

    Pirat, Bahar; Khoury, Dirar S.; Hartley, Craig J.; Tiller, Les; Rao, Liyun; Schulz, Daryl G.; Nagueh, Sherif F.; Zoghbi, William A.

    2012-01-01

    Objectives The aim of this study was to validate a novel, angle-independent, feature-tracking method for the echocardiographic quantitation of regional function. Background A new echocardiographic method, Velocity Vector Imaging (VVI) (syngo Velocity Vector Imaging technology, Siemens Medical Solutions, Ultrasound Division, Mountain View, California), has been introduced, based on feature tracking—incorporating speckle and endocardial border tracking, that allows the quantitation of endocardial strain, strain rate (SR), and velocity. Methods Seven dogs were studied during baseline, and various interventions causing alterations in regional function: dobutamine, 5-min coronary occlusion with reperfusion up to 1 h, followed by dobutamine and esmolol infusions. Echocardiographic images were acquired from short- and long-axis views of the left ventricle. Segment-length sonomicrometry crystals were used as the reference method. Results Changes in systolic strain in ischemic segments were tracked well with VVI during the different states of regional function. There was a good correlation between circumferential and longitudinal systolic strain by VVI and sonomicrometry (r = 0.88 and r = 0.83, respectively, p < 0.001). Strain measurements in the nonischemic basal segments also demonstrated a significant correlation between the 2 methods (r = 0.65, p < 0.001). Similarly, a significant relation was observed for circumferential and longitudinal SR between the 2 methods (r = 0.94, p < 0.001 and r = 0.90, p < 0.001, respectively). The endocardial velocity relation to changes in strain by sonomicrometry was weaker owing to significant cardiac translation. Conclusions Velocity Vector Imaging, a new feature-tracking method, can accurately assess regional myocardial function at the endocardial level and is a promising clinical tool for the simultaneous quantification of regional and global myocardial function. PMID:18261685

  1. Experimental study of quantitative assessment of left ventricular mass with contrast enhanced real-time three-dimensional echocardiography.

    PubMed

    Zhuang, Lei; Wang, Xin-Fang; Xie, Ming-Xing; Chen, Li-Xin; Fei, Hong-Wen; Yang, Ying; Wang, Jing; Huang, Run-Qing; Chen, Ou-Di; Wang, Liang-Yu

    2004-01-01

    To evaluate the feasibility and accuracy of measurement of left ventricular mass with intravenous contrast enhanced real-time three-dimensional (RT3D) echocardiography in the experimental setting. RT3D echocardiography was performed in 13 open-chest mongrel dogs before and after intravenous infusion of a perfluorocarbon contrast agent. Left ventricular myocardium volume was measured according to the apical four-plane method provided by TomTec 4D cardio-View RT1.0 software, then the left ventricular mass was calculated as the myocardial volume multiplied by the relative density of myocardium. Correlative analysis and paired t-test were performed between left ventricular mass obtained from RT3D echocardiography and the anatomic measurements. Anatomic measurement of total left ventricular mass was 55.6 +/- 9.3 g, whereas RT3D echocardiographic calculation of left ventricular mass before and after intravenous perfluorocarbon contrast agent was 57.5 +/- 11.4 and 55.5 +/- 9.3 g, respectively. A significant correlation was observed between the RT3D echocardiographic estimates of total left ventricular mass and the corresponding anatomic measurements (r = 0.95). A strong correlation was found between RT3D echocardiographic estimates of left ventricular mass with perfluorocarbon contrast and the anatomic results (r = 0.99). Analysis of intraobserver and interobserver variability showed strong indexes of agreement in the measurement of left ventricular mass with pre and post-contrast RT3D echocardiography. Measurements of left ventricular mass derived from RT3D echocardiography with and without intravenous contrast showed a significant correlation with the anatomic results. Contrast enhanced RT3D echocardiography permitted better visualization of the endocardial border, which would provide a more accurate and reliable means of determining left ventricular myocardial mass in the experimental setting.

  2. Integration of myocardial scar identified by preoperative delayed contrast-enhanced MRI into a high-resolution mapping system for planning and guidance of VT ablation procedures

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Suzuki, A.; Wang, S.; Pottinger, N.; Arter, J.; Netzer, A.; Parker, K.; Viker, K.; Packer, D. L.

    2017-03-01

    Myocardial scarring creates a substrate for reentrant circuits which can lead to ventricular tachycardia. In ventricular catheter ablation therapy, regions of myocardial scarring are targeted to interrupt arrhythmic electrical pathways. Low voltage regions are a surrogate for myocardial scar and are identified by generating an electro anatomic map at the start of the procedure. Recent efforts have focussed on integration of preoperative scar information generated from delayed contrast-enhanced MR imaging to augment intraprocedural information. In this work, we describe an initial feasibility study of integration of a preoperative MRI derived scar maps into a high-resolution mapping system to improve planning and guidance of VT ablation procedures.

  3. Perioperative Assessment of Myocardial Deformation

    PubMed Central

    Duncan, Andra E.; Alfirevic, Andrej; Sessler, Daniel I.; Popovic, Zoran B.; Thomas, James D.

    2014-01-01

    Evaluation of left ventricular performance improves risk assessment and guides anesthetic decisions. However, the most common echocardiographic measure of myocardial function, the left ventricular ejection fraction (LVEF), has important limitations. LVEF is limited by subjective interpretation which reduces accuracy and reproducibility, and LVEF assesses global function without characterizing regional myocardial abnormalities. An alternative objective echocardiographic measure of myocardial function is thus needed. Myocardial deformation analysis, which performs quantitative assessment of global and regional myocardial function, may be useful for perioperative care of surgical patients. Myocardial deformation analysis evaluates left ventricular mechanics by quantifying strain and strain rate. Strain describes percent change in myocardial length in the longitudinal (from base to apex) and circumferential (encircling the short-axis of the ventricle) direction and change in thickness in the radial direction. Segmental strain describes regional myocardial function. Strain is a negative number when the ventricle shortens longitudinally or circumferentially and is positive with radial thickening. Reference values for normal longitudinal strain from a recent meta-analysis using transthoracic echocardiography are (mean ± SD) −19.7 ± 0.4%, while radial and circumferential strain are 47.3 ± 1.9 and −23.3 ± 0.7%, respectively. The speed of myocardial deformation is also important and is characterized by strain rate. Longitudinal systolic strain rate in healthy subjects averages −1.10 ± 0.16 sec−1. Assessment of myocardial deformation requires consideration of both strain (change in deformation), which correlates with LVEF, and strain rate (speed of deformation), which correlates with rate of rise of left ventricular pressure (dP/dt). Myocardial deformation analysis also evaluates ventricular relaxation, twist, and untwist, providing new and noninvasive methods to

  4. [Multicenter evaluation of h-FABP semi-quantitative assay (Cardio Detect) in central laboratory: the point in acute myocardial infarction diagnosis].

    PubMed

    Lefèvre, G; Fayet, J-M; Graïne, H; Berny, C; Maupas-Schwalm, F; Capolaghi, B; Morin, C

    2007-01-01

    The diagnostic performance of heart-Fatty Acid Binding Protein (h-FABP) (semi-quantitative CardioDetect test) and cardiac troponin I (TnIc) blood assays were compared in one hundred patients presenting with suspicion of acute coronary syndrome. Final patient diagnosis was "acute myocardial infarction" in 36 cases, "non ST myocardial infarction" in 25 cases and "non ischemic pathologies" in 39 cases. h-FABP results were positive in 26 patients, negative in 57 patients and ambiguous in 17 patients, the latter corresponding to the final diagnosis of "acute myocardial infarction" in 5 cases, "non ST myocardial infarction" in 2 cases and "non ischemic pathologies " in 10 cases. At admission, h-FABP and TnIc exhibiteda sensitivity of 54% an 66%, respectively and a specificity of 86% and 95%, respectively. Positive and negative predictive values were 81% and 64% for h-FABP, respectively and 92% and 75% for cTnI, respectively. h-FABP and cTnI demonstrated a similar diagnostic efficiency if admission delay is less than 4 hours after onset of chest pain (area under ROC curve TnIc = 0.767 +/- 0.091 ; area under ROC curve h-FABP = 0.622 +/- 0.109 ; p = 0.144). On the contrary, cTnI assay demonstrated a better efficiency than h-FABP (p< 0.005) for patients admitted in a delay of 4 to 12 hours after the onset of chest pain. If chosen cTnI cut-off corresponded to the recent consensus definition used for monitoring acute coronary syndrome patients, h-FABP semi-quantitative assay realized within central laboratory did not demonstrated a better diagnostic efficiency than cTnI.

  5. Tissue Sodium Concentration in Myocardial Infarction in Humans: A Quantitative 23Na MR Imaging Study1

    PubMed Central

    Ouwerkerk, Ronald; Bottomley, Paul A.; Solaiyappan, Meiyappan; Spooner, Amy E.; Tomaselli, Gordon F.; Wu, Katherine C.; Weiss, Robert G.

    2008-01-01

    Purpose: To prospectively determine whether the absolute tissue sodium concentration (TSC) increases in myocardial infarctions (MIs) in humans and whether TSC is related to infarct size, infarct age, ventricular dysfunction, and/or electrophysiologic inducibility of ventricular arrhythmias. Materials and Methods: Delayed contrast material–enhanced 1.5-T hydrogen 1 (1H) magnetic resonance (MR) imaging was used to measure the size and location of nonacute MIs in 20 patients (18 men, two women; mean age, 63 years ± 9 [standard deviation]; age range, 48–82 years) examined at least 90 days after MI. End-systolic and end-diastolic volumes, ejection fraction, and left ventricle (LV) mass were measured with cine MR imaging. The TSC in normal, infarcted, and adjacent myocardial tissue was measured on sodium 23 (23Na) MR images coregistered with delayed contrast-enhanced 1H MR images. Programmed electric stimulation to induce monomorphic ventricular tachycardia (MVT) was used to assess arrhythmic potential, and myocardial TSC was compared between the inducible MVT and noninducible MVT patient groups. Results: The mean TSC for MIs (59 μmol/g wet weight ± 10) was 30% higher than that for noninfarcted (remote) LV regions (45 μmol/g wet weight ± 5, P < .001) and that for healthy control subjects, and TSC did not correlate with infarct age or functional and morphologic indices. The mean TSC for tissue adjacent to the MI (50 μmol/g wet weight ± 6) was intermediate between that for the MI and that for remote regions. The elevated TSC measured in the MI at 23Na MR imaging lacked sufficient contrast and spatial resolution for routine visualization of MI. Cardiac TSC did not enable differentiation between patients in whom MVT was inducible and those in whom it was not. Conclusion: Absolute TSC is measurable with 23Na MR imaging and is significantly elevated in human MI; however, TSC increase is not related to infarct age, infarct size, or global ventricular function. In

  6. Myocardial oedema in acute myocarditis detected by echocardiographic 2D myocardial deformation analysis.

    PubMed

    Løgstrup, B B; Nielsen, J M; Kim, W Y; Poulsen, S H

    2016-09-01

    The clinical diagnosis of acute myocarditis is based on symptoms, electrocardiography, elevated myocardial necrosis biomarkers, and echocardiography. Often, conventional echocardiography reveals no obvious changes in global cardiac function and therefore has limited diagnostic value. Myocardial deformation imaging by echocardiography is an evolving method used to characterize quantitatively longitudinal systolic function, which may be affected in acute myocarditis. The aim of our study was to assess the utility of echocardiographic deformation imaging of the left ventricle in patients with diagnosed acute myocarditis in whom cardiovascular magnetic resonance (CMR) evaluation was performed. We included 28 consecutive patients (mean age 32 ± 13 years) with CMR-verified diagnosis of acute myocarditis according to the Lake Louise criteria. Cardiac function was evaluated by a comprehensive assessment of left ventricular (LV) function, including 2D speckle-tracking echocardiography. We found no significant correlation between the peak values of cardiac enzymes and the amount of myocardial oedema assessed by CMR (troponin: r= 0.3; P = 0.05 and CK-MB: r = 0.1; P = 0.3). We found a larger amount of myocardial oedema in the basal part of the left ventricle [American Heart Association (AHA) segments 1-6] in inferolateral and inferior segments, compared with the anterior, anterolateral, anteroseptal, and inferoseptal segments. In the mid LV segments (AHA segments 7-12), this was more pronounced in the anterior, anterolateral, and inferolateral segments. Among conventional echocardiographic parameters, LV function was not found to correlate with the amount of myocardial oedema of the left ventricle. In contrast, we found the wall motion score index to be significantly correlated with the amount of myocardial oedema, but this correlation was only present in patients with an extensive amount of oedema (>11% of the total left ventricle). Global longitudinal systolic myocardial

  7. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.

    PubMed

    Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan

    2018-05-16

    Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast

    PubMed Central

    Lu, Hangwen; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei

    2016-01-01

    Differential phase contrast (DPC) is a non-interferometric quantitative phase imaging method achieved by using an asymmetric imaging procedure. We report a pupil modulation differential phase contrast (PMDPC) imaging method by filtering a sample’s Fourier domain with half-circle pupils. A phase gradient image is captured with each half-circle pupil, and a quantitative high resolution phase image is obtained after a deconvolution process with a minimum of two phase gradient images. Here, we introduce PMDPC quantitative phase image reconstruction algorithm and realize it experimentally in a 4f system with an SLM placed at the pupil plane. In our current experimental setup with the numerical aperture of 0.36, we obtain a quantitative phase image with a resolution of 1.73μm after computationally removing system aberrations and refocusing. We also extend the depth of field digitally by 20 times to ±50μm with a resolution of 1.76μm. PMID:27828473

  9. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)

    PubMed Central

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification—an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel. PMID:28152023

  10. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).

    PubMed

    Phillips, Zachary F; Chen, Michael; Waller, Laura

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  11. Quantitative evaluation of ischemic myocardial scar tissue by unenhanced T1 mapping using 3.0 Tesla MR scanner

    PubMed Central

    Okur, Aylin; Kantarcı, Mecit; Kızrak, Yeşim; Yıldız, Sema; Pirimoğlu, Berhan; Karaca, Leyla; Oğul, Hayri; Sevimli, Serdar

    2014-01-01

    PURPOSE We aimed to use a noninvasive method for quantifying T1 values of chronic myocardial infarction scar by cardiac magnetic resonance imaging (MRI), and determine its diagnostic performance. MATERIALS AND METHODS We performed cardiac MRI on 29 consecutive patients with known coronary artery disease (CAD) on 3.0 Tesla MRI scanner. An unenhanced T1 mapping technique was used to calculate T1 relaxation time of myocardial scar tissue, and its diagnostic performance was evaluated. Chronic scar tissue was identified by delayed contrast-enhancement (DE) MRI and T2-weighted images. Sensitivity, specificity, and accuracy values were calculated for T1 mapping using DE images as the gold standard. RESULTS Four hundred and forty-two segments were analyzed in 26 patients. While myocardial chronic scar was demonstrated in 45 segments on DE images, T1 mapping MRI showed a chronic scar area in 54 segments. T1 relaxation time was higher in chronic scar tissue, compared with remote areas (1314±98 ms vs. 1099±90 ms, P < 0.001). Therefore, increased T1 values were shown in areas of myocardium colocalized with areas of DE and normal signal on T2-weighted images. There was a significant correlation between T1 mapping and DE images in evaluation of myocardial wall injury extent (P < 0.05). We calculated sensitivity, specificity, and accuracy as 95.5%, 97%, and 96%, respectively. CONCLUSION The results of the present study reveal that T1 mapping MRI combined with T2-weighted images might be a feasible imaging modality for detecting chronic myocardial infarction scar tissue. PMID:25010366

  12. Technical Note: Quantitative dynamic contrast-enhanced MRI of a 3-dimensional artificial capillary network.

    PubMed

    Gaass, Thomas; Schneider, Moritz Jörg; Dietrich, Olaf; Ingrisch, Michael; Dinkel, Julien

    2017-04-01

    Variability across devices, patients, and time still hinders widespread recognition of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as quantitative biomarker. The purpose of this work was to introduce and characterize a dedicated microchannel phantom as a model for quantitative DCE-MRI measurements. A perfusable, MR-compatible microchannel network was constructed on the basis of sacrificial melt-spun sugar fibers embedded in a block of epoxy resin. Structural analysis was performed on the basis of light microscopy images before DCE-MRI experiments. During dynamic acquisition the capillary network was perfused with a standard contrast agent injection system. Flow-dependency, as well as inter- and intrascanner reproducibility of the computed DCE parameters were evaluated using a 3.0 T whole-body MRI. Semi-quantitative and quantitative flow-related parameters exhibited the expected proportionality to the set flow rate (mean Pearson correlation coefficient: 0.991, P < 2.5e-5). The volume fraction was approximately independent from changes of the applied flow rate through the phantom. Repeatability and reproducibility experiments yielded maximum intrascanner coefficients of variation (CV) of 4.6% for quantitative parameters. All evaluated parameters were well in the range of known in vivo results for the applied flow rates. The constructed phantom enables reproducible, flow-dependent, contrast-enhanced MR measurements with the potential to facilitate standardization and comparability of DCE-MRI examinations. © 2017 American Association of Physicists in Medicine.

  13. Contrast-enhanced spectral mammography based on a photon-counting detector: quantitative accuracy and radiation dose

    NASA Astrophysics Data System (ADS)

    Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Contrast-enhanced mammography has been used to demonstrate functional information about a breast tumor by injecting contrast agents. However, a conventional technique with a single exposure degrades the efficiency of tumor detection due to structure overlapping. Dual-energy techniques with energy-integrating detectors (EIDs) also cause an increase of radiation dose and an inaccuracy of material decomposition due to the limitations of EIDs. On the other hands, spectral mammography with photon-counting detectors (PCDs) is able to resolve the issues induced by the conventional technique and EIDs using their energy-discrimination capabilities. In this study, the contrast-enhanced spectral mammography based on a PCD was implemented by using a polychromatic dual-energy model, and the proposed technique was compared with the dual-energy technique with an EID in terms of quantitative accuracy and radiation dose. The results showed that the proposed technique improved the quantitative accuracy as well as reduced radiation dose comparing to the dual-energy technique with an EID. The quantitative accuracy of the contrast-enhanced spectral mammography based on a PCD was slightly improved as a function of radiation dose. Therefore, the contrast-enhanced spectral mammography based on a PCD is able to provide useful information for detecting breast tumors and improving diagnostic accuracy.

  14. Fundamentals of quantitative dynamic contrast-enhanced MR imaging.

    PubMed

    Paldino, Michael J; Barboriak, Daniel P

    2009-05-01

    Quantitative analysis of dynamic contrast-enhanced MR imaging (DCE-MR imaging) has the power to provide information regarding physiologic characteristics of the microvasculature and is, therefore, of great potential value to the practice of oncology. In particular, these techniques could have a significant impact on the development of novel anticancer therapies as a promising biomarker of drug activity. Standardization of DCE-MR imaging acquisition and analysis to provide more reproducible measures of tumor vessel physiology is of crucial importance to realize this potential. The purpose of this article is to review the pathophysiologic basis and technical aspects of DCE-MR imaging techniques.

  15. Cytochrome c release in acute myocardial infarction predicts poor prognosis and myocardial reperfusion on contrast-enhanced magnetic resonance imaging.

    PubMed

    Liu, Zhen-Bing; Fu, Xiang-Hua; Wei, Geng; Gao, Jun-Ling

    2014-01-01

    Myocardial ischemia and reperfusion injury in ST-segment elevation myocardial infarction (STEMI) can trigger no-flow, resulting in myocardial necrosis and apoptosis, even a poor prognosis. Cytochrome c can induce an apoptotic process. The aim of our study was to assess the relationship between systemic cytochrome c levels and the occurrence of no-reflow in STEMI. One hundred and sixty patients with STEMI undergoing a primary percutaneous coronary intervention (PPCI) were randomly chosen. Patients were divided into two groups defined by the mean cytochrome c peak level after PPCI. No-reflow was assessed using three different methods after PPCI: myocardial blush grade, electrocardiographic ST-resolution, and microvascular obstruction (MO) assessed by cardiovascular magnetic resonance imaging. The primary clinical end points were major adverse cardiovascular events (defined as cardiac death, reinfarction, or new congestive heart failure). Clinical follow-up was carried out for 1 year. Patients with a cytochrome c level of at least the mean peak level had a greater creatine kinase-MB isoenzyme peak level (P=0.044), a lower left ventricular ejection fraction (P=0.029), a significantly higher occurrence of early MO (P=0.008), and a significantly larger extent of early MO (P=0.020). The cytochrome c peak level was elevated in patients with early MO (P=0.025), myocardial blush grade 0-1 (P=0.002), and ST-resolution less than 30% (P=0.003) after PPCI. A higher incidence of cardiac death at the 1-year follow-up was found in the patients with cytochrome c levels of at least the mean peak level (log rank, P=0.029). Cytochrome c levels above the mean peak level were related to no-reflow and mortality in patients with STEMI.

  16. 3-D Quantitative Dynamic Contrast Ultrasound for Prostate Cancer Localization.

    PubMed

    Schalk, Stefan G; Huang, Jing; Li, Jia; Demi, Libertario; Wijkstra, Hessel; Huang, Pintong; Mischi, Massimo

    2018-04-01

    To investigate quantitative 3-D dynamic contrast-enhanced ultrasound (DCE-US) and, in particular 3-D contrast-ultrasound dispersion imaging (CUDI), for prostate cancer detection and localization, 43 patients referred for 10-12-core systematic biopsy underwent 3-D DCE-US. For each 3-D DCE-US recording, parametric maps of CUDI-based and perfusion-based parameters were computed. The parametric maps were divided in regions, each corresponding to a biopsy core. The obtained parameters were validated per biopsy location and after combining two or more adjacent regions. For CUDI by correlation (r) and for the wash-in time (WIT), a significant difference in parameter values between benign and malignant biopsy cores was found (p < 0.001). In a per-prostate analysis, sensitivity and specificity were 94% and 50% for r, and 53% and 81% for WIT. Based on these results, it can be concluded that quantitative 3-D DCE-US could aid in localizing prostate cancer. Therefore, we recommend follow-up studies to investigate its value for targeting biopsies. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  17. Impact of myocardial contrast echocardiography on vascular permeability: an in vivo dose response study of delivery mode, pressure amplitude and contrast dose.

    PubMed

    Li, Peng; Cao, Lu-qin; Dou, Chun-Yan; Armstrong, William F; Miller, Douglas

    2003-09-01

    An in vivo rat model of myocardial contrast echocardiography (MCE) was defined and used to examine the dose range response of microvascular permeabilization and premature ventricular contractions (PVCs) with respect to method of imaging, peak rarefactional pressure amplitude (PRPA) and agent dose. A left ventricular short axis view was obtained on anesthetized rats at 1.7 MHz using a diagnostic ultrasound system with simultaneous ECG recording. Evans blue dye, a marker for microvascular leakage, and a bolus of Optison were injected i.v. Counts of PVCs were made from video tape during the 3 min of MCE. Hearts were excised 5 min after imaging and petechial hemorrhages, Evans blue colored area and Evans blue content were determined. No PVCs or microvascular leakage were seen in rats imaged without contrast agent followed by contrast agent injection without imaging. When PVCs were detected during MCE, petechial hemorrhages and Evans blue leakage were also found in the myocardium. Triggering 1:4 at end-systole produced the most PVCs per frame and most microvascular leakage, followed by end-systole 1:1, continuous scanning and end-diastole triggering 1:1. All effects increased with increasing Optison dosage in the range 25 to 500 microL kg(-1). Ultrasound PRPA was important, with apparent thresholds for PVCs at 1.0 MPa and for petechiae at 0.54 MPa. PVCs, petechial hemorrhages and microvascular leakage in the myocardium occur as a result of MCE in rats.

  18. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice

    PubMed Central

    Ziegler, Karin A; Ahles, Andrea; Wille, Timo; Kerler, Julia; Ramanujam, Deepak; Engelhardt, Stefan

    2018-01-01

    Abstract Aims Cardiac inflammation has been suggested to be regulated by the sympathetic nervous system (SNS). However, due to the lack of methodology to surgically eliminate the myocardial SNS in mice, neuronal control of cardiac inflammation remains ill-defined. Here, we report a procedure for local cardiac sympathetic denervation in mice and tested its effect in a mouse model of heart failure post-myocardial infarction. Methods and results Upon preparation of the carotid bifurcation, the right and the left superior cervical ganglia were localized and their pre- and postganglionic branches dissected before removal of the ganglion. Ganglionectomy led to an almost entire loss of myocardial sympathetic innervation in the left ventricular anterior wall. When applied at the time of myocardial infarction (MI), cardiac sympathetic denervation did not affect acute myocardial damage and infarct size. In contrast, cardiac sympathetic denervation significantly attenuated chronic consequences of MI, including myocardial inflammation, myocyte hypertrophy, and overall cardiac dysfunction. Conclusion These data suggest a critical role for local sympathetic control of cardiac inflammation. Our model of myocardial sympathetic denervation in mice should prove useful to further dissect the molecular mechanisms underlying cardiac neural control. PMID:29186414

  19. Diagnostic accuracy of semi-automatic quantitative metrics as an alternative to expert reading of CT myocardial perfusion in the CORE320 study.

    PubMed

    Ostovaneh, Mohammad R; Vavere, Andrea L; Mehra, Vishal C; Kofoed, Klaus F; Matheson, Matthew B; Arbab-Zadeh, Armin; Fujisawa, Yasuko; Schuijf, Joanne D; Rochitte, Carlos E; Scholte, Arthur J; Kitagawa, Kakuya; Dewey, Marc; Cox, Christopher; DiCarli, Marcelo F; George, Richard T; Lima, Joao A C

    To determine the diagnostic accuracy of semi-automatic quantitative metrics compared to expert reading for interpretation of computed tomography perfusion (CTP) imaging. The CORE320 multicenter diagnostic accuracy clinical study enrolled patients between 45 and 85 years of age who were clinically referred for invasive coronary angiography (ICA). Computed tomography angiography (CTA), CTP, single photon emission computed tomography (SPECT), and ICA images were interpreted manually in blinded core laboratories by two experienced readers. Additionally, eight quantitative CTP metrics as continuous values were computed semi-automatically from myocardial and blood attenuation and were combined using logistic regression to derive a final quantitative CTP metric score. For the reference standard, hemodynamically significant coronary artery disease (CAD) was defined as a quantitative ICA stenosis of 50% or greater and a corresponding perfusion defect by SPECT. Diagnostic accuracy was determined by area under the receiver operating characteristic curve (AUC). Of the total 377 included patients, 66% were male, median age was 62 (IQR: 56, 68) years, and 27% had prior myocardial infarction. In patient based analysis, the AUC (95% CI) for combined CTA-CTP expert reading and combined CTA-CTP semi-automatic quantitative metrics was 0.87(0.84-0.91) and 0.86 (0.83-0.9), respectively. In vessel based analyses the AUC's were 0.85 (0.82-0.88) and 0.84 (0.81-0.87), respectively. No significant difference in AUC was found between combined CTA-CTP expert reading and CTA-CTP semi-automatic quantitative metrics in patient based or vessel based analyses(p > 0.05 for all). Combined CTA-CTP semi-automatic quantitative metrics is as accurate as CTA-CTP expert reading to detect hemodynamically significant CAD. Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  20. Quantitative structure-property relationship (correlation analysis) of phosphonic acid-based chelates in design of MRI contrast agent.

    PubMed

    Tiwari, Anjani K; Ojha, Himanshu; Kaul, Ankur; Dutta, Anupama; Srivastava, Pooja; Shukla, Gauri; Srivastava, Rakesh; Mishra, Anil K

    2009-07-01

    Nuclear magnetic resonance imaging is a very useful tool in modern medical diagnostics, especially when gadolinium (III)-based contrast agents are administered to the patient with the aim of increasing the image contrast between normal and diseased tissues. With the use of soft modelling techniques such as quantitative structure-activity relationship/quantitative structure-property relationship after a suitable description of their molecular structure, we have studied a series of phosphonic acid for designing new MRI contrast agent. Quantitative structure-property relationship studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors of the phosphonic acid-based chelating agent and their stability constants. The final quantitative structure-property relationship mathematical models were found as--quantitative structure-property relationship Model for phosphonic acid series (Model 1)--log K(ML) = {5.00243(+/-0.7102)}- MR {0.0263(+/-0.540)}n = 12 l r l = 0.942 s = 0.183 F = 99.165 quantitative structure-property relationship Model for phosphonic acid series (Model 2)--log K(ML) = {5.06280(+/-0.3418)}- MR {0.0252(+/- .198)}n = 12 l r l = 0.956 s = 0.186 F = 99.256.

  1. Different Causes of Death in Patients with Myocardial Infarction Type 1, Type 2, and Myocardial Injury.

    PubMed

    Lambrecht, Sascha; Sarkisian, Laura; Saaby, Lotte; Poulsen, Tina S; Gerke, Oke; Hosbond, Susanne; Diederichsen, Axel C P; Thygesen, Kristian; Mickley, Hans

    2018-05-01

    Data outlining the mortality and the causes of death in patients with type 1 myocardial infarction, type 2 myocardial infarction, and those with myocardial injury are limited. During a 1-year period from January 2010 to January 2011, all hospitalized patients who had cardiac troponin I measured on clinical indication were prospectively studied. Patients with at least one cardiac troponin I value >30 ng/L underwent case ascertainment and individual evaluation by an experienced adjudication committee. Patients were classified as having type 1 myocardial infarction, type 2 myocardial infarction, or myocardial injury according to the criteria of the universal definition of myocardial infarction. Follow-up was ensured until December 31, 2014. Data on mortality and causes of death were obtained from the Danish Civil Registration System and the Danish Register of Causes of Death. Overall, 3762 consecutive patients were followed for a mean of 3.2 years (interquartile range 1.3-3.6 years). All-cause mortality differed significantly among categories: Type 1 myocardial infarction 31.7%, type 2 myocardial infarction 62.2%, myocardial injury 58.7%, and 22.2% in patients with nonelevated troponin values (log-rank test; P < .0001). In patients with type 1 myocardial infarction, 61.3% died from cardiovascular causes, vs 42.6% in patients with type 2 myocardial infarction (P = .015) and 41.2% in those with myocardial injury (P < .0001). The overall mortality and the causes of death did not differ substantially between patients with type 2 myocardial infarction and those with myocardial injury. Patients with type 2 myocardial infarction and myocardial injury exhibit a significantly higher long-term mortality compared with patients with type 1 myocardial infarction . However, most patients with type 1 myocardial infarction die from cardiovascular causes in contrast to patients with type 2 myocardial infarction and myocardial injury, in whom noncardiovascular causes of death

  2. Quantitative evaluation of mucosal vascular contrast in narrow band imaging using Monte Carlo modeling

    NASA Astrophysics Data System (ADS)

    Le, Du; Wang, Quanzeng; Ramella-Roman, Jessica; Pfefer, Joshua

    2012-06-01

    Narrow-band imaging (NBI) is a spectrally-selective reflectance imaging technique for enhanced visualization of superficial vasculature. Prior clinical studies have indicated NBI's potential for detection of vasculature abnormalities associated with gastrointestinal mucosal neoplasia. While the basic mechanisms behind the increased vessel contrast - hemoglobin absorption and tissue scattering - are known, a quantitative understanding of the effect of tissue and device parameters has not been achieved. In this investigation, we developed and implemented a numerical model of light propagation that simulates NBI reflectance distributions. This was accomplished by incorporating mucosal tissue layers and vessel-like structures in a voxel-based Monte Carlo algorithm. Epithelial and mucosal layers as well as blood vessels were defined using wavelength-specific optical properties. The model was implemented to calculate reflectance distributions and vessel contrast values as a function of vessel depth (0.05 to 0.50 mm) and diameter (0.01 to 0.10 mm). These relationships were determined for NBI wavelengths of 410 nm and 540 nm, as well as broadband illumination common to standard endoscopic imaging. The effects of illumination bandwidth on vessel contrast were also simulated. Our results provide a quantitative analysis of the effect of absorption and scattering on vessel contrast. Additional insights and potential approaches for improving NBI system contrast are discussed.

  3. Quantitation of MRI sensitivity to quasi-monodisperse microbubble contrast agents for spatially resolved manometry.

    PubMed

    Bencsik, Martin; Al-Rwaili, Amgad; Morris, Robert; Fairhurst, David J; Mundell, Victoria; Cave, Gareth; McKendry, Jonathan; Evans, Stephen

    2013-11-01

    The direct in-vivo measurement of fluid pressure cannot be achieved with MRI unless it is done with the contribution of a contrast agent. No such contrast agents are currently available commercially, whilst those demonstrated previously only produced qualitative results due to their broad size distribution. Our aim is to quantitate then model the MR sensitivity to the presence of quasi-monodisperse microbubble populations. Lipid stabilised microbubble populations with mean radius 1.2 ± 0.8 μm have been produced by mechanical agitation. Contrast agents with increasing volume fraction of bubbles up to 4% were formed and the contribution the bubbles bring to the relaxation rate was quantitated. A periodic pressure change was also continuously applied to the same contrast agent, until MR signal changes were only due to bubble radius change and not due to a change in bubble density. The MR data compared favourably with the prediction of an improved numerical simulation. An excellent MR sensitivity of 23 % bar(-1) has been demonstrated. This work opens up the possibility of generating microbubble preparations tailored to specific applications with optimised MR sensitivity, in particular MRI based in-vivo manometry. Copyright © 2012 Wiley Periodicals, Inc.

  4. Linearization improves the repeatability of quantitative dynamic contrast-enhanced MRI.

    PubMed

    Jones, Kyle M; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2018-04-01

    The purpose of this study was to compare the repeatabilities of the linear and nonlinear Tofts and reference region models (RRM) for dynamic contrast-enhanced MRI (DCE-MRI). Simulated and experimental DCE-MRI data from 12 rats with a flank tumor of C6 glioma acquired over three consecutive days were analyzed using four quantitative and semi-quantitative DCE-MRI metrics. The quantitative methods used were: 1) linear Tofts model (LTM), 2) non-linear Tofts model (NTM), 3) linear RRM (LRRM), and 4) non-linear RRM (NRRM). The following semi-quantitative metrics were used: 1) maximum enhancement ratio (MER), 2) time to peak (TTP), 3) initial area under the curve (iauc64), and 4) slope. LTM and NTM were used to estimate K trans , while LRRM and NRRM were used to estimate K trans relative to muscle (R Ktrans ). Repeatability was assessed by calculating the within-subject coefficient of variation (wSCV) and the percent intra-subject variation (iSV) determined with the Gage R&R analysis. The iSV for R Ktrans using LRRM was two-fold lower compared to NRRM at all simulated and experimental conditions. A similar trend was observed for the Tofts model, where LTM was at least 50% more repeatable than the NTM under all experimental and simulated conditions. The semi-quantitative metrics iauc64 and MER were as equally repeatable as K trans and R Ktrans estimated by LTM and LRRM respectively. The iSV for iauc64 and MER were significantly lower than the iSV for slope and TTP. In simulations and experimental results, linearization improves the repeatability of quantitative DCE-MRI by at least 30%, making it as repeatable as semi-quantitative metrics. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Ptychography: use of quantitative phase information for high-contrast label free time-lapse imaging of living cells

    NASA Astrophysics Data System (ADS)

    Suman, Rakesh; O'Toole, Peter

    2014-03-01

    Here we report a novel label free, high contrast and quantitative method for imaging live cells. The technique reconstructs an image from overlapping diffraction patterns using a ptychographical algorithm. The algorithm utilises both amplitude and phase data from the sample to report on quantitative changes related to the refractive index (RI) and thickness of the specimen. We report the ability of this technique to generate high contrast images, to visualise neurite elongation in neuronal cells, and to provide measure of cell proliferation.

  6. Real-time myocardial perfusion imaging for pharmacologic stress testing: added value to single photon emission computed tomography.

    PubMed

    Korosoglou, Grigorios; Dubart, Alain-Eric; DaSilva, K Gaspar C; Labadze, Nino; Hardt, Stefan; Hansen, Alexander; Bekeredjian, Raffi; Zugck, Christian; Zehelein, Joerg; Katus, Hugo A; Kuecherer, Helmut

    2006-01-01

    Little is known about the incremental value of real-time myocardial contrast echocardiography (MCE) as an adjunct to pharmacologic stress testing. This study was performed to evaluate the diagnostic value of MCE to detect abnormal myocardial perfusion by technetium Tc 99m sestamibi-single photon emission computed tomography (SPECT) and anatomically significant coronary artery disease (CAD) by angiography. Myocardial contrast echocardiography was performed at rest and during vasodilator stress in consecutive patients (N = 120) undergoing SPECT imaging for known or suspected CAD. Myocardial opacification, wall motion, and tracer uptake were visually analyzed in 12 myocardial segments by 2 pairs of blinded observers. Concordance between the 2 methods was assessed using the kappa statistic. Of 1356 segments, 1025 (76%) were interpretable by MCE, wall motion, and SPECT. Sensitivity of wall motion was 75%, specificity 83%, and accuracy 81% for detecting abnormal myocardial perfusion by SPECT (kappa = 0.53). Myocardial contrast echocardiography and wall motion together yielded significantly higher sensitivity (85% vs 74%, P < .05), specificity of 83%, and accuracy of 85% (kappa = 0.64) for the detection of abnormal myocardial perfusion. In 89 patients who underwent coronary angiography, MCE and wall motion together yielded higher sensitivity (83% vs 64%, P < .05) and accuracy (77% vs 68%, P < .05) but similar specificity (72%) compared with SPECT for the detection of high-grade, stenotic (> or = 75%) coronary lesions. Assessment of myocardial perfusion adds value to conventional stress echocardiography by increasing its sensitivity for the detection of functionally abnormal myocardial perfusion. Myocardial contrast echocardiography and wall motion together provide higher sensitivity and accuracy for detection of CAD compared with SPECT.

  7. Low-dose quantitative phase contrast medical CT

    NASA Astrophysics Data System (ADS)

    Mittone, A.; Bravin, A.; Coan, P.

    2018-02-01

    X-ray computed tomography (CT) is a powerful and routinely used clinical diagnostic technique, which is well tolerated by patients, and which provides high-resolution images and volumetric information about the body. However, two important limitations still affect this examination procedure: (1) its low sensitivity with respect to soft tissues, and (2) the hazards associated with x-ray exposure. Conventional radiology is based on the detection of the different photon absorption properties that characterize biological tissues, and thus the obtainable image contrast from soft and/or similar tissues is intrinsically limited. In this scenario, x-ray phase contrast imaging (XPCI) has been extensively tested and proven to overcome some of the main issues surrounding standard x-ray imaging. In addition to the absorption signal, XPCI relies on detecting the phase shifts induced by an object. Interestingly, as the order of magnitude of the phase contrast is higher than that of absorption, XPCI can, in principle, offer higher sensitivity at lower radiation doses. However, other technical aspects may counterbalance this gain, and an optimized setup and image processing solutions need to be implemented. The work presented here describes the strategies and developments we have realized, with the aim of controlling the radiation dose for the highly sensitive and quantitative XPCI-CT. Different algorithms for the phase retrieval and CT reconstruction of the XPCI data are presented. The CT algorithms we have implemented, namely the equally sloped tomography and the dictionary learning method, allow the image quality to be preserved while reducing the number of angular projections required by a factor of five. The results applied to breast imaging report accurate reconstructions at clinically compatible doses of the 3D distribution of the refractive properties of full human organs obtained by using three different phase retrieval methods. The described methodologies and the

  8. A generalized quantitative interpretation of dark-field contrast for highly concentrated microsphere suspensions

    PubMed Central

    Gkoumas, Spyridon; Villanueva-Perez, Pablo; Wang, Zhentian; Romano, Lucia; Abis, Matteo; Stampanoni, Marco

    2016-01-01

    In X-ray grating interferometry, dark-field contrast arises due to partial extinction of the detected interference fringes. This is also called visibility reduction and is attributed to small-angle scattering from unresolved structures in the imaged object. In recent years, analytical quantitative frameworks of dark-field contrast have been developed for highly diluted monodisperse microsphere suspensions with maximum 6% volume fraction. These frameworks assume that scattering particles are separated by large enough distances, which make any interparticle scattering interference negligible. In this paper, we start from the small-angle scattering intensity equation and, by linking Fourier and real-space, we introduce the structure factor and thus extend the analytical and experimental quantitative interpretation of dark-field contrast, for a range of suspensions with volume fractions reaching 40%. The structure factor accounts for interparticle scattering interference. Without introducing any additional fitting parameters, we successfully predict the experimental values measured at the TOMCAT beamline, Swiss Light Source. Finally, we apply this theoretical framework to an experiment probing a range of system correlation lengths by acquiring dark-field images at different energies. This proposed method has the potential to be applied in single-shot-mode using a polychromatic X-ray tube setup and a single-photon-counting energy-resolving detector. PMID:27734931

  9. Quantitative evaluation of contrast-enhanced ultrasound after intravenous administration of a microbubble contrast agent for differentiation of benign and malignant thyroid nodules: assessment of diagnostic accuracy.

    PubMed

    Nemec, Ursula; Nemec, Stefan F; Novotny, Clemens; Weber, Michael; Czerny, Christian; Krestan, Christian R

    2012-06-01

    To investigate the diagnostic accuracy, through quantitative analysis, of contrast-enhanced ultrasound (CEUS), using a microbubble contrast agent, in the differentiation of thyroid nodules. This prospective study enrolled 46 patients with solitary, scintigraphically non-functional thyroid nodules. These patients were scheduled for surgery and underwent preoperative CEUS with pulse-inversion harmonic imaging after intravenous microbubble contrast medium administration. Using histology as a standard of reference, time-intensity curves of benign and malignant nodules were compared by means of peak enhancement and wash-out enhancement relative to the baseline intensity using a mixed model ANOVA. ROC analysis was performed to assess the diagnostic accuracy in the differentiation of benign and malignant nodules on CEUS. The complete CEUS data of 42 patients (31/42 [73.8%] benign and 11/42 [26.2%] malignant nodules) revealed a significant difference (P < 0.001) in enhancement between benign and malignant nodules. Furthermore, based on ROC analysis, CEUS demonstrated sensitivity of 76.9%, specificity of 84.8% and accuracy of 82.6%. Quantitative analysis of CEUS using a microbubble contrast agent allows the differentiation of benign and malignant thyroid nodules and may potentially serve, in addition to grey-scale and Doppler ultrasound, as an adjunctive tool in the assessment of patients with thyroid nodules. • Contrast-enhanced ultrasound (CEUS) helps differentiate between benign and malignant thyroid nodules. • Quantitative CEUS analysis yields sensitivity of 76.9% and specificity of 84.8%. • CEUS may be a potentially useful adjunct in assessing thyroid nodules.

  10. Assessment of myocardial fibrosis with T1 mapping MRI.

    PubMed

    Everett, R J; Stirrat, C G; Semple, S I R; Newby, D E; Dweck, M R; Mirsadraee, S

    2016-08-01

    Myocardial fibrosis can arise from a range of pathological processes and its presence correlates with adverse clinical outcomes. Cardiac magnetic resonance (CMR) can provide a non-invasive assessment of cardiac structure, function, and tissue characteristics, which includes late gadolinium enhancement (LGE) techniques to identify focal irreversible replacement fibrosis with a high degree of accuracy and reproducibility. Importantly the presence of LGE is consistently associated with adverse outcomes in a range of common cardiac conditions; however, LGE techniques are qualitative and unable to detect diffuse myocardial fibrosis, which is an earlier form of fibrosis preceding replacement fibrosis that may be reversible. Novel T1 mapping techniques allow quantitative CMR assessment of diffuse myocardial fibrosis with the two most common measures being native T1 and extracellular volume (ECV) fraction. Native T1 differentiates normal from infarcted myocardium, is abnormal in hypertrophic cardiomyopathy, and may be particularly useful in the diagnosis of Anderson-Fabry disease and amyloidosis. ECV is a surrogate measure of the extracellular space and is equivalent to the myocardial volume of distribution of the gadolinium-based contrast medium. It is reproducible and correlates well with fibrosis on histology. ECV is abnormal in patients with cardiac failure and aortic stenosis, and is associated with functional impairment in these groups. T1 mapping techniques promise to allow earlier detection of disease, monitor disease progression, and inform prognosis; however, limitations remain. In particular, reference ranges are lacking for T1 mapping values as these are influenced by specific CMR techniques and magnetic field strength. In addition, there is significant overlap between T1 mapping values in healthy controls and most disease states, particularly using native T1, limiting the clinical application of these techniques at present. Copyright © 2016 The Royal College

  11. Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification.

    PubMed

    Kellman, Peter; Hansen, Michael S; Nielles-Vallespin, Sonia; Nickander, Jannike; Themudo, Raquel; Ugander, Martin; Xue, Hui

    2017-04-07

    Quantification of myocardial blood flow requires knowledge of the amount of contrast agent in the myocardial tissue and the arterial input function (AIF) driving the delivery of this contrast agent. Accurate quantification is challenged by the lack of linearity between the measured signal and contrast agent concentration. This work characterizes sources of non-linearity and presents a systematic approach to accurate measurements of contrast agent concentration in both blood and myocardium. A dual sequence approach with separate pulse sequences for AIF and myocardial tissue allowed separate optimization of parameters for blood and myocardium. A systems approach to the overall design was taken to achieve linearity between signal and contrast agent concentration. Conversion of signal intensity values to contrast agent concentration was achieved through a combination of surface coil sensitivity correction, Bloch simulation based look-up table correction, and in the case of the AIF measurement, correction of T2* losses. Validation of signal correction was performed in phantoms, and values for peak AIF concentration and myocardial flow are provided for 29 normal subjects for rest and adenosine stress. For phantoms, the measured fits were within 5% for both AIF and myocardium. In healthy volunteers the peak [Gd] was 3.5 ± 1.2 for stress and 4.4 ± 1.2 mmol/L for rest. The T2* in the left ventricle blood pool at peak AIF was approximately 10 ms. The peak-to-valley ratio was 5.6 for the raw signal intensities without correction, and was 8.3 for the look-up-table (LUT) corrected AIF which represents approximately 48% correction. Without T2* correction the myocardial blood flow estimates are overestimated by approximately 10%. The signal-to-noise ratio of the myocardial signal at peak enhancement (1.5 T) was 17.7 ± 6.6 at stress and the peak [Gd] was 0.49 ± 0.15 mmol/L. The estimated perfusion flow was 3.9 ± 0.38 and 1.03 ± 0.19

  12. PET measurements of myocardial blood flow post myocardial infarction: Relationship to invasive and cardiac magnetic resonance studies and potential clinical applications.

    PubMed

    Gewirtz, Henry

    2017-12-01

    This review focuses on clinical studies concerning assessment of coronary microvascular and conduit vessel function primarily in the context of acute and sub acute myocardial infarction (MI). The ability of quantitative PET measurements of myocardial blood flow (MBF) to delineate underlying pathophysiology and assist in clinical decision making in this setting is discussed. Likewise, considered are physiological metrics fractional flow reserve, coronary flow reserve, index of microvascular resistance (FFR, CFR, IMR) obtained from invasive studies performed in the cardiac catheterization laboratory, typically at the time of PCI for MI. The role both of invasive studies and cardiac magnetic resonance (CMR) imaging in assessing microvascular function, a key determinant of prognosis, is reviewed. The interface between quantitative PET MBF measurements and underlying pathophysiology, as demonstrated both by invasive and CMR methodology, is discussed in the context of optimal interpretation of the quantitative PET MBF exam and its potential clinical applications.

  13. Quantitative evaluation improves specificity of myocardial perfusion SPECT in the assessment of functionally significant intermediate coronary artery stenoses: a comparative study with fractional flow reserve measurements.

    PubMed

    Sahiner, Ilgin; Akdemir, Umit O; Kocaman, Sinan A; Sahinarslan, Asife; Timurkaynak, Timur; Unlu, Mustafa

    2013-02-01

    Myocardial perfusion SPECT (MPS) is a noninvasive method commonly used for assessment of the hemodynamic significance of intermediate coronary stenoses. Fractional flow reserve (FFR) measurement is a well-validated invasive method used for the evaluation of intermediate stenoses. We aimed to determine the association between MPS and FFR findings in intermediate degree stenoses and evaluate the added value of quantification in MPS. Fifty-eight patients who underwent intracoronary pressure measurement in the catheterization laboratory to assess the physiological significance of intermediate (40-70%) left anterior descending (LAD) artery lesions, and who also underwent stress myocardial perfusion SPECT either for the assessment of an intermediate stenosis or for suspected coronary artery disease were analyzed retrospectively in the study. Quantitative analysis was performed using the 4DMSPECT program, with visual assessment performed by two experienced nuclear medicine physicians blinded to the angiographic findings. Summed stress scores (SSS) and summed difference scores (SDS) in the LAD artery territory according to the 20 segment model were calculated. A summed stress score of ≥ 3 and an SDS of ≥ 2 were assumed as pathologic, indicating significance of the lesion; a cutoff value of 0.75 was used to define abnormal FFR. Both visual and quantitative assessment results were compared with FFR using Chi-square (χ²) test. The mean time interval between two studies was 13 ± 11 days. FFR was normal in 45 and abnormal in 13 patients. Considering the FFR results as the gold standard method for assessing the significance of the lesion, the sensitivity and specificity of quantitative analysis determining the abnormal flow reserve were 85 and 84%, respectively, while visual analysis had a sensitivity of 77% and a specificity of 51%. There was a good agreement between the observers (κ = 0.856). Summed stress and difference scores demonstrated moderate inverse

  14. Multiple yellow plaques assessed by angioscopy with quantitative colorimetry in patients with myocardial infarction.

    PubMed

    Inami, Shigenobu; Ishibashi, Fumiyuki; Waxman, Sergio; Okamatsu, Kentaro; Seimiya, Koji; Takano, Masamichi; Uemura, Ryota; Sano, Junko; Mizuno, Kyoichi

    2008-03-01

    Multiple angioscopic yellow plaques are associated with diffuse atherosclerotic plaque, and may be prevalent in patients with myocardial infarction (MI), so in the present study the yellow plaques in the coronary arteries of patients with MI was evaluated using quantitative colorimetry, and compared with those of patients with stable angina (SA). In the recorded angioscopic images of 3 coronary vessels in 29 patients (15 patients with MI, 14 with SA), yellow plaques were determined as visually yellow regions with b* value >0 (yellow color intensity) measured by the quantitative colorimetric method. A total of 90 yellow plaques were identified (b* =19.35+/-8.3, 3.05-45.35). Yellow plaques were significantly more prevalent in 14 (93%) of 15 culprit lesions of MI as compared with 8 (57%) of 14 of SA (p=0.03). In non-culprit segments, yellow plaques were similarly prevalent in 13 (87%) patients with MI and 11 (79%) with SA (p=0.65). Overall, multiple (> or =2) yellow plaques were prevalent in 13 (87%) patients with MI, similar to the 10 (71%) with SA (p=0.38). The number of yellow plaques was significantly higher in patients with MI (3.8+/-1.9) than in those with SA (2.4+/-1.6, p=0.03). The present study suggests that patients with MI tend to have diffuse atherosclerotic plaque in their coronary arteries.

  15. Quantitative Differences Between the First and Second Injection of Contrast Agent in Contrast-Enhanced Ultrasonography of Feline Kidneys and Spleen.

    PubMed

    Stock, Emmelie; Vanderperren, Katrien; Haers, Hendrik; Duchateau, Luc; Hesta, Myriam; Saunders, Jimmy H

    2017-02-01

    Contrast-enhanced ultrasound is a valuable and safe technique for the evaluation of organ perfusion. Repeated injections of ultrasound contrast agent are often administered during the same imaging session. However, it remains unclear if quantitative differences are present between the consecutive microbubble injections. Therefore, the first and second injection of contrast agent for the left renal cortex, renal medulla and the splenic parenchyma in healthy cats were compared. A lower peak intensity and area under the curve were observed for the first injection of contrast agent in the feline kidney, both for the renal cortex and medulla, and spleen. Moreover, for the renal cortex, the time-intensity curve was steeper after the second injection. Findings from the present study demonstrate that a second injection of contrast agent provides stronger enhancement. The exact mechanism behind our findings remains unclear; however, saturation of the lung macrophages is believed to play an important role. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Effect of color coding and subtraction on the accuracy of contrast echocardiography

    NASA Technical Reports Server (NTRS)

    Pasquet, A.; Greenberg, N.; Brunken, R.; Thomas, J. D.; Marwick, T. H.

    1999-01-01

    BACKGROUND: Contrast echocardiography may be used to assess myocardial perfusion. However, gray scale assessment of myocardial contrast echocardiography (MCE) is difficult because of variations in regional backscatter intensity, difficulties in distinguishing varying shades of gray, and artifacts or attenuation. We sought to determine whether the assessment of rest myocardial perfusion by MCE could be improved with subtraction and color coding. METHODS AND RESULTS: MCE was performed in 31 patients with previous myocardial infarction with a 2nd generation agent (NC100100, Nycomed AS), using harmonic triggered or continuous imaging and gain settings were kept constant throughout the study. Digitized images were post processed by subtraction of baseline from contrast data and colorized to reflect the intensity of myocardial contrast. Gray scale MCE alone, MCE images combined with baseline and subtracted colorized images were scored independently using a 16 segment model. The presence and severity of myocardial contrast abnormalities were compared with perfusion defined by rest MIBI-SPECT. Segments that were not visualized by continuous (17%) or triggered imaging (14%) after color processing were excluded from further analysis. The specificity of gray scale MCE alone (56%) or MCE combined with baseline 2D (47%) was significantly enhanced by subtraction and color coding (76%, p<0.001) of triggered images. The accuracy of the gray scale approaches (respectively 52% and 47%) was increased to 70% (p<0.001). Similarly, for continuous images, the specificity of gray scale MCE with and without baseline comparison was 23% and 42% respectively, compared with 60% after post processing (p<0.001). The accuracy of colorized images (59%) was also significantly greater than gray scale MCE (43% and 29%, p<0.001). The sensitivity of MCE for both acquisitions was not altered by subtraction. CONCLUSION: Post-processing with subtraction and color coding significantly improves the accuracy

  17. [The 18F-FDG myocardial metabolic imaging in twenty seven pilots with regular aerobic training].

    PubMed

    Fang, Ting-Zheng; Zhu, Jia-Rui; Chuan, Ling; Zhao, Wen-Rui; Xu, Gen-Xiang; Yang, Min-Fu; He, Zuo-Xiang

    2009-02-01

    To evaluate the characteristics of myocardial (18)F-FDG imaging in pilots with regular aerobic exercise training. Twenty seven healthy male pilots with regular aerobic exercise training were included in this study. The subjects were divided into fasting (n = 17) or non-fasting group (n = 10). Fluorine-18-labeled deoxyglucose and Tc-99m-sestamibi dual-nuclide myocardial imaging were obtained at rest and at target heart rate during bicycle ergometer test. The exercise and rest myocardial perfusion imaging were analyzed for myocardial ischemia presence. The myocardial metabolism imaging was analyzed with the visual semi-quantitative analyses model of seventeen segments. The secondary-extreme heart rate (195-age) was achieved in all subjects. There was no myocardial ischemia in all perfusion imaging. In the visual qualitative analyses, four myocardial metabolism imaging failed in the fasting group while one failed in the non-fasting group (P > 0.05). In the visual semi-quantitative analyses, myocardial metabolism imaging scores at rest or exercise in all segments were similar between two groups (P > 0.05). In the fasting group, the myocardial metabolism imaging scores during exercise were significantly higher than those at rest in 6 segments (P < 0.05). In the non-fasting group, the scores of 3 exercise myocardial metabolism imaging were significantly higher than those at rest (P < 0.05). Satisfactory high-quality myocardial metabolism imaging could be obtained at fasting and exercise situations in subjects with regular aerobic exercise.

  18. Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability

    PubMed Central

    Tang, M.-X.; Mulvana, H.; Gauthier, T.; Lim, A. K. P.; Cosgrove, D. O.; Eckersley, R. J.; Stride, E.

    2011-01-01

    Ultrasound provides a valuable tool for medical diagnosis offering real-time imaging with excellent spatial resolution and low cost. The advent of microbubble contrast agents has provided the additional ability to obtain essential quantitative information relating to tissue vascularity, tissue perfusion and even endothelial wall function. This technique has shown great promise for diagnosis and monitoring in a wide range of clinical conditions such as cardiovascular diseases and cancer, with considerable potential benefits in terms of patient care. A key challenge of this technique, however, is the existence of significant variations in the imaging results, and the lack of understanding regarding their origin. The aim of this paper is to review the potential sources of variability in the quantification of tissue perfusion based on microbubble contrast-enhanced ultrasound images. These are divided into the following three categories: (i) factors relating to the scanner setting, which include transmission power, transmission focal depth, dynamic range, signal gain and transmission frequency, (ii) factors relating to the patient, which include body physical differences, physiological interaction of body with bubbles, propagation and attenuation through tissue, and tissue motion, and (iii) factors relating to the microbubbles, which include the type of bubbles and their stability, preparation and injection and dosage. It has been shown that the factors in all the three categories can significantly affect the imaging results and contribute to the variations observed. How these factors influence quantitative imaging is explained and possible methods for reducing such variations are discussed. PMID:22866229

  19. Relationship between Plaque Echo, Thickness and Neovascularization Assessed by Quantitative and Semi-quantitative Contrast-Enhanced Ultrasonography in Different Stenosis Groups.

    PubMed

    Song, Yan; Feng, Jun; Dang, Ying; Zhao, Chao; Zheng, Jie; Ruan, Litao

    2017-12-01

    The aim of this study was to determine the relationship between plaque echo, thickness and neovascularization in different stenosis groups using quantitative and semi-quantitative contrast-enhanced ultrasound (CEUS) in patients with carotid atherosclerosis plaque. A total of 224 plaques were divided into mild stenosis (<50%; 135 plaques, 60.27%), moderate stenosis (50%-69%; 39 plaques, 17.41%) and severe stenosis (70%-99%; 50 plaques, 22.32%) groups. Quantitative and semi-quantitative methods were used to assess plaque neovascularization and determine the relationship between plaque echo, thickness and neovascularization. Correlation analysis revealed no relationship of neovascularization with plaque echo in the groups using either quantitative or semi-quantitative methods. Furthermore, there was no correlation of neovascularization with plaque thickness using the semi-quantitative method. The ratio of areas under the curve (RAUC) was negatively correlated with plaque thickness (r = -0.317, p = 0.001) in the mild stenosis group. With the quartile method, plaque thickness of the mild stenosis group was divided into four groups, with significant differences between the 1.5-2.2 mm and ≥3.5 mm groups (p = 0.002), 2.3-2.8 mm and ≥3.5 mm groups (p <0.001) and 2.9-3.4 mm and ≥3.5 mm groups (p <0.001). Both semi-quantitative and quantitative CEUS methods characterizing neovascularization of plaque are equivalent with respect to assessing relationships between neovascularization, echogenicity and thickness. However, the quantitative method could fail for plaque <3.5 mm because of motion artifacts. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  20. Nitrogen-13-labeled ammonia for myocardial imaging.

    PubMed

    Walsh, W F; Fill, H R; Harper, P V

    1977-01-01

    Cyclotron-produced nitrogen-13 (half-life 10 min), as labeled ammonia (13NH4+), has been evaluated as a myocardial perfusion imaging agent. The regional myocardial uptake of 13NH4+ has been shown to be proportional to regional tissue perfusion in animal studies. Intravenously administered 13NH4+ is rapidly cleared from the circulation, being extracted by the liver (15%), lungs, myocardium (2%-4%), brain, kidney, and bladder. Myocardial ammonia is metabolized mainly to glutamine via the glutamine synthetase pathway. Pulmonary uptake is substantial, but usually transient, except in smokers where clearance may be delayed. The position annihilation irradiation (511 keV) of 13N may be imaged with a scintillation camera, using either a specially designed tungsten collimator or a pinhole collimator. After early technical problems with collimation and the production method of 13NH4+ were overcome, reproducible high quality myocardial images were consistently obtained. The normal myocardial image was established to be of a homogeneous "doughnut" configuration. Imaging studies performed in patients with varying manifestations of ischemic and valvular heart disease showed a high incidence of localized perfusion defects, especially in patients with acute myocardial infarction. Sequential studies at short intervals in patients with acute infarction showed correlation between alterations in regional perfusion and the clinical course of the patient. It is concluded that myocardial imaging with 13NH4+ and a scintillation camera provides a valid and noninvasive means of assessing regional myocardial perfusion. This method is especially suitable for sequential studies of acute cardiac patients at short intervals. Coincidence imaging of the 511 keV annihilation irradiation provides a tomographic and potentially quantitative assessment of the regional myocardial uptake of 13NH4+.

  1. The Myocardial Ischemia Evaluated by Real-Time Contrast Echocardiography May Predict the Response to Cardiac Resynchronization Therapy: A Large Animal Study

    PubMed Central

    Chen, Yongle; Cheng, Leilei; Yao, Haohua; Chen, Haiyan; Wang, Yongshi; Zhao, Weipeng; Pan, Cuizhen; Shu, Xianhong

    2014-01-01

    Evidence-based criteria for applying cardiac resynchronization therapy (CRT) in patients with ischemic cardiomyopathy are still scarce. The aim of the present study was to evaluate the predictive value of real-time myocardial contrast echocardiography (RT-MCE) in a preclinical canine model of ischemic cardiomyopathy who received CRT. Ischemic cardiomyopathy was produced by ligating the first diagonal branch in 20 beagles. Dogs were subsequently divided into two groups that were either treated with bi-ventricular pacing (CRT group) or left untreated (control group). RT-MCE was performed at baseline, before CRT, and 4 weeks after CRT. Two-dimensional speckle tracking imaging was used to evaluate the standard deviation of circumferential (Cir12SD), radial (R12SD), and longitudinal (L12SD) strains of left ventricular segments at basal as well as middle levels. Four weeks later, the Cir12SD, R12SD, and myocardial blood flow (MBF) of the treated group were significantly improved compared to their non-CRT counterparts. Furthermore, MBF values measured before CRT were significantly higher in responders than in non-responders to bi-ventricular pacing. Meanwhile, no significant differences were observed between the responder and non-responder groups in terms of Cir12SD, R12SD, and L12SD. A high degree of correlation was found between MBF values before CRT and LVEF after CRT. When MBF value>24.9 dB/s was defined as a cut-off point before CRT, the sensitivity and specificity of RT-MCE in predicting the response to CRT were 83.3% and 100%, respectively. Besides, MBF values increased significantly in the CRT group compared with the control group after 4 weeks of pacing (49.8±15.5 dB/s vs. 28.5±4.6 dB/s, p<0.05). Therefore, we considered that myocardial perfusion may be superior to standard metrics of LV synchrony in selecting appropriate candidates for CRT. In addition, CRT can improve myocardial perfusion in addition to cardiac synchrony, especially in the setting of ischemic

  2. Influence of sample preparation and identification of subcelluar structures in quantitative holographic phase contrast microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Schmidt, Lisa; Przibilla, Sabine; Rommel, Christina; Vollmer, Angelika; Ketelhut, Steffi; Schnekenburger, Jürgen; von Bally, Gert

    2010-04-01

    Digital holographic microscopy (DHM) provides label-free quantitative phase contrast with low demands on sample preparation. Nevertheless, for DHM measurements on fixed cells the mounting medium has to be considered while the phase contrast of living cells may be influenced by the used buffer solution. To quantify these effects, the maximum cell caused phase contrast and the visibility of the nucleoli were analyzed. A second aim of the study was to identify subcellular components in DHM phase contrast images. Therefore, comparative investigations using bright field imaging, DHM and fluorescence microscopy with 4',6- Diamidino-2-phenylindol (DAPI) staining were performed. DAPI-staining visualizes cell components containing DNA. The obtained results demonstrate exemplarily for two tumor cell lines that from DHM phase contrast images of fixed cells in phosphate buffer saline (PBS) cell thickness values are obtained which are comparable to living cells. Furthermore, it is shown that in many cases nucleus components can be identified only by DHM phase contrast.

  3. Semi-quantitative assessment of pulmonary perfusion in children using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Thong, William E.; Ou, Phalla

    2013-03-01

    This paper addresses the study of semi-quantitative assessment of pulmonary perfusion acquired from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in a study population mainly composed of children with pulmonary malformations. The automatic analysis approach proposed is based on the indicator-dilution theory introduced in 1954. First, a robust method is developed to segment the pulmonary artery and the lungs from anatomical MRI data, exploiting 2D and 3D mathematical morphology operators. Second, the time-dependent contrast signal of the lung regions is deconvolved by the arterial input function for the assessment of the local hemodynamic system parameters, ie. mean transit time, pulmonary blood volume and pulmonary blood flow. The discrete deconvolution method implements here a truncated singular value decomposition (tSVD) method. Parametric images for the entire lungs are generated as additional elements for diagnosis and quantitative follow-up. The preliminary results attest the feasibility of perfusion quantification in pulmonary DCE-MRI and open an interesting alternative to scintigraphy for this type of evaluation, to be considered at least as a preliminary decision in the diagnostic due to the large availability of the technique and to the non-invasive aspects.

  4. [Comparison of initial and delayed myocardial imaging with beta-methyl-p-[123I]-iodophenylpentadecanoic acid in acute myocardial infarction].

    PubMed

    Naruse, H; Yoshimura, N; Yamamoto, J; Morita, M; Fukutake, N; Ohyanagi, M; Iwasaki, T; Fukuchi, M

    1994-01-01

    Myocardial imaging using beta-methyl-p-[123I]-iodophenylpentadecanoic acid (BMIPP) of 15 patients with acute myocardial infarction was performed to assess "fill-in" and "washout" defects in the delayed myocardial image. The initial and delayed images were evaluated by a visual and quantitative washout rate method. Visual judgement found 8/180 (4%) segments showed "fill-in" defects, and 24/180 segments (13%) showed "washout" defects. There was no relationship between days from onset to the study and the frequency of fill-in and washout defects. The mean washout rate in the segments with "fill-in" defects was 9.0 +/- 16.6%, and that of "washout" defects was 24.9 +/- 18.1% which was significantly higher than in controls (8.7 +/- 15.4%, p < 0.05). There was no correlation between mean washout rate and total blood lipids, total cholesterol, triglyceride and HDL-cholesterol. Therefore, neither time from onset nor blood lipids level was related to changes from the initial image to the delayed image. These changes may be due to relative (false) findings due to changes in circumference, and may be based on myocardial characteristics after myocardial infarction and/or reperfusion.

  5. Multifactorial Optimization of Contrast-Enhanced Nanofocus Computed Tomography for Quantitative Analysis of Neo-Tissue Formation in Tissue Engineering Constructs.

    PubMed

    Sonnaert, Maarten; Kerckhofs, Greet; Papantoniou, Ioannis; Van Vlierberghe, Sandra; Boterberg, Veerle; Dubruel, Peter; Luyten, Frank P; Schrooten, Jan; Geris, Liesbet

    2015-01-01

    To progress the fields of tissue engineering (TE) and regenerative medicine, development of quantitative methods for non-invasive three dimensional characterization of engineered constructs (i.e. cells/tissue combined with scaffolds) becomes essential. In this study, we have defined the most optimal staining conditions for contrast-enhanced nanofocus computed tomography for three dimensional visualization and quantitative analysis of in vitro engineered neo-tissue (i.e. extracellular matrix containing cells) in perfusion bioreactor-developed Ti6Al4V constructs. A fractional factorial 'design of experiments' approach was used to elucidate the influence of the staining time and concentration of two contrast agents (Hexabrix and phosphotungstic acid) and the neo-tissue volume on the image contrast and dataset quality. Additionally, the neo-tissue shrinkage that was induced by phosphotungstic acid staining was quantified to determine the operating window within which this contrast agent can be accurately applied. For Hexabrix the staining concentration was the main parameter influencing image contrast and dataset quality. Using phosphotungstic acid the staining concentration had a significant influence on the image contrast while both staining concentration and neo-tissue volume had an influence on the dataset quality. The use of high concentrations of phosphotungstic acid did however introduce significant shrinkage of the neo-tissue indicating that, despite sub-optimal image contrast, low concentrations of this staining agent should be used to enable quantitative analysis. To conclude, design of experiments allowed us to define the most optimal staining conditions for contrast-enhanced nanofocus computed tomography to be used as a routine screening tool of neo-tissue formation in Ti6Al4V constructs, transforming it into a robust three dimensional quality control methodology.

  6. Quantitative myocardial blood flow imaging with integrated time-of-flight PET-MR.

    PubMed

    Kero, Tanja; Nordström, Jonny; Harms, Hendrik J; Sörensen, Jens; Ahlström, Håkan; Lubberink, Mark

    2017-12-01

    The use of integrated PET-MR offers new opportunities for comprehensive assessment of cardiac morphology and function. However, little is known on the quantitative accuracy of cardiac PET imaging with integrated time-of-flight PET-MR. The aim of the present work was to validate the GE Signa PET-MR scanner for quantitative cardiac PET perfusion imaging. Eleven patients (nine male; mean age 59 years; range 46-74 years) with known or suspected coronary artery disease underwent 15 O-water PET scans at rest and during adenosine-induced hyperaemia on a GE Discovery ST PET-CT and a GE Signa PET-MR scanner. PET-MR images were reconstructed using settings recommended by the manufacturer, including time-of-flight (TOF). Data were analysed semi-automatically using Cardiac VUer software, resulting in both parametric myocardial blood flow (MBF) images and segment-based MBF values. Correlation and agreement between PET-CT-based and PET-MR-based MBF values for all three coronary artery territories were assessed using regression analysis and intra-class correlation coefficients (ICC). In addition to the cardiac PET-MR reconstruction protocol as recommended by the manufacturer, comparisons were made using a PET-CT resolution-matched reconstruction protocol both without and with TOF to assess the effect of time-of-flight and reconstruction parameters on quantitative MBF values. Stress MBF data from one patient was excluded due to movement during the PET-CT scanning. Mean MBF values at rest and stress were (0.92 ± 0.12) and (2.74 ± 1.37) mL/g/min for PET-CT and (0.90 ± 0.23) and (2.65 ± 1.15) mL/g/min for PET-MR (p = 0.33 and p = 0.74). ICC between PET-CT-based and PET-MR-based regional MBF was 0.98. Image quality was improved with PET-MR as compared to PET-CT. ICC between PET-MR-based regional MBF with and without TOF and using different filter and reconstruction settings was 1.00. PET-MR-based MBF values correlated well with PET-CT-based MBF values and

  7. Quantitative hard x-ray phase contrast imaging of micropipes in SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohn, V. G.; Argunova, T. S.; Je, J. H., E-mail: jhje@postech.ac.kr

    2013-12-15

    Peculiarities of quantitative hard x-ray phase contrast imaging of micropipes in SiC are discussed. The micropipe is assumed as a hollow cylinder with an elliptical cross section. The major and minor diameters can be restored using the least square fitting procedure by comparing the experimental data, i.e. the profile across the micropipe axis, with those calculated based on phase contrast theory. It is shown that one projection image gives an information which does not allow a complete determination of the elliptical cross section, if an orientation of micropipe is not known. Another problem is a weak accuracy in estimating themore » diameters, partly because of using pink synchrotron radiation, which is necessary because a monochromatic beam intensity is not sufficient to reveal the weak contrast from a very small object. The general problems of accuracy in estimating the two diameters using the least square procedure are discussed. Two experimental examples are considered to demonstrate small as well as modest accuracies in estimating the diameters.« less

  8. Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment.

    PubMed

    Mordini, Federico E; Haddad, Tariq; Hsu, Li-Yueh; Kellman, Peter; Lowrey, Tracy B; Aletras, Anthony H; Bandettini, W Patricia; Arai, Andrew E

    2014-01-01

    This study's primary objective was to determine the sensitivity, specificity, and accuracy of fully quantitative stress perfusion cardiac magnetic resonance (CMR) versus a reference standard of quantitative coronary angiography. We hypothesized that fully quantitative analysis of stress perfusion CMR would have high diagnostic accuracy for identifying significant coronary artery stenosis and exceed the accuracy of semiquantitative measures of perfusion and qualitative interpretation. Relatively few studies apply fully quantitative CMR perfusion measures to patients with coronary disease and comparisons to semiquantitative and qualitative methods are limited. Dual bolus dipyridamole stress perfusion CMR exams were performed in 67 patients with clinical indications for assessment of myocardial ischemia. Stress perfusion images alone were analyzed with a fully quantitative perfusion (QP) method and 3 semiquantitative methods including contrast enhancement ratio, upslope index, and upslope integral. Comprehensive exams (cine imaging, stress/rest perfusion, late gadolinium enhancement) were analyzed qualitatively with 2 methods including the Duke algorithm and standard clinical interpretation. A 70% or greater stenosis by quantitative coronary angiography was considered abnormal. The optimum diagnostic threshold for QP determined by receiver-operating characteristic curve occurred when endocardial flow decreased to <50% of mean epicardial flow, which yielded a sensitivity of 87% and specificity of 93%. The area under the curve for QP was 92%, which was superior to semiquantitative methods: contrast enhancement ratio: 78%; upslope index: 82%; and upslope integral: 75% (p = 0.011, p = 0.019, p = 0.004 vs. QP, respectively). Area under the curve for QP was also superior to qualitative methods: Duke algorithm: 70%; and clinical interpretation: 78% (p < 0.001 and p < 0.001 vs. QP, respectively). Fully quantitative stress perfusion CMR has high diagnostic accuracy for

  9. Quantitative studies on inner interfaces in conical metal joints using hard x-ray inline phase contrast radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabler, S.; Rack, T.; Nelson, K.

    2010-10-15

    Quantitative investigation of micrometer and submicrometer gaps between joining metal surfaces is applied to conical plug-socket connections in dental titanium implants. Microgaps of widths well beyond the resolving power of industrial x-ray systems are imaged by synchrotron phase contrast radiography. Furthermore, by using an analytical model for the relatively simple sample geometry and applying it to numerical forward simulations of the optical Fresnel propagation, we show that quantitative measurements of the microgap width down to 0.1 {mu}m are possible. Image data recorded at the BAMline (BESSY-II light source, Germany) are presented, with the resolving power of the imaging system beingmore » 4 {mu}m in absorption mode and {approx}14 {mu}m in phase contrast mode (z{sub 2}=0.74 m). Thus, phase contrast radiography, combined with numerical forward simulations, is capable of measuring the widths of gaps that are two orders of magnitude thinner than the conventional detection limit.« less

  10. Melatonin protects against myocardial hypertrophy induced by lipopolysaccharide.

    PubMed

    Lu, Qi; Yi, Xin; Cheng, Xiang; Sun, Xiaohui; Yang, Xiangjun

    2015-04-01

    Melatonin is thought to have the ability of antiatherogenic, antioxidant, and vasodilatory. It is not only a promising protective in acute myocardial infarction but is also a useful tool in the treatment of pathological remodeling. However, its role in myocardial hypertrophy remains unclear. In this study, we investigated the protective effects of melatonin on myocardial hypertrophy induced by lipopolysaccharide (LPS) and to identify their precise mechanisms. The cultured myocardial cell was divided into six groups: control group, LPS group, LPS + ethanol (4%), LPS + melatonin (1.5 mg/ml) group, LPS + melatonin (3 mg/ml) group, and LPS + melatonin (6 mg/ml) group. The morphologic change of myocardial cell was observed by inverted phase contrast microscope. The protein level of myocardial cell was measured by Coomassie brilliant blue protein kit. The secretion level of tumor necrosis factor-α (TNF-α) was evaluated by enzyme-linked immunosorbent assay (ELISA). Ca(2+) transient in Fura-2/AM-loaded cells was measured by Till image system. The expression of Ca(2+)/calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) was measured by Western blot analysis. Our data demonstrated that LPS induced myocardial hypertrophy, promoted the secretion levels of TNF-α, and increased Ca(2+) transient level and the expression of CaMKII and CaN. Administration of melatonin 30 min prior to LPS stimulation dose-dependently attenuated myocardial hypertrophy. In conclusion, the results revealed that melatonin had the potential to protect against myocardial hypertrophy induced by LPS in vitro through downregulation of the TNF-α expression and retains the intracellular Ca(2+) homeostasis.

  11. Cardiovascular Magnetic Resonance Imaging of Myocardial Infarction, Viability, and Cardiomyopathies

    PubMed Central

    West, Amy M.; Kramer, Christopher M.

    2010-01-01

    Cardiovascular magnetic resonance provides the opportunity for a truly comprehensive evaluation of patients with a history of MI, with regards to characterizing the extent of disease, impact on LV function and degree of viable myocardium. The use of contrast-enhanced CMR for first-pass perfusion and late gadolinium enhancement is a powerful technique for delineating areas of myocardial ischemia and infarction. Using a combination of T2-weighted and contrast-enhanced CMR images, information about the acuity of an infarct can be obtained. There is an extensive amount of literature using contrast-enhanced CMR to predict myocardial functional recovery with revascularization in patients with ischemic cardiomyopathies. In addition, CMR imaging in patients with cardiomyopathies can distinguish between ischemic and non-ischemic etiologies, with the ability to further characterize the underlying pathology for non-ischemic cardiomyopathies. PMID:20197150

  12. Simultaneous Myocardial Strain and Dark-Blood Perfusion Imaging Using a Displacement-Encoded MRI Pulse Sequence

    PubMed Central

    Le, Yuan; Stein, Ashley; Berry, Colin; Kellman, Peter; Bennett, Eric E.; Taylor, Joni; Lucas, Katherine; Kopace, Rael; Chefd’Hotel, Christophe; Lorenz, Christine H.; Croisille, Pierre; Wen, Han

    2010-01-01

    The purpose of this study is to develop and evaluate a displacement-encoded pulse sequence for simultaneous perfusion and strain imaging. Displacement-encoded images in 2–3 myocardial slices were repeatedly acquired using a single shot pulse sequence for 3 to 4 minutes, which covers a bolus infusion of Gd. The magnitudes of the images were T1 weighted and provided quantitative measures of perfusion, while the phase maps yielded strain measurements. In an acute coronary occlusion swine protocol (n=9), segmental perfusion measurements were validated against microsphere reference standard with a linear regression (slope 0.986, R2 = 0.765, Bland-Altman standard deviation = 0.15 ml/min/g). In a group of ST-elevation myocardial infarction(STEMI) patients (n=11), the scan success rate was 76%. Short-term contrast washout rate and perfusion are highly correlated (R2=0.72), and the pixel-wise relationship between circumferential strain and perfusion was better described with a sigmoidal Hill curve than linear functions. This study demonstrates the feasibility of measuring strain and perfusion from a single set of images. PMID:20544714

  13. Comparison of Dynamic Contrast Enhanced MRI and Quantitative SPECT in a Rat Glioma Model

    PubMed Central

    Skinner, Jack T.; Yankeelov, Thomas E.; Peterson, Todd E.; Does, Mark D.

    2012-01-01

    Pharmacokinetic modeling of dynamic contrast enhanced (DCE)-MRI data provides measures of the extracellular volume fraction (ve) and the volume transfer constant (Ktrans) in a given tissue. These parameter estimates may be biased, however, by confounding issues such as contrast agent and tissue water dynamics, or assumptions of vascularization and perfusion made by the commonly used model. In contrast to MRI, radiotracer imaging with SPECT is insensitive to water dynamics. A quantitative dual-isotope SPECT technique was developed to obtain an estimate of ve in a rat glioma model for comparison to the corresponding estimates obtained using DCE-MRI with a vascular input function (VIF) and reference region model (RR). Both DCE-MRI methods produced consistently larger estimates of ve in comparison to the SPECT estimates, and several experimental sources were postulated to contribute to these differences. PMID:22991315

  14. Differences in quantitative assessment of myocardial scar and gray zone by LGE-CMR imaging using established gray zone protocols.

    PubMed

    Mesubi, Olurotimi; Ego-Osuala, Kelechi; Jeudy, Jean; Purtilo, James; Synowski, Stephen; Abutaleb, Ameer; Niekoop, Michelle; Abdulghani, Mohammed; Asoglu, Ramazan; See, Vincent; Saliaris, Anastasios; Shorofsky, Stephen; Dickfeld, Timm

    2015-02-01

    Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) imaging is the gold standard for myocardial scar evaluation. Heterogeneous areas of scar ('gray zone'), may serve as arrhythmogenic substrate. Various gray zone protocols have been correlated to clinical outcomes and ventricular tachycardia channels. This study assessed the quantitative differences in gray zone and scar core sizes as defined by previously validated signal intensity (SI) threshold algorithms. High quality LGE-CMR images performed in 41 cardiomyopathy patients [ischemic (33) or non-ischemic (8)] were analyzed using previously validated SI threshold methods [Full Width at Half Maximum (FWHM), n-standard deviation (NSD) and modified-FWHM]. Myocardial scar was defined as scar core and gray zone using SI thresholds based on these methods. Scar core, gray zone and total scar sizes were then computed and compared among these models. The median gray zone mass was 2-3 times larger with FWHM (15 g, IQR: 8-26 g) compared to NSD or modified-FWHM (5 g, IQR: 3-9 g; and 8 g. IQR: 6-12 g respectively, p < 0.001). Conversely, infarct core mass was 2.3 times larger with NSD (30 g, IQR: 17-53 g) versus FWHM and modified-FWHM (13 g, IQR: 7-23 g, p < 0.001). The gray zone extent (percentage of total scar that was gray zone) also varied significantly among the three methods, 51 % (IQR: 42-61 %), 17 % (IQR: 11-21 %) versus 38 % (IQR: 33-43 %) for FWHM, NSD and modified-FWHM respectively (p < 0.001). Considerable variability exists among the current methods for MRI defined gray zone and scar core. Infarct core and total myocardial scar mass also differ using these methods. Further evaluation of the most accurate quantification method is needed.

  15. Accelerated Dual-contrast First-pass Perfusion MRI of the Mouse Heart: Development and Application to Diet-induced Obese Mice

    PubMed Central

    Naresh, Nivedita K.; Chen, Xiao; Roy, Rene J.; Antkowiak, Patrick F.; Annex, Brian H.; Epstein, Frederick H.

    2014-01-01

    Background Gene-modified mice may be used to elucidate molecular mechanisms underlying abnormal myocardial blood flow (MBF). We sought to develop a quantitative myocardial perfusion imaging technique for mice and to test the hypothesis that myocardial perfusion reserve (MPR) is reduced in a mouse model of diet-induced obesity (DIO). Methods A dual-contrast saturation-recovery sequence with ky-t undersampling and a motion-compensated compressed sensing reconstruction algorithm was developed for first-pass MRI on a small-bore 7T system. Control mice were imaged at rest and with the vasodilators ATL313 and Regadenoson (n=6 each). In addition, we imaged mice fed a high-fat diet (HFD) for 24 weeks. Results In control mice, MBF was 5.7±0.8 ml/g/min at rest and it increased to 11.8±0.6 ml/g/min with ATL313 and to 10.4±0.3 ml/g/min with Regadenoson. In HFD mice we detected normal resting MBF (5.6±0.4 vs. 5.0±0.3 on control diet), low MBF at stress (7.7±0.4 vs. 10.4±0.3 on control diet, p<0.05), and reduced MPR (1.4±0.2 vs. 2.0±0.3 on control diet, p<0.05). Conclusions Accelerated dual-contrast first-pass MRI with motion-compensated compressed sensing provides spatiotemporal resolution suitable for measuring MBF in free-breathing mice, and detected reduced MPR in DIO mice. These techniques may be used to study molecular mechanisms that underlie abnormal myocardial perfusion. PMID:24760707

  16. Theory and preliminary experimental verification of quantitative edge illumination x-ray phase contrast tomography.

    PubMed

    Hagen, C K; Diemoz, P C; Endrizzi, M; Rigon, L; Dreossi, D; Arfelli, F; Lopez, F C M; Longo, R; Olivo, A

    2014-04-07

    X-ray phase contrast imaging (XPCi) methods are sensitive to phase in addition to attenuation effects and, therefore, can achieve improved image contrast for weakly attenuating materials, such as often encountered in biomedical applications. Several XPCi methods exist, most of which have already been implemented in computed tomographic (CT) modality, thus allowing volumetric imaging. The Edge Illumination (EI) XPCi method had, until now, not been implemented as a CT modality. This article provides indications that quantitative 3D maps of an object's phase and attenuation can be reconstructed from EI XPCi measurements. Moreover, a theory for the reconstruction of combined phase and attenuation maps is presented. Both reconstruction strategies find applications in tissue characterisation and the identification of faint, weakly attenuating details. Experimental results for wires of known materials and for a biological object validate the theory and confirm the superiority of the phase over conventional, attenuation-based image contrast.

  17. TH-CD-206-07: Determination of Patient-Specific Myocardial Mass at Risk Using Computed Tomography Angiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, L; Ziemer, B; Malkasian, S

    Purpose: To evaluate the accuracy of a patient-specific coronary perfusion territory assignment algorithm that uses CT angiography (CTA) and a minimum-cost-path approach to assign coronary perfusion territories on a voxel-by-voxel basis for determination of myocardial mass at risk. Methods: Intravenous (IV) contrast (370 mg/mL iodine, 25 mL, 7 mL/s) was injected centrally into five swine (35–45 kg) and CTA was performed using a 320-slice CT scanner at 100 kVp and 200 mA. Additionally, a 4F catheter was advanced into the left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA) and contrast (30 mg/mL iodine, 10 mL, 1.5more » mL/s) was directly injected into each coronary artery for isolation of reference coronary perfusion territories. Semiautomatic myocardial segmentation of the CTA data was then performed and the centerlines of the LAD, LCX, and RCA were digitally extracted through image processing. Individual coronary perfusion territories were then assigned using a minimum-cost-path approach, and were quantitatively compared to the reference coronary perfusion territories. Results: The results of the coronary perfusion territory assignment algorithm were in good agreement with the reference coronary perfusion territories. The average volumetric assignment error from mitral orifice to apex was 5.5 ± 1.1%, corresponding to 2.1 ± 0.7 grams of myocardial mass misassigned for each coronary perfusion territory. Conclusion: The results indicate that accurate coronary perfusion territory assignment is possible on a voxel-by-voxel basis using CTA data and an assignment algorithm based on a minimum-cost-path approach. Thus, the technique can potentially be used to accurately determine patient-specific myocardial mass at risk distal to a coronary stenosis, improving coronary lesion assessment and treatment. Conflict of Interest (only if applicable): Grant funding from Toshiba America Medical Systems.« less

  18. CMR imaging of edema in myocardial infarction using cine balanced steady-state free precession.

    PubMed

    Kumar, Andreas; Beohar, Nirat; Arumana, Jain Mangalathu; Larose, Eric; Li, Debiao; Friedrich, Matthias G; Dharmakumar, Rohan

    2011-12-01

    The aim of this study was to investigate the capabilities of balanced steady-state free precession (bSSFP) cardiac magnetic resonance imaging as a novel cine imaging approach for characterizing myocardial edema in animals and patients after reperfused myocardial infarction. Current cardiac magnetic resonance methods require 2 separate scans for assessment of myocardial edema and cardiac function. Mini-pigs (n = 13) with experimentally induced reperfused myocardial infarction and patients with reperfused ST-segment elevation myocardial infarction (n = 26) underwent cardiac magnetic resonance scans on days 2 to 4 post-reperfusion. Cine bSSFP, T2-weighted short TI inversion recovery (T2-STIR), and late gadolinium enhancement were performed at 1.5-T. Cine bSSFP and T2-STIR images were acquired with a body coil to mitigate surface coil bias. Signal, contrast, and the area of edema were compared. Additional patients (n = 10) were analyzed for the effect of microvascular obstruction on bSSFP. A receiver-operator characteristic analysis was performed to assess the accuracy of edema detection. An area of hyperintense bSSFP signal consistent with edema was observed in the infarction zone (contrast-to-noise ratio: 37 ± 13) in all animals and correlated well with the area of late gadolinium enhancement (R = 0.83, p < 0.01). In all patients, T2-STIR and bSSFP images showed regional hyperintensity in the infarction zone. Normalized contrast-to-noise ratios were not different between T2-STIR and bSSFP. On a slice basis, the volumes of hyperintensity on T2-STIR and bSSFP images correlated well (R = 0.86, p < 0.001), and their means were not different. When compared with T2-STIR, bSSFP was positive for edema in 25 of 26 patients (96% sensitivity) and was negative in all controls (100% specificity). All patients with microvascular obstruction showed a significant reduction of signal in the subendocardial infarction zone compared with infarcted epicardial tissue without

  19. Advances in cardiac CT contrast injection and acquisition protocols.

    PubMed

    Scholtz, Jan-Erik; Ghoshhajra, Brian

    2017-10-01

    Cardiac computed tomography (CT) imaging has become an important part of modern cardiovascular care. Coronary CT angiography (CTA) is the first choice imaging modality for non-invasive visualization of coronary artery stenosis. In addition, cardiac CT does not only provide anatomical evaluation, but also functional and valvular assessment, and myocardial perfusion evaluation. In this article we outline the factors which influence contrast enhancement, give an overview of current contrast injection and acquisition protocols, with focus on current emerging topics such as pre-transcatheter aortic valve replacement (TAVR) planning, cardiac CT for congenital heart disease (CHD) patients, and myocardial CT perfusion (CTP). Further, we point out areas where we see potential for future improvements in cardiac CT imaging based on a closer interaction between CT scanner settings and contrast injection protocols to tailor injections to patient- and exam-specific factors.

  20. Advances in cardiac CT contrast injection and acquisition protocols

    PubMed Central

    Scholtz, Jan-Erik

    2017-01-01

    Cardiac computed tomography (CT) imaging has become an important part of modern cardiovascular care. Coronary CT angiography (CTA) is the first choice imaging modality for non-invasive visualization of coronary artery stenosis. In addition, cardiac CT does not only provide anatomical evaluation, but also functional and valvular assessment, and myocardial perfusion evaluation. In this article we outline the factors which influence contrast enhancement, give an overview of current contrast injection and acquisition protocols, with focus on current emerging topics such as pre-transcatheter aortic valve replacement (TAVR) planning, cardiac CT for congenital heart disease (CHD) patients, and myocardial CT perfusion (CTP). Further, we point out areas where we see potential for future improvements in cardiac CT imaging based on a closer interaction between CT scanner settings and contrast injection protocols to tailor injections to patient- and exam-specific factors. PMID:29255688

  1. Transmyocardial laser revascularization in the acute ischaemic heart: no improvement of acute myocardial perfusion or prevention of myocardial infarction.

    PubMed

    Eckstein, F S; Scheule, A M; Vogel, U; Schmid, S T; Miller, S; Jurmann, M J; Ziemer, G

    1999-05-01

    Transmyocardial laser revascularization (TMLR) has been used to provide enhanced myocardial perfusion in patients not suitable for coronary revascularization or angioplasty. This study investigates the acute changes in myocardial perfusion after TMLR with a Holmium:Yttrium-Aluminium-Garnet (YAG) laser with a thermal imaging camera in a model of acute ischaemia, and confirms its midterm effects by post-mortem investigation of magnetic resonance imaging and histopathological examination. Acute myocardial ischaemia was induced by occlusion of the dominant diagonal branch in ten sheep. Perfusion measurements were undertaken first in the unaffected myocardium, then after temporary occlusion of the coronary to obtain a control measurement for ischaemic myocardium. Myocardial perfusion was then evaluated during reperfusion after release of coronary occlusion. Then the coronary was permanently occluded and 20.5+/-2 channels were drilled with the Holmium:YAG laser and perfusion was measured again. The other four sheep served as control with untreated ischaemia. All animals were sacrificed after 28 days following administration of gadolinium i.v. to serve as contrast medium for magnetic resonance tomography. The hearts were subjected to magnetic resonance tomography and histopathological examination. Intraoperative perfusion measurements revealed a decreased perfusion after temporary occlusion and an increased perfusion in reperfused myocardium. After TMLR, no improvement of myocardial perfusion above the ischaemic level could be shown. Magnetic resonance images could neither confirm patent laser channels nor viable myocardium within ischaemic areas. On histology no patent endocardial laser channel could be detected. The transmural features were myocardial infarct with scar tissue. In the presented sheep model with acute ischaemia, TMLR with a Holmium:YAG laser did not provide acute improvement of myocardial perfusion as assessed by a thermal imaging camera. This would

  2. A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia-reperfusion.

    PubMed

    Pirat, Bahar; Khoury, Dirar S; Hartley, Craig J; Tiller, Les; Rao, Liyun; Schulz, Daryl G; Nagueh, Sherif F; Zoghbi, William A

    2008-02-12

    The aim of this study was to validate a novel, angle-independent, feature-tracking method for the echocardiographic quantitation of regional function. A new echocardiographic method, Velocity Vector Imaging (VVI) (syngo Velocity Vector Imaging technology, Siemens Medical Solutions, Ultrasound Division, Mountain View, California), has been introduced, based on feature tracking-incorporating speckle and endocardial border tracking, that allows the quantitation of endocardial strain, strain rate (SR), and velocity. Seven dogs were studied during baseline, and various interventions causing alterations in regional function: dobutamine, 5-min coronary occlusion with reperfusion up to 1 h, followed by dobutamine and esmolol infusions. Echocardiographic images were acquired from short- and long-axis views of the left ventricle. Segment-length sonomicrometry crystals were used as the reference method. Changes in systolic strain in ischemic segments were tracked well with VVI during the different states of regional function. There was a good correlation between circumferential and longitudinal systolic strain by VVI and sonomicrometry (r = 0.88 and r = 0.83, respectively, p < 0.001). Strain measurements in the nonischemic basal segments also demonstrated a significant correlation between the 2 methods (r = 0.65, p < 0.001). Similarly, a significant relation was observed for circumferential and longitudinal SR between the 2 methods (r = 0.94, p < 0.001 and r = 0.90, p < 0.001, respectively). The endocardial velocity relation to changes in strain by sonomicrometry was weaker owing to significant cardiac translation. Velocity Vector Imaging, a new feature-tracking method, can accurately assess regional myocardial function at the endocardial level and is a promising clinical tool for the simultaneous quantification of regional and global myocardial function.

  3. FLASH proton density imaging for improved surface coil intensity correction in quantitative and semi-quantitative SSFP perfusion cardiovascular magnetic resonance.

    PubMed

    Nielles-Vallespin, Sonia; Kellman, Peter; Hsu, Li-Yueh; Arai, Andrew E

    2015-02-17

    A low excitation flip angle (α < 10°) steady-state free precession (SSFP) proton-density (PD) reference scan is often used to estimate the B1-field inhomogeneity for surface coil intensity correction (SCIC) of the saturation-recovery (SR) prepared high flip angle (α = 40-50°) SSFP myocardial perfusion images. The different SSFP off-resonance response for these two flip angles might lead to suboptimal SCIC when there is a spatial variation in the background B0-field. The low flip angle SSFP-PD frames are more prone to parallel imaging banding artifacts in the presence of off-resonance. The use of FLASH-PD frames would eliminate both the banding artifacts and the uneven frequency response in the presence of off-resonance in the surface coil inhomogeneity estimate and improve homogeneity of semi-quantitative and quantitative perfusion measurements. B0-field maps, SSFP and FLASH-PD frames were acquired in 10 healthy volunteers to analyze the SSFP off-resonance response. Furthermore, perfusion scans preceded by both FLASH and SSFP-PD frames from 10 patients with no myocardial infarction were analyzed semi-quantitatively and quantitatively (rest n = 10 and stress n = 1). Intra-subject myocardial blood flow (MBF) coefficient of variation (CoV) over the whole left ventricle (LV), as well as intra-subject peak contrast (CE) and upslope (SLP) standard deviation (SD) over 6 LV sectors were investigated. In the 6 out of 10 cases where artifacts were apparent in the LV ROI of the SSFP-PD images, all three variability metrics were statistically significantly lower when using the FLASH-PD frames as input for the SCIC (CoVMBF-FLASH = 0.3 ± 0.1, CoVMBF-SSFP = 0.4 ± 0.1, p = 0.03; SDCE-FLASH = 10 ± 2, SDCE-SSFP = 32 ± 7, p = 0.01; SDSLP-FLASH = 0.02 ± 0.01, SDSLP-SSFP = 0.06 ± 0.02, p = 0.03). Example rest and stress data sets from the patient pool demonstrate that the low flip angle SSFP protocol

  4. Myocardial Bridge

    MedlinePlus

    ... Center > Myocardial Bridge Menu Topics Topics FAQs Myocardial Bridge En español Your heart is made of muscle, ... surface of the heart. What is a myocardial bridge? A myocardial bridge is a band of heart ...

  5. Myocardial diseases of animals.

    PubMed Central

    Van Vleet, J. F.; Ferrans, V. J.

    1986-01-01

    seen less frequently; and, in contrast to man, coronary artery disease and myocardial ischemia are rather infrequent in animals. The present review shows clearly that the spectrum of myocardial diseases in animals is enlarging and that many newly recognized diseases are emerging and assuming considerable importance. For example, various heritable cardiomyopathies have recently been described in the KK mouse, cattle, and rats. Increasingly recognized myocardial diseases include cardiomyopathies in cats, dogs, and birds; anthracycline cardiotoxicity; furazolidone cardiotoxicity; ionophore cardiotoxicity; myocardial damage associated with central nervous system injuries; myocardial hypertrophy in Images Figure 1 Figure 2 Figure 45 Figure 46 Figure 47 Figure 48 Figure 61 Figure 62 Figure 63 Figure 64 Figure 79 Figure 75 Figure 76 Figure 77 Figure 78 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 & 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Figure 36 Figure 37 Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 49 Figure 50 Figure 51 Figure 52 Figure 53 Figure 54 Figure 55 Figure 56 Figure 57 Figure 58 Figure 59 Figure 60 Figure 65 Figure 66 Figure 67 Figure 68 Figure 69 Figure 70 Figure 71 & 72 Figure 73 & 74 PMID:3524254

  6. Pneumococcal vaccination and risk of myocardial infarction

    PubMed Central

    Lamontagne, François; Garant, Marie-Pierre; Carvalho, Jean-Christophe; Lanthier, Luc; Smieja, Marek; Pilon, Danielle

    2008-01-01

    Background Based on promising results from laboratory studies, we hypothesized that pneumococcal vaccination would protect patients from myocardial infarction. Methods We conducted a hospital-based case–control study that included patients considered to be at risk of myocardial infarction. We used health databases to obtain hospital diagnoses and vaccination status. We compared patients who had been admitted for treatment of myocardial infarction with patients admitted to a surgical department in the same hospital for a reason other than myocardial infarction between 1997 and 2003. Results We found a total of 43 209 patients who were at risk; of these, we matched 999 cases and 3996 controls according to age, sex and year of hospital admission. Cases were less likely than controls to have been vaccinated (adjusted odds ratio [OR] 0.53, 95% confidence interval [CI] 0.40–0.70). This putative protective role of the vaccine was not observed for patients who had received the vaccine up to 1 year before myocardial infarction (adjusted OR 0.85, 95% CI 0.54–1.33). In contrast, if vaccination had occurred 2 years or more before the hospital admission, the association was stronger (adjusted OR 0.33, 95% CI 0.20–0.46). Interpretation Pneumococcal vaccination was associated with a decrease of more than 50% in the rate myocardial infarction 2 years after exposure. If confirmed, this association should generate interest in exploring the putative mechanisms and may offer another reason to promote pneumococcal vaccination. PMID:18838452

  7. Dose reduction assessment in dynamic CT myocardial perfusion imaging in a porcine balloon-induced-ischemia model

    NASA Astrophysics Data System (ADS)

    Fahmi, Rachid; Eck, Brendan L.; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.

    2014-03-01

    We investigated the use of an advanced hybrid iterative reconstruction (IR) technique (iDose4, Philips Health- care) for low dose dynamic myocardial CT perfusion (CTP) imaging. A porcine model was created to mimic coronary stenosis through partial occlusion of the left anterior descending (LAD) artery with a balloon catheter. The severity of LAD occlusion was adjusted with FFR measurements. Dynamic CT images were acquired at end-systole (45% R-R) using a multi-detector CT (MDCT) scanner. Various corrections were applied to the acquired scans to reduce motion and imaging artifacts. Absolute myocardial blood flow (MBF) was computed with a deconvolution-based approach using singular value decomposition (SVD). We compared a high and a low dose radiation protocol corresponding to two different tube-voltage/tube-current combinations (80kV p/100mAs and 120kV p/150mAs). The corresponding radiation doses for these protocols are 7.8mSv and 34.3mSV , respectively. The images were reconstructed using conventional FBP and three noise-reduction strengths of the IR method, iDose. Flow contrast-to-noise ratio, CNRf, as obtained from MBF maps, was used to quantitatively evaluate the effect of reconstruction on contrast between normal and ischemic myocardial tissue. Preliminary results showed that the use of iDose to reconstruct low dose images provide better or comparable CNRf to that of high dose images reconstructed with FBP, suggesting significant dose savings. CNRf was improved with the three used levels of iDose compared to FBP for both protocols. When using the entire 4D dynamic sequence for MBF computation, a 77% dose reduction was achieved, while considering only half the scans (i.e., every other heart cycle) allowed even further dose reduction while maintaining relatively higher CNRf.

  8. Myocardial Rupture in Acute Myocardial Infarction: Mechanistic Explanation Based on the Ventricular Myocardial Band Hypothesis.

    PubMed

    Vargas-Barron, Jesús; Antunez-Montes, Omar-Yassef; Roldán, Francisco-Javier; Aranda-Frausto, Alberto; González-Pacheco, Hector; Romero-Cardenas, Ángel; Zabalgoitia, Miguel

    2015-01-01

    Torrent-Guasp explains the structure of the ventricular myocardium by means of a helical muscular band. Our primary purpose was to demonstrate the utility of echocardiography in human and porcine hearts in identifying the segments of the myocardial band. The second purpose was to evaluate the relation of the topographic distribution of the myocardial band with some post-myocardial infarction ruptures. Five porcine and one human heart without cardiopathy were dissected and the ventricular myocardial segments were color-coded for illustration and reconstruction purposes. These segments were then correlated to the conventional echocardiographic images. Afterwards in three cases with post-myocardial infarction rupture, a correlation of the topographic location of the rupture with the distribution of the ventricular band was made. The human ventricular band does not show any differences from the porcine band, which confirms the similarities of the four segments; these segments could be identified by echocardiography. In three cases with myocardial rupture, a correlation of the intra-myocardial dissection with the distribution of the ventricular band was observed. Echocardiography is helpful in identifying the myocardial band segments as well as the correlation with the topographic distribution of some myocardial post-infarction ruptures.

  9. Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays

    DOE PAGES

    Giera, Brian; Bukosky, Scott; Lee, Elaine; ...

    2018-01-23

    Here, quantitative color analysis is performed on videos of high contrast, low power reversible electrophoretic deposition (EPD)-based displays operated under different applied voltages. This analysis is coded in an open-source software, relies on a color differentiation metric, ΔE * 00, derived from digital video, and provides an intuitive relationship between the operating conditions of the devices and their performance. Time-dependent ΔE * 00 color analysis reveals color relaxation behavior, recoverability for different voltage sequences, and operating conditions that can lead to optimal performance.

  10. Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giera, Brian; Bukosky, Scott; Lee, Elaine

    Here, quantitative color analysis is performed on videos of high contrast, low power reversible electrophoretic deposition (EPD)-based displays operated under different applied voltages. This analysis is coded in an open-source software, relies on a color differentiation metric, ΔE * 00, derived from digital video, and provides an intuitive relationship between the operating conditions of the devices and their performance. Time-dependent ΔE * 00 color analysis reveals color relaxation behavior, recoverability for different voltage sequences, and operating conditions that can lead to optimal performance.

  11. Contrast-enhanced sonography for quantitative assessment of portal hypertension in patients with liver cirrhosis.

    PubMed

    Qu, En-Ze; Zhang, Ying-Cai; Li, Zhi-Yan; Liu, Yang; Wang, Jin-Rui

    2014-11-01

    The clinical utility of contrast-enhanced sonography in portal hypertension remains unclear. We explored the feasibility of using contrast-enhanced sonography for noninvasive assessment of portal venous pressure. Twenty healthy individuals (control group; 9 men; mean age, 46.4 years) and 18 patients with portal hypertension (15 men; mean age, 46.2 years) were enrolled in this study. The portal hypertension group included patients who underwent splenectomy and pericardial blood vessel disarticulation at our hospital from October 2010 to March 2011. One week before surgery, patients with portal hypertension underwent preoperative liver contrast-enhanced sonography. Two-dimensional, Doppler, and contrast-enhanced sonographic parameters were compared between the groups. Portal venous pressure was measured intraoperatively by portal vein puncture in the portal hypertension group, and its relationship with the other parameters was analyzed. The 2-dimensional, Doppler, and contrast-enhanced sonographic parameters differed between the groups (P < .01). Portal venous pressure was inversely correlated with the area under the portal vein/hepatic artery time-intensity curve ratio (Qp/Qa), portal vein/hepatic artery strength ratio (Ip/Ia), and portal vein/hepatic artery wash-in perfusion slope ratio (βp/βa), with correlation coefficients of -0.701, -0.625, and -0.494, respectively. Measurement of the liver contrast-enhanced sonographic parameters Qp/Qa, Ip/Ia, and βp/βa could be used as a new quantitative method for noninvasively assessing portal venous pressure. © 2014 by the American Institute of Ultrasound in Medicine.

  12. Current trend of acute myocardial infarction in Korea (from the Korea Acute Myocardial Infarction Registry from 2006 to 2013).

    PubMed

    Kook, Hyun Yi; Jeong, Myung Ho; Oh, Sangeun; Yoo, Sung-Hee; Kim, Eun Jung; Ahn, Youngkeun; Kim, Ju Han; Chai, Leem Soon; Kim, Young Jo; Kim, Chong Jin; Chan Cho, Myeong

    2014-12-15

    Although the incidence of acute myocardial infarction (AMI) in Korea has been rapidly changed because of westernization of diet, lifestyle, and aging of the population, the recent trend of the myocardial infarction have not been reported by classification. We investigated recent trends in the incidence and mortality associated with the 2 major types of AMI. We reviewed 39,978 patients registered in the Korea Acute Myocardial Infarction Registry for either ST-segment elevation acute myocardial infarction (STEMI) or non-ST-segment elevation acute myocardial infarction (NSTEMI) from 2006 to 2013. When the rate for AMI were investigated according to each year, the incidence rates of STEMI decreased markedly from 60.5% in 2006 to 48.1% in 2013 (p <0.001). In contrast, a gradual increase in the incidence rates of NSTEMI was observed from 39.5% in 2006 to 51.9% in 2013 (p <0.001). As risk factors, hypertension, diabetes mellitus, and dyslipidemia were much more common in patients with NSTEMI than STEMI. Among medical treatments, the use of β blockers, angiotensin receptor blocker, and statin were increased from 2006 to 2013 in patients with STEMI and NSTEMI. Patients with STEMI and NSTEMI were more inclined to be increasingly treated by invasive treatments with percutaneous coronary intervention. In conclusion, this study demonstrated that the trend of myocardial infarction has been changed rapidly in the aspect of risk factors, ratio of STEMI versus NSTEMI, and therapeutic strategies during the recent 8 years in Korea. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Accelerated dual-contrast first-pass perfusion MRI of the mouse heart: development and application to diet-induced obese mice.

    PubMed

    Naresh, Nivedita K; Chen, Xiao; Roy, Rene J; Antkowiak, Patrick F; Annex, Brian H; Epstein, Frederick H

    2015-03-01

    Gene-modified mice may be used to elucidate molecular mechanisms underlying abnormal myocardial blow flow (MBF). We sought to develop a quantitative myocardial perfusion imaging technique for mice and to test the hypothesis that myocardial perfusion reserve (MPR) is reduced in a mouse model of diet-induced obesity (DIO). A dual-contrast saturation-recovery sequence with ky -t undersampling and a motion-compensated compressed sensing reconstruction algorithm was developed for first-pass MRI on a small-bore 7 Tesla system. Control mice were imaged at rest and with the vasodilators ATL313 and Regadenoson (n = 6 each). In addition, we imaged mice fed a high-fat diet (HFD) for 24 weeks. In control mice, MBF was 5.7 ± 0.8 mL/g/min at rest and it increased to 11.8 ± 0.6 mL/g/min with ATL313 and to 10.4 ± 0.3 mL/g/min with Regadenoson. In HFD mice, we detected normal resting MBF (5.6 ± 0.4 versus 5.0 ± 0.3 on control diet), low MBF at stress (7.7 ± 0.4 versus 10.4 ± 0.3 on control diet, P < 0.05), and reduced MPR (1.4 ± 0.2 versus 2.0 ± 0.3 on control diet, P < 0.05). Accelerated dual-contrast first-pass MRI with motion-compensated compressed sensing provides spatiotemporal resolution suitable for measuring MBF in free-breathing mice, and detected reduced MPR in DIO mice. These techniques may be used to study molecular mechanisms that underlie abnormal myocardial perfusion. © 2014 Wiley Periodicals, Inc.

  14. Quantitative analysis applied to contrast medium extravasation by using the computed-tomography number within the region of interest

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kim, Moon-Jib; Goo, Eun-Hoe; Kim, Sun-Ju; Kim, Kwang; Kwak, Byung-Joon

    2014-02-01

    The present study was carried out to present a method to analyze extravasation quantitatively by measuring the computed tomography (CT) number after determining the region of interest (ROI) in the CT images obtained from patients suspected of extravasation induced by contrast medium auto-injection. To achieve this, we divided the study subjects into a group of patients who incurred extravasation and a group of patients who underwent routine scans without incurring extravasation. The CT numbers at IV sites were obtained as reference values, and CT numbers at extravasation sites and hepatic portal veins, respectively, were obtained as relative values. Thereupon, the predicted time for extravasation ( T EP ) and the predicted ratio for extravasation ( R EP ) of an extravasation site were obtained and analyzed quantitatively. In the case of extravasation induced by a dual auto-injector, the values of the CT numbers were confirmed to be lower and the extravasation site to be enlarged when compared to the extravasation induced by a single autoinjector. This is because the physiological saline introduced after the injection of the contrast agent diluted the concentration of the extravasated contrast agent. Additionally, the T EP caused by the auto-injector was about 40 seconds, and we could perform a precise quantitative assessment of the site suspected of extravasation. In conclusion, the dual auto-injection method, despite its advantage of reducing the volume of contrast agent and improving the quality of images for patients with good vascular integrity, was judged to be likely to increase the risk of extravasation and aggravate outcomes for patients with poor vascular integrity by enlarging extravasation sites.

  15. Quantitative evaluation of contrast agent uptake in standard fat-suppressed dynamic contrast-enhanced MRI examinations of the breast.

    PubMed

    Kousi, Evanthia; Smith, Joely; Ledger, Araminta E; Scurr, Erica; Allen, Steven; Wilson, Robin M; O'Flynn, Elizabeth; Pope, Romney J E; Leach, Martin O; Schmidt, Maria A

    2018-01-01

    To propose a method to quantify T 1 and contrast agent uptake in breast dynamic contrast-enhanced (DCE) examinations undertaken with standard clinical fat-suppressed MRI sequences and to demonstrate the proposed approach by comparing the enhancement characteristics of lobular and ductal carcinomas. A standard fat-suppressed DCE of the breast was performed at 1.5 T (Siemens Aera), followed by the acquisition of a proton density (PD)-weighted sequence, also fat suppressed. Both sequences were characterized with test objects (T 1 ranging from 30 ms to 2,400 ms) and calibration curves were obtained to enable T 1 calculation. The reproducibility and accuracy of the calibration curves were also investigated. Healthy volunteers and patients were scanned with Ethics Committee approval. The effect of B 0 field inhomogeneity was assessed in test objects and healthy volunteers. The T 1 of breast tumors was calculated at different time points (pre-, peak-, and post-contrast agent administration) for 20 patients, pre-treatment (10 lobular and 10 ductal carcinomas) and the two cancer types were compared (Wilcoxon rank-sum test). The calibration curves proved to be highly reproducible (coefficient of variation under 10%). T 1 measurements were affected by B 0 field inhomogeneity, but frequency shifts below 50 Hz introduced only 3% change to fat-suppressed T 1 measurements of breast parenchyma in volunteers. The values of T 1 measured pre-, peak-, and post-contrast agent administration demonstrated that the dynamic range of the DCE sequence was correct, that is, image intensity is approximately directly proportional to 1/T 1 for that range. Significant differences were identified in the width of the distributions of the post-contrast T 1 values between lobular and ductal carcinomas (P < 0.05); lobular carcinomas demonstrated a wider range of post-contrast T 1 values, potentially related to their infiltrative growth pattern. This work has demonstrated the feasibility of fat

  16. Quantitative tracking of tumor cells in phase-contrast microscopy exploiting halo artifact pattern

    NASA Astrophysics Data System (ADS)

    Kang, Mi-Sun; Song, Soo-Min; Lee, Hana; Kim, Myoung-Hee

    2012-03-01

    Tumor cell morphology is closely related to its invasiveness characteristics and migratory behaviors. An invasive tumor cell has a highly irregular shape, whereas a spherical cell is non-metastatic. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use phase-contrast microscopy to analyze single cell morphology and to monitor its change because it enables observation of long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring, among others. Thus, we first applied a local filter to compensate for non-uniform illumination. Then, we used intensity distribution information to detect the cell boundary. In phase-contrast microscopy images, the cell normally appears as a dark region surrounded by a bright halo. As the halo artifact around the cell body is minimal and has an asymmetric diffusion pattern, we calculated the cross-sectional plane that intersected the center of each cell and was orthogonal to the first principal axis. Then, we extracted the dark cell region by level set. However, a dense population of cultured cells still rendered single-cell analysis difficult. Finally, we measured roundness and size to classify tumor cells into malignant and benign groups. We validated segmentation accuracy by comparing our findings with manually obtained results.

  17. Quantitative analysis of enhanced malignant and benign lesions on contrast-enhanced spectral mammography.

    PubMed

    Deng, Chih-Ying; Juan, Yu-Hsiang; Cheung, Yun-Chung; Lin, Yu-Ching; Lo, Yung-Feng; Lin, GiGin; Chen, Shin-Cheh; Ng, Shu-Hang

    2018-02-27

    To retrospectively analyze the quantitative measurement and kinetic enhancement among pathologically proven benign and malignant lesions using contrast-enhanced spectral mammography (CESM). We investigated the differences in enhancement between 44 benign and 108 malignant breast lesions in CESM, quantifying the extent of enhancements and the relative enhancements between early (between 2-3 min after contrast medium injection) and late (3-6 min) phases. The enhancement was statistically stronger in malignancies compared to benign lesions, with good performance by the receiver operating characteristic curve [0.877, 95% confidence interval (0.813-0.941)]. Using optimal cut-off value at 220.94 according to Youden index, the sensitivity was 75.9%, specificity 88.6%, positive likelihood ratio 6.681, negative likelihood ratio 0.272 and accuracy 82.3%. The relative enhancement patterns of benign and malignant lesions, showing 29.92 vs 73.08% in the elevated pattern, 7.14 vs 92.86% in the steady pattern, 5.71 vs 94.29% in the depressed pattern, and 80.00 vs 20.00% in non-enhanced lesions (p < 0.0001), respectively. Despite variations in the degree of tumour angiogenesis, quantitative analysis of the breast lesions on CESM documented the malignancies had distinctive stronger enhancement and depressed relative enhancement patterns than benign lesions. Advances in knowledge: To our knowledge, this is the first study evaluating the feasibility of quantifying lesion enhancement on CESM. The quantities of enhancement were informative for assessing breast lesions in which the malignancies had stronger enhancement and more relative depressed enhancement than the benign lesions.

  18. Quantitative assessment of tumor angiogenesis using real-time motion-compensated contrast-enhanced ultrasound imaging

    PubMed Central

    Pysz, Marybeth A.; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K.

    2015-01-01

    Purpose To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. Materials and methods The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. Results MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Conclusion Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts. PMID:22535383

  19. Quantitative assessment of tumor angiogenesis using real-time motion-compensated contrast-enhanced ultrasound imaging.

    PubMed

    Pysz, Marybeth A; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K

    2012-09-01

    To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts.

  20. Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination.

    PubMed

    Lin, Yu-Zi; Huang, Kuang-Yuh; Luo, Yuan

    2018-06-15

    Half-circle illumination-based differential phase contrast (DPC) microscopy has been utilized to recover phase images through a pair of images along multiple axes. Recently, the half-circle based DPC using 12-axis measurements significantly provides a circularly symmetric phase transfer function to improve accuracy for more stable phase recovery. Instead of using half-circle-based DPC, we propose a new scheme of DPC under radially asymmetric illumination to achieve circularly symmetric phase transfer function and enhance the accuracy of phase recovery in a more stable and efficient fashion. We present the design, implementation, and experimental image data demonstrating the ability of our method to obtain quantitative phase images of microspheres, as well as live fibroblast cell samples.

  1. Role of CD11b+Gr-1+ myeloid cells in AGEs-induced myocardial injury in a mice model of acute myocardial infarction.

    PubMed

    Yao, Tongqing; Lu, Wenbin; Zhu, Jian; Jin, Xian; Ma, Genshan; Wang, Yuepeng; Meng, Shu; Zhang, Yachen; Li, Yigang; Shen, Chengxing

    2015-01-01

    Polymorph neutrophils are the predominant inflammatory cells and play a crucial role on the pathogenesis of myocardial injury at the early stage of acute myocardial infarction (AMI). However, the precursors and the differentiation of neutrophils are not fully understood. Here we explored the role of CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) on myocardial injury in the absence and presence of advanced glycation end-products (AGEs) in a mice model of AMI. Male C57BL/6J mice were selected. Fluorescent actived cell sortor (FACS) data demonstrated significantly increased CD11b+Gr-1+ MDSCs both in peripheral blood circulation and in the ischemic myocardium at 24 hours post AMI. Quantitative-real-time PCR results also revealed significantly upregulated CD11b and Ly6G mRNA expression in the ischemic myocardium. AGEs treatment further aggravated these changes in AMI mice but not in sham mice. Moreover, AGEs treatment also significantly increased infarction size and enhanced cardiomyocyte apoptosis. The mRNA expression of pro-inflammatory cytokine IL-6 and iNOS2 was also significantly increased in AMI + AGEs group compared to AMI group. These data suggest enhanced infiltration of MDSCs by AGEs contributes to aggravated myocardial injury in AMI mice, which might be one of the mechanisms responsible for severer myocardial injury in AMI patients complicating diabetes.

  2. Radionuclide Myocardial Perfusion Imaging for the Evaluation of Patients With Known or Suspected Coronary Artery Disease in the Era of Multimodality Cardiovascular Imaging

    PubMed Central

    Taqueti, Viviany R.; Di Carli, Marcelo F.

    2018-01-01

    Over the last several decades, radionuclide myocardial perfusion imaging (MPI) with single photon emission tomography and positron emission tomography has been a mainstay for the evaluation of patients with known or suspected coronary artery disease (CAD). More recently, technical advances in separate and complementary imaging modalities including coronary computed tomography angiography, computed tomography perfusion, cardiac magnetic resonance imaging, and contrast stress echocardiography have expanded the toolbox of diagnostic testing for cardiac patients. While the growth of available technologies has heralded an exciting era of multimodality cardiovascular imaging, coordinated and dispassionate utilization of these techniques is needed to implement the right test for the right patient at the right time, a promise of “precision medicine.” In this article, we review the maturing role of MPI in the current era of multimodality cardiovascular imaging, particularly in the context of recent advances in myocardial blood flow quantitation, and as applied to the evaluation of patients with known or suspected CAD. PMID:25770849

  3. Quantitative electron density characterization of soft tissue substitute plastic materials using grating-based x-ray phase-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarapata, A.; Chabior, M.; Zanette, I.

    2014-10-15

    Many scientific research areas rely on accurate electron density characterization of various materials. For instance in X-ray optics and radiation therapy, there is a need for a fast and reliable technique to quantitatively characterize samples for electron density. We present how a precise measurement of electron density can be performed using an X-ray phase-contrast grating interferometer in a radiographic mode of a homogenous sample in a controlled geometry. A batch of various plastic materials was characterized quantitatively and compared with calculated results. We found that the measured electron densities closely match theoretical values. The technique yields comparable results between amore » monochromatic and a polychromatic X-ray source. Measured electron densities can be further used to design dedicated X-ray phase contrast phantoms and the additional information on small angle scattering should be taken into account in order to exclude unsuitable materials.« less

  4. [Myocardial perfusion imaging by digital subtraction angiography].

    PubMed

    Kadowaki, H; Ishikawa, K; Ogai, T; Katori, R

    1986-03-01

    Several methods of digital subtraction angiography (DSA) were compared to determine which could better visualize regional myocardial perfusion using coronary angiography in seven patients with myocardial infarction, two with angina pectoris and five with normal coronary arteries. Satisfactory DSA was judged to be achieved if the shape of the heart on the mask film was identical to that on the live film and if both films were exactly superimposed. To obtain an identical mask film in the shape of each live film, both films were selected from the following three phases of the cardiac cycle; at the R wave of the electrocardiogram, 100 msec before the R wave, and 200 msec before the R wave. The last two were superior for obtaining mask and live films which were similar in shape, because the cardiac motion in these phases was relatively small. Using these mask and live films, DSA was performed either with the continuous image mode (CI mode) or the time interval difference mode (TID mode). The overall perfusion of contrast medium through the artery to the vein was adequately visualized using the CI mode. Passage of contrast medium through the artery, capillary and vein was visualized at each phase using TID mode. Subtracted images were displayed and photographed, and the density of the contrast medium was adequate to display contour lines as in a relief map. Using this DSA, it was found that regional perfusion of the contrast medium was not always uniform in normal subjects, depending on the typography of the coronary artery.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

    DOE PAGES

    Appel, Alyssa A.; Larson, Jeffrey C.; Jiang, Bin; ...

    2015-10-20

    Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript we describe results using XPC to image a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted inmore » a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. In quantitative results, there were no differences between XPC and the gold-standard histological measurements. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response.« less

  6. Comparative study of contrast-enhanced ultrasound qualitative and quantitative analysis for identifying benign and malignant breast tumor lumps.

    PubMed

    Liu, Jian; Gao, Yun-Hua; Li, Ding-Dong; Gao, Yan-Chun; Hou, Ling-Mi; Xie, Ting

    2014-01-01

    To compare the value of contrast-enhanced ultrasound (CEUS) qualitative and quantitative analysis in the identification of breast tumor lumps. Qualitative and quantitative indicators of CEUS for 73 cases of breast tumor lumps were retrospectively analyzed by univariate and multivariate approaches. Logistic regression was applied and ROC curves were drawn for evaluation and comparison. The CEUS qualitative indicator-generated regression equation contained three indicators, namely enhanced homogeneity, diameter line expansion and peak intensity grading, which demonstrated prediction accuracy for benign and malignant breast tumor lumps of 91.8%; the quantitative indicator-generated regression equation only contained one indicator, namely the relative peak intensity, and its prediction accuracy was 61.5%. The corresponding areas under the ROC curve for qualitative and quantitative analyses were 91.3% and 75.7%, respectively, which exhibited a statistically significant difference by the Z test (P<0.05). The ability of CEUS qualitative analysis to identify breast tumor lumps is better than with quantitative analysis.

  7. Erythropoietin alleviates post-resuscitation myocardial dysfunction in rats potentially through increasing the expression of angiotensin II receptor type 2 in myocardial tissues

    PubMed Central

    Zhou, Hourong; Huang, Jia; Zhu, Li; Cao, Yu

    2018-01-01

    Activation of renin-angiotensin system (RAS) is one of the pathological mechanisms associated with myocardial ischemia-reperfusion injury following resuscitation. The present study aimed to determine whether erythropoietin (EPO) improves post-resuscitation myocardial dysfunction and how it affects the renin-angiotensin system. Sprague-Dawley rats were randomly divided into sham, vehicle, epinephrine (EP), EPO and EP + EPO groups. Excluding the sham group, all groups underwent cardiopulmonary resuscitation (CPR) 4 min after asphyxia-induced cardiac arrest (CA). EP and/or EPO was administrated by intravenous injection when CPR began. The results demonstrated that the vehicle group exhibited lower mean arterial pressure, left ventricular systolic pressure, maximal ascending rate of left ventricular pressure during left ventricular isovolumic contraction and maximal descending rate of left ventricular pressure during left ventricular isovolumic relaxation (+LVdP/dt max and -LVdP/dt max, respectively), and higher left ventricular end-diastolic pressure, compared with the sham group following return of spontaneous circulation (ROSC). Few significant differences were observed concerning the myocardial function between the vehicle and EP groups; however, compared with the vehicle group, EPO reversed myocardial function indices following ROSC, excluding-LVdP/dt max. Serum renin and angiotensin (Ang) II levels were measured by ELISA. The serum levels of renin and Ang II were significantly increased in the vehicle group compared with the sham group, which was also observed for the myocardial expression of renin and Ang II receptor type 1 (AT1R), as determined by reverse transcription-quantitative polymerase chain reaction and western blotting. EPO alone did not significantly reduce the high serum levels of renin and Ang II post-resuscitation, but changed the protein levels of renin and AT1R expression in myocardial tissues. However, EPO enhanced the myocardial expression of

  8. Assessment of dyssynchronous wall motion during acute myocardial ischemia using velocity vector imaging.

    PubMed

    Masuda, Kasumi; Asanuma, Toshihiko; Taniguchi, Asuka; Uranishi, Ayumi; Ishikura, Fuminobu; Beppu, Shintaro

    2008-03-01

    The purpose of this study was to investigate the diagnostic value of velocity vector imaging (VVI) for detecting acute myocardial ischemia and whether VVI can accurately demonstrate the spatial extent of ischemic risk area. Using a tracking algorithm, VVI can display velocity vectors of regional wall motion overlaid onto the B-mode image and allows the quantitative assessment of myocardial mechanics. However, its efficacy for diagnosing myocardial ischemia has not been evaluated. In 18 dogs with flow-limiting stenosis and/or total occlusion of the coronary artery, peak systolic radial velocity (V(SYS)), radial velocity at mitral valve opening (V(MVO)), peak systolic radial strain, and the percent change in wall thickening (%WT) were measured in the normal and risk areas and compared to those at baseline. Sensitivity and specificity for detecting the stenosis and occlusion were analyzed in each parameter. The area of inward velocity vectors at mitral valve opening (MVO) detected by VVI was compared to the risk area derived from real-time myocardial contrast echocardiography (MCE). Twelve image clips were randomly selected from the baseline, stenosis, and occlusions to determine the intra- and inter-observer agreement for the VVI parameters. The left circumflex coronary flow was reduced by 44.3 +/- 9.0% during stenosis and completely interrupted during occlusion. During coronary artery occlusion, inward motion at MVO was observed in the risk area. Percent WT, peak systolic radial strain, V(SYS), and V(MVO) changed significantly from values at baseline. During stenosis, %WT, peak systolic radial strain, and V(SYS) did not differ from those at baseline; however, V(MVO) was significantly increased (-0.12 +/- 0.60 cm/s vs. -0.96 +/- 0.55 cm/s, p = 0.015). Sensitivity and specificity of V(MVO) for detecting ischemia were superior to those of other parameters. The spatial extent of inward velocity vectors at MVO correlated well with that of the risk area derived from MCE

  9. Plant-based foods containing cell wall polysaccharides rich in specific active monosaccharides protect against myocardial injury in rat myocardial infarction models.

    PubMed

    Lim, Sun Ha; Kim, Yaesil; Yun, Ki Na; Kim, Jin Young; Jang, Jung-Hee; Han, Mee-Jung; Lee, Jongwon

    2016-12-08

    Many cohort studies have shown that consumption of diets containing a higher composition of foods derived from plants reduces mortality from coronary heart disease (CHD). Here, we examined the active components of a plant-based diet and the underlying mechanisms that reduce the risk of CHD using three rat models and a quantitative proteomics approach. In a short-term myocardial infarction (MI) model, intake of wheat extract (WE), the representative cardioprotectant identified by screening approximately 4,000 samples, reduced myocardial injury by inhibiting apoptosis, enhancing ATP production, and maintaining protein homeostasis. In long-term post-MI models, this myocardial protection resulted in ameliorating adverse left-ventricular remodelling, which is a predictor of heart failure. Among the wheat components, arabinose and xylose were identified as active components responsible for the observed efficacy of WE, which was administered via ingestion and tail-vein injections. Finally, the food components of plant-based diets that contained cell wall polysaccharides rich in arabinose, xylose, and possibly fucose were found to confer protection against myocardial injury. These results show for the first time that specific monosaccharides found in the cell wall polysaccharides in plant-based diets can act as active ingredients that reduce CHD by inhibiting postocclusion steps, including MI and heart failure.

  10. Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study.

    PubMed

    Nakajima, Kenichi; Kudo, Takashi; Nakata, Tomoaki; Kiso, Keisuke; Kasai, Tokuo; Taniguchi, Yasuyo; Matsuo, Shinro; Momose, Mitsuru; Nakagawa, Masayasu; Sarai, Masayoshi; Hida, Satoshi; Tanaka, Hirokazu; Yokoyama, Kunihiko; Okuda, Koichi; Edenbrandt, Lars

    2017-12-01

    Artificial neural networks (ANN) might help to diagnose coronary artery disease. This study aimed to determine whether the diagnostic accuracy of an ANN-based diagnostic system and conventional quantitation are comparable. The ANN was trained to classify potentially abnormal areas as true or false based on the nuclear cardiology expert interpretation of 1001 gated stress/rest 99m Tc-MIBI images at 12 hospitals. The diagnostic accuracy of the ANN was compared with 364 expert interpretations that served as the gold standard of abnormality for the validation study. Conventional summed stress/rest/difference scores (SSS/SRS/SDS) were calculated and compared with receiver operating characteristics (ROC) analysis. The ANN generated a better area under the ROC curves (AUC) than SSS (0.92 vs. 0.82, p < 0.0001), indicating better identification of stress defects. The ANN also generated a better AUC than SDS (0.90 vs. 0.75, p < 0.0001) for stress-induced ischemia. The AUC for patients with old myocardial infarction based on rest defects was 0.97 (0.91 for SRS, p = 0.0061), and that for patients with and without a history of revascularization based on stress defects was 0.94 and 0.90 (p = 0.0055 and p < 0.0001 vs. SSS, respectively). The SSS/SRS/SDS steeply increased when ANN values (probability of abnormality) were >0.80. The ANN was diagnostically accurate in various clinical settings, including that of patients with previous myocardial infarction and coronary revascularization. The ANN could help to diagnose coronary artery disease.

  11. Comparison of semi-quantitative and quantitative dynamic contrast-enhanced MRI evaluations of vertebral marrow perfusion in a rat osteoporosis model.

    PubMed

    Zhu, Jingqi; Xiong, Zuogang; Zhang, Jiulong; Qiu, Yuyou; Hua, Ting; Tang, Guangyu

    2017-11-14

    This study aims to investigate the technical feasibility of semi-quantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of longitudinal changes of marrow perfusion in a rat osteoporosis model, using bone mineral density (BMD) measured by micro-computed tomography (micro-CT) and histopathology as the gold standards. Fifty rats were randomly assigned to the control group (n=25) and ovariectomy (OVX) group whose bilateral ovaries were excised (n=25). Semi-quantitative and quantitative DCE-MRI, micro-CT, and histopathological examinations were performed on lumbar vertebrae at baseline and 3, 6, 9, and 12 weeks after operation. The differences between the two groups in terms of semi-quantitative DCE-MRI parameter (maximum enhancement, E max ), quantitative DCE-MRI parameters (volume transfer constant, K trans ; interstitial volume, V e ; and efflux rate constant, K ep ), micro-CT parameter (BMD), and histopathological parameter (microvessel density, MVD) were compared at each of the time points using an independent-sample t test. The differences in these parameters between baseline and other time points in each group were assessed via Bonferroni's multiple comparison test. A Pearson correlation analysis was applied to assess the relationships between DCE-MRI, micro-CT, and histopathological parameters. In the OVX group, the E max values decreased significantly compared with those of the control group at weeks 6 and 9 (p=0.003 and 0.004, respectively). The K trans values decreased significantly compared with those of the control group from week 3 (p<0.05). However, the V e values decreased significantly only at week 9 (p=0.032), and no difference in the K ep was found between two groups. The BMD values of the OVX group decreased significantly compared with those of the control group from week 3 (p<0.05). Transmission electron microscopy showed tighter gaps between vascular endothelial cells with swollen mitochondria

  12. Diagnostic efficacy of contrast-enhanced sonography by combined qualitative and quantitative analysis in breast lesions: a comparative study with magnetic resonance imaging.

    PubMed

    Wang, Lin; Du, Jing; Li, Feng-Hua; Fang, Hua; Hua, Jia; Wan, Cai-Feng

    2013-10-01

    The purpose of this study was to evaluate the diagnostic efficacy of contrast-enhanced sonography for differentiation of breast lesions by combined qualitative and quantitative analyses in comparison to magnetic resonance imaging (MRI). Fifty-six patients with American College of Radiology Breast Imaging Reporting and Data System category 3 to 5 breast lesions on conventional sonography were evaluated by contrast-enhanced sonography and MRI. A comparative analysis of diagnostic results between contrast-enhanced sonography and MRI was conducted in light of the pathologic findings. Pathologic analysis showed 26 benign and 30 malignant lesions. The predominant enhancement patterns of the benign lesions on contrast-enhanced sonography were homogeneous, centrifugal, and isoenhancement or hypoenhancement, whereas the patterns of the malignant lesions were mainly heterogeneous, centripetal, and hyperenhancement. The detection rates for perfusion defects and peripheral radial vessels in the malignant group were much higher than those in the benign group (P < .05). As to quantitative analysis, statistically significant differences were found in peak and time-to-peak values between the groups (P < .05). With pathologic findings as the reference standard, the sensitivity, specificity, and accuracy of contrast-enhanced sonography and MRI were 90.0%, 92.3%, 91.1% and 96.7%, 88.5%, and 92.9%, respectively. The two methods had a concordant rate of 87.5% (49 of 56), and the concordance test gave a value of κ = 0.75, indicating that there was high concordance in breast lesion assessment between the two diagnostic modalities. Contrast-enhanced sonography provided typical enhancement patterns and valuable quantitative parameters, which showed good agreement with MRI in diagnostic efficacy and may potentially improve characterization of breast lesions.

  13. Contrast medium usage reduction in abdominal computed tomography by using high-iodinated concentration contrast medium

    NASA Astrophysics Data System (ADS)

    Suwannasri, A.; Kaewlai, R.; Asavaphatiboon, S.

    2016-03-01

    This study was to determine if administration of a low volume high-concentration iodinated contrast medium can preserve image quality in comparison with regular-concentration intravenous contrast medium in patient undergoing contrast-enhancement abdominal computed tomography (CT). Eighty-four patients were randomly divided into 3 groups of similar iodine delivery rate; A: 1.2 cc/kg of iomeprol-400, B: 1.0 cc/kg of iomeprol-400 and C: 1.5 cc/kg of ioversol-350. Contrast enhancement of the liver parenchyma, pancreas and aorta was quantitatively measured in Hounsfield units and qualitative assessed by a radiologist. T-test was used to evaluate contrast enhancement, and Chi-square test was used to evaluate qualitative image assessment, at significance level of 0.05 with 95% confidence intervals. There were no statistically significant differences in contrast enhancement of liver parenchyma and pancreas between group A and group C in both quantitative and qualitative analyses. Group C showed superior vascular enhancement to group A and B on quantitative analysis.

  14. Assessment of left ventricular myocardial deformation by cardiac MRI strain imaging reveals myocardial dysfunction in patients with primary cardiac tumors.

    PubMed

    Chen, Jing; Yang, Zhi-Gang; Xu, Hua-Yan; Shi, Ke; Guo, Ying-Kun

    2018-02-15

    To assess left ventricular myocardial deformation in patients with primary cardiac tumors. MRI was retrospectively performed in 61 patients, including 31 patients with primary cardiac tumors and 30 matched normal controls. Left ventricular strain and function parameters were then assessed by MRI-tissue tracking. Differences between the tumor group and controls, left and right heart tumor groups, left ventricular wall tumor and non-left ventricular wall tumor groups, and tumors with and without LV enlargement groups were assessed. Finally, the correlations among tumor diameter, myocardial strain, and LV function were analyzed. Left ventricular myocardial strain was milder for tumor group than for normal group. Peak circumferential strain (PCS) and its diastolic strain rate, longitudinal strains (PLS) and its diastolic strain rates, and peak radial systolic and diastolic velocities of the right heart tumor group were lower than those of the left heart tumor group (all p<0.050), but the peak radial systolic strain rate of the former was higher than that of the latter (p=0.017). The corresponding strains were lower in the left ventricular wall tumor groups than in the non-left ventricular wall tumor group (p<0.050). Peak radial systolic velocities were generally higher for tumors with LV enlargement than for tumors without LV enlargement (p<0.050). Peak radial strain, PCS, and PLS showed important correlations with the left ventricular ejection fraction (all p<0.050). MRI-tissue tracking is capable of quantitatively assessing left ventricular myocardial strain to reveal sub-clinical abnormalities of myocardial contractile function. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. [Effect of Shexiang Baoxin Pills on isoprenaline-induced myocardial cell hypertrophy and Cx43 expression].

    PubMed

    Tang, Fen; Jiang, Zhentao; Tan, Wenting; Long, Junrong; Liu, Shengquan; Chu, Chun

    2017-08-28

    To observe the effects of Shexiang Baoxin Pill (SBP) on isoprenaline (Iso)-induced changes in myocardial cell volume, shape, and connexin 43 (Cx43) expression.
 Methods: H9C2 myocardial cells were randomly divided into a control group, a Iso group and a Iso+SBP group. After 72 h of culture, the average surface area of H9C2 cells was measured under phase contrast microscope. Bicinchoninic acid (BCA) protein assay was carried out to determine the concentration of proteins. The survival rate of myocardial cells was measured by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, and the Cx43 expression was detected by Western blot.
 Results: The mean surface area and Cx43 concentration in Iso-treated myocardial cells were increased under the phase contrast microscope (P<0.05). Compared with the Iso group, the mean surface area was decreased, and the Cx43 concentration was reduced in the Iso+SBP group (both P<0.05). Compared with the control group, the Cx43 expression was obviously down-regulated in the H9C2 cells of the Iso group (P<0.05); while compared with the Iso group, the Cx43 expression was obviously up-regulated in the Iso+SBP group (P<0.05).
 Conclusion: Shexiang Baoxin Pills can prevent Iso-induced myocardial hypertrophy and down-regulate Cx43 expression.

  16. Comparison of the myocardial blood flow response to regadenoson and dipyridamole: a quantitative analysis in patients referred for clinical 82Rb myocardial perfusion PET.

    PubMed

    Goudarzi, Behnaz; Fukushima, Kenji; Bravo, Paco; Merrill, Jennifer; Bengel, Frank M

    2011-10-01

    Regadenoson is a novel selective A2A adenosine receptor agonist, which is administered as an intravenous bolus at a fixed dose. It is currently not clear if the absolute flow increase in response to this fixed dose is a function of distribution volume in individual patients or if it is generally comparable to the previous standard agents dipyridamole or adenosine, which are dosed based on weight. We used quantitative analysis of clinical 82Rb PET/CT studies to obtain further insights. A total of 104 subjects with normal clinical rest/stress 82Rb perfusion PET/CT were included in a retrospective analysis. To rule out confounding factors, none had evidence of prior cardiac disease, ischaemia or infarction, cardiomyopathy, diabetes with insulin use, calcium score>400, renal disease or other significant systemic disease. A group of 52 patients stressed with regadenoson were compared with a group of 52 patients stressed with dipyridamole before regadenoson became available. The groups were matched for clinical characteristics, risk factors and baseline haemodynamics. Myocardial blood flow (MBF) and myocardial flow reserve (MFR) were quantified using a previously validated retention model, after resampling of dynamic studies from list-mode 82Rb datasets. At rest, heart rate, blood pressure and MBF were comparable between the groups. Regadenoson resulted in a significantly higher heart rate (34±14 vs. 23±10 beats per minute increase from baseline; p<0.01) and rate-pressure product. Patients in the regadenoson group reported less severe symptoms and required less aminophylline. Stress MBF and MFR were not different between the groups (2.2±0.6 vs. 2.1±0.6 ml/min/g, p=0.39, and 2.9±0.8 vs. 2.8±0.7, p=0.31, respectively). In the regadenoson group, there was no correlation between stress flow or MFR and body weight or BMI. Despite its administration at a fixed dose, regadenoson results in an absolute increase in MBF which is comparable to that following dipyridamole

  17. [Myocardial perfusion scintigraphy - short form of the German guideline].

    PubMed

    Lindner, O; Burchert, W; Hacker, M; Schaefer, W; Schmidt, M; Schober, O; Schwaiger, M; vom Dahl, J; Zimmermann, R; Schäfers, M

    2013-01-01

    This guideline is a short summary of the guideline for myocardial perfusion scintigraphy published by the Association of the Scientific Medical Societies in Ger-many (AWMF). The purpose of this guideline is to provide practical assistance for indication and examination procedures as well as image analysis and to present the state-of-the-art of myocardial-perfusion-scintigraphy. After a short introduction on the fundamentals of imaging, precise and detailed information is given on the indications, patient preparation, stress testing, radiopharmaceuticals, examination protocols and techniques, radiation exposure, data reconstruction as well as information on visual and quantitative image analysis and interpretation. In addition possible pitfalls, artefacts and key elements of reporting are described.

  18. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    NASA Astrophysics Data System (ADS)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  19. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats.

    PubMed

    van den Brom, Charissa E; Boly, Chantal A; Bulte, Carolien S E; van den Akker, Rob F P; Kwekkeboom, Rick F J; Loer, Stephan A; Boer, Christa; Bouwman, R Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state.

  20. Myocardial Tissue Characterization by Magnetic Resonance Imaging

    PubMed Central

    Ferreira, Vanessa M.; Piechnik, Stefan K.; Robson, Matthew D.; Neubauer, Stefan

    2014-01-01

    Cardiac magnetic resonance (CMR) imaging is a well-established noninvasive imaging modality in clinical cardiology. Its unsurpassed accuracy in defining cardiac morphology and function and its ability to provide tissue characterization make it well suited for the study of patients with cardiac diseases. Late gadolinium enhancement was a major advancement in the development of tissue characterization techniques, allowing the unique ability of CMR to differentiate ischemic heart disease from nonischemic cardiomyopathies. Using T2-weighted techniques, areas of edema and inflammation can be identified in the myocardium. A new generation of myocardial mapping techniques are emerging, enabling direct quantitative assessment of myocardial tissue properties in absolute terms. This review will summarize recent developments involving T1-mapping and T2-mapping techniques and focus on the clinical applications and future potential of these evolving CMR methodologies. PMID:24576837

  1. Avoiding full corrections in dynamic SPECT images impacts the performance of SPECT myocardial blood flow quantitation.

    PubMed

    Wang, Lei; Wu, Dayong; Yang, Yong; Chen, Ing-Jou; Lin, Chih-Yuan; Hsu, Bailing; Fang, Wei; Tang, Yi-Da

    2017-08-01

    This study investigated the performance of SPECT myocardial blood flow (MBF) quantitation lacking full physical corrections (All Corr) in dynamic SPECT (DySPECT) images. Eleven healthy normal volunteers (HVT) and twenty-four patients with angiography-documented CAD were assessed. All Corr in 99m Tc-sestamibi DySPECT encompassed noise reduction (NR), resolution recovery (RR), and corrections for scatter (SC) and attenuation (AC), otherwise no correction (NC) or only partial corrections. The performance was evaluated by quality index (R 2 ) and blood-pool spillover index (FBV) in kinetic modeling, and by rest flow (RMBF) and stress flow (SMBF) compared with those of All Corr. In HVT group, NC diminished 2-fold flow uniformity with the most degraded quality (15%-18% reduced R 2 ) and elevated spillover effect (45%-50% increased FBV). Consistently higher RMBF and SMBF were discovered in both groups (HVT 1.54/2.31 higher; CAD 1.60/1.72; all P < .0001). Bland-Altman analysis revealed positive flow bias (HVT 0.9-2.6 mL/min/g; CAD 0.7-1.3) with wide ranges of 95% CI of agreement (HVT NC -1.9-7.1; NR -0.4-4.4; NR + SC -1.1-4.3; NR + SC + RR -0.7-2.5) (CAD NC -1.2-3.8; NR -1.0-2.8; NR + SC -1.0-2.5; NR + SC + RR -1.1-2.6). Uncorrected physical interference in DySPECT images can extensively impact the performance of MBF quantitation. Full physical corrections should be considered to warrant this tool for clinical utilization.

  2. Myocardial imaging using ultrahigh-resolution spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yao, Xinwen; Gan, Yu; Marboe, Charles C.; Hendon, Christine P.

    2016-06-01

    We present an ultrahigh-resolution spectral domain optical coherence tomography (OCT) system in 800 nm with a low-noise supercontinuum source (SC) optimized for myocardial imaging. The system was demonstrated to have an axial resolution of 2.72 μm with a large imaging depth of 1.78 mm and a 6-dB falloff range of 0.89 mm. The lateral resolution (5.52 μm) was compromised to enhance the image penetration required for myocardial imaging. The noise of the SC source was analyzed extensively and an imaging protocol was proposed for SC-based OCT imaging with appreciable contrast. Three-dimensional datasets were acquired ex vivo on the endocardium side of tissue specimens from different chambers of fresh human and swine hearts. With the increased resolution and contrast, features such as elastic fibers, Purkinje fibers, and collagen fiber bundles were observed. The correlation between the structural information revealed in the OCT images and tissue pathology was discussed as well.

  3. Quantitative orientation-independent differential interference contrast (DIC) microscopy

    NASA Astrophysics Data System (ADS)

    Shribak, Michael; LaFountain, James; Biggs, David; Inoué, Shinya

    2007-02-01

    We describe a new DIC technique, which records phase gradients within microscopic specimens independently of their orientation. The proposed system allows the generation of images representing the distribution of dry mass (optical path difference) in the specimen. Unlike in other forms of interference microscopes, this approach does not require a narrow illuminating cone. The orientation-independent differential interference contrast (OI-DIC) system can also be combined with orientation-independent polarization (OI-Pol) measurements to yield two complementary images: one showing dry mass distribution (which is proportional to refractive index) and the other showing distribution of birefringence (due to structural or internal anisotropy). With a model specimen used for this work -- living spermatocytes from the crane fly, Nephrotoma suturalis --- the OI-DIC image clearly reveals the detailed shape of the chromosomes while the polarization image quantitatively depicts the distribution of the birefringent microtubules in the spindle, both without any need for staining or other modifications of the cell. We present examples of a pseudo-color combined image incorporating both orientation-independent DIC and polarization images of a spermatocyte at diakinesis and metaphase of meiosis I. Those images provide clear evidence that the proposed technique can reveal fine architecture and molecular organization in live cells without perturbation associated with staining or fluorescent labeling. The phase image was obtained using optics having a numerical aperture 1.4, thus achieving a level of resolution never before achieved with any interference microscope.

  4. Effects of Insulin Resistance on Myocardial Blood Flow and Arterial Peripheral Circulation in Patients with Polycystic Ovary Syndrome.

    PubMed

    Aldrighi, José M; Tsutsui, Jeane M; Kowastch, Ingrid; Ribeiro, Alessandra L; Scapinelli, Alessandro; Tamanaha, Sonia; Oliveira, Ricardo M; Mathias, Wilson

    2015-08-01

    Polycystic ovary syndrome (PCOS) is associated with increased risk for cardiovascular disease. We sought to evaluate the effects of insulin resistance (IR) on myocardial microcirculation and peripheral artery function in patients with PCOS. We studied 55 women (28 with PCOS without IR, 18 with PCOS and IR and 11 normal controls) who underwent laboratorial analysis, high-resolution vascular ultrasound and real time myocardial contrast echocardiography (RTMCE). Intima-media thickness (IMT) and brachial artery flow-mediated dilation (FMD) were evaluated by vascular ultrasound. The replenishment velocity (β), plateau of acoustic intensity (A) and myocardial blood flow reserve (MBFR) were determined by quantitative dipyridamole stress RTMCE. β reserve in group PCOS + IR was lower than control (2.34 ± 0.55 vs. 3.60 ± 0.6; P < 0.001) and than PCOS without IR (2.34 ± 0.55 vs. 3.17 ± 0.65; P < 0.001). MBFR in patients with PCOS without IR did not differ from those of control (4.59 ± 1.59 vs. 5.30 ± 1.64; P = 0.22) or from patients with PCOS + IR (4.59 ± 1.59 vs. 3.70 ± 1.47; P = 0.07). When comparing with control group, patients with PCOS + IR had lower MBFR (5.30 ± 1.64 vs. 3.70 ± 1.47; P = 0.01). No significant differences were found between control, PCOS without IR and PCOS + IR for FMD (0.18 ± 0.05, 0.15 ± 0.04 and 0.13 ± 0.07; P =NS) or IMT (0.48 ± 0.05, 0.47 ± 0.05 and 0.49 ± 0.07; P = NS). Women with PCOS and IR had depressed β and MBFR as demonstrated by quantitative RTMCE, but no alteration in endothelial dysfunction or IMT. PCOS without IR showed isolated depression in β reserve, probably an earlier marker of myocardial flow abnormality. © 2014, Wiley Periodicals, Inc.

  5. VALSARTAN REGULATES MYOCARDIAL AUTOPHAGY AND MITOCHONDRIAL TURNOVER IN EXPERIMENTAL HYPERTENSION

    PubMed Central

    Zhang, Xin; Li, Zi-Lun; Crane, John A.; Jordan, Kyra L.; Pawar, Aditya S.; Textor, Stephen C.; Lerman, Amir; Lerman, Lilach O.

    2014-01-01

    Renovascular hypertension alters cardiac structure and function. Autophagy is activated during left ventricular hypertrophy and linked to adverse cardiac function. The Angiotensin II receptor blocker Valsartan lowers blood pressure and is cardioprotective, but whether it modulates autophagy in the myocardium is unclear. We hypothesized that Valsartan would alleviate autophagy and improve left ventricular myocardial mitochondrial turnover in swine renovascular hypertension. Domestic pigs were randomized to control, unilateral renovascular hypertension, and renovascular hypertension treated with Valsartan (320 mg/day) or conventional triple therapy (Reserpine+hydralazine+hydrochlorothiazide) for 4 weeks post 6-weeks of renovascular hypertension (n=7 each group). Left ventricular remodeling, function and myocardial oxygenation and microcirculation were assessed by multi-detector computer tomography, blood-oxygen-level-dependent magnetic resonance imaging and microcomputer tomography. Myocardial autophagy, markers for mitochondrial degradation and biogenesis, and mitochondrial respiratory-chain proteins were examined ex vivo. Renovascular hypertension induced left ventricular hypertrophy and myocardial hypoxia, enhanced cellular autophagy and mitochondrial degradation, and suppressed mitochondrial biogenesis. Valsartan and triple therapy similarly decreased blood pressure, but Valsartan solely alleviated left ventricular hypertrophy, ameliorated myocardial autophagy and mitophagy, and increased mitochondrial biogenesis. In contrast, triple therapy only slightly attenuated autophagy and preserved mitochondrial proteins, but elicited no improvement in mitophagy. These data suggest a novel potential role of Valsartan in modulating myocardial autophagy and mitochondrial turnover in renovascular hypertension-induced hypertensive heart disease, which may possibly bolster cardiac repair via a blood pressure-independent manner. PMID:24752430

  6. AMPK regulates energy metabolism through the SIRT1 signaling pathway to improve myocardial hypertrophy.

    PubMed

    Dong, H-W; Zhang, L-F; Bao, S-L

    2018-05-01

    We investigated the correlations of adenosine monophosphate-activated protein kinase (AMPK), Silence information regulator 1 (SIRT1) and energy metabolism with myocardial hypertrophy. Myocardial hypertrophy experimental model was established via transverse aortic constriction (TAC)-induced myocardial hypertrophy and phenylephrine (PE)-induced hypertrophic myocardial cell culture. After activation of AMPK, the messenger ribonucleic acid (mRNA) expressions in myocardial tissue- and myocardial cell hypertrophy-related genes, atrial natriuretic peptide (ANP) and β-myosin heavy chain (β-MHC), were detected. The production rate of 14C-labeled 14CO2 from palmitic acid was quantitatively determined to detect the fatty acid and glucose oxidation of hypertrophic myocardial tissues or cells, and the glucose uptake of myocardial cells was studied using [14C] glucose. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were performed to detect the changes in SIRT1 mRNA and protein expressions in hypertrophic myocardial tissues. Moreover, SIRT1 small interfering ribonucleic acid (siRNA) was used to interfere in SIRT1 expression to further investigate the role of SIRT1 in the effect of AMPK activation on myocardial hypertrophy. AMPK activation could significantly reduce the mRNA expressions of ANP and β-MHC in vitro and in vivo. AMPK could increase the ejection fraction (EF) and decrease the protein synthesis rate in myocardial cells in mice with myocardial hypertrophy. Besides, AMPK activation could increase the fatty acid oxidation, improve the glucose uptake and reduce the glucose oxidation. After AMPK activation, both SIRT1 mRNA and protein expressions in hypertrophic myocardial tissues and myocardial cells were increased. After SIRT1 siRNA was further used to interfere in SIRT1 expression in myocardial cells, it was found that mRNA expressions and protein synthesis rates of ANP and β-MHC were increased. The activation of AMPK can inhibit the

  7. Quantitative contrast-enhanced ultrasound for monitoring vedolizumab therapy in inflammatory bowel disease patients: a pilot study.

    PubMed

    Goertz, Ruediger S; Klett, Daniel; Wildner, Dane; Atreya, Raja; Neurath, Markus F; Strobel, Deike

    2018-01-01

    Background Microvascularization of the bowel wall can be visualized and quantified non-invasively by software-assisted analysis of derived time-intensity curves. Purpose To perform software-based quantification of bowel wall perfusion using quantitative contrast-enhanced ultrasound (CEUS) according to clinical response in patients with inflammatory bowel disease treated with vedolizumab. Material and Methods In a prospective study, in 18 out of 34 patients, high-frequency ultrasound of bowel wall thickness using color Doppler flow combined with CEUS was performed at baseline and after 14 weeks of treatment with vedolizumab. Clinical activity scores at week 14 were used to differentiate between responders and non-responders. CEUS parameters were calculated by software analysis of the video loops. Results Nine of 18 patients (11 with Crohn's disease and seven with ulcerative colitis) showed response to treatment with vedolizumab. Overall, the responder group showed a significant decrease in the semi-quantitative color Doppler vascularization score. Amplitude-derived CEUS parameters of mural microvascularization such as peak enhancement or wash-in rate decreased in responders, in contrast with non-responders. Time-derived parameters remained stable or increased during treatment in all patients. Conclusion Analysis of bowel microvascularization by CEUS shows statistically significant changes in the wash-in-rate related to response of vedolizumab therapy.

  8. Contrast-enhanced small-animal PET/CT in cancer research: strong improvement of diagnostic accuracy without significant alteration of quantitative accuracy and NEMA NU 4-2008 image quality parameters.

    PubMed

    Lasnon, Charline; Quak, Elske; Briand, Mélanie; Gu, Zheng; Louis, Marie-Hélène; Aide, Nicolas

    2013-01-17

    The use of iodinated contrast media in small-animal positron emission tomography (PET)/computed tomography (CT) could improve anatomic referencing and tumor delineation but may introduce inaccuracies in the attenuation correction of the PET images. This study evaluated the diagnostic performance and accuracy of quantitative values in contrast-enhanced small-animal PET/CT (CEPET/CT) as compared to unenhanced small animal PET/CT (UEPET/CT). Firstly, a NEMA NU 4-2008 phantom (filled with 18F-FDG or 18F-FDG plus contrast media) and a homemade phantom, mimicking an abdominal tumor surrounded by water or contrast media, were used to evaluate the impact of iodinated contrast media on the image quality parameters and accuracy of quantitative values for a pertinent-sized target. Secondly, two studies in 22 abdominal tumor-bearing mice and rats were performed. The first animal experiment studied the impact of a dual-contrast media protocol, comprising the intravenous injection of a long-lasting contrast agent mixed with 18F-FDG and the intraperitoneal injection of contrast media, on tumor delineation and the accuracy of quantitative values. The second animal experiment compared the diagnostic performance and quantitative values of CEPET/CT versus UEPET/CT by sacrificing the animals after the tracer uptake period and imaging them before and after intraperitoneal injection of contrast media. There was minimal impact on IQ parameters (%SDunif and spillover ratios in air and water) when the NEMA NU 4-2008 phantom was filled with 18F-FDG plus contrast media. In the homemade phantom, measured activity was similar to true activity (-0.02%) and overestimated by 10.30% when vials were surrounded by water or by an iodine solution, respectively. The first animal experiment showed excellent tumor delineation and a good correlation between small-animal (SA)-PET and ex vivo quantification (r2 = 0.87, P < 0.0001). The second animal experiment showed a good correlation between CEPET/CT and

  9. Evaluation of left ventricular scar identification from contrast enhanced magnetic resonance imaging for guidance of ventricular catheter ablation therapy

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Lehmann, H. I.; Johnson, S. B.; Packer, D. L.

    2016-03-01

    Patients with ventricular arrhythmias typically exhibit myocardial scarring, which is believed to be an important anatomic substrate for reentrant circuits, thereby making these regions a key target in catheter ablation therapy. In ablation therapy, a catheter is guided into the left ventricle and radiofrequency energy is delivered into the tissue to interrupt arrhythmic electrical pathways. Low bipolar voltage regions are typically localized during the procedure through point-by-point construction of an electroanatomic map by sampling the endocardial surface with the ablation catheter and are used as a surrogate for myocardial scar. This process is time consuming, requires significant skill, and has the potential to miss low voltage sites. This has led to efforts to quantify myocardial scar preoperatively using delayed, contrast-enhanced MRI. In this paper, we evaluate the utility of left ventricular scar identification from delayed contrast enhanced magnetic resonance imaging for guidance of catheter ablation of ventricular arrhythmias. Myocardial infarcts were created in three canines followed by a delayed, contrast enhanced MRI scan and electroanatomic mapping. The left ventricle and myocardial scar is segmented from preoperative MRI images and sampled points from the procedural electroanatomical map are registered to the segmented endocardial surface. Sampled points with low bipolar voltage points visually align with the segmented scar regions. This work demonstrates the potential utility of using preoperative delayed, enhanced MRI to identify myocardial scarring for guidance of ventricular catheter ablation therapy.

  10. High temporal resolution dynamic contrast-enhanced MRI using compressed sensing-combined sequence in quantitative renal perfusion measurement.

    PubMed

    Chen, Bin; Zhao, Kai; Li, Bo; Cai, Wenchao; Wang, Xiaoying; Zhang, Jue; Fang, Jing

    2015-10-01

    To demonstrate the feasibility of the improved temporal resolution by using compressed sensing (CS) combined imaging sequence in dynamic contrast-enhanced MRI (DCE-MRI) of kidney, and investigate its quantitative effects on renal perfusion measurements. Ten rabbits were included in the accelerated scans with a CS-combined 3D pulse sequence. To evaluate the image quality, the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between the proposed CS strategy and the conventional full sampling method. Moreover, renal perfusion was estimated by using the separable compartmental model in both CS simulation and realistic CS acquisitions. The CS method showed DCE-MRI images with improved temporal resolution and acceptable image contrast, while presenting significantly higher SNR than the fully sampled images (p<.01) at 2-, 3- and 4-X acceleration. In quantitative measurements, renal perfusion results were in good agreement with the fully sampled one (concordance correlation coefficient=0.95, 0.91, 0.88) at 2-, 3- and 4-X acceleration in CS simulation. Moreover, in realistic acquisitions, the estimated perfusion by the separable compartmental model exhibited no significant differences (p>.05) between each CS-accelerated acquisition and the full sampling method. The CS-combined 3D sequence could improve the temporal resolution for DCE-MRI in kidney while yielding diagnostically acceptable image quality, and it could provide effective measurements of renal perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Parametric methods for characterizing myocardial tissue by magnetic resonance imaging (part 2): T2 mapping.

    PubMed

    Perea Palazón, R J; Solé Arqués, M; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Ortiz Pérez, J T

    2015-01-01

    Cardiac magnetic resonance imaging is considered the reference technique for characterizing myocardial tissue; for example, T2-weighted sequences make it possible to evaluate areas of edema or myocardial inflammation. However, traditional sequences have many limitations and provide only qualitative information. Moreover, traditional sequences depend on the reference to remote myocardium or skeletal muscle, which limits their ability to detect and quantify diffuse myocardial damage. Recently developed magnetic resonance myocardial mapping techniques enable quantitative assessment of parameters indicative of edema. These techniques have proven better than traditional sequences both in acute cardiomyopathy and in acute ischemic heart disease. This article synthesizes current developments in T2 mapping as well as their clinical applications and limitations. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  12. Multi-vendor, multicentre comparison of contrast-enhanced SSFP and T2-STIR CMR for determining myocardium at risk in ST-elevation myocardial infarction

    PubMed Central

    Nordlund, David; Klug, Gert; Heiberg, Einar; Koul, Sasha; Larsen, Terje H.; Hoffmann, Pavel; Metzler, Bernhard; Erlinge, David; Atar, Dan; Aletras, Anthony H.; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan

    2016-01-01

    Aims Myocardial salvage, determined by cardiac magnetic resonance imaging (CMR), is used as end point in cardioprotection trials. To calculate myocardial salvage, infarct size is related to myocardium at risk (MaR), which can be assessed by T2-short tau inversion recovery (T2-STIR) and contrast-enhanced steady-state free precession magnetic resonance imaging (CE-SSFP). We aimed to determine how T2-STIR and CE-SSFP perform in determining MaR when applied in multicentre, multi-vendor settings. Methods and results A total of 215 patients from 17 centres were included after percutaneous coronary intervention (PCI) for ST-elevation myocardial infarction. CMR was performed within 1–8 days. These patients participated in the MITOCARE or CHILL-MI cardioprotection trials. Additionally, 8 patients from a previous study, imaged 1 day post-CMR, were included. Late gadolinium enhancement, T2-STIR, and CE-SSFP images were acquired on 1.5T MR scanners (Philips, Siemens, or GE). In 65% of the patients, T2-STIR was of diagnostic quality compared with 97% for CE-SSFP. In diagnostic quality images, there was no difference in MaR by T2-STIR and CE-SSFP (bias: 0.02 ± 6%, P = 0.96, r2 = 0.71, P < 0.001), or between treatment and control arms. No change in size or quality of MaR nor ability to identify culprit artery was seen over the first week after the acute event (P = 0.44). Conclusion In diagnostic quality images, T2-STIR and CE-SSFP provide similar estimates of MaR, were constant over the first week, and were not affected by treatment. CE-SSFP had a higher degree of diagnostic quality images compared with T2 imaging for sequences from two out of three vendors. Therefore, CE-SSFP is currently more suitable for implementation in multicentre, multi-vendor clinical trials. PMID:27002140

  13. Micromethods for determining activities of energy-producing and non-energy-producing pathways in myocardial tissue.

    PubMed Central

    King, J. W.; Kennedy, F. S.; Hanley, H. G.; Lierl, J. J.; Fowler, M. R.; White, M. C.

    1986-01-01

    The increasingly frequent use of endomyocardial biopsies for diagnosis has provided the opportunity to study myocardial metabolism in patients with cardiac diseases. The authors have tested microassays of the hexose monophosphate shunt, glycolytic pathway, and Krebs cycle and demonstrated that they are easily and reproducibly performed on small pieces of cardiac tissue. They have also used these assays to study myocardial metabolism in 2 patients with endocarditis uncomplicated by congestive heart failure and in 2 patients with congestive heart failure due to idiopathic dilated cardiomyopathy. The ability to quantitate myocardial metabolism in biopsies from patients with a variety of cardiac diseases may enhance our understanding of cardiac pathophysiology. PMID:3706492

  14. Direct T2 Quantification of Myocardial Edema in Acute Ischemic Injury

    PubMed Central

    Verhaert, David; Thavendiranathan, Paaladinesh; Giri, Shivraman; Mihai, Georgeta; Rajagopalan, Sanjay; Simonetti, Orlando P.; Raman, Subha V.

    2014-01-01

    OBJECTIVES To evaluate the utility of rapid, quantitative T2 mapping compared with conventional T2-weighted imaging in patients presenting with various forms of acute myocardial infarction. BACKGROUND T2-weighted cardiac magnetic resonance (CMR) identifies myocardial edema before the onset of irreversible ischemic injury and has shown value in risk-stratifying patients with chest pain. Clinical acceptance of T2-weighted CMR has, however, been limited by well-known technical problems associated with existing techniques. T2 quantification has recently been shown to overcome these problems; we hypothesized that T2 measurement in infarcted myocardium versus remote regions versus zones of microvascular obstruction in acute myocardial infarction patients could help reduce uncertainty in interpretation of T2-weighted images. METHODS T2 values using a novel mapping technique were prospectively recorded in 16 myocardial segments in 27 patients admitted with acute myocardial infarction. Regional T2 values were averaged in the infarct zone and remote myocardium, both defined by a reviewer blinded to the results of T2 mapping. Myocardial T2 was also measured in a group of 21 healthy volunteers. RESULTS T2 of the infarct zone was 69 ± 6 ms compared with 56 ± 3.4 ms for remote myocardium (p < 0.0001). No difference in T2 was observed between remote myocardium and myocardium of healthy volunteers (56 ± 3.4 ms and 55.5 ± 2.3 ms, respectively, p = NS). T2 mapping allowed for the detection of edematous myocardium in 26 of 27 patients; by comparison, segmented breath-hold T2-weighted short tau inversion recovery images were negative in 7 and uninterpretable in another 2 due to breathing artifacts. Within the infarct zone, areas of microvascular obstruction were characterized by a lower T2 value (59 ± 6 ms) compared with areas with no microvascular obstruction (71.6 ± 10 ms, p < 0.0001). T2 mapping provided consistent high-quality results in patients unable to breath-hold and in

  15. Reliability of the rapid bedside whole-blood quantitative cardiac troponin T assay in the diagnosis of myocardial injury in patients with acute coronary syndrome.

    PubMed

    Saadeddin, Salam; Habbab, Mohammed; Siddieg, Hisham; Fayomi, Mahmoud; Dafterdar, Rofaida

    2004-03-01

    A rapid bedside whole-blood quantitative cTnT assay has recently been developed. We evaluated the reliability of this test for the diagnosis of myocardial injury in patients with acute coronary syndrome (ACS). Whole-blood cTnT levels were measured in 96 patients with ACS using the Roche Cardiac Reader(R) rapid bedside assay device, and the results were compared with serum cTnT levels in the same patients measured by the Roche Elecsys(R) Immunoanalyzer. There were 50 patients with clinical evidence of myocardial injury and 56 without. From the qualitative point of view (reporting negative or positive tests), the results of the rapid bedside tests were identical to those obtained by the serum immunoanalyzer. From quantitative the point of view, the rapid bedside tests could not measure exact values below 0.1 ng/ml (reported negative) or above 2.0 ng/ml (reported >2.0). The measurements made by the rapid bedside tests within the range of 0.1 to 2.0 ng/ml correlated well with those of the serum immunoanalyzer (Cardiac Reader(R) cTnT=0.61, Elecsys(R) cTnT+0.12; r=0.88), but their mean values were significantly lower (1.20I0.71 vs. 1.41I1.03, p=0.0007). The rapid bedside cTnT assay correlates well with immunoanalyzer measurements between the values of 0.1 and 2.0 ng/ml. However, they tend to give significantly lower values and fail to give exact values below 0.1 and above 2.0 ng/ml, which may affect their performance in monitoring and managing patients with ACS, and limit their use in predicting outcome.

  16. [Diagnostic value of quantitative pharmacokinetic parameters and relative quantitative pharmacokinetic parameters in breast lesions with dynamic contrast-enhanced MRI].

    PubMed

    Sun, T T; Liu, W H; Zhang, Y Q; Li, L H; Wang, R; Ye, Y Y

    2017-08-01

    Objective: To explore the differential between the value of dynamic contrast-enhanced MRI quantitative pharmacokinetic parameters and relative pharmacokinetic quantitative parameters in breast lesions. Methods: Retrospective analysis of 255 patients(262 breast lesions) who was obtained by clinical palpation , ultrasound or full-field digital mammography , and then all lessions were pathologically confirmed in Zhongda Hospital, Southeast University from May 2012 to May 2016. A 3.0 T MRI scanner was used to obtain the quantitative MR pharmacokinetic parameters: volume transfer constant (K(trans)), exchange rate constant (k(ep))and extravascular extracellular volume fraction (V(e)). And measured the quantitative pharmacokinetic parameters of normal glands tissues which on the same side of the same level of the lesions; and then calculated the value of relative pharmacokinetic parameters: rK(rans)、rk(ep) and rV(e).To explore the diagnostic value of two pharmacokinetic parameters in differential diagnosis of benign and malignant breast lesions using receiver operating curves and model of logistic regression. Results: (1)There were significant differences between benign lesions and malignant lesions in K(trans) and k(ep) ( t =15.489, 15.022, respectively, P <0.05), there were no significant differences between benign lesions and malignant lesions in V(e)( t =-2.346, P >0.05). The areas under the ROC curve(AUC)of K(trans), k(ep) and V(e) between malignant and benign lesions were 0.933, 0.948 and 0.387, the sensitivity of K(trans), k(ep) and V(e) were 77.1%, 85.0%, 51.0% , and the specificity of K(trans), k(ep) and V(e) were 96.3%, 93.6%, 60.8% for the differential diagnosis of breast lesions if taken the maximum Youden's index as cut-off. (2)There were significant differences between benign lesions and malignant lesions in rK(trans), rk(ep) and rV(e) ( t =14.177, 11.726, 2.477, respectively, P <0.05). The AUC of rK(trans), rk(ep) and rV(e) between malignant and benign

  17. Quantitative x-ray phase-contrast imaging using a single grating of comparable pitch to sample feature size.

    PubMed

    Morgan, Kaye S; Paganin, David M; Siu, Karen K W

    2011-01-01

    The ability to quantitatively retrieve transverse phase maps during imaging by using coherent x rays often requires a precise grating or analyzer-crystal-based setup. Imaging of live animals presents further challenges when these methods require multiple exposures for image reconstruction. We present a simple method of single-exposure, single-grating quantitative phase contrast for a regime in which the grating period is much greater than the effective pixel size. A grating is used to create a high-visibility reference pattern incident on the sample, which is distorted according to the complex refractive index and thickness of the sample. The resolution, along a line parallel to the grating, is not restricted by the grating spacing, and the detector resolution becomes the primary determinant of the spatial resolution. We present a method of analysis that maps the displacement of interrogation windows in order to retrieve a quantitative phase map. Application of this analysis to the imaging of known phantoms shows excellent correspondence.

  18. Cardio-chemical exchange saturation transfer magnetic resonance imaging reveals molecular signatures of endogenous fibrosis and exogenous contrast media.

    PubMed

    Vandsburger, Moriel; Vandoorne, Katrien; Oren, Roni; Leftin, Avigdor; Mpofu, Senzeni; Delli Castelli, Daniela; Aime, Silvio; Neeman, Michal

    2015-01-01

    Application of emerging molecular MRI techniques, including chemical exchange saturation transfer (CEST)-MRI, to cardiac imaging is desirable; however, conventional methods are poorly suited for cardiac imaging, particularly in small animals with rapid heart rates. We developed a CEST-encoded steady state and retrospectively gated cardiac cine imaging sequence in which the presence of fibrosis or paraCEST contrast agents was directly encoded into the steady-state myocardial signal intensity (cardioCEST). Development of cardioCEST: A CEST-encoded cardiac cine MRI sequence was implemented on a 9.4T small animal scanner. CardioCEST of fibrosis was serially performed by acquisition of a series of CEST-encoded cine images at multiple offset frequencies in mice (n=7) after surgically induced myocardial infarction. Scar formation was quantified using a spectral modeling approach and confirmed with histological staining. Separately, circulatory redistribution kinetics of the paramagnetic CEST agent Eu-HPDO3A were probed in mice using cardioCEST imaging, revealing rapid myocardial redistribution, and washout within 30 minutes (n=6). Manipulation of vascular tone resulted in heightened peak CEST contrast in the heart, but did not alter redistribution kinetics (n=6). At 28 days after myocardial infarction (n=3), CEST contrast kinetics in infarct zone tissue were altered, demonstrating gradual accumulation of Eu-HPDO3A in the increased extracellular space. cardioCEST MRI enables in vivo imaging of myocardial fibrosis using endogenous contrast mechanisms, and of exogenously delivered paraCEST agents, and can enable multiplexed imaging of multiple molecular targets at high-resolution coupled with conventional cardiac MRI scans. © 2013 American Heart Association, Inc.

  19. Optimization of Region of Interest Drawing for Quantitative Analysis: Differentiation Between Benign and Malignant Breast Lesions on Contrast-Enhanced Sonography.

    PubMed

    Nakata, Norio; Ohta, Tomoyuki; Nishioka, Makiko; Takeyama, Hiroshi; Toriumi, Yasuo; Kato, Kumiko; Nogi, Hiroko; Kamio, Makiko; Fukuda, Kunihiko

    2015-11-01

    This study was performed to evaluate the diagnostic utility of quantitative analysis of benign and malignant breast lesions using contrast-enhanced sonography. Contrast-enhanced sonography using the perflubutane-based contrast agent Sonazoid (Daiichi Sankyo, Tokyo, Japan) was performed in 94 pathologically proven palpable breast mass lesions, which could be depicted with B-mode sonography. Quantitative analyses using the time-intensity curve on contrast-enhanced sonography were performed in 5 region of interest (ROI) types (manually traced ROI and circular ROIs of 5, 10, 15, and 20 mm in diameter). The peak signal intensity, initial slope, time to peak, positive enhancement integral, and wash-out ratio were investigated in each ROI. There were significant differences between benign and malignant lesions in the time to peak (P < .05), initial slope (P < .001), and positive enhancement integral (P < .05) for the manual ROI. Significant differences were found between benign and malignant lesions in the time to peak (P < .05) for the 5-mm ROI; the time to peak (P < .05) and initial slope (P< .05) for the 10-mm ROI; absolute values of the peak signal intensity (P< .05), time to peak (P< .01), and initial slope (P< .005) for the 15-mm ROI; and the time to peak (P < .05) and initial slope (P < .05) for the 20-mm ROI. There were no statistically significant differences in any wash-out ratio values for the 5 ROI types. Kinetic analysis using contrast-enhanced sonography is useful for differentiation between benign and malignant breast lesions. © 2015 by the American Institute of Ultrasound in Medicine.

  20. High-resolution myocardial T1 mapping using single-shot inversion recovery fast low-angle shot MRI with radial undersampling and iterative reconstruction

    PubMed Central

    Joseph, Arun A; Kalentev, Oleksandr; Merboldt, Klaus-Dietmar; Voit, Dirk; Roeloffs, Volkert B; van Zalk, Maaike; Frahm, Jens

    2016-01-01

    Objective: To develop a novel method for rapid myocardial T1 mapping at high spatial resolution. Methods: The proposed strategy represents a single-shot inversion recovery experiment triggered to early diastole during a brief breath-hold. The measurement combines an adiabatic inversion pulse with a real-time readout by highly undersampled radial FLASH, iterative image reconstruction and T1 fitting with automatic deletion of systolic frames. The method was implemented on a 3-T MRI system using a graphics processing unit-equipped bypass computer for online application. Validations employed a T1 reference phantom including analyses at simulated heart rates from 40 to 100 beats per minute. In vivo applications involved myocardial T1 mapping in short-axis views of healthy young volunteers. Results: At 1-mm in-plane resolution and 6-mm section thickness, the inversion recovery measurement could be shortened to 3 s without compromising T1 quantitation. Phantom studies demonstrated T1 accuracy and high precision for values ranging from 300 to 1500 ms and up to a heart rate of 100 beats per minute. Similar results were obtained in vivo yielding septal T1 values of 1246 ± 24 ms (base), 1256 ± 33 ms (mid-ventricular) and 1288 ± 30 ms (apex), respectively (mean ± standard deviation, n = 6). Conclusion: Diastolic myocardial T1 mapping with use of single-shot inversion recovery FLASH offers high spatial resolution, T1 accuracy and precision, and practical robustness and speed. Advances in knowledge: The proposed method will be beneficial for clinical applications relying on native and post-contrast T1 quantitation. PMID:27759423

  1. Long-term administration of tolvaptan increases myocardial remodeling and mortality via exacerbation of congestion in mice heart failure model after myocardial infarction.

    PubMed

    Eguchi, Akiyo; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Naito, Yoshiro; Mano, Toshiaki; Masuyama, Tohru; Hirotani, Shinichi

    2016-10-15

    In contrast to loop diuretics, tolvaptan does not cause neurohormonal activation in several animal heart failure models. However, it remains unknown whether chronic vasopressin type 2 receptor blockade exerts beneficial effects on mortality in murine heart failure after myocardial infarction (MI). In an experimental heart failure model, we tested the hypothesis that tolvaptan reduces myocardial remodeling and mortality. MI was induced in 9-week-old male C57Bl6/J by the left coronary artery ligation. In study 1, animals were randomly assigned to treatment with placebo or tolvaptan starting 14days post-MI. In study 2, animals were randomized to tolvaptan or furosemide+tolvaptan starting 14days post-MI. Interestingly, results showed lower survival rate in tolvaptan group compared to placebo. Tolvaptan group had higher serum osmolality, heavier body weight, more severe myocardial remodeling, and lung congestion at day 28 of drug administration compared to placebo. In study 2, addition of furosemide significantly reduced mortality rate seen with tolvaptan, and presented with decreased osmolality, myocardial remodeling, and lung congestion compared to tolvaptan-treated mice. Increase in proximal tubular expression of aquaporin 1, Angiotensin II, and vasopressin seen with tolvaptan treatments were normalized to basal levels, similar to levels in placebo-treated mice. Contrary to our hypothesis, tolvaptan was associated with increased mortality in murine heart failure after MI. This increase in lung congestion, myocardial remodeling, could be prevented by co-administration of furosemide, which resulted in normalized serum osmolality, neurohormonal activation, and renal aquaporin 1 expression, and hence decreased mortality post-MI. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Quantitative evaluation of collateral circulation in patients with previous myocardial infarction: relation to myocardial ischemia, angiographic appearance and functional improvement of myocardium.

    PubMed

    Vukcevic, Vladan; Beleslin, Branko; Ostojic, Miodrag; Stojkovic, Sinisa; Stankovic, Goran; Nedeljkovic, Milan; Orlic, Dejan; Djordjevic-Dikic, Ana; Stepanovic, Jelena; Giga, Vojislav; Arandjelovic, Aleksandra; Dikic, Miodrag; Kostic, Jelena; Nedeljkovic, Ivana; Nedeljkovic-Beleslin, Biljana; Saponjski, Jovica

    2009-04-01

    Evaluation of coronary pressures during angioplasty may functionally quantify collateral circulation. The aim of the study was to evaluate the relation between the amount of collateral circulation and development of myocardial ischemia during balloon occlusion, anatomic degree of collaterals, and functional improvement of myocardium. Study population consisted of 31 pts (mean age 53 +/- 7 years; 25 male) with previous myocardial infarction and significant one-vessel stenosis undergoing angioplasty. Collateral circulation was calculated as the ratio between distal coronary pressure during balloon occlusion (P(w)) and aortic pressure (P(a)). Angiographic appearance of collaterals was evaluated by Rentrop classification. Patients were evaluated by echo for functional improvement of myocardium in the follow-up period. Mean P(w)/P(a) was 0.24 +/- 0.10 (range of 0.07-0.51). Rentrop grade 0 of collaterals was present in 16 patients (52%), grade 1 in11 patients (35%), and grade 2 in 4 patients (13%). A mild correlation between angio and hemodynamic evaluation of collaterals was observed (r = 0.38, P = 0.035). In patients without ECG changes during angioplasty (21 pts, 68%), P(w)/P(a) was significantly higher in comparison to patients with ECG changes (0.28 +/- 0.09 vs. 0.15 +/- 0.06, P < 0.001; area under the curve 0.93). In patients with myocardial functional improvement during follow-up (21 pts, 68%), P(w)/P(a) was significantly higher than in the patients without echo improvement (0.26 +/- 0.10 vs. 0.18 +/- 0.08, P = 0.035). The amount of recruitable collaterals is not negligible even in the patients with no angio visible collaterals. Low values of P(w)/P(a) are associated with ECG changes during balloon occlusion. Higher P(w)/P(a) was associated with better functional improvement of myocardium.

  3. Re-evaluation of a novel approach for quantitative myocardial oedema detection by analysing tissue inhomogeneity in acute myocarditis using T2-mapping.

    PubMed

    Baeßler, Bettina; Schaarschmidt, Frank; Treutlein, Melanie; Stehning, Christian; Schnackenburg, Bernhard; Michels, Guido; Maintz, David; Bunck, Alexander C

    2017-12-01

    To re-evaluate a recently suggested approach of quantifying myocardial oedema and increased tissue inhomogeneity in myocarditis by T2-mapping. Cardiac magnetic resonance data of 99 patients with myocarditis were retrospectively analysed. Thirthy healthy volunteers served as controls. T2-mapping data were acquired at 1.5 T using a gradient-spin-echo T2-mapping sequence. T2-maps were segmented according to the 16-segments AHA-model. Segmental T2-values, segmental pixel-standard deviation (SD) and the derived parameters maxT2, maxSD and madSD were analysed and compared to the established Lake Louise criteria (LLC). A re-estimation of logistic regression models revealed that all models containing an SD-parameter were superior to any model containing global myocardial T2. Using a combined cut-off of 1.8 ms for madSD + 68 ms for maxT2 resulted in a diagnostic sensitivity of 75% and specificity of 80% and showed a similar diagnostic performance compared to LLC in receiver-operating-curve analyses. Combining madSD, maxT2 and late gadolinium enhancement (LGE) in a model resulted in a superior diagnostic performance compared to LLC (sensitivity 93%, specificity 83%). The results show that the novel T2-mapping-derived parameters exhibit an additional diagnostic value over LGE with the inherent potential to overcome the current limitations of T2-mapping. • A novel quantitative approach to myocardial oedema imaging in myocarditis was re-evaluated. • The T2-mapping-derived parameters maxT2 and madSD were compared to traditional Lake-Louise criteria. • Using maxT2 and madSD with dedicated cut-offs performs similarly to Lake-Louise criteria. • Adding maxT2 and madSD to LGE results in further increased diagnostic performance. • This novel approach has the potential to overcome the limitations of T2-mapping.

  4. Prediction of myocardial functional recovery by noninvasive evaluation of Basal and hyperemic coronary flow in patients with previous myocardial infarction.

    PubMed

    Djordjevic-Dikic, Ana; Beleslin, Branko; Stepanovic, Jelena; Giga, Vojislav; Tesic, Milorad; Dobric, Milan; Stojkovic, Sinisa; Nedeljkovic, Milan; Vukcevic, Vladan; Dikic, Nenad; Petrasinovic, Zorica; Nedeljkovic, Ivana; Tomasevic, Miloje; Vujisic-Tesic, Bosiljka; Ostojic, Miodrag

    2011-05-01

    The aim of this study was to evaluate the relation of basal and hyperemic coronary flow with myocardial functional improvement in patients with previous myocardial infarction undergoing elective percutaneous coronary intervention (PCI). Coronary flow was measured using transthoracic Doppler echocardiography in 50 patients (41 men; mean age, 53 ± 8 years) with previous myocardial infarction before, 24 hours, and 3 months after elective PCI. Diastolic deceleration time (DDT) was measured from the peak diastolic velocity to the point of intercept of initial decay slope with baseline. Coronary flow reserve (CFR) was calculated as the ratio of hyperemic to basal peak diastolic flow velocities. In comparison with patients without improvements in left ventricular function, patients with recovered left ventricular function had longer DDTs before angioplasty (841 ± 286 vs. 435 ± 80 msec, P < .001). CFR was significantly higher in recovered compared with nonrecovered patients (2.60 ± 0.70 vs. 2.16 ± 0.34, P = .034) 24 hours after PCI. Global and regional wall motion scores before PCI, end-diastolic and end-systolic volumes, and CFR 24 hours after PCI and DDT before PCI were univariate predictors of left ventricular functional recovery. By multivariate analysis, DDT and regional wall motion score before PCI were independent predictors of left ventricular recovery in the follow-up period (P = .003 and P = .007, respectively). In patients with previous myocardial infarction undergoing elective PCI, evaluation of basal coronary flow pattern and measurement of DDT before angioplasty may predict functional improvement of myocardium in the follow-up period and could be useful quantitative parameters in the evaluation of potential improvement in myocardial function. Copyright © 2011 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  5. Myocardial infarction caused by myocardial bridging in a male adolescent athlete.

    PubMed

    Zhu, Cheng-Gang; Liu, Jun; Liu, Wei-Dong; Xu, Yan-Lu; Wu, Na-Qiong; Guo, Yuan-Lin; Tang, Yi-Da; Jiang, Li-Xin; Li, Jian-Jun

    2012-02-01

    Myocardial bridging is a common congenital abnormality of a coronary artery, and is usually thought to be a benign anatomical variant. Although rare, previous studies have reported that patients with myocardial bridging may suffer from myocardial ischemia, myocardial infarction (MI), arrhythmias and even sudden death. Here we report the case of an 18-year-old adolescent athlete with myocardial bridging resulting in MI. Coronary angiography revealed 80% luminal narrowing by systolic compression in the proximal and mid segments of the left anterior descending coronary artery, which returned to normal during diastole. We considered that heavy sports might be a potential trigger for his MI attack. Therefore, special attention should be paid to this kind of athlete, especially if adolescent.

  6. Qualitative and Quantitative Imaging Evaluation of Renal Cell Carcinoma Subtypes with Grating-based X-ray Phase-contrast CT

    NASA Astrophysics Data System (ADS)

    Braunagel, Margarita; Birnbacher, Lorenz; Willner, Marian; Marschner, Mathias; De Marco, Fabio; Viermetz, Manuel; Notohamiprodjo, Susan; Hellbach, Katharina; Auweter, Sigrid; Link, Vera; Woischke, Christine; Reiser, Maximilian F.; Pfeiffer, Franz; Notohamiprodjo, Mike; Herzen, Julia

    2017-03-01

    Current clinical imaging methods face limitations in the detection and correct characterization of different subtypes of renal cell carcinoma (RCC), while these are important for therapy and prognosis. The present study evaluates the potential of grating-based X-ray phase-contrast computed tomography (gbPC-CT) for visualization and characterization of human RCC subtypes. The imaging results for 23 ex vivo formalin-fixed human kidney specimens obtained with phase-contrast CT were compared to the results of the absorption-based CT (gbCT), clinical CT and a 3T MRI and validated using histology. Regions of interest were placed on each specimen for quantitative evaluation. Qualitative and quantitative gbPC-CT imaging could significantly discriminate between normal kidney cortex (54 ± 4 HUp) and clear cell (42 ± 10), papillary (43 ± 6) and chromophobe RCCs (39 ± 7), p < 0.05 respectively. The sensitivity for detection of tumor areas was 100%, 50% and 40% for gbPC-CT, gbCT and clinical CT, respectively. RCC architecture like fibrous strands, pseudocapsules, necrosis or hyalinization was depicted clearly in gbPC-CT and was not equally well visualized in gbCT, clinical CT and MRI. The results show that gbPC-CT enables improved discrimination of normal kidney parenchyma and tumorous tissues as well as different soft-tissue components of RCCs without the use of contrast media.

  7. Myocardial imaging using ultrahigh-resolution spectral domain optical coherence tomography

    PubMed Central

    Yao, Xinwen; Gan, Yu; Marboe, Charles C.; Hendon, Christine P.

    2016-01-01

    Abstract. We present an ultrahigh-resolution spectral domain optical coherence tomography (OCT) system in 800 nm with a low-noise supercontinuum source (SC) optimized for myocardial imaging. The system was demonstrated to have an axial resolution of 2.72  μm with a large imaging depth of 1.78 mm and a 6-dB falloff range of 0.89 mm. The lateral resolution (5.52  μm) was compromised to enhance the image penetration required for myocardial imaging. The noise of the SC source was analyzed extensively and an imaging protocol was proposed for SC-based OCT imaging with appreciable contrast. Three-dimensional datasets were acquired ex vivo on the endocardium side of tissue specimens from different chambers of fresh human and swine hearts. With the increased resolution and contrast, features such as elastic fibers, Purkinje fibers, and collagen fiber bundles were observed. The correlation between the structural information revealed in the OCT images and tissue pathology was discussed as well. PMID:27001162

  8. Myocardial Fibrosis in Competitive Triathletes Detected by Contrast-Enhanced CMR Correlates With Exercise-Induced Hypertension and Competition History.

    PubMed

    Tahir, Enver; Starekova, Jitka; Muellerleile, Kai; von Stritzky, Alexandra; Münch, Julia; Avanesov, Maxim; Weinrich, Julius M; Stehning, Christian; Bohnen, Sebastian; Radunski, Ulf K; Freiwald, Eric; Blankenberg, Stefan; Adam, Gerhard; Pressler, Axel; Patten, Monica; Lund, Gunnar K

    2017-12-08

    This study analyzed the presence of myocardial fibrosis detected by late gadolinium-enhancement (LGE) cardiac magnetic resonance (CMR) in correlation with the performance of competitive triathletes objectified by an exercise test and individual competition history. Myocardial fibrosis detected by LGE CMR has been reported to occur in 0% to 50% of asymptomatic athletes. However, the cause and mechanisms of myocardial fibrosis are unclear. Eighty-three asymptomatic triathletes undergoing >10 training h per week (43 ± 10 years of age; 65% male) and 36 sedentary controls were studied by using LGE and extracellular volume (ECV) CMR. Parameters of physical fitness were measured by spiroergometry. Triathletes reported their lifetime competition results. LGE CMR revealed focal nonischemic myocardial fibrosis in 9 of 54 (17%) male triathletes (LGE + ) but in none of the female triathletes (p < 0.05). LGE + triathletes had higher peak exercise systolic blood pressure (213 ± 24 mm Hg) than LGE - triathletes (194 ± 26 mm Hg; p < 0.05). Furthermore, left ventricular mass index was higher in LGE + triathletes (93 ± 7 g/m 2 ) than in LGE - triathletes (84 ± 11 g/m 2 ; p < 0.05). ECV in LGE - myocardium was higher in LGE + triathletes (26.3 ± 1.8%) than in LGE - triathletes (24.4 ± 2.2%; p < 0.05). LGE + triathletes completed longer cumulative distances in swimming and cycling races and participated more often in middle and Iron Man distances than LGE - triathletes. A cycling race distance of >1,880 km completed during competition had the highest accuracy to predict LGE, with an area under the curve value of 0.876 (p < 0.0001), resulting in high sensitivity (89%) and specificity (79%). Multivariate analysis identified peak exercise systolic blood pressure (p < 0.05) and the swimming race distance (p < 0.01) as independent predictors of LGE presence. Myocardial fibrosis in asymptomatic triathletes seems to be associated with exercise-induced hypertension and

  9. Dual-contrast agent photon-counting computed tomography of the heart: initial experience.

    PubMed

    Symons, Rolf; Cork, Tyler E; Lakshmanan, Manu N; Evers, Robert; Davies-Venn, Cynthia; Rice, Kelly A; Thomas, Marvin L; Liu, Chia-Ying; Kappler, Steffen; Ulzheimer, Stefan; Sandfort, Veit; Bluemke, David A; Pourmorteza, Amir

    2017-08-01

    To determine the feasibility of dual-contrast agent imaging of the heart using photon-counting detector (PCD) computed tomography (CT) to simultaneously assess both first-pass and late enhancement of the myocardium. An occlusion-reperfusion canine model of myocardial infarction was used. Gadolinium-based contrast was injected 10 min prior to PCD CT. Iodinated contrast was infused immediately prior to PCD CT, thus capturing late gadolinium enhancement as well as first-pass iodine enhancement. Gadolinium and iodine maps were calculated using a linear material decomposition technique and compared to single-energy (conventional) images. PCD images were compared to in vivo and ex vivo magnetic resonance imaging (MRI) and histology. For infarct versus remote myocardium, contrast-to-noise ratio (CNR) was maximal on late enhancement gadolinium maps (CNR 9.0 ± 0.8, 6.6 ± 0.7, and 0.4 ± 0.4, p < 0.001 for gadolinium maps, single-energy images, and iodine maps, respectively). For infarct versus blood pool, CNR was maximum for iodine maps (CNR 11.8 ± 1.3, 3.8 ± 1.0, and 1.3 ± 0.4, p < 0.001 for iodine maps, gadolinium maps, and single-energy images, respectively). Combined first-pass iodine and late gadolinium maps allowed quantitative separation of blood pool, scar, and remote myocardium. MRI and histology analysis confirmed accurate PCD CT delineation of scar. Simultaneous multi-contrast agent cardiac imaging is feasible with photon-counting detector CT. These initial proof-of-concept results may provide incentives to develop new k-edge contrast agents, to investigate possible interactions between multiple simultaneously administered contrast agents, and to ultimately bring them to clinical practice.

  10. Instrumentation for contrast echocardiography: technology and techniques.

    PubMed

    Kaul, Sanjiv

    2002-11-18

    Contrast echocardiography is the only clinical imaging technique in which the imaging modality (ultrasound) can cause a change in the contrast agent (microbubbles). The change in the contrast agent can range from small oscillations of the microbubbles at a low mechanical index to their disruption at a high mechanical index. The specific mechanical index required to produce these various effects may be different for each contrast agent, depending on the bubble dimension as well as shell and gas characteristics. These alterations in bubbles result in changes in ultrasound backscatter that are specific for the bubbles themselves, rather than for tissue, and are therefore exploited for imaging their presence in tissue. These signal-processing techniques have resulted in an increased signal-to-noise ratio from bubbles vis-à-vis the tissue and have made online assessment of myocardial perfusion possible.

  11. Activation of complement factor B contributes to murine and human myocardial ischemia/reperfusion injury

    PubMed Central

    Hou, Yunfang; Wong, Karen A.; Lee, Daniel; Rushbrook, Julie I.; Gulaya, Karan; Hines, Roberta; Hollis, Tamika; Nistal Nuno, Beatriz; Mangi, Abeel A.; Hashim, Sabet; Pekna, Marcela; Catalfamo, Amy; Chin, Hsiao-ying; Patel, Foramben; Rayala, Sravani; Shevde, Ketan; Heeger, Peter S.

    2017-01-01

    The pathophysiology of myocardial injury that results from cardiac ischemia and reperfusion (I/R) is incompletely understood. Experimental evidence from murine models indicates that innate immune mechanisms including complement activation via the classical and lectin pathways are crucial. Whether factor B (fB), a component of the alternative complement pathway required for amplification of complement cascade activation, participates in the pathophysiology of myocardial I/R injury has not been addressed. We induced regional myocardial I/R injury by transient coronary ligation in WT C57BL/6 mice, a manipulation that resulted in marked myocardial necrosis associated with activation of fB protein and myocardial deposition of C3 activation products. In contrast, in fB-/- mice, the same procedure resulted in significantly reduced myocardial necrosis (% ventricular tissue necrotic; fB-/- mice, 20 ± 4%; WT mice, 45 ± 3%; P < 0.05) and diminished deposition of C3 activation products in the myocardial tissue (fB-/- mice, 0 ± 0%; WT mice, 31 ± 6%; P<0.05). Reconstitution of fB-/- mice with WT serum followed by cardiac I/R restored the myocardial necrosis and activated C3 deposition in the myocardium. In translational human studies we measured levels of activated fB (Bb) in intracoronary blood samples obtained during cardio-pulmonary bypass surgery before and after aortic cross clamping (AXCL), during which global heart ischemia was induced. Intracoronary Bb increased immediately after AXCL, and the levels were directly correlated with peripheral blood levels of cardiac troponin I, an established biomarker of myocardial necrosis (Spearman coefficient = 0.465, P < 0.01). Taken together, our results support the conclusion that circulating fB is a crucial pathophysiological amplifier of I/R-induced, complement-dependent myocardial necrosis and identify fB as a potential therapeutic target for prevention of human myocardial I/R injury. PMID:28662037

  12. Activation of complement factor B contributes to murine and human myocardial ischemia/reperfusion injury.

    PubMed

    Chun, Nicholas; Haddadin, Ala S; Liu, Junying; Hou, Yunfang; Wong, Karen A; Lee, Daniel; Rushbrook, Julie I; Gulaya, Karan; Hines, Roberta; Hollis, Tamika; Nistal Nuno, Beatriz; Mangi, Abeel A; Hashim, Sabet; Pekna, Marcela; Catalfamo, Amy; Chin, Hsiao-Ying; Patel, Foramben; Rayala, Sravani; Shevde, Ketan; Heeger, Peter S; Zhang, Ming

    2017-01-01

    The pathophysiology of myocardial injury that results from cardiac ischemia and reperfusion (I/R) is incompletely understood. Experimental evidence from murine models indicates that innate immune mechanisms including complement activation via the classical and lectin pathways are crucial. Whether factor B (fB), a component of the alternative complement pathway required for amplification of complement cascade activation, participates in the pathophysiology of myocardial I/R injury has not been addressed. We induced regional myocardial I/R injury by transient coronary ligation in WT C57BL/6 mice, a manipulation that resulted in marked myocardial necrosis associated with activation of fB protein and myocardial deposition of C3 activation products. In contrast, in fB-/- mice, the same procedure resulted in significantly reduced myocardial necrosis (% ventricular tissue necrotic; fB-/- mice, 20 ± 4%; WT mice, 45 ± 3%; P < 0.05) and diminished deposition of C3 activation products in the myocardial tissue (fB-/- mice, 0 ± 0%; WT mice, 31 ± 6%; P<0.05). Reconstitution of fB-/- mice with WT serum followed by cardiac I/R restored the myocardial necrosis and activated C3 deposition in the myocardium. In translational human studies we measured levels of activated fB (Bb) in intracoronary blood samples obtained during cardio-pulmonary bypass surgery before and after aortic cross clamping (AXCL), during which global heart ischemia was induced. Intracoronary Bb increased immediately after AXCL, and the levels were directly correlated with peripheral blood levels of cardiac troponin I, an established biomarker of myocardial necrosis (Spearman coefficient = 0.465, P < 0.01). Taken together, our results support the conclusion that circulating fB is a crucial pathophysiological amplifier of I/R-induced, complement-dependent myocardial necrosis and identify fB as a potential therapeutic target for prevention of human myocardial I/R injury.

  13. Cardiac T1 mapping in congenital heart disease: bolus vs. infusion protocols for measurements of myocardial extracellular volume fraction.

    PubMed

    Al-Wakeel-Marquard, Nadya; Rastin, Sanaz; Muench, Frédéric; O H-Ici, Darach; Yilmaz, Sevim; Berger, Felix; Kuehne, Titus; Messroghli, Daniel R

    2017-12-01

    Myocardial extracellular volume fraction (ECV) reflecting diffuse myocardial fibrosis can be measured with T1 mapping cardiovascular magnetic resonance (CMR) before and after the application of a gadolinium-based extracellular contrast agent. The equilibrium between blood and myocardium contrast concentration required for ECV measurements can be obtained with a primed contrast infusion (equilibrium contrast-CMR). We hypothesized that equilibrium can also be achieved with a single contrast bolus to accurately measure diffuse myocardial fibrosis in patients with congenital heart disease (CHD). Healthy controls (n = 17; median age 24.0 years) and patients with CHD (n = 19; 25.0 years) were prospectively enrolled. Using modified Look-Locker inversion recovery T1 mapping before, 15 min after bolus injection, and during constant infusion of gadolinium-DOTA, T1 values were obtained for blood pool and myocardium of the left ventricle (LV), the interventricular septum (IVS), and the right ventricle (RV) in a single midventricular plane in short axis or in transverse orientation. ECV of LV, IVS and RV by bolus-only and bolus-infusion correlated significantly in CHD patients (r = 0.94, 0.95, and 0.74; p < 0.01, respectively) and healthy controls (r = 0.96, 0.89, and 0.64; p < 0.05, respectively). Bland-Altman plots revealed no significant bias between the techniques for any of the analyzed regions. ECV of LV and RV myocardium measured by bolus-only T1 mapping agrees well with bolus-infusion measurements in patients with CHD. The use of a bolus-only approach facilitates the integration of ECV measurements into existing CMR imaging protocols, allowing for assessment of diffuse myocardial fibrosis in CHD in clinical routine.

  14. Parvovirus Infection Is Associated With Myocarditis and Myocardial Fibrosis in Young Dogs.

    PubMed

    Ford, Jordan; McEndaffer, Laura; Renshaw, Randall; Molesan, Alex; Kelly, Kathleen

    2017-11-01

    Perinatal parvoviral infection causes necrotizing myocarditis in puppies, which results in acute high mortality or progressive cardiac injury. While widespread vaccination has dramatically curtailed the epidemic of canine parvoviral myocarditis, we hypothesized that canine parvovirus 2 (CPV-2) myocardial infection is an underrecognized cause of myocarditis, cardiac damage, and/or repair by fibrosis in young dogs. In this retrospective study, DNA was extracted from formalin-fixed, paraffin-embedded tissues from 40 cases and 41 control dogs under 2 years of age from 2007 to 2015. Cases had a diagnosis of myocardial necrosis, inflammation, or fibrosis, while age-matched controls lacked myocardial lesions. Conventional polymerase chain reaction (PCR) and sequencing targeting the VP1 to VP2 region detected CPV-2 in 12 of 40 cases (30%; 95% confidence interval [CI], 18%-45%) and 2 of 41 controls (5%; 95% CI, 0.1%-16%). Detection of CPV-2 DNA in the myocardium was significantly associated with myocardial lesions ( P = .003). Reverse transcription quantitative PCR amplifying VP2 identified viral messenger RNA in 12 of 12 PCR-positive cases and 2 of 2 controls. PCR results were confirmed by in situ hybridization, which identified parvoviral DNA in cardiomyocytes and occasionally macrophages of juvenile and young adult dogs (median age 61 days). Myocardial CPV-2 was identified in juveniles with minimal myocarditis and CPV-2 enteritis, which may indicate a longer window of cardiac susceptibility to myocarditis than previously reported. CPV-2 was also detected in dogs with severe myocardial fibrosis with in situ hybridization signal localized to cardiomyocytes, suggesting prior myocardial damage by CPV-2. Despite the frequency of vaccination, these findings suggest that CPV-2 remains an important cause of myocardial damage in dogs.

  15. Periodontitis and myocardial hypertrophy.

    PubMed

    Suzuki, Jun-Ichi; Sato, Hiroki; Kaneko, Makoto; Yoshida, Asuka; Aoyama, Norio; Akimoto, Shouta; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Izumi, Yuichi; Isobe, Mitsuaki; Komuro, Issei

    2017-04-01

    There is a deep relationship between cardiovascular disease and periodontitis. It has been reported that myocardial hypertrophy may be affected by periodontitis in clinical settings. Although these clinical observations had some study limitations, they strongly suggest a direct association between severity of periodontitis and left ventricular hypertrophy. However, the detailed mechanisms between myocardial hypertrophy and periodontitis have not yet been elucidated. Recently, we demonstrated that periodontal bacteria infection is closely related to myocardial hypertrophy. In murine transverse aortic constriction models, a periodontal pathogen, Aggregatibacter actinomycetemcomitans markedly enhanced cardiac hypertrophy with matrix metalloproteinase-2 activation, while another pathogen Porphyromonas gingivalis (P.g.) did not accelerate these pathological changes. In the isoproterenol-induced myocardial hypertrophy model, P.g. induced myocardial hypertrophy through Toll-like receptor-2 signaling. From our results and other reports, regulation of chronic inflammation induced by periodontitis may have a key role in the treatment of myocardial hypertrophy. In this article, we review the pathophysiological mechanism between myocardial hypertrophy and periodontitis.

  16. Noninvasive PET quantitative myocardial blood flow with regadenoson for assessing cardiac allograft vasculopathy in orthotopic heart transplantation patients

    PubMed Central

    Pampaloni, Miguel Hernandez; Shrestha, Uttam M.; Sciammarella, Maria; Seo, Youngho; Gullberg, Grant T.; Botvinick, Elias H.

    2016-01-01

    Background Risk stratification and early detection of cardiac allograft vasculopathy (CAV) is essential in orthotopic heart transplantation (OHT) patients. This study assesses the changes in myocardial blood flow (MBF) noninvasively in OHT patients using quantitative cardiac PET with regadenoson. Methods Twelve patients (Group 1) (8 males, 4 females, mean age 55 ± 7 y) with no history of post OHT myocardial ischemia were enrolled after 5.4± 2.0 y after OHT. Fifteen patients (Group 2) (9 males, 6 females, mean age 71 ± 9 y) with intermediate pretest probability but not documented evidence for coronary artery disease (CAD) were also included to serve as control. Global and regional MBFs were assessed using dynamic 13N-NH3 PET at rest and during regadenoson-induced hyperemia. The coronary flow reserve (CFR) was also calculated as the ratio of hyperemic to resting MBF. Results Mean regadenoson-induced rate-pressure products were similar in both groups, while there was an increase in resting rate-pressure product in Group 1 patients. Both mean and median values of resting MBF were higher in Group 1 than Group 2 patients (1.33±0.31 and 1.01±0.21 mL/min/g for Groups 1 and 2, respectively, P<.001), while mean hyperemic MBF values were similar in both Groups (2.68±0.84 and 2.64±0.94 mL/min/g, P=NS) but median hyperemic MBF values were lower in Group 1 than Group 2 patients (2.0 vs. 2.60 mL/min/g, P=.018). Both mean and median CFR values demonstrated a significant reduction toward the Group 1 compared to Group 2 patients (2.07±0.74 vs. 2.63±0.48, P = .025). Conclusions This study suggests that the MBF in OHT patients may be abnormal at resting state with diminished CFR. This hints that the epicardial and microvascular coronary subsystem may be exacerbated after OHT leading to the gradual progression of CAV. PMID:28138813

  17. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis.

    PubMed

    van Dijk, R; van Assen, M; Vliegenthart, R; de Bock, G H; van der Harst, P; Oudkerk, M

    2017-11-27

    Stress cardiovascular magnetic resonance (CMR) perfusion imaging is a promising modality for the evaluation of coronary artery disease (CAD) due to high spatial resolution and absence of radiation. Semi-quantitative and quantitative analysis of CMR perfusion are based on signal-intensity curves produced during the first-pass of gadolinium contrast. Multiple semi-quantitative and quantitative parameters have been introduced. Diagnostic performance of these parameters varies extensively among studies and standardized protocols are lacking. This study aims to determine the diagnostic accuracy of semi- quantitative and quantitative CMR perfusion parameters, compared to multiple reference standards. Pubmed, WebOfScience, and Embase were systematically searched using predefined criteria (3272 articles). A check for duplicates was performed (1967 articles). Eligibility and relevance of the articles was determined by two reviewers using pre-defined criteria. The primary data extraction was performed independently by two researchers with the use of a predefined template. Differences in extracted data were resolved by discussion between the two researchers. The quality of the included studies was assessed using the 'Quality Assessment of Diagnostic Accuracy Studies Tool' (QUADAS-2). True positives, false positives, true negatives, and false negatives were subtracted/calculated from the articles. The principal summary measures used to assess diagnostic accuracy were sensitivity, specificity, andarea under the receiver operating curve (AUC). Data was pooled according to analysis territory, reference standard and perfusion parameter. Twenty-two articles were eligible based on the predefined study eligibility criteria. The pooled diagnostic accuracy for segment-, territory- and patient-based analyses showed good diagnostic performance with sensitivity of 0.88, 0.82, and 0.83, specificity of 0.72, 0.83, and 0.76 and AUC of 0.90, 0.84, and 0.87, respectively. In per territory

  18. 3D Myocardial Elastography In Vivo.

    PubMed

    Papadacci, Clement; Bunting, Ethan A; Wan, Elaine Y; Nauleau, Pierre; Konofagou, Elisa E

    2017-02-01

    Strain evaluation is of major interest in clinical cardiology as it can quantify the cardiac function. Myocardial elastography, a radio-frequency (RF)-based cross-correlation method, has been developed to evaluate the local strain distribution in the heart in vivo. However, inhomogeneities such as RF ablation lesions or infarction require a three-dimensional approach to be measured accurately. In addition, acquisitions at high volume rate are essential to evaluate the cardiac strain in three dimensions. Conventional focused transmit schemes using 2D matrix arrays, trade off sufficient volume rate for beam density or sector size to image rapid moving structure such as the heart, which lowers accuracy and precision in the strain estimation. In this study, we developed 3D myocardial elastography at high volume rates using diverging wave transmits to evaluate the local axial strain distribution in three dimensions in three open-chest canines before and after radio-frequency ablation. Acquisitions were performed with a 2.5 MHz 2D matrix array fully programmable used to emit 2000 diverging waves at 2000 volumes/s. Incremental displacements and strains enabled the visualization of rapid events during the QRS complex along with the different phases of the cardiac cycle in entire volumes. Cumulative displacement and strain volumes depict high contrast between non-ablated and ablated myocardium at the lesion location, mapping the tissue coagulation. 3D myocardial strain elastography could thus become an important technique to measure the regional strain distribution in three dimensions in humans.

  19. Morphometry of right ventricular hypertrophy induced by myocardial infarction in the rat.

    PubMed Central

    Anversa, P.; Beghi, C.; McDonald, S. L.; Levicky, V.; Kikkawa, Y.; Olivetti, G.

    1984-01-01

    The growth response of the right ventricle was studied in rats following ligation of the left coronary artery, which produced infarcts comprising approximately 40% of the left ventricle. A month after surgery the weight of the right ventricle was increased 30%, and this hypertrophic change was characterized by a 17% wall thickening, consistent with the 13% greater diameter of myocytes. Myocardial hypertrophy was accompanied by an inadequate growth of the microvasculature that supports tissue oxygenation. This was seen by relative decreases in capillary luminal volume density (-27%) and capillary luminal surface density (-21%) and by an increase in the average maximum distance from the capillary wall to the mitochondria of myocytes (19%). In contrast, measurements of the mean myocyte volume per nucleus showed a proportional enlargement of these cells (32%), from 16,300 cu mu in control animals to 21,500 cu mu in experimental rats. Quantitative analysis of the right coronary artery revealed a 33% increase in its luminal area, commensurate with the magnitude of ventricular hypertrophy. PMID:6236695

  20. Normalized Temperature Contrast Processing in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  1. Comparison of Post-Processing Techniques for the Detection of Perfusion Defects by Cardiac Computed Tomography in Patients Presenting with Acute ST Segment Elevation Myocardial Infarction

    PubMed Central

    Rogers, Ian S.; Cury, Ricardo C.; Blankstein, Ron; Shapiro, Michael D.; Nieman, Koen; Hoffmann, Udo; Brady, Thomas J.; Abbara, Suhny

    2010-01-01

    Background Despite rapid advances in cardiac computed tomography (CT), a strategy for optimal visualization of perfusion abnormalities on CT has yet to be validated. Objective To evaluate the performance of several post-processing techniques of source data sets to detect and characterize perfusion defects in acute myocardial infarctions with cardiac CT. Methods Twenty-one subjects (18 men; 60 ± 13 years) that were successfully treated with percutaneous coronary intervention for ST-segment myocardial infarction underwent 64-slice cardiac CT and 1.5 Tesla cardiac MRI scans following revascularization. Delayed enhancement MRI images were analyzed to identify the location of infarcted myocardium. Contiguous short axis images of the left ventricular myocardium were created from the CT source images using 0.75mm multiplanar reconstruction (MPR), 5mm MPR, 5mm maximal intensity projection (MIP), and 5mm minimum intensity projection (MinIP) techniques. Segments already confirmed to contain infarction by MRI were then evaluated qualitatively and quantitatively with CT. Results Overall, 143 myocardial segments were analyzed. On qualitative analysis, the MinIP and thick MPR techniques had greater visibility and definition than the thin MPR and MIP techniques (p < 0.001). On quantitative analysis, the absolute difference in Hounsfield Unit (HU) attenuation between normal and infarcted segments was significantly greater for the MinIP (65.4 HU) and thin MPR (61.2 HU) techniques. However, the relative difference in HU attenuation was significantly greatest for the MinIP technique alone (95%, p < 0.001). Contrast to noise was greatest for the MinIP (4.2) and thick MPR (4.1) techniques (p < 0.001). Conclusion The results of our current investigation found that MinIP and thick MPR detected infarcted myocardium with greater visibility and definition than MIP and thin MPR. PMID:20579617

  2. Reversibility by dipyridamole of thallium-201 myocardial scan defects in patients with sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tellier, P.; Paycha, F.; Antony, I.

    1988-08-01

    In order to clarify the significance of anginal pain and myocardial thallium-201 scan defects in cardiac sarcoidosis, the pharmacologic effect of dipyridamole on myocardial perfusion was assessed by planar thallium-201 myocardial scintigraphy in patients with sarcoidosis. Thallium-201 myocardial scintigraphy was performed at rest and after 0.56 mg/kg intravenous dipyridamole during four minutes in 16 patients with sarcoidosis. The myocardial scan (45-degree and 70-degree left anterior oblique, and anterior views) was divided into 15 segments. Results were evaluated by the number of segmental defects and with a global perfusion score (from 0 to 60) by a semi-quantitative index depending on themore » size and severity of myocardial thallium-201 defects. Thirteen of the 16 patients showed partial or total reversion of their thallium-201 defects on redistribution scanning either at rest or after dipyridamole. The mean (+/- SD) number of myocardial perfusion defects that were present in all the patients decreased from 5.31 +/- 1.78 at rest to 3.25 +/- 2.52 after redistribution (p less than 0.001) and to 2.19 +/- 2.10 after dipyridamole (p less than 0.001). The mean global perfusion score increased from 53.2 +/- 3.0 at rest to 56.2 +/- 2.9 after redistribution (p less than 0.001) and to 57.2 +/- 2.7 after dipyridamole (p less than 0.001). A significant correlation (r = 0.82, p less than 0.001) was found between the increase of global perfusion score on redistribution and after dipyridamole. The reversibility of myocardial scan defects is a common finding in sarcoidosis. It makes unlikely the role of scar fibrosis or extensive confluent granulomas as a mechanism for such defects. The effect of dipyridamole suggests the presence of reversible disorders lying at the coronary microvascular level.« less

  3. Direct Evidence that Myocardial Insulin Resistance following Myocardial Ischemia Contributes to Post-Ischemic Heart Failure

    PubMed Central

    Fu, Feng; Zhao, Kun; Li, Jia; Xu, Jie; Zhang, Yuan; Liu, Chengfeng; Yang, Weidong; Gao, Chao; Li, Jun; Zhang, Haifeng; Li, Yan; Cui, Qin; Wang, Haichang; Tao, Ling; Wang, Jing; Quon, Michael J; Gao, Feng

    2015-01-01

    A close link between heart failure (HF) and systemic insulin resistance has been well documented, whereas myocardial insulin resistance and its association with HF are inadequately investigated. This study aims to determine the role of myocardial insulin resistance in ischemic HF and its underlying mechanisms. Male Sprague-Dawley rats subjected to myocardial infarction (MI) developed progressive left ventricular dilation with dysfunction and HF at 4 wk post-MI. Of note, myocardial insulin sensitivity was decreased as early as 1 wk after MI, which was accompanied by increased production of myocardial TNF-α. Overexpression of TNF-α in heart mimicked impaired insulin signaling and cardiac dysfunction leading to HF observed after MI. Treatment of rats with a specific TNF-α inhibitor improved myocardial insulin signaling post-MI. Insulin treatment given immediately following MI suppressed myocardial TNF-α production and improved cardiac insulin sensitivity and opposed cardiac dysfunction/remodeling. Moreover, tamoxifen-induced cardiomyocyte-specific insulin receptor knockout mice exhibited aggravated post-ischemic ventricular remodeling and dysfunction compared with controls. In conclusion, MI induces myocardial insulin resistance (without systemic insulin resistance) mediated partly by ischemia-induced myocardial TNF-α overproduction and promotes the development of HF. Our findings underscore the direct and essential role of myocardial insulin signaling in protection against post-ischemic HF. PMID:26659007

  4. Quantitative contrast-enhanced optical coherence tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winetraub, Yonatan; SoRelle, Elliott D.; Bio-X Program, Stanford University, 299 Campus Drive, Stanford, California 94305

    2016-01-11

    We have developed a model to accurately quantify the signals produced by exogenous scattering agents used for contrast-enhanced Optical Coherence Tomography (OCT). This model predicts distinct concentration-dependent signal trends that arise from the underlying physics of OCT detection. Accordingly, we show that real scattering particles can be described as simplified ideal scatterers with modified scattering intensity and concentration. The relation between OCT signal and particle concentration is approximately linear at concentrations lower than 0.8 particle per imaging voxel. However, at higher concentrations, interference effects cause signal to increase with a square root dependence on the number of particles within amore » voxel. Finally, high particle concentrations cause enough light attenuation to saturate the detected signal. Predictions were validated by comparison with measured OCT signals from gold nanorods (GNRs) prepared in water at concentrations ranging over five orders of magnitude (50 fM to 5 nM). In addition, we validated that our model accurately predicts the signal responses of GNRs in highly heterogeneous scattering environments including whole blood and living animals. By enabling particle quantification, this work provides a valuable tool for current and future contrast-enhanced in vivo OCT studies. More generally, the model described herein may inform the interpretation of detected signals in modalities that rely on coherence-based detection or are susceptible to interference effects.« less

  5. An unsupervised approach for measuring myocardial perfusion in MR image sequences

    NASA Astrophysics Data System (ADS)

    Discher, Antoine; Rougon, Nicolas; Preteux, Francoise

    2005-08-01

    Quantitatively assessing myocardial perfusion is a key issue for the diagnosis, therapeutic planning and patient follow-up of cardio-vascular diseases. To this end, perfusion MRI (p-MRI) has emerged as a valuable clinical investigation tool thanks to its ability of dynamically imaging the first pass of a contrast bolus in the framework of stress/rest exams. However, reliable techniques for automatically computing regional first pass curves from 2D short-axis cardiac p-MRI sequences remain to be elaborated. We address this problem and develop an unsupervised four-step approach comprising: (i) a coarse spatio-temporal segmentation step, allowing to automatically detect a region of interest for the heart over the whole sequence, and to select a reference frame with maximal myocardium contrast; (ii) a model-based variational segmentation step of the reference frame, yielding a bi-ventricular partition of the heart into left ventricle, right ventricle and myocardium components; (iii) a respiratory/cardiac motion artifacts compensation step using a novel region-driven intensity-based non rigid registration technique, allowing to elastically propagate the reference bi-ventricular segmentation over the whole sequence; (iv) a measurement step, delivering first-pass curves over each region of a segmental model of the myocardium. The performance of this approach is assessed over a database of 15 normal and pathological subjects, and compared with perfusion measurements delivered by a MRI manufacturer software package based on manual delineations by a medical expert.

  6. Quantification of myocardium at risk in ST- elevation myocardial infarction: a comparison of contrast-enhanced steady-state free precession cine cardiovascular magnetic resonance with coronary angiographic jeopardy scores.

    PubMed

    De Palma, Rodney; Sörensson, Peder; Verouhis, Dinos; Pernow, John; Saleh, Nawzad

    2017-07-27

    Clinical outcome following acute myocardial infarction is predicted by final infarct size evaluated in relation to left ventricular myocardium at risk (MaR). Contrast-enhanced steady-state free precession (CE-SSFP) cardiovascular magnetic resonance imaging (CMR) is not widely used for assessing MaR. Evidence of its utility compared to traditional assessment methods and as a surrogate for clinical outcome is needed. Retrospective analysis within a study evaluating post-conditioning during ST elevation myocardial infarction (STEMI) treated with coronary intervention (n = 78). CE-SSFP post-infarction was compared with angiographic jeopardy methods. Differences and variability between CMR and angiographic methods using Bland-Altman analyses were evaluated. Clinical outcomes were compared to MaR and extent of infarction. MaR showed correlation between CE-SSFP, and both BARI and APPROACH scores of 0.83 (p < 0.0001) and 0.84 (p < 0.0001) respectively. Bias between CE-SSFP and BARI was 1.1% (agreement limits -11.4 to +9.1). Bias between CE-SSFP and APPROACH was 1.2% (agreement limits -13 to +10.5). Inter-observer variability for the BARI score was 0.56 ± 2.9; 0.42 ± 2.1 for the APPROACH score; -1.4 ± 3.1% for CE-SSFP. Intra-observer variability was 0.15 ± 1.85 for the BARI score; for the APPROACH score 0.19 ± 1.6; and for CE-SSFP -0.58 ± 2.9%. Quantification of MaR with CE-SSFP imaging following STEMI shows high correlation and low bias compared with angiographic scoring and supports its use as a reliable and practical method to determine myocardial salvage in this patient population. Clinical trial registration information for the parent clinical trial: Karolinska Clinical Trial Registration (2008) Unique identifier: CT20080014. Registered 04 th January 2008.

  7. Relationship between HgbA1c and myocardial blood flow reserve in patients with type 2 diabetes mellitus: noninvasive assessment using real-time myocardial perfusion echocardiography.

    PubMed

    Huang, Runqing; Abdelmoneim, Sahar S; Nhola, Lara F; Mulvagh, Sharon L

    2014-01-01

    To study the relationship between glycosylated hemoglobin (HgbA1c) and myocardial perfusion in type 2 diabetes mellitus (T2DM) patients, we prospectively enrolled 24 patients with known or suspected coronary artery disease (CAD) who underwent adenosine stress by real-time myocardial perfusion echocardiography (RTMPE). HgbA1c was measured at time of RTMPE. Microbubble velocity (β min(-1)), myocardial blood flow (MBF, mL/min/g), and myocardial blood flow reserve (MBFR) were quantified. Quantitative MCE analysis was feasible in all patients (272/384 segments, 71%). Those with HgbA1c > 7.1% had significantly lower βreserve and MBFR than those with HgbA1c ≤ 7.1% (P < 0.05). In patients with suspected CAD, there was a significant inverse correlation between MBFR and HgbA1c (r = -0.279, P = 0.01); however, in those with known CAD, this relationship was not significant (r = -0.117, P = 0.129). Using a MBFR cutoff value > 2 as normal, HgbA1c > 7.1% significantly increased the risk for abnormal MBFR, (adjusted odds ratio: 1.92, 95% CI: 1.12-3.35, P = 0.02). Optimal glycemic control is associated with preservation of MBFR as determined by RTMPE, in T2DM patients at risk for CAD.

  8. Contrast-induced acute kidney injury and mortality in ST elevation myocardial infarction treated with primary percutaneous coronary intervention.

    PubMed

    Silvain, Johanne; Nguyen, Lee S; Spagnoli, Vincent; Kerneis, Mathieu; Guedeney, Paul; Vignolles, Nicolas; Cosker, Kristel; Barthelemy, Olivier; Le Feuvre, Claude; Helft, Gérard; Collet, Jean-Philippe; Montalescot, Gilles

    2018-05-01

    Contrast-induced acute kidney injury (CI-AKI) is a common and potentially severe complication in patients with ST elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention (pPCI). There is no consensus on the best definition of CI-AKI to identify patients at risk of haemodialysis or death. The objective of this study was to assess the association of CI-AKI, using four definitions, on inhospital mortality, mortality or haemodialysis requirement over 1-year follow-up, in patients with STEMI treated with pPCI. In this prospective, observational study, all patients with STEMI referred for pPCI were included. We identified independent variables associated with CI-AKI and mortality. We included 1114 consecutive patients with STEMI treated by pPCI. CI-AKI occurred in 18.3%, 12.2%, 15.6% and 10.5% of patients according to the CIN, Acute Kidney Injury Network (AKIN), Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease (RIFLE) Modification of Diet in Renal Disease (MDRD) and RIFLE Chronic Kidney Disease - Epidemiology Collaboration (CKD-EPI) definitions, respectively. The RIFLE (CKD-EPI) definition was the most discriminant definition to identify patients at higher risk of inhospital mortality (27.1% vs 4.0%; adjusted OR 2.7 (95% CI 1.4 to 5.1), p=0.003), 1-year mortality (27.4% vs 6.6%; adjusted OR 2.8 (95% CI 1.5 to 5.3), p=0.002) and haemodialysis requirement at 1-year follow-up (15.6% vs 2.7%; adjusted OR 6.7 (95% CI 3.3 to 13.6), p=0.001). Haemodynamic instability, cardiac arrest, preexisting renal failure, elderly age and a high contrast media volume were independently associated with 1-year mortality. Of interest, contrast-media volume was not correlated to increase of creatininaemia (r=0.06) or decrease in estimated glomerular filtration rate (r=0.05) after percutaneous coronary intervention in our population. CI-AKI is a frequent and serious complication of STEMI treated by pPCI. The RIFLE definition is

  9. Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography.

    PubMed

    Willett, N J; Thote, T; Hart, M; Moran, S; Guldberg, R E; Kamath, R V

    2016-09-01

    The development of effective therapies for cartilage protection has been limited by a lack of efficient quantitative cartilage imaging modalities in pre-clinical in vivo models. Our objectives were two-fold: first, to validate a new contrast-enhanced 3D imaging analysis technique, equilibrium partitioning of an ionic contrast agent-micro computed tomography (EPIC-μCT), in a rat medial meniscal transection (MMT) osteoarthritis (OA) model; and second, to quantitatively assess the sensitivity of EPIC-μCT to detect the effects of matrix metalloproteinase inhibitor (MMPi) therapy on cartilage degeneration. Rats underwent MMT surgery and tissues were harvested at 1, 2, and 3 weeks post-surgery or rats received an MMPi or vehicle treatment and tissues harvested 3 weeks post-surgery. Parameters of disease progression were evaluated using histopathology and EPIC-μCT. Correlations and power analyses were performed to compare the techniques. EPIC-μCT was shown to provide simultaneous 3D quantification of multiple parameters, including cartilage degeneration and osteophyte formation. In MMT animals treated with MMPi, OA progression was attenuated, as measured by 3D parameters such as lesion volume and osteophyte size. A post-hoc power analysis showed that 3D parameters for EPIC-μCT were more sensitive than 2D parameters requiring fewer animals to detect a therapeutic effect of MMPi. 2D parameters were comparable between EPIC-μCT and histopathology. This study demonstrated that EPIC-μCT has high sensitivity to provide 3D structural and compositional measurements of cartilage and bone in the joint. EPIC-μCT can be used in combination with histology to provide a comprehensive analysis to screen new potential therapies. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  10. Relationship between Myocardial Extracellular Space Expansion Estimated with Post-Contrast T1 Mapping MRI and Left Ventricular Remodeling and Neurohormonal Activation in Patients with Dilated Cardiomyopathy.

    PubMed

    Yoon, Ji Hyun; Son, Jung Woo; Chung, Hyemoon; Park, Chul Hwan; Kim, Young-Jin; Chang, Hyuk-Jae; Hong, Geu-Ru; Kim, Tae Hoon; Ha, Jong-Won; Choi, Byoung Wook; Rim, Se-Joong; Chung, Namsik; Choi, Eui-Young

    2015-01-01

    Post-contrast T1 values are closely related to the degree of myocardial extracellular space expansion. We determined the relationship between post-contrast T1 values and left ventricular (LV) diastolic function, LV remodeling, and neurohormonal activation in patients with dilated cardiomyopathy (DCM). Fifty-nine patients with DCM (mean age, 55 ± 15 years; 41 males and 18 females) who underwent both 1.5T magnetic resonance imaging and echocardiography were enrolled. The post-contrast 10-minute T1 value was generated from inversion time scout images obtained using the Look-Locker inversion recovery sequence and a curve-fitting algorithm. The T1 sample volume was obtained from three interventricular septal points, and the mean T1 value was used for analysis. The N-Terminal pro-B-type natriuretic peptide (NT-proBNP) level was measured in 40 patients. The mean LV ejection fraction was 24 ± 9% and the post-T1 value was 254.5 ± 46.4 ms. The post-contrast T1 value was significantly correlated with systolic longitudinal septal velocity (s'), peak late diastolic velocity of the mitral annulus (a'), the diastolic elastance index (Ed, [E/e']/stroke volume), LV mass/volume ratio, LV end-diastolic wall stress, and LV end-systolic wall stress. In a multivariate analysis without NT-proBNP, T1 values were independently correlated with Ed (β = -0.351, p = 0.016) and the LV mass/volume ratio (β = 0.495, p = 0.001). When NT-proBNP was used in the analysis, NT-proBNP was independently correlated with the T1 values (β = -0.339, p = 0.017). Post-contrast T1 is closely related to LV remodeling, diastolic function, and neurohormonal activation in patients with DCM.

  11. Unfolded protein response plays a critical role in heart damage after myocardial ischemia/reperfusion in rats

    PubMed Central

    Li, Yanming; Xie, Liang; Zhuang, Wei; Liu, Jing; Gong, Jianbin

    2017-01-01

    The unfolded protein response (UPR) plays a critical role in cell death mediated by ischemia/reperfusion (I/R) injury. However, little is known about the exact mechanism of UPR signaling pathways after myocardial I/R injury in rats. An attempt was therefore made to assess whether the myocardial I/R induced UPR, and which branch of UPR (ATF6, IRE1 and PERK) signal pathway was activated. Sprague-Dawley rats were pretreated with UPR stimulator dithiothreitol (DTT) and UPR inhibitor 4-phenylbutyrate (4PBA) and then subjected to myocardial I/R surgery. Compared with sham-operated group, the expression of GRP78, ATF6, CHOP and sXBP1 in the I/R injured group is significantly increased at transcript and protein levels, which indicated that all the three signal pathways of UPR were activated in the myocardial I/R injury. Compared with the I/R injured group, treatment with 4PBA effectively decreased myocardium infarct size, reduced myocardial apoptosis, down-regulated caspase-12 expression, diminished serum creatine kinase and lactate dehydrogenase levels. In contrast, these effects were reversed in DTT treated group. In summary, these results demonstrated that myocardial I/R injury activates UPR and inhibiting cell UPR possesses a cardioprotective effect through the suppression of ER stress-induced apoptosis. Therefore, inhibition of UPR might be used as a therapeutic target during myocardial I/R injury. PMID:28591178

  12. Unfolded protein response plays a critical role in heart damage after myocardial ischemia/reperfusion in rats.

    PubMed

    Zhang, Chengcheng; Tang, Yi; Li, Yanming; Xie, Liang; Zhuang, Wei; Liu, Jing; Gong, Jianbin

    2017-01-01

    The unfolded protein response (UPR) plays a critical role in cell death mediated by ischemia/reperfusion (I/R) injury. However, little is known about the exact mechanism of UPR signaling pathways after myocardial I/R injury in rats. An attempt was therefore made to assess whether the myocardial I/R induced UPR, and which branch of UPR (ATF6, IRE1 and PERK) signal pathway was activated. Sprague-Dawley rats were pretreated with UPR stimulator dithiothreitol (DTT) and UPR inhibitor 4-phenylbutyrate (4PBA) and then subjected to myocardial I/R surgery. Compared with sham-operated group, the expression of GRP78, ATF6, CHOP and sXBP1 in the I/R injured group is significantly increased at transcript and protein levels, which indicated that all the three signal pathways of UPR were activated in the myocardial I/R injury. Compared with the I/R injured group, treatment with 4PBA effectively decreased myocardium infarct size, reduced myocardial apoptosis, down-regulated caspase-12 expression, diminished serum creatine kinase and lactate dehydrogenase levels. In contrast, these effects were reversed in DTT treated group. In summary, these results demonstrated that myocardial I/R injury activates UPR and inhibiting cell UPR possesses a cardioprotective effect through the suppression of ER stress-induced apoptosis. Therefore, inhibition of UPR might be used as a therapeutic target during myocardial I/R injury.

  13. Normal Databases for the Relative Quantification of Myocardial Perfusion

    PubMed Central

    Rubeaux, Mathieu; Xu, Yuan; Germano, Guido; Berman, Daniel S.; Slomka, Piotr J.

    2016-01-01

    Purpose of review Myocardial perfusion imaging (MPI) with SPECT is performed clinically worldwide to detect and monitor coronary artery disease (CAD). MPI allows an objective quantification of myocardial perfusion at stress and rest. This established technique relies on normal databases to compare patient scans against reference normal limits. In this review, we aim to introduce the process of MPI quantification with normal databases and describe the associated perfusion quantitative measures that are used. Recent findings New equipment and new software reconstruction algorithms have been introduced which require the development of new normal limits. The appearance and regional count variations of normal MPI scan may differ between these new scanners and standard Anger cameras. Therefore, these new systems may require the determination of new normal limits to achieve optimal accuracy in relative myocardial perfusion quantification. Accurate diagnostic and prognostic results rivaling those obtained by expert readers can be obtained by this widely used technique. Summary Throughout this review, we emphasize the importance of the different normal databases and the need for specific databases relative to distinct imaging procedures. use of appropriate normal limits allows optimal quantification of MPI by taking into account subtle image differences due to the hardware and software used, and the population studied. PMID:28138354

  14. Myocardial contusion in patients with blunt chest trauma as evaluated by thallium 201 myocardial scintigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodin, L.; Rouby, J.J.; Viars, P.

    1988-07-01

    Fifty five patients suffering from blunt chest trauma were studied to assess the diagnosis of myocardial contusion using thallium 201 myocardial scintigraphy. Thirty-eight patients had consistent scintigraphic defects and were considered to have a myocardial contusion. All patients with scintigraphic defects had paroxysmal arrhythmias and/or ECG abnormalities. Of 38 patients, 32 had localized ST-T segment abnormalities; 29, ST-T segment abnormalities suggesting involvement of the same cardiac area as scintigraphic defects; 21, echocardiographic abnormalities. Sixteen patients had segmental hypokinesia involving the same cardiac area as the scintigraphic defects. Fifteen patients had clinical signs suggestive of myocardial contusion and scintigraphic defects. Almostmore » 70 percent of patients with blunt chest trauma had scintigraphic defects related to areas of myocardial contusion. When thallium 201 myocardial scintigraphy directly showed myocardial lesion, two-dimensional echocardiography and standard ECG detected related functional consequences of cardiac trauma.« less

  15. Quantitative evaluation of retinal degeneration in royal college of surgeons rats by contrast enhanced ultrahigh resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Syu, Jia-Pu; Su, Min-Jyun; Chen, Po-Wei; Ke, Chang-Chih; Chiou, Shih-Hwa; Kuo, Wen-Chuan

    2018-02-01

    This study presents a spectral domain optical coherence tomography (SD-OCT) using supercontinuum laser combined with a fundus photography for in vivo high-resolution imaging of retinal degeneration in Royal College of Surgeons (RCS-/- rat). These findings were compared with the Sprague-Dawley (SD) rats and the corresponding histology. Quantitative measurements show that changes in thickness were not significantly different between SD control and young RCS retinas (4 weeks). However, in old RCS rats (55 weeks), the thickness of photoreceptor layer decreased significantly as compared to young RCS rats (both 4 weeks and 5 weeks). After contrast enhancement method, this platform will be useful for the quantitative evaluation of the degree of retinal degeneration, treatment outcome after therapy, and drug screening development in the future.

  16. Experimental myocardial infarction

    PubMed Central

    Kumar, Raj; Joison, Julio; Gilmour, David P.; Molokhia, Farouk A.; Pegg, C. A. S.; Hood, William B.

    1971-01-01

    The hemodynamic effects of tachycardia induced by atrial pacing were investigated in left ventricular failure of acute and healing experimental myocardial infarction in 20 intact, conscious dogs. Myocardial infarction was produced by gradual inflation of a balloon cuff device implanted around the left anterior descending coronary artery 10-15 days prior to the study. 1 hr after acute myocardial infarction, atrial pacing at a rate of 180 beats/min decreased left ventricular end-diastolic pressure from 19 to 8 mm Hg and left atrial pressure from 17 to 12 mm Hg, without change in cardiac output. In the healing phase of myocardial infarction 1 wk later, atrial pacing decreased left ventricular end-diastolic pressure from 17 to 9 mm Hg and increased the cardiac output by 37%. This was accompanied by evidence of peripheral vasodilation. In two dogs with healing anterior wall myocardial infarction, left ventricular failure was enhanced by partial occlusion of the circumflex coronary artery. Both the dogs developed pulmonary edema. Pacing improved left ventricular performance and relieved pulmonary edema in both animals. In six animals propranolol was given after acute infarction, and left ventricular function deteriorated further. However the pacing-induced augmentation of cardiac function was unaltered and, hence, is not mediated by sympathetics. The results show that the spontaneous heart rate in left ventricular failure of experimental canine myocardial infarction may be less than optimal and that maximal cardiac function may be achieved at higher heart rates. Images PMID:4395910

  17. Noninvasive PET quantitative myocardial blood flow with regadenoson for assessing cardiac allograft vasculopathy in orthotopic heart transplantation patients.

    PubMed

    Pampaloni, Miguel Hernandez; Shrestha, Uttam M; Sciammarella, Maria; Seo, Youngho; Gullberg, Grant T; Botvinick, Elias H

    2017-08-01

    Risk stratification and early detection of cardiac allograft vasculopathy (CAV) is essential in orthotopic heart transplantation (OHT) patients. This study assesses the changes in myocardial blood flow (MBF) noninvasively in OHT patients using quantitative cardiac PET with regadenoson. Twelve patients (Group 1) (8 males, 4 females, mean age 55 ± 7 years) with no history of post OHT myocardial ischemia were enrolled 5.4 ± 2.0 years after OHT. Fifteen patients (Group 2) (9 males, 6 females, mean age 71 ± 9 years) with intermediate pretest probability but not documented evidence for coronary artery disease (CAD) were also included to serve as control. Global and regional MBFs were assessed using dynamic 13 N-NH 3 PET at rest and during regadenoson-induced hyperemia. The coronary flow reserve (CFR) was also calculated as the ratio of hyperemic to resting MBF. Mean regadenoson-induced rate-pressure products were similar in both groups, while there was an increase in resting rate-pressure product in Group 1 patients. Both mean and median values of resting MBF were higher in Group 1 than Group 2 patients (1.33 ± 0.31 and 1.01 ± 0.21 mL/min/g for Groups 1 and 2, respectively, P < .001), while mean hyperemic MBF values were similar in both Groups (2.68 ± 0.84 and 2.64 ± 0.94 mL/min/g, P = NS) but median hyperemic MBF values were lower in Group 1 than Group 2 patients (2.0 vs. 2.60 mL/min/g, P = .018). Both mean and median CFR values demonstrated a significant reduction for Group 1 compared to Group 2 patients (2.07 ± 0.74 vs 2.63 ± 0.48, P = .025). This study suggests that the MBF in OHT patients may be abnormal at resting state with diminished CFR. This hints that the epicardial and microvascular coronary subsystem may be exacerbated after OHT leading to the gradual progression of CAV.

  18. Cardiac magnetic resonance imaging of myocardial mass and fibrosis in primary aldosteronism

    PubMed Central

    Grytaas, Marianne Aa; Sellevåg, Kjersti; Thordarson, Hrafnkell B; Husebye, Eystein S; Løvås, Kristian; Larsen, Terje H

    2018-01-01

    Background Primary aldosteronism (PA) is associated with increased cardiovascular morbidity, presumably due to left ventricular (LV) hypertrophy and fibrosis. However, the degree of fibrosis has not been extensively studied. Cardiac magnetic resonance imaging (CMR) contrast enhancement and novel sensitive T1 mapping to estimate increased extracellular volume (ECV) are available to measure the extent of fibrosis. Objectives To assess LV mass and fibrosis before and after treatment of PA using CMR with contrast enhancement and T1 mapping. Methods Fifteen patients with newly diagnosed PA (PA1) and 24 age- and sex-matched healthy subjects (HS) were studied by CMR with contrast enhancement. Repeated imaging with a new scanner with T1 mapping was performed in 14 of the PA1 and 20 of the HS median 18 months after specific PA treatment and in additional 16 newly diagnosed PA patients (PA2). Results PA1 had higher baseline LV mass index than HS (69 (53–91) vs 51 (40–72) g/m2; P < 0.001), which decreased significantly after treatment (58 (40–86) g/m2; P < 0.001 vs baseline), more with adrenalectomy (n = 8; −9 g/m2; P = 0.003) than with medical treatment (n = 6; −5 g/m2; P = 0.075). No baseline difference was found in contrast enhancement between PA1 and HS. T1 mapping showed no increase in ECV as a myocardial fibrosis marker in PA. Moreover, ECV was lower in the untreated PA2 than HS 10 min post-contrast, and in both PA groups compared with HS 20 min post-contrast. Conclusion Specific treatment rapidly reduced LV mass in PA. Increased myocardial fibrosis was not found and may not represent a common clinical problem. PMID:29440130

  19. Cardiac magnetic resonance imaging of myocardial mass and fibrosis in primary aldosteronism.

    PubMed

    Grytaas, Marianne Aa; Sellevåg, Kjersti; Thordarson, Hrafnkell B; Husebye, Eystein S; Løvås, Kristian; Larsen, Terje H

    2018-03-01

    Primary aldosteronism (PA) is associated with increased cardiovascular morbidity, presumably due to left ventricular (LV) hypertrophy and fibrosis. However, the degree of fibrosis has not been extensively studied. Cardiac magnetic resonance imaging (CMR) contrast enhancement and novel sensitive T1 mapping to estimate increased extracellular volume (ECV) are available to measure the extent of fibrosis. To assess LV mass and fibrosis before and after treatment of PA using CMR with contrast enhancement and T1 mapping. Fifteen patients with newly diagnosed PA (PA1) and 24 age- and sex-matched healthy subjects (HS) were studied by CMR with contrast enhancement. Repeated imaging with a new scanner with T1 mapping was performed in 14 of the PA1 and 20 of the HS median 18 months after specific PA treatment and in additional 16 newly diagnosed PA patients (PA2). PA1 had higher baseline LV mass index than HS (69 (53-91) vs 51 (40-72) g/m 2 ; P  < 0.001), which decreased significantly after treatment (58 (40-86) g/m 2 ; P  < 0.001 vs baseline), more with adrenalectomy ( n  = 8; -9 g/m 2 ; P  = 0.003) than with medical treatment ( n  = 6; -5 g/m 2 ; P  = 0.075). No baseline difference was found in contrast enhancement between PA1 and HS. T1 mapping showed no increase in ECV as a myocardial fibrosis marker in PA. Moreover, ECV was lower in the untreated PA2 than HS 10 min post-contrast, and in both PA groups compared with HS 20 min post-contrast. Specific treatment rapidly reduced LV mass in PA. Increased myocardial fibrosis was not found and may not represent a common clinical problem. © 2018 The authors.

  20. Quantitative ultrasound molecular imaging by modeling the binding kinetics of targeted contrast agent

    NASA Astrophysics Data System (ADS)

    Turco, Simona; Tardy, Isabelle; Frinking, Peter; Wijkstra, Hessel; Mischi, Massimo

    2017-03-01

    Ultrasound molecular imaging (USMI) is an emerging technique to monitor diseases at the molecular level by the use of novel targeted ultrasound contrast agents (tUCA). These consist of microbubbles functionalized with targeting ligands with high-affinity for molecular markers of specific disease processes, such as cancer-related angiogenesis. Among the molecular markers of angiogenesis, the vascular endothelial growth factor receptor 2 (VEGFR2) is recognized to play a major role. In response, the clinical-grade tUCA BR55 was recently developed, consisting of VEGFR2-targeting microbubbles which can flow through the entire circulation and accumulate where VEGFR2 is over-expressed, thus causing selective enhancement in areas of active angiogenesis. Discrimination between bound and free microbubbles is crucial to assess cancer angiogenesis. Currently, this is done non-quantitatively by looking at the late enhancement, about 10 min after injection, or by calculation of the differential targeted enhancement, requiring the application of a high-pressure ultrasound (US) burst to destroy all the microbubbles in the acoustic field and isolate the signal coming only from bound microbubbles. In this work, we propose a novel method based on mathematical modeling of the binding kinetics during the tUCA first pass, thus reducing the acquisition time and with no need for a destructive US burst. Fitting time-intensity curves measured with USMI by the proposed model enables the assessment of cancer angiogenesis at both the vascular and molecular levels. This is achieved by estimation of quantitative parameters related to the microvascular architecture and microbubble binding. The proposed method was tested in 11 prostate-tumor bearing rats by performing USMI after injection of BR55, and showed good agreement with current USMI methods. The novel information provided by the proposed method, possibly combined with the current non-quantitative methods, may bring deeper insight into

  1. Structure Dependence of Long-Chain [18F]Fluorothia Fatty Acids as Myocardial Fatty Acid Oxidation Probes

    PubMed Central

    Pandey, Mukesh K.; Belanger, Anthony P.; Wang, Shuyan; DeGrado, Timothy R.

    2012-01-01

    In-vivo imaging of regional fatty acid oxidation (FAO) rates would have considerable potential for evaluation of mammalian diseases. We have synthe sized and evaluated 18F-labeled thia fatty acid analogues as metabolically trapped FAO probes to understand the effect of chain length, degree of unsaturation and placement of the thia-substituent on myocardial uptake and retention. 18-[18F]fluoro-4-thia-(9Z)-octadec-9-enoic acid (3) showed excellent heart:background radioactivity concentration ratios along with highest retention in heart and liver. Pretreatment of rats with the CPT-1 inhibitor, POCA, caused >80% reduction in myocardial uptake of 16-[18F]fluoro-4-thia-hexadecanoic acid (2), and 3 indicating high specificity for FAO. In contrast, 18-[18F]fluoro-4-thia-octadecanoic acid (4), showed dramatically reduced myocardial uptake and blunted response to POCA. 18-[18F]fluoro-6-thia-octadecanoic acid (5), showed moderate myocardial uptake and no sensitivity of myocardial uptake to POCA. The results demonstrate relationships between structures of 18F-labelled thia fatty acid and uptake, and their utility as FAO probes in various tissues. PMID:23153307

  2. Differences in aortic vortex flow pattern between normal and patients with stroke: qualitative and quantitative assessment using transesophageal contrast echocardiography.

    PubMed

    Son, Jang-Won; Hong, Geu-Ru; Hong, Woosol; Kim, Minji; Houle, Helene; Vannan, Mani A; Pedrizzetti, Gianni; Chung, Namsik

    2016-06-01

    The flow in the aorta forms a vortex, which is a critical determinant of the flow dynamics in the aorta. Arteriosclerosis can alter the blood flow pattern of the aorta and cause characteristic alterations of the vortex. However, this change in aortic vortex has not yet been studied. This study aimed to characterize aortic vortex flow pattern using transesophageal contrast echocardiography in normal and stroke patients. A total of 85 patients who diagnosed with ischemic stroke and 16 normal controls were recruited for this study. The 16 normal control subjects were designated as the control group, and the 85 ischemic stroke patients were designated as the stroke group. All subjects underwent contrast transesophageal echocardiography (TEE), and particle image velocimetry was used to assess aortic vortex flow. Qualitative and quantitative analyses of vortex flow morphology, location, phasic variation, and pulsatility were undertaken and compared between the groups. In the control group, multiple irregularly-shaped vortices were observed in a peripheral location in the descending thoracic aorta. In contrast, the stroke group had a single, round, merged, and more centrally located aortic vortex flow. In the quantitative analysis of vortex, vortex depth, which represents the location of the major vortex in the aorta, was significantly higher in the control group than in the stroke group (0.599 ± 0.159 vs. 0.522 ± 0.101, respectively, P = 0.013). Vortex relative strength, which is the pulsatility parameter of the vortex itself, was significantly higher in the stroke group than in the control group (0.367 ± 0.148 vs. 0.304 ± 0.087, respectively, P = 0.025). It was feasible to visualize and quantify the characteristic morphology and pulsatility of the aortic vortex flow using contrast TEE, and aortic vortex pattern significantly differed between normal and stroke patients.

  3. Landiolol suppression of electrical storm of torsades de pointes in patients with congenital long-QT syndrome type 2 and myocardial ischemia.

    PubMed

    Kitajima, Ryota; Aiba, Takeshi; Kamakura, Tsukasa; Ishibashi, Kohei; Wada, Mitsuru; Inoue, Yuko; Miyamoto, Koji; Okamura, Hideo; Noda, Takashi; Nagase, Satoshi; Kataoka, Yu; Asaumi, Yasuhide; Noguchi, Teruo; Yasuda, Satoshi; Kusano, Kengo

    2017-10-01

    A 76-year-old man who had been diagnosed with long-QT syndrome type 2 had frequent syncopal attacks. The electrocardiogram was monitored, and frequent torsades de pointes (TdP) was detected despite administration of conventional medications: oral propranolol, verapamil, intravenous magnesium sulfate, verapamil, and lidocaine. In contrast, 2 μg/kg/min landiolol could completely suppress TdP. Subsequently, an implantable cardioverter defibrillator was placed, and he was diagnosed with silent myocardial ischemia using myocardial perfusion scintigraphy and coronary angiography. This is the first case report wherein landiolol effectively suppressed TdP due to long-QT syndrome with silent myocardial ischemia.

  4. Development and characterization of a dynamic lesion phantom for the quantitative evaluation of dynamic contrast-enhanced MRI.

    PubMed

    Freed, Melanie; de Zwart, Jacco A; Hariharan, Prasanna; Myers, Matthew R; Badano, Aldo

    2011-10-01

    To develop a dynamic lesion phantom that is capable of producing physiological kinetic curves representative of those seen in human dynamic contrast-enhanced MRI (DCE-MRI) data. The objective of this phantom is to provide a platform for the quantitative comparison of DCE-MRI protocols to aid in the standardization and optimization of breast DCE-MRI. The dynamic lesion consists of a hollow, plastic mold with inlet and outlet tubes to allow flow of a contrast agent solution through the lesion over time. Border shape of the lesion can be controlled using the lesion mold production method. The configuration of the inlet and outlet tubes was determined using fluid transfer simulations. The total fluid flow rate was determined using x-ray images of the lesion for four different flow rates (0.25, 0.5, 1.0, and 1.5 ml/s) to evaluate the resultant kinetic curve shape and homogeneity of the contrast agent distribution in the dynamic lesion. High spatial and temporal resolution x-ray measurements were used to estimate the true kinetic curve behavior in the dynamic lesion for benign and malignant example curves. DCE-MRI example data were acquired of the dynamic phantom using a clinical protocol. The optimal inlet and outlet tube configuration for the lesion molds was two inlet molds separated by 30° and a single outlet tube directly between the two inlet tubes. X-ray measurements indicated that 1.0 ml/s was an appropriate total fluid flow rate and provided truth for comparison with MRI data of kinetic curves representative of benign and malignant lesions. DCE-MRI data demonstrated the ability of the phantom to produce realistic kinetic curves. The authors have constructed a dynamic lesion phantom, demonstrated its ability to produce physiological kinetic curves, and provided estimations of its true kinetic curve behavior. This lesion phantom provides a tool for the quantitative evaluation of DCE-MRI protocols, which may lead to improved discrimination of breast cancer lesions.

  5. Development and characterization of a dynamic lesion phantom for the quantitative evaluation of dynamic contrast-enhanced MRI

    PubMed Central

    Freed, Melanie; de Zwart, Jacco A.; Hariharan, Prasanna; R. Myers, Matthew; Badano, Aldo

    2011-01-01

    Purpose: To develop a dynamic lesion phantom that is capable of producing physiological kinetic curves representative of those seen in human dynamic contrast-enhanced MRI (DCE-MRI) data. The objective of this phantom is to provide a platform for the quantitative comparison of DCE-MRI protocols to aid in the standardization and optimization of breast DCE-MRI. Methods: The dynamic lesion consists of a hollow, plastic mold with inlet and outlet tubes to allow flow of a contrast agent solution through the lesion over time. Border shape of the lesion can be controlled using the lesion mold production method. The configuration of the inlet and outlet tubes was determined using fluid transfer simulations. The total fluid flow rate was determined using x-ray images of the lesion for four different flow rates (0.25, 0.5, 1.0, and 1.5 ml∕s) to evaluate the resultant kinetic curve shape and homogeneity of the contrast agent distribution in the dynamic lesion. High spatial and temporal resolution x-ray measurements were used to estimate the true kinetic curve behavior in the dynamic lesion for benign and malignant example curves. DCE-MRI example data were acquired of the dynamic phantom using a clinical protocol. Results: The optimal inlet and outlet tube configuration for the lesion molds was two inlet molds separated by 30° and a single outlet tube directly between the two inlet tubes. X-ray measurements indicated that 1.0 ml∕s was an appropriate total fluid flow rate and provided truth for comparison with MRI data of kinetic curves representative of benign and malignant lesions. DCE-MRI data demonstrated the ability of the phantom to produce realistic kinetic curves. Conclusions: The authors have constructed a dynamic lesion phantom, demonstrated its ability to produce physiological kinetic curves, and provided estimations of its true kinetic curve behavior. This lesion phantom provides a tool for the quantitative evaluation of DCE-MRI protocols, which may lead to

  6. Ultra-low dose quantitative CT myocardial perfusion imaging with sparse-view dynamic acquisition and image reconstruction: A feasibility study.

    PubMed

    Enjilela, Esmaeil; Lee, Ting-Yim; Hsieh, Jiang; Wisenberg, Gerald; Teefy, Patrick; Yadegari, Andrew; Bagur, Rodrigo; Islam, Ali; Branch, Kelley; So, Aaron

    2018-03-01

    We implemented and validated a compressed sensing (CS) based algorithm for reconstructing dynamic contrast-enhanced (DCE) CT images of the heart from sparsely sampled X-ray projections. DCE CT imaging of the heart was performed on five normal and ischemic pigs after contrast injection. DCE images were reconstructed with filtered backprojection (FBP) and CS from all projections (984-view) and 1/3 of all projections (328-view), and with CS from 1/4 of all projections (246-view). Myocardial perfusion (MP) measurements with each protocol were compared to those with the reference 984-view FBP protocol. Both the 984-view CS and 328-view CS protocols were in good agreements with the reference protocol. The Pearson correlation coefficients of 984-view CS and 328-view CS determined from linear regression analyses were 0.98 and 0.99 respectively. The corresponding mean biases of MP measurement determined from Bland-Altman analyses were 2.7 and 1.2ml/min/100g. When only 328 projections were used for image reconstruction, CS was more accurate than FBP for MP measurement with respect to 984-view FBP. However, CS failed to generate MP maps comparable to those with 984-view FBP when only 246 projections were used for image reconstruction. DCE heart images reconstructed from one-third of a full projection set with CS were minimally affected by aliasing artifacts, leading to accurate MP measurements with the effective dose reduced to just 33% of conventional full-view FBP method. The proposed CS sparse-view image reconstruction method could facilitate the implementation of sparse-view dynamic acquisition for ultra-low dose CT MP imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Quantitative dosimetric assessment for effect of gold nanoparticles as contrast media on radiotherapy planning

    NASA Astrophysics Data System (ADS)

    Tu, Shu-Ju; Yang, Pei-Ying; Hong, Ji-Hong; Lo, Ching-Jung

    2013-07-01

    In CT planning for radiation therapy, patients may be asked to have a medical procedure of contrast agent (CA) administration as required by their physicians. CA media improve quality of CT images and assist radiation oncologists in delineation of the target or organs with accuracy. However, dosimetric discrepancy may occur between scenarios in which CA media are present in CT planning and absent in treatment delivery. In recent preclinical experiments of small animals, gold nanoparticles (AuNPs) have been identified as an excellent contrast material of x-ray imaging. In this work, we quantitatively evaluate the effect of AuNPs to be used as a potential material of contrast enhancement in radiotherapy planning with an analytical phantom and clinical case. Conray 60, an iodine-based product for contrast enhancement in clinical uses, is included as a comparison. Other additional variables such as different concentrations of CA media, radiation delivery techniques and dose calculation algorithms are included. We consider 1-field AP, 4-field box, 7-field intensity modulated radiation therapy (IMRT) and a recent technique of volumetric modulated arc therapy (VMAT). CA media of AuNPs (Conray 60) with concentrations of 10%, 20%, 30%, 40% and 50% containing 28.2, 56.4, 84.6, 112.8 and 141.0 mg of gold (iodine) per mL were prepared prior to CT scanning. A virtual phantom with a target where nanoparticle media are loaded and clinical case of gastric lymphoma in which the Conray 60 media were given to the patient prior to the CT planning are included for the study. Compared to Conray 60 media with concentration of 10%/50%, Hounsfield units for AuNP media of 10%/50% are 322/1608 higher due to the fact that atomic number of Au (Z=79) is larger than I (Z=53). In consequence, dosimetric discrepancy of AuNPs is magnified between presence and absence of contrast media. It was found in the phantom study that percent dose differences between presence and absence of CA media may be

  8. Contrastive Linguistics and Social Lectology.

    ERIC Educational Resources Information Center

    Wolfram, Walt

    In the past, social lectologists have not considered their work as contrastive linguistics. One reason is that sociolects of a language differ quantitatively; differences lie in the frequency patterns with which certain forms occur in each lect. Contrastive linguistics deals with standard or idealized languages, while sociolects are often…

  9. Emotions delay care-seeking in patients with an acute myocardial infarction.

    PubMed

    Nymark, Carolin; Mattiasson, Anne-Cathrine; Henriksson, Peter; Kiessling, Anna

    2014-02-01

    In acute myocardial infarction the risk of death and loss of myocardial tissue is at its highest during the first few hours. However, the process from symptom onset to the decision to seek medical care can take time. To comprehend patients' pre-hospital delay, attention must be focused on the circumstances preceding the decision to seek medical care. To add a deeper understanding of patients' thoughts, feelings and actions that preceded the decision to seek medical care when afflicted by an acute myocardial infarction. Fourteen men and women with a first or second acute myocardial infarction were interviewed individually in semi-structured interviews. Data were analysed by qualitative content analysis. Four themes were conceptualized: 'being incapacitated by fear, anguish and powerlessness', 'being ashamed of oneself', 'fear of losing a healthy identity' and 'striving to avoid fear by not interacting with others'. Patients were torn between feelings such as anguish, fear, shame and powerlessness. They made an effort to uphold their self-image as being a healthy person thus affected by an unrecognized discomfort. This combined with a struggle to protect others from involvement, strengthened the barriers to seeking care. The present study indicates that emotional reactions are important and influence patients' pre-hospital behaviour. Being ashamed of oneself stood out as a novel finding. Emotions might be an important explanation of undesired and persisting patient delays. However, our findings have to and should be evaluated quantitatively. Such a study is in progress.

  10. The effect of captopril and losartan on the electrophysiology of myocardial cells of myocardial ischemia rats.

    PubMed

    Shi, Xiangmin; Shan, Zhaoling; Yuan, Hongtao; Guo, Hongyang; Wang, Yutang

    2014-01-01

    This study aims to investigate the effect of captopril and losartan on the electrophysiology of myocardial cells parameters in ventricular vulnerable period and effective refractory period of myocardial ischemia rats. 96 wistar rats were enrolled in the study and divided into six groups: Captopril myocardial ischemia group, losartan myocardial ischemia group, myocardial ischemia control group, captopril normal group, losartan normal group and normal control group (n=16). We observed morphological changes of myocardial tissue in each group. The cardiac electrophysiological parameters in effective refractory period of each group were measured. Creatine kinase (CK), alanine aminotransferase (GOT), lactate dehydrogenase (LDH), the expression of Cardiotrophin 1 (CT-1) and malonaldehyde (MDA) were detected. Compared the losartan and captopril group with the control group, (P<0.05). Losartan and captopril can shorten the ventricular vulnerable period of the normal group and ischemic group. There was no interaction effect between losartan and captopril group and the acute myocardial ischemia group. The effect of losartan and captopril on time window in ventricular vulnerable period showed that compared with the control group (P<0.05). Losartan and captopril had a significant effect on prolonged effective refractory period of normal and ischemic rats. There was no interaction effect between losartan and captopril group and the acute myocardial ischemia group. Compared with the myocardial ischemia control group, CK, GOT, LDH and MDA decreased in captopril and losartan myocardial ischemia groups (P<0.05). Losartan and captopril had a significant effect on prolonged effective refractory period and shorten ventricular vulnerable period, they can also effectively prevent arrhythmias.

  11. Inflammatory response, neutrophil activation, and free radical production after acute myocardial infarction: effect of thrombolytic treatment.

    PubMed Central

    Bell, D; Jackson, M; Nicoll, J J; Millar, A; Dawes, J; Muir, A L

    1990-01-01

    Activated neutrophils releasing proteolytic enzymes and oxygen free radicals have been implicated in extending myocardial injury after myocardial infarction. Neutrophil elastase was used as a marker of neutrophil activation and the non-peroxide diene conjugate of linoleic acid was used as an indicator of free radical activity in 32 patients after acute myocardial infarction; 17 were treated by intravenous thrombolysis. Patients with acute myocardial infarction had higher plasma concentrations of neutrophil elastase and the non-peroxide diene conjugated isomer of linoleic acid than normal volunteers or patients with stable ischaemic heart disease. Patients treated by thrombolysis had an early peak of neutrophil elastase at eight hours while those who had not been treated by thrombolysis showed a later peak 40 hours after infarction. The plasma concentration of non-peroxide conjugated diene of linoleic acid was highest 16 hours after the infarction irrespective of treatment by thrombolysis. Quantitative imaging with single photon emission tomography showed decreased uptake of indium-111 labelled neutrophils in the infarcted myocardium (as judged from technetium-99m pyrophosphate) in those who had received thrombolysis, suggesting a decreased inflammatory response. The results indicate increased neutrophil activation and free radical production after myocardial infarction; they also suggest that thrombolysis does not amplify the inflammatory response and may indeed suppress it. Images PMID:2317413

  12. Myocardialization of the cardiac outflow tract

    NASA Technical Reports Server (NTRS)

    van den Hoff, M. J.; Moorman, A. F.; Ruijter, J. M.; Lamers, W. H.; Bennington, R. W.; Markwald, R. R.; Wessels, A.

    1999-01-01

    During development, the single-circuited cardiac tube transforms into a double-circuited four-chambered heart by a complex process of remodeling, differential growth, and septation. In this process the endocardial cushion tissues of the atrioventricular junction and outflow tract (OFT) play a crucial role as they contribute to the mesenchymal components of the developing septa and valves in the developing heart. After fusion, the endocardial ridges in the proximal portion of the OFT initially form a mesenchymal outlet septum. In the adult heart, however, this outlet septum is basically a muscular structure. Hence, the mesenchyme of the proximal outlet septum has to be replaced by cardiomyocytes. We have dubbed this process "myocardialization." Our immunohistochemical analysis of staged chicken hearts demonstrates that myocardialization takes place by ingrowth of existing myocardium into the mesenchymal outlet septum. Compared to other events in cardiac septation, it is a relatively late process, being initialized around stage H/H28 and being basically completed around stage H/H38. To unravel the molecular mechanisms that are responsible for the induction and regulation of myocardialization, an in vitro culture system in which myocardialization could be mimicked and manipulated was developed. Using this in vitro myocardialization assay it was observed that under the standard culture conditions (i) whole OFT explants from stage H/H20 and younger did not spontaneously myocardialize the collagen matrix, (ii) explants from stage H/H21 and older spontaneously formed extensive myocardial networks, (iii) the myocardium of the OFT could be induced to myocardialize and was therefore "myocardialization-competent" at all stages tested (H/H16-30), (iv) myocardialization was induced by factors produced by, most likely, the nonmyocardial component of the outflow tract, (v) at none of the embryonic stages analyzed was ventricular myocardium myocardialization-competent, and finally

  13. Quantification of Regional Myocardial Oxygenation by Magnetic Resonance Imaging: Validation with Positron Emission Tomography

    PubMed Central

    McCommis, Kyle S.; Goldstein, Thomas A.; Abendschein, Dana R.; Herrero, Pilar; Misselwitz, Bernd; Gropler, Robert J.; Zheng, Jie

    2011-01-01

    Background A comprehensive evaluation of myocardial ischemia requires measures of both oxygen supply and demand. Positron emission tomography (PET) is currently the gold standard for such evaluations, but its use is limited due to its ionizing radiation, limited availability, and high cost. A cardiac magnetic resonance imaging (MRI) method was developed for assessing myocardial oxygenation. The purpose of this study was to evaluate and validate this technique compared to PET during pharmacologic stress in a canine model of coronary artery stenosis. Methods and Results Twenty-one beagles and small mongrel dogs without coronary artery stenosis (controls), or with moderate to severe acute coronary artery stenosis underwent MRI and PET imaging at rest and during dipyridamole vasodilation or dobutamine stress to induce a wide range of changes in cardiac perfusion and oxygenation. MRI first-pass perfusion imaging was performed to quantify myocardial blood flow (MBF) and volume (MBV). The MRI blood-oxygen-level-dependent (BOLD) technique was used to determine the myocardial oxygen extraction fraction (OEF) during pharmacologic hyperemia. Myocardial oxygen consumption (MVO2) was determined by Fick’s law. In the same dogs, 15O-water and 11C-acetate were used to measure MBF and MVO2, respectively, by PET. Regional assessments were performed for both MR and PET. MRI data correlated nicely with PET values for MBF (R2 = 0.79, P < 0.001), MVO2 (R2 = 0.74, P < 0.001), and OEF (R2 = 0.66, P < 0.01). Conclusions Cardiac MRI methods may provide an alternative to radionuclide imaging in settings of myocardial ischemia. Our newly developed quantitative MRI oxygenation imaging technique may be a valuable non-invasive tool to directly evaluate myocardial energetics and efficiency. PMID:19933371

  14. [Evaluation of left ventricular diastolic function in canine acute myocardial ischemia using velocity vector imaging and quantitative tissue velocity imaging].

    PubMed

    Zhang, Chuan; Zha, Dao-Gang; DU, Rong-Sheng; Hu, Feng; Li, Sheng-Hui; Wu, Xiao-Yuan; Liu, Yi-Li

    2009-07-01

    To assess the value of velocity vector imaging (VVI) and quantitative tissue velocity imaging (QTVI) in assessing left ventricular diastolic function of the dogs with acute myocardial ischemia. Six healthy mongrel dogs were subjected to ligation of the left circumflex artery or left anterior descending artery to induce coronary artery stenosis of varying degrees. The mean peak diastolic velocity (Em) of the ventricular walls around the mitral annulus was recorded with VVI or QTVI in the coronary blood flow. The left ventricular end diastolic pressure (LVEDP) was measured with pigtail catheter in the left ventricle. As the coronary blood flow decreased, LVEDP was gradually increased, and Em measured by VVI or QTVI were also gradually decreased. A good linear correlation was shown between Em measured by VVI or QTVI and LVEDP (r=-0.834, P<0.001, and r=-0.68, P<0.001, respectively). A significant difference was observed in the correlation coefficient between VVI and QTVI (Z=2.625, P=0.0087). VVI and QTVI both provide good noninvasive means for measuring left ventricular diastolic function. VVI, a new echocardiographic modality without angular dependence, is better than QTVI in evaluating left ventricular diastolic function.

  15. A template-based approach to semi-quantitative SPECT myocardial perfusion imaging: Independent of normal databases.

    PubMed

    Hughes, Tyler; Shcherbinin, Sergey; Celler, Anna

    2011-07-01

    Normal patient databases (NPDs) are used to distinguish between normal and abnormal perfusion in SPECT myocardial perfusion imaging (MPI) and have gained wide acceptance in the clinical environment, yet there are limitations to this approach. This study introduces a template-based method for semi-quantitative MPI, which attempts to overcome some of the NPD limitations. Our approach involves the construction of a 3D digital healthy heart template from the delineation of the patient's left ventricle in the SPECT image. This patient-specific template of the heart, filled with uniform activity, is then analytically projected and reconstructed using the same algorithm as the original image. Subsequent to generating bulls-eye maps for the patient image (PB) and the template image (TB), a ratio (PB/TB) is calculated, which produces a reconstruction-artifact corrected image (CB). Finally, a threshold is used to define defects within CB enabling measurements of the perfusion defect extent (EXT). The SPECT-based template (Ts) measurements were compared to those of a CT-based "ideal" template (TI). Twenty digital phantoms were simulated: male and female, each with one healthy heart and nine hearts with various defects. Four physical phantom studies were performed modeling a healthy heart and three hearts with different defects. The phantom represented a thorax with spine, lung, and left ventricle inserts. Images were acquired on General Electric's (GE) Infinia Hawkeye SPECT/CT camera using standard clinical MPI protocol. Finally, our method was applied to 14 patient MPI rest/stress studies acquired on the GE Infinia Hawkeye SPECT/CT camera and compared to the results obtained from Cedars-Sinai's QPS software. In the simulation studies, the true EXT correlated well with the TI (slope= 1.08; offset = -0.40%; r = 0.99) and Ts (slope = 0.90; offset = 0.27%; r = 0.99) methods with no significant differences between them. Similarly, strong correlations were measured for EXT

  16. In silico analysis of the anti-hypertensive drugs impact on myocardial oxygen balance.

    PubMed

    Guala, A; Leone, D; Milan, A; Ridolfi, L

    2017-06-01

    Hypertension is a very common pathology, and its clinical treatment largely relies on different drugs. Some of these drugs exhibit specific protective functions in addition to those resulting from blood pressure reduction. In this work, we study the impact of commonly used anti-hypertensive drugs (RAAS, [Formula: see text] and calcium channel blockers) on myocardial oxygen supply-consumption balance, which plays a crucial role in type 2 myocardial infarction. To this aim, 42 wash-out hypertensive patients were selected, a number of measured data were used to set a validated multi-scale cardiovascular model to subject-specific conditions, and the administration of different drugs was suitably simulated. Our results ascribe the well-known major cardioprotective efficiency of [Formula: see text] blockers compared to other drugs to a positive change of myocardial oxygen balance due to the concomitant: (1) reduction in aortic systolic, diastolic and pulse pressures, (2) decrease in left ventricular work, diastolic cavity pressure and oxygen consumption, (3) increase in coronary flow and (4) ejection efficiency improvement. RAAS blockers share several positive outcomes with [Formula: see text] blockers, although to a reduced extent. In contrast, calcium channel blockers seem to induce some potentially negative effects on the myocardial oxygen balance.

  17. Diagnostic performance of different measurement methods for lung nodule enhancement at quantitative contrast-enhanced computed tomography

    NASA Astrophysics Data System (ADS)

    Wormanns, Dag; Klotz, Ernst; Dregger, Uwe; Beyer, Florian; Heindel, Walter

    2004-05-01

    Lack of angiogenesis virtually excludes malignancy of a pulmonary nodule; assessment with quantitative contrast-enhanced CT (QECT) requires a reliable enhancement measurement technique. Diagnostic performance of different measurement methods in the distinction between malignant and benign nodules was evaluated. QECT (unenhanced scan and 4 post-contrast scans) was performed in 48 pulmonary nodules (12 malignant, 12 benign, 24 indeterminate). Nodule enhancement was the difference between the highest nodule density at any post-contrast scan and the unenhanced scan. Enhancement was determined with: A) the standard 2D method; B) a 3D method consisting of segmentation, removal of peripheral structures and density averaging. Enhancement curves were evaluated for their plausibility using a predefined set of criteria. Sensitivity and specificity were 100% and 33% for the 2D method resp. 92% and 55% for the 3D method using a threshold of 20 HU. One malignant nodule did not show significant enhancement with method B due to adjacent atelectasis which disappeared within the few minutes of the QECT examination. Better discrimination between benign and malignant lesions was achieved with a slightly higher threshold than proposed in the literature. Application of plausibility criteria to the enhancement curves rendered less plausibility faults with the 3D method. A new 3D method for analysis of QECT scans yielded less artefacts and better specificity in the discrimination between benign and malignant pulmonary nodules when using an appropriate enhancement threshold. Nevertheless, QECT results must be interpreted with care.

  18. Panic attack triggering myocardial ischemia documented by myocardial perfusion imaging study. A case report

    PubMed Central

    2012-01-01

    Background Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Objective Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Discussion Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. Conclusion The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease. PMID:22999016

  19. Panic attack triggering myocardial ischemia documented by myocardial perfusion imaging study. A case report.

    PubMed

    Soares-Filho, Gastão Luiz Fonseca; Mesquita, Claudio Tinoco; Mesquita, Evandro Tinoco; Arias-Carrión, Oscar; Machado, Sergio; González, Manuel Menéndez; Valença, Alexandre Martins; Nardi, Antonio Egidio

    2012-09-21

    Chest pain, a key element in the investigation of coronary artery disease is often regarded as a benign prognosis when present in panic attacks. However, panic disorder has been suggested as an independent risk factor for long-term prognosis of cardiovascular diseases and a trigger of acute myocardial infarction. Faced with the extreme importance in differentiate from ischemic to non-ischemic chest pain, we report a case of panic attack induced by inhalation of 35% carbon dioxide triggering myocardial ischemia, documented by myocardial perfusion imaging study. Panic attack is undoubtedly a strong component of mental stress. Patients with coronary artery disease may present myocardial ischemia in mental stress response by two ways: an increase in coronary vasomotor tone or a sympathetic hyperactivity leading to a rise in myocardial oxygen consumption. Coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. Possibly the carbon dioxide challenge test could trigger myocardial ischemia by the same mechanisms. The use of mental stress has been suggested as an alternative method for myocardial ischemia investigation. Based on translational medicine objectives the use of CO2 challenge followed by Sestamibi SPECT could be a useful method to allow improved application of research-based knowledge to the medical field, specifically at the interface of PD and cardiovascular disease.

  20. Prognostic Value of Quantitative Stress Perfusion Cardiac Magnetic Resonance.

    PubMed

    Sammut, Eva C; Villa, Adriana D M; Di Giovine, Gabriella; Dancy, Luke; Bosio, Filippo; Gibbs, Thomas; Jeyabraba, Swarna; Schwenke, Susanne; Williams, Steven E; Marber, Michael; Alfakih, Khaled; Ismail, Tevfik F; Razavi, Reza; Chiribiri, Amedeo

    2018-05-01

    This study sought to evaluate the prognostic usefulness of visual and quantitative perfusion cardiac magnetic resonance (CMR) ischemic burden in an unselected group of patients and to assess the validity of consensus-based ischemic burden thresholds extrapolated from nuclear studies. There are limited data on the prognostic value of assessing myocardial ischemic burden by CMR, and there are none using quantitative perfusion analysis. Patients with suspected coronary artery disease referred for adenosine-stress perfusion CMR were included (n = 395; 70% male; age 58 ± 13 years). The primary endpoint was a composite of cardiovascular death, nonfatal myocardial infarction, aborted sudden death, and revascularization after 90 days. Perfusion scans were assessed visually and with quantitative analysis. Cross-validated Cox regression analysis and net reclassification improvement were used to assess the incremental prognostic value of visual or quantitative perfusion analysis over a baseline clinical model, initially as continuous covariates, then using accepted thresholds of ≥2 segments or ≥10% myocardium. After a median 460 days (interquartile range: 190 to 869 days) follow-up, 52 patients reached the primary endpoint. At 2 years, the addition of ischemic burden was found to increase prognostic value over a baseline model of age, sex, and late gadolinium enhancement (baseline model area under the curve [AUC]: 0.75; visual AUC: 0.84; quantitative AUC: 0.85). Dichotomized quantitative ischemic burden performed better than visual assessment (net reclassification improvement 0.043 vs. 0.003 against baseline model). This study was the first to address the prognostic benefit of quantitative analysis of perfusion CMR and to support the use of consensus-based ischemic burden thresholds by perfusion CMR for prognostic evaluation of patients with suspected coronary artery disease. Quantitative analysis provided incremental prognostic value to visual assessment and

  1. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement

    PubMed Central

    2013-01-01

    Rapid innovations in cardiovascular magnetic resonance (CMR) now permit the routine acquisition of quantitative measures of myocardial and blood T1 which are key tissue characteristics. These capabilities introduce a new frontier in cardiology, enabling the practitioner/investigator to quantify biologically important myocardial properties that otherwise can be difficult to ascertain clinically. CMR may be able to track biologically important changes in the myocardium by: a) native T1 that reflects myocardial disease involving the myocyte and interstitium without use of gadolinium based contrast agents (GBCA), or b) the extracellular volume fraction (ECV)–a direct GBCA-based measurement of the size of the extracellular space, reflecting interstitial disease. The latter technique attempts to dichotomize the myocardium into its cellular and interstitial components with estimates expressed as volume fractions. This document provides recommendations for clinical and research T1 and ECV measurement, based on published evidence when available and expert consensus when not. We address site preparation, scan type, scan planning and acquisition, quality control, visualisation and analysis, technical development. We also address controversies in the field. While ECV and native T1 mapping appear destined to affect clinical decision making, they lack multi-centre application and face significant challenges, which demand a community-wide approach among stakeholders. At present, ECV and native T1 mapping appear sufficiently robust for many diseases; yet more research is required before a large-scale application for clinical decision-making can be recommended. PMID:24124732

  2. Dipyridamole stress myocardial perfusion by computed tomography in patients with left bundle branch block.

    PubMed

    Cabeda, Estêvan Vieira; Falcão, Andréa Maria Gomes; Soares, José; Rochitte, Carlos Eduardo; Nomura, César Higa; Ávila, Luiz Francisco Rodrigues; Parga, José Rodrigues

    2015-12-01

    Functional tests have limited accuracy for identifying myocardial ischemia in patients with left bundle branch block (LBBB). To assess the diagnostic accuracy of dipyridamole-stress myocardial computed tomography perfusion (CTP) by 320-detector CT in patients with LBBB using invasive quantitative coronary angiography (QCA) (stenosis ≥ 70%) as reference; to investigate the advantage of adding CTP to coronary computed tomography angiography (CTA) and compare the results with those of single photon emission computed tomography (SPECT) myocardial perfusion scintigraphy. Thirty patients with LBBB who had undergone SPECT for the investigation of coronary artery disease were referred for stress tomography. Independent examiners performed per-patient and per-coronary territory assessments. All patients gave written informed consent to participate in the study that was approved by the institution's ethics committee. The patients' mean age was 62 ± 10 years. The mean dose of radiation for the tomography protocol was 9.3 ± 4.6 mSv. With regard to CTP, the per-patient values for sensitivity, specificity, positive and negative predictive values, and accuracy were 86%, 81%, 80%, 87%, and 83%, respectively (p = 0.001). The per-territory values were 63%, 86%, 65%, 84%, and 79%, respectively (p < 0.001). In both analyses, the addition of CTP to CTA achieved higher diagnostic accuracy for detecting myocardial ischemia than SPECT (p < 0.001). The use of the stress tomography protocol is feasible and has good diagnostic accuracy for assessing myocardial ischemia in patients with LBBB.

  3. High-speed quantitative phase imaging using time-stretch spectral shearing contrast (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bosworth, Bryan; Foster, Mark A.

    2017-02-01

    Photonic time-stretch microscopy (TSM) provides an ideal platform for high-throughput imaging flow cytometry, affording extremely high shutter speeds and frame rates with high sensitivity. In order to resolve weakly scattering cells in biofluid and solve the issue of signal-to-noise in cell labeling specificity of biomarkers in imaging flow cytometry, several quantitative phase (QP) techniques have recently been adapted to TSM. However, these techniques have relied primarily on sensitive free-space optical configurations to generate full electric field measurements. The present work draws from the field of ultrashort pulse characterization to leverage the coherence of the ultrashort optical pulses integral to all TSM systems in order to do self-referenced single-shot quantitative phase imaging in a TSM system. Self-referencing is achieved via spectral shearing interferometry in an exceptionally stable and straightforward Sagnac loop incorporating an electro-optic phase modulator and polarization-maintaining fiber that produce sheared and unsheared copies of the pulse train with an inter-pulse delay determined by polarization mode dispersion. The spectral interferogram then yields a squared amplitude and a phase derivative image that can be integrated for conventional phase. We apply this spectral shearing contrast microscope to acquire QP images on a high-speed flow microscope at 90-MHz line rates with <400 pixels per line. We also consider the extension of this technique to compressed sensing (CS) acquisition by intensity modulating the interference spectra with pseudorandom binary waveforms to reconstruct the images from a highly sub-Nyquist number of random inner products, providing a path to even higher operating rates and reduced data storage requirements.

  4. [Expression of PTEN in Myocardial Tissue in Coronary Heart Disease].

    PubMed

    Li, Xue-rong; He, Yong; Lei, Yu-jia; Qin, Xe-he; Wei, Qing-tao; Pan, Xin-min; Li, Li-juan; Zhang, Lin

    2016-04-01

    To observe the expression of phosphatase and tensin homology deleted on chromosome ten (PTEN) in myocardial tissue in patients with coronary heart disease, and explore the relevance between the expression of PTEN and the occurrence and development of coronary heart disease. A total of 16 death cases with pathological diagnosis of coronary heart disease were collected as experimental group, and 19 cases without myocardial lesions were selected as control group. The expression of PTEN protein and its mRNA were detected by immunohistochemistry and real-time fluorescence quantitative PCR respectively. The correlation between the expression of PTEN and the pathogenesis of coronary heart disease was analyzed. The expression of PTEN protein in myocardium in cases with coronary heart disease was significantly lower compared with the control group (P < 0.05). There was no statistical difference of the expression of PTEN mRNA between experimental and control group (P > 0.05). PTEN may be involved in the occurrence and development of coronary heart disease.

  5. Phase contrast MR angiography techniques.

    PubMed

    Dumoulin, C L

    1995-08-01

    Phase contrast MR methods encode information from macroscopic motion into the phase of the MR signal. Phase contrast methods can be applied with small and large fields-of-view, can give quantitative measures of velocity, and provide excellent suppression of signals from stationary tissue. Unlike time-of-flight methods, phase contrast methods directly measure flow and thus are not hindered by the artifactual appearance of tissue having short T1. Phase contrast angiograms can be two-dimensional (thin slice or projectile), three-dimensional, and/or time resolved and have applications throughout the body.

  6. Diagnostic value of quantitative contrast-enhanced ultrasound (CEUS) for early detection of renal hyperperfusion in diabetic kidney disease.

    PubMed

    Wang, Ling; Wu, Jian; Cheng, Jia-Fen; Liu, Xin-Ying; Ma, Fang; Guo, Le-Hang; Xu, Jun-Mei; Wu, Tianfu; Mohan, Chandra; Peng, Ai; Xu, Hui-Xiong; Song, Ya-Xiang

    2015-12-01

    To investigate the diagnostic value of quantitative contrast-enhanced ultrasound (CEUS) for early detection of renal hyperperfusion in diabetic kidney disease (DKD). 55 DKD patients with estimated glomerular filtration rate (eGFR) >30 ml/min/1.73 m(2) and 26 normal controls (NCs) were enrolled. Clinical data was well documented. Blood samples were drawn for evaluation of renal function including blood urea nitrogen (BUN), serum creatinine (SCr) and serum uric acid (SUA), and urine samples were assayed for total protein quantification, and various microprotein markers. According to eGFR level, DKD patients were divided into early-stage DKD (eGFR ≥90 ml/min/1.73 m(2), n = 18) and middle-stage DKD (eGFR 30-90 ml/min/1.73 m(2), n = 37). Based on urinary microalbumin/creatinine ratio (MALB/UCR), early-stage DKD patients were further classified into two groups: MALB/UCR <10 g/mol (n = 11) and MALB/UCR ≥10 g/mol (n = 7). Then, CEUS was performed to observe the real-time renal perfusion, and low acoustic power contrast-specific imaging was used for quantitative analysis. The renal perfusion images of CEUS were well developed successively. The corresponding perfusion curves based on echo-power signals in time series were constructed. Quantitative analysis showed that area under the descending curve (AUC2) was significantly increased in early-stage DKD compared to middle-stage DKD (p < 0.05), but AUC showed no significant difference. Further comparison between different MALB/UCR levels of early-stage DKD showed that patients with MALB/UCR ≥10 g/mol had significantly increased levels of AUC, AUC2 and proteinuria than patients with low MALB/UCR (p < 0.05). Also, high MALB/UCR DKD patients had increased proteinuria but similar eGFR compared to low MALB/UCR patients. Renal microvascular hyperperfusion may be responsible for overt proteinuria until decline of renal filtration in DKD. AUC2 could be an early and sensitive marker for early renal injury and renal microvascular

  7. Quantitative analysis of cardiovascular MR images.

    PubMed

    van der Geest, R J; de Roos, A; van der Wall, E E; Reiber, J H

    1997-06-01

    The diagnosis of cardiovascular disease requires the precise assessment of both morphology and function. Nearly all aspects of cardiovascular function and flow can be quantified nowadays with fast magnetic resonance (MR) imaging techniques. Conventional and breath-hold cine MR imaging allow the precise and highly reproducible assessment of global and regional left ventricular function. During the same examination, velocity encoded cine (VEC) MR imaging provides measurements of blood flow in the heart and great vessels. Quantitative image analysis often still relies on manual tracing of contours in the images. Reliable automated or semi-automated image analysis software would be very helpful to overcome the limitations associated with the manual and tedious processing of the images. Recent progress in MR imaging of the coronary arteries and myocardial perfusion imaging with contrast media, along with the further development of faster imaging sequences, suggest that MR imaging could evolve into a single technique ('one stop shop') for the evaluation of many aspects of heart disease. As a result, it is very likely that the need for automated image segmentation and analysis software algorithms will further increase. In this paper the developments directed towards the automated image analysis and semi-automated contour detection for cardiovascular MR imaging are presented.

  8. Myocardial contusion following nonfatal blunt chest trauma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.A.; Puri, V.K.; Mittal, V.K.

    1983-04-01

    Currently available diagnostic techniques for myocardial contusion following blunt chest trauma were evaluated. We investigated 30 patients prospectively over a period of 1 year for the presence of myocardial contusion. Among the 30 patients, eight were found to have myocardial contusion on the basis of abnormal electrocardiograms, elevated creatine phosphokinase MB fraction (CPK-MB), and positive myocardial scan. Myocardial scan was positive in seven of eight patients (87.5%). CPK-MB fraction was elevated in four of eight patients (50%). Definitive electrocardiographic changes were seen in only two of eight patients (25%). It appears that myocardial scan using technetium pyrophosphate and CPK-MB fractionmore » determinations are the most reliable aids in diagnosis of myocardial contusion following blunt chest trauma.« less

  9. Multiphase CT scanning and different intravenous contrast media concentrations in combined F-18-FDG PET/CT: Effect on quantitative and clinical assessment.

    PubMed

    Rebière, Marilou; Verburg, Frederik A; Palmowski, Moritz; Krohn, Thomas; Pietsch, Hubertus; Kuhl, Christiane K; Mottaghy, Felix M; Behrendt, Florian F

    2012-08-01

    To evaluate the influence of multiphase CT scanning and different intravenous contrast media on contrast enhancement, attenuation correction and image quality in combined PET/CT. 140 patients were prospectively enrolled for F-18-FDG-PET/CT including a low-dose unenhanced, arterial and venous contrast enhanced CT. The first (second) 70 patients, received contrast medium with 370 (300) mg iodine/ml. The iodine delivery rate (1.3mg/s) and total iodine load (44.4g) were identical for both groups. Contrast enhancement and maximum and mean standardized FDG uptake values (SUVmax and SUVmean) were determined for the un-enhanced, arterial and venous PET/CT at multiple anatomic sites and PET reconstructions were visually evaluated. Arterial contrast enhancement was significantly higher for the 300mg/ml contrast medium compared to 370mgI/ml at all anatomic sites. Venous enhancement was not different between the two contrast media. SUVmean and SUVmax were significantly higher for the contrast enhanced compared to the non-enhanced PET/CT at all anatomic sites (all P<0.001). Tracer uptake was significantly higher in the arterial than in the venous PET/CT in the arteries using both contrast media (all P<0.001). No differences in tracer uptake were found between the contrast media (all P>0.05). Visual assessment revealed no relevant differences between the different PET reconstructions. There is no relevant qualitative influence on the PET scan from the use of different intravenous contrast media in its various phases in combined multiphase PET/CT. For quantitative analysis of tracer uptake it is required to use an identical PET/CT protocol. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Effect of Curcuma longa and Ocimum sanctum on myocardial apoptosis in experimentally induced myocardial ischemic-reperfusion injury

    PubMed Central

    Mohanty, Ipseeta; Arya, Dharamvir Singh; Gupta, Suresh Kumar

    2006-01-01

    Background In the present investigation, the effect of Curcuma longa (Cl) and Ocimum sanctum (Os) on myocardial apoptosis and cardiac function was studied in an ischemia and reperfusion (I-R) model of myocardial injury. Methods Wistar albino rats were divided into four groups and orally fed saline once daily (sham, control IR) or Cl (100 mg/kg; Cl-IR) or Os (75 mg/kg; Os-IR) respectively for 1 month. On the 31st day, in the rats of the control IR, Cl-IR and Os-IR groups LAD occlusion was undertaken for 45 min, and reperfusion was allowed for 1 h. The hemodynamic parameters{mean arterial pressure (MAP), heart rate (HR), left ventricular end-diastolic pressure (LVEDP), left ventricular peak positive (+) LVdP/dt (rate of pressure development) and negative (-) LVdP/dt (rate of pressure decline)} were monitored at pre-set points throughout the experimental duration and subsequently, the animals were sacrificed for immunohistopathological (Bax, Bcl-2 protein expression & TUNEL positivity) and histopathological studies. Results Chronic treatment with Cl significantly reduced TUNEL positivity (p < 0.05), Bax protein (p < 0.001) and upregulated Bcl-2 (p < 0.001) expression in comparison to control IR group. In addition, Cl demonstrated mitigating effects on several myocardial injury induced hemodynamic {(+)LVdP/dt, (-) LVdP/dt & LVEDP} and histopathological perturbations. Chronic Os treatment resulted in modest modulation of the hemodynamic alterations (MAP, LVEDP) but failed to demonstrate any significant antiapoptotic effects and prevent the histopathological alterations as compared to control IR group. Conclusion In the present study, significant cardioprotection and functional recovery demonstrated by Cl may be attributed to its anti-apoptotic property. In contrast to Os, Cl may attenuate cell death due to apoptosis and prevent the impairment of cardiac performance. PMID:16504000

  11. Quantitative contrast-enhanced spectral mammography based on photon-counting detectors: A feasibility study.

    PubMed

    Ding, Huanjun; Molloi, Sabee

    2017-08-01

    , the correlation slope and offset values were strongly dependent on the total breast thickness and density. The results of this study suggest that iodine mass thickness for cm-scale lesions can be accurately quantified with contrast-enhanced spectral mammography. The quantitative information can potentially improve the differential power for malignancy. © 2017 American Association of Physicists in Medicine.

  12. Effects of atrial fibrillation on myocardial washout rate of thallium-201 on myocardial perfusion single-photon emission computed tomography.

    PubMed

    Kurisu, Satoshi; Nitta, Kazuhiro; Sumimoto, Yoji; Ikenaga, Hiroki; Ishibashi, Ken; Fukuda, Yukihiro; Kihara, Yasuki

    2018-04-20

    Myocardial perfusion single-photon emission computed tomography (SPECT) with thallium (Tl)-201 is an established modality for evaluating myocardial ischemia. We assessed the effects of atrial fibrillation (AF) on the myocardial washout rate (WR) of Tl-201 on myocardial perfusion SPECT. A total of 231 patients with no evidence of myocardial ischemia were enrolled retrospectively in this study. Patients were divided into two groups on the basis of the ECG at the time of myocardial perfusion SPECT. The mean myocardial WR of Tl-201 was calculated from the stress and the redistribution Bull's eye maps. There were 34 patients with AF and 197 patients with sinus rhythm. There were no significant differences in clinical variables, except for older age and higher heart rate in patients with AF. Myocardial WR of Tl-201 was significantly lower in patients with AF than those with sinus rhythm (46±12 vs. 51±8%, P=0.03). Multivariate analysis including these factors showed that female sex (β=0.18, P=0.02), AF (β=-0.14 P=0.03), hemoglobin (β=-0.18, P<0.01), and serum creatinine (β=0.24, P<0.01) were determinants of myocardial WR of Tl-201. Our data suggest that AF is associated with reduced myocardial WR of Tl-201 on myocardial perfuison SPECT.

  13. Feasibility of high-resolution quantitative perfusion analysis in patients with heart failure.

    PubMed

    Sammut, Eva; Zarinabad, Niloufar; Wesolowski, Roman; Morton, Geraint; Chen, Zhong; Sohal, Manav; Carr-White, Gerry; Razavi, Reza; Chiribiri, Amedeo

    2015-02-12

    Cardiac magnetic resonance (CMR) is playing an expanding role in the assessment of patients with heart failure (HF). The assessment of myocardial perfusion status in HF can be challenging due to left ventricular (LV) remodelling and wall thinning, coexistent scar and respiratory artefacts. The aim of this study was to assess the feasibility of quantitative CMR myocardial perfusion analysis in patients with HF. A group of 58 patients with heart failure (HF; left ventricular ejection fraction, LVEF ≤ 50%) and 33 patients with normal LVEF (LVEF >50%), referred for suspected coronary artery disease, were studied. All subjects underwent quantitative first-pass stress perfusion imaging using adenosine according to standard acquisition protocols. The feasibility of quantitative perfusion analysis was then assessed using high-resolution, 3 T kt perfusion and voxel-wise Fermi deconvolution. 30/58 (52%) subjects in the HF group had underlying ischaemic aetiology. Perfusion abnormalities were seen amongst patients with ischaemic HF and patients with normal LV function. No regional perfusion defect was observed in the non-ischaemic HF group. Good agreement was found between visual and quantitative analysis across all groups. Absolute stress perfusion rate, myocardial perfusion reserve (MPR) and endocardial-epicardial MPR ratio identified areas with abnormal perfusion in the ischaemic HF group (p = 0.02; p = 0.04; p = 0.02, respectively). In the Normal LV group, MPR and endocardial-epicardial MPR ratio were able to distinguish between normal and abnormal segments (p = 0.04; p = 0.02 respectively). No significant differences of absolute stress perfusion rate or MPR were observed comparing visually normal segments amongst groups. Our results demonstrate the feasibility of high-resolution voxel-wise perfusion assessment in patients with HF.

  14. Automated Quantitative Nuclear Cardiology Methods

    PubMed Central

    Motwani, Manish; Berman, Daniel S.; Germano, Guido; Slomka, Piotr J.

    2016-01-01

    Quantitative analysis of SPECT and PET has become a major part of nuclear cardiology practice. Current software tools can automatically segment the left ventricle, quantify function, establish myocardial perfusion maps and estimate global and local measures of stress/rest perfusion – all with minimal user input. State-of-the-art automated techniques have been shown to offer high diagnostic accuracy for detecting coronary artery disease, as well as predict prognostic outcomes. This chapter briefly reviews these techniques, highlights several challenges and discusses the latest developments. PMID:26590779

  15. Patient-specific coronary artery blood flow simulation using myocardial volume partitioning

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Hwan; Kang, Dongwoo; Kang, Nahyup; Kim, Ji-Yeon; Lee, Hyong-Euk; Kim, James D. K.

    2013-03-01

    Using computational simulation, we can analyze cardiovascular disease in non-invasive and quantitative manners. More specifically, computational modeling and simulation technology has enabled us to analyze functional aspect such as blood flow, as well as anatomical aspect such as stenosis, from medical images without invasive measurements. Note that the simplest ways to perform blood flow simulation is to apply patient-specific coronary anatomy with other average-valued properties; in this case, however, such conditions cannot fully reflect accurate physiological properties of patients. To resolve this limitation, we present a new patient-specific coronary blood flow simulation method by myocardial volume partitioning considering artery/myocardium structural correspondence. We focus on that blood supply is closely related to the mass of each myocardial segment corresponding to the artery. Therefore, we applied this concept for setting-up simulation conditions in the way to consider many patient-specific features as possible from medical image: First, we segmented coronary arteries and myocardium separately from cardiac CT; then the myocardium is partitioned into multiple regions based on coronary vasculature. The myocardial mass and required blood mass for each artery are estimated by converting myocardial volume fraction. Finally, the required blood mass is used as boundary conditions for each artery outlet, with given average aortic blood flow rate and pressure. To show effectiveness of the proposed method, fractional flow reserve (FFR) by simulation using CT image has been compared with invasive FFR measurement of real patient data, and as a result, 77% of accuracy has been obtained.

  16. Using Dynamic Contrast Enhanced MRI to Quantitatively Characterize Maternal Vascular Organization in the Primate Placenta

    PubMed Central

    Frias, A.E.; Schabel, M.C.; Roberts, V.H.J.; Tudorica, A.; Grigsby, P.L.; Oh, K.Y.; Kroenke, C. D.

    2015-01-01

    Purpose The maternal microvasculature of the primate placenta is organized into 10-20 perfusion domains that are functionally optimized to facilitate nutrient exchange to support fetal growth. This study describes a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) method for identifying vascular domains, and quantifying maternal blood flow in them. Methods A rhesus macaque on the 133rd day of pregnancy (G133, term=165 days) underwent Doppler ultrasound (US) procedures, DCE-MRI, and Cesarean-section delivery. Serial T1-weighted images acquired throughout intravenous injection of a contrast reagent (CR) bolus were analyzed to obtain CR arrival time maps of the placenta. Results Watershed segmentation of the arrival time map identified 16 perfusion domains. The number and location of these domains corresponded to anatomical cotyledonary units observed following delivery. Analysis of the CR wave front through each perfusion domain enabled determination of volumetric flow, which ranged from 9.03 to 44.9 mL/sec (25.2 ± 10.3 mL/sec). These estimates are supported by Doppler US results. Conclusions The DCE-MRI analysis described here provides quantitative estimates of the number of maternal perfusion domains in a primate placenta, and estimates flow within each domain. Anticipated extensions of this technique are to the study placental function in nonhuman primate models of obstetric complications. PMID:24753177

  17. Differential loss of natural killer cell activity in patients with acute myocardial infarction and stable angina pectoris.

    PubMed

    Yan, Wenwen; Zhou, Lin; Wen, Siwan; Duan, Qianglin; Huang, Feifei; Tang, Yu; Liu, Xiaohong; Chai, Yongyan; Wang, Lemin

    2015-01-01

    To evaluate the activity of natural killer cells through their inhibitory and activating receptors and quantity in peripheral blood mononuclear cells extracted from patients with acute myocardial infarction, stable angina pectoris and the controls. 100 patients with myocardial infarction, 100 with stable angina, and 20 healthy volunteers were recruited into the study. 20 randomly chosen people per group were examined for the whole human genome microarray analysis to detect the gene expressions of all 40 inhibitory and activating natural killer cell receptors. Flow cytometry analysis was applied to all 200 patients to measure the quantity of natural killer cells. In myocardial infarction group, the mRNA expressions of six inhibitory receptors KIR2DL2, KIR3DL3, CD94, NKG2A, KLRB1, KLRG1, and eight activating receptors KIR2DS3, KIR2DS5, NKp30, NTB-A, CRACC, CD2, CD7 and CD96 were significantly down-regulated (P<0.05) compared with both angina patients and the controls. There was no statistical difference in receptor expressions between angina patients and control group. The quantity of natural killer cells was significantly decreased in both infarction and angina patients compared with normal range (P<0.001). The significant mRNAs down-regulation of several receptors in myocardial infarction group and reduction in the quantity of natural killer cells in both myocardial infarction and angina patients showed a quantitative loss and dysfunction of natural killer cells in myocardial infarction patients.

  18. An overview on development and application of an experimental platform for quantitative cardiac imaging research in rabbit models of myocardial infarction

    PubMed Central

    Feng, Yuanbo; Bogaert, Jan; Oyen, Raymond

    2014-01-01

    To exploit the advantages of using rabbits for cardiac imaging research and to tackle the technical obstacles, efforts have been made under the framework of a doctoral research program. In this overview article, by cross-referencing the current literature, we summarize how we have developed a preclinical cardiac research platform based on modified models of reperfused myocardial infarction (MI) in rabbits; how the in vivo manifestations of cardiac imaging could be closely matched with those ex vivo macro- and microscopic findings; how these imaging outcomes could be quantitatively analyzed, validated and demonstrated; and how we could apply this cardiac imaging platform to provide possible solutions to certain lingering diagnostic and therapeutic problems in experimental cardiology. In particular, tissue components in acute cardiac ischemia have been stratified and characterized, post-infarct lipomatous metaplasia (LM) as a common but hardly illuminated clinical pathology has been identified in rabbit models, and a necrosis avid tracer as well as an anti-ischemic drug have been successfully assessed for their potential utilities in clinical cardiology. These outcomes may interest the researchers in the related fields and help strengthen translational research in cardiovascular diseases. PMID:25392822

  19. An overview on development and application of an experimental platform for quantitative cardiac imaging research in rabbit models of myocardial infarction.

    PubMed

    Feng, Yuanbo; Bogaert, Jan; Oyen, Raymond; Ni, Yicheng

    2014-10-01

    To exploit the advantages of using rabbits for cardiac imaging research and to tackle the technical obstacles, efforts have been made under the framework of a doctoral research program. In this overview article, by cross-referencing the current literature, we summarize how we have developed a preclinical cardiac research platform based on modified models of reperfused myocardial infarction (MI) in rabbits; how the in vivo manifestations of cardiac imaging could be closely matched with those ex vivo macro- and microscopic findings; how these imaging outcomes could be quantitatively analyzed, validated and demonstrated; and how we could apply this cardiac imaging platform to provide possible solutions to certain lingering diagnostic and therapeutic problems in experimental cardiology. In particular, tissue components in acute cardiac ischemia have been stratified and characterized, post-infarct lipomatous metaplasia (LM) as a common but hardly illuminated clinical pathology has been identified in rabbit models, and a necrosis avid tracer as well as an anti-ischemic drug have been successfully assessed for their potential utilities in clinical cardiology. These outcomes may interest the researchers in the related fields and help strengthen translational research in cardiovascular diseases.

  20. Quantitative optical frequency domain imaging assessment of in-stent structures in patients with ST-segment elevation myocardial infarction: impact of imaging sampling rate.

    PubMed

    Muramatsu, Takashi; García-García, Hector M; Lee, Il Soo; Bruining, Nico; Onuma, Yoshinobu; Serruys, Patrick W

    2012-01-01

    The impact of the sampling rate (SR) of optical frequency domain imaging (OFDI) on quantitative assessment of in-stent structures (ISS) such as plaque prolapse and thrombus remains unexplored. OFDI after stenting was performed in ST-segment elevation myocardial infarction (STEMI) patients using a TERUMO OFDI system (Terumo Europe, Leuven, Belgium) with 160 frames/s and pullback speed of 20 mm/s. A total of 126 stented segments were analyzed. ISS were classified as either attached or non-attached to stent area boundaries. The volume, mean area and largest area of ISS were assessed according to 4 frequencies of SR, corresponding to distances between the analyzed frames of 0.125, 0.25, 0.50 and 1.0 mm. ISS volume was calculated by integrating cross-sectional ISS areas multiplied by each sampling distance using the disk summation method. The volume and mean area of ISS became significantly larger, while the largest area became significantly smaller as sampling distance became larger (1.11 mm(2) for 0.125 mm vs. 1.00 mm(2) for 1.0 mm, P for trend=0.036). In addition, variance of difference was positively associated with increasing width of sampling distance. Quantification of ISS is significantly influenced by the applied frequency of SR. This should be taken into account when designing future OFDI studies in which quantitative assessment of ISS is critical for the evaluation of STEMI patients.

  1. Myocardial scar segmentation from magnetic resonance images using convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zabihollahy, Fatemeh; White, James A.; Ukwatta, Eranga

    2018-02-01

    Accurate segmentation of the myocardial fibrosis or scar may provide important advancements for the prediction and management of malignant ventricular arrhythmias in patients with cardiovascular disease. In this paper, we propose a semi-automated method for segmentation of myocardial scar from late gadolinium enhancement magnetic resonance image (LGE-MRI) using a convolutional neural network (CNN). In contrast to image intensitybased methods, CNN-based algorithms have the potential to improve the accuracy of scar segmentation through the creation of high-level features from a combination of convolutional, detection and pooling layers. Our developed algorithm was trained using 2,336,703 image patches extracted from 420 slices of five 3D LGE-MR datasets, then validated on 2,204,178 patches from a testing dataset of seven 3D LGE-MR images including 624 slices, all obtained from patients with chronic myocardial infarction. For evaluation of the algorithm, we compared the algorithmgenerated segmentations to manual delineations by experts. Our CNN-based method reported an average Dice similarity coefficient (DSC), precision, and recall of 94.50 +/- 3.62%, 96.08 +/- 3.10%, and 93.96 +/- 3.75% as the accuracy of segmentation, respectively. As compared to several intensity threshold-based methods for scar segmentation, the results of our developed method have a greater agreement with manual expert segmentation.

  2. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice.

    PubMed

    Malek Mohammadi, Mona; Kattih, Badder; Grund, Andrea; Froese, Natali; Korf-Klingebiel, Mortimer; Gigina, Anna; Schrameck, Ulrike; Rudat, Carsten; Liang, Qiangrong; Kispert, Andreas; Wollert, Kai C; Bauersachs, Johann; Heineke, Joerg

    2017-02-01

    Heart failure is often the consequence of insufficient cardiac regeneration. Neonatal mice retain a certain capability of myocardial regeneration until postnatal day (P)7, although the underlying transcriptional mechanisms remain largely unknown. We demonstrate here that cardiac abundance of the transcription factor GATA4 was high at P1, but became strongly reduced at P7 in parallel with loss of regenerative capacity. Reconstitution of cardiac GATA4 levels by adenoviral gene transfer markedly improved cardiac regeneration after cryoinjury at P7. In contrast, the myocardial scar was larger in cardiomyocyte-specific Gata4 knockout (CM-G4-KO) mice after cryoinjury at P0, indicative of impaired regeneration, which was accompanied by reduced cardiomyocyte proliferation and reduced myocardial angiogenesis in CM-G4-KO mice. Cardiomyocyte proliferation was also diminished in cardiac explants from CM-G4-KO mice and in isolated cardiomyocytes with reduced GATA4 expression. Mechanistically, decreased GATA4 levels caused the downregulation of several pro-regenerative genes (among them interleukin-13, Il13) in the myocardium. Interestingly, systemic administration of IL-13 rescued defective heart regeneration in CM-G4-KO mice and could be evaluated as therapeutic strategy in the future. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Imaging and Modeling of Myocardial Metabolism

    PubMed Central

    Jamshidi, Neema; Karimi, Afshin; Birgersdotter-Green, Ulrika; Hoh, Carl

    2010-01-01

    Current imaging methods have focused on evaluation of myocardial anatomy and function. However, since myocardial metabolism and function are interrelated, metabolic myocardial imaging techniques, such as positron emission tomography, single photon emission tomography, and magnetic resonance spectroscopy present novel opportunities for probing myocardial pathology and developing new therapeutic approaches. Potential clinical applications of metabolic imaging include hypertensive and ischemic heart disease, heart failure, cardiac transplantation, as well as cardiomyopathies. Furthermore, response to therapeutic intervention can be monitored using metabolic imaging. Analysis of metabolic data in the past has been limited, focusing primarily on isolated metabolites. Models of myocardial metabolism, however, such as the oxygen transport and cellular energetics model and constraint-based metabolic network modeling, offer opportunities for evaluation interactions between greater numbers of metabolites in the heart. In this review, the roles of metabolic myocardial imaging and analysis of metabolic data using modeling methods for expanding our understanding of cardiac pathology are discussed. PMID:20559785

  4. The effect of butorphanol postconditioning on myocardial ischaemia reperfusion injury in rats

    PubMed Central

    Wu, Yun; Wan, Jing; Zhen, Wen-Zhon; Chen, Liu-Fang; Zhan, Jia; Ke, Jian-Juan; Zhang,, Zong-Ze; Wang, Yan-Lin

    2014-01-01

    OBJECTIVES Butorphanol tartrate is a synthetic opioid partial agonist analgesic. Butorphanol targets the heart, mainly via κ-opioid receptor (κ-OR) activation. The purpose of this study was to determine the effect and mechanism underlying butorphanol postconditioning (B-Post) on myocardial ischaemia reperfusion injury in rats. METHODS Seventy-five male Sprague–Dawley rats were randomly divided into five groups of 15 each: Group sham; Group I/R (ischaemia/reperfusion); Group B (butorphanol postconditioning); Group B/N (butorphanol postconditioning + antagonist of κ-OR nor-binaltorphimine [Nor-BNI]); Group B/G (butorphanol postconditioning + nonselective ATP-sensitive potassium (KATP) channel blocker glibenclamide [GLI]). The left coronary anterior descending artery (LAD) was occluded for 30 min, followed by a 120-min reperfusion. Blood samples were obtained at the end of reperfusion for determination of serum tumour necrosis factor (TNF)-α and interleukin (IL)-6 concentrations. The hearts were then excised for determination of myocardial infarct size by triphenyltetrazolium chloride staining. The myocardial tissues were used for determination of the expression of myocardial superoxide dismutase (SOD), malondialdehyde (MDA) and myeloperoxidase (MPO). RESULTS Myocardial infarct size was significantly reduced in B (26.4 ± 1.83%), B/N (34.5 ± 1.56%) and B/G (31.5 ± 1.27%) Groups compared with Group I/R (46.8 ± 1.41%) (all P < 0. 001). The serum TNF-α and IL-6 concentrations and the MDA and MPO activities in the ischaemic area in B, B/N and B/G Groups were significantly lower than those in the I/R Group (all P < 0.001). In addition, myocardial infarct size, TNF-α and IL-6 concentrations and the MDA and MPO activities in B/N and B/G Groups were higher than those in the B Group (all P < 0.001). In contrast, SOD activity was significantly increased in B, B/N and B/G Groups, and SOD activity in B/N and B/G Groups was less than in the B Group (all P < 0

  5. Early quantitative evaluation of a tumor vasculature disruptive agent AVE8062 using dynamic contrast-enhanced ultrasonography.

    PubMed

    Lavisse, Sonia; Lejeune, Pascale; Rouffiac, Valérie; Elie, Nicolas; Bribes, Estelle; Demers, Brigitte; Vrignaud, Patricia; Bissery, Marie-Christine; Brulé, Aude; Koscielny, Serge; Péronneau, Pierre; Lassau, Nathalie

    2008-02-01

    To evaluate the early tumor vasculature disrupting effects of the AVE8062 molecule and the feasibility of dynamic contrast-enhanced ultrasonography (DCE-US) in the quantitative assessment of these effects. AVE8062 was administered at a single dose (41 mg/kg) to 40 melanoma-bearing nude mice, which were all imaged before and after drug administration (5 + 15 minutes, 1, 6, and 24 hours). Using an ultrasound scanner (Aplio, Toshiba), intratumor vessels were counted in power Doppler mode and tumor microvasculature was assessed in a specific harmonic mode associated with a perfusion and quantification software for contrast-uptake quantification (Sonovue, Bracco). The peak intensity (PI), time-to-PI (T PI), and full-width at half maximum (FWHM) were extracted from the time-intensity curves expressed as linear raw data. Histologic analysis evaluated microvessel density (MVD) and necrosis at each time point studied. Statistical significance was estimated (paired sum rank and Mann-Whitney tests) to evaluate drug activity and to compare its efficacy at the different time points. In power Doppler mode, intratumoral vessels depletion started 15 minutes postinjection (32%, P = 0.004) and the decrease was maximal at 6 hours (51%, P = 0.002). PI decreased by 3.5- and 45.7-fold at 1 and 6 hours, respectively, compared with preinjection values (P = 0.016 and P = 0.008). The decrease at 6 hours was significantly different from the variation at 1 hour (P = 0.0012) and at 24 hours (P = 0.0008). T PI and FWHM showed a significant increase exclusively at 6 hours (P = 0.0034, P = 0.0039). Histology revealed significantly decreased MVD and increased necrosis at 24 hours (P < 0.01). DCE-US allowed quantitative in vivo evaluation of the functional effects of AVE8062, which was found most effective on tumoral microvasculature 6 hours after its administration. A clinical phase-1 study of AVE8062 is ongoing using the same ultrasonography methodology before and 6 and 24 hours

  6. [Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction].

    PubMed

    Strauer, B E; Brehm, M; Zeus, T; Gattermann, N; Hernandez, A; Sorg, R V; Kögler, G; Wernet, P

    2001-08-24

    The regenerative potential of human autologous adult stem cells on myocardial regeneration and neovascularisation after myocardial infarction may contribute to healing of the infarction area. But no clinical application has previously been reported. We here describe for the first time the results of this method applied in a patient who had sustained an acute myocardial infarction. 14 hours after the onset of left precordial pain a 46-year-old man was admitted to our hospital for interventional diagnosis and treatment. Coronary angiography demonstrated occlusion of the anterior descending branch of the left coronary artery with transmural infarction. This was treated by percutaneous transluminal catheter angioplasty and stent placement. Mononuclear bone marrow cells of the patient were prepared and 6 days after infaction 1,2 infinity 107 cells were transplanted at low pressure via a percutaneous transluminal catheter placed in the infarct-related artery. Before and 10 weeks after this procedure left ventricular function, infarct size, ventricular geometry and myocardial perfusion were measured by (201)thallium SPECT both at rest and on exercise, together with bull's-eye analysis, dobutamine stress echocardiography, right heart catheterisation and radionuclide ventriculography. At 10 weeks after the stem cell transplantation the transmural infarct area had been reduced from 24.6 % to 15.7 % of left ventricular circumference, while ejection fraction, cardiac index and stroke volume had increased by 20-30 %. On exercise the end diastolic volume had decreased by 30 % and there was a comparable fall in left ventricular filling pressure (mean pulmonary capillary pressure). These results for the first time demonstrate that selective intracoronary transplantation of human autologous adult stem cells is possible under clinical conditions and that it can lead to regeneration of the myocardial scar after transmural infarction. The therapeutic effects may be ascribed to stem

  7. Quantitative model of diffuse speckle contrast analysis for flow measurement.

    PubMed

    Liu, Jialin; Zhang, Hongchao; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua

    2017-07-01

    Diffuse speckle contrast analysis (DSCA) is a noninvasive optical technique capable of monitoring deep tissue blood flow. However, a detailed study of the speckle contrast model for DSCA has yet to be presented. We deduced the theoretical relationship between speckle contrast and exposure time and further simplified it to a linear approximation model. The feasibility of this linear model was validated by the liquid phantoms which demonstrated that the slope of this linear approximation was able to rapidly determine the Brownian diffusion coefficient of the turbid media at multiple distances using multiexposure speckle imaging. Furthermore, we have theoretically quantified the influence of optical property on the measurements of the Brownian diffusion coefficient which was a consequence of the fact that the slope of this linear approximation was demonstrated to be equal to the inverse of correlation time of the speckle.

  8. Non-invasive magnetic resonance imaging assessment of myocardial changes and the effects of angiotensin-converting enzyme inhibition in diabetic rats

    PubMed Central

    Al-Shafei, Ahmad I M; Wise, R G; Gresham, G A; Bronns, G; Carpenter, T A; Hall, L D; Huang, Christopher L-H

    2002-01-01

    A non-invasive cine magnetic resonance imaging (MRI) technique was developed to allow, for the first time, detection and characterization of chronic changes in myocardial tissue volume and the effects upon these of treatment by the angiotensin-converting enzyme (ACE) inhibitor captopril in streptozotocin (STZ)-diabetic male Wistar rats. Animals that had been made diabetic at the ages of 7, 10 and 13 weeks and a captopril-treated group of animals made diabetic at the age of 7 weeks were scanned. The findings were compared with the results from age-matched controls. All animal groups (n = 4 animals in each) were consistently scanned at 16 weeks. Left and right ventricular myocardial volumes were reconstructed from complete data sets of left and right ventricular transverse sections which covered systole and most of diastole using twelve equally incremented time points through the cardiac cycle. The calculated volumes remained consistent through all twelve time points of the cardiac cycle in all five experimental groups and agreed with the corresponding post-mortem determinations. These gave consistent myocardial densities whose values could additionally be corroborated by previous reports, confirming the validity of the quantitative MRI results and analysis. The myocardial volumes were conserved in animals whose diabetes was induced at 13 weeks but were significantly increased relative to body weight in animals made diabetic at 7 and 10 weeks. Captopril treatment, which was started immediately after induction of diabetes, prevented the development of this relative hypertrophy in both the left and right ventricles. We have thus introduced and validated quantitative MRI methods in a demonstration, for the first time, of chronic myocardial changes in both the right and left ventricles of STZ-diabetic rats and their prevention by the ACE inhibitor captopril. PMID:11790818

  9. Combined use of X-ray fluorescence microscopy, phase contrast imaging for high resolution quantitative iron mapping in inflamed cells

    NASA Astrophysics Data System (ADS)

    Gramaccioni, C.; Procopio, A.; Farruggia, G.; Malucelli, E.; Iotti, S.; Notargiacomo, A.; Fratini, M.; Yang, Y.; Pacureanu, A.; Cloetens, P.; Bohic, S.; Massimi, L.; Cutone, A.; Valenti, P.; Rosa, L.; Berlutti, F.; Lagomarsino, S.

    2017-06-01

    X-ray fluorescence microscopy (XRFM) is a powerful technique to detect and localize elements in cells. To derive information useful for biology and medicine, it is essential not only to localize, but also to map quantitatively the element concentration. Here we applied quantitative XRFM to iron in phagocytic cells. Iron, a primary component of living cells, can become toxic when present in excess. In human fluids, free iron is maintained at 10-18 M concentration thanks to iron binding proteins as lactoferrin (Lf). The iron homeostasis, involving the physiological ratio of iron between tissues/secretions and blood, is strictly regulated by ferroportin, the sole protein able to export iron from cells to blood. Inflammatory processes induced by lipopolysaccharide (LPS) or bacterial pathoge inhibit ferroportin synthesis in epithelial and phagocytic cells thus hindering iron export, increasing intracellular iron and bacterial multiplication. In this respect, Lf is emerging as an important regulator of both iron and inflammatory homeostasis. Here we studied phagocytic cells inflamed by bacterial LPS and untreated or treated with milk derived bovine Lf. Quantitative mapping of iron concentration and mass fraction at high spatial resolution is obtained combining X-ray fluorescence microscopy, atomic force microscopy and synchrotron phase contrast imaging.

  10. Employing Extracellular Volume Cardiovascular Magnetic Resonance Measures of Myocardial Fibrosis to Foster Novel Therapeutics.

    PubMed

    Schelbert, Erik B; Sabbah, Hani N; Butler, Javed; Gheorghiade, Mihai

    2017-06-01

    Quantifying myocardial fibrosis (MF) with myocardial extracellular volume measures acquired during cardiovascular magnetic resonance promises to transform clinical care by advancing pathophysiologic understanding and fostering novel therapeutics. Extracellular volume quantifies MF by measuring the extracellular compartment depicted by the myocardial uptake of contrast relative to plasma. MF is a key domain of dysfunctional but viable myocardium among others (eg, microvascular dysfunction and cardiomyocyte/mitochondrial dysfunction). Although anatomically distinct, these domains may functionally interact. MF represents pathological remodeling in the heart associated with cardiac dysfunction and adverse outcomes likely mediated by interactions with the microvasculature and the cardiomyocyte. Reversal of MF improves key measures of cardiac dysfunction, so reversal of MF represents a likely mechanism for improved outcomes. Instead of characterizing the myocardium as homogenous tissue and using important yet still generic descriptors, such as thickness (hypertrophy) and function (diastolic or systolic), which lack mechanistic specificity, paradigms of cardiac disease have evolved to conceptualize myocardial disease and patient vulnerability based on the extent of disease involving its various compartments. Specifying myocardial compartmental involvement may then implicate cellular/molecular disease pathways for treatment and targeted pharmaceutical development and above all highlight the role of the cardiac-specific pathology in heart failure among myriad other changes in the heart and beyond. The cardiology community now requires phase 2 and 3 clinical trials to examine strategies for the regression/prevention of MF and eventually biomarkers to identify MF without reliance on cardiovascular magnetic resonance. It seems likely that efficacious antifibrotic therapy will improve outcomes, but definitive data are needed. © 2017 American Heart Association, Inc.

  11. A Method to Measure and Estimate Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  12. Collateral circulation formation determines the characteristic profiles of contrast-enhanced MRI in the infarcted myocardium of pigs

    PubMed Central

    Wang, Jian; Xiang, Bo; Lin, Hung-yu; Liu, Hong-yu; Freed, Darren; Arora, Rakesh C; Tian, Gang-hong

    2015-01-01

    Aim: To investigate the relationship between the collateral circulation and contrast-enhanced MR signal change for myocardial infarction (MI) in pigs. Methods: Pigs underwent permanent ligation of two diagonal branches of the left anterior descending artery. First-pass perfusion (FPP) MRI (for detecting myocardial perfusion abnormalities) and delayed enhancement (DE) MRI (for estimating myocardial infarction) using Gd-DTPA were performed at 2 h, 7 d and 4 weeks after the coronary occlusion. Myocardial blood flow (MBF) was evaluated using nonradioactive red-colored microspheres. Histological examination was performed to characterize the infarcts. Results: Acute MI performed at 2 h afterwards was characterized by hypoenhancement in both FPP- and DE-MRI, with small and almost unchanged FPP-signal intensity (SI) and DE-SI due to negligible MBF. Subacute MI detected 7 d afterwards showed small but significantly increaseing FPP-SI, and was visible as a sluggish hyperenhancement in DE-MRI with considerably higher DE-SI compared to the normal myocardium; the MBF approached the half-normal value. Chronic MI detected at 4 weeks afterwards showed increasing FPP-SI comparable to the normal myocardium, and a rapid hyperenhancement in DE-MRI with even higher DE-SI; the MBF was close to the normal value. The MBF was correlated with FPP-SI (r=+0.94, P<0.01) and with the peak DE-SI (r=+0.92, P<0.01) at the three MI stages. Remodeled vessels were observed at intra-infarction and peri-infarction zones during the subacute and chronic periods. Conclusion: Progressive collateral recovery determines the characteristic profiles of contrast-enhanced MRI in acute, subacute and chronic myocardial infarction in pigs. The FPP- and DE-MRI signal profiles not only depend on the loss of tissue viability and enlarged interstitial space, but also on establishing a collateral circulation. PMID:25832427

  13. MYOCARDIAL AKT: THE OMNIPRESENT NEXUS

    PubMed Central

    Sussman, Mark A.; Völkers, Mirko; Fischer, Kimberlee; Bailey, Brandi; Cottage, Christopher T.; Din, Shabana; Gude, Natalie; Avitabile, Daniele; Alvarez, Roberto; Sundararaman, Balaji; Quijada, Pearl; Mason, Matt; Konstandin, Mathias H.; Malhowski, Amy; Cheng, Zhaokang; Khan, Mohsin; McGregor, Michael

    2013-01-01

    One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses. PMID:21742795

  14. Myocardial wall thickening from gated magnetic resonance images using Laplace's equation

    NASA Astrophysics Data System (ADS)

    Prasad, M.; Ramesh, A.; Kavanagh, P.; Gerlach, J.; Germano, G.; Berman, D. S.; Slomka, P. J.

    2009-02-01

    The aim of our work is to present a robust 3D automated method for measuring regional myocardial thickening using cardiac magnetic resonance imaging (MRI) based on Laplace's equation. Multiple slices of the myocardium in short-axis orientation at end-diastolic and end-systolic phases were considered for this analysis. Automatically assigned 3D epicardial and endocardial boundaries were fitted to short-axis and long axis slices corrected for breathold related misregistration, and final boundaries were edited by a cardiologist if required. Myocardial thickness was quantified at the two cardiac phases by computing the distances between the myocardial boundaries over the entire volume using Laplace's equation. The distance between the surfaces was found by computing normalized gradients that form a vector field. The vector fields represent tangent vectors along field lines connecting both boundaries. 3D thickening measurements were transformed into polar map representation and 17-segment model (American Heart Association) regional thickening values were derived. The thickening results were then compared with standard 17-segment 6-point visual scoring of wall motion/wall thickening (0=normal; 5=greatest abnormality) performed by a consensus of two experienced imaging cardiologists. Preliminary results on eight subjects indicated a strong negative correlation (r=-0.8, p<0.0001) between the average thickening obtained using Laplace and the summed segmental visual scores. Additionally, quantitative ejection fraction measurements also correlated well with average thickening scores (r=0.72, p<0.0001). For segmental analysis, we obtained an overall correlation of -0.55 (p<0.0001) with higher agreement along the mid and apical regions (r=-0.6). In conclusion 3D Laplace transform can be used to quantify myocardial thickening in 3D.

  15. [Clinical significance of myocardial 123I-BMIPP imaging in patients with myocardial infarction].

    PubMed

    Narita, M; Kurihara, T; Shindoh, T; Honda, M

    1997-03-01

    In order to clarify the characteristics of fatty acid metabolism in patients with myocardial infarction (MI), we performed myocardial imaging with 123I-beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) and we compared these findings with exercise stress (Ex) and resting myocardial perfusion imaging with 99mTc-methoxyisobutylisonitrile (MIBI) and left ventricular wall motion index (WMI) which were obtained by left ventriculography. We studied 55 patients with MI, 14 patients with recent MI (RMI) and 41 patients with old MI (OMI), and myocardial images were divided into 17 segments and myocardial uptake of the radionuclide was graded from 0 (normal) to 3 (maximal abnormality). In 28 patients we compared segmental defect score (SDS) with WMI which were obtained by centerline method at the corresponded segments. As a whole, the mean total defect scores (TDSs) of BMIPP and Ex were similar and they were greater than the mean TDS of resting perfusion. In 30 patient (55%) TDS of BMIPP was greater than that of TDS of resting perfusion. In 24 patients perfusion abnormality developed by Ex and the location of BMIPP abnormality coincided with the abnormality of Ex. But in the other 6 patients Ex did not induce any abnormality and they were all RMI and infarcted coronary artery was patent. However in the group with TDS of BMIPP identical to TDS of resting perfusion (25 patients), 92% did not show myocardial perfusion abnormality after Ex. In the comparison of SDS and WMI, myocardial segments were divided into 3 groups; both SDSs of BMIPP and resting perfusion were normal or borderline abnormality (Group 1, 82 segments), SDS of resting perfusion was normal or borderline and SDS of BMIPP was definitely abnormal (Group 2, 10 segments) and both SDSs of BMIPP and resting perfusion were definitely abnormal (Group 3, 48 segments). In Group 1, WMS (-0.41 +/- 0.77) was significantly (p < 0.001) greater than those of Group 2 (-2.14 +/- 0.50) and Group 3 (-2.32 +/- 0.67). But there was

  16. Quantitative investigation of the edge enhancement in in-line phase contrast projections and tomosynthesis provided by distributing microbubbles on the interface between two tissues: a phantom study

    NASA Astrophysics Data System (ADS)

    Wu, Di; Donovan Wong, Molly; Li, Yuhua; Fajardo, Laurie; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2017-12-01

    The objective of this study was to quantitatively investigate the ability to distribute microbubbles along the interface between two tissues, in an effort to improve the edge and/or boundary features in phase contrast imaging. The experiments were conducted by employing a custom designed tissue simulating phantom, which also simulated a clinical condition where the ligand-targeted microbubbles are self-aggregated on the endothelium of blood vessels surrounding malignant cells. Four different concentrations of microbubble suspensions were injected into the phantom: 0%, 0.1%, 0.2%, and 0.4%. A time delay of 5 min was implemented before image acquisition to allow the microbubbles to become distributed at the interface between the acrylic and the cavity simulating a blood vessel segment. For comparison purposes, images were acquired using three system configurations for both projection and tomosynthesis imaging with a fixed radiation dose delivery: conventional low-energy contact mode, low-energy in-line phase contrast and high-energy in-line phase contrast. The resultant images illustrate the edge feature enhancements in the in-line phase contrast imaging mode when the microbubble concentration is extremely low. The quantitative edge-enhancement-to-noise ratio calculations not only agree with the direct image observations, but also indicate that the edge feature enhancement can be improved by increasing the microbubble concentration. In addition, high-energy in-line phase contrast imaging provided better performance in detecting low-concentration microbubble distributions.

  17. Depth-Dependent Glycosaminoglycan Concentration in Articular Cartilage by Quantitative Contrast-Enhanced Micro–Computed Tomography

    PubMed Central

    Mittelstaedt, Daniel

    2015-01-01

    Objective A quantitative contrast-enhanced micro–computed tomography (qCECT) method was developed to investigate the depth dependency and heterogeneity of the glycosaminoglycan (GAG) concentration of ex vivo cartilage equilibrated with an anionic radiographic contrast agent, Hexabrix. Design Full-thickness fresh native (n = 19 in 3 subgroups) and trypsin-degraded (n = 6) articular cartilage blocks were imaged using micro–computed tomography (μCT) at high resolution (13.4 μm3) before and after equilibration with various Hexabrix bathing concentrations. The GAG concentration was calculated depth-dependently based on Gibbs-Donnan equilibrium theory. Analysis of variance with Tukey’s post hoc was used to test for statistical significance (P < 0.05) for effect of Hexabrix bathing concentration, and for differences in bulk and zonal GAG concentrations individually and compared between native and trypsin-degraded cartilage. Results The bulk GAG concentration was calculated to be 74.44 ± 6.09 and 11.99 ± 4.24 mg/mL for native and degraded cartilage, respectively. A statistical difference was demonstrated for bulk and zonal GAG between native and degraded cartilage (P < 0.032). A statistical difference was not demonstrated for bulk GAG when comparing Hexabrix bathing concentrations (P > 0.3214) for neither native nor degraded cartilage. Depth-dependent GAG analysis of native cartilage revealed a statistical difference only in the radial zone between 30% and 50% Hexabrix bathing concentrations. Conclusions This nondestructive qCECT methodology calculated the depth-dependent GAG concentration for both native and trypsin-degraded cartilage at high spatial resolution. qCECT allows for more detailed understanding of the topography and depth dependency, which could help diagnose health, degradation, and repair of native and contrived cartilage. PMID:26425259

  18. Elevated Endomyocardial Biopsy Macrophage-Related Markers in Intractable Myocardial Diseases.

    PubMed

    Hayashi, Yuka; Hanawa, Haruo; Jiao, Shuang; Hasegawa, Go; Ohno, Yukako; Yoshida, Kaori; Suzuki, Tomoyasu; Kashimura, Takeshi; Obata, Hiroaki; Tanaka, Komei; Watanabe, Tohru; Minamino, Tohru

    2015-12-01

    Tissue macrophages can be activated by endogenous danger signals released from cells that are stressed or injured, leading to infiltration of inflammatory macrophages and neutrophils. We postulated that macrophage-related markers might be closely associated with the existence of endogenous danger signals, reflecting ongoing tissue injury in the absence of foreign substances. This study was designed to assess the ability of macrophage-related markers in endomyocardial biopsies to predict ongoing cardiac injury in non-inflammatory myocardial diseases. We examined levels of macrophage-related markers (CD68, CD163, CD45) in endomyocardial biopsies from patients (n = 86) with various myocardial diseases by quantitative reverse transcription-polymerase chain reaction (n = 78) and immunohistochemistry (n = 56). Thirty-three patients without inflammatory cardiac disease such as myocarditis and sarcoidosis were classified as "improved" or "non-improved" defined as a 10% increase in left ventricular ejection fraction by echocardiograph and a value greater than 30% at the time of follow-up. All macrophage-related (MacR) markers levels were not higher in non-improved dilated cardiomyopathy (DCM) patients than improved patients. However, patients with cardiac amyloidosis, cardiac Fabry disease, mitochondrial cardiomyopathy, and biventricular arrhythmogenic right ventricular cardiomyopathy (ARVC), which were categorized as "non-improvement diseases," had elevated macrophage-related markers compared to improved patients. Macrophage-related markers levels were increased in endomyocardial biopsy samples of patients with intractable myocardial diseases such as amyloidosis, mitochondrial disease, Fabry disease, and biventricular ARVC.

  19. VO(2peak), myocardial hypertrophy, and myocardial blood flow in endurance-trained men.

    PubMed

    Laaksonen, Marko S; Heinonen, Ilkka; Luotolahti, Matti; Knuuti, Juhani; Kalliokoski, Kari K

    2014-08-01

    Endurance training induces cardiovascular and metabolic adaptations, leading to enhanced endurance capacity and exercise performance. Previous human studies have shown contradictory results in functional myocardial vascular adaptations to exercise training, and we hypothesized that this may be related to different degrees of hypertrophy in the trained heart. We studied the interrelationships between peak aerobic power (V˙O2peak), myocardial blood flow (MBF) at rest and during adenosine-induced vasodilation, and parameters of myocardial hypertrophy in endurance-trained (ET, n = 31) and untrained (n = 17) subjects. MBF and myocardial hypertrophy were studied using positron emission tomography and echocardiography, respectively. Both V˙O2peak (P < 0.001) and left ventricular (LV) mass index (P < 0.001) were higher in the ET group. Basal MBF was similar between the groups. MBF during adenosine was significantly lower in the ET group (2.88 ± 1.01 vs 3.64 ± 1.11 mL·g·min, P < 0.05) but not when the difference in LV mass was taken into account. V˙O2peak correlated negatively with adenosine-stimulated MBF, but when LV mass was taken into account as a partial correlate, this correlation disappeared. The present results show that increased LV mass in ET subjects explains the reduced hyperemic myocardial perfusion in this subject population and suggests that excessive LV hypertrophy has negative effect on cardiac blood flow capacity.

  20. Taxonomy of segmental myocardial systolic dysfunction

    PubMed Central

    McDiarmid, Adam K.; Pellicori, Pierpaolo; Cleland, John G.; Plein, Sven

    2017-01-01

    The terms used to describe different states of myocardial health and disease are poorly defined. Imprecision and inconsistency in nomenclature can lead to difficulty in interpreting and applying trial outcomes to clinical practice. In particular, the terms ‘viable’ and ‘hibernating’ are commonly applied interchangeably and incorrectly to myocardium that exhibits chronic contractile dysfunction in patients with ischaemic heart disease. The range of inherent differences amongst imaging modalities used to define myocardial health and disease add further challenges to consistent definitions. The results of several large trials have led to renewed discussion about the classification of dysfunctional myocardial segments. This article aims to describe the diverse myocardial pathologies that may affect the myocardium in ischaemic heart disease and cardiomyopathy, and how they may be assessed with non-invasive imaging techniques in order to provide a taxonomy of myocardial dysfunction. PMID:27147609

  1. FAIR exempting separate T (1) measurement (FAIREST): a novel technique for online quantitative perfusion imaging and multi-contrast fMRI.

    PubMed

    Lai, S; Wang, J; Jahng, G H

    2001-01-01

    A new pulse sequence, dubbed FAIR exempting separate T(1) measurement (FAIREST) in which a slice-selective saturation recovery acquisition is added in addition to the standard FAIR (flow-sensitive alternating inversion recovery) scheme, was developed for quantitative perfusion imaging and multi-contrast fMRI. The technique allows for clean separation between and thus simultaneous assessment of BOLD and perfusion effects, whereas quantitative cerebral blood flow (CBF) and tissue T(1) values are monitored online. Online CBF maps were obtained using the FAIREST technique and the measured CBF values were consistent with the off-line CBF maps obtained from using the FAIR technique in combination with a separate sequence for T(1) measurement. Finger tapping activation studies were carried out to demonstrate the applicability of the FAIREST technique in a typical fMRI setting for multi-contrast fMRI. The relative CBF and BOLD changes induced by finger-tapping were 75.1 +/- 18.3 and 1.8 +/- 0.4%, respectively, and the relative oxygen consumption rate change was 2.5 +/- 7.7%. The results from correlation of the T(1) maps with the activation images on a pixel-by-pixel basis show that the mean T(1) value of the CBF activation pixels is close to the T(1) of gray matter while the mean T(1) value of the BOLD activation pixels is close to the T(1) range of blood and cerebrospinal fluid. Copyright 2001 John Wiley & Sons, Ltd.

  2. Quantitative contrast-enhanced ultrasound evaluation of pathological complete response in patients with locally advanced breast cancer receiving neoadjuvant chemotherapy.

    PubMed

    Wan, Cai-Feng; Liu, Xue-Song; Wang, Lin; Zhang, Jie; Lu, Jin-Song; Li, Feng-Hua

    2018-06-01

    To clarify whether the quantitative parameters of contrast-enhanced ultrasound (CEUS) can be used to predict pathological complete response (pCR) in patients with locally advanced breast cancer receiving neoadjuvant chemotherapy (NAC). Fifty-one patients with histologically proved locally advanced breast cancer scheduled for NAC were enrolled. The quantitative data for CEUS and the tumor diameter were collected at baseline and before surgery, and compared with the pathological response. Multiple logistic regression analysis was performed to examine quantitative parameters at CEUS and the tumor diameter to predict the pCR, and receiver operating characteristic (ROC) curve analysis was used as a summary statistic. Multiple logistic regression analysis revealed that PEAK (the maximum intensity of the time-intensity curve during bolus transit), PEAK%, TTP% (time to peak), and diameter% were significant independent predictors of pCR, and the area under the ROC curve was 0.932(Az 1 ), and the sensitivity and specificity to predict pCR were 93.7% and 80.0%. The area under the ROC curve for the quantitative parameters was 0.927(Az 2 ), and the sensitivity and specificity to predict pCR were 81.2% and 94.3%. For diameter%, the area under the ROC curve was 0.786 (Az 3 ), and the sensitivity and specificity to predict pCR were 93.8% and 54.3%. The values of Az 1 and Az 2 were significantly higher than that of Az 3 (P = 0.027 and P = 0.034, respectively). However, there was no significant difference between the values of Az 1 and Az 2 (P = 0.825). Quantitative analysis of tumor blood perfusion with CEUS is superior to diameter% to predict pCR, and can be used as a functional technique to evaluate tumor response to NAC. Copyright © 2018. Published by Elsevier B.V.

  3. Sex-dependent effects of sleep deprivation on myocardial sensitivity to ischemic injury.

    PubMed

    Zoladz, Phillip R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah L; Fry, Megan E; Johnson, Brandon L; Rorabaugh, Boyd R

    2016-01-01

    Sleep deprivation is associated with increased risk of myocardial infarction. However, it is unknown whether the effects of sleep deprivation are limited to increasing the likelihood of experiencing a myocardial infarction or if sleep deprivation also increases the extent of myocardial injury. In this study, rats were deprived of paradoxical sleep for 96 h using the platform-over-water method. Control rats were subjected to the same condition except the control platform was large enough for the rats to sleep. Hearts from sleep deprived and control rats were subjected to 20 min ischemia on a Langendorff isolated heart system. Infarct size and post ischemic recovery of contractile function were unaffected by sleep deprivation in male hearts. In contrast, hearts from sleep-deprived females exhibited significantly larger infarcts than hearts from control females. Post ischemic recovery of rate pressure product and + dP/dT were significantly attenuated by sleep deprivation in female hearts, and post ischemic recovery of end diastolic pressure was significantly elevated in hearts from sleep deprived females compared to control females, indicating that post ischemic recovery of both systolic and diastolic function were worsened by sleep deprivation. These data provide evidence that sleep deprivation increases the extent of ischemia-induced injury in a sex-dependent manner.

  4. Quantitative characterization of edge enhancement in phase contrast x-ray imaging.

    PubMed

    Monnin, P; Bulling, S; Hoszowska, J; Valley, J F; Meuli, R; Verdun, F R

    2004-06-01

    The aim of this study was to model the edge enhancement effect in in-line holography phase contrast imaging. A simple analytical approach was used to quantify refraction and interference contrasts in terms of beam energy and imaging geometry. The model was applied to predict the peak intensity and frequency of the edge enhancement for images of cylindrical fibers. The calculations were compared with measurements, and the relationship between the spatial resolution of the detector and the amplitude of the phase contrast signal was investigated. Calculations using the analytical model were in good agreement with experimental results for nylon, aluminum and copper wires of 50 to 240 microm diameter, and with numerical simulations based on Fresnel-Kirchhoff theory. A relationship between the defocusing distance and the pixel size of the image detector was established. This analytical model is a useful tool for optimizing imaging parameters in phase contrast in-line holography, including defocusing distance, detector resolution and beam energy.

  5. Creation and characterization of normal myocardial perfusion imaging databases using the IQ·SPECT system.

    PubMed

    Okuda, Koichi; Nakajima, Kenichi; Matsuo, Shinro; Kondo, Chisato; Sarai, Masayoshi; Horiguchi, Yoriko; Konishi, Takahiro; Onoguchi, Masahisa; Shimizu, Takeshi; Kinuya, Seigo

    2017-01-03

    Image acquisition by short-time single-photon emission-computed tomography (SPECT) has been made feasible by IQ·SPECT. The aim of this study was to generate normal databases (NDBs) of thallium-201 ( 201 Tl) myocardial perfusion imaging for IQ·SPECT, and characterize myocardial perfusion distribution. We retrospectively enrolled 159 patients with a low likelihood of cardiac diseases from four hospitals in Japan. All patients underwent short-time 201 Tl myocardial perfusion IQ·SPECT with or without attenuation and scatter correction (ACSC) in either supine or prone position. The mean myocardial counts were calculated using 17-segment polar maps. Three NDBs were derived from supine and prone images as well as supine images with ACSC. Differences between the supine and prone positions were observed in the uncorrected sex-segregated NDBs in the mid-inferolateral counts (p ≤ 0.016 for males and p ≤ 0.002 for females). Differences between IQ·SPECT and conventional SPECT were also observed in the mid-anterior, inferolateral, and apical lateral counts (p ≤ 0.009 for males and p ≤ 0.003 for females). Apical low counts attributed to myocardial thinning were observed in the apical anterior and apex segments in the supine IQ·SPECT NDB with ACSC. There were significant differences between uncorrected supine and prone NDBs, between uncorrected supine NDB and supine NDB with ACSC, and between uncorrected supine NDB and conventional SPECT NDB. Understanding the pattern of normal distribution in IQ-SPECT short-time acquisitions with and without ACSC will be helpful for interpretation of imaging findings in patients with coronary artery disease (CAD) or low likelihood of CAD and the NDBs will aid in quantitative analysis.

  6. Comparison of ultrastructural and nanomechanical signature of platelets from acute myocardial infarction and platelet activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Aiqun; Chen, Jianwei; Liang, Zhi-Hong

    Acute myocardial infarction (AMI) initiation and progression follow complex molecular and structural changes in the nanoarchitecture of platelets. However, it remains poorly understood how the transformation from health to AMI alters the ultrastructural and biomechanical properties of platelets within the platelet activation microenvironment. Here, we show using an atomic force microscope (AFM) that platelet samples, including living human platelets from the healthy and AMI patient, activated platelets from collagen-stimulated model, show distinct ultrastructural imaging and stiffness profiles. Correlative morphology obtained on AMI platelets and collagen-activated platelets display distinct pseudopodia structure and nanoclusters on membrane. In contrast to normal platelets, AMImore » platelets have a stiffer distribution resulting from complicated pathogenesis, with a prominent high-stiffness peak representative of platelet activation using AFM-based force spectroscopy. Similar findings are seen in specific stages of platelet activation in collagen-stimulated model. Further evidence obtained from different force measurement region with activated platelets shows that platelet migration is correlated to the more elasticity of pseudopodia while high stiffness at the center region. Overall, ultrastructural and nanomechanical profiling by AFM provides quantitative indicators in the clinical diagnostics of AMI with mechanobiological significance.« less

  7. Automated myocardial perfusion from coronary x-ray angiography

    NASA Astrophysics Data System (ADS)

    Storm, Corstiaan J.; Slump, Cornelis H.

    2010-03-01

    The purpose of our study is the evaluation of an algorithm to determine the physiological relevance of a coronary lesion as seen in a coronary angiogram. The aim is to extract as much as possible information from a standard coronary angiogram to decide if an abnormality, percentage of stenosis, as seen in the angiogram, results in physiological impairment of the blood supply of the region nourished by the coronary artery. Coronary angiography, still the golden standard, is used to determine the cause of angina pectoris based on the demonstration of an important stenose in a coronary artery. Dimensions of a lesion such as length and percentage of narrowing can at present easily be calculated by using an automatic computer algorithm such as Quantitative Coronary Angiography (QCA) techniques resulting in just anatomical information ignoring the physiological relevance of the lesion. In our study we analyze myocardial perfusion images in standard coronary angiograms in rest and in artificial hyperemic phases, using a drug e.g. papaverine intracoronary. Setting a Region of Interest (ROI) in the angiogram without overlying major vessels makes it possible to calculate contrast differences as a function of time, so called time-density curves, in the basal and hyperemic phases. In minimizing motion artifacts, end diastolic images are selected ECG based in basal and hyperemic phase in an identical ROI in the same angiographic projection. The development of new algorithms for calculating differences in blood supply in the region as set are presented together with the results of a small clinical case study using the standard angiographic procedure.

  8. Vitexin exerts cardioprotective effect on chronic myocardial ischemia/reperfusion injury in rats via inhibiting myocardial apoptosis and lipid peroxidation.

    PubMed

    Che, Xia; Wang, Xin; Zhang, Junyan; Peng, Chengfeng; Zhen, Yilan; Shao, Xu; Zhang, Gongliang; Dong, Liuyi

    2016-01-01

    The aim of this study was to explore the cardioprotective effect of vitexin on chronic myocardial ischemia/reperfusion injury in rats and potential mechanisms. A chronic myocardial ischemia/reperfusion injury model was established by ligating left anterior descending coronary for 60 minutes, and followed by reperfusion for 14 days. After 2 weeks ischemia/reperfusion, cardiac function was measured to assess myocardial injury. The level of ST segment was recorded in different periods by electrocardiograph. The change of left ventricular function and myocardial reaction degree of fibrosis of heart was investigated by hematoxylin and eosin (HE) staining and Sirius red staining. Endothelium-dependent relaxations due to acetylcholine were observed in isolated rat thoracic aortic ring preparation. The blood samples were collected to measure the levels of MDA, the activities of SOD and NADPH in serum. Epac1, Rap1, Bax and Bcl-2 were examined by using Western Blotting. Vitexin exerted significant protective effect on chronic myocardial ischemia/reperfusion injury, improved obviously left ventricular diastolic function and reduced myocardial reactive fibrosis degree in rats of myocardial ischemia. Medium and high-dose vitexin groups presented a significant decrease in Bax, Epac1 and Rap1 production and increase in Bcl-2 compared to the I/R group. It may be related to preventing myocardial cells from apoptosis, improving myocardial diastolic function and inhibiting lipid peroxidation. Vitexin is a cardioprotective herb, which may be a promising useful complementary and alternative medicine for patients with coronary heart disease.

  9. Radionuclide imaging in myocardial sarcoidosis. Demonstration of myocardial uptake of /sup 99m/Tc pyrophosphate and gallium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forman, M.B.; Sandler, M.P.; Sacks, G.A.

    1983-03-01

    A patient had severe congestive cardiomyopathy secondary to myocardial sarcoidosis. The clinical diagnosis was confirmed by radionuclide ventriculography, /sup 201/Tl, /sup 67/Ga, and /sup 99m/Tc pyrophosphate (TcPYP) scintigraphy. Myocardial TcPYP uptake has not been reported previously in sarcoidosis. In this patient, TcPYP was as useful as gallium scanning and thallium imaging in documenting the myocardial process.

  10. Quantitative evaluation of microvascular blood flow by contrast-enhanced ultrasound (CEUS).

    PubMed

    Greis, Christian

    2011-01-01

    Ultrasound contrast agents consist of tiny gas-filled microbubbles the size of red blood cells. Due to their size distribution, they are purely intravascular tracers which do not extravasate into the interstitial fluid, and thus they are perfect agents for imaging blood distribution and flow. Using ultrasound scanners with contrast-specific software, the specific microbubble-derived echo signals can be separated from tissue signals in realtime, allowing selective imaging of the contrast agent. The signal intensity obtained lies in a linear relationship to the amount of microbubbles in the target organ, which allows easy and reliable assessment of relative blood volume. Imaging of the contrast wash-in and wash-out after bolus injection, or more precisely using the flash-replenishment technique, allows assessment of regional blood flow velocity. Commercially available quantification software packages can calculate time-related intensity values from the contrast wash-in and wash-out phase for each image pixel from stored video clips. After fitting of a mathematical model curve according to the respective kinetic model (bolus or flash-replenishment kinetics), time/intensity curves (TIC) can be calculated from single pixels or user-defined regions of interest (ROI). Characteristic parameters of these TICs (e.g. peak intensity, area under the curve, wash-in rate, etc.) can be displayed as color-coded parametric maps on top of the anatomical image, to identify cold and hot spots with abnormal perfusion.

  11. Roles of myocardial blood volume and flow in coronary artery disease: an experimental MRI study at rest and during hyperemia

    PubMed Central

    McCommis, Kyle S.; Goldstein, Thomas A.; Abendschein, Dana R.; Misselwitz, Bernd; Pilgram, Thomas; Gropler, Robert J.

    2010-01-01

    Objective To validate fast perfusion mapping techniques in a setting of coronary artery stenosis, and to further assess the relationship of absolute myocardial blood volume (MBV) and blood flow (MBF) to global myocardial oxygen demand. Methods A group of 27 mongrel dogs were divided into 10 controls and 17 with acute coronary stenosis. On 1.5-T MRI, first-pass perfusion imaging with a bolus injection of a blood-pool contrast agent was performed to determine myocardial perfusion both at rest and during either dipyridamole-induced vasodilation or dobutamine-induced stress. Regional values of MBF and MBV were quantified by using a fast mapping technique. Color microspheres and 99mTc-labeled red blood cells were injected to obtain respective gold standards. Results Microsphere-measured MBF and 99mTc-measured MBV reference values correlated well with the MR results. Given the same changes in MBF, changes in MBV are twofold greater with dobutamine than with dipyridamole. Under dobutamine stress, MBV shows better association with total myocardial oxygen demand than MBF. Coronary stenosis progressively reduced this association in the presence of increased stenosis severity. Conclusions MR first-pass perfusion can rapidly estimate regional MBF and MBV. Absolute quantification of MBV may add additional information on stenosis severity and myocardial viability compared with standard qualitative clinical evaluations of myocardial perfusion. PMID:20182731

  12. Hyperemic stress myocardial perfusion cardiovascular magnetic resonance in mice at 3 Tesla: initial experience and validation against microspheres.

    PubMed

    Jogiya, Roy; Makowski, Markus; Phinikaridou, Alkystsis; Patel, Ashish S; Jansen, Christian; Zarinabad, Niloufar; Chiribiri, Amedeo; Botnar, Rene; Nagel, Eike; Kozerke, Sebastian; Plein, Sven

    2013-07-21

    Dynamic first pass contrast-enhanced myocardial perfusion is the standard CMR method for the estimation of myocardial blood flow (MBF) and MBF reserve in man, but it is challenging in rodents because of the high temporal and spatial resolution requirements. Hyperemic first pass myocardial perfusion CMR during vasodilator stress in mice has not been reported. Five C57BL/6 J mice were scanned on a clinical 3.0 Tesla Achieva system (Philips Healthcare, Netherlands). Vasodilator stress was induced via a tail vein catheter with an injection of dipyridamole. Dynamic contrast-enhanced perfusion imaging (Gadobutrol 0.1 mmol/kg) was based on a saturation recovery spoiled gradient echo method with 10-fold k-space and time domain undersampling (k-t PCA). One week later the mice underwent repeat anaesthesia and LV injections of fluorescent microspheres at rest and at stress. Microspheres were analysed using confocal microscopy and fluorescence-activated cell sorting. Mean MBF at rest measured by Fermi-function constrained deconvolution was 4.1 ± 0.5 ml/g/min and increased to 9.6 ± 2.5 ml/g/min during dipyridamole stress (P = 0.005). The myocardial perfusion reserve was 2.4 ± 0.54. The mean count ratio of stress to rest microspheres was 2.4 ± 0.51 using confocal microscopy and 2.6 ± 0.46 using fluorescence. There was good agreement between cardiovascular magnetic resonance CMR and microspheres with no significant difference (P = 0.84). First-pass myocardial stress perfusion CMR in a mouse model is feasible at 3 Tesla. Rest and stress MBF values were consistent with existing literature and perfusion reserve correlated closely to microsphere analysis. Data were acquired on a 3 Tesla scanner using an approach similar to clinical acquisition protocols, potentially facilitating translation of imaging findings between rodent and human studies.

  13. Ultrasound imaging of propagation of myocardial contraction for non-invasive identification of myocardial ischemia

    NASA Astrophysics Data System (ADS)

    Matsuno, Yuya; Taki, Hirofumi; Yamamoto, Hiroaki; Hirano, Michinori; Morosawa, Susumu; Shimokawa, Hiroaki; Kanai, Hiroshi

    2017-07-01

    Non-invasive identification of ischemic regions is important for diagnosis and treatment of myocardial infarction. In the present study, ultrasound measurement was applied to the interventricular septum of three open-chest swine hearts. The properties of the myocardial contraction response of the septum were compared between normal and acute ischemic conditions, where the acute ischemic condition of the septum originated from direct avascularization of the left anterior descending (LAD) coronary artery. The result showed that the contraction response propagated from the basal side to the apical side along the septum. The estimated propagation velocities in the normal and acute ischemic conditions were 3.6 and 1.9 m/s, respectively. This finding indicates that acute ischemia which occurred 5 s after the avascularization of the LAD promptly suppressed the propagation velocity through the ventricular septum to about half the normal velocity. It was suggested that the myocardial ischemic region could be identified using the difference in the propagation velocity of the myocardial response to contraction.

  14. T1 and T2 mapping for evaluation of myocardial involvement in patients with ANCA-associated vasculitides.

    PubMed

    Greulich, Simon; Mayr, Agnes; Kitterer, Daniel; Latus, Joerg; Henes, Joerg; Steubing, Hannah; Kaesemann, Philipp; Patrascu, Alexandru; Greiser, Andreas; Groeninger, Stefan; Braun, Niko; Alscher, M Dominik; Sechtem, Udo; Mahrholdt, Heiko

    2017-01-06

    Myocardial involvement in AAV patients might be silent, presenting with no or nonspecific symptoms, normal ECG, and preserved left-ventricular ejection fraction (LV-EF). Since up to 50% of deaths in these patients may be due to myocardial involvement, a reliable diagnostic tool is warranted. In contrast to LGE-CMR, which has its strengths in detecting focal inflammatory or fibrotic processes, recent mapping techniques are able to detect even subtle, diffuse inflammatory or fibrotic processes. Our study sought to investigate ANCA (antineutrophil cytoplasmic antibody) associated vasculitides (AAV) patients for myocardial involvement by a cardiovascular magnetic resonance (CMR) protocol, including late gadolinium enhancement (LGE) and mapping sequences. Thirty seven AAV patients were prospectively enrolled and underwent CMR imaging. Twenty healthy volunteers served as controls. Mean LV-EF was 64%; LGE prevalence of the AAV patients was 43%. AAV patients had higher median native T1 (988 vs. 952 ms, p < 0.001), lower post-contrast T1 (488 vs. 524 ms, p = 0.03), expanded extracellular volume (ECV) (27.5 vs. 24.5%, p < 0.001), and higher T2 (53 vs. 49 ms, p < 0.001) compared to controls, with most parameters independent of the LGE status. Native T1 and T2 in AAV patients showed the highest prevalence of abnormally increased values beyond the 95% percentile of controls. AAV patients demonstrated increased T1, ECV, and T2 values, with native T1 and T2 showing the highest prevalence of values beyond the 95% percentile of normal. Since these findings seem to be independent of LGE, mapping techniques may provide complementary information to LGE-CMR in the assessment of myocardial involvement in patients with AAV.

  15. Magnetic Resonance Imaging (MRI) for the Assessment of Myocardial Viability

    PubMed Central

    2010-01-01

    Executive Summary In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability, an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients undergoing viability assessment. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of noninvasive cardiac imaging modalities. After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies that can be used for the assessment of myocardial viability: positron emission tomography, cardiac magnetic resonance imaging, dobutamine echocardiography, and dobutamine echocardiography with contrast, and single photon emission computed tomography. A 2005 review conducted by MAS determined that positron emission tomography was more sensitivity than dobutamine echocardiography and single photon emission tomography and dominated the other imaging modalities from a cost-effective standpoint. However, there was inadequate evidence to compare positron emission tomography and cardiac magnetic resonance imaging. Thus, this report focuses on this comparison only. For both technologies, an economic analysis was also completed. A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website). The Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html Positron Emission Tomography for the Assessment of Myocardial Viability: An Evidence-Based Analysis Magnetic Resonance

  16. Quantitation of stress echocardiography by tissue Doppler and strain rate imaging: a dream come true?

    PubMed

    Galderisi, Maurizio; Mele, Donato; Marino, Paolo Nicola

    2005-01-01

    Tissue Doppler (TD) is an ultrasound tool providing a quantitative agreement of left ventricular regional myocardial function in different modalities. Spectral pulsed wave (PW) TD, performed online during the examination, measures instantaneous myocardial velocities. By means of color TD, velocity images are digitally stored for subsequent off-line analysis and mean myocardial velocities are measured. An implementation of color TD includes strain rate imaging (SRI), based on post-processing conversion of regional velocities in local myocardial deformation rate (strain rate) and percent deformation (strain). These three modalities have been applied to stress echocardiography for quantitative evaluation of regional left ventricular function and detection of ischemia and viability. They present advantages and limitations. PWTD does not permit the simultaneous assessment of multiple walls and therefore is not compatible with clinical stress echocardiography while it could be used in a laboratory setting. Color TD provides a spatial map of velocity throughout the myocardium but its results are strongly affected by the frame rate. Both color TD and PWTD are also influenced by overall cardiac motion and tethering from adjacent segments and require reference velocity values for interpretation of regional left ventricular function. High frame rate (i.e. > 150 ms) post-processing-derived SRI can potentially overcome these limitations, since measurements of myocardial deformation have not any significant apex-to-base gradient. Preliminary studies have shown encouraging results about the ability of SRI to detect ischemia and viability, in terms of both strain rate changes and/or evidence of post-systolic thickening. SRI is, however, Doppler-dependent and time-consuming. Further technical refinements are needed to improve its application and introduce new ultrasound modalities to overcome the limitations of the Doppler-derived deformation analysis.

  17. Vitexin exerts cardioprotective effect on chronic myocardial ischemia/reperfusion injury in rats via inhibiting myocardial apoptosis and lipid peroxidation

    PubMed Central

    Che, Xia; Wang, Xin; Zhang, Junyan; Peng, Chengfeng; Zhen, Yilan; Shao, Xu; Zhang, Gongliang; Dong, Liuyi

    2016-01-01

    Purpose: The aim of this study was to explore the cardioprotective effect of vitexin on chronic myocardial ischemia/reperfusion injury in rats and potential mechanisms. Methods: A chronic myocardial ischemia/reperfusion injury model was established by ligating left anterior descending coronary for 60 minutes, and followed by reperfusion for 14 days. After 2 weeks ischemia/reperfusion, cardiac function was measured to assess myocardial injury. The level of ST segment was recorded in different periods by electrocardiograph. The change of left ventricular function and myocardial reaction degree of fibrosis of heart was investigated by hematoxylin and eosin (HE) staining and Sirius red staining. Endothelium-dependent relaxations due to acetylcholine were observed in isolated rat thoracic aortic ring preparation. The blood samples were collected to measure the levels of MDA, the activities of SOD and NADPH in serum. Epac1, Rap1, Bax and Bcl-2 were examined by using Western Blotting. Results: Vitexin exerted significant protective effect on chronic myocardial ischemia/reperfusion injury, improved obviously left ventricular diastolic function and reduced myocardial reactive fibrosis degree in rats of myocardial ischemia. Medium and high-dose vitexin groups presented a significant decrease in Bax, Epac1 and Rap1 production and increase in Bcl-2 compared to the I/R group. It may be related to preventing myocardial cells from apoptosis, improving myocardial diastolic function and inhibiting lipid peroxidation. Conclusions: Vitexin is a cardioprotective herb, which may be a promising useful complementary and alternative medicine for patients with coronary heart disease. PMID:27648122

  18. Taxonomy of segmental myocardial systolic dysfunction.

    PubMed

    McDiarmid, Adam K; Pellicori, Pierpaolo; Cleland, John G; Plein, Sven

    2017-04-01

    The terms used to describe different states of myocardial health and disease are poorly defined. Imprecision and inconsistency in nomenclature can lead to difficulty in interpreting and applying trial outcomes to clinical practice. In particular, the terms 'viable' and 'hibernating' are commonly applied interchangeably and incorrectly to myocardium that exhibits chronic contractile dysfunction in patients with ischaemic heart disease. The range of inherent differences amongst imaging modalities used to define myocardial health and disease add further challenges to consistent definitions. The results of several large trials have led to renewed discussion about the classification of dysfunctional myocardial segments. This article aims to describe the diverse myocardial pathologies that may affect the myocardium in ischaemic heart disease and cardiomyopathy, and how they may be assessed with non-invasive imaging techniques in order to provide a taxonomy of myocardial dysfunction. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  19. Effect of beta-adrenergic blockade with timolol on myocardial blood flow during exercise after myocardial infarction in the dog.

    PubMed

    Herzog, C A; Aeppli, D P; Bache, R J

    1984-12-01

    The effect of beta-adrenergic blockade with timolol (40 micrograms/kg) on myocardial blood flow during rest and graded treadmill exercise was assessed in 12 chronically instrumented dogs 10 to 14 days after myocardial infarction was produced by acute left circumflex coronary artery occlusion. During exercise at comparable external work loads, the heart rate-systolic blood pressure product was significantly decreased after timilol, with concomitant reductions of myocardial blood flow in normal, border and central ischemic areas (p less than 0.001) and increases in subendocardial/subepicardial blood flow ratios (p less than 0.05). In addition to the blunted chronotropic response to exercise, timolol exerted an effect on myocardial blood flow that was not explained by changes in heart rate or blood pressure. At comparable rate-pressure products during exercise, total myocardial blood flow was 24% lower after timolol (p less than 0.02) and flow was redistributed from subepicardium to subendocardium in all myocardial regions. Thus, timolol altered myocardial blood flow during exercise by two separate mechanisms: a negative chronotropic effect, and a significant selective reduction of subepicardial perfusion independent of changes in heart rate or blood pressure with transmural redistribution of flow toward the subendocardium.

  20. [Myocardial viability: update in nuclear cardiology].

    PubMed

    Vallejo, Enrique

    2007-01-01

    Evaluation of myocardial viability with the aid of radionuclides, is a technique that offers reliable, reproducible information, with an attractive cost-benefit relationship, in the study of the myocardial viability, integrating cardiac molecular, metabolic, and functional aspects. Nowadays, coronary risk stratification in post-myocardial infarction patients pretends to locate them as low-, intermediate, and high risk-subjects that can suffer cardiovascular complications in the very near future. Low-risk patients are characterized by a cardiac-related mortality below 1%, whereas high-risk mortality is greater than 3%. Because of clinical complications following a myocardial infarction are observed during the first month of evolution, clinical guidelines suggest to evaluate the cardiovascular risk before hospital discharge.

  1. Imaging of Myocardial Fatty Acid Oxidation

    PubMed Central

    Mather, Kieren J; DeGrado, Tim

    2016-01-01

    Myocardial fuel selection is a key feature of the health and function of the heart, with clear links between myocardial function and fuel selection and important impacts of fuel selection on ischemia tolerance. Radiopharmaceuticals provide uniquely valuable tools for in vivo, non-invasive assessment of these aspects of cardiac function and metabolism. Here we review the landscape of imaging probes developed to provide noninvasive assessment of myocardial fatty acid oxidation (MFAO). Also, we review the state of current knowledge that myocardial fatty acid imaging has helped establish of static and dynamic fuel selection that characterizes cardiac and cardiometabolic disease and the interplay between fuel selection and various aspects of cardiac function. PMID:26923433

  2. Calpain inhibition preserves myocardial structure and function following myocardial infarction.

    PubMed

    Mani, Santhosh K; Balasubramanian, Sundaravadivel; Zavadzkas, Juozas A; Jeffords, Laura B; Rivers, William T; Zile, Michael R; Mukherjee, Rupak; Spinale, Francis G; Kuppuswamy, Dhandapani

    2009-11-01

    Cardiac pathology, such as myocardial infarction (MI), activates intracellular proteases that often trigger programmed cell death and contribute to maladaptive changes in myocardial structure and function. To test whether inhibition of calpain, a Ca(2+)-dependent cysteine protease, would prevent these changes, we used a mouse MI model. Calpeptin, an aldehydic inhibitor of calpain, was intravenously administered at 0.5 mg/kg body wt before MI induction and then at the same dose subcutaneously once per day. Both calpeptin-treated (n = 6) and untreated (n = 6) MI mice were used to study changes in myocardial structure and function after 4 days of MI, where end-diastolic volume (EDV) and left ventricular ejection fraction (EF) were measured by echocardiography. Calpain activation and programmed cell death were measured by immunohistochemistry, Western blotting, and TdT-mediated dUTP nick-end labeling (TUNEL). In MI mice, calpeptin treatment resulted in a significant improvement in EF [EF decreased from 67 + or - 2% pre-MI to 30 + or - 4% with MI only vs. 41 + or - 2% with MI + calpeptin] and attenuated the increase in EDV [EDV increased from 42 + or - 2 microl pre-MI to 73 + or - 4 microl with MI only vs. 55 + or - 4 microl with MI + calpeptin]. Furthermore, calpeptin treatment resulted in marked reduction in calpain- and caspase-3-associated changes and TUNEL staining. These studies indicate that calpain contributes to MI-induced alterations in myocardial structure and function and that it could be a potential therapeutic target in treating MI patients.

  3. Morphological aspects of myocardial bridges.

    PubMed

    Lujinović, Almira; Kulenović, Amela; Kapur, Eldan; Gojak, Refet

    2013-11-01

    Although some myocardial bridges can be asymptomatic, their presence often causes coronary disease either through direct compression of the "tunnel" segment or through stimulation and accelerated development of atherosclerosis in the segment proximally to the myocardial bridge. The studied material contained 30 human hearts received from the Department of Anatomy. The hearts were preserved 3 to 5 days in 10% formalin solution. Thereafter, the fatty tissue was removed and arterial blood vessels prepared by careful dissection with special reference to the presence of the myocardial bridges. Length and thickness of the bridges were measured by the precise electronic caliper. The angle between the myocardial bridge fibre axis and other axis of the crossed blood vessel was measured by a goniometer. The presence of the bridges was confirmed in 53.33% of the researched material, most frequently (43.33%) above the anterior interventricular branch. The mean length of the bridges was 14.64 ± 9.03 mm and the mean thickness was 1.23 ± 1.32 mm. Myocardial bridge fibres pass over the descending blood vessel at the angle of 10-90 degrees. The results obtained on a limited sample suggest that the muscular index of myocardial bridge is the highest for bridges located on RIA, but that the difference is not significant in relation to bridges located on other branches. The results obtained suggest that bridges located on other branches, not only those on RIA, could have a great contractive power and, consequently, a great compressive force, which would be exerted on the wall of a crossed blood vessel.

  4. Navigator-gated 3D blood oxygen level-dependent CMR at 3.0-T for detection of stress-induced myocardial ischemic reactions.

    PubMed

    Jahnke, Cosima; Gebker, Rolf; Manka, Robert; Schnackenburg, Bernhard; Fleck, Eckart; Paetsch, Ingo

    2010-04-01

    This study determined the value of navigator-gated 3-dimensional blood oxygen level-dependent (BOLD) cardiac magnetic resonance (CMR) at 3.0-T for the detection of stress-induced myocardial ischemic reactions. Although BOLD CMR has been introduced for characterization of myocardial oxygenation status, previously reported CMR approaches suffered from a low signal-to-noise ratio and motion-related artifacts with impaired image quality and a limited diagnostic value in initial patient studies. Fifty patients with suspected or known coronary artery disease underwent CMR at 3.0-T followed by invasive X-ray angiography within 48 h. Three-dimensional BOLD images were acquired during free breathing with full coverage of the left ventricle in a short-axis orientation. The BOLD imaging was performed at rest and under adenosine stress, followed by stress and rest first-pass perfusion and delayed enhancement imaging. Quantitative coronary X-ray angiography (QCA) was used for coronary stenosis definition (diameter reduction > or =50%). The BOLD and first-pass perfusion images were semiquantitatively evaluated (for BOLD imaging, signal intensity differences between stress and rest [DeltaSI]; for perfusion imaging, myocardial perfusion reserve index [MPRI]). The image quality of BOLD CMR at rest and during adenosine stress was considered good to excellent in 90% and 84% of the patients, respectively. The DeltaSI measurements differed significantly between normal myocardium, myocardium supplied by a stenotic coronary artery, and infarcted myocardium (p < 0.001). The receiver-operator characteristic analysis identified a cutoff value of DeltaSI = 2.7% for the detection of coronary stenosis, resulting in a sensitivity and specificity of 85.0% and 80.5%, respectively. An MPRI cutoff value of 1.35 yielded a sensitivity and specificity of 89.5% and 85.8%, respectively. The DeltaSI significantly correlated with the degree of coronary stenosis (r = -0.65, p < 0.001). Additionally, Delta

  5. Quantitation of 87 Proteins by nLC-MRM/MS in Human Plasma: Workflow for Large-Scale Analysis of Biobank Samples.

    PubMed

    Rezeli, Melinda; Sjödin, Karin; Lindberg, Henrik; Gidlöf, Olof; Lindahl, Bertil; Jernberg, Tomas; Spaak, Jonas; Erlinge, David; Marko-Varga, György

    2017-09-01

    A multiple reaction monitoring (MRM) assay was developed for precise quantitation of 87 plasma proteins including the three isoforms of apolipoprotein E (APOE) associated with cardiovascular diseases using nanoscale liquid chromatography separation and stable isotope dilution strategy. The analytical performance of the assay was evaluated and we found an average technical variation of 4.7% in 4-5 orders of magnitude dynamic range (≈0.2 mg/L to 4.5 g/L) from whole plasma digest. Here, we report a complete workflow, including sample processing adapted to 96-well plate format and normalization strategy for large-scale studies. To further investigate the MS-based quantitation the amount of six selected proteins was measured by routinely used clinical chemistry assays as well and the two methods showed excellent correlation with high significance (p-value < 10e-5) for the six proteins, in addition for the cardiovascular predictor factor, APOB: APOA1 ratio (r = 0.969, p-value < 10e-5). Moreover, we utilized the developed assay for screening of biobank samples from patients with myocardial infarction and performed the comparative analysis of patient groups with STEMI (ST- segment elevation myocardial infarction), NSTEMI (non ST- segment elevation myocardial infarction) and type-2 AMI (type-2 myocardial infarction) patients.

  6. Development of an Ex Vivo, Beating Heart Model for CT Myocardial Perfusion

    PubMed Central

    Das, Marco; Haberland, Ulrike; Slump, Cees; Handayani, Astri; van Tuijl, Sjoerd; Stijnen, Marco; Oudkerk, Matthijs; Wildberger, Joachim E.; Vliegenthart, Rozemarijn

    2015-01-01

    Objective. To test the feasibility of a CT-compatible, ex vivo, perfused porcine heart model for myocardial perfusion CT imaging. Methods. One porcine heart was perfused according to Langendorff. Dynamic perfusion scanning was performed with a second-generation dual source CT scanner. Circulatory parameters like blood flow, aortic pressure, and heart rate were monitored throughout the experiment. Stenosis was induced in the circumflex artery, controlled by a fractional flow reserve (FFR) pressure wire. CT-derived myocardial perfusion parameters were analysed at FFR of 1 to 0.10/0.0. Results. CT images did not show major artefacts due to interference of the model setup. The pacemaker-induced heart rhythm was generally stable at 70 beats per minute. During most of the experiment, blood flow was 0.9–1.0 L/min, and arterial pressure varied between 80 and 95 mm/Hg. Blood flow decreased and arterial pressure increased by approximately 10% after inducing a stenosis with FFR ≤ 0.50. Dynamic perfusion scanning was possible across the range of stenosis grades. Perfusion parameters of circumflex-perfused myocardial segments were affected at increasing stenosis grades. Conclusion. An adapted Langendorff porcine heart model is feasible in a CT environment. This model provides control over physiological parameters and may allow in-depth validation of quantitative CT perfusion techniques. PMID:26185756

  7. Phase-contrast CT: Qualitative and Quantitative Evaluation of Capillarized Sinusoids and Trabecular Structure in Human Hepatocellular Carcinoma Tissues.

    PubMed

    Jian, Jianbo; Zhang, Wenxue; Yang, Hao; Zhao, Xinyan; Xuan, Ruijiao; Li, Dongyue; Hu, Chunhong

    2017-01-01

    Capillarization of sinusoids and change of trabecular thickness are the main histologic features in hepatocellular carcinoma (HCC). Of particular interest are the three-dimensional (3D) visualization and quantitative evaluation of such alterations in the HCC progression. X-ray phase-contrast computed tomography (PCCT) is an emerging imaging method that provides excellent image contrast for soft tissues. This study aimed to explore the potential of in-line PCCT in microstructure imaging of capillarized sinusoids and trabecular structure in human HCC tissues and to quantitatively evaluate the alterations of those fine structures during the development of HCC. This project was designed as an ex vivo experimental study. The study was approved by the institutional review board, and informed consent was obtained from the patients. Eight human resected HCC tissue samples were imaged using in-line PCCT. After histologic processing, PCCT images and histopathologic data were matched. Fine structures in HCC tissues were revealed. Quantitative analyses of capillarized sinusoids (ie, percentage of sinusoidal area [PSA], sinusoidal volume) and trabecular structure (ie, trabecular thickness, surface-area-to-volume ratio [SA/V]) in low-grade (well or moderately differentiated) and high-grade (poorly differentiated) HCC groups were performed. Using PCCT, the alterations of capillarized sinusoids and trabecular structure were clearly observed in 3D geometry, which was confirmed by the corresponding histologic sections. The 3D qualitative analyses of sinusoids in the high-grade HCC group were significantly different (P < 0.05) in PSA (7.8 ± 2.5%) and sinusoidal volume (2.9 ± 0.6 × 10 7  µm 3 ) from those in the low-grade HCC group (PSA, 12.9 ± 2.2%; sinusoidal volume, 2.4 ± 0.3 × 10 7  µm 3 ). Moreover, the 3D quantitative evaluation of the trabecular structure in the high-grade HCC group showed a significant change (P < 0.05) in the

  8. Increased Regional Epicardial Fat Volume Associated with Reversible Myocardial Ischemia in Patients with Suspected Coronary Artery Disease

    PubMed Central

    Khawaja, Tuba; Greer, Christine; Thadani, Samir R.; Kato, Tomoko S.; Bhatia, Ketan; Shimbo, Daichi; Konkak, Andrew; Bokhari, Sabahat; Einstein, Andrew J.; Schulze, P. Christian

    2015-01-01

    Epicardial adipose tissue is a source of pro-inflammatory cytokines and has been linked to the development of coronary artery disease. No study has systematically assessed the relationship between local epicardial fat volume (EFV) and myocardial perfusion defects. We analyzed EFV in patients undergoing SPECT myocardial perfusion imaging combined with computed tomography (CT) for attenuation correction. Low-dose CT without contrast was performed in 396 consecutive patients undergoing SPECT imaging for evaluation of coronary artery disease. Regional thickness, cross-sectional areas, and total EFV were assessed. 295 patients had normal myocardial perfusion scans and 101 had abnormal perfusion scans. Mean EFVs in normal, ischemic, and infarcted hearts were 99.8 ± 82.3 cm3, 156.4 ± 121.9 cm3, and 96.3 ± 102.1 cm3, respectively (P < 0.001). Reversible perfusion defects were associated with increased local EFV compared to normal perfusion in the distribution of the right (69.2 ± 51.5 vs 46.6 ± 32.0 cm3; P = 0.03) and left anterior descending coronary artery (87.1 ± 76.4 vs 46.7 ± 40.6 cm3; P = 0.005). Our results demonstrate increased regional epicardial fat in patients with active myocardial ischemia compared to patients with myocardial scar or normal perfusion on nuclear perfusion scans. Our results suggest a potential role for cardiac CT to improve risk stratification in patients with suspected coronary artery disease. PMID:25339129

  9. Myocardial perfusion imaging with PET

    PubMed Central

    Nakazato, Ryo; Berman, Daniel S; Alexanderson, Erick; Slomka, Piotr

    2013-01-01

    PET-myocardial perfusion imaging (MPI) allows accurate measurement of myocardial perfusion, absolute myocardial blood flow and function at stress and rest in a single study session performed in approximately 30 min. Various PET tracers are available for MPI, and rubidium-82 or nitrogen-13-ammonia is most commonly used. In addition, a new fluorine-18-based PET-MPI tracer is currently being evaluated. Relative quantification of PET perfusion images shows very high diagnostic accuracy for detection of obstructive coronary artery disease. Dynamic myocardial blood flow analysis has demonstrated additional prognostic value beyond relative perfusion imaging. Patient radiation dose can be reduced and image quality can be improved with latest advances in PET/CT equipment. Simultaneous assessment of both anatomy and perfusion by hybrid PET/CT can result in improved diagnostic accuracy. Compared with SPECT-MPI, PET-MPI provides higher diagnostic accuracy, using lower radiation doses during a shorter examination time period for the detection of coronary artery disease. PMID:23671459

  10. Detecting Myocardial Ischemia With 99mTechnetium-Tetrofosmin Myocardial Perfusion Imaging in Ischemic Stroke.

    PubMed

    Giannopoulos, Sotirios; Markoula, Sofia; Sioka, Chrissa; Zouroudi, Sofia; Spiliotopoulou, Maria; Naka, Katerina K; Michalis, Lampros K; Fotopoulos, Andreas; Kyritsis, Athanassios P

    2017-10-01

    To assess the myocardial status in patients with stroke, employing myocardial perfusion imaging (MPI) with 99m Technetium-tetrofosmin ( 99m Tc-TF)-single-photon emission computed tomography (SPECT). Fifty-two patients with ischemic stroke were subjected to 99m Tc-TF-SPECT MPI within 1 month after stroke occurrence. None of the patients had any history or symptoms of coronary artery disease or other heart disease. Myocardial perfusion imaging was evaluated visually using a 17-segment polar map. Myocardial ischemia (MIS) was defined as present when the summed stress score (SSS) was >4; MIS was defined as mild when SSS was 4 to 8, and moderate/severe with SSS ≥9. Patients with SSS >4 were compared to patients with SSS <4. Parameters such as age, body mass index, waist perimeter, smoking habits, and medical history (diabetes mellitus, dyslipidemia, etc) were evaluated according to MPI results. Myocardial ischemia was present in 32 (62%) of 52 patients with stroke. Among them, 20 (62%) of 32 patients had mild abnormalities and 12 (38%) of 32 had moderate/severe. The age and waist perimeter showed a tendency to relate to severe MIS when patients with SSS >9 were compared to patients with SSS <4. In MPI-positive patients, an age was to be association with SSS, with the oldest age exhibiting the highest SSS ( P = .01). The association of age with SSS remained statistically significant in the multivariate analysis ( P = .04). The study suggested that more than half of patients with stroke without a history of cardiac disease have MIS. Although most of them have mild MIS, we suggest a thorough cardiological evaluation in this group of patients for future prevention of severe myocardial outcome.

  11. New Trends in Radionuclide Myocardial Perfusion Imaging

    PubMed Central

    Hung, Guang-Uei; Wang, Yuh-Feng; Su, Hung-Yi; Hsieh, Te-Chun; Ko, Chi-Lun; Yen, Ruoh-Fang

    2016-01-01

    Radionuclide myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has been widely used clinically as one of the major functional imaging modalities for patients with coronary artery disease (CAD) for decades. Ample evidence has supported the use of MPI as a useful and important tool in the diagnosis, risk stratification and treatment planning for CAD. Although popular in the United States, MPI has become the most frequently used imaging modality among all nuclear medicine tests in Taiwan. However, it should be acknowledged that MPI SPECT does have its limitations. These include false-positive results due to certain artifacts, false-negative due to balanced ischemia, complexity and adverse reaction arising from current pharmacological stressors, time consuming nature of the imaging procedure, no blood flow quantitation and relatively high radiation exposure. The purpose of this article was to review the recent trends in nuclear cardiology, including the utilization of positron emission tomography (PET) for MPI, new stressor, new SPECT camera with higher resolution and higher sensitivity, dynamic SPECT protocol for blood flow quantitation, new software of phase analysis for evaluation of LV dyssynchrony, and measures utilized for reducing radiation exposure of MPI. PMID:27122946

  12. Dual Contrast - Magnetic Resonance Fingerprinting (DC-MRF): A Platform for Simultaneous Quantification of Multiple MRI Contrast Agents.

    PubMed

    Anderson, Christian E; Donnola, Shannon B; Jiang, Yun; Batesole, Joshua; Darrah, Rebecca; Drumm, Mitchell L; Brady-Kalnay, Susann M; Steinmetz, Nicole F; Yu, Xin; Griswold, Mark A; Flask, Chris A

    2017-08-16

    Injectable Magnetic Resonance Imaging (MRI) contrast agents have been widely used to provide critical assessments of disease for both clinical and basic science imaging research studies. The scope of available MRI contrast agents has expanded over the years with the emergence of molecular imaging contrast agents specifically targeted to biological markers. Unfortunately, synergistic application of more than a single molecular contrast agent has been limited by MRI's ability to only dynamically measure a single agent at a time. In this study, a new Dual Contrast - Magnetic Resonance Fingerprinting (DC - MRF) methodology is described that can detect and independently quantify the local concentration of multiple MRI contrast agents following simultaneous administration. This "multi-color" MRI methodology provides the opportunity to monitor multiple molecular species simultaneously and provides a practical, quantitative imaging framework for the eventual clinical translation of molecular imaging contrast agents.

  13. Diffuse Myocardial Fibrosis Reduces Electrocardiographic Voltage Measures of Left Ventricular Hypertrophy Independent of Left Ventricular Mass.

    PubMed

    Maanja, Maren; Wieslander, Björn; Schlegel, Todd T; Bacharova, Ljuba; Abu Daya, Hussein; Fridman, Yaron; Wong, Timothy C; Schelbert, Erik B; Ugander, Martin

    2017-01-22

    Myocardial fibrosis quantified by myocardial extracellular volume fraction (ECV) and left ventricular mass (LVM) index (LVMI) measured by cardiovascular magnetic resonance might represent independent and opposing contributors to ECG voltage measures of left ventricular hypertrophy (LVH). Diffuse myocardial fibrosis can occur in LVH and interfere with ECG voltage measures. This phenomenon could explain the decreased sensitivity of LVH detectable by ECG, a fundamental diagnostic tool in cardiology. We identified 77 patients (median age, 53 [interquartile range, 26-60] years; 49% female) referred for contrast-enhanced cardiovascular magnetic resonance with ECV measures and 12-lead ECG. Exclusion criteria included clinical confounders that might influence ECG measures of LVH. We evaluated ECG voltage-based LVH measures, including Sokolow-Lyon index, Cornell voltage, 12-lead voltage, and the vectorcardiogram spatial QRS voltage, with respect to LVMI and ECV. ECV and LVMI were not correlated (R 2 =0.02; P=0.25). For all voltage-related parameters, higher LVMI resulted in greater voltage (r=0.33-0.49; P<0.05 for all), whereas increased ECV resulted in lower voltage (r=-0.32 to -0.57; P<0.05 for all). When accounting for body fat, LV end-diastolic volume, and mass-to-volume ratio, both LVMI (β=0.58, P=0.03) and ECV (β=-0.46, P<0.001) were independent predictors of QRS voltage (multivariate adjusted R 2 =0.39; P<0.001). Myocardial mass and diffuse myocardial fibrosis have independent and opposing effects upon ECG voltage measures of LVH. Diffuse myocardial fibrosis quantified by ECV can obscure the ECG manifestations of increased LVM. This provides mechanistic insight, which can explain the limited sensitivity of the ECG for detecting increased LVM. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  14. Hypoxia-inducible factor 1-alpha release after intracoronary versus intramyocardial stem cell therapy in myocardial infarction.

    PubMed

    Gyöngyösi, Mariann; Hemetsberger, Rayyan; Posa, Aniko; Charwat, Silvia; Pavo, Noemi; Petnehazy, Ors; Petrasi, Zsolt; Pavo, Imre J; Hemetsberger, Hani; Benedek, Imre; Benedek, Teodora; Benedek, Istvan; Kovacs, Istvan; Kaun, Christoph; Maurer, Gerald

    2010-04-01

    We have investigated the effect of stem cell delivery on the release of hypoxia-inducible factor 1 alpha (HIF-1alpha) in peripheral circulation and myocardium in experimental myocardial ischemia. Closed-chest, reperfused myocardial infarction (MI) was created in domestic pigs. Porcine mesenchymal stem cells (MSCs) were cultured and delivered (9.8 +/- 1.2 x 10(6)) either percutaneously NOGA-guided transendocardially (Group IM) or intracoronary (Group IC) 22 +/- 4 days post-MI. Pigs without MSC delivery served as sham control (Group S). Plasma HIF-1alpha was measured at baseline, immediately post- and at follow-up (FUP; 2 h or 24 h) post-MSC delivery by ELISA kit. Myocardial HIF-1alpha expression of infarcted, normal myocardium, or border zone was determined by Western blot. Plasma level of HIF-1alpha increased immediately post-MI (from 278 +/- 127 to 631 +/- 375 pg/ml, p < 0.05). Cardiac delivery of MSCs elevated the plasma levels of HIF-1alpha significantly (p < 0.05) in groups IC and IM immediately post-MSC delivery, and returned to baseline level at FUP, without difference between the groups IC and IM. The myocardial tissue HIF-1alpha expression in the infarcted area was higher in Group IM than in Group IC or S (1,963 +/- 586 vs. 1,307 +/- 392 vs. 271 +/- 110 activity per square millimeter, respectively, p < 0.05), while the border zone contained similarly lower level of HIF-1alpha, but still significantly higher as compared with Group S. Trend towards increase in myocardial expression of HIF-1alpha was measured in Group IM at 24 h, in contrast to Group IC. In conclusion, both stem cell delivery modes increase the systemic and myocardial level of HIF-1alpha. Intramyocardial delivery of MSC seems to trigger the release of angiogenic HIF-1alpha more effectively than does intracoronary delivery.

  15. Effects of aortic tortuosity on left ventricular diastolic parameters derived from gated myocardial perfusion single photon emission computed tomography in patients with normal myocardial perfusion.

    PubMed

    Kurisu, Satoshi; Nitta, Kazuhiro; Sumimoto, Yoji; Ikenaga, Hiroki; Ishibashi, Ken; Fukuda, Yukihiro; Kihara, Yasuki

    2018-06-01

    Aortic tortuosity is often found on chest radiograph, especially in aged patients. We tested the hypothesis that aortic tortuosity was associated with LV diastolic parameters derived from gated SPECT in patients with normal myocardial perfusion. One-hundred and twenty-two patients with preserved LV ejection fraction and normal myocardial perfusion were enrolled. Descending aortic deviation was defined as the horizontal distance from the left line of the aortic knob to the most prominent left line of the descending aorta. This parameter was measured for the quantitative assessment of aortic tortuosity. Peak filling rate (PFR) and one-third mean filling rate (1/3 MFR) were obtained from redistribution images as LV diastolic parameters. Descending aortic deviation ranged from 0 to 22 mm with a mean distance of 4.5 ± 6.3 mm. Descending aortic deviation was significantly correlated with age (r = 0.38, p < 0.001) and estimated glomerular filtration rate (eGFR) (r = - 0.21, p = 0.02). Multivariate linear regression analysis revealed that eGFR (β = 0.23, p = 0.02) and descending aortic deviation (β = - 0.23, p = 0.01) were significantly associated with PFR, and that only descending aortic deviation (β = - 0.21, p = 0.03) was significantly associated with 1/3 MFR. Our data suggest that aortic tortuosity is associated with LV diastolic parameters derived from gated SPECT in patients with normal myocardial perfusion.

  16. Myocardial Blood Volume Is Associated with Myocardial Oxygen Consumption: An Experimental Study with CMR in a Canine Model

    PubMed Central

    McCommis, Kyle S.; Zhang, Haosen; Goldstein, Thomas A.; Misselwitz, Bernd; Abendschein, Dana R.; Gropler, Robert J.; Zheng, Jie

    2009-01-01

    OBJECTIVES To evaluate the feasibility of cardiovascular MR (CMR) to determine regional myocardial perfusion and O2 metabolism, and assess the role of myocardial blood volume (MBV) on oxygen supply. BACKGROUND Coronary artery disease presents as an imbalance of myocardial oxygen supply and demand. We have developed relevant CMR methods to determine the relationship of myocardial blood flow (MBF) and MBV to oxygen consumption (MVO2) during pharmacologic hyperemia. METHODS Twenty-one mongrel dogs were studied with varying stenosis severities imposed on the proximal left anterior descending (LAD) coronary artery. MBF and MBV were determined by CMR first-pass perfusion, while the oxygen extraction fraction (OEF) and MVO2 were determined by the myocardial Blood-Oxygen-Level-Dependent (BOLD) effect and Fick’s law, respectively. MR imaging was performed at rest, and during either dipyridamole-induced vasodilation or dobutamine-induced hyperemia. Regional differences in myocardial perfusion and oxygenation were then evaluated. RESULTS Dipyridamole and dobutamine both led to 145–200% increases in MBF and 50–80% increases in MBV in normal perfused myocardium. As expected, MVO2 increased more significantly with dobutamine (~175%) than dipyridamole (~40%). Coronary stenosis resulted in an attenuation of MBF, MBV, and MVO2 in both the LAD-subtended stenosis region and the left circumflex subtended remote region. Liner regression analysis showed that MBV reserve appears to be more correlated with MVO2 reserve during dobutamine stress than MBF reserve, particularly in the stenotic regions. Conversely, MBF reserve appears to be more correlated with MVO2 reserve during dipyridamole, although neither of these differences was significant. CONCLUSIONS Noninvasive evaluation of both myocardial perfusion and oxygenation by CMR facilitates direct monitoring of regional myocardial ischemia and provides a valuable tool for better understanding microvascular pathophysiology. These

  17. Myocardial pressure overload induces systemic inflammation through endothelial cell IL-33

    PubMed Central

    Chen, Wei-Yu; Hong, Jaewoo; Gannon, Joseph; Kakkar, Rahul; Lee, Richard T.

    2015-01-01

    Hypertension increases the pressure load on the heart and is associated with a poorly understood chronic systemic inflammatory state. Interleukin 33 (IL-33) binds to membrane-bound ST2 (ST2L) and has antihypertrophic and antifibrotic effects in the myocardium. In contrast, soluble ST2 appears to act as a decoy receptor for IL-33, blocking myocardial and vascular benefits, and is a prognostic biomarker in patients with cardiovascular diseases. Here we report that a highly local intramyocardial IL-33/ST2 conversation regulates the heart’s response to pressure overload. Either endothelial-specific deletion of IL33 or cardiomyocyte-specific deletion of ST2 exacerbated cardiac hypertrophy with pressure overload. Furthermore, pressure overload induced systemic circulating IL-33 as well as systemic circulating IL-13 and TGF-beta1; this was abolished by endothelial-specific deletion of IL33 but not by cardiomyocyte-specific deletion of IL33. Our study reveals that endothelial cell secretion of IL-33 is crucial for translating myocardial pressure overload into a selective systemic inflammatory response. PMID:25941360

  18. Sgarbossa criteria and acute myocardial infarction.

    PubMed

    Alang, Neha; Bathina, Jaya; Kranis, Mark; Angelis, Dimitrios

    2010-01-01

    Diagnosis of acute ST-elevation myocardial infarction in the presence of left bundle branch block is difficult. present a case of acute myocardial infarction with LBBB diagnosed and treated using the Sgarbossa criteria.

  19. Saturation pulse design for quantitative myocardial T1 mapping.

    PubMed

    Chow, Kelvin; Kellman, Peter; Spottiswoode, Bruce S; Nielles-Vallespin, Sonia; Arai, Andrew E; Salerno, Michael; Thompson, Richard B

    2015-10-01

    Quantitative saturation-recovery based T1 mapping sequences are less sensitive to systematic errors than the Modified Look-Locker Inversion recovery (MOLLI) technique but require high performance saturation pulses. We propose to optimize adiabatic and pulse train saturation pulses for quantitative T1 mapping to have <1 % absolute residual longitudinal magnetization (|MZ/M0|) over ranges of B0 and [Formula: see text] (B1 scale factor) inhomogeneity found at 1.5 T and 3 T. Design parameters for an adiabatic BIR4-90 pulse were optimized for improved performance within 1.5 T B0 (±120 Hz) and [Formula: see text] (0.7-1.0) ranges. Flip angles in hard pulse trains of 3-6 pulses were optimized for 1.5 T and 3 T, with consideration of T1 values, field inhomogeneities (B0 = ±240 Hz and [Formula: see text]=0.4-1.2 at 3 T), and maximum achievable B1 field strength. Residual MZ/M0 was simulated and measured experimentally for current standard and optimized saturation pulses in phantoms and in-vivo human studies. T1 maps were acquired at 3 T in human subjects and a swine using a SAturation recovery single-SHot Acquisition (SASHA) technique with a standard 90°-90°-90° and an optimized 6-pulse train. Measured residual MZ/M0 in phantoms had excellent agreement with simulations over a wide range of B0 and [Formula: see text]. The optimized BIR4-90 reduced the maximum residual |MZ/M0| to <1 %, a 5.8× reduction compared to a reference BIR4-90. An optimized 3-pulse train achieved a maximum residual |MZ/M0| <1 % for the 1.5 T optimization range compared to 11.3 % for a standard 90°-90°-90° pulse train, while a 6-pulse train met this target for the wider 3 T ranges of B0 and [Formula: see text]. The 6-pulse train demonstrated more uniform saturation across both the myocardium and entire field of view than other saturation pulses in human studies. T1 maps were more spatially homogeneous with 6-pulse train SASHA than the reference 90°-90°-90° SASHA in both

  20. (-) Epicatechin prevents alterations in lysosomal glycohydrolases, cathepsins and reduces myocardial infarct size in isoproterenol-induced myocardial infarcted rats.

    PubMed

    Prince, Ponnian Stanely Mainzen

    2013-04-15

    The preventive effects of (-) epicatechin on oxidative stress, cardiac mitochondrial damage, altered membrane bound adenosine triphosphatases and minerals were reported previously in isoproterenol-induced myocardial infarction model. Leakage of lysosomal glycohydrolases and cathepsins play an important role in the pathology of myocardial infarction. This study was aimed to evaluate the preventive effects of (-) epicatechin on alterations in lysosomal glycohydrolases, cathepsins and myocardial infarct size in isoproterenol-induced myocardial infarcted rats. Male albino Wistar rats were pretreated with (-) epicatechin (20mg/kg body weight) daily for a period of 21 days. After the pretreatment period, isoproterenol (100mg/kg body weight) was injected subcutaneously into the rats at an interval of 24h for two days to induce myocardial infarction. The levels of serum cardiac troponin-I and the activities of serum and heart lysosomal enzymes (β-glucuronidase, β-N-acetyl glucosaminidase, β-galactosidase, cathepsin-B and cathepsin-D) were increased significantly (P<0.05) and the activities of β-glucuronidase and cathepsin-D in the heart lysosomal fractions were significantly (P<0.05) decreased in isoproterenol-induced myocardial infarcted rats. The in vitro study revealed the potent antioxidant action of (-) epicatechin. Pretreatment with (-) epicatechin daily for a period of 21 days prevented the leakage of cardiac marker, lysosomal glycohydrolases, cathepsins, and reduced infarct size, thereby protecting the lysosomal membranes in isoproterenol-induced myocardial infarcted rats, by virtue of its membrane stabilizing property. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Spontaneous Focusing on Quantitative Relations: Towards a Characterization

    ERIC Educational Resources Information Center

    Degrande, Tine; Verschaffel, Lieven; Van Dooren, Wim

    2017-01-01

    In contrast to previous studies on Spontaneous Focusing on Quantitative Relations (SFOR), the present study investigated not only the "extent" to which children focus on (multiplicative) quantitative relations, but also the "nature" of children's quantitative focus (i.e., the types of quantitative relations that children focus…

  2. Using digital inline holographic microscopy and quantitative phase contrast imaging to assess viability of cultured mammalian cells

    NASA Astrophysics Data System (ADS)

    Missan, Sergey; Hrytsenko, Olga

    2015-03-01

    Digital inline holographic microscopy was used to record holograms of mammalian cells (HEK293, B16, and E0771) in culture. The holograms have been reconstructed using Octopus software (4Deep inwater imaging) and phase shift maps were unwrapped using the FFT-based phase unwrapping algorithm. The unwrapped phase shifts were used to determine the maximum phase shifts in individual cells. Addition of 0.5 mM H2O2 to cell media produced rapid rounding of cultured cells, followed by cell membrane rupture. The cell morphology changes and cell membrane ruptures were detected in real time and were apparent in the unwrapped phase shift images. The results indicate that quantitative phase contrast imaging produced by the digital inline holographic microscope can be used for the label-free real time automated determination of cell viability and confluence in mammalian cell cultures.

  3. Prevalence and Predictive Value of Microvascular Flow Abnormalities after Successful Contemporary Percutaneous Coronary Intervention in Acute ST-Segment Elevation Myocardial Infarction.

    PubMed

    Aggarwal, Sourabh; Xie, Feng; High, Robin; Pavlides, Gregory; Porter, Thomas R

    2018-06-01

    Although microvascular flow abnormalities have been observed following epicardial recanalization in acute ST-segment elevation myocardial infarction (STEMI), the prevalence and severity of these abnormalities in the current era of rapid percutaneous coronary intervention (PCI) has not been evaluated. The objective of this study was to assess microvascular perfusion (MVP) following successful primary PCI in patients with STEMI and how it affects clinical outcome. In this single-center, retrospective study, 170 patients who successfully underwent emergent PCI for STEMI were assessed using real-time myocardial contrast echocardiography using a continuous infusion of intravenous commercial microbubbles (3% Definity). Three patterns of myocardial contrast replenishment were observed following intermittent high-mechanical index impulses: infarct zone replenishment within 4 sec (normal MVP), delays in contrast replenishment but normal plateau intensity (delayed MVP [dMVP]), and both delays in replenishment and reduced plateau intensity (microvascular obstruction [MVO]). Changes in left ventricular ejection fraction at 6 months and clinical event rate at 12 months (death, recurrent infarction, need for defibrillator placement, or heart failure admission) were compared. Normal MVP was seen in 62 patients (36%), dMVP in 49 (29%), and MVO in 59 (35%). Left anterior descending coronary artery infarct location was the only parameter independently associated with dMVP or MVO, independent of age, cardiac risk factors, door-to-dilation time, pre-PCI Thrombolysis In Myocardial Infarction flow grade, and thrombus burden. A dMVP pattern had a similar reduction in left ventricular ejection fraction as MVO at hospital discharge but had recovery of left ventricular ejection fraction at 6 months and a greater than fourfold lower event rate than the MVO group (P < .001). MVO and dMVP are frequently seen following contemporary successful PCI for STEMI, especially following left

  4. Prognostic implications of left ventricular mass and geometry following myocardial infarction: the VALIANT (VALsartan In Acute myocardial iNfarcTion) Echocardiographic Study.

    PubMed

    Verma, Anil; Meris, Alessandra; Skali, Hicham; Ghali, Jalal K; Arnold, J Malcolm O; Bourgoun, Mikhail; Velazquez, Eric J; McMurray, John J V; Kober, Lars; Pfeffer, Marc A; Califf, Robert M; Solomon, Scott D

    2008-09-01

    This study sought to understand prognostic implications of increased baseline left ventricular (LV) mass and geometric patterns in a high risk acute myocardial infarction. The LV hypertrophy and alterations in LV geometry are associated with an increased risk of adverse cardiovascular events. Quantitative echocardiographic analyses were performed at baseline in 603 patients from the VALIANT (VALsartan In Acute myocardial iNfarcTion) echocardiographic study. The left ventricular mass index (LVMi) and relative wall thickness (RWT) were calculated. Patients were classified into 4 mutually exclusive groups based on RWT and LVMi as follows: normal geometry (normal LVMi and normal RWT), concentric remodeling (normal LVMi and increased RWT), eccentric hypertrophy (increased LVMi and normal RWT), and concentric hypertrophy (increased LVMi and increased RWT). Cox proportional hazards models were used to evaluate the relationships among LVMi, RWT, LV geometry, and clinical outcomes. Mean LVMi and RWT were 98.8 +/- 28.4 g/m(2) and 0.38 +/- 0.08. The risk of death or the composite end point of death from cardiovascular causes, reinfarction, heart failure, stroke, or resuscitation after cardiac arrest was lowest for patients with normal geometry, and increased with concentric remodeling (hazard ratio [HR]: 3.0; 95% confidence interval [CI]: 1.9 to 4.9), eccentric hypertrophy (HR: 3.1; 95% CI: 1.9 to 4.8), and concentric hypertrophy (HR: 5.4; 95% CI: 3.4 to 8.5), after adjusting for baseline covariates. Also, baseline LVMi and RWT were associated with increased mortality and nonfatal cardiovascular outcomes (HR: 1.22 per 10 g/m(2) increase in LVMi; 95% CI: 1.20 to 1.30; p < 0.001) (HR: 1.60 per 0.1-U increase in RWT; 95% CI: 1.30 to 1.90; p < 0.001). Increased risk associated with RWT was independent of LVMi. Increased baseline LV mass and abnormal LV geometry portend an increased risk for morbidity and mortality following high-risk myocardial infarction. Concentric LV

  5. The Severity of Coronary Arterial Stenosis in Patients With Acute ST-Elevated Myocardial Infarction: A Thrombolytic Therapy Study

    PubMed Central

    Kilic, Salih; Kocabas, Umut; Can, Levent Hurkan; Yavuzgil, Oguz; Zoghi, Mehdi

    2018-01-01

    Background It is widely believed that ST-elevated myocardial infarction (STEMI) generally occurs at the site of mild to moderate coronary stenosis. The aim of this study was to determine the degree of stenosis of infarct-related artery (IRA) in STEMI patients who underwent coronary angiography (CAG) after successful reperfusion with thrombolytic therapy (TT). Methods A total of 463 consecutive patients between January 2008 and December 2013 with acute STEMI treated with TT were evaluated retrospectively. The patients in whom reperfusion failed (n = 120), death occurred before CAG (n = 12), IRA cannot be determined (n = 10), and CAG was not performed in index hospitalization (n = 54) were excluded from the study. To determine the severity of stenosis of IRA, two experienced cardiologists who were unaware of each other used quantitative CAG analysis. Significant stenosis was defined as a ≥ 50% stenosis in the coronary artery lumen. A total of 267 patients who were successfully reperfused with TT and in whom CAG was performed during hospitalization with median 8 (1 - 17) days after myocardial infarction were included in the study. Results The mean age of patients was 55.7 ± 10.8 years (85.5% male). Most of the patients had a significant stenosis in IRA ( ≥ 50%, n = 236, group 1) after successful TT; whereas only 11.6% had stenosis < 50% (n = 31, group 2). In addition, majority of the patients had ≥ 70.4% (n = 188, 70.4%) stenosis in IRA. Average of stenosis in IRA was 74±16%. Conclusions In contrast to the general opinion, we detected that majority of STEMI patients had a significant stenosis in IRA. PMID:29479380

  6. Quantitative contrast enhanced magnetic resonance imaging for the evaluation of peripheral arterial disease: a comparative study versus standard digital angiography.

    PubMed

    Pavlovic, Chris; Futamatsu, Hideki; Angiolillo, Dominick J; Guzman, Luis A; Wilke, Norbert; Siragusa, Daniel; Wludyka, Peter; Percy, Robert; Northrup, Martin; Bass, Theodore A; Costa, Marco A

    2007-04-01

    The purpose of this study is to evaluate the accuracy of semiautomated analysis of contrast enhanced magnetic resonance angiography (MRA) in patients who have undergone standard angiographic evaluation for peripheral vascular disease (PVD). Magnetic resonance angiography is an important tool for evaluating PVD. Although this technique is both safe and noninvasive, the accuracy and reproducibility of quantitative measurements of disease severity using MRA in the clinical setting have not been fully investigated. 43 lesions in 13 patients who underwent both MRA and digital subtraction angiography (DSA) of iliac and common femoral arteries within 6 months were analyzed using quantitative magnetic resonance angiography (QMRA) and quantitative vascular analysis (QVA). Analysis was repeated by a second operator and by the same operator in approximately 1 month time. QMRA underestimated percent diameter stenosis (%DS) compared to measurements made with QVA by 2.47%. Limits of agreement between the two methods were +/- 9.14%. Interobserver variability in measurements of %DS were +/- 12.58% for QMRA and +/- 10.04% for QVA. Intraobserver variability of %DS for QMRA was +/- 4.6% and for QVA was +/- 8.46%. QMRA displays a high level of agreement to QVA when used to determine stenosis severity in iliac and common femoral arteries. Similar levels of interobserver and intraobserver variability are present with each method. Overall, QMRA represents a useful method to quantify severity of PVD.

  7. Myocardial Dysfunction and Shock after Cardiac Arrest

    PubMed Central

    Jentzer, Jacob C.; Chonde, Meshe D.; Dezfulian, Cameron

    2015-01-01

    Postarrest myocardial dysfunction includes the development of low cardiac output or ventricular systolic or diastolic dysfunction after cardiac arrest. Impaired left ventricular systolic function is reported in nearly two-thirds of patients resuscitated after cardiac arrest. Hypotension and shock requiring vasopressor support are similarly common after cardiac arrest. Whereas shock requiring vasopressor support is consistently associated with an adverse outcome after cardiac arrest, the association between myocardial dysfunction and outcomes is less clear. Myocardial dysfunction and shock after cardiac arrest develop as the result of preexisting cardiac pathology with multiple superimposed insults from resuscitation. The pathophysiology involves cardiovascular ischemia/reperfusion injury and cardiovascular toxicity from excessive levels of inflammatory cytokine activation and catecholamines, among other contributing factors. Similar mechanisms occur in myocardial dysfunction after cardiopulmonary bypass, in sepsis, and in stress-induced cardiomyopathy. Hemodynamic stabilization after resuscitation from cardiac arrest involves restoration of preload, vasopressors to support arterial pressure, and inotropic support if needed to reverse the effects of myocardial dysfunction and improve systemic perfusion. Further research is needed to define the role of postarrest myocardial dysfunction on cardiac arrest outcomes and identify therapeutic strategies. PMID:26421284

  8. Myocardial Dysfunction and Shock after Cardiac Arrest.

    PubMed

    Jentzer, Jacob C; Chonde, Meshe D; Dezfulian, Cameron

    2015-01-01

    Postarrest myocardial dysfunction includes the development of low cardiac output or ventricular systolic or diastolic dysfunction after cardiac arrest. Impaired left ventricular systolic function is reported in nearly two-thirds of patients resuscitated after cardiac arrest. Hypotension and shock requiring vasopressor support are similarly common after cardiac arrest. Whereas shock requiring vasopressor support is consistently associated with an adverse outcome after cardiac arrest, the association between myocardial dysfunction and outcomes is less clear. Myocardial dysfunction and shock after cardiac arrest develop as the result of preexisting cardiac pathology with multiple superimposed insults from resuscitation. The pathophysiology involves cardiovascular ischemia/reperfusion injury and cardiovascular toxicity from excessive levels of inflammatory cytokine activation and catecholamines, among other contributing factors. Similar mechanisms occur in myocardial dysfunction after cardiopulmonary bypass, in sepsis, and in stress-induced cardiomyopathy. Hemodynamic stabilization after resuscitation from cardiac arrest involves restoration of preload, vasopressors to support arterial pressure, and inotropic support if needed to reverse the effects of myocardial dysfunction and improve systemic perfusion. Further research is needed to define the role of postarrest myocardial dysfunction on cardiac arrest outcomes and identify therapeutic strategies.

  9. [Myocardial infarction as cause of an accident. The role of multislice CT in polytrauma management, differential diagnosis and insurance aspects].

    PubMed

    Kleber, C; Oswald, B; Bail, H J; Haas, N P; Kandziora, F

    2008-12-01

    We present for the first time the use of contrast-enhanced multislice computed tomography in trauma care to detect acute myocardial infarction and verify it as the cause of a traffic accident. In addition to the case report, cardiac contusion, coronary dissection, and facets of insurance law are discussed. The determination of acute myocardial infarction, cardiac contusion, and coronary dissection can be challenging, but answers can be found in the medical history and accident details. The trauma surgeon in the emergency department must always be interested in clarifying the cause of trauma and keeping a secondary diagnosis in mind to strive for the goal of optimal and complete polytrauma care.

  10. Cocaine, a risk factor for myocardial infarction.

    PubMed

    Galasko, G I

    1997-06-01

    Cocaine usage goes back thousands of years, to the times of the Incas. Over the past 20 years, its use has increased dramatically, especially in America, and adverse cardiovascular reactions to the drug have begun to be reported. The first report of myocardial infarction temporally related to the recreational use of cocaine appeared in 1982. Since then, myocardial infarction has become recognized as the drug's most common cardiovascular consequence, with over 250 cases now documented in the literature. This review discusses the history of cocaine use, its pharmacology, the possible pathological mechanisms underlying the pathogenesis of myocardial ischaemia and infarction, and current ideas on the management of cocaine-induced myocardial infarction.

  11. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure.

    PubMed

    Kowoll, Thomas; Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar

    2017-01-01

    This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO 2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO 2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast.

  12. Myocardial infarction in Swedish subway drivers.

    PubMed

    Bigert, Carolina; Klerdal, Kristina; Hammar, Niklas; Gustavsson, Per

    2007-08-01

    Particulate matter in urban air is associated with the risk of myocardial infarction in the general population. Very high levels of airborne particles have been detected in the subway system of Stockholm, as well as in several other large cities. This situation has caused concern for negative health effects among subway staff. The aim of this study was to investigate whether there is an increased incidence of myocardial infarction among subway drivers. Data from a population-based case-control study of men aged 40-69 in Stockholm County in 1976-1996 were used. The study included all first events of myocardial infarction in registers of hospital discharges and deaths. The controls were selected randomly from the general population. National censuses were used for information on occupation. Altogether, 22 311 cases and 131 496 controls were included. Among these, 54 cases and 250 controls had worked as subway drivers. The relative risk of myocardial infarction among subway drivers was not increased. It was 0.92 [95% confidence interval (95% CI) 0.68-1.25] when the subway drivers were compared with other manual workers and 1.06 (95% CI 0.78-1.43) when the subway drivers were compared with all other gainfully employed men. Subgroup analyses indicated no influence on the risk of myocardial infarction from the duration of employment, latency time, or time since employment stopped. Subway drivers in Stockholm do not have a higher incidence of myocardial infarction than other employed persons.

  13. Determination of multidirectional myocardial deformations in cats with hypertrophic cardiomyopathy by using two-dimensional speckle-tracking echocardiography.

    PubMed

    Suzuki, Ryohei; Mochizuki, Yohei; Yoshimatsu, Hiroki; Teshima, Takahiro; Matsumoto, Hirotaka; Koyama, Hidekazu

    2017-12-01

    Objectives Hypertrophic cardiomyopathy, a primary disorder of the myocardium, is the most common cardiac disease in cats. However, determination of myocardial deformation with two-dimensional speckle-tracking echocardiography in cats with various stages of hypertrophic cardiomyopathy has not yet been reported. This study was designed to measure quantitatively multidirectional myocardial deformations of cats with hypertrophic cardiomyopathy. Methods Thirty-two client-owned cats with hypertrophic cardiomyopathy and 14 healthy cats serving as controls were enrolled and underwent assessment of myocardial deformation (peak systolic strain and strain rate) in the longitudinal, radial and circumferential directions. Results Longitudinal and radial deformations were reduced in cats with hypertrophic cardiomyopathy, despite normal systolic function determined by conventional echocardiography. Cats with severely symptomatic hypertrophic cardiomyopathy also had lower peak systolic circumferential strain, in addition to longitudinal and radial strain. Conclusions and relevance Longitudinal and radial deformation may be helpful in the diagnosis of hypertrophic cardiomyopathy. Additionally, the lower circumferential deformation in cats with severe hypertrophic cardiomyopathy may contribute to clinical findings of decompensation, and seems to be related to severe cardiac clinical signs. Indices of multidirectional myocardial deformations by two-dimensional speckle-tracking echocardiography may be useful markers and help to distinguish between cats with hypertrophic cardiomyopathy and healthy cats. Additionally, they may provide more detailed assessment of contractile function in cats with hypertrophic cardiomyopathy.

  14. Hospital collaboration with emergency medical services in the care of patients with acute myocardial infarction: perspectives from key hospital staff.

    PubMed

    Landman, Adam B; Spatz, Erica S; Cherlin, Emily J; Krumholz, Harlan M; Bradley, Elizabeth H; Curry, Leslie A

    2013-02-01

    Evidence suggests that active collaboration between hospitals and emergency medical services (EMS) is significantly associated with lower acute myocardial infarction mortality rates; however, the nature of such collaborations is not well understood. We seek to characterize views of key hospital staff about collaboration with EMS in the care of patients hospitalized with acute myocardial infarction. We performed an exploratory analysis of qualitative data previously collected from site visits and detailed interviews with 11 US hospitals that ranked in the top or bottom 5% of performance on 30-day risk-standardized acute myocardial infarction mortality rates, using Centers for Medicare & Medicaid Services data from 2005 to 2007. We selected all codes from the previous analysis in which EMS was most likely to have been discussed. A multidisciplinary team analyzed the data with the constant comparative method to generate recurrent themes. Both higher- and lower-performing hospitals reported that EMS is critical to the provision of timely care for patients with acute myocardial infarction. However, close collaborative relationships with EMS were more apparent in the higher-performing hospitals, which demonstrated specific investment in and attention to EMS through respect for EMS as valued professionals and colleagues, strong communication and coordination with EMS and active engagement of EMS in hospital acute myocardial infarction quality improvement efforts. Hospital staff from higher-performing hospitals described broad, multifaceted strategies to support collaboration with EMS in providing acute myocardial infarction care. The association of these strategies with hospital performance should be tested quantitatively in a larger representative study. Copyright © 2012. Published by Mosby, Inc.

  15. Contrast-enhanced ultrasound for quantitative assessment of portal pressure in canine liver fibrosis.

    PubMed

    Zhai, Lin; Qiu, Lan-Yan; Zu, Yuan; Yan, Yan; Ren, Xiao-Zhuan; Zhao, Jun-Feng; Liu, Yu-Jiang; Liu, Ji-Bin; Qian, Lin-Xue

    2015-04-21

    To explore the feasibility of non-invasive quantitative estimation of portal venous pressure by contrast-enhanced ultrasound (CEUS) in a canine model. Liver fibrosis was established in adult canines (Beagles; n = 14) by subcutaneous injection of carbon tetrachloride (CCl4). CEUS parameters, including the area under the time-intensity curve and intensity at portal/arterial phases (Qp/Qa and Ip/Ia, respectively), were used to quantitatively assess the blood flow ratio of the portal vein/hepatic artery at multiple time points. The free portal venous pressures (FPP) were measured by a multi-channel baroreceptor using a percutaneous approach at baseline and 8, 16, and 24 wk after CCl4 injections in each canine. Liver biopsies were obtained at the end of 8, 16, and 24 wk from each animal, and the stage of the fibrosis was assessed according to the Metavir scoring system. A Pearson correlation test was performed to compare the FPP with Qp/Qa and Ip/Ia. Pathologic examination of 42 biopsies from the 14 canines at weeks 8, 16, and 24 revealed that liver fibrosis was induced by CCl4 and represented various stages of liver fibrosis, including F0 (n = 3), F1 (n = 12), F2 (n = 14), F3 (n = 11), and F4 (n = 2). There were significant differences in the measurements of Qp/Qa (19.85 ± 3.30 vs 10.43 ± 1.21, 9.63 ± 1.03, and 8.77 ± 0.96) and Ip/Ia (1.77 ± 0.37 vs 1.03 ± 0.12, 0.83 ± 0.10, and 0.69 ± 0.13) between control and canine fibrosis at 8, 16, and 24 wk, respectively (all P < 0.001). There were statistically significant negative correlations between FPP and Qp/Qa (r = -0.707, P < 0.001), and between FPP and Ip/Ia (r = -0.759, P < 0.001) in the canine fibrosis model. Prediction of elevated FPP based on Qp/Qa and Ip/Ia was highly sensitive, as assessed by the area under the receiver operating curve (0.866 and 0.895, respectively). CEUS is a potential method to accurately, but non-invasively, estimate portal venous pressure through measurement of Qp/Qa and Ip

  16. Evaluation of Parallel and Fan-Beam Data Acquisition Geometries and Strategies for Myocardial SPECT Imaging

    NASA Astrophysics Data System (ADS)

    Qi, Yujin; Tsui, B. M. W.; Gilland, K. L.; Frey, E. C.; Gullberg, G. T.

    2004-06-01

    This study evaluates myocardial SPECT images obtained from parallel-hole (PH) and fan-beam (FB) collimator geometries using both circular-orbit (CO) and noncircular-orbit (NCO) acquisitions. A newly developed 4-D NURBS-based cardiac-torso (NCAT) phantom was used to simulate the /sup 99m/Tc-sestamibi uptakes in human torso with myocardial defects in the left ventricular (LV) wall. Two phantoms were generated to simulate patients with thick and thin body builds. Projection data including the effects of attenuation, collimator-detector response and scatter were generated using SIMSET Monte Carlo simulations. A large number of photon histories were generated such that the projection data were close to noise free. Poisson noise fluctuations were then added to simulate the count densities found in clinical data. Noise-free and noisy projection data were reconstructed using the iterative OS-EM reconstruction algorithm with attenuation compensation. The reconstructed images from noisy projection data show that the noise levels are lower for the FB as compared to the PH collimator due to increase in detected counts. The NCO acquisition method provides slightly better resolution and small improvement in defect contrast as compared to the CO acquisition method in noise-free reconstructed images. Despite lower projection counts the NCO shows the same noise level as the CO in the attenuation corrected reconstruction images. The results from the channelized Hotelling observer (CHO) study show that FB collimator is superior to PH collimator in myocardial defect detection, but the NCO shows no statistical significant difference from the CO for either PH or FB collimator. In conclusion, our results indicate that data acquisition using NCO makes a very small improvement in the resolution over CO for myocardial SPECT imaging. This small improvement does not make a significant difference on myocardial defect detection. However, an FB collimator provides better defect detection than a

  17. Quantitative analysis of [99mTc]C2A-GST distribution in the area at risk after myocardial ischemia and reperfusion using a compartmental model.

    PubMed

    Audi, Said; Poellmann, Michael; Zhu, Xiaoguang; Li, Zhixin; Zhao, Ming

    2007-11-01

    It was recently demonstrated that the radiolabeled C2A domain of synaptotagmin I accumulates avidly in the area at risk after ischemia and reperfusion. The objective was to quantitatively characterize the dynamic uptake of radiolabeled C2A in normal and ischemically injured myocardia using a compartmental model. To induce acute myocardial infarction, the left descending coronary artery was ligated for 18 min, followed by reperfusion. [99mTc]C2A-GST or its inactivated form, [99mTc]C2A-GST-NHS, was injected intravenously at 2 h after reperfusion. A group of four rats was sacrificed at 10, 30, 60 and 180 after injection. Uptake of [99mTc]C2A-GST and [99mTc]C2A-GST-NHS in the area at risk and in the normal myocardium were determined by gamma counting. A compartmental model was developed to quantitatively interpret myocardial uptake kinetic data. The model consists of two physical spaces (vascular space and tissue space), with plasma activity as input. The model allows for [99mTc]C2A-GST and [99mTc]C2A-GST-NHS diffusion between vascular and tissue spaces, as well as for [99mTc]C2A-GST sequestration in vascular and tissue spaces via specific binding. [99mTc]C2A-GST uptake in the area at risk was significantly higher than that for [99mTc]C2A-GST-NHS at all time points. The compartmental model separated [99mTc]C2A-GST uptake in the area at risk due to passive retention from that due to specific binding. The maximum amount of [99mTc]C2A-GST that could be sequestered in the area at risk due to specific binding was estimated at a total of 0.048 nmol/g tissue. The rate of [99mTc]C2A-GST sequestration within the tissue space of the area at risk was 0.012 ml/min. Modeling results also revealed that the diffusion rate of radiotracer between vascular and tissue spaces is the limiting factor of [99mTc]C2A-GST sequestration within the tissue space of the area at risk. [99mTc]C2A-GST is sequestered in the ischemically injured myocardium in a well-defined dynamic profile. Model

  18. Acute myocardial infarction with changing axis deviation.

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2011-07-01

    Changing axis deviation has been rarely reported also during atrial fibrillation or atrial flutter. Changing axis deviation has been rarely reported also during acute myocardial infarction associated with atrial fibrillation. Isolated left posterior hemiblock is a very rare finding but the evidence of transient right axis deviation with a left posterior hemiblock pattern has been reported during acute anterior myocardial infarction as related with significant right coronary artery obstruction and collateral circulation between the left coronary system and the posterior descending artery. Left anterior hemiblock development during acute inferior myocardial infarction can be an indicator of left anterior descending coronary artery lesions, multivessel coronary artery disease, and impaired left ventricular systolic function. We present a case of changing axis deviation in a 62-year-old Italian man with acute myocardial infarction. Also this case focuses attention on changing axis deviation during acute myocardial infarction. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  19. Relevance of tissue Doppler in the quantification of stress echocardiography for the detection of myocardial ischemia in clinical practice

    PubMed Central

    Sicari, Rosa

    2005-01-01

    In the present article we review the main published data on the application of Tissue Doppler Imaging (TDI) to stress echocardiography for the detection of myocardial ischemia. TDI has been applied to stress echocardiography in order to overcome the limitations of visual analysis for myocardial ischemia. The introduction of a new technology for clinical routine use should pass through the different phases of scientific assessment from feasibility studies to large multicenter studies, from efficacy to effectiveness studies. Nonetheless the pro-technology bias plays a major role in medicine and expensive and sophisticated techniques are accepted before their real usefulness and incremental value to the available ones is assessed. Apparently, TDI is not exempted by this approach : its applications are not substantiated by strong and sound results. Nonetheless, conventional stress echocardiography for myocardial ischemia detection is heavily criticized on the basis of its subjectivity. Stress echocardiography has a long lasting history and the evidence collected over 20 years positioned it as an established tool for the detection and prognostication of coronary artery disease. The quantitative assessment of myocardial ischemia remains a scientific challenge and a clinical goal but time has not come for these newer ultrasonographic techniques which should be restricted to research laboratories. PMID:15679889

  20. Quantitative analysis of myocardial kinetics of 15-p-[iodine-125] iodophenylpentadecanoic acid.

    PubMed

    DeGrado, T R; Holden, J E; Ng, C K; Raffel, D M; Gatley, S J

    1989-07-01

    Myocardial extraction and the characteristic tissue clearance of radioactivity following bolus injections of a radioiodinated (125I) long chain fatty acid (LCFA) analog 15-p-iodophenylpentadecanoic acid (IPPA) were examined in the isolated perfused working rat heart. Radioactivity remaining in the heart was monitored with external scintillation probes. A compartmental model which included nonesterified tracer, catabolite, and complex lipid compartments successfully fitted tissue time-radioactivity residue curves, and gave a value for the rate of IPPA oxidation 1.8 times that obtained from steady-state release of tritiated water from labeled palmitic acid. The technique was sensitive to the impairment of LCFA oxidation in hearts of animals treated with the carnitine palmitoyltransferase I inhibitor, 2[5(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA). IPPA or similar modified fatty acids may be better than 11C-labeled physiological fatty acids such as palmitate in this type of study, because efflux of unoxidized tracer and catabolite(s) from the heart are kinetically more distinct, and their contributions to the early data can be reliably separated. This technique may be suitable for extension to in vivo measurements with position tomography and appropriate modified fatty acids.

  1. Contrast-Enhanced Ultrasound (CEUS) and Quantitative Perfusion Analysis in Patients with Suspicion for Prostate Cancer.

    PubMed

    Maxeiner, Andreas; Fischer, Thomas; Schwabe, Julia; Baur, Alexander Daniel Jacques; Stephan, Carsten; Peters, Robert; Slowinski, Torsten; von Laffert, Maximilian; Marticorena Garcia, Stephan Rodrigo; Hamm, Bernd; Jung, Ernst-Michael

    2018-06-06

     The aim of this study was to investigate contrast-enhanced ultrasound (CEUS) parameters acquired by software during magnetic resonance imaging (MRI) US fusion-guided biopsy for prostate cancer (PCa) detection and discrimination.  From 2012 to 2015, 158 out of 165 men with suspicion for PCa and with at least 1 negative biopsy of the prostate were included and underwent a multi-parametric 3 Tesla MRI and an MRI/US fusion-guided biopsy, consecutively. CEUS was conducted during biopsy with intravenous bolus application of 2.4 mL of SonoVue ® (Bracco, Milan, Italy). In the latter CEUS clips were investigated using quantitative perfusion analysis software (VueBox, Bracco). The area of strongest enhancement within the MRI pre-located region was investigated and all available parameters from the quantification tool box were collected and analyzed for PCa and its further differentiation was based on the histopathological results.  The overall detection rate was 74 (47 %) PCa cases in 158 included patients. From these 74 PCa cases, 49 (66 %) were graded Gleason ≥ 3 + 4 = 7 (ISUP ≥ 2) PCa. The best results for cancer detection over all quantitative perfusion parameters were rise time (p = 0.026) and time to peak (p = 0.037). Within the subgroup analysis (> vs ≤ 3 + 4 = 7a (ISUP 2)), peak enhancement (p = 0.012), wash-in rate (p = 0.011), wash-out rate (p = 0.007) and wash-in perfusion index (p = 0.014) also showed statistical significance.  The quantification of CEUS parameters was able to discriminate PCa aggressiveness during MRI/US fusion-guided prostate biopsy. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Infrared contrast data analysis method for quantitative measurement and monitoring in flash infrared thermography

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper provides information on a new infrared (IR) image contrast data post-processing method that involves converting raw data to normalized contrast versus time evolutions from the flash infrared thermography inspection video data. Thermal measurement features such as peak contrast, peak contrast time, persistence time, and persistence energy are calculated from the contrast evolutions. In addition, simulation of the contrast evolution is achieved through calibration on measured contrast evolutions from many flat bottom holes in a test plate of the subject material. The measurement features are used to monitor growth of anomalies and to characterize the void-like anomalies. The method was developed to monitor and analyze void-like anomalies in reinforced carbon-carbon (RCC) materials used on the wing leading edge of the NASA Space Shuttle Orbiters, but the method is equally applicable to other materials. The thermal measurement features relate to the anomaly characteristics such as depth and size. Calibration of the contrast is used to provide an assessment of the anomaly depth and width which correspond to the depth and diameter of the equivalent flat bottom hole (EFBH) from the calibration data. An edge detection technique called the half-max is used to measure width and length of the anomaly. Results of the half-max width and the EFBH diameter are compared with actual widths to evaluate utility of IR Contrast method. Some thermal measurements relate to gap thickness of the delaminations. Results of IR Contrast method on RCC hardware are provided. Keywords: normalized contrast, flash infrared thermography.

  3. Disagreement between splenic switch-off and myocardial T1-mapping after caffeine intake.

    PubMed

    Kuijpers, Dirkjan; van Dijk, Randy; van Assen, Marly; Kaandorp, Theodorus A M; van Dijkman, Paul R M; Vliegenthart, Rozemarijn; van der Harst, Pim; Oudkerk, Matthijs

    2018-04-01

    Caffeine is an adenosine receptor antagonist and a possible cause of inadequate stress perfusion. Splenic switch-off (SSO) and splenic rest-stress T1-mapping have been proposed as indicators of stress adequacy during perfusion cardiac magnetic resonance (CMR). We compared myocardial rest-stress T1-mapping with SSO and splenic rest-stress T1-mapping in patients with and without recent coffee intake. We analyzed 344 consecutive patients suspected of myocardial ischemia with adenosine perfusion CMR. All 146 normal CMR studies with a normal T1-rest of the myocardium, used as standard of reference, were included and divided in two groups. 22 patients accidentally ingested coffee < 4 h before CMR, compared to control group of 124 patients without self-reported coffee intake. Two independent readers graded SSO visually. T1-reactivity (ΔT1) was defined as percentual difference in T1-rest and T1-stress. Follow-up data were extracted from electronic patients records. In patients with recent coffee intake SSO was identified in 96%, which showed no significant difference with SSO in controls (94%, p = 0.835), however event rates were significantly different (13.6 and 0.8%, respectively (p < 0.001), median FU 17 months). Myocardial ΔT1 in the coffee group (- 5.2%) was significantly lower compared to control (+ 4.0%, p < 0.001), in contrast to the splenic ΔT1 (- 3.7 and - 4.0%, p = 0.789). The splenic T1-mapping results failed to predict false negative results. SSO and splenic rest-stress T1-mapping are not reliable indicators of stress adequacy in patients with recent coffee intake. Therefore, the dark spleen sign does not indicate adequate myocardial stress in patients with recent caffeine intake. Myocardial rest-stress T1-mapping is an excellent indicator of stress adequacy during adenosine perfusion CMR.

  4. Positron emission tomography for the assessment of myocardial viability: an evidence-based analysis.

    PubMed

    2010-01-01

    In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability, an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients undergoing viability assessment. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities.After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies that can be used for the assessment of myocardial viability: positron emission tomography, cardiac magnetic resonance imaging, dobutamine echocardiography, and dobutamine echocardiography with contrast, and single photon emission computed tomography.A 2005 review conducted by MAS determined that positron emission tomography was more sensitivity than dobutamine echocardiography and single photon emission tomography and dominated the other imaging modalities from a cost-effective standpoint. However, there was inadequate evidence to compare positron emission tomography and cardiac magnetic resonance imaging. Thus, this report focuses on this comparison only. For both technologies, an economic analysis was also completed.The Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlPOSITRON EMISSION TOMOGRAPHY FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based AnalysisMAGNETIC RESONANCE IMAGING FOR THE ASSESSMENT OF MYOCARDIAL VIABILITY: An Evidence-Based Analysis The objective of this analysis is to assess the effectiveness and safety of positron

  5. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure

    PubMed Central

    Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar

    2017-01-01

    This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast. PMID:29109816

  6. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging.

    PubMed

    Lauzier, Pascal Theriault; Tang, Jie; Speidel, Michael A; Chen, Guang-Hong

    2012-07-01

    To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image noise distribution; this nonuniformity can lead to unexpectedly high image noise and streaking artifacts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruction (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution problem and can also lead to radiation dose reduction in the context of CT MPI. Projection datasets from a numerically simulated perfusion phantom and an in vivo animal myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations of Poisson noise were added to projection data at each time frame to investigate the spatial distribution of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were measured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quantitative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV), and first moment transit time (FMT), were measured for two ROIs and compared to reference values obtained from a high-dose scan performed at 500 mA. Images reconstructed using FBP showed a highly nonuniform spatial distribution of noise. This spatial

  7. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauzier, Pascal Theriault; Tang Jie; Speidel, Michael A.

    Purpose: To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image noise distribution; this nonuniformity can lead to unexpectedly high image noise andmore » streaking artifacts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruction (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution problem and can also lead to radiation dose reduction in the context of CT MPI. Methods: Projection datasets from a numerically simulated perfusion phantom and an in vivo animal myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations of Poisson noise were added to projection data at each time frame to investigate the spatial distribution of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were measured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quantitative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV), and first moment transit time (FMT), were measured for two ROIs and compared to reference values obtained from a high-dose scan performed at 500 mA. Results: Images reconstructed using FBP showed a highly nonuniform spatial

  8. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging

    PubMed Central

    Lauzier, Pascal Thériault; Tang, Jie; Speidel, Michael A.; Chen, Guang-Hong

    2012-01-01

    Purpose: To achieve high temporal resolution in CT myocardial perfusion imaging (MPI), images are often reconstructed using filtered backprojection (FBP) algorithms from data acquired within a short-scan angular range. However, the variation in the central angle from one time frame to the next in gated short scans has been shown to create detrimental partial scan artifacts when performing quantitative MPI measurements. This study has two main purposes. (1) To demonstrate the existence of a distinct detrimental effect in short-scan FBP, i.e., the introduction of a nonuniform spatial image noise distribution; this nonuniformity can lead to unexpectedly high image noise and streaking artifacts, which may affect CT MPI quantification. (2) To demonstrate that statistical image reconstruction (SIR) algorithms can be a potential solution to address the nonuniform spatial noise distribution problem and can also lead to radiation dose reduction in the context of CT MPI. Methods: Projection datasets from a numerically simulated perfusion phantom and an in vivo animal myocardial perfusion CT scan were used in this study. In the numerical phantom, multiple realizations of Poisson noise were added to projection data at each time frame to investigate the spatial distribution of noise. Images from all datasets were reconstructed using both FBP and SIR reconstruction algorithms. To quantify the spatial distribution of noise, the mean and standard deviation were measured in several regions of interest (ROIs) and analyzed across time frames. In the in vivo study, two low-dose scans at tube currents of 25 and 50 mA were reconstructed using FBP and SIR. Quantitative perfusion metrics, namely, the normalized upslope (NUS), myocardial blood volume (MBV), and first moment transit time (FMT), were measured for two ROIs and compared to reference values obtained from a high-dose scan performed at 500 mA. Results: Images reconstructed using FBP showed a highly nonuniform spatial distribution

  9. Quantitative proteomic changes during post myocardial infarction remodeling reveals altered cardiac metabolism and Desmin aggregation in the infarct region.

    PubMed

    Datta, Kaberi; Basak, Trayambak; Varshney, Swati; Sengupta, Shantanu; Sarkar, Sagartirtha

    2017-01-30

    Myocardial infarction is one of the leading causes of cardiac dysfunction, failure and sudden death. Post infarction cardiac remodeling presents a poor prognosis, with 30%-45% of patients developing heart failure, in a period of 5-25years. Oxidative stress has been labelled as the primary causative factor for cardiac damage during infarction, however, the impact it may have during the process of post infarction remodeling has not been well probed. In this study, we have implemented iTRAQ proteomics to catalogue proteins and functional processes, participating both temporally (early and late phases) and spatially (infarct and remote zones), during post myocardial infarction remodeling of the heart as functions of the differential oxidative stress manifest during the remodeling process. Cardiac metabolism was the dominant network to be affected during infarction and the remodeling time points considered in this study. A distinctive expression pattern of cytoskeletal proteins was also observed with increased remodeling time points. Further, it was found that the cytoskeletal protein Desmin, aggregated in the infarct zone during the remodeling process, mediated by the protease Calpain1. Taken together, all of these data in conjunction may lay the foundation to understand the effects of oxidative stress on the remodeling process and elaborate the mechanism behind the compromised cardiac function observed during post myocardial infarction remodeling. Oxidative stress is the major driving force for cardiac damage during myocardial infarction. However, the impact of oxidative stress on the process of post MI remodeling in conducting the heart towards functional failure has not been well explored. In this study, a spatial and temporal approach was taken to elaborate the major proteins and cellular processes involved in post MI remodeling. Based on level/ intensity of ROS, spatially, infarct and noninfarct zones were chosen for analysis while on the temporal scale, early (30

  10. Quantitative Study of Longitudinal Relaxation (T 1) Contrast Mechanisms in Brain MRI

    NASA Astrophysics Data System (ADS)

    Jiang, Xu

    Longitudinal relaxation (T1) contrast in MRI is important for studying brain morphology and is widely used in clinical applications. Although MRI only detects signals from water hydrogen ( 1H) protons (WPs), T1 contrast is known to be influenced by other species of 1H protons, including those in macromolecules (MPs), such as lipids and proteins, through magnetization transfer (MT) between WPs and MPs. This complicates the use and quantification of T1 contrast for studying the underlying tissue composition and the physiology of the brain. MT contributes to T1 contrast to an extent that is generally dependent on MT kinetics, as well as the concentration and NMR spectral properties of MPs. However, the MP spectral properties and MT kinetics are both difficult to measure directly, as the signal from MPs is generally invisible to MRI. Therefore, to investigate MT kinetics and further quantify T1 contrast, we first developed a reliable way to indirectly measure the MP fraction and their exchange rate with WPs, with minimal dependence on the spectral properties of MPs. For this purpose, we used brief, highpower radiofrequency (RF) NMR excitation pulses to almost completely saturate the magnetization of MPs. Based on this, both MT kinetics and the contribution of MPs to T1 contrast through MT were studied. The thus obtained knowledge allowed us to subsequently infer the spectral properties of MPs by applying low-power, frequencyselective off-resonance RF pulses and measuring the offset-frequency dependent effect of MPs on the WP MRI signal. A two-pool exchange model was used in both cases to account for direct effects of the RF pulse on WP magnetization. Consistent with earlier works using MRI at low-field and post-mortem analysis of brain tissue, our novel measurement approach found that MPs constitute an up to 27% fraction of the total 1H protons in human brain white matter, and their spectrum follows a super-Lorentzian line with a T2 of 9.6+/-0.6 mus and a resonance

  11. Myocardial Adiponectin Isoform Shift in Dogs with Congestive Heart Failure—A Comparison to Hibernating Brown Bears (Ursus arctos horribilis)

    PubMed Central

    Nelson, O. Lynne; Wood, Rachael M.; Häggström, Jens; Kvart, Clarence; Robbins, Charles T.

    2017-01-01

    Adiponectin is the most abundant plasma adipokine, and is well known for its role in energy homeostasis and cardiac protection. In humans with dilated cardiomyopathy, myocardial adiponectin protein expression is reduced compared to normal hearts and has been implicated in the pathology of cardiomyopathy. Serum adiponectin levels are often conflicting, with higher levels associated with poor survival in humans with congestive heart failure (CHF). We evaluated adiponectin serum concentrations and myocardial protein expression in dogs with naturally occurring myxomatous mitral valve disease and CHF. We compared the findings to active and hibernating brown bears as bears are adapted to endure an extreme period of low cardiac output during their annual hibernation. Bears exhibited largely the active high-molecular weight (HMW) versus the low-molecular weight isoforms of myocardial adiponectin (HMW:LMW = 6.3) during both the active period and hibernation, while healthy dogs exhibited a more balanced mix of isoforms. Dogs with CHF expressed predominately HMW isoforms of adiponectin (HMW:LMW = 12.5), appearing more similar to bears. In contrast to humans, serum adiponectin was significantly lower in dogs with CHF and lowest levels in the severest CHF class. In both dogs and bears, myocardial adiponectin was expressed independent of circulating adiponectin concentrations, suggesting a local regulatory mechanism within the heart. PMID:29056695

  12. Quantitative assessment of reactive hyperemia using laser speckle contrast imaging at multiple wavelengths

    NASA Astrophysics Data System (ADS)

    Young, Anthony; Vishwanath, Karthik

    2016-03-01

    Reactive hyperemia refers to an increase of blood flow in tissue post release of an occlusion in the local vasculature. Measuring the temporal response of reactive hyperemia, post-occlusion in patients has the potential to shed information about microvascular diseases such as systemic sclerosis and diabetes. Laser speckle contrast imaging (LSCI) is an imaging technique capable of sensing superficial blood flow in tissue which can be used to quantitatively assess reactive hyperemia. Here, we employ LSCI using coherent sources in the blue, green and red wavelengths to evaluate reactive hyperemia in healthy human volunteers. Blood flow in the forearms of subjects were measured using LSCI to assess the time-course of reactive hyperemia that was triggered by a pressure cuff applied to the biceps of the subjects. Raw speckle images were acquired and processed to yield blood-flow parameters from a region of interest before, during and after application of occlusion. Reactive hyperemia was quantified via two measures - (1) by calculating the difference between the peak LSCI flow during the hyperemia and baseline flow, and (2) by measuring the amount of time that elapsed between the release of the occlusion and peak flow. These measurements were acquired in three healthy human participants, under the three laser wavelengths employed. The studies shed light on the utility of in vivo LSCI-based flow sensing for non-invasive assessment of reactive hyperemia responses and how they varied with the choice source wavelength influences the measured parameters.

  13. Myocardial potency of Bio-tea against Isoproterenol induced myocardial damage in rats.

    PubMed

    Lobo, Reema Orison; Shenoy, Chandrakala K

    2015-07-01

    Kombucha (Bio-tea) is a beverage produced by the fermentation of sugared black tea using a symbiotic association of bacteria and yeasts. Traditional claims about Kombucha report beneficial effects such as antibiotic properties, gastric regulation, relief from joint rheumatism and positive influence on the cholesterol level, arteriosclerosis, diabetes, and aging problems. The present investigation was carried out to understand the preventive effect of Kombucha on heart weight, blood glucose, total protein, lipid profile and cardiac markers in rats with myocardial damage induced using Isoproterenol. As Bio-tea is produced by fermenting tea, the parameters were compared in rats pre-treated with normal black tea and Bio-tea for 30 days followed by subcutaneous injection of Isoproterenol (85 mg/kg body weight). Normal rats as well as Isoproterenol induced myocardial infarcted rats were also used, which served as controls. Isoproterenol induced myocardial infarcted control rats showed a significant increase in heart weight, blood glucose and cardiac markers and a decrease in plasma protein. Increased levels of cholesterol, triglycerides, low density lipids (LDL) and very low density lipids (VLDL) were also observed, while the high density lipid (HDL) content decreased. Bio-tea showed a higher preventive effect against myocardial infarction when compared to tea, as was observed by the significant reduction in heart weight, and blood glucose and increase in plasma albumin levels. Bio-tea significantly decreased cholesterol, triglycerides, LDL and VLDL while simultaneously increasing the levels of HDL. Similarly a decrease in leakage of cardiac markers from the myocardium was also observed.

  14. Transmural gradients of myocardial structure and mechanics: Implications for fiber stress and strain in pressure overload.

    PubMed

    Carruth, Eric D; McCulloch, Andrew D; Omens, Jeffrey H

    2016-12-01

    Although a truly complete understanding of whole heart activation, contraction, and deformation is well beyond our current reach, a significant amount of effort has been devoted to discovering and understanding the mechanisms by which myocardial structure determines cardiac function to better treat patients with cardiac disease. Several experimental studies have shown that transmural fiber strain is relatively uniform in both diastole and systole, in contrast to predictions from traditional mechanical theory. Similarly, mathematical models have largely predicted uniform fiber stress across the wall. The development of this uniform pattern of fiber stress and strain during filling and ejection is due to heterogeneous transmural distributions of several myocardial structures. This review summarizes these transmural gradients, their contributions to fiber mechanics, and the potential functional effects of their remodeling during pressure overload hypertrophy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The potential role of myocardial serotonin receptor 2B expression in canine dilated cardiomyopathy.

    PubMed

    Fonfara, Sonja; Hetzel, Udo; Oyama, Mark A; Kipar, Anja

    2014-03-01

    Serotonin signalling in the heart is mediated by receptor subtype 2B (5-HTR2B). A contribution of serotonin to valvular disease has been reported, but myocardial expression of 5-HTR2B and its role in canine dilated cardiomyopathy (DCM) is not known. The aim of the present study was to investigate myocardial 5-HTR2B mRNA expression in dogs with DCM and to correlate results with expression of markers for inflammation and remodelling. Myocardial samples from eight healthy dogs, four dogs with DCM, five with cardiac diseases other than DCM and six with systemic non-cardiac diseases were investigated for 5-HTR2B mRNA expression using quantitative PCR (qPCR). The results were compared to mRNA expression of selected cytokines, matrix metalloproteinases (MMP) and tissue inhibitors of matrix metalloproteinase (TIMP). Laser microdissection with subsequent qPCR and immunohistochemistry were employed to identify the cells expressing 5-HTR2B. The myocardium of control dogs showed constitutive 5-HTR2B mRNA expression. In dogs with DCM, 5-HTR2B mRNA values were significantly greater than in all other groups, with highest levels of expression in the left ventricle and right atrium. Myocytes were identified as the source of 5-HTR2B mRNA and protein. A significant positive correlation of 5-HTR2B mRNA with expression of several cytokines, MMPs and TIMPs was observed. The findings suggest that serotonin might play a role in normal cardiac structure and function and could contribute to myocardial remodelling and functional impairment in dogs with DCM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Comprehensive Cardiovascular magnetic resonance of myocardial mechanics in mice using three-dimensional cine DENSE

    PubMed Central

    2011-01-01

    Background Quantitative noninvasive imaging of myocardial mechanics in mice enables studies of the roles of individual genes in cardiac function. We sought to develop comprehensive three-dimensional methods for imaging myocardial mechanics in mice. Methods A 3D cine DENSE pulse sequence was implemented on a 7T small-bore scanner. The sequence used three-point phase cycling for artifact suppression and a stack-of-spirals k-space trajectory for efficient data acquisition. A semi-automatic 2D method was adapted for 3D image segmentation, and automated 3D methods to calculate strain, twist, and torsion were employed. A scan protocol that covered the majority of the left ventricle in a scan time of less than 25 minutes was developed, and seven healthy C57Bl/6 mice were studied. Results Using these methods, multiphase normal and shear strains were measured, as were myocardial twist and torsion. Peak end-systolic values for the normal strains at the mid-ventricular level were 0.29 ± 0.17, -0.13 ± 0.03, and -0.18 ± 0.14 for Err, Ecc, and Ell, respectively. Peak end-systolic values for the shear strains were 0.00 ± 0.08, 0.04 ± 0.12, and 0.03 ± 0.07 for Erc, Erl, and Ecl, respectively. The peak end-systolic normalized torsion was 5.6 ± 0.9°. Conclusions Using a 3D cine DENSE sequence tailored for cardiac imaging in mice at 7 T, a comprehensive assessment of 3D myocardial mechanics can be achieved with a scan time of less than 25 minutes and an image analysis time of approximately 1 hour. PMID:22208954

  17. Comparison of conventional and cadmium-zinc-telluride single-photon emission computed tomography for analysis of thallium-201 myocardial perfusion imaging: an exploratory study in normal databases for different ethnicities.

    PubMed

    Ishihara, Masaru; Onoguchi, Masahisa; Taniguchi, Yasuyo; Shibutani, Takayuki

    2017-12-01

    The aim of this study was to clarify the differences in thallium-201-chloride (thallium-201) myocardial perfusion imaging (MPI) scans evaluated by conventional anger-type single-photon emission computed tomography (conventional SPECT) versus cadmium-zinc-telluride SPECT (CZT SPECT) imaging in normal databases for different ethnic groups. MPI scans from 81 consecutive Japanese patients were examined using conventional SPECT and CZT SPECT and analyzed with the pre-installed quantitative perfusion SPECT (QPS) software. We compared the summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS) for the two SPECT devices. For a normal MPI reference, we usually use Japanese databases for MPI created by the Japanese Society of Nuclear Medicine, which can be used with conventional SPECT but not with CZT SPECT. In this study, we used new Japanese normal databases constructed in our institution to compare conventional and CZT SPECT. Compared with conventional SPECT, CZT SPECT showed lower SSS (p < 0.001), SRS (p = 0.001), and SDS (p = 0.189) using the pre-installed SPECT database. In contrast, CZT SPECT showed no significant difference from conventional SPECT in QPS analysis using the normal databases from our institution. Myocardial perfusion analyses by CZT SPECT should be evaluated using normal databases based on the ethnic group being evaluated.

  18. Information needs before hospital discharge of myocardial infarction patients: a comparative, descriptive study.

    PubMed

    Smith, Jonathan; Liles, Clive

    2007-04-01

    To explore the information needs of patients who have received treatment for a myocardial infarction before their discharge home from an acute hospital. WHAT IS KNOWN ABOUT THE TOPIC: Providing information for myocardial infarction patients is an important nursing function and is part of the role of health-care professionals delivering cardiac rehabilitation. It is essential to acknowledge and incorporate the self-perceived needs of patients into the information they receive. Hospital stays are becoming shorter, reducing the opportunities for nurses to provide predischarge information to patients. This highlights the challenge of adequately assessing and meeting patients' information needs. A comparative, descriptive survey. A Patient Learning Needs Scale questionnaire was completed by 20 myocardial infarction patients within 72 hours of their intended discharge. Quantitative descriptive and inferential analyses were conducted using Statistical Package for Social Sciences. Patients indicated how important it was to know about each of 40 information items before discharge from hospital. Items related to medications, complications and physical activities were rated highly. Responses to an open question revealed that driving, returning to work and sources of support were issues of concern. Non-parametric Mann-Whitney U-tests showed that retired and older patients desired more information than their employed and younger counterparts, especially concerning community support. WHAT THE STUDY ADDS TO THE TOPIC: Previous research shows little examination of age and employment status in relation to the information needs of myocardial infarction patients. This study suggests that older and retired people may want more information than younger and employed patients. Older people are under represented in postdischarge cardiac rehabilitation programmes. Since these patients may need different information when discharged from younger individuals, nurses must decide how they can

  19. Characterization of 3-Dimensional PET Systems for Accurate Quantification of Myocardial Blood Flow.

    PubMed

    Renaud, Jennifer M; Yip, Kathy; Guimond, Jean; Trottier, Mikaël; Pibarot, Philippe; Turcotte, Eric; Maguire, Conor; Lalonde, Lucille; Gulenchyn, Karen; Farncombe, Troy; Wisenberg, Gerald; Moody, Jonathan; Lee, Benjamin; Port, Steven C; Turkington, Timothy G; Beanlands, Rob S; deKemp, Robert A

    2017-01-01

    Three-dimensional (3D) mode imaging is the current standard for PET/CT systems. Dynamic imaging for quantification of myocardial blood flow with short-lived tracers, such as 82 Rb-chloride, requires accuracy to be maintained over a wide range of isotope activities and scanner counting rates. We proposed new performance standard measurements to characterize the dynamic range of PET systems for accurate quantitative imaging. 82 Rb or 13 N-ammonia (1,100-3,000 MBq) was injected into the heart wall insert of an anthropomorphic torso phantom. A decaying isotope scan was obtained over 5 half-lives on 9 different 3D PET/CT systems and 1 3D/2-dimensional PET-only system. Dynamic images (28 × 15 s) were reconstructed using iterative algorithms with all corrections enabled. Dynamic range was defined as the maximum activity in the myocardial wall with less than 10% bias, from which corresponding dead-time, counting rates, and/or injected activity limits were established for each scanner. Scatter correction residual bias was estimated as the maximum cavity blood-to-myocardium activity ratio. Image quality was assessed via the coefficient of variation measuring nonuniformity of the left ventricular myocardium activity distribution. Maximum recommended injected activity/body weight, peak dead-time correction factor, counting rates, and residual scatter bias for accurate cardiac myocardial blood flow imaging were 3-14 MBq/kg, 1.5-4.0, 22-64 Mcps singles and 4-14 Mcps prompt coincidence counting rates, and 2%-10% on the investigated scanners. Nonuniformity of the myocardial activity distribution varied from 3% to 16%. Accurate dynamic imaging is possible on the 10 3D PET systems if the maximum injected MBq/kg values are respected to limit peak dead-time losses during the bolus first-pass transit. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  20. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    PubMed Central

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the

  1. Comparison of the Cardiac MicroPET Images Obtained Using [(18)F]FPTP and [(13)N]NH3 in Rat Myocardial Infarction Models.

    PubMed

    Kim, Dong-Yeon; Kim, Hyeon Sik; Jang, Hwa Youn; Kim, Ju Han; Bom, Hee-Seung; Min, Jung-Joon

    2014-10-09

    The short half-life of current positron emission tomography (PET) cardiac tracers limits their widespread clinical use. We previously developed a (18)F-labeled phosphonium cation, [(18)F]FPTP, that demonstrated sharply defined myocardial defects in a corresponding infarcted myocardium. The aim of this study was to compare the image properties of PET scans obtained using [(18)F]FPTP with those obtained using [(13)N]NH3 in rat myocardial infarction models. Perfusion abnormality was analyzed in 17 segments of polar map images. The myocardium-to-liver and myocardium-to-lung ratios of [(18)F]FPTP were 10.48 and 2.65 times higher, respectively, than those of [(13)N]NH3 in images acquired 30 min after tracer injection. The myocardial defect size measured by [(18)F]FPTP correlated more closely with the hypoperfused area measured by quantitative 2,3,5-triphenyltetrazolium chloride staining (r = 0.89, P < 0.01) than did [(13)N]NH3 (r = 0.84, P < 0.01). [(18)F]FPTP might be useful as a replacement for the myocardial agent [(13)N]NH3 in cardiac PET/CT applications.

  2. Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow

    PubMed Central

    Richards, Lisa M.; Towle, Erica L.; Fox, Douglas J.; Dunn, Andrew K.

    2014-01-01

    Abstract. Although multiple intraoperative cerebral blood flow (CBF) monitoring techniques are currently available, a quantitative method that allows for continuous monitoring and that can be easily integrated into the surgical workflow is still needed. Laser speckle contrast imaging (LSCI) is an optical imaging technique with a high spatiotemporal resolution that has been recently demonstrated as feasible and effective for intraoperative monitoring of CBF during neurosurgical procedures. This study demonstrates the impact of retrospective motion correction on the quantitative analysis of intraoperatively acquired LSCI images. LSCI images were acquired through a surgical microscope during brain tumor resection procedures from 10 patients under baseline conditions and after a cortical stimulation in three of those patients. The patient’s electrocardiogram (ECG) was recorded during acquisition for postprocess correction of pulsatile artifacts. Automatic image registration was retrospectively performed to correct for tissue motion artifacts, and the performance of rigid and nonrigid transformations was compared. In baseline cases, the original images had 25%±27% noise across 16 regions of interest (ROIs). ECG filtering moderately reduced the noise to 20%±21%, while image registration resulted in a further noise reduction of 15%±4%. Combined ECG filtering and image registration significantly reduced the noise to 6.2%±2.6% (p<0.05). Using the combined motion correction, accuracy and sensitivity to small changes in CBF were improved in cortical stimulation cases. There was also excellent agreement between rigid and nonrigid registration methods (15/16 ROIs with <3% difference). Results from this study demonstrate the importance of motion correction for improved visualization of CBF changes in clinical LSCI images. PMID:26157974

  3. Magnetic Resonance Imaging of Acute Reperfused Myocardial Infarction: Intraindividual Comparison of ECIII-60 and Gd-DTPA in a Swine Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Jiyang; Teng Gaojun; Feng Yi

    2007-04-15

    Purpose. To compare a necrosis-avid contrast agent (NACA) bis-Gd-DTPA-pamoic acid derivative (ECIII-60) after intracoronary delivery with an extracellular agent Gd-DTPA after intravenous injection on magnetic resonance imaging (MRI) in a swine model of acute reperfused myocardial infarction (MI). Methods. Eight pigs underwent 90 min of transcatheter coronary balloon occlusion and 60 min of reperfusion. After intravenous injection of Gd-DTPA at a dose of 0.2 mmol/kg, all pigs were scanned with T1-weighted MRI until the delayed enhancement of MI disappeared. Then they were intracoronarily infused with ECIII-60 at 0.0025 mmol/kg and imaged for 5 hr. Signal intensity, infarct-over-normal contrast ratio andmore » relative infarct size were quantified, compared, and correlated with the results of postmortem MRI and triphenyltetrazolium chloride (TTC) histochemical staining. Results. A contrast ratio over 3.0 was induced by both Gd-DTPA and ECIII-60. However, while the delayed enhancement with Gd-DTPA virtually vanished in 1 hr, ECIII-60 at an 80x smaller dose depicted the MI accurately over 5 hr as proven by ex vivo MRI and TTC staining. Conclusion. Both Gd-DTPA and ECIII-60 strongly enhanced acute MI. Comparing with fading contrast in a narrow time window with intravenous Gd-DTPA, intracoronary ECIII-60 persistently demarcated the acute MI, indicating a potential method for postprocedural assessment of myocardial viability after coronary interventions.« less

  4. Meta-Analysis of Stress Myocardial Perfusion Imaging

    ClinicalTrials.gov

    2017-06-06

    Coronary Disease; Echocardiography; Fractional Flow Reserve, Myocardial; Hemodynamics; Humans; Magnetic Resonance Imaging; Myocardial Perfusion Imaging; Perfusion; Predictive Value of Tests; Single Photon Emission Computed Tomography; Positron Emission Tomography; Multidetector Computed Tomography; Echocardiography, Stress; Coronary Angiography

  5. TU-G-204-03: Dynamic CT Myocardial Perfusion Measurement Using First Pass Analysis and Maximum Slope Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, L; Ziemer, B; Sadeghi, B

    Purpose: To evaluate the accuracy of dynamic CT myocardial perfusion measurement using first pass analysis (FPA) and maximum slope models. Methods: A swine animal model was prepared by percutaneous advancement of an angioplasty balloon into the proximal left anterior descending (LAD) coronary artery to induce varying degrees of stenosis. Maximal hyperaemia was achieved in the LAD with an intracoronary adenosine drip (240 µg/min). Serial microsphere and contrast (370 mg/mL iodine, 30 mL, 5mL/s) injections were made over a range of induced stenoses, and dynamic imaging was performed using a 320-row CT scanner at 100 kVp and 200 mA. The FPAmore » CT perfusion technique was used to make vessel-specific myocardial perfusion measurements. CT perfusion measurements using the FPA and maximum slope models were validated using colored microspheres as the reference gold standard. Results: Perfusion measurements using the FPA technique (P-FPA) showed good correlation with minimal offset when compared to perfusion measurements using microspheres (P- Micro) as the reference standard (P -FPA = 0.96 P-Micro + 0.05, R{sup 2} = 0.97, RMSE = 0.19 mL/min/g). In contrast, the maximum slope model technique (P-MS) was shown to underestimate perfusion when compared to microsphere perfusion measurements (P-MS = 0.42 P -Micro −0.48, R{sup 2} = 0.94, RMSE = 3.3 mL/min/g). Conclusion: The results indicate the potential for significant improvements in accuracy of dynamic CT myocardial perfusion measurement using the first pass analysis technique as compared with the standard maximum slope model.« less

  6. Quantitative dispersion microscopy

    PubMed Central

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Yaqoob, Zahid; Dasari, Ramachandra R.; Feld, Michael

    2010-01-01

    Refractive index dispersion is an intrinsic optical property and a useful source of contrast in biological imaging studies. In this report, we present the first dispersion phase imaging of living eukaryotic cells. We have developed quantitative dispersion microscopy based on the principle of quantitative phase microscopy. The dual-wavelength quantitative phase microscope makes phase measurements at 310 nm and 400 nm wavelengths to quantify dispersion (refractive index increment ratio) of live cells. The measured dispersion of living HeLa cells is found to be around 1.088, which agrees well with that measured directly for protein solutions using total internal reflection. This technique, together with the dry mass and morphology measurements provided by quantitative phase microscopy, could prove to be a useful tool for distinguishing different types of biomaterials and studying spatial inhomogeneities of biological samples. PMID:21113234

  7. Novel methods for parameter-based analysis of myocardial tissue in MR images

    NASA Astrophysics Data System (ADS)

    Hennemuth, A.; Behrens, S.; Kuehnel, C.; Oeltze, S.; Konrad, O.; Peitgen, H.-O.

    2007-03-01

    The analysis of myocardial tissue with contrast-enhanced MR yields multiple parameters, which can be used to classify the examined tissue. Perfusion images are often distorted by motion, while late enhancement images are acquired with a different size and resolution. Therefore, it is common to reduce the analysis to a visual inspection, or to the examination of parameters related to the 17-segment-model proposed by the American Heart Association (AHA). As this simplification comes along with a considerable loss of information, our purpose is to provide methods for a more accurate analysis regarding topological and functional tissue features. In order to achieve this, we implemented registration methods for the motion correction of the perfusion sequence and the matching of the late enhancement information onto the perfusion image and vice versa. For the motion corrected perfusion sequence, vector images containing the voxel enhancement curves' semi-quantitative parameters are derived. The resulting vector images are combined with the late enhancement information and form the basis for the tissue examination. For the exploration of data we propose different modes: the inspection of the enhancement curves and parameter distribution in areas automatically segmented using the late enhancement information, the inspection of regions segmented in parameter space by user defined threshold intervals and the topological comparison of regions segmented with different settings. Results showed a more accurate detection of distorted regions in comparison to the AHA-model-based evaluation.

  8. Reducing myocardial infarct size: challenges and future opportunities

    PubMed Central

    Bulluck, Heerajnarain; Yellon, Derek M; Hausenloy, Derek J

    2016-01-01

    Despite prompt reperfusion by primary percutaneous coronary intervention (PPCI), the mortality and morbidity of patients presenting with an acute ST-segment elevation myocardial infarction (STEMI) remain significant with 9% death and 10% heart failure at 1 year. In these patients, one important neglected therapeutic target is ‘myocardial reperfusion injury’, a term given to the cardiomyocyte death and microvascular dysfunction which occurs on reperfusing ischaemic myocardium. A number of cardioprotective therapies (both mechanical and pharmacological), which are known to target myocardial reperfusion injury, have been shown to reduce myocardial infarct (MI) size in small proof-of-concept clinical studies—however, being able to demonstrate improved clinical outcomes has been elusive. In this article, we review the challenges facing clinical cardioprotection research, and highlight future therapies for reducing MI size and preventing heart failure in patients presenting with STEMI at risk of myocardial reperfusion injury. PMID:26674987

  9. Myocardial infarction false alarm: initial electrocardiogram and cardiac enzymes.

    PubMed

    Gupta, Esha Das; Sakthiswary, Rajalingham

    2014-05-01

    The objectives of this study were to determine the incidence of a myocardial infarction "false alarm" and evaluate the efficacy of the initial electrocardiogram and cardiac enzymes in diagnosing myocardial infarction in Malaysia. We recruited patients who were admitted with suspected myocardial infarction from June to August 2008. The medical records of these patients were reviewed for the initial electrocardiogram, initial cardiac enzyme levels (creatinine kinase-MB and troponin T), and the final diagnosis upon discharge. The subjects were stratified into 2 groups: true myocardial infarction, and false alarm. 125 patients were enrolled in this study. Following admission and further evaluation, the diagnosis was revised from myocardial infarction to other medical conditions in 48 (38.4%) patients. The sensitivity and specificity of the initial ischemic electrocardiographic changes were 54.5% and 70.8%, respectively. Raised cardiac enzymes had a sensitivity of 44.3% and specificity of 95.8%. A significant proportion of patients in Malaysia are admitted with a false-alarm myocardial infarction. The efficacy of the electrocardiogram in diagnosing myocardial infarction in Malaysia was comparable to the findings of Western studies, but the cardiac enzymes had a much lower sensitivity.

  10. Electrocardiographic Impact of Myocardial Diffuse Fibrosis and Scar: MESA (Multi-Ethnic Study of Atherosclerosis)

    PubMed Central

    Inoue, Yuko Y.; Ambale-Venkatesh, Bharath; Mewton, Nathan; Volpe, Gustavo J.; Ohyama, Yoshiaki; Sharma, Ravi K.; Wu, Colin O.; Liu, Chia-Ying; Bluemke, David A.; Soliman, Elsayed Z.; Lima, João A. C.

    2017-01-01

    Purpose To examine the associations of myocardial diffuse fibrosis and scar with surface electrocardiographic (ECG) parameters in individuals free of prior coronary heart disease in four different ethnicities. Materials and Methods This prospective cross-sectional study was approved by the institutional review boards, and all participants gave informed consent. A total of 1669 participants in the Multi-Ethnic Study of Atherosclerosis, or MESA, who were free of prior myocardial infarction underwent both ECG and cardiac magnetic resonance imaging. In individuals without a late gadolinium enhancement–defined myocardial scar (n = 1131), T1 mapping was used to assess left ventricular (LV) interstitial diffuse fibrosis. The associations of LV diffuse fibrosis or myocardial scar with ECG parameters (QRS voltage, QRS duration, and corrected QT interval [QTc]) were evaluated by using multivariable regression analyses adjusted for demographic data, risk factors for scar, LV end-diastolic volume, and LV mass. Results The mean age of the 1669 participants was 67.4 years ± 8.7 (standard deviation); 49.8% were women. Lower postcontrast T1 time at 12 minutes was significantly associated with lower QRS Sokolow-Lyon voltage (β = 15.1 µV/10 msec, P = .004), lower QRS Cornell voltage (β = 9.2 µV/10 msec, P = .031), and shorter QRS duration (β = 0.16 msec/10 msec, P = .049). Greater extracellular volume (ECV) fraction was also significantly associated with lower QRS Sokolow-Lyon voltage (β = −35.2 µV/1% ECV increase, P < .001) and Cornell voltage (β = −23.7 µV/1% ECV increase, P < .001), independent of LV structural indexes. In contrast, the presence of LV scar (n = 106) was associated with longer QTc (β = 4.3 msec, P = .031). Conclusion In older adults without prior coronary heart disease, underlying greater LV diffuse fibrosis is associated with lower QRS voltage and shorter QRS duration at surface ECG, whereas clinically unrecognized myocardial scar is associated

  11. Regional Myocardial Blood Volume and Flow: First-Pass MR Imaging with Polylysine-Gd-DTPA

    PubMed Central

    Wilke, Norbert; Kroll, Keith; Merkle, Hellmut; Wang, Ying; Ishibashi, Yukata; Xu, Ya; Zhang, Jiani; Jerosch-Herold, Michael; Mühler, Andreas; Stillman, Arthur E.; Bassingthwaighte, James B.; Bache, Robert; Ugurbil, Kamil

    2010-01-01

    The authors investigated the utility of an intravascular magnetic resonance (MR) contrast agent, poly-L-lysine-gadolinium diethylenetriaminepentaacetic acid (DTPA), for differentiating acutely ischemic from normally perfused myocardium with first-pass MR imaging. Hypoperfused regions, identified with microspheres, on the first-pass images displayed significantly decreased signal intensities compared with normally perfused myocardium (P < .0007). Estimates of regional myocardial blood content, obtained by measuring the ratio of areas under the signal intensity-versus-time curves in tissue regions and the left ventricular chamber, averaged 0.12 mL/g ± 0.04 (n = 35), compared with a value of 0.11 mL/g ± 0.05 measured with radiolabeled albumin in the same tissue regions. To obtain MR estimates of regional myocardial blood flow, in situ calibration curves were used to transform first-pass intensity-time curves into content-time curves for analysis with a multiple-pathway, axially distributed model. Flow estimates, obtained by automated parameter optimization, averaged 1.2 mL/min/g ± 0.5 [n = 29), compared with 1.3 mL/min/g ± 0.3 obtained with tracer microspheres in the same tissue specimens at the same time. The results represent a combination of T1-weighted first-pass imaging, intravascular relaxation agents, and a spatially distributed perfusion model to obtain absolute regional myocardial blood flow and volume. PMID:7766986

  12. Automatic Delineation of the Myocardial Wall from CT Images via Shape Segmentation and Variational Region Growing

    PubMed Central

    Zhu, Liangjia; Gao, Yi; Appia, Vikram; Yezzi, Anthony; Arepalli, Chesnal; Faber, Tracy; Stillman, Arthur; Tannenbaum, Allen

    2014-01-01

    Prognosis and diagnosis of cardiac diseases frequently require quantitative evaluation of the ventricle volume, mass, and ejection fraction. The delineation of the myocardial wall is involved in all of these evaluations, which is a challenging task due to large variations in myocardial shapes and image quality. In this work, we present an automatic method for extracting the myocardial wall of the left and right ventricles from cardiac CT images. In the method, the left and right ventricles are located sequentially, in which each ventricle is detected by first identifying the endocardium and then segmenting the epicardium. To this end, the endocardium is localized by utilizing its geometric features obtained on-line from a CT image. After that, a variational region-growing model is employed to extract the epicardium of the ventricles. In particular, the location of the endocardium of the left ventricle is determined via using an active contour model on the blood-pool surface. To localize the right ventricle, the active contour model is applied on a heart surface extracted based on the left ventricle segmentation result. The robustness and accuracy of the proposed approach is demonstrated by experimental results from 33 human and 12 pig CT images. PMID:23744658

  13. Contrast-enhanced ultrasound for quantitative assessment of portal pressure in canine liver fibrosis

    PubMed Central

    Zhai, Lin; Qiu, Lan-Yan; Zu, Yuan; Yan, Yan; Ren, Xiao-Zhuan; Zhao, Jun-Feng; Liu, Yu-Jiang; Liu, Ji-Bin; Qian, Lin-Xue

    2015-01-01

    AIM: To explore the feasibility of non-invasive quantitative estimation of portal venous pressure by contrast-enhanced ultrasound (CEUS) in a canine model. METHODS: Liver fibrosis was established in adult canines (Beagles; n = 14) by subcutaneous injection of carbon tetrachloride (CCl4). CEUS parameters, including the area under the time-intensity curve and intensity at portal/arterial phases (Qp/Qa and Ip/Ia, respectively), were used to quantitatively assess the blood flow ratio of the portal vein/hepatic artery at multiple time points. The free portal venous pressures (FPP) were measured by a multi-channel baroreceptor using a percutaneous approach at baseline and 8, 16, and 24 wk after CCl4 injections in each canine. Liver biopsies were obtained at the end of 8, 16, and 24 wk from each animal, and the stage of the fibrosis was assessed according to the Metavir scoring system. A Pearson correlation test was performed to compare the FPP with Qp/Qa and Ip/Ia. RESULTS: Pathologic examination of 42 biopsies from the 14 canines at weeks 8, 16, and 24 revealed that liver fibrosis was induced by CCl4 and represented various stages of liver fibrosis, including F0 (n = 3), F1 (n = 12), F2 (n = 14), F3 (n = 11), and F4 (n = 2). There were significant differences in the measurements of Qp/Qa (19.85 ± 3.30 vs 10.43 ± 1.21, 9.63 ± 1.03, and 8.77 ± 0.96) and Ip/Ia (1.77 ± 0.37 vs 1.03 ± 0.12, 0.83 ± 0.10, and 0.69 ± 0.13) between control and canine fibrosis at 8, 16, and 24 wk, respectively (all P < 0.001). There were statistically significant negative correlations between FPP and Qp/Qa (r = -0.707, P < 0.001), and between FPP and Ip/Ia (r = -0.759, P < 0.001) in the canine fibrosis model. Prediction of elevated FPP based on Qp/Qa and Ip/Ia was highly sensitive, as assessed by the area under the receiver operating curve (0.866 and 0.895, respectively). CONCLUSION: CEUS is a potential method to accurately, but non-invasively, estimate portal venous pressure through

  14. Sevoflurane postconditioning improves myocardial mitochondrial respiratory function and reduces myocardial ischemia-reperfusion injury by up-regulating HIF-1

    PubMed Central

    Yang, Long; Xie, Peng; Wu, Jianjiang; Yu, Jin; Yu, Tian; Wang, Haiying; Wang, Jiang; Xia, Zhengyuan; Zheng, Hong

    2016-01-01

    Background: Sevoflurane postconditioning (SPostC) can exert myocardial protective effects similar to ischemic preconditioning. However, the exact myocardial protection mechanism by SPostC is unclear. Studies indicate that hypoxia-inducible factor-1 (HIF-1) maintains cellular respiration homeostasis by regulating mitochondrial respiratory chain enzyme activity under hypoxic conditions. This study investigated whether SPostC could regulate the expression of myocardial HIF-1α and to improve mitochondrial respiratory function, thereby relieving myocardial ischemia-reperfusion injury in rats. Methods: The myocardial ischemia-reperfusion rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, postconditioning was performed using sevoflurane alone or in combination with the HIF-1α inhibitor 2-methoxyestradiol (2ME2). The changes in hemodynamic parameters, HIF-1α protein expression levels, mitochondrial respiratory function and enzyme activity, mitochondrial reactive oxygen species (ROS) production rates, and mitochondrial ultrastructure were measured or observed. Results: Compared to the ischemia-reperfusion (I/R) group, HIF-1α expression in the SPostC group was significantly up-regulated. Additionally, cardiac function indicators, mitochondrial state 3 respiratory rate, respiratory control ratio (RCR), cytochrome C oxidase (CcO), NADH oxidase (NADHO), and succinate oxidase (SUCO) activities, mitochondrial ROS production rate, and mitochondrial ultrastructure were significantly better than those in the I/R group. However, these advantages were completely reversed by the HIF-1α specific inhibitor 2ME2 (P<0.05). Conclusion: The myocardial protective function of SPostC might be associated with the improvement of mitochondrial respiratory function after up-regulation of HIF-1α expression. PMID:27830025

  15. Sevoflurane postconditioning improves myocardial mitochondrial respiratory function and reduces myocardial ischemia-reperfusion injury by up-regulating HIF-1.

    PubMed

    Yang, Long; Xie, Peng; Wu, Jianjiang; Yu, Jin; Yu, Tian; Wang, Haiying; Wang, Jiang; Xia, Zhengyuan; Zheng, Hong

    2016-01-01

    Sevoflurane postconditioning (SPostC) can exert myocardial protective effects similar to ischemic preconditioning. However, the exact myocardial protection mechanism by SPostC is unclear. Studies indicate that hypoxia-inducible factor-1 (HIF-1) maintains cellular respiration homeostasis by regulating mitochondrial respiratory chain enzyme activity under hypoxic conditions. This study investigated whether SPostC could regulate the expression of myocardial HIF-1α and to improve mitochondrial respiratory function, thereby relieving myocardial ischemia-reperfusion injury in rats. The myocardial ischemia-reperfusion rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, postconditioning was performed using sevoflurane alone or in combination with the HIF-1α inhibitor 2-methoxyestradiol (2ME2). The changes in hemodynamic parameters, HIF-1α protein expression levels, mitochondrial respiratory function and enzyme activity, mitochondrial reactive oxygen species (ROS) production rates, and mitochondrial ultrastructure were measured or observed. Compared to the ischemia-reperfusion (I/R) group, HIF-1α expression in the SPostC group was significantly up-regulated. Additionally, cardiac function indicators, mitochondrial state 3 respiratory rate, respiratory control ratio (RCR), cytochrome C oxidase (C c O), NADH oxidase (NADHO), and succinate oxidase (SUCO) activities, mitochondrial ROS production rate, and mitochondrial ultrastructure were significantly better than those in the I/R group. However, these advantages were completely reversed by the HIF-1α specific inhibitor 2ME2 ( P <0.05). The myocardial protective function of SPostC might be associated with the improvement of mitochondrial respiratory function after up-regulation of HIF-1α expression.

  16. Identification of ginseng root using quantitative X-ray microtomography.

    PubMed

    Ye, Linlin; Xue, Yanling; Wang, Yudan; Qi, Juncheng; Xiao, Tiqiao

    2017-07-01

    The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ , and three-dimensional quantitative imaging properties. The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

  17. Myocardial oxygen delivery after experimental hemorrhagic shock.

    PubMed Central

    Archie, J P; Mertz, W R

    1978-01-01

    The two components of myocardial oxygen delivery, coronary blood flow to capillaries and diffusion from capillaries to mitochondria, were studied in six dogs, (1) prior to shock, (2) after three hours of hemorrhage shock at a mean systemic arterial pressure of 40 torr, (3) after reinfusion of shed blood, and (4) during the irreversible late posttransfusion stage. There was a maldistribution of left ventricular coronary flow during late shock consistent with subendocardial ischemia. Cardiac performance was significantly impaired after resuscitation and all dogs became irreversible. Total and regional left ventricular coronary blood flow and myocardial oxygen delivery to capillaries were significantly greater than preshock values in (3) but not different from preshock values in (4). However, the myocardial oxygen diffusion area to distance ratio was significantly lower than preshock values in (3), and slightly lower in (4). These data suggest that myocardial oxygen diffusion may be impaired in the early post transfusion period, (3). Accordingly, the probable etiology of left ventricular dysfunction and possibly irreversibility after resuscitation from hemorrhagic shock is subendocardial ischemia during shock with either post-resuscitation impairment of myocardial oxygen diffusion, or in cellular oxygen utilization, or both. PMID:629622

  18. Abnormal myocardial fluid retention as an early manifestation of ischemic injury.

    PubMed Central

    Willerson, J. T.; Scales, F.; Mukherjee, A.; Platt, M.; Templeton, G. H.; Fink, G. S.; Buja, L. M.

    1977-01-01

    . Thus, the data indicate that impaired cell volume regulation and interstitial fluid accumulation and focal structural defects in cell membrane integrity are early manifestations of ischemic injury followed by reflow, but fail to establish a major role for the abnormal fluid retention in altering coronary blood flow prior to the development of extensive myocardial necrosis. In contrast, fixed coronary occlusion for 60 minutes results in mild intracellular swelling but no significant interstitial edema and no obvious structural defects in cell membrane integrity. Images Figure 1 Figure 5 Figure 6 Figure 2 Figure 3 Figure 4 PMID:139829

  19. Changing axis deviation during acute myocardial infarction.

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2010-07-09

    Changing axis deviation has been reported during acute myocardial infarction also associated with atrial fibrillation. Isolated left posterior hemiblock is a very rare finding but the evidence of transient right axis deviation with a left posterior hemiblock pattern has been reported during acute anterior myocardial infarction as related with significant right coronary artery obstruction and collateral circulation between the left coronary system and the posterior descending artery. We present a case of changing axis deviation in a 70-year-old Italian man with acute myocardial infarction. Copyright (c) 2008 Elsevier Ireland Ltd. All rights reserved.

  20. Characterization of Intraventricular and Intracerebral Hematomas in Non-Contrast CT

    PubMed Central

    Nowinski, Wieslaw L; Gomolka, Ryszard S; Qian, Guoyu; Gupta, Varsha; Ullman, Natalie L; Hanley, Daniel F

    2014-01-01

    Summary Characterization of hematomas is essential in scan reading, manual delineation, and designing automatic segmentation algorithms. Our purpose is to characterize the distribution of intraventricular (IVH) and intracerebral hematomas (ICH) in NCCT scans, study their relationship to gray matter (GM), and to introduce a new tool for quantitative hematoma delineation. We used 289 serial retrospective scans of 51 patients. Hematomas were manually delineated in a two-stage process. Hematoma contours generated in the first stage were quantified and enhanced in the second stage. Delineation was based on new quantitative rules and hematoma profiling, and assisted by a dedicated tool superimposing quantitative information on scans with 3D hematoma display. The tool provides: density maps (40-85HU), contrast maps (8/15HU), mean horizontal/vertical contrasts for hematoma contours, and hematoma contours below a specified mean contrast (8HU). White matter (WM) and GM were segmented automatically. IVH/ICH on serial NCCT is characterized by 59.0HU mean, 60.0HU median, 11.6HU standard deviation, 23.9HU mean contrast, –0.99HU/day slope, and –0.24 skewness (changing over time from negative to positive). Its 0.1st-99.9th percentile range corresponds to 25-88HU range. WM and GM are highly correlated (R 2=0.88; p<10–10) whereas the GM-GS correlation is weak (R 2=0.14; p<10–10). The intersection point of mean GM-hematoma density distributions is at 55.6±5.8HU with the corresponding GM/hematoma percentiles of 88th/40th. Objective characterization of IVH/ICH and stating the rules quantitatively will aid raters to delineate hematomas more robustly and facilitate designing algorithms for automatic hematoma segmentation. Our two-stage process is general and potentially applicable to delineate other pathologies on various modalities more robustly and quantitatively. PMID:24976197

  1. Characterization of intraventricular and intracerebral hematomas in non-contrast CT.

    PubMed

    Nowinski, Wieslaw L; Gomolka, Ryszard S; Qian, Guoyu; Gupta, Varsha; Ullman, Natalie L; Hanley, Daniel F

    2014-06-01

    Characterization of hematomas is essential in scan reading, manual delineation, and designing automatic segmentation algorithms. Our purpose is to characterize the distribution of intraventricular (IVH) and intracerebral hematomas (ICH) in NCCT scans, study their relationship to gray matter (GM), and to introduce a new tool for quantitative hematoma delineation. We used 289 serial retrospective scans of 51 patients. Hematomas were manually delineated in a two-stage process. Hematoma contours generated in the first stage were quantified and enhanced in the second stage. Delineation was based on new quantitative rules and hematoma profiling, and assisted by a dedicated tool superimposing quantitative information on scans with 3D hematoma display. The tool provides: density maps (40-85HU), contrast maps (8/15HU), mean horizontal/vertical contrasts for hematoma contours, and hematoma contours below a specified mean contrast (8HU). White matter (WM) and GM were segmented automatically. IVH/ICH on serial NCCT is characterized by 59.0HU mean, 60.0HU median, 11.6HU standard deviation, 23.9HU mean contrast, -0.99HU/day slope, and -0.24 skewness (changing over time from negative to positive). Its 0.1(st)-99.9(th) percentile range corresponds to 25-88HU range. WM and GM are highly correlated (R (2)=0.88; p<10(-10)) whereas the GM-GS correlation is weak (R (2)=0.14; p<10(-10)). The intersection point of mean GM-hematoma density distributions is at 55.6±5.8HU with the corresponding GM/hematoma percentiles of 88(th)/40(th). Objective characterization of IVH/ICH and stating the rules quantitatively will aid raters to delineate hematomas more robustly and facilitate designing algorithms for automatic hematoma segmentation. Our two-stage process is general and potentially applicable to delineate other pathologies on various modalities more robustly and quantitatively.

  2. Myocardial perfusion and left ventricular function indices assessed by gated myocardial perfusion SPECT in methamphetamine abusers.

    PubMed

    Dadpour, Bita; Dabbagh Kakhki, Vahid R; Afshari, Reza; Dorri-Giv, Masoumeh; Mohajeri, Seyed A R; Ghahremani, Somayeh

    2016-12-01

    Methamphetamine (MA) is associated with alterations of cardiac structure and function, although it is less known. In this study, we assessed possible abnormality in myocardial perfusion and left ventricular function using gated myocardial perfusion SPECT. Fifteen patients with MA abuse, on the basis of Diagnostic and Statistical Manual of Mental Disorders, 4th ed. (DSM-IV) MA dependency determined by Structured Clinical Interview for DSM-IV, underwent 2-day dipyridamole stress/rest Tc-sestamibi gated myocardial perfusion SPECT. An average daily dose of MA use was 0.91±1.1 (0.2-4) g. The duration of MA use was 3.4±2.1 (1-7) years. In visual and semiquantitative analyses, all patients had normal gated myocardial perfusion SPECT, with no perfusion defects. In all gated SPECT images, there was no abnormality in left ventricular wall motion and thickening. All summed stress scores and summed rest scores were below 3. Calculated left ventricular functional indices including the end-diastolic volume, end-systolic volume, and left ventricular ejection fraction were normal. Many cardiac findings because of MA mentioned in previous reports are less likely because of significant epicardial coronary artery stenosis.

  3. Enhancement of dynamic myocardial perfusion PET images based on low-rank plus sparse decomposition.

    PubMed

    Lu, Lijun; Ma, Xiaomian; Mohy-Ud-Din, Hassan; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan

    2018-02-01

    The absolute quantification of dynamic myocardial perfusion (MP) PET imaging is challenged by the limited spatial resolution of individual frame images due to division of the data into shorter frames. This study aims to develop a method for restoration and enhancement of dynamic PET images. We propose that the image restoration model should be based on multiple constraints rather than a single constraint, given the fact that the image characteristic is hardly described by a single constraint alone. At the same time, it may be possible, but not optimal, to regularize the image with multiple constraints simultaneously. Fortunately, MP PET images can be decomposed into a superposition of background vs. dynamic components via low-rank plus sparse (L + S) decomposition. Thus, we propose an L + S decomposition based MP PET image restoration model and express it as a convex optimization problem. An iterative soft thresholding algorithm was developed to solve the problem. Using realistic dynamic 82 Rb MP PET scan data, we optimized and compared its performance with other restoration methods. The proposed method resulted in substantial visual as well as quantitative accuracy improvements in terms of noise versus bias performance, as demonstrated in extensive 82 Rb MP PET simulations. In particular, the myocardium defect in the MP PET images had improved visual as well as contrast versus noise tradeoff. The proposed algorithm was also applied on an 8-min clinical cardiac 82 Rb MP PET study performed on the GE Discovery PET/CT, and demonstrated improved quantitative accuracy (CNR and SNR) compared to other algorithms. The proposed method is effective for restoration and enhancement of dynamic PET images. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Myocardial bridges, neither rare nor isolated-Autopsy study.

    PubMed

    Teofilovski-Parapid, G; Jankovic, R; Kanjuh, V; Virmani, R; Danchin, N; Prates, N; Simic, D V; Parapid, B

    2017-03-01

    Myocardial bridge is a congenital anomaly with a markedly variable reported incidence on autopsy (4.7%-86%), likely related to geographical regions. Our previous retrospective study showed a prevalence of 0.8%, which we doubted to be the true one in the examined sample of the Serbian population. To assess the importance of the phenomenon we conducted a 2-year prospective study at the same institution. Ninety-six cadaver hearts from adult individuals of both genders (51 men, 45 women) who died from natural causes underwent special dissection. Tunneled coronary arteries and myocardium were examined using light microscopy. A total of 14 myocardial bridges were found in 13 (13.54%) hearts. This anomaly was insignificantly more common in men (13.72% vs. 13.33%, p>0.05). In one heart we noted two myocardial bridges (the left anterior interventricular artery and left marginal artery were overbridged). None of the myocardial bridges had been diagnosed during life. The most common causes of death were cardiac related. Myocardial bridges were located in the following areas: left anterior interventricular (50%), left circumflex artery (28.6%), left marginal artery (14.3%), and right coronary artery (7.1%). In 92.3% of cases, the right coronary artery was dominant. The only heart with a balanced-type had two bridges. Most of the myocardial bridges were long and deep. All tunneled coronary arteries, and although surrounded by "coronary cushion," were not protected from atherosclerosis. In 30.8% of hearts with myocardial bridges, we found additional coronary artery anomalies. Myocardial bridges were not rare in the examined sample of the Serbian population and were often associated with other coronary artery anomalies, rendering the carriers at higher risk. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Conditioning the heart to prevent myocardial reperfusion injury during PPCI

    PubMed Central

    2012-01-01

    For patients presenting with a ST-segment elevation myocardial infarction (STEMI), early myocardial reperfusion by primary percutaneous coronary intervention (PPCI) remains the most effective treatment strategy for limiting myocardial infarct size, preserving left ventricular systolic function, and preventing the onset of heart failure. Recent advances in PCI technology to improve myocardial reperfusion and the introduction of novel anti-platelet and anti-thrombotic agents to maintain the patency of the infarct-related coronary artery continue to optimize PPCI procedure. However, despite these improvements, STEMI patients still experience significant major adverse cardiovascular events. One major contributing factor has been the inability to protect the heart against the lethal myocardial reperfusion injury, which accompanies PPCI. Past attempts to translate cardioprotective strategies, discovered in experimental studies to prevent lethal myocardial reperfusion injury, into the clinical setting of PPCI have been disappointing. However, a number of recent proof-of-concept clinical studies suggest that the heart can be ‘conditioned’ to protect itself against lethal myocardial reperfusion injury, as evidenced by a reduction in myocardial infarct size. This can be achieved using either mechanical (such as ischaemic postconditioning, remote ischaemic preconditioning, therapeutic hypothermia, or hyperoxaemia) or pharmacological (such as cyclosporin-A, natriuretic peptide, exenatide) ‘conditioning’ strategies as adjuncts to PPCI. Furthermore, recent developments in cardiac magnetic resonance (CMR) imaging can provide a non-invasive imaging strategy for assessing the efficacy of these novel adjunctive therapies to PPCI in terms of key surrogate clinical endpoints such as myocardial infarct size, myocardial salvage, left ventricular ejection fraction, and the presence of microvascular obstruction or intramyocardial haemorrhage. In this article, we review the

  6. Myocardial uptake of cocaine and effects of cocaine on myocardial substrate utilization and perfusion in hypertensive rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, P.; Wang, G.J.; Oster, Z.H.

    Cocaine abuse is a problem causing world-wide concern and the number of deaths following cocaine use is increasing. Cardiovascular complications following cocaine include severe tachyarrythmias, pulmonary edema, myocardial infarction, and acute renal failure, which are major problems confronting emergency facilities. While the studies of cocaine effects on the brain have been given the most attention, it is clear that the effects of cocaine on the cardiovascular system are of great importance, given the increasing number of reports on sudden death and myocardial infarctions in young adults related to cocaine use. The precise mechanisms of cardiotoxic actions of cocaine are unclear.more » We investigated the whole-body distribution of C-14-labeled cocaine to determine the cocaine-binding sites, including blocking experiments to determine the nature of regional binding sites, and differential response of the normal vs. diseased heart (hypertensive cardiomyopathy) in an animal model to mimic a potentially high risk population. We investigated the acute effects of cocaine on myocardial metabolism using two myocardial energy substrate analogs, fatty acid and glucose with comparison with regional perfusion.« less

  7. The role of technetium-99m stannous pyrophosphate in myocardial imaging to recognize, localize and identify extension of acute myocardial infarction in patients

    NASA Technical Reports Server (NTRS)

    Willerson, J. T.; Parkey, R. W.; Bonte, F. J.; Stokely, E. M.; Buja, E. M.

    1975-01-01

    The ability of technetium-99m stannous pyrophosphate myocardial scintigrams to aid diagnostically in recognizing, localizing, and identifying extension of acute myocardial infarction in patients was evaluated. The present study is an extension of previous animal and patient evaluations that were recently performed utilizing this myocardial imaging agent.

  8. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision.

    PubMed

    Verberne, Hein J; Acampa, Wanda; Anagnostopoulos, Constantinos; Ballinger, Jim; Bengel, Frank; De Bondt, Pieter; Buechel, Ronny R; Cuocolo, Alberto; van Eck-Smit, Berthe L F; Flotats, Albert; Hacker, Marcus; Hindorf, Cecilia; Kaufmann, Philip A; Lindner, Oliver; Ljungberg, Michael; Lonsdale, Markus; Manrique, Alain; Minarik, David; Scholte, Arthur J H A; Slart, Riemer H J A; Trägårdh, Elin; de Wit, Tim C; Hesse, Birger

    2015-11-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/publications/guidelines/2015_07_EANM_FINAL_myocardial_perfusion_guideline.pdf .

  9. [Effects of circulating microvesicles derived from myocardial ischemic preconditioning on myocardial ischemia/reperfusion injury in rats].

    PubMed

    Wang, Yi-Lu; Liu, Miao; Shang, Man; Wang, Yao; Zhang, Qi; Wang, Shao-Xun; Wei, Su; Zhang, Kun-Wei; Liu, Chao; Wu, Yan-Na; Song, Jun-Qiu; Liu, Yan-Xia

    2016-02-08

    To investigate the effects of circulating microvesicles (MVs) derived from ischemic preconditioning (IPC) on myocardial ischemia/reperfusion (I/R) injury in rats and explore the underlying mechanism. To establish the IPC model, the rats were subjected to brief cycles of left anterior descending (LAD) coronary occlusion and reperfusion. The blood was drawn from abdominal aorta once the operation was finished. IPC-MVs were isolated by ultracentrifugation from the peripheral blood and characterized by flow cytometry. The myocardial I/R model of rats was established in vivo. Rats were injected via the femoral vein with IPC-MVs at 7 mg/kg. Morphological changes of myocardium were observed microscopically after HE staining. Apoptosis of myocardial cells was detected with TUNEL assay. Myocardial infarct size was detected by TTC staining. Moreover, activity of plasma lactate dehydrogenase (LDH) was tested by colorimetry. The activity of caspase 3 in myocardium was assayed with spectrophotometry. Expression levels of Bcl-2 and Bax protein were examined with Western blot. The concentration of IPC-MVs, which was detected by flow cytometry, was 4380±745 cells/ μ l. Compared with I/R group, IPC-MVs alleviated the damage of tissues in I/R injured rats significantly. The myocardial infarct size and the cardiomyocyte apoptotic index were obviously decreased after IPC-MVs treatment ( P <0.01, respectively). The activity of plasma LDH was significantly decreased in IPC-MVs treated rats ( P <0.01). Moreover, the activity of caspase 3 was markedly decreased after IPC-MVs treatment ( P <0.01). In addition, the expression of Bcl-2 was increased ( P <0.01), the expression of Bax was decreased ( P <0.01), the ratio of Bcl-2/Bax was significantly increased after IPC-MVs treatment ( P <0.01). IPC-MVs protected myocardial against I/R injury by up-regulating the expression of Bcl-2 protein, down-regulating the expression of Bax protein, increasing the ratio of Bcl-2/Bax and decreasing

  10. Fractal regional myocardial blood flows pattern according to metabolism, not vascular anatomy

    PubMed Central

    Yipintsoi, Tada; Kroll, Keith

    2015-01-01

    Regional myocardial blood flows are markedly heterogeneous. Fractal analysis shows strong near-neighbor correlation. In experiments to distinguish control by vascular anatomy vs. local vasomotion, coronary flows were increased in open-chest dogs by stimulating myocardial metabolism (catecholamines + atropine) with and without adenosine. During control states mean left ventricular (LV) myocardial blood flows (microspheres) were 0.5–1 ml·g−1·min−1 and increased to 2–3 ml·g−1·min−1 with catecholamine infusion and to ∼4 ml·g−1·min−1 with adenosine (Ado). Flow heterogeneity was similar in all states: relative dispersion (RD = SD/mean) was ∼25%, using LV pieces 0.1–0.2% of total. During catecholamine infusion local flows increased in proportion to the mean flows in 45% of the LV, “tracking” closely (increased proportionately to mean flow), while ∼40% trended toward the mean. Near-neighbor regional flows remained strongly spatially correlated, with fractal dimension D near 1.2 (Hurst coefficient 0.8). The spatial patterns remain similar at varied levels of metabolic stimulation inferring metabolic dominance. In contrast, adenosine vasodilation increased flows eightfold times control while destroying correlation with the control state. The Ado-induced spatial patterns differed from control but were self-consistent, inferring that with full vasodilation the relaxed arterial anatomy dominates the distribution. We conclude that vascular anatomy governs flow distributions during adenosine vasodilation but that metabolic vasoregulation dominates in normal physiological states. PMID:26589329

  11. Fractal regional myocardial blood flows pattern according to metabolism, not vascular anatomy.

    PubMed

    Yipintsoi, Tada; Kroll, Keith; Bassingthwaighte, James B

    2016-02-01

    Regional myocardial blood flows are markedly heterogeneous. Fractal analysis shows strong near-neighbor correlation. In experiments to distinguish control by vascular anatomy vs. local vasomotion, coronary flows were increased in open-chest dogs by stimulating myocardial metabolism (catecholamines + atropine) with and without adenosine. During control states mean left ventricular (LV) myocardial blood flows (microspheres) were 0.5-1 ml·g(-1)·min(-1) and increased to 2-3 ml·g(-1)·min(-1) with catecholamine infusion and to ∼4 ml·g(-1)·min(-1) with adenosine (Ado). Flow heterogeneity was similar in all states: relative dispersion (RD = SD/mean) was ∼25%, using LV pieces 0.1-0.2% of total. During catecholamine infusion local flows increased in proportion to the mean flows in 45% of the LV, "tracking" closely (increased proportionately to mean flow), while ∼40% trended toward the mean. Near-neighbor regional flows remained strongly spatially correlated, with fractal dimension D near 1.2 (Hurst coefficient 0.8). The spatial patterns remain similar at varied levels of metabolic stimulation inferring metabolic dominance. In contrast, adenosine vasodilation increased flows eightfold times control while destroying correlation with the control state. The Ado-induced spatial patterns differed from control but were self-consistent, inferring that with full vasodilation the relaxed arterial anatomy dominates the distribution. We conclude that vascular anatomy governs flow distributions during adenosine vasodilation but that metabolic vasoregulation dominates in normal physiological states. Copyright © 2016 the American Physiological Society.

  12. Comparison of Low-Dose Higher-Relaxivity and Standard-Dose Lower-Relaxivity Contrast Media for Delayed-Enhancement MRI: A Blinded Randomized Crossover Study.

    PubMed

    Cheong, Benjamin Y C; Duran, Cihan; Preventza, Ourania A; Muthupillai, Raja

    2015-09-01

    The gadolinium-based MRI contrast agent gadobenate dimeglumine has nearly twice the MR relaxivity of gadopentetate dimeglumine at 1.5 T. The purpose of this study was to determine whether a lower dose (0.1 mmol/kg) of gadobenate dimeglumine can be used to obtain delayed-enhancement MR images comparable to those obtained with a standard dose (0.2 mmol/kg) of gadopentetate dimeglumine. In this blinded randomized crossover study, 20 patients with known myocardial infarction underwent two separate delayed-enhancement MRI examinations after receiving 0.1 mmol/kg gadobenate dimeglumine and 0.2 mmol/kg gadopentetate dimeglumine (random administration). The conspicuity of lesion enhancement 5, 10, and 20 minutes after contrast administration was quantified as relative enhancement ratio (RER). With either gadolinium-based contrast agent, damaged myocardium had higher signal intensity than normal remote myocardium (RER > 4) on delayed-enhancement MR images, and the blood RER declined over time after contrast administration. The blood RER was not significantly higher for gadobenate dimeglumine than for gadopentetate dimeglumine at 5 and 10 minutes. Nevertheless, there was a larger reduction in blood RER for gadobenate dimeglumine than for gadopentetate dimeglumine between 5 and 10 minutes and between 10 and 20 minutes. The volumes of enhancement were similar for gadobenate dimeglumine (13.6 ± 8.8 cm(3)) and gadopentetate dimeglumine (13.5 ± 8.9 cm(3)) (p = 0.98). The mean difference in Bland-Altman analysis for delayed-enhancement volume between the agents was 0.1 cm(3). Qualitatively and quantitatively, delayed-enhancement MR images of ischemic myocardium obtained with 0.1 mmol/kg gadobenate dimeglumine are comparable to those obtained with 0.2 mmol/kg gadopentetate dimeglumine 5, 10, and 20 minutes after contrast administration.

  13. Synthesis and Preclinical Characterization of a Cationic Iodinated Imaging Contrast Agent (CA4+) and Its Use for Quantitative Computed Tomography of Ex Vivo Human Hip Cartilage.

    PubMed

    Stewart, Rachel C; Patwa, Amit N; Lusic, Hrvoje; Freedman, Jonathan D; Wathier, Michel; Snyder, Brian D; Guermazi, Ali; Grinstaff, Mark W

    2017-07-13

    Contrast agents that go beyond qualitative visualization and enable quantitative assessments of functional tissue performance represent the next generation of clinically useful imaging tools. An optimized and efficient large-scale synthesis of a cationic iodinated contrast agent (CA4+) is described for imaging articular cartilage. Contrast-enhanced CT (CECT) using CA4+ reveals significantly greater agent uptake of CA4+ in articular cartilage compared to that of similar anionic or nonionic agents, and CA4+ uptake follows Donnan equilibrium theory. The CA4+ CECT attenuation obtained from imaging ex vivo human hip cartilage correlates with the glycosaminoglycan content, equilibrium modulus, and coefficient of friction, which are key indicators of cartilage functional performance and osteoarthritis stage. Finally, preliminary toxicity studies in a rat model show no adverse events, and a pharmacokinetics study documents a peak plasma concentration 30 min after dosing, with the agent no longer present in vivo at 96 h via excretion in the urine.

  14. Patient-specific coronary blood supply territories for quantitative perfusion analysis

    PubMed Central

    Zakkaroff, Constantine; Biglands, John D.; Greenwood, John P.; Plein, Sven; Boyle, Roger D.; Radjenovic, Aleksandra; Magee, Derek R.

    2018-01-01

    Abstract Myocardial perfusion imaging, coupled with quantitative perfusion analysis, provides an important diagnostic tool for the identification of ischaemic heart disease caused by coronary stenoses. The accurate mapping between coronary anatomy and under-perfused areas of the myocardium is important for diagnosis and treatment. However, in the absence of the actual coronary anatomy during the reporting of perfusion images, areas of ischaemia are allocated to a coronary territory based on a population-derived 17-segment (American Heart Association) AHA model of coronary blood supply. This work presents a solution for the fusion of 2D Magnetic Resonance (MR) myocardial perfusion images and 3D MR angiography data with the aim to improve the detection of ischaemic heart disease. The key contribution of this work is a novel method for the mediated spatiotemporal registration of perfusion and angiography data and a novel method for the calculation of patient-specific coronary supply territories. The registration method uses 4D cardiac MR cine series spanning the complete cardiac cycle in order to overcome the under-constrained nature of non-rigid slice-to-volume perfusion-to-angiography registration. This is achieved by separating out the deformable registration problem and solving it through phase-to-phase registration of the cine series. The use of patient-specific blood supply territories in quantitative perfusion analysis (instead of the population-based model of coronary blood supply) has the potential of increasing the accuracy of perfusion analysis. Quantitative perfusion analysis diagnostic accuracy evaluation with patient-specific territories against the AHA model demonstrates the value of the mediated spatiotemporal registration in the context of ischaemic heart disease diagnosis. PMID:29392098

  15. Synthetic Generation of Myocardial Blood-Oxygen-Level-Dependent MRI Time Series via Structural Sparse Decomposition Modeling

    PubMed Central

    Rusu, Cristian; Morisi, Rita; Boschetto, Davide; Dharmakumar, Rohan; Tsaftaris, Sotirios A.

    2014-01-01

    This paper aims to identify approaches that generate appropriate synthetic data (computer generated) for Cardiac Phase-resolved Blood-Oxygen-Level-Dependent (CP–BOLD) MRI. CP–BOLD MRI is a new contrast agent- and stress-free approach for examining changes in myocardial oxygenation in response to coronary artery disease. However, since signal intensity changes are subtle, rapid visualization is not possible with the naked eye. Quantifying and visualizing the extent of disease relies on myocardial segmentation and registration to isolate the myocardium and establish temporal correspondences and ischemia detection algorithms to identify temporal differences in BOLD signal intensity patterns. If transmurality of the defect is of interest pixel-level analysis is necessary and thus a higher precision in registration is required. Such precision is currently not available affecting the design and performance of the ischemia detection algorithms. In this work, to enable algorithmic developments of ischemia detection irrespective to registration accuracy, we propose an approach that generates synthetic pixel-level myocardial time series. We do this by (a) modeling the temporal changes in BOLD signal intensity based on sparse multi-component dictionary learning, whereby segmentally derived myocardial time series are extracted from canine experimental data to learn the model; and (b) demonstrating the resemblance between real and synthetic time series for validation purposes. We envision that the proposed approach has the capacity to accelerate development of tools for ischemia detection while markedly reducing experimental costs so that cardiac BOLD MRI can be rapidly translated into the clinical arena for the noninvasive assessment of ischemic heart disease. PMID:24691119

  16. Synthetic generation of myocardial blood-oxygen-level-dependent MRI time series via structural sparse decomposition modeling.

    PubMed

    Rusu, Cristian; Morisi, Rita; Boschetto, Davide; Dharmakumar, Rohan; Tsaftaris, Sotirios A

    2014-07-01

    This paper aims to identify approaches that generate appropriate synthetic data (computer generated) for cardiac phase-resolved blood-oxygen-level-dependent (CP-BOLD) MRI. CP-BOLD MRI is a new contrast agent- and stress-free approach for examining changes in myocardial oxygenation in response to coronary artery disease. However, since signal intensity changes are subtle, rapid visualization is not possible with the naked eye. Quantifying and visualizing the extent of disease relies on myocardial segmentation and registration to isolate the myocardium and establish temporal correspondences and ischemia detection algorithms to identify temporal differences in BOLD signal intensity patterns. If transmurality of the defect is of interest pixel-level analysis is necessary and thus a higher precision in registration is required. Such precision is currently not available affecting the design and performance of the ischemia detection algorithms. In this work, to enable algorithmic developments of ischemia detection irrespective to registration accuracy, we propose an approach that generates synthetic pixel-level myocardial time series. We do this by 1) modeling the temporal changes in BOLD signal intensity based on sparse multi-component dictionary learning, whereby segmentally derived myocardial time series are extracted from canine experimental data to learn the model; and 2) demonstrating the resemblance between real and synthetic time series for validation purposes. We envision that the proposed approach has the capacity to accelerate development of tools for ischemia detection while markedly reducing experimental costs so that cardiac BOLD MRI can be rapidly translated into the clinical arena for the noninvasive assessment of ischemic heart disease.

  17. Myocardial preconditioning reduces kidney injury and apoptosis induced by myocardial ischaemia and reperfusion.

    PubMed

    Huang, Cheng-Hsiung; Lai, Chang-Chi; Yang, An-Han; Chiang, Shu-Chiung

    2015-09-01

    Acute kidney injury is a common and serious complication of cardiac surgery. Because its underlying mechanisms are unclear, there is no specific therapy to prevent or treat it. A regional transient ischaemia and reperfusion (I/R) may provide protection to distant tissue or organs, a phenomenon known as remote preconditioning. In this study, we investigated whether myocardial preconditioning (MPC) would reduce kidney injury and apoptosis induced by myocardial I/R, as well as the mechanisms involved. Myocardial I/R was induced by a 40-min occlusion of the left anterior descending artery and a 3-h reperfusion in anaesthetized Sprague-Dawley rats. MPC was elicited by two 10-min coronary artery occlusions and two 10-min reperfusions. A sham group received the same surgical procedures without coronary artery occlusion and reperfusion. Compared with the sham group, myocardial I/R significantly increased the serum creatinine levels (1.15 ± 0.44 vs 0.54 ± 0.23 mg/dl, P < 0.05, mean ± standard deviation) and renal histological damage, indicating increased kidney injury. Kidney apoptosis was also significantly increased, as evidenced by the increase in the terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate (dUTP) nick-end labelling (TUNEL)-positive nuclei, clear DNA laddering and increased caspase-3 activation. Serum levels of tumour necrosis factor-α (TNF-α), interleukin-1 (IL-1) and interleukin-6 (IL-6) were significantly elevated, as were TNF-α levels in the kidneys. MPC significantly decreased myocardial infarct size (18.5 ± 3.1 vs 25.6 ± 2.1% of area at risk, P < 0.001). Additionally, MPC significantly reduced the serum creatinine level (0.65 ± 0.19 mg/dl, P < 0.05), renal histological damage and apoptosis. The increase in the serum levels of TNF-α, IL-1 and IL-6, and of TNF-α in the kidneys, was significantly inhibited. Western blot analysis found that MPC significantly increased Bcl-2 and decreased Bax in the kidneys

  18. Recent Inferior Myocardial Infarction Complicated with a Right Ventricular Thrombus Detected by Three Cardiac Imaging Modalities.

    PubMed

    Kuno, Toshiki; Imaeda, Syohei; Hashimoto, Kenji; Ryuzaki, Toshinobu; Saito, Tetsuya; Yamazaki, Hiroyuki; Tabei, Ryota; Kodaira, Masaki; Hase, Manabu; Numasawa, Yohei

    2018-03-01

    We report the case of a 71-year-old woman diagnosed with recent inferior myocardial infarction complicated with right ventricular infarction and a right ventricular thrombus. Three-dimensional transthoracic echocardiography, contrast-enhanced computed tomography, and cardiac magnetic resonance imaging clearly detected a thrombus. We consider cases with a recent right ventricular infarction to require assessment for thrombus formations in the right ventricle. Fortunately, vigorous anticoagulation therapy resolved the thrombi in both the right ventricle and right coronary artery.

  19. Exogenous Nkx2.5- or GATA-4-transfected rabbit bone marrow mesenchymal stem cells and myocardial cell co-culture on the treatment of myocardial infarction in rabbits.

    PubMed

    Li, Pu; Zhang, Lei

    2015-08-01

    The present study aimed to investigate the effects of Nkx2.5 or GATA-4 transfection with myocardial extracellular environment co-culture on the transformation of bone marrow mesenchymal stem cells (BMSCs) into differentiated cardiomyocytes. Nkx2.5 or GATA-4 were transfected into myocardial extracellular environment co-cultured BMSCs, and then injected into the periphery of infarcted myocardium of a myocardial infarction rabbit model. The effects of these gene transfections and culture on the infarcted myocardium were observed and the results may provide an experimental basis for the efficient myocardial cell differentiation of BMSCs. The present study also suggested that these cells may provide a source and clinical basis for myocardial injury repair via stem cell transplantation. The present study examined whether Nkx2.5 or GATA-4 exogenous gene transfection with myocardial cell extracellular environment co-culture were able to induce the differentiation of BMSCs into cardiac cells. In addition, the effect of these transfected BMSCs on the repair of the myocardium following myocardial infarction was determined using New Zealand rabbit models. The results demonstrated that myocardial cell differentiation was significantly less effective following exogenous gene transfection of Nkx2.5 or GATA-4 alone compared with that of transfection in combination with extracellular environment co-culture. In addition, the results of the present study showed that exogenous gene transfection of Nkx2.5 or GATA-4 into myocardial cell extracellular environment co-cultured BMSCs was able to significantly enhance the ability to repair, mitigating the death of myocardial cells and activation of the myocardium in rabbits with myocardial infarction compared with those of the rabbits transplanted with untreated BMSCs. In conclusion, the exogenous Nkx2.5 and GATA-4 gene transfection into myocardial extracellular environment co-cultured BMSCs induced increased differentiation into myocardial

  20. Colorectal liver metastases: contrast agent diffusion coefficient for quantification of contrast enhancement heterogeneity at MR imaging.

    PubMed

    Jia, Guang; O'Dell, Craig; Heverhagen, Johannes T; Yang, Xiangyu; Liang, Jiachao; Jacko, Richard V; Sammet, Steffen; Pellas, Theodore; Cole, Patricia; Knopp, Michael V

    2008-09-01

    To describe and determine the reproducibility of a simplified model to quantitatively measure heterogeneous intralesion contrast agent diffusion in colorectal liver metastases. This HIPAA-compliant retrospective study received institutional review board approval, and written informed consent was obtained from 14 patients (mean age, 61 years +/- 9 [standard deviation]; range, 41-78 years), including 10 men (mean age, 65 years +/- 8; range, 47-78 years) and four women (mean age, 54 years +/- 9; range, 41-59 years), with colorectal liver metastases. Magnetic resonance (MR) imaging was performed twice (first baseline MR image [B(1)] and second baseline MR image [B(2)]) in a single target lesion prior to therapy. Dynamic contrast material-enhanced MR imaging was performed by using a saturation-recovery fast gradient-echo sequence. A simplified contrast agent diffusion model was proposed, and a contrast agent diffusion coefficient (CDC) was calculated. The reproducibility of the CDC measurement was evaluated by using the Bland-Altman plot and a linear regression model. The mean CDC was 0.22 mm(2)/sec (range, 0.01-0.73 mm(2)/sec) on B(1) and 0.24 mm(2)/sec (range, 0.01-0.71 mm(2)/sec) on B(2), with an intraclass correlation coefficient of 0.91 (P < .0001). Bland-Altman plot showed good agreement, with a mean difference in measurement pairs of 0.017 mm(2)/sec +/- 0.096. The slope from the linear regression model was 0.89 (95% confidence interval: 0.63, 1.15) and the intercept was 0.01 (95% confidence interval: -0.08, 0.09). The CDC enables a quantitative description of contrast enhancement heterogeneity in lesions. Given the high reproducibility of the CDC metric, CDC appears promising for further qualification as an imaging biomarker of change measurement in response assessment. http://radiology.rsnajnls.org/cgi/content/full/248/3/901/DC1. RSNA, 2008

  1. Efficacy of full-fat milk and diluted lemon juice in reducing infra-cardiac activity of (99m)Tc sestamibi during myocardial perfusion imaging.

    PubMed

    Purbhoo, Khushica; Vangu, Mboyo Di Tamba Willy

    2015-01-01

    When using (99m)Tc sestamibi for myocardial perfusion imaging, increased splanchnic activity creates a problem in the visual and quantitative interpretation of the inferior and infero-septal walls of the left ventricle. We sought to determine whether the administration of diluted lemon juice or full-fat milk would be effective in reducing interfering infra-cardiac activity and therefore result in an improvement in image quality. We compared the administration of full-fat milk and diluted lemon juice to a control group that had no intervention. The study was carried out prospectively. All patients referred to our institution for myocardial perfusion imaging from November 2009 to May 2012 were invited to be enrolled in the study. A total of 630 patients were randomised into three groups. Group 0 (G0), 246 patients, were given diluted lemon juice, group 1 (G1), 313 patients, were given full-fat milk, and group 2 (G2), 71 patients, had no intervention (control group). A routine two-day protocol was used and the patients were given the same intervention on both days. Raw data of both the stress and rest images were visually assessed for the presence of infra-cardiac activity, and quantitative grading of the relative intensity of myocardial activity to infra-cardiac activity was determined. The physicians were blinded to the intervention received and the data were reviewed simultaneously. The overall incidence of interfering infra-cardiac activity at stress was 84.1, 84.5 and 96.6% in G0, G1 and G2, respectively (p = 0.005). At rest it was 91.7, 90.1 and 100% in G0, G1 and G2, respectively (p = 0.0063). The visual and quantitative results favoured both milk and lemon juice in reducing the amount of interfering infra-cardiac activity versus no intervention. The administration of milk or lemon juice resulted in a significant decrease in the intensity of infra-cardiac activity compared to the control group. This reduction in intensity was even more significant in the milk

  2. 2-D Myocardial Deformation Imaging Based on RF-Based Nonrigid Image Registration.

    PubMed

    Chakraborty, Bidisha; Liu, Zhi; Heyde, Brecht; Luo, Jianwen; D'hooge, Jan

    2018-06-01

    Myocardial deformation imaging is a well-established echocardiographic technique for the assessment of myocardial function. Although some solutions make use of speckle tracking of the reconstructed B-mode images, others apply block matching (BM) on the underlying radio frequency (RF) data in order to increase sensitivity to small interframe motion and deformation. However, for both approaches, lateral motion estimation remains a challenge due to the relatively poor lateral resolution of the ultrasound image in combination with the lack of phase information in this direction. Hereto, nonrigid image registration (NRIR) of B-mode images has previously been proposed as an attractive solution. However, hereby, the advantages of RF-based tracking were lost. The aim of this paper was, therefore, to develop an NRIR motion estimator adapted to RF data sets. The accuracy of this estimator was quantified using synthetic data and was contrasted against a state-of-the-art BM solution. The results show that RF-based NRIR outperforms BM in terms of tracking accuracy, particularly, as hypothesized, in the lateral direction. Finally, this RF-based NRIR algorithm was applied clinically, illustrating its ability to estimate both in-plane velocity components in vivo.

  3. Impaired nitric oxide modulation of myocardial oxygen consumption in genetically cardiomyopathic hamsters.

    PubMed

    Loke, K E; Messina, E J; Mital, S; Hintze, T H

    2000-12-01

    We investigated the role of kinin and nitric oxide (NO) in the modulation of cardiac O(2)consumption in Syrian hamsters with overt heart failure (HF) and age-matched normal hamsters. Using echocardiography, the hamsters with heart failure had reduced ejection fraction [31(+/-8) v 76(+/-5)%] and LV dilation [4.9(+/-0. 2) v 5.7(+/-0.3) mm, both P<0.05 from normal]. O(2)consumption in the left ventricular free wall was measured using a Clark-type O(2)electrode in an air-tight chamber, containing Krebs solution buffered with Hepes (37 degrees C, pH 7.4). Concentration response curves to bradykinin (BK), ramiprilat (RAM), amlodipine (AMLO) and the NO donor, S -nitroso- N -acetyl-penicillamine (SNAP) were performed. Basal myocardial O(2)consumption was lower in the HF group compared to normal [316(+/-21) v 404(+/-36) nmol O(2)/min/g, respectively, P<0.05]. In the hearts from normal hamsters BK (10(-4)mol/l), RAM (10(-4)mol/l), and AMLO (10(-5)mol/l) all significantly reduced myocardial O(2)consumption by 42(+/-6)%, 29(+/-7)% and 27(+/-5)% respectively. This reduction was attenuated in the presence of N -nitro- l -arginine methyl ester (l -NAME) [BK: 3.3(+/-1.5)%, RAM: 3.3(+/-1.2)%, AMLO: 2.3(+/-1.2)%, P<0.05]. Interestingly in the hearts from HF group, BK, RAM and AMLO caused a significantly smaller reduction in myocardial O(2)consumption [10(+/-2)%, 2.5(+/-1.3)%, 6.3(+/-2.3)%, P<0.05]. In contrast, the NO donor SNAP reduced myocardial O(2)consumption in both groups and all those responses were not affected by l -NAME. These data indicate that endogenous NO production through the kinin-dependent mechanism is impaired at end-stage heart failure. The loss of kinin and NO control of mitochondrial respiration may contribute to the pathogenesis of heart failure. Copyright 2000 Academic Press.

  4. Comparison between fragmented QRS and Q waves in myocardial scar detection using myocardial perfusion single photon emission computed tomography.

    PubMed

    Dabbagh Kakhki, Vahid Reza; Ayati, Narjess; Zakavi, Seyed Rasoul; Sadeghi, Ramin; Tayyebi, Mohammad; Shariati, Farzaneh

    2015-01-01

    Accurate diagnosis of myocardial infarction (MI) is of paramount importance in patient management, which necessitates the development of efficient and accurate diagnostic methods. Q wave is not present in all patients with MI, and its prevalence is declining. Recently, fragmented QRS (fQRS) complex has been introduced as a marker of prior MI. To investigate diagnostic value of fQRS compared to Q wave. We included 500 consecutive patients with known or suspected coronary artery disease who underwent two days of gated myocardial perfusion imaging using dipyridamole pharmacologic stress. Electrocardiogram (ECG) was evaluated to detect fQRS as well as Q-wave. Finally, subjects were compared in terms of ventricular perfusion and function indices. A total of 207 men and 269 women with mean age of 57.06 ± 12 years were studied. ECG analysis showed that 14.3% of the patients had both fQRS and Q waves, 30.7% had fQRS, and 3.8% had Q waves. Fixed myocardial perfusion defect was noted in 22.3% of patients according to MPIs. Sensitivity, specificity, and positive and negative predictive values for myocardial scar detection were 78%, 65%, 39%, and 91%, respectively, for fQRS and 61%, 94%, 76%, and 89%, respectively, for Q wave. Although fQRS had lower specificity compared to Q wave in the detection of myocardial scar, due to higher sensitivity and negative predictive value can be an invaluable diagnostic index. There is also an incremental value for fQRS in association with Q-wave in myocardial scar assessment.

  5. Myocardial Uptake of 7′-(Z)-[123I]Iodorotenone During Vasodilator Stress in Dogs With Critical Coronary Stenoses

    PubMed Central

    Broisat, Alexis; Ruiz, Mirta; Goodman, Norman C.; Hanrahan, Stephen M.; Reutter, Bryan W.; Brennan, Kathleen M.; Janabi, Mustafa; Schaefer, Saul; Watson, Denny D.; Beller, George A.; VanBrocklin, Henry F.; Glover, David K.

    2013-01-01

    Background There is a well-recognized need for a new generation of single photon emission computed tomography (SPECT) perfusion tracers with improved myocardial extraction over a wide flow range. Radiotracers that target complex I of the mitochondrial electron transport chain have been proposed as a new class of myocardial perfusion imaging agents. 7-(Z)-[125I]iodorotenone (125I-ZIROT) has demonstrated superior myocardial extraction and retention characteristics in rats and in isolated perfused rabbit hearts. We sought to fully characterize the biodistribution and myocardial extraction versus flow relationship of 123I-ZIROT in an intact large-animal model. Methods and Results The 123I-ZIROT was administered during adenosine A2A agonist-induced hyperemia in 5 anesthetized dogs with critical left anterior descending (LAD) stenoses. When left circumflex (LCx) flow was maximal, 123I-ZIROT and microspheres were coinjected and the dogs were euthanized 5 minutes later. 123I-ZIROT biodistribution was evaluated in 2 additional dogs by in vivo planar imaging. At 123I-ZIROT injection, transmural LAD flow was unchanged from baseline (mean±SEM, 0.90±0.22 versus 0.87±0.11 mL/[min · g]; P=0.92), whereas LCx zone flow increased significantly (mean±SEM, 3.25±0.51 versus 1.00±0.17 mL/[min · g]; P<0.05). Myocardial 123I-ZIROT extraction tracked regional myocardial flow better than either thallium-201 or 99mTc-sestamibi from previous studies using a similar model. Furthermore, the 123I-ZIROT LAD/LCx activity ratios by ex vivo imaging or well counting (mean±SEM, 0.42±0.08 and 0.45±0.1, respectively) only slightly underestimated the LAD/LCx microsphere flow ratio (0.32±0.09). Conclusions The ability of 123I-ZIROT to more linearly track blood flow over a wide range makes it a promising new SPECT myocardial perfusion imaging agent with potential for improved coronary artery disease detection and better quantitative estimation of the severity of flow impairment. PMID:21917783

  6. Assessment of Myocardial Remodeling Using an Elastin/Tropoelastin Specific Agent with High Field Magnetic Resonance Imaging (MRI).

    PubMed

    Protti, Andrea; Lavin, Begoña; Dong, Xuebin; Lorrio, Silvia; Robinson, Simon; Onthank, David; Shah, Ajay M; Botnar, Rene M

    2015-08-13

    Well-defined inflammation, proliferation, and maturation phases orchestrate the remodeling of the injured myocardium after myocardial infarction (MI) by controlling the formation of new extracellular matrix. The extracellular matrix consists mainly of collagen but also fractions of elastin. It is thought that elastin is responsible for maintaining elastic properties of the myocardium, thus reducing the risk of premature rupture. An elastin/tropoelastin-specific contrast agent (Gd-ESMA) was used to image tropoelastin and mature elastin fibers for in vivo assessment of extracellular matrix remodeling post-MI. Gd-ESMA enhancement was studied in a mouse model of myocardial infarction using a 7 T MRI scanner and results were compared to those achieved after injection of a nonspecific control contrast agent, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). In the infarcted tissue, Gd-ESMA uptake (measured as R1 relaxation rate) steadily increased from day 3 to day 21 as a result of the synthesis of elastin/tropoelastin. R1 values were in good agreement with histological findings. A similar R1 behavior was observed in the remote myocardium. No mature cross-linked elastin was found at any time point. In contrast, Gd-DTPA uptake was only observed in the infarct with no changes in R1 values between 3 and 21 days post-MI. We demonstrate the feasibility of in vivo imaging of extracellular matrix remodeling post-MI using a tropoelastin/elastin binding MR contrast agent, Gd-ESMA. We found that tropoelastin is the main contributor to the increased MRI signal at late stages of MI where its augmentation in areas of infarction was in good agreement with the R1 increase. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  7. Applying Knowledge of Quantitative Design and Analysis

    ERIC Educational Resources Information Center

    Baskas, Richard S.

    2011-01-01

    This study compared and contrasted two quantitative scholarly articles in relation to their research designs. Their designs were analyzed by the comparison of research references and research specific vocabulary to describe how various research methods were used. When researching and analyzing quantitative scholarly articles, it is imperative to…

  8. High contrast imaging and flexible photomanipulation for quantitative in vivo multiphoton imaging with polygon scanning microscope.

    PubMed

    Li, Yongxiao; Montague, Samantha J; Brüstle, Anne; He, Xuefei; Gillespie, Cathy; Gaus, Katharina; Gardiner, Elizabeth E; Lee, Woei Ming

    2018-02-28

    In this study, we introduce two key improvements that overcome limitations of existing polygon scanning microscopes while maintaining high spatial and temporal imaging resolution over large field of view (FOV). First, we proposed a simple and straightforward means to control the scanning angle of the polygon mirror to carry out photomanipulation without resorting to high speed optical modulators. Second, we devised a flexible data sampling method directly leading to higher image contrast by over 2-fold and digital images with 100 megapixels (10 240 × 10 240) per frame at 0.25 Hz. This generates sub-diffraction limited pixels (60 nm per pixels over the FOV of 512 μm) which increases the degrees of freedom to extract signals computationally. The unique combined optical and digital control recorded fine fluorescence recovery after localized photobleaching (r ~10 μm) within fluorescent giant unilamellar vesicles and micro-vascular dynamics after laser-induced injury during thrombus formation in vivo. These new improvements expand the quantitative biological-imaging capacity of any polygon scanning microscope system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The impact of injector-based contrast agent administration in time-resolved MRA.

    PubMed

    Budjan, Johannes; Attenberger, Ulrike I; Schoenberg, Stefan O; Pietsch, Hubertus; Jost, Gregor

    2018-05-01

    Time-resolved contrast-enhanced MR angiography (4D-MRA), which allows the simultaneous visualization of the vasculature and blood-flow dynamics, is widely used in clinical routine. In this study, the impact of two different contrast agent injection methods on 4D-MRA was examined in a controlled, standardized setting in an animal model. Six anesthetized Goettingen minipigs underwent two identical 4D-MRA examinations at 1.5 T in a single session. The contrast agent (0.1 mmol/kg body weight gadobutrol, followed by 20 ml saline) was injected using either manual injection or an automated injection system. A quantitative comparison of vascular signal enhancement and quantitative renal perfusion analyses were performed. Analysis of signal enhancement revealed higher peak enhancements and shorter time to peak intervals for the automated injection. Significantly different bolus shapes were found: automated injection resulted in a compact first-pass bolus shape clearly separated from the recirculation while manual injection resulted in a disrupted first-pass bolus with two peaks. In the quantitative perfusion analyses, statistically significant differences in plasma flow values were found between the injection methods. The results of both qualitative and quantitative 4D-MRA depend on the contrast agent injection method, with automated injection providing more defined bolus shapes and more standardized examination protocols. • Automated and manual contrast agent injection result in different bolus shapes in 4D-MRA. • Manual injection results in an undefined and interrupted bolus with two peaks. • Automated injection provides more defined bolus shapes. • Automated injection can lead to more standardized examination protocols.

  10. Protective effects of circulating microvesicles derived from myocardial ischemic rats on apoptosis of cardiomyocytes in myocardial ischemia/reperfusion injury.

    PubMed

    Wang, Yao; Wei, Su; Wang, Yi-Lu; Liu, Miao; Shang, Man; Zhang, Qi; Wu, Yan-Na; Liu, Ming-Lin; Song, Jun-Qiu; Liu, Yan-Xia

    2017-08-15

    To investigate the effects of circulating microvesicles derived from myocardial ischemia (I-MVs) on apoptosis in myocardial ischemia/reperfusion (I/R) injury in rats. I-MVs from rats undergoing myocardial left anterior descending (LAD) coronary artery ligation were isolated by ultracentrifugation from circulating blood and characterized by flow cytometry. I-MVs were administered intravenously (4.8 mg/kg) at 5 min before reperfusion procedure in I/R injury model which was induced by 30-min of ischemia and 120-min of reperfusion of LAD in rats. Treatment with I-MVssignificantly reduced the size of myocardial infarction, the activities of serum CK-MB and LDH, and the number of apoptotic cardiomyocytes. The activities of caspase 3, caspase 9 and caspase 12 in myocardium were also decreased significantly with I-MVs treatment. Moreover, the expression of Bax was decreased but Bcl-2 was increased. The expression of glucose regulated protein 78 (GRP78), sarco/endoplasmic reticulum Ca 2+ -ATPase 2 (SERCA2) and phosphorylated phospholamban (p-PLB) were increased after being treated with I-MVs. I-MVs could protect hearts from I/R injury in rats through SERCA2 and p-PLB of calcium regulatory proteins to alleviate intrinsic myocardial apoptosis including mitochondrial and endoplasmic reticulum pathways.

  11. The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia.

    PubMed

    Shaposhnikov, Dmitry; Revich, Boris; Gurfinkel, Yuri; Naumova, Elena

    2014-07-01

    Evidence of the impact of air temperature and pressure on cardiovascular morbidity is still quite limited and controversial, and even less is known about the potential influence of geomagnetic activity. The objective of this study was to assess impacts of air temperature, barometric pressure and geomagnetic activity on hospitalizations with myocardial infarctions and brain strokes. We studied 2,833 myocardial infarctions and 1,096 brain strokes registered in two Moscow hospitals between 1992 and 2005. Daily event rates were linked with meteorological and geomagnetic conditions, using generalized linear model with controls for day of the week, seasonal and long-term trends. The number of myocardial infarctions decreased with temperature, displayed a U-shaped relationship with pressure and variations in pressure, and increased with geomagnetic activity. The number of strokes increased with temperature, daily temperature range and geomagnetic activity. Detrimental effects on strokes of low pressure and falling pressure were observed. Relative risks of infarctions and strokes during geomagnetic storms were 1.29 (95% CI 1.19-1.40) and 1.25 (1.10-1.42), respectively. The number of strokes doubled during cold spells. The influence of barometric pressure on hospitalizations was relatively greater than the influence of geomagnetic activity, and the influence of temperature was greater than the influence of pressure. Brain strokes were more sensitive to inclement weather than myocardial infarctions. This paper provides quantitative estimates of the expected increases in hospital admissions on the worst days and can help to develop preventive health plans for cardiovascular diseases.

  12. Effect of oxygen therapy on myocardial salvage in ST elevation myocardial infarction: the randomized SOCCER trial.

    PubMed

    Khoshnood, Ardavan; Carlsson, Marcus; Akbarzadeh, Mahin; Bhiladvala, Pallonji; Roijer, Anders; Nordlund, David; Höglund, Peter; Zughaft, David; Todorova, Lizbet; Mokhtari, Arash; Arheden, Håkan; Erlinge, David; Ekelund, Ulf

    2018-04-01

    Recent studies suggest that administration of O2 in patients with acute myocardial infarction may have negative effects. With the use of cardiac MRI (CMR), we evaluated the effects of supplemental O2 in patients with ST elevation myocardial infarction (STEMI) accepted for acute percutaneous coronary intervention (PCI). This study was a randomized-controlled trial conducted at two university hospitals in Sweden. Normoxic STEMI patients were randomized in the ambulance to either supplemental O2 (10 l/min) or room air until the conclusion of the PCI. CMR was performed 2-6 days after the inclusion. The primary endpoint was the myocardial salvage index assessed by CMR. The secondary endpoints included infarct size and myocardium at risk. At inclusion, the O2 (n=46) and air (n=49) patient groups had similar patient characteristics. There were no significant differences in myocardial salvage index [53.9±25.1 vs. 49.3±24.0%; 95% confidence interval (CI): -5.4 to 14.6], myocardium at risk (31.9±10.0% of the left ventricle in the O2 group vs. 30.0±11.8% in the air group; 95% CI: -2.6 to 6.3), or infarct size (15.6±10.4% of the left ventricle vs. 16.0±11.0%; 95% CI: -4.7 to 4.1). In STEMI patients undergoing acute PCI, we found no effect of high-flow oxygen compared with room air on the size of ischemia before PCI, myocardial salvage, or the resulting infarct size. These results support the safety of withholding supplemental oxygen in normoxic STEMI patients.

  13. [Diagnosis of myocardial infarction by cine MR imaging--a comparative study with thallium-201 myocardial SPECT].

    PubMed

    Shiozaki, H

    1993-01-25

    The usefulness of cine magnetic resonance (MR) imaging was evaluated in 41 patients with acute (4 cases), subacute (21 cases) and chronic (16 cases) myocardial infarctions on the basis of the findings of thallium-201 myocardial SPECT. The overall rate of diagnostic accordance between cine MR imaging and SPECT was 85.0% (408/480). It was highest at the middle of the left ventricle (89.0%, 146/164) and lowest at the base (82.7%, 129/156). Measurement of wall thickness using the images printed on films was possible in 87.1% of segments (418/480). There was a significant difference in end-diastolic wall thickness and %-thickening between the infarcted and non-infarcted sites except for the base of the left ventricle. However, diastolic wall thinning was not remarkable in acute cases of less than one week after onset. In these cases %-thickening may be useful. Partial volume averaging on MR imaging and the inaccuracy of SPECT findings at the base also made meaningful comparison difficult. The most important diagnostic findings of myocardial infarction on cine MR imaging were end-diastolic wall thinning and abnormal motion such as akinesis and dyskinesis. It is concluded that cine MR imaging is a useful noninvasive examination method for evaluating the status of cardiac function in myocardial infarction.

  14. 52 Genetic Loci Influencing Myocardial Mass

    PubMed Central

    van der Harst, Pim; van Setten, Jessica; Verweij, Niek; Vogler, Georg; Franke, Lude; Maurano, Matthew T.; Wang, Xinchen; Leach, Irene Mateo; Eijgelsheim, Mark; Sotoodehnia, Nona; Hayward, Caroline; Sorice, Rossella; Meirelles, Osorio; Lyytikäinen, Leo-Pekka; Polašek, Ozren; Tanaka, Toshiko; Arking, Dan E.; Ulivi, Sheila; Trompet, Stella; Müller-Nurasyid, Martina; Smith, Albert V.; Dörr, Marcus; Kerr, Kathleen F.; Magnani, Jared W.; Fabiola Del Greco, M.; Zhang, Weihua; Nolte, Ilja M.; Silva, Claudia T.; Padmanabhan, Sandosh; Tragante, Vinicius; Esko, Tõnu; Abecasis, Gonçalo R.; Adriaens, Michiel E.; Andersen, Karl; Barnett, Phil; Bis, Joshua C.; Bodmer, Rolf; Buckley, Brendan M.; Campbell, Harry; Cannon, Megan V.; Chakravarti, Aravinda; Chen, Lin Y.; Delitala, Alessandro; Devereux, Richard B.; Doevendans, Pieter A.; Dominiczak, Anna F.; Ferrucci, Luigi; Ford, Ian; Gieger, Christian; Harris, Tamara B.; Haugen, Eric; Heinig, Matthias; Hernandez, Dena G.; Hillege, Hans L.; Hirschhorn, Joel N.; Hofman, Albert; Hubner, Norbert; Hwang, Shih-Jen; Iorio, Annamaria; Kähönen, Mika; Kellis, Manolis; Kolcic, Ivana; Kooner, Ishminder K.; Kooner, Jaspal S.; Kors, Jan A.; Lakatta, Edward G.; Lage, Kasper; Launer, Lenore J.; Levy, Daniel; Lundby, Alicia; Macfarlane, Peter W.; May, Dalit; Meitinger, Thomas; Metspalu, Andres; Nappo, Stefania; Naitza, Silvia; Neph, Shane; Nord, Alex S.; Nutile, Teresa; Okin, Peter M.; Olsen, Jesper V.; Oostra, Ben A.; Penninger, Josef M.; Pennacchio, Len A.; Pers, Tune H.; Perz, Siegfried; Peters, Annette; Pinto, Yigal M.; Pfeufer, Arne; Pilia, Maria Grazia; Pramstaller, Peter P.; Prins, Bram P.; Raitakari, Olli T.; Raychaudhuri, Soumya; Rice, Ken M.; Rossin, Elizabeth J.; Rotter, Jerome I.; Schafer, Sebastian; Schlessinger, David; Schmidt, Carsten O.; Sehmi, Jobanpreet; Silljé, Herman H.W.; Sinagra, Gianfranco; Sinner, Moritz F.; Slowikowski, Kamil; Soliman, Elsayed Z.; Spector, Timothy D.; Spiering, Wilko; Stamatoyannopoulos, John A.; Stolk, Ronald P.; Strauch, Konstantin; Tan, Sian-Tsung; Tarasov, Kirill V.; Trinh, Bosco; Uitterlinden, Andre G.; van den Boogaard, Malou; van Duijn, Cornelia M.; van Gilst, Wiek H.; Viikari, Jorma S.; Visscher, Peter M.; Vitart, Veronique; Völker, Uwe; Waldenberger, Melanie; Weichenberger, Christian X.; Westra, Harm-Jan; Wijmenga, Cisca; Wolffenbuttel, Bruce H.; Yang, Jian; Bezzina, Connie R.; Munroe, Patricia B.; Snieder, Harold; Wright, Alan F.; Rudan, Igor; Boyer, Laurie A.; Asselbergs, Folkert W.; van Veldhuisen, Dirk J.; Stricker, Bruno H.; Psaty, Bruce M.; Ciullo, Marina; Sanna, Serena; Lehtimäki, Terho; Wilson, James F.; Bandinelli, Stefania; Alonso, Alvaro; Gasparini, Paolo; Jukema, J. Wouter; Kääb, Stefan; Gudnason, Vilmundur; Felix, Stephan B.; Heckbert, Susan R.; de Boer, Rudolf A.; Newton-Cheh, Christopher; Hicks, Andrew A.; Chambers, John C.; Jamshidi, Yalda; Visel, Axel; Christoffels, Vincent M.; Isaacs, Aaron; Samani, Nilesh J.; de Bakker, Paul I.W.

    2017-01-01

    BACKGROUND Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 × 10−8. These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets. PMID:27659466

  15. Assessment and classification of patients with myocardial injury and infarction in clinical practice

    PubMed Central

    Chapman, Andrew R; Adamson, Philip D

    2017-01-01

    Myocardial injury is common in patients without acute coronary syndrome, and international guidelines recommend patients with myocardial infarction are classified by aetiology. The universal definition differentiates patients with myocardial infarction due to plaque rupture (type 1) from those due to myocardial oxygen supply-demand imbalance (type 2) secondary to other acute illnesses. Patients with myocardial necrosis, but no symptoms or signs of myocardial ischaemia, are classified as acute or chronic myocardial injury. This classification has not been widely adopted in practice, because the diagnostic criteria for type 2 myocardial infarction encompass a wide range of presentations, and the implications of the diagnosis are uncertain. However, both myocardial injury and type 2 myocardial infarction are common, occurring in more than one-third of all hospitalised patients. These patients have poor short-term and long-term outcomes with two-thirds dead in 5 years. The classification of patients with myocardial infarction continues to evolve, and future guidelines are likely to recognise the importance of identifying coronary artery disease in type 2 myocardial infarction. Clinicians should consider whether coronary artery disease has contributed to myocardial injury, as selected patients are likely to benefit from further investigation and in these patients targeted secondary prevention has the potential to improve outcomes. PMID:27806987

  16. Generalized PSF modeling for optimized quantitation in PET imaging.

    PubMed

    Ashrafinia, Saeed; Mohy-Ud-Din, Hassan; Karakatsanis, Nicolas A; Jha, Abhinav K; Casey, Michael E; Kadrmas, Dan J; Rahmim, Arman

    2017-06-21

    Point-spread function (PSF) modeling offers the ability to account for resolution degrading phenomena within the PET image generation framework. PSF modeling improves resolution and enhances contrast, but at the same time significantly alters image noise properties and induces edge overshoot effect. Thus, studying the effect of PSF modeling on quantitation task performance can be very important. Frameworks explored in the past involved a dichotomy of PSF versus no-PSF modeling. By contrast, the present work focuses on quantitative performance evaluation of standard uptake value (SUV) PET images, while incorporating a wide spectrum of PSF models, including those that under- and over-estimate the true PSF, for the potential of enhanced quantitation of SUVs. The developed framework first analytically models the true PSF, considering a range of resolution degradation phenomena (including photon non-collinearity, inter-crystal penetration and scattering) as present in data acquisitions with modern commercial PET systems. In the context of oncologic liver FDG PET imaging, we generated 200 noisy datasets per image-set (with clinically realistic noise levels) using an XCAT anthropomorphic phantom with liver tumours of varying sizes. These were subsequently reconstructed using the OS-EM algorithm with varying PSF modelled kernels. We focused on quantitation of both SUV mean and SUV max , including assessment of contrast recovery coefficients, as well as noise-bias characteristics (including both image roughness and coefficient of-variability), for different tumours/iterations/PSF kernels. It was observed that overestimated PSF yielded more accurate contrast recovery for a range of tumours, and typically improved quantitative performance. For a clinically reasonable number of iterations, edge enhancement due to PSF modeling (especially due to over-estimated PSF) was in fact seen to lower SUV mean bias in small tumours. Overall, the results indicate that exactly matched PSF

  17. Technetium-99m stannous pyrophosphate myocardial scintigraphy after cardiopulmonary resuscitation with cardioversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, R.; Spies, S.M.; Przybylek, J.

    1979-08-01

    Thirty consecutive patients underwent technetium-99m stannous pyrophosphate myocardial scintigraphy 48 to 72 h after successful cardiopulmonary resuscitation and direct current cardioversion. Five patients with transmural myocardial infarctions by ECG and enzyme determinations were correctly identified by scintigraphy. Myocardial scans were positive in five of nine patients with nontransmural infarction. Of 16 patients without evidence of myocardial infarction, only two (13%) had false-positive myocardial scans. The overall accuracy of imaging in this series was 80%. We conclude that false-positive scans after cardiopulmonary resuscitation with electrical cardioversion are infrequent, and do not significantly detract from the value of myocardial scintigraphy in themore » diagnosis of myocardial infarction.« less

  18. [Acute myocardial infarction in patients with ST-segment elevation myocardial infarction : ESC guidelines 2017].

    PubMed

    Thiele, H; Desch, S; de Waha, S

    2017-12-01

    This article gives an update on the management of acute ST-segment elevation myocardial infarction (STEMI) according to the recently released European Society of Cardiology guidelines 2017 and the modifications are compared to the previous STEMI guidelines from 2012. Primary percutaneous coronary intervention (PCI) remains the preferred reperfusion strategy. New guideline recommendations relate to the access site with a clear preference for the radial artery, use of drug-eluting stents over bare metal stents, complete revascularization during the index hospitalization, and avoidance of routine thrombus aspiration. For periprocedural anticoagulation during PCI, bivalirudin has been downgraded. Oxygen treatment should be administered only if oxygen saturation is <90%. In cardiogenic shock, intra-aortic balloon pumps should no longer be used. New recommendations are in place with respect to the duration of dual antiplatelet therapy for patients without bleeding events during the first 12 months. Newly introduced sections cover myocardial infarction with no relevant stenosis of the coronary arteries (MINOCA), the introduction of new indicators for quality of care for myocardial infarction networks and new definitions for the time to reperfusion.

  19. Increase in mean platelet volume in patients with myocardial bridge.

    PubMed

    Bilen, Emine; Tanboga, Ibrahim Halil; Kurt, Mustafa; Kocak, Umran; Ayhan, Huseyin; Keles, Telat; Bozkurt, Engin

    2013-01-01

    Myocardial bridge is associated with atherosclerosis altered in shear stress and endothelial dysfunction. Mean platelet volume (MPV), a determinant of platelet activation, is shown to be related with atherosclerosis and endothelial dysfunction. In this study, we aimed to evaluate platelet function assessed by MPV in patients with myocardial bridge. Forty-two patients with myocardial bridge in the left anterior descending artery (LAD) and 43 age- and gender-matched healthy participants were included in the study. Myocardial bridging was defined as an intramyocardial systolic compression or milking of a segment of an epicardial coronary artery on angiography. For the entire study population, MPV was measured using an automatic blood counter. The study population consisted of 42 patients with myocardial bridge (52.7 ± 10.2, 76.2% male) and 43 age- and sex-matched healthy control participants (52.1 ± 10.4, 74.4% male). Compared to the control group, MPV value was significantly higher in patients with myocardial bridge (8.9 ± 1.24 vs 8.3 ± 0.78; P = .01). Further, there were no significant differences between groups regarding hemoglobin level, platelet count, fasting blood glucose, and creatinine levels. Our study findings indicated that myocardial bridge is associated with elevated MPV values. Our results might partly explain the increased cardiovascular events in patients with myocardial bridge.

  20. +Ophitoxaemia and myocardial infarction—the issues during primary angioplasty: a review

    PubMed Central

    Gupta, Prabha Nini; Thomas, Jinesh; Francis, Preetham Kumar; Shylaja, Sajith Vamadevan

    2014-01-01

    ‘The Big four’ are the most poisonous snakes in India, and especially in Kerala. These include the cobra, the viper, the krait and the sea snake. Most of the poisonous snakebites in India occur in Kerala. We believe there are only a few reports of myocardial infarction after snakebites and most of these are viper bites. We believe this is the second case of primary angioplasty for a snakebite. There are at least a few potential issues in performing a primary angioplasty in a snakebite case, namely (1) Is it a thrombus or a spasm? (2) Are the bleeding parameters deranged? Will the patient tolerate tirofiban and other glycoprotein (GB) 2b3a inhibitors? Will he develop dangerous bleeding due to the high dose of heparin needed? Further, would we save the patient from myocardial infarction only to lose him to renal failure, both due to the nephrotoxicity of the venom, the kidney being further damaged by the contrast media used for the angioplasty? We discuss all these issues as they crossed our mind, and hope it will help further treatment in others. We would like to review the available literature on these points and describe a recent case of ours. PMID:25342187

  1. Continuous monitoring of regional function by a miniaturized ultrasound transducer allows early quantification of low-grade myocardial ischemia.

    PubMed

    Hyler, Stefan; Pischke, Søren E; Halvorsen, Per Steinar; Espinoza, Andreas; Bergsland, Jacob; Tønnessen, Tor Inge; Fosse, Erik; Skulstad, Helge

    2015-04-01

    Sensitive methods for the early detection of myocardial dysfunction are still needed, as ischemia is a leading cause of decreased ventricular function during and after heart surgery. The aim of this study was to test the hypothesis that low-grade ischemia could be detected quantitatively by a miniaturized epicardial ultrasound transducer (Ø = 3 mm), allowing continuous monitoring. In 10 pigs, transducers were positioned in the left anterior descending and circumflex coronary artery areas. Left ventricular pressure was obtained by a micromanometer. The left internal mammary artery was grafted to the left anterior descending coronary artery, which was occluded proximal to the anastomosis. Left internal mammary artery flow was stepwise reduced by 25%, 50%, and 75% for 18 min each. From the transducers, M-mode traces were obtained, allowing continuous tissue velocity traces and displacement measurements. Regional work was assessed as left ventricular pressure-displacement loop area. Tissue lactate measured from intramyocardial microdialysis was used as reference method to detect ischemia. All steps of coronary flow reduction demonstrated reduced peak systolic velocity (P < .05) and regional work (P < .01).The decreases in peak systolic velocity and regional work were closely related to the degree of ischemia, demonstrated by their correlations with lactate (R = -0.74, P < .01, and R = -0.64, P < .01, respectively). The circumflex coronary artery area was not affected by any of the interventions. The epicardially attached miniaturized ultrasound transducer allowed the precise detection of different levels of coronary flow reduction. The results also showed a quantitative and linear relationship among coronary flow, ischemia, and myocardial function. Thus, the ultrasound transducer has the potential to improve the monitoring of myocardial ischemia and to detect graft failure during and after heart surgery. Copyright © 2015 American Society of Echocardiography

  2. Myocardial concentrations of fatty acids in dogs with dilated cardiomyopathy.

    PubMed

    Smith, Caren E; Freeman, Lisa M; Meydani, Mohsen; Rush, John E

    2005-09-01

    To compare myocardial concentrations of fatty acids in dogs with dilated cardiomyopathy (DCM) with concentrations in control dogs. Myocardial tissues from 7 dogs with DCM and 16 control dogs. Myocardial tissues were homogenized, and total fatty acids were extracted and converted to methyl esters. Myocardial concentrations of fatty acids were analyzed by use of gas chromatography and reported as corrected percentages. The amount of docosatetraenoic acid (C22:4 n-6) was significantly higher in myocardial samples from dogs with DCM (range, 0.223% to 0.774%; median, 0.451%), compared with the amount in samples obtained from control dogs (range, 0.166% to 0.621%; median, 0.280%). There were no significant differences between DCM and control dogs for concentrations of any other myocardial fatty acids. Although concentrations of most myocardial fatty acids did not differ significantly between dogs with DCM and control dogs, the concentration of docosatetraenoic acid was significantly higher in dogs with DCM. Additional investigation in a larger population is warranted to determine whether this is a primary or secondary effect of the underlying disease and whether alterations in fatty acids may be a target for intervention in dogs with DCM.

  3. Normal myocardial perfusion scan portends a benign prognosis independent from the pretest probability of coronary artery disease. Sub-analysis of the J-ACCESS study.

    PubMed

    Imamura, Yosihiro; Fukuyama, Takaya; Nishimura, Sigeyuki; Nishimura, Tsunehiko

    2009-08-01

    We assessed the usefulness of gated stress/rest 99mTc-tetrofosmin myocardial perfusion single photon emission computed tomography (SPECT) to predict ischemic cardiac events in Japanese patients with various estimated pretest probabilities of coronary artery disease (CAD). Of the 4031 consecutively registered patients for a J-ACCESS (Japanese Assessment of Cardiac Events and Survival Study by Quantitative Gated SPECT) study, 1904 patients without prior cardiac events were selected. Gated stress/rest myocardial perfusion SPECT was performed and segmental perfusion scores and quantitative gated SPECT results were derived. The pretest probability for having CAD was estimated using the American College of Cardiology/American Heart Association/American College of Physicians-American Society of Internal Medicine guideline data for the management of patients with chronic stable angina, which includes age, gender, and type of chest discomfort. The patients were followed up for three years. During the three-year follow-up period, 96 developed ischemic cardiac events: 17 cardiac deaths, 8 nonfatal myocardial infarction, and 71 clinically driven revascularization. The summed stress score (SSS) was the most powerful independent predictor of all ischemic cardiac events (hazard ratio 1.077, CI 1.045-1.110). Abnormal SSS (> 3) was associated with a significantly higher cardiac event rate in patients with an intermediate to high pretest probability of CAD. Normal SSS (< or = 3) was associated with a low event rate in patients with any pretest probability of CAD. Myocardial perfusion SPECT is useful for further risk-stratification of patients with suspected CAD. The abnormal scan result (SSS > 3) is discriminative for subsequent cardiac events only in the groups with an intermediate to high pretest probability of CAD. The salient result is that normal scan results portend a benign prognosis independent from the pretest probability of CAD.

  4. Mapping tissue inhomogeneity in acute myocarditis: a novel analytical approach to quantitative myocardial edema imaging by T2-mapping.

    PubMed

    Baeßler, Bettina; Schaarschmidt, Frank; Dick, Anastasia; Stehning, Christian; Schnackenburg, Bernhard; Michels, Guido; Maintz, David; Bunck, Alexander C

    2015-12-23

    The purpose of the present study was to investigate the diagnostic value of T2-mapping in acute myocarditis (ACM) and to define cut-off values for edema detection. Cardiovascular magnetic resonance (CMR) data of 31 patients with ACM were retrospectively analyzed. 30 healthy volunteers (HV) served as a control. Additionally to the routine CMR protocol, T2-mapping data were acquired at 1.5 T using a breathhold Gradient-Spin-Echo T2-mapping sequence in six short axis slices. T2-maps were segmented according to the 16-segments AHA-model and segmental T2 values as well as the segmental pixel-standard deviation (SD) were analyzed. Mean differences of global myocardial T2 or pixel-SD between HV and ACM patients were only small, lying in the normal range of HV. In contrast, variation of segmental T2 values and pixel-SD was much larger in ACM patients compared to HV. In random forests and multiple logistic regression analyses, the combination of the highest segmental T2 value within each patient (maxT2) and the mean absolute deviation (MAD) of log-transformed pixel-SD (madSD) over all 16 segments within each patient proved to be the best discriminators between HV and ACM patients with an AUC of 0.85 in ROC-analysis. In classification trees, a combined cut-off of 0.22 for madSD and of 68 ms for maxT2 resulted in 83% specificity and 81% sensitivity for detection of ACM. The proposed cut-off values for maxT2 and madSD in the setting of ACM allow edema detection with high sensitivity and specificity and therefore have the potential to overcome the hurdles of T2-mapping for its integration into clinical routine.

  5. A novel gallium bisaminothiolate complex as a myocardial perfusion imaging agent

    PubMed Central

    Plössl, Karl; Chandra, Rajesh; Qu, Wenchao; Lieberman, Brian P.; Kung, Mei-Ping; Zhou, Rong; Huang, Bin; Kung, Hank F.

    2010-01-01

    The development of new myocardial perfusion imaging agents for positron emission tomography (PET) may improve the resolution and quantitation of changes in regional myocardial perfusion measurement. It is known that a 68Ge/68Ga generator can provide a convenient source of PET tracers because of the long physical half-life of 68Ge (271 days). A new ligand, 7,8-dithia-16,24-diaza-trispiro[5.2.5.2.5.3] pentacosa-15,24-diene, which consists of a N2S2-chelating core incorporated into three cyclohexyl rings, was prepared. To test feasibility and potential utility, the N2S2 ligand was successfully labeled and tested with 67Ga (half-life=3.26 day; γ=93.3, 184.6 and 300.2 keV), which showed >92% radiochemical purity. The corresponding “cold” Ga complex was synthesized, and its structure containing a pyramidal N2S2 chloride core was elucidated with X-ray crystallography. In vivo biodistribution of this novel 67Ga complex, evaluated in normal rats, exhibited excellent heart uptake and retention, with 2.1% and 0.9% initial dose/organ at 2 and 60 min, respectively, after an intravenous injection. Autoradiography was performed in normal rats and in rats that had the left anterior descending coronary artery permanently ligated surgically. Autoradiography showed an even uptake of activity in the normal heart, and there was a distinctively lower uptake in the damaged side of the surgically modified heart. In conclusion, the new N2S2 ligand was readily prepared and labeled with radioactive 67Ga. Biodistribution in rats revealed high initial heart uptake and relatively high retention reflecting regional myocardial perfusion. PMID:18158947

  6. The role of miR-370 in fibrosis after myocardial infarction

    PubMed Central

    Yuan, Hui; Gao, Jie

    2017-01-01

    In the present study, we investigated the expression of miR-370 in the border area of infarction after myocardial infarction and its role in the process of post-infarction fibrosis. A myocardial infarction model in Sprague-Dawley rats was established. After two weeks, the mRNA levels of transforming growth factor-β1 (TGFβ1), TGFβRII, ColIa1, ColIIIa1 and miR-370 and the expression of TGFβ1, TGFβRII and α-smooth muscle actin (α-SMA) proteins in the border area of infarction were detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) and western blot analysis. Cardiac fibroblasts in neonatal rat were isolated and cultured, and the changes in the above indicators were detected after AngII and miR-370 intervention. Luciferase reporter gene assay was conducted to verify whether TGFβRII was a target gene of miR-370. In the border area after myocardial infarction, the expression of miR-370 decreased, while mRNA levels of TGFβ1, TGFβRII, ColIa1 and ColIIIa1 and levels of TGFβ1, TGFβRII and α-SMA proteins were all increased. Luciferase reporter gene assay confirmed that TGFβRII was the target gene of miR-370. miR-370 reduced the expression of TGFβRII and inhibited the increased expression of TGFβRII and collagen protein caused by AngII. As well, its inhibited the differentiation effect of muscle fibroblasts while it did not inhibit the expression of TGFβ1. miR-370 inhibited the expression of TGFβRII protein by combining with TGFβRII mRNA. miR-370 also partially blocked TGFβ1-TGFβRII and induced the downstream signal transduction pathways, thus exerting anti-fibrotic effects. PMID:28350072

  7. Electrophysiological, haemodynamic, and mitochondrial alterations induced by levobupivacaine during myocardial ischemia in a pig model: protection by lipid emulsions?

    PubMed

    Mamou, Zahida; Descotes, Jacques; Chevalier, Philippe; Bui-Xuan, Bernard; Romestaing, Caroline; Timour, Quadiri

    2015-10-01

    Accidental intravascular or high-dose injection of local anesthetics (LA) can result in serious, potentially life-threatening complications. Indeed, adequate supportive measures and the administration of lipid emulsions are required in such complications. The study's objectives were threefold: (i) evaluate the myocardial toxicity of levobupivacaine when administered intravenously; (ii) investigate levobupivacaine toxicity on cardiomyocytes mitochondrial functions and cellular structure; (iii) assess the protective effects of a lipid emulsion in the presence or absence of myocardial ischemia. Domestic pigs randomized into two groups of 24 animals each, with either preserved coronary circulation or experimental myocardial ischemia. Six animals from each group received either: (i) single IV injection of saline, (ii) lipid emulsion (Intralipid(®) ), (iii) levobupivacaine, (iv) combination levobupivacaine-Intralipid(®) . Serially measured endpoints included: heart rate, duration of the monophasic action potentials (dMAP), mean arterial pressure, and peak of the time derivative of left ventricular pressure (LV dP/dtmax ). In addition, the following cardiomyocytes mitochondrial functions were measured: reactive oxygen species (ROS) production, oxidative phosphorylation, and calcium retention capacity (CRC) as well as the consequences of ROS production on lipids, proteins, and DNA. IV injection of levobupivacaine induced sinus bradycardia and reduced dMAP and LV dP/dtmax . At the mitochondrial level, oxygen consumption and CRC were decreased. In contrast, ROS production was increased leading to enhanced lipid peroxidation and structural alterations of proteins and DNA. Myocardial ischemia was associated with global worsening of all changes. Intralipid(®) quickly improved haemodynamics. However, beneficial effects of Intralipid(®) were less clear after myocardial ischemia. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  8. Overcoming Heparin-Associated RT-qPCR Inhibition and Normalization Issues for microRNA Quantification in Patients with Acute Myocardial Infarction.

    PubMed

    Coelho-Lima, Jose; Mohammed, Ashfaq; Cormack, Suzanne; Jones, Samuel; Das, Rajiv; Egred, Mohaned; Panahi, Pedram; Ali, Simi; Spyridopoulos, Ioakim

    2018-06-11

     Cardiac-enriched micro ribonucleic acids (miRNAs) are released into the circulation following ST-elevation myocardial infarction (STEMI). Lack of standardized approaches for reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) data normalization and presence of RT-qPCR inhibitors (e.g. heparin) in patient blood samples have prevented reproducible miRNA quantification in this cohort and subsequent translation of these biomarkers to clinical practice.  Using a RT-qPCR miRNA screening platform, we identified and validated an endogenous circulating miRNA as a normalization control. In addition, we assessed the effects of in vivo and in vitro anticoagulant drugs administration (heparin and bivalirudin) on three RT-qPCR normalization strategies (global miRNA mean, exogenous spike-in control [cel-miR-39] and endogenous miRNA control). Finally, we evaluated the effect of heparin and its in vitro inhibition with heparinase on the quantification of cardiac-enriched miRNAs in STEMI patients.  miR-425-5p was validated as an endogenous miRNA control. Heparin administration in vitro and in vivo inhibited all RT-qPCR normalization strategies. In contrast, bivalirudin had no effects on cel-miR-39 or miR-425-5p quantification. In vitro RNA sample treatment with 0.3 U of heparinase overcame heparin-induced over-estimation of cardiac-enriched miRNA levels and improved their correlation with high-sensitivity troponin T.  miRNA quantification in STEMI patients receiving heparin is jeopardized by its effect on all RT-qPCR normalization approaches. Use of samples from bivalirudin-treated patients or in vitro treatment of heparin-contaminated samples with heparinase are suitable alternatives for miRNA quantification in this cohort. Finally, we reinforce the evidence that cardiac-enriched miRNAs early after myocardial reperfusion reflect the severity of cardiac injury. Schattauer GmbH Stuttgart.

  9. STrategically Acquired Gradient Echo (STAGE) imaging, part I: Creating enhanced T1 contrast and standardized susceptibility weighted imaging and quantitative susceptibility mapping.

    PubMed

    Chen, Yongsheng; Liu, Saifeng; Wang, Yu; Kang, Yan; Haacke, E Mark

    2018-02-01

    To provide whole brain grey matter (GM) to white matter (WM) contrast enhanced T1W (T1WE) images, multi-echo quantitative susceptibility mapping (QSM), proton density (PD) weighted images, T1 maps, PD maps, susceptibility weighted imaging (SWI), and R2* maps with minimal misregistration in scanning times <5min. Strategically acquired gradient echo (STAGE) imaging includes two fully flow compensated double echo gradient echo acquisitions with a resolution of 0.67×1.33×2.0mm 3 acquired in 5min for 64 slices. Ten subjects were recruited and scanned at 3 Tesla. The optimum pair of flip angles (6° and 24° with TR=25ms at 3T) were used for both T1 mapping with radio frequency (RF) transmit field correction and creating enhanced GM/WM contrast (the T1WE). The proposed T1WE image was created from a combination of the proton density weighted (6°, PDW) and T1W (24°) images and corrected for RF transmit field variations. Prior to the QSM calculation, a multi-echo phase unwrapping strategy was implemented using the unwrapped short echo to unwrap the longer echo to speed up computation. R2* maps were used to mask deep grey matter and veins during the iterative QSM calculation. A weighted-average sum of susceptibility maps was generated to increase the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). The proposed T1WE image has a significantly improved CNR both for WM to deep GM and WM to cortical GM compared to the acquired T1W image (the first echo of 24° scan) and the T1MPRAGE image. The weighted-average susceptibility maps have 80±26%, 55±22%, 108±33% SNR increases across the ten subjects compared to the single echo result of 17.5ms for the putamen, caudate nucleus, and globus pallidus, respectively. STAGE imaging offers the potential to create a standardized brain imaging protocol providing four pieces of quantitative tissue property information and multiple types of qualitative information in just 5min. Published by Elsevier Inc.

  10. Myocardial bridges of the coronary arteries in the human fetal heart.

    PubMed

    Cakmak, Yusuf Ozgür; Cavdar, Safiye; Yalin, Aymelek; Yener, Nuran; Ozdogmus, Omer

    2010-09-01

    During the last century, many investigators reported on myocardial bridges in the adult human heart. In the present study, 39 human fetal hearts (the mean gestastional age was 30 weeks) were studied for myocardial bridging, and the results were correlated with adult data. Among the 39 (27 male and 12 female) fetal hearts studied, 26 bridges were observed on 18 fetal hearts (46.2%). Ten of the bridges had one myocardial bridge, whereas double myocardial bridges were observed in eight fetal hearts. The most frequent myocardial bridges were observed on the left anterior descending artery (LAD), which had 13 bridges (50%). Eight (30.7%) myocardial bridges were on the diagonal artery, and on the posterior descending artery there were five (19.3%). Myocardial bridges were not observed on the circumflex artery. The data presented in this study may provide potentially useful information for the preoperative evaluation of the newborn and may have a clinical implication for sudden fetal death.

  11. Diabetes Mellitus and Cardiogenic Shock Complicating Acute Myocardial Infarction.

    PubMed

    Echouffo-Tcheugui, Justin B; Kolte, Dhaval; Khera, Sahil; Aronow, Herbert D; Abbott, J Dawn; Bhatt, Deepak L; Fonarow, Gregg C

    2018-03-27

    Diabetes mellitus (diabetes) increases the risk of acute myocardial infarction, which can result in cardiogenic shock. Data on the relation of diabetes and the occurrence and prognosis of cardiogenic shock postacute myocardial infarction are scant. Among the National Inpatient Sample patients aged ≥18 years and hospitalized for acute myocardial infarction during the 2012-2014 period, we examined the association between diabetes and the incidence and outcomes of cardiogenic shock complicating acute myocardial infarction, using multivariable logistic and linear regression models. Of 1,332,530 hospitalizations for acute myocardial infarction, 72,765 (5.5%) were complicated by cardiogenic shock. In acute myocardial infarction patients, cardiogenic shock incidence was higher among those with vs without diabetes (5.8% vs 5.2%; adjusted odds ratio [aOR] 1.14; 95% confidence interval [CI], 1.11-1.19; P < .001), with 42.8% (n = 31,135) of patients with acute myocardial infarction and cardiogenic shock having diabetes. Diabetic patients were less likely to undergo revascularization (percutaneous coronary intervention or coronary artery bypass grafting) (67.1% vs 68.7%; aOR 0.88; 95% CI, 0.80-0.96; P = .003). Diabetes was associated with higher in-hospital mortality in patients with acute myocardial infarction and cardiogenic shock (37.9% vs 36.8%; aOR 1.18; 95% CI, 1.09-1.28; P < .001). Among survivors, patients with diabetes had a longer hospital stay (mean ± SEM: 11.6 ± 0.16 vs 10.9 ± 0.16 days; adjusted estimate 1.12; 95% CI, 1.06-1.18; P < .001) and were more likely to be discharged to a skilled nursing home or with home health care (56.0% vs 50.5%; aOR 1.19; 95% CI, 1.07-1.33; P = .001). In a large cohort of acute myocardial infarction patients, preexisting diabetes was associated with an increased risk of cardiogenic shock and worse outcomes in those with cardiogenic shock. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis

    PubMed Central

    Maya, Lisandro; Villarreal, Francisco J.

    2009-01-01

    In diabetes mellitus, alterations in cardiac structure/function in the absence of ischemic heart disease, hypertension or other cardiac pathologies is termed diabetic cardiomyopathy. In the United States, the prevalence of diabetes mellitus continues to rise and the disease currently affects about 8% of the general population. Hence, it is imperative the use of appropriate diagnostic strategies for diabetic cardiomyopathy, which may help correctly identify the disease at early stages and implement suitable corrective therapies. Currently, there is no single diagnostic method for the identification of diabetic cardiomyopathy. Diabetic cardiomyopathy is known to induce changes in cardiac structure such as, myocardial hypertrophy, fibrosis and fat droplet deposition. Early changes in cardiac function are typically manifested as abnormal diastolic function that with time leads to loss of contractile function. Echocardiography based methods currently stands as the preferred diagnostic approach for diabetic cardiomyopathy, due to its wide availability and economical use. In addition to conventional techniques, magnetic resonance imaging and spectroscopy along with contrast agents are now leading new approaches in the diagnosis of myocardial fibrosis, and cardiac and hepatic metabolic changes. These strategies can be complemented with serum biomarkers so they can offer a clear picture as to diabetes-induced changes in cardiac structure/function even at very early stages of the disease. This review article intends to provide a summary of experimental and routine tools currently available to diagnose diabetic cardiomyopathy induced changes in cardiac structure/function. These tools can be reliably used in either experimental models of diabetes or for clinical applications. PMID:19595694

  13. Intact Imaging of Human Heart Structure Using X-ray Phase-Contrast Tomography.

    PubMed

    Kaneko, Yukihiro; Shinohara, Gen; Hoshino, Masato; Morishita, Hiroyuki; Morita, Kiyozo; Oshima, Yoshihiro; Takahashi, Masashi; Yagi, Naoto; Okita, Yutaka; Tsukube, Takuro

    2017-02-01

    Structural examination of human heart specimens at the microscopic level is a prerequisite for understanding congenital heart diseases. It is desirable not to destroy or alter the properties of such specimens because of their scarcity. However, many of the currently available imaging techniques either destroy the specimen through sectioning or alter the chemical and mechanical properties of the specimen through staining and contrast agent injection. As a result, subsequent studies may not be possible. X-ray phase-contrast tomography is an imaging modality for biological soft tissues that does not destroy or alter the properties of the specimen. The feasibility of X-ray phase-contrast tomography for the structural examination of heart specimens was tested using infantile and fetal heart specimens without congenital diseases. X-ray phase-contrast tomography was carried out at the SPring-8 synchrotron radiation facility using the Talbot grating interferometer at the bending magnet beamline BL20B2 to visualize the structure of five non-pretreated whole heart specimens obtained by autopsy. High-resolution, three-dimensional images were obtained for all specimens. The images clearly showed the myocardial structure, coronary vessels, and conduction bundle. X-ray phase-contrast tomography allows high-resolution, three-dimensional imaging of human heart specimens. Intact imaging using X-ray phase-contrast tomography can contribute to further structural investigation of heart specimens with congenital heart diseases.

  14. Ventricular myocardial fat: CT findings and clinical correlates.

    PubMed

    Jacobi, Adam H; Gohari, Arash; Zalta, Benjamin; Stein, Marjorie W; Haramati, Linda B

    2007-05-01

    Replacement of the myocardium by fat is a feature of arrythmogenic right ventricular dysplasia (ARVD). Pathology literature describes ventricular myocardial fat to be present not only in ARVD, but much more frequently related to aging, prior myocardial infarction (MI), and chronic ischemia. We noted focal ventricular myocardial fat in a group of patients who underwent chest computed tomography (CT) for varied indications. The aim of this study is to describe the noncontrast CT findings and clinical correlates of ventricular myocardial fat in this population. We prospectively identified 26 patients whose noncontrast chest CT (5/03 to 6/04) demonstrated ventricular myocardial fat and whose clinical charts were available. There were 14 men and 12 women with a mean age of 70 years. Twenty-three percent (6/26) had prior CTs. Each CT was reviewed by 3 radiologists in consensus. The site of the ventricular fat was noted. Each patient was categorized based on the location of the fat as follows: group 1-right ventricle (RV) only, group 2-left ventricle (LV) only, group 3-biventricular. Results of cardiac history, laboratory tests, and cardiac imaging were noted. The distribution of ventricular myocardial fat was: group 1 RV-27% (7/26), group 2 LV-46% (12/26), and group 3 biventricular-27% (7/26). Echocardiographic, nuclear cardiology, or electrocardiographic data localizing a prior MI to a specific site were available in 35% (9/26) of patients: 14% (1/7) of group 1, 50% (6/12) of group 2, and 29% (2/7) of group 3. Myocardial fat corresponded to the site of MI in 89% (8/9). The presence and distribution of ventricular fat on CT was unchanged from prior CT in 100% (6/6). When comparing group 1 and group 2, group 1 was older (77 vs. 64 y, P=0.005), more often female (57% vs. 17%, P=0.13) and had fewer prior MI (14% vs. 50%, P=0.17) than group 2. Only 1 patient in this series had ARVD. He was in group 3. The significance of ventricular myocardial fat varies by location. Fat in

  15. Relation of coronary flow pattern to myocardial blush grade in patients with first acute myocardial infarction

    PubMed Central

    Hoffmann, R; Haager, P; Lepper, W; Franke, A; Hanrath, P

    2003-01-01

    Background: Analysis of myocardial blush grade (MBG) and coronary flow velocity pattern has been used to obtain direct or indirect information about microvascular damage and reperfusion injury after percutaneous transluminal coronary angiography for acute myocardial infarction. Objective: To evaluate the relation between coronary blood flow velocity pattern and MBG immediately after angioplasty plus stenting for acute myocardial infarction. Design: The coronary blood flow velocity pattern in the infarct related artery was determined immediately after angioplasty in 35 patients with their first acute myocardial infarct using a Doppler guide wire. Measurements were related to MBG as a direct index of microvascular function in the infarct zone. Results: Coronary flow velocity patterns were different between patients with absent myocardial blush (n = 14), reduced blush (n = 7), or normal blush (n = 14). The following variables (mean (SD)) differed significantly between the three groups: systolic peak flow velocity (cm/s): absent blush 10.9 (4.2), reduced blush 14.2 (6.4), normal blush 19.2 (11.2); p = 0.036; diastolic deceleration rate (ms): absent blush 103 (58), reduced blush 80 (65), normal blush 50 (19); p = 0.025; and diastolic–systolic velocity ratio: absent blush 4.06 (2.18), reduced blush 2.02 (0.55), normal blush 1.88 (1.03); p = 0.002. In a multivariate analysis MBG was the only variable with a significant impact on the diastolic deceleration rate (p = 0.034,) while age, infarct location, time to revascularisation, infarct vessel diameter, and maximum creatine kinase had no significant impact. Conclusions: The coronary flow velocity pattern in the infarct related epicardial artery is primarily determined by the microvascular function of the dependent myocardium, as reflected by MBG. PMID:12975402

  16. Impact of left ventricular hypertrophy on myocardial injury in patients with ST-segment elevation myocardial infarction.

    PubMed

    Stiermaier, Thomas; Pöss, Janine; Eitel, Charlotte; de Waha, Suzanne; Fuernau, Georg; Desch, Steffen; Thiele, Holger; Eitel, Ingo

    2018-05-16

    Left ventricular hypertrophy (LVH) has been suggested as a determinant of outcome in patients with ST-segment elevation myocardial infarction (STEMI). However, available data are inconclusive and the underlying mechanisms remain unclear. Therefore, the aim of this study was to evaluate the impact of LVH on myocardial injury and clinical outcome in a large multicenter STEMI population. Cardiovascular magnetic resonance was performed in 795 patients within 10 days after STEMI to assess left ventricular (LV) mass and parameters of myocardial injury. Gender-specific cutoff values of indexed LV mass were used to define LVH (67 g/m 2 for men and 61 g/m 2 for women). Rates of major adverse cardiac events (MACE) were determined at 12-month follow-up. LVH was present in 438 patients (55%) and associated with a significantly larger infarct size [18.3% of LV mass (%LV) versus 14.0%LV; p < 0.01], a lower myocardial salvage index (47.8 versus 54.4; p < 0.01), larger extent of microvascular obstruction (0.4 versus 0%LV; p < 0.01) and lower LV ejection fraction (47.9 versus 53.2%; p < 0.01) compared to STEMI patients without LVH. The effect of LVH on LV ejection fraction, infarct size and myocardial salvage index remained statistically significant after adjustment for baseline characteristics (p < 0.01 for all). MACE rates at 12 months were numerically higher in patients with versus without LVH without reaching statistical significance (7.5 versus 5.6%; p = 0.32). In STEMI patients, LVH is associated with more pronounced structural and functional alterations in CMR imaging as an indicator for adverse clinical outcomes in STEMI survivors.

  17. Impact of myocardial viability assessed by myocardial perfusion imaging on ventricular tachyarrhythmias in cardiac resynchronization therapy.

    PubMed

    Žižek, David; Cvijić, Marta; Ležaić, Luka; Salobir, Barbara Gužič; Zupan, Igor

    2013-12-01

    The presence of myocardial fibrosis is associated with ventricular tachyarrhythmia (VT) occurrence irrespective of cardiomyopathy etiology. The aim of our study was to evaluate the impact of global and regional viability on VTs in patients undergoing cardiac resynchronization therapy (CRT). Fifty-seven patients with advanced heart failure (age 62.3 ± 10.2; 38 men; 24 ischemic etiology) were evaluated using single-photon emission computed tomography myocardial perfusion imaging before CRT defibrillator device implantation. Global myocardial viability was determined by the number of viable segments in a 20-segment model. Regional viability was calculated as the mean tracer activity in the corresponding segments at left ventricular (LV) lead position. LV lead segments were determined at implant venography using 2 projections (left anterior oblique 30 and right anterior oblique 30) of coronary sinus tributaries. Patients were followed 30 (24-34) months for the occurrence of VTs. VTs were registered in 18 patients (31.6%). Patients without VTs had significantly more viable segments (17.6 ± 2.35 vs 14.2 ± 4.0; P = .002) and higher regional myocardial viability at LV lead position (66.1% ± 10.3% vs 54.8% ± 11.4% of tracer activity; P = .001) than those with VTs. In multivariate logistic regression models, the number of viable segments (OR = 0.66; 95% confidence interval (CI) 0.53-0.85; P = .001) and regional viability (OR = 0.90; 95% CI 0.85-0.97; P = .003) were the only independent predictors of VT occurrence. Global and regional myocardial viability are independently related to the occurrence of VTs in patients after CRT.

  18. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    DOE PAGES

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    2015-07-29

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edgesmore » complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.« less

  19. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edgesmore » complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.« less

  20. Long-term prognostic value of a comprehensive assessment of cardiac magnetic resonance indexes after an ST-segment elevation myocardial infarction.

    PubMed

    Merlos, Pilar; López-Lereu, Maria P; Monmeneu, Jose V; Sanchis, Juan; Núñez, Julio; Bonanad, Clara; Valero, Ernesto; Miñana, Gema; Chaustre, Fabián; Gómez, Cristina; Oltra, Ricardo; Palacios, Lorena; Bosch, Maria J; Navarro, Vicente; Llácer, Angel; Chorro, Francisco J; Bodí, Vicente

    2013-08-01

    A variety of cardiac magnetic resonance indexes predict mid-term prognosis in ST-segment elevation myocardial infarction patients. The extent of transmural necrosis permits simple and accurate prediction of systolic recovery. However, its long-term prognostic value beyond a comprehensive clinical and cardiac magnetic resonance evaluation is unknown. We hypothesized that a simple semiquantitative assessment of the extent of transmural necrosis is the best resonance index to predict long-term outcome soon after a first ST-segment elevation myocardial infarction. One week after a first ST-segment elevation myocardial infarction we carried out a comprehensive quantification of several resonance parameters in 206 consecutive patients. A semiquantitative assessment (altered number of segments in the 17-segment model) of edema, baseline and post-dobutamine wall motion abnormalities, first pass perfusion, microvascular obstruction, and the extent of transmural necrosis was also performed. During follow-up (median 51 months), 29 patients suffered a major adverse cardiac event (8 cardiac deaths, 11 nonfatal myocardial infarctions, and 10 readmissions for heart failure). Major cardiac events were associated with more severely altered quantitative and semiquantitative resonance indexes. After a comprehensive multivariate adjustment, the extent of transmural necrosis was the only resonance index independently related to the major cardiac event rate (hazard ratio=1.34 [1.19-1.51] per each additional segment displaying>50% transmural necrosis, P<.001). A simple and non-time consuming semiquantitative analysis of the extent of transmural necrosis is the most powerful cardiac magnetic resonance index to predict long-term outcome soon after a first ST-segment elevation myocardial infarction. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  1. Temporal Trends in the Prevalence, Severity, and Localization of Myocardial Ischemia and Necrosis at Myocardial Perfusion Imaging After Myocardial Infarction.

    PubMed

    Nudi, Francesco; Schillaci, Orazio; Di Belardino, Natale; Versaci, Francesco; Tomai, Fabrizio; Pinto, Annamaria; Neri, Giandomenico; Procaccini, Enrica; Nudi, Alessandro; Frati, Giacomo; Biondi-Zoccai, Giuseppe

    2017-10-15

    The definition, presentation, and management of myocardial infarction (MI) have changed substantially in the last decade. Whether these changes have impacted on the presence, severity, and localization of necrosis at myocardial perfusion imaging (MPI) has not been appraised to date. Subjects undergoing MPI and reporting a history of clinical MI were shortlisted. We focused on the presence, severity, and localization of necrosis at MPI with a retrospective single-center analysis. A total of 10,476 patients were included, distinguishing 5 groups according to the period in which myocardial perfusion scintigraphy had been performed (2004 to 2005, 2006 to 2007, 2008 to 2009, 2010 to 2011, 2012 to 2013). Trend analysis showed over time a significant worsening in baseline features (e.g., age, diabetes mellitus, and Q waves at electrocardiogram), whereas medical therapy and revascularization were offered with increasing frequency. Over the years, there was also a lower prevalence of normal MPI (from 16.8% to 13.6%) and ischemic MPI (from 35.6% to 32.8%), and a higher prevalence of ischemic and necrotic MPI (from 12.0% to 12.7%) or solely necrotic MPI (from 35.7% to 40.9%, p <0.001). Yet the prevalence of severe ischemia decreased over time from 11.4% to 2.0%, with a similar trend for moderate ischemia (from 15.9% to 11.8%, p <0.001). Similarly sobering results were wound for the prevalence of severe necrosis (from 19.8% to 8.2%) and moderate necrosis (from 8.5% to 7.8%, p = 0.028). These trends were largely confirmed at regional level and after propensity score matching. In conclusion, the outlook of stable patients with previous MI has substantially improved in the last decade, with a decrease in the severity of residual myocardial ischemia and necrosis, despite an apparent worsening in baseline features. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Quantitative Cardiac Positron Emission Tomography: The Time Is Coming!

    PubMed Central

    Sciagrà, Roberto

    2012-01-01

    In the last 20 years, the use of positron emission tomography (PET) has grown dramatically because of its oncological applications, and PET facilities are now easily accessible. At the same time, various groups have explored the specific advantages of PET in heart disease and demonstrated the major diagnostic and prognostic role of quantitation in cardiac PET. Nowadays, different approaches for the measurement of myocardial blood flow (MBF) have been developed and implemented in user-friendly programs. There is large evidence that MBF at rest and under stress together with the calculation of coronary flow reserve are able to improve the detection and prognostication of coronary artery disease. Moreover, quantitative PET makes possible to assess the presence of microvascular dysfunction, which is involved in various cardiac diseases, including the early stages of coronary atherosclerosis, hypertrophic and dilated cardiomyopathy, and hypertensive heart disease. Therefore, it is probably time to consider the routine use of quantitative cardiac PET and to work for defining its place in the clinical scenario of modern cardiology. PMID:24278760

  3. Early diagnosis of interferon-induced myocardial disorder in patients with chronic hepatitis C: evaluation by myocardial imaging with 123I-BMIPP.

    PubMed

    Kondo, Y; Yukinaka, M; Nomura, M; Nakaya, Y; Ito, S

    2000-01-01

    Interferon (IFN) therapy for chronic hepatitis C is sometimes associated with cardiac complications. In the present study, we performed myocardial imaging with 123I-labeled beta-methyl-p-iodophenylpentadecanoic acid (123I-BMIPP) in order to evaluate myocardial disorders caused by IFN. We studied 40 healthy subjects (H group) and 25 patients with chronic hepatitis C who had been treated with IFN (IFN group). A Holter electrocardiogram (ECG) was performed and the autonomic nervous function was assessed by analyzing the spectral variability and 1/f fluctuation of heart rate. Myocardial planner imaging with 123I-BMIPP was performed to obtain the time activity curve for 20min immediately after administration of 123I-BMIPP (dynamic study). Early and delayed myocardial single photon emission computed tomography (SPECT) images were expressed as Bull's eyes and the myocardium was divided into four segments to calculate the washout rate for each segment on early and late SPECT images (early and late SPECT study). No significant differences in autonomic nervous function were observed between the two groups in heart rate variability. In a dynamic study, the reduction rate from the time activity curve was significantly higher in the IFN group compared with the H group (reduction rate, IFN group, 5.3 +/- 3.7% vs H group, 1.2 +/- 3.3%; P < 0.05). In the early and delayed myocardial SPECT study, the washout rate for the IFN group was significantly increased in all myocardial areas compared to that in the H group. However, the metabolic disorder of fatty acids caused by IFN was reversed on the second 123I-BMIPP myocardial scintigraphy examination several months after IFN therapy. These results indicate that metabolic disorders of fatty acids caused by IFN therapy can be detected before abnormalities are observed by Holter-ECG or echocardiography.

  4. In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts.

    PubMed

    Galanzha, Ekaterina I; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A; Keyrouz, Salah G; Mehta, Jawahar L; Zharov, Vladimir P

    2011-10-01

    Conventional photothermal (PT) and photoacousic (PA) imaging, spectroscopy, and cytometry are preferentially based on positive PT/PA effects, when signals are above background. Here, we introduce PT/PA technique based on detection of negative signals below background. Among various new applications, we propose label-free in vivo flow cytometry of circulating clots. No method has been developed for the early detection of clots of different compositions as a source of thromboembolism including ischemia at strokes and myocardial infarction. When a low-absorbing, platelet-rich clot passes a laser-irradiated vessel volume, a transient decrease in local absorption results in an ultrasharp negative PA hole in blood background. Using this phenomenon alone or in combination with positive contrasts, we demonstrated identification of white, red, and mixed clots on a mouse model of myocardial infarction and human blood. The concentration and size of clots were measured with threshold down to few clots in the entire circulation with size as low as 20 μm. This multiparameter diagnostic platform using portable personal high-speed flow cytometer with negative dynamic contrast mode has potential to real-time defining risk factors for cardiovascular diseases, and for prognosis and prevention of stroke or use clot count as a marker of therapy efficacy. Possibility for label-free detection of platelets, leukocytes, tumor cells or targeting themby negative PA probes (e.g., nonabsorbing beads or bubbles) is also highlighted. Copyright © 2011 International Society for Advancement of Cytometry.

  5. In vivo flow cytometry of circulating clots using negative phototothermal and photoacoustic contrasts

    PubMed Central

    Galanzha, Ekaterina I.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Keyrouz, Salah G.; Mehta, Jawahar L.; Zharov, Vladimir P.

    2012-01-01

    Conventional photothermal (PT) and photoacousic (PA) imaging, spectroscopy, and cytometry are preferentially based on positive PT/PA effects, when signals are above background. Here, we introduce PT/PA technique based on detection of negative signals below background. Among various new applications, we propose label-free in vivo flow cytometry of circulating clots. No method has been developed for the early detection of clots of different compositions as a source of severe thromboembolisms including ischemia at strokes and myocardial dysfunction at heart attack. When a low-absorbing, platelet-rich clot passes a laser-irradiated vessel volume, a transient decrease in local absorption results in an ultrasharp negative PA hole in blood background. Using this phenomenon alone or in combination with positive contrasts, we demonstrated identification of white, red and mixed clots on a mouse model of myocardial infarction and human blood. The concentration and size of clots were measured with threshold down to few clots in the entire circulation with size as low as 20 µm. This multiparameter diagnostic platform using portable personal high-speed flow cytometer with negative dynamic contrast mode has potential to real-time defining risk factors for cardiovascular diseases, and for prognosis and prevention of stroke or use clot count as a marker of therapy efficacy. Possibility for label-free detection of platelets, leukocytes, tumor cells or targeting them by negative PA probes (e.g., nonabsorbing beads or bubbles) is also highlighted. PMID:21976458

  6. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering

    PubMed Central

    Singelyn, Jennifer M.; DeQuach, Jessica A.; Seif-Naraghi, Sonya B.; Littlefield, Robert B.; Schup-Magoffin, Pamela J.; Christman, Karen L.

    2009-01-01

    Myocardial tissue lacks the ability to significantly regenerate itself following a myocardial infarction, thus tissue engineering strategies are required for repair. Several injectable materials have been examined for cardiac tissue engineering; however, none have been designed specifically to mimic the myocardium. The goal of this study was to investigate the in vitro properties and in vivo potential of an injectable myocardial matrix designed to mimic the natural myocardial extracellular environment. Porcine myocardial tissue was decellularized and processed to form a myocardial matrix with the ability to gel in vitro at 37°C and in vivo upon injection into rat myocardium. The resulting myocardial matrix maintained a complex composition, including glycosaminoglycan content, and was able to self-assemble to form a nanofibrous structure. Endothelial cells and smooth muscle cells were shown to migrate towards the myocardial matrix both in vitro and in vivo, with a significant increase in arteriole formation at 11 days post-injection. The matrix was also successfully pushed through a clinically used catheter, demonstrating its potential for minimally invasive therapy. Thus, we have demonstrated the initial feasibility and potential of a naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. PMID:19608268

  7. Myocardial infarction in the elderly.

    PubMed

    Carro, Amelia; Kaski, Juan Carlos

    2011-04-01

    Advances in pharmacological treatment and effective early myocardial revascularization have -in recent years- led to improved clinical outcomes in patients with acute myocardial infarction (AMI). However, it has been suggested that compared to younger subjects, elderly AMI patients are less likely to receive evidence-based treatment, including myocardial revascularization therapy. Several reasons have been postulated to explain this trend, including uncertainty regarding the true benefits of the interventions commonly used in this setting as well as increased risk mainly associated with comorbidities. The diagnosis, management, and post-hospitalization care of elderly patients presenting with an acute coronary syndrome pose many difficulties at present. A complex interplay of variables such as comorbidities, functional and socioeconomic status, side effects associated with multiple drug administration, and individual biologic variability, all contribute to creating a complex clinical scenario. In this complex setting, clinicians are often required to extrapolate evidence-based results obtained in cardiovascular trials from which older patients are often, implicitly or explicitly, excluded. This article reviews current recommendations regarding management of AMI in the elderly.

  8. Myocardial Infarction in the Elderly

    PubMed Central

    Carro, Amelia; Kaski, Juan Carlos

    2011-01-01

    Advances in pharmacological treatment and effective early myocardial revascularization have –in recent years- led to improved clinical outcomes in patients with acute myocardial infarction (AMI). However, it has been suggested that compared to younger subjects, elderly AMI patients are less likely to receive evidence-based treatment, including myocardial revascularization therapy. Several reasons have been postulated to explain this trend, including uncertainty regarding the true benefits of the interventions commonly used in this setting as well as increased risk mainly associated with comorbidities. The diagnosis, management, and post-hospitalization care of elderly patients presenting with an acute coronary syndrome pose many difficulties at present. A complex interplay of variables such as comorbidities, functional and socioeconomic status, side effects associated with multiple drug administration, and individual biologic variability, all contribute to creating a complex clinical scenario. In this complex setting, clinicians are often required to extrapolate evidence-based results obtained in cardiovascular trials from which older patients are often, implicitly or explicitly, excluded. This article reviews current recommendations regarding management of AMI in the elderly. PMID:22396870

  9. Regional heterogeneity in cardiac sympathetic innervation in acute myocardial infarction: relationship with myocardial oedema on magnetic resonance.

    PubMed

    Gimelli, Alessia; Masci, Pier Giorgio; Liga, Riccardo; Grigoratos, Chrysanthos; Pasanisi, Emilio Maria; Lombardi, Massimo; Marzullo, Paolo

    2014-09-01

    To assess the relationships between myocardial structure and function on cardiac magnetic resonance (CMR) imaging and sympathetic tone on (123)I-metaiodobenzylguanidine ((123)I-MIBG) scintigraphy early after myocardial infarction (MI). Ten patients underwent (123)I-MIBG and (99m)Tc-tetrofosmin rest cadmium zinc telluride scintigraphy 4 ± 1 days after MI. The segmental left ventricular (LV) relative radiotracer uptake of both (99m)Tc-tetrofosmin and early (123)I-MIBG was calculated. The day after scintigraphy, on CMR imaging, the extent of ischaemia-related oedema and of myocardial fibrosis (late gadolinium enhancement, LGE) was assessed. Accordingly, the extent of oedema and LGE was evaluated for each segment and segmental wall thickening determined. Based on LGE distribution, LV segments were categorized as "infarcted" (56 segments), "adjacent" (66 segments) or "remote" (48 segments). Infarcted segments showed a more depressed systolic wall thickening and greater extent of oedema than adjacent segments (p < 0.001) and remote segments (p < 0.001). Interestingly, while uptake of (99m)Tc-tetrofosmin was significantly depressed only in infarcted segments (p < 0.001 vs. both adjacent and remote segments), uptake of (123)I-MIBG was impaired not only in infarcted segments (p < 0.001 vs. remote) but also in adjacent segments (p = 0.024 vs. remote segments). At the regional level, after correction for (99m)Tc-tetrofosmin and LGE distribution, segmental (123)I-MIBG uptake (p < 0.001) remained an independent predictor of ischaemia-related oedema. After acute MI the regional impairment of sympathetic tone extends beyond the area of altered myocardial perfusion and is associated with myocardial oedema.

  10. Evaluation of prescription of exercise, for rehabilitation of coronary artery disease patients by myocardial scintigraphy.

    PubMed

    Meneghelo, Romeu S; Magalhães, Hélio M; Smanio, Paola E P; Fuchs, Angela R C N; Ferraz, Almir S; Buchler, Rica D D; Buglia, Susimeire; Mastrocolla, Luiz E; Thom, Anneliese F

    2008-10-01

    It is advisable that the intensity of the exercises for rehabilitation of patients with coronary artery disease does not cause myocardial ischemia. Compare the capacity of myocardial tomographic scintigraphy with the electrocardiogram capacity in ischemia detection during rehabilitation session. Twenty six patients with coronary artery disease, undergoing the rehabilitation program and with previous scintigraphy, with transient hypo-uptake have been administered a new injection of MIBI-Tc-99m during a training session when they were also monitored with dynamic electrocardiography. The rest scintigraphies, after ergometric treadmill test and rehabilitation session, were assessed in a semi-quantitative way using scores from 0 to 4 to classify each one of the chosen segments (0 = normal; 1 = discrete hypo-uptake; 2 = moderate; 3 = intense; 4 = lack of uptake). The means of the total scores found were: at rest = 12.9; after treadmill test = 19.3; after rehabilitation session = 15.1. There were statistically significant differences among them. An individual assessment showed that in 14 cases (53.8 %) hypo-uptake to some degree was identified during rehabilitation and in 12 cases (46.6%) it was not. Monitoring with the Holter system didn't show in any of the cases a ST segment depression equal or greater than 1mm. The exercises prescribed for patients with coronary artery disease, according to recommendations found in the literature, may trigger myocardial ischemia, assessed by scintigraphy during a rehabilitation session.

  11. Prognostic Value of Myocardial Perfusion Analysis in Patients with Coronary Artery Disease: A Meta-Analysis.

    PubMed

    Xiu, Jiancheng; Cui, Kai; Wang, Yuegang; Zheng, Hua; Chen, Gangbin; Feng, Qian; Bin, Jianping; Wu, Juefei; Porter, Thomas R

    2017-03-01

    Myocardial perfusion (MP) imaging during stress myocardial contrast echocardiography (MCE) improves the detection of coronary artery disease (CAD). However, its prognostic value to predict cardiac events in patients with known or suspected CAD is still undefined. A search was conducted for single- or multicenter prospective studies that evaluated the prognostic value of stress MCE in patients with known or suspected CAD. A database search was performed through June 2015. Effect sizes of relative risk ratios (RRs) with their corresponding 95% CIs were used to evaluate the association between the occurrence of total cardiac events (cardiac death, nonfatal myocardial infarction, coronary revascularization) and hard cardiac events (cardiac death and nonfatal myocardial infarction) in subjects with normal and abnormal MP measured by MCE. The Cochran Q statistic and the I 2 statistic were used to assess heterogeneity. A comprehensive literature search of the MEDLINE, Google Scholar, Cochrane, and Embase databases identified 11 studies enrolling a total of 4,045 patients. The overall analysis of RRs revealed that patients with abnormal MP were at higher risk for total cardiac events compared with patients with normal MP (RR, 5.58; 95% CI, 3.64-8.57; P < .001), with low heterogeneity among trials (I 2  = 48.15%, Q = 7.71, P = .103). Similarly, patients with abnormal MP were at higher risk for hard cardiac events compared with patients with normal MP (RR, 4.99; 95% CI, 1.75-14.32; P = .003), with significant heterogeneity among trials (I 2  = 81.48%, Q = 21.59, P < .001). The results of this meta-analysis suggest that MP assessment using stress MCE is an effective prognostic tool for predicting the occurrence of cardiac events in patients with known or suspected CAD. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  12. Remote Zone Extracellular Volume and Left Ventricular Remodeling in Survivors of ST-Elevation Myocardial Infarction.

    PubMed

    Carberry, Jaclyn; Carrick, David; Haig, Caroline; Rauhalammi, Samuli M; Ahmed, Nadeem; Mordi, Ify; McEntegart, Margaret; Petrie, Mark C; Eteiba, Hany; Hood, Stuart; Watkins, Stuart; Lindsay, Mitchell; Davie, Andrew; Mahrous, Ahmed; Ford, Ian; Sattar, Naveed; Welsh, Paul; Radjenovic, Aleksandra; Oldroyd, Keith G; Berry, Colin

    2016-08-01

    The natural history and pathophysiological significance of tissue remodeling in the myocardial remote zone after acute ST-elevation myocardial infarction (STEMI) is incompletely understood. Extracellular volume (ECV) in myocardial regions of interest can now be measured with cardiac magnetic resonance imaging. Patients who sustained an acute STEMI were enrolled in a cohort study (BHF MR-MI [British Heart Foundation Magnetic Resonance Imaging in Acute ST-Segment Elevation Myocardial Infarction study]). Cardiac magnetic resonance was performed at 1.5 Tesla at 2 days and 6 months post STEMI. T1 modified Look-Locker inversion recovery mapping was performed before and 15 minutes after contrast (0.15 mmol/kg gadoterate meglumine) in 140 patients at 2 days post STEMI (mean age: 59 years, 76% male) and in 131 patients at 6 months post STEMI. Remote zone ECV was lower than infarct zone ECV (25.6±2.8% versus 51.4±8.9%; P<0.001). In multivariable regression, left ventricular ejection fraction was inversely associated with remote zone ECV (P<0.001), and diabetes mellitus was positively associated with remote zone ECV (P=0.010). No ST-segment resolution (P=0.034) and extent of ischemic area at risk (P<0.001) were multivariable associates of the change in remote zone ECV at 6 months (ΔECV). ΔECV was a multivariable associate of the change in left ventricular end-diastolic volume at 6 months (regression coefficient [95% confidence interval]: 1.43 (0.10-2.76); P=0.036). ΔECV is implicated in the pathophysiology of left ventricular remodeling post STEMI, but because the effect size is small, ΔECV has limited use as a clinical biomarker of remodeling. URL: https://www.clinicaltrials.gov. Unique identifier: NCT02072850. © 2016 The Authors.

  13. Remote Zone Extracellular Volume and Left Ventricular Remodeling in Survivors of ST-Elevation Myocardial Infarction

    PubMed Central

    Carberry, Jaclyn; Carrick, David; Haig, Caroline; Rauhalammi, Samuli M.; Ahmed, Nadeem; Mordi, Ify; McEntegart, Margaret; Petrie, Mark C.; Eteiba, Hany; Hood, Stuart; Watkins, Stuart; Lindsay, Mitchell; Davie, Andrew; Mahrous, Ahmed; Ford, Ian; Sattar, Naveed; Welsh, Paul; Radjenovic, Aleksandra; Oldroyd, Keith G.

    2016-01-01

    The natural history and pathophysiological significance of tissue remodeling in the myocardial remote zone after acute ST-elevation myocardial infarction (STEMI) is incompletely understood. Extracellular volume (ECV) in myocardial regions of interest can now be measured with cardiac magnetic resonance imaging. Patients who sustained an acute STEMI were enrolled in a cohort study (BHF MR-MI [British Heart Foundation Magnetic Resonance Imaging in Acute ST-Segment Elevation Myocardial Infarction study]). Cardiac magnetic resonance was performed at 1.5 Tesla at 2 days and 6 months post STEMI. T1 modified Look-Locker inversion recovery mapping was performed before and 15 minutes after contrast (0.15 mmol/kg gadoterate meglumine) in 140 patients at 2 days post STEMI (mean age: 59 years, 76% male) and in 131 patients at 6 months post STEMI. Remote zone ECV was lower than infarct zone ECV (25.6±2.8% versus 51.4±8.9%; P<0.001). In multivariable regression, left ventricular ejection fraction was inversely associated with remote zone ECV (P<0.001), and diabetes mellitus was positively associated with remote zone ECV (P=0.010). No ST-segment resolution (P=0.034) and extent of ischemic area at risk (P<0.001) were multivariable associates of the change in remote zone ECV at 6 months (ΔECV). ΔECV was a multivariable associate of the change in left ventricular end-diastolic volume at 6 months (regression coefficient [95% confidence interval]: 1.43 (0.10–2.76); P=0.036). ΔECV is implicated in the pathophysiology of left ventricular remodeling post STEMI, but because the effect size is small, ΔECV has limited use as a clinical biomarker of remodeling. Clinical Trial Registration— URL: https://www.clinicaltrials.gov. Unique identifier: NCT02072850. PMID:27354423

  14. Myocardial perfusion characteristics during machine perfusion for heart transplantation.

    PubMed

    Peltz, Matthias; Cobert, Michael L; Rosenbaum, David H; West, LaShondra M; Jessen, Michael E

    2008-08-01

    Optimal parameters for machine perfusion preservation of hearts prior to transplantation have not been determined. We sought to define regional myocardial perfusion characteristics of a machine perfusion device over a range of conditions in a large animal model. Dog hearts were connected to a perfusion device (LifeCradle, Organ Transport Systems, Inc, Frisco, TX) and cold perfused at differing flow rates (1) at initial device startup and (2) over the storage interval. Myocardial perfusion was determined by entrapment of colored microspheres. Myocardial oxygen consumption (MVO(2)) was estimated from inflow and outflow oxygen differences. Intra-myocardial lactate was determined by (1)H magnetic resonance spectroscopy. MVO(2) and tissue perfusion increased up to flows of 15 mL/100 g/min, and the ratio of epicardial:endocardial perfusion remained near 1:1. Perfusion at lower flow rates and when low rates were applied during startup resulted in decreased capillary flow and greater non-nutrient flow. Increased tissue perfusion correlated with lower myocardial lactate accumulation but greater edema. Myocardial perfusion is influenced by flow rates during device startup and during the preservation interval. Relative declines in nutrient flow at low flow rates may reflect greater aortic insufficiency. These factors may need to be considered in clinical transplant protocols using machine perfusion.

  15. Myocardial ischemia induced by nebulized fenoterol for severe childhood asthma.

    PubMed

    Zanoni, L Z; Palhares, D B; Consolo, L C T

    2005-10-01

    We examined for myocardial ischemia induced by continuous inhalation of fenoterol in children with severe acute asthma. Thirty children with severe acute asthma were evaluated for signs of myocardial ischemia when treated with 0.5 mg kg dose (maximum 15 mg) of inhaled fenoterol for one hour. The heart rate was measured before and after inhalation. Cardiac enzymes (creatine kinase, creatine kinase MB fraction and troponin levels) were measured at admission and 12 hours later. An EKG was recorded before inhalation was started and immediately after its completion to detect the presence of any evidence of myocardial ischemia. All patients developed significant increase in heart rate. Six patients showed EKG changes compatible with myocardial ischemia, despite normal enzyme levels. Patients with severe acute asthma show tachycardia and may show EKG changes of myocardial ischemia.

  16. Persistent T-wave inversion predicts myocardial damage after ST-elevation myocardial infarction.

    PubMed

    Reindl, Martin; Reinstadler, Sebastian Johannes; Feistritzer, Hans-Josef; Niess, Lea; Koch, Constantin; Mayr, Agnes; Klug, Gert; Metzler, Bernhard

    2017-08-15

    Persistent T-wave inversion (PTI) after ST-elevation myocardial infarction (STEMI) is associated with worse clinical outcome; however, the underlying mechanism between PTI and poor prognosis is incompletely understood. We sought to investigate the relationship between PTI and myocardial damage assessed by cardiac magnetic resonance (CMR) following STEMI. In this prospective observational study, we included 142 consecutive revascularized STEMI patients. Electrocardiography to determine the presence and amplitude of PTI and pathological Q-waves was conducted 4months after infarction. CMR was performed within 1week after infarction and at 4months follow-up to evaluate infarct characteristics and myocardial function. Patients with PTI (n=103, 73%) showed a larger acute (21[11-29] vs. 6[1-13]%; p<0.001) and chronic infarct size (IS) (14[8-19] vs. 3[1-8]%; p<0.001) and more frequently microvascular obstruction (59 vs. 33%; p=0.02). The association between PTI and chronic IS remained significant (odds ratio: 9.02, 95%CI 3.49-23.35; p<0.001) after adjustment for pathological Q-wave and other IS estimators (high-sensitivity cardiac troponin T and C-reactive protein, N-terminal pro B-type natriuretic peptide, culprit vessel, pre-interventional TIMI flow). The value of PTI amplitude for the prediction of large chronic IS>11% (AUC: 0.84, 95%CI 0.77-0.90) was significantly higher compared to Q-wave amplitude (AUC: 0.72, 95%CI 0.63-0.80; p=0.009); the combination of PTI with pathological Q-wave (Q-wave/T-wave score) led to a net reclassification improvement of 0.43 (95% CI 0.29-0.57; p<0.001) as compared to PTI alone. PTI following STEMI is independently and incrementally associated with more extensive myocardial damage as visualized by CMR. An electrocardiographic score combining PTI with pathological Q-wave allows for a highly accurate IS estimation post-STEMI. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A Simple Configuration for Quantitative Phase Contrast Microscopy of Transmissible Samples

    NASA Astrophysics Data System (ADS)

    Sengupta, Chandan; Dasgupta, Koustav; Bhattacharya, K.

    Phase microscopy attempts to visualize and quantify the phase distribution of samples which are otherwise invisible under microscope without the use of stains. The two principal approaches to phase microscopy are essentially those of Fourier plane modulation and interferometric techniques. Although the former, first proposed by Zernike, had been the harbinger of phase microscopy, it was the latter that allowed for quantitative evaluation of phase samples. However interferometric techniques are fraught with associated problems such as complicated setup involving mirrors and beam-splitters, the need for a matched objective in the reference arm and also the need for vibration isolation. The present work proposes a single element cube beam-splitter (CBS) interferometer combined with a microscope objective (MO) for interference microscopy. Because of the monolithic nature of the interferometer, the system is almost insensitive to vibrations and relatively simple to align. It will be shown that phase shifting properties may also be introduced by suitable and proper use of polarizing devices. Initial results showing the quantitative three dimensional phase profiles of simulated and actual biological specimens are presented.

  18. Diabetes increases mortality after myocardial infarction by oxidizing CaMKII

    PubMed Central

    Luo, Min; Guan, Xiaoqun; Luczak, Elizabeth D.; Lang, Di; Kutschke, William; Gao, Zhan; Yang, Jinying; Glynn, Patric; Sossalla, Samuel; Swaminathan, Paari D.; Weiss, Robert M.; Yang, Baoli; Rokita, Adam G.; Maier, Lars S.; Efimov, Igor R.; Hund, Thomas J.; Anderson, Mark E.

    2013-01-01

    Diabetes increases oxidant stress and doubles the risk of dying after myocardial infarction, but the mechanisms underlying increased mortality are unknown. Mice with streptozotocin-induced diabetes developed profound heart rate slowing and doubled mortality compared with controls after myocardial infarction. Oxidized Ca2+/calmodulin-dependent protein kinase II (ox-CaMKII) was significantly increased in pacemaker tissues from diabetic patients compared with that in nondiabetic patients after myocardial infarction. Streptozotocin-treated mice had increased pacemaker cell ox-CaMKII and apoptosis, which were further enhanced by myocardial infarction. We developed a knockin mouse model of oxidation-resistant CaMKIIδ (MM-VV), the isoform associated with cardiovascular disease. Streptozotocin-treated MM-VV mice and WT mice infused with MitoTEMPO, a mitochondrial targeted antioxidant, expressed significantly less ox-CaMKII, exhibited increased pacemaker cell survival, maintained normal heart rates, and were resistant to diabetes-attributable mortality after myocardial infarction. Our findings suggest that activation of a mitochondrial/ox-CaMKII pathway contributes to increased sudden death in diabetic patients after myocardial infarction. PMID:23426181

  19. [Study on mechanisms and myocardial protective effect of Qishen Yiqi dropping pills on rats with myocardial infarction].

    PubMed

    Yang, Quan; Cao, Yunshan

    2017-06-01

    To approach the mechanisms and myocardial protective effect of Qishen Yiqi dropping pills on rats with myocardial infarction. Sixty clean healthy male Sprague-Dawley (SD) rats were randomly divided into sham operation group, model group and observation group (each n = 20). The rat model of acute myocardial infarction (AMI) was established by ligation of left anterior descent (LAD) branch of coronary artery. After modeling, the rats in observation group were given 0.135 g/kg of Qishen Yiqi dropping pills, and sham operation group and model group were administered the same amount of normal saline, once a day for consecutive 28 days. At the end of treatment, the levels of serum inflammatory factors of leukotriene B4 (LTB4), prostaglandin E 2 (PGE 2 ), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were measured by enzyme linked immunosorbent assay (ELISA); the changes of the indexes of hemodynamic [left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), the maximal rate of increase/decrease in left ventricular pressure (±dp/dt max)], the ratio of the heart weight/body weight, and the ratio of the left ventricular weight/heart weight (LVW/HW), the myocardial infarction area, myocardial histopathological changes were observed in the three groups; myocardial tissues inflammatory related factors [the mRNA and protein expressions of cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX)], and the expression levels of transforming growth factor-β (TGF-β)/Smads signal transduction pathway related protein (TGF-β1, Smad2/3, Collagen I, Collagen III) and cell apoptosis related factors (Bcl-2, Bax) protein were measured. Compared with the sham operation group, levels of serum inflammatory factors, the index of LVEDP, the ratio of the heart weight/body weight, LVW/HW, myocardial infarction area, the mRNA and protein expression levels of inflammatory factors in myocardium, the expression levels of

  20. Losartan treatment attenuates tumor-induced myocardial dysfunction

    PubMed Central

    Stevens, Sarah CW; Velten, Markus; Youtz, Dane J.; Clark, Yvonne; Jing, Runfeng; Reiser, Peter J.; Bicer, Sabahattin; Devine, Raymond; McCarthy, Donna O.; Wold, Loren E.

    2015-01-01

    Fatigue and muscle wasting are common symptoms experienced by cancer patients. Data from animal models demonstrate that angiotensin is involved in tumor-induced muscle wasting, and that tumor growth can independently affect myocardial function, which could contribute to fatigue in cancer patients. In clinical studies, inhibitors of angiotensin converting enzyme (ACE) can prevent the development of chemotherapy-induced cardiovascular dysfunction, suggesting a mechanistic role for the renin-angiotensin-aldosterone system (RAAS). In the present study, we investigated whether an angiotensin (AT)1-receptor antagonist could prevent the development of tumor-associated myocardial dysfunction. Methods and Results: Colon26 adenocarcinoma (c26) cells were implanted into female CD2F1 mice at 8 weeks of age. Simultaneously, mice were administered Losartan (10 mg/kg) daily via their drinking water. In vivo echocardiography, blood pressure, in vitro cardiomyocyte function, cell proliferation assays, and measures of systemic inflammation and myocardial protein degradation were performed 19 days following tumor cell injection. Losartan treatment prevented tumor-induced loss of muscle mass and in vitro c26 cell proliferation, decreased tumor weight, and attenuated myocardial expression of interleukin-6. Furthermore, Losartan treatment mitigated tumor-associated alterations in calcium signaling in cardiomyocytes, which was associated with improved myocyte contraction velocity, systolic function, and blood pressures in the hearts of tumor-bearing mice. Conclusions: These data suggest that Losartan may mitigate tumor-induced myocardial dysfunction and inflammation. PMID:25988231

  1. Losartan treatment attenuates tumor-induced myocardial dysfunction.

    PubMed

    Stevens, Sarah C W; Velten, Markus; Youtz, Dane J; Clark, Yvonne; Jing, Runfeng; Reiser, Peter J; Bicer, Sabahattin; Devine, Raymond D; McCarthy, Donna O; Wold, Loren E

    2015-08-01

    Fatigue and muscle wasting are common symptoms experienced by cancer patients. Data from animal models demonstrate that angiotensin is involved in tumor-induced muscle wasting, and that tumor growth can independently affect myocardial function, which could contribute to fatigue in cancer patients. In clinical studies, inhibitors of angiotensin converting enzyme (ACE) can prevent the development of chemotherapy-induced cardiovascular dysfunction, suggesting a mechanistic role for the renin-angiotensin-aldosterone system (RAAS). In the present study, we investigated whether an angiotensin (AT) 1-receptor antagonist could prevent the development of tumor-associated myocardial dysfunction. Colon26 adenocarcinoma (c26) cells were implanted into female CD2F1 mice at 8weeks of age. Simultaneously, mice were administered Losartan (10mg/kg) daily via their drinking water. In vivo echocardiography, blood pressure, in vitro cardiomyocyte function, cell proliferation assays, and measures of systemic inflammation and myocardial protein degradation were performed 19days following tumor cell injection. Losartan treatment prevented tumor-induced loss of muscle mass and in vitro c26 cell proliferation, decreased tumor weight, and attenuated myocardial expression of interleukin-6. Furthermore, Losartan treatment mitigated tumor-associated alterations in calcium signaling in cardiomyocytes, which was associated with improved myocyte contraction velocity, systolic function, and blood pressures in the hearts of tumor-bearing mice. These data suggest that Losartan may mitigate tumor-induced myocardial dysfunction and inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Renal sympathetic denervation improves myocardial apoptosis in rats with isoproterenol-induced heart failure by downregulation of tumor necrosis factor-α and nuclear factor-κB.

    PubMed

    Yao, Wei; Wang, Neng; Qian, Jin; Bai, Lu; Zheng, Xiaoxin; Hou, Guo; Qiu, Xuan; Yang, Bo

    2017-11-01

    Chronic congestive heart failure (CHF) is the end outcome of organic heart diseases and one of the major diseases harmful to human health. Renal sympathetic denervation (RSD) is the anatomical basis of transcatheter renal sympathetic nerve ablation within the renal artery. To date, the roles of norepinephrine and angiotensin II (Ang II) in myocardial apoptosis and their underlying mechanisms have not been well explored. The aim of the present study was to verify the hypothesis that RSD is likely to inhibit myocardial apoptosis by inhibiting the release of norepinephrine and Ang II. An isoproterenol-induced CHF rat model was established, and the effects of RSD on myocardial apoptosis were examined using flow cytometry and TUNEL staining. The expression of factors associated with myocardial apoptosis, including p53, tumor necrosis factor-α (TNF-α), nuclear factor-κB (NF-κB), caspase-2 and -3, were measured using quantitative polymerase chain reaction and western blot analysis. The results indicated that the mRNA levels of p53, TNF-α, NF-κB, caspase-2 and -3 were significantly reduced in the myocardial tissues of rats in the CHF+RSD group when compared with the levels in the CHF+sham group (P<0.01 for all). In addition, the protein levels of p53, TNF-α, NF-κB and caspases-2 and -3 were decreased by 42.6, 41.3, 46.7, 30.0 and 35.8%, respectively, in myocardial tissues of rats in the CHF+RSD group in comparison with the CHF+sham group (P<0.01 for all). Furthermore, myocardial apoptosis was improved in rats in the CHF+RSD group compared with that in the CHF+sham group (P<0.01). In conclusion, the present study provides a theoretical basis for application of RSD in the treatment of CHF.

  3. Renal sympathetic denervation improves myocardial apoptosis in rats with isoproterenol-induced heart failure by downregulation of tumor necrosis factor-α and nuclear factor-κB

    PubMed Central

    Yao, Wei; Wang, Neng; Qian, Jin; Bai, Lu; Zheng, Xiaoxin; Hou, Guo; Qiu, Xuan; Yang, Bo

    2017-01-01

    Chronic congestive heart failure (CHF) is the end outcome of organic heart diseases and one of the major diseases harmful to human health. Renal sympathetic denervation (RSD) is the anatomical basis of transcatheter renal sympathetic nerve ablation within the renal artery. To date, the roles of norepinephrine and angiotensin II (Ang II) in myocardial apoptosis and their underlying mechanisms have not been well explored. The aim of the present study was to verify the hypothesis that RSD is likely to inhibit myocardial apoptosis by inhibiting the release of norepinephrine and Ang II. An isoproterenol-induced CHF rat model was established, and the effects of RSD on myocardial apoptosis were examined using flow cytometry and TUNEL staining. The expression of factors associated with myocardial apoptosis, including p53, tumor necrosis factor-α (TNF-α), nuclear factor-κB (NF-κB), caspase-2 and −3, were measured using quantitative polymerase chain reaction and western blot analysis. The results indicated that the mRNA levels of p53, TNF-α, NF-κB, caspase-2 and −3 were significantly reduced in the myocardial tissues of rats in the CHF+RSD group when compared with the levels in the CHF+sham group (P<0.01 for all). In addition, the protein levels of p53, TNF-α, NF-κB and caspases-2 and −3 were decreased by 42.6, 41.3, 46.7, 30.0 and 35.8%, respectively, in myocardial tissues of rats in the CHF+RSD group in comparison with the CHF+sham group (P<0.01 for all). Furthermore, myocardial apoptosis was improved in rats in the CHF+RSD group compared with that in the CHF+sham group (P<0.01). In conclusion, the present study provides a theoretical basis for application of RSD in the treatment of CHF. PMID:29104628

  4. Glycogen phosphorylase BB in myocardial infarction.

    PubMed

    Dobric, Milan; Ostojic, Miodrag; Giga, Vojislav; Djordjevic-Dikic, Ana; Stepanovic, Jelena; Radovanovic, Nebojsa; Beleslin, Branko

    2015-01-01

    Early experimental and clinical reports on glycogen phosphorylase BB (GPBB) kinetics following myocardial ischemic injury suggested that it could be a useful diagnostic marker for early detection of acute myocardial infarction (AMI). After more than two decades of investigation, there is now overwhelming body of evidence that do not support the use of GPBB measurement in diagnosis of acute AMI in patients presenting with acute chest pain. Currently, GPBB cannot be recommended as a diagnostic marker of AMI either as a stand-alone test or as an addition to (high-sensitive) troponin testing. It should be noted that these considerations apply to the early diagnosis of AMI, not to the prognostic stratification, which is also suggested but it warrants further investigation. The aim of this review is to summarize available evidence of GPBB measurement in early diagnosis of myocardial infarction. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Deferasirox, deferiprone and desferrioxamine treatment in thalassemia major patients: cardiac iron and function comparison determined by quantitative magnetic resonance imaging

    PubMed Central

    Pepe, Alessia; Meloni, Antonella; Capra, Marcello; Cianciulli, Paolo; Prossomariti, Luciano; Malaventura, Cristina; Putti, Maria Caterina; Lippi, Alma; Romeo, Maria Antonietta; Bisconte, Maria Grazia; Filosa, Aldo; Caruso, Vincenzo; Quarta, Antonella; Pitrolo, Lorella; Missere, Massimiliano; Midiri, Massimo; Rossi, Giuseppe; Positano, Vincenzo; Lombardi, Massimo; Maggio, Aurelio

    2011-01-01

    Background Oral deferiprone was suggested to be more effective than subcutaneous desferrioxamine for removing heart iron. Oral once-daily chelator deferasirox has recently been made commercially available but its long-term efficacy on cardiac iron and function has not yet been established. Our study aimed to compare the effectiveness of deferasirox, deferiprone and desferrioxamine on myocardial and liver iron concentrations and bi-ventricular function in thalassemia major patients by means of quantitative magnetic resonance imaging. Design and Methods From the first 550 thalassemia subjects enrolled in the Myocardial Iron Overload in Thalassemia network, we retrospectively selected thalassemia major patients who had been receiving one chelator alone for longer than one year. We identified three groups of patients: 24 treated with deferasirox, 42 treated with deferiprone and 89 treated with desferrioxamine. Myocardial iron concentrations were measured by T2* multislice multiecho technique. Biventricular function parameters were quantitatively evaluated by cine images. Liver iron concentrations were measured by T2* multiecho technique. Results The global heart T2* value was significantly higher in the deferiprone (34±11ms) than in the deferasirox (21±12 ms) and the desferrioxamine groups (27±11 ms) (P=0.0001). We found higher left ventricular ejection fractions in the deferiprone and the desferrioxamine versus the deferasirox group (P=0.010). Liver iron concentration, measured as T2* signal, was significantly lower in the desferrioxamine versus the deferiprone and the deferasirox group (P=0.004). Conclusions The cohort of patients treated with oral deferiprone showed less myocardial iron burden and better global systolic ventricular function compared to the patients treated with oral deferasirox or subcutaneous desferrioxamine. PMID:20884710

  6. Garlicin attenuates reperfusion no-reflow in a catheter-based porcine model of acute myocardial infarction.

    PubMed

    Peng, Yang; Jiahui, Li; Aili, Li; Yong, Wang; Zaixiang, Shi; Yuannan, Ke; Xianlun, Li

    2012-08-01

    To evaluate whether garlicin can attenuate reperfusion no-reflow in a catheter-based porcine model of acute myocardial infarction (AMI). Twenty-two swine were used: six in a sham-operation group, and eight each in the control and garlicin groups. The distal part of the left anterior descending coronary artery (LAD) in the latter two groups was occluded by a dilated balloon for 2 hr, then reperfused for 3 hr. Garlicin (1.88mg/kg) was injected just before reperfusion until reperfusion for 1 hr in the garlicin group. Hemodynamic data were examined before AMI, 2 hr after occlusion, and 3 hr after reperfusion. Myocardial contrast echocardiography (MCE) and pathological staining were performed to evaluate the myocardial no-reflow area (NRA). Serum proinflammatory cytokines and endothelin (ET)-1 were examined by radioimmunoassay. Left ventricular systolic pressure (LVSP) and left ventricular end-diastolic pressure (LVEDP) significantly improved in the garlicin group after reperfusion compared with the control group and also 2hr after AMI (p<0.05 for both). MCE and pathological staining both showed garlicin attenuated reperfusion NRA after AMI (p<0.05, p<0.01). Garlicin not only decreased serum interleukin (IL)-6 and tumor necrosis factor (TNF)-α after reperfusion (p<0.05 for both), but also ET-1 level (p<0.01). Garlicin attenuated reperfusion no-reflow in our catheter-based porcrine model of AMI, possibly through decreasing serum proinflammatory cytokines and ET-1.

  7. Cardioprotective Properties of Aerobic and Resistance Training Against Myocardial Infarction.

    PubMed

    Barboza, C A; Souza, G I H; Oliveira, J C M F; Silva, L M; Mostarda, C T; Dourado, P M M; Oyama, L M; Lira, F S; Irigoyen, M C; Rodrigues, B

    2016-06-01

    We evaluated the effects of aerobic and resistance exercise training on ventricular morphometry and function, physical capacity, autonomic function, as well as on ventricular inflammatory status in trained rats prior to myocardial infarction. Male Wistar rats were divided into the following groups: sedentary+Sham, sedentary+myocardial infarction, aerobic trained+myocardial infarction, and resistance trained+myocardial infarction. Sham and myocardial infarction were performed after training periods. In the days following the surgeries, evaluations were performed. Aerobic training prevents aerobic (to a greater extent) and resistance capacity impairments, ventricular dysfunction, baroreflex sensitivity and autonomic disorders (vagal tonus decrease and sympathetic tonus increase) triggered by myocardial infarction. Resistance training was able to prevent negative changes to aerobic and resistance capacity (to a greater extent) but not to ventricular dysfunction, and it prevented cardiovascular sympathetic increments. Additionally, both types of training reduced left ventricle inflammatory cytokine concentration. Our results suggest that aerobic and, for the first time, dynamic resistance training were able to reduce sympathetic tonus to the heart and vessels, as well as preventing the increase in pro-inflammatory cytokine concentrations in the left ventricle of trained groups. These data emphasizes the positive effects of aerobic and dynamic resistance training on the prevention of the negative changes triggered by myocardial infarction. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Cardiac CT for myocardial ischaemia detection and characterization--comparative analysis.

    PubMed

    Bucher, A M; De Cecco, C N; Schoepf, U J; Wang, R; Meinel, F G; Binukrishnan, S R; Spearman, J V; Vogl, T J; Ruzsics, B

    2014-11-01

    The assessment of patients presenting with symptoms of myocardial ischaemia remains one of the most common and challenging clinical scenarios faced by physicians. Current imaging modalities are capable of three-dimensional, functional and anatomical views of the heart and as such offer a unique contribution to understanding and managing the pathology involved. Evidence has accumulated that visual anatomical coronary evaluation does not adequately predict haemodynamic relevance and should be complemented by physiological evaluation, highlighting the importance of functional assessment. Technical advances in CT technology over the past decade have progressively moved cardiac CT imaging into the clinical workflow. In addition to anatomical evaluation, cardiac CT is capable of providing myocardial perfusion parameters. A variety of CT techniques can be used to assess the myocardial perfusion. The single energy first-pass CT and dual energy first-pass CT allow static assessment of myocardial blood pool. Dynamic cardiac CT imaging allows quantification of myocardial perfusion through time-resolved attenuation data. CT-based myocardial perfusion imaging (MPI) is showing promising diagnostic accuracy compared with the current reference modalities. The aim of this review is to present currently available myocardial perfusion techniques with a focus on CT imaging in light of recent clinical investigations. This article provides a comprehensive overview of currently available CT approaches of static and dynamic MPI and presents the results of corresponding clinical trials.

  9. Nitroglycerin Use in Myocardial Infarction Patients: Risks and Benefits

    PubMed Central

    Ferreira, Julio C.B.; Mochly-Rosen, Daria

    2012-01-01

    Acute myocardial infarction and its sequelae are leading causes of morbidity and mortality worldwide. Nitroglycerin remains a first-line treatment for angina pectoris and acute myocardial infarction. Nitroglycerin achieves its benefit by giving rise to nitric oxide, which causes vasodilation and increases blood flow to the myocardium. However, continuous delivery of nitroglycerin results in tolerance, limiting the use of this drug. Nitroglycerin tolerance is due, at least in part, to inactivation of aldehyde dehydrogenase 2 (ALDH2), an enzyme that converts nitroglycerin to the vasodilator, nitric oxide. We have recently found that, in addition to nitroglycerin’s effect on the vasculature, sustained treatment with nitroglycerin negatively affects cardiomyocyte viability following ischemia, thus resulting in increased infarct size in a myocardial infarction model in animals. Co-administration of Alda-1, an activator of ALDH2, with nitroglycerin improves metabolism of reactive aldehyde adducts and prevents the nitroglycerin-induced increase in cardiac dysfunction following myocardial infarction. In this review, we describe the molecular mechanisms associated with the benefits and risks of nitroglycerin administration in myocardial infarction. (167 of 200). PMID:22040938

  10. Identification of Temporal and Region-Specific Myocardial Gene Expression Patterns in Response to Infarction in Swine

    PubMed Central

    Nonell, Lara; Puigdecanet, Eulàlia; Astier, Laura; Solé, Francesc; Bayes-Genis, Antoni

    2013-01-01

    Molecular mechanisms associated with pathophysiological changes in ventricular remodelling due to myocardial infarction (MI) remain poorly understood. We analyzed changes in gene expression by microarray technology in porcine myocardial tissue at 1, 4, and 6 weeks post-MI. MI was induced by coronary artery ligation in 9 female pigs (30–40 kg). Animals were randomly sacrificed at 1, 4, or 6 weeks post-MI (n = 3 per group) and 3 healthy animals were also included as control group. Total RNA from myocardial samples was hybridized to GeneChip® Porcine Genome Arrays. Functional analysis was obtained with the Ingenuity Pathway Analysis (IPA) online tool. Validation of microarray data was performed by quantitative real-time PCR (qRT-PCR). More than 8,000 different probe sets showed altered expression in the remodelling myocardium at 1, 4, or 6 weeks post-MI. Ninety-seven percent of altered transcripts were detected in the infarct core and 255 probe sets were differentially expressed in the remote myocardium. Functional analysis revealed 28 genes de-regulated in the remote myocardial region in at least one of the three temporal analyzed stages, including genes associated with heart failure (HF), systemic sclerosis and coronary artery disease. In the infarct core tissue, eight major time-dependent gene expression patterns were recognized among 4,221 probe sets commonly altered over time. Altered gene expression of ACVR2B, BID, BMP2, BMPR1A, LMNA, NFKBIA, SMAD1, TGFB3, TNFRSF1A, and TP53 were further validated. The clustering of similar expression patterns for gene products with related function revealed molecular footprints, some of them described for the first time, which elucidate changes in biological processes at different stages after MI. PMID:23372767

  11. Recombinant human-activated protein C inhibits cardiomyocyte apoptosis in a rat model of myocardial ischemia-reperfusion.

    PubMed

    Pirat, Bahar; Muderrisoglu, Haldun; Unal, Muge Tecder; Ozdemir, Handan; Yildirir, Aylin; Yucel, Muammer; Turkoglu, Suna

    2007-02-01

    Myocardial apoptosis is recognized as a major mechanism of cell death during ischemia-reperfusion. In this study, we assessed the hypothesis that activated protein C may have a cardioprotective effect via preventing apoptosis in a rat model of myocardial ischemia-reperfusion. Thirty male Sprague-Dawley rats were anesthetized, instrumented for hemodynamic measurements and ventilated mechanically. Twenty rats were subjected to 20 min of left anterior descending coronary artery occlusion and 2 h of reperfusion. They were randomly assigned to receive intravenous Ringer lactate (vehicle) or activated protein C (2 mg/kg/h) 10 min after occlusion and during reperfusion. The other 10 rats were sham-operated. At the end of the reperfusion period, serum samples were obtained for evaluation of creatine kinase, C-reactive protein and tumor necrosis factor-alpha. Apoptosis was measured quantitatively by the terminal deoxynucleotide transferase-mediated dUTP nick-end labeling method. Serum creatine kinase, C-reactive protein and tumor necrosis factor-alpha values and percentage of terminal deoxynucleotide transferase-mediated dUTP nick-end labeling- positive myocyte nuclei demonstrated negligible myocardial injury in sham-operated controls. During reperfusion, mean arterial pressures were significantly higher in activated protein C-treated rats than in the control group (68.2+/-10.3 vs. 55.4+/-11.6 mmHg, P=0.01). Number of apoptotic cells was significantly reduced from 47.7 to 24.8% with activated protein C administration (P=0.008). No difference was seen between activated protein C-treated and untreated animals with respect to creatine kinase, C-reactive protein and tumor necrosis factor-alpha levels. Treatment with activated protein C significantly improved hemodynamics after ischemia-reperfusion and reduced ischemia-reperfusion-induced myocardial apoptosis in rats.

  12. Myocardial Injury Is Distinguished from Stable Angina by a Set of Candidate Plasma Biomarkers Identified Using iTRAQ/MRM-Based Approach.

    PubMed

    Cheow, Esther Sok Hwee; Cheng, Woo Chin; Yap, Terence; Dutta, Bamaprasad; Lee, Chuen Neng; Kleijn, Dominique P V de; Sorokin, Vitaly; Sze, Siu Kwan

    2018-01-05

    The lack of precise biomarkers that identify patients at risk for myocardial injury and stable angina delays administration of optimal therapy. Hence, the search for noninvasive biomarkers that could accurately stratify patients with impending heart attack, from patients with stable coronary artery disease (CAD), is urgently needed in the clinic. Herein, we performed comparative quantitative proteomics on whole plasma sampled from patients with stable angina (NMI), acute myocardial infarction (MI), and healthy control subjects (Ctrl). We detected a total of 371 proteins with high confidence (FDR < 1%, p < 0.05) including 53 preliminary biomarkers that displayed ≥2-fold modulated expression in patients with CAD (27 associated with atherosclerotic stable angina, 26 with myocardial injury). In the verification phase, we used label-free LC-MRM-MS-based targeted method to verify the preliminary biomarkers in pooled plasma, excluded peptides that were poorly distinguished from background, and performed further validation of the remaining candidates in 49 individual plasma samples. Using this approach, we identified a final panel of eight novel candidate biomarkers that were significantly modulated in CAD (p < 0.05) including proteins associated with atherosclerotic stable angina that were implicated in endothelial dysfunction (F10 and MST1), proteins associated with myocardial injury reportedly involved in plaque destabilization (SERPINA3, CPN2, LUM), and in tissue protection/repair mechanisms (ORM2, ACTG1, NAGLU). Taken together, our data showed that candidate biomarkers with potential diagnostic values can be successfully detected in nondepleted human plasma using an iTRAQ/MRM-based discovery-validation approach and demonstrated the plausible clinical utility of the proposed panel in discriminating atherosclerotic stable angina from myocardial injury in the studied cohort.

  13. Effect of the angiotensin II receptor blocker valsartan on cardiac hypertrophy and myocardial histone deacetylase expression in rats with aortic constriction

    PubMed Central

    XU, WEI-PING; YAO, TONG-QING; JIANG, YI-BO; ZHANG, MAO-ZHEN; WANG, YUE-PENG; YU, YING; LI, JING-XIANG; LI, YI-GANG

    2015-01-01

    The aim of the present study was to observe the myocardial expression of members of the histone deacetylase (HDAC) family (HDAC2, HDAC5 and HDAC9) in rats with or without myocardial hypertrophy (MH) in the presence and absence of the angiotensin II receptor blocker valsartan. Adult male Wistar rats were randomly divided into three groups (n=6/group): Sham-operated control rats, treated with distilled water (1 ml/day) through gavage; rats with MH (established through aortic constriction), treated with distilled water (1 ml/day) through gavage; and MH + valsartan rats, treated with 20 mg/kg/day valsartan through gavage. Treatments commenced one day after surgery and continued for eight weeks. Body weight (BW), heart weight (HW) and plasma atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) levels were determined, and the myocardial expression of HDAC2, HDAC5 and HDAC9 was analyzed through a reverse transcription semi-quantitative polymerase chain reaction. The BWs of the rats in the three groups were similar at baseline; however, after eight weeks the BW of the rats in the MH + valsartan group was significantly reduced compared with that of the MH rats. Furthermore, the HW/BW ratio and plasma ANP and BNP levels were increased, the myocardial HDAC2 expression was significantly upregulated and the HDAC5 and HDAC9 expression was significantly downregulated in the MH rats compared with those in the control rats; however, these changes were significantly attenuated by valsartan. Modulation of myocardial HDAC5, HDAC9 and HDAC2 expression may therefore be one of the anti-hypertrophic mechanisms of valsartan in this rat MH model. PMID:26136964

  14. Assessment of residual tissue viability by exercise testing in recent myocardial infarction: comparison of the electrocardiogram and myocardial perfusion scintigraphy.

    PubMed

    Margonato, A; Ballarotto, C; Bonetti, F; Cappelletti, A; Sciammarella, M; Cianflone, D; Chierchia, S L

    1992-04-01

    The assessment of residual myocardial viability in infarcted areas is relevant for subsequent management and prognosis but requires expensive technology. To evaluate the possibility that simple, easily obtainable clinical markers may detect the presence of within-infarct viable tissue, the significance of exercise-induced ST elevation occurring in leads exploring the area of a recent Q wave myocardial infarction was assessed. Twenty-five patients with recent (less than 6 months) myocardial infarction were studied. All had angiographically documented coronary artery disease, diagnostic Q waves (n = 24) or negative T waves (n = 25) on the rest 12-lead electrocardiogram and exhibited during exercise greater than or equal to 1.5 mm ST segment elevation (n = 17) or isolated T wave pseudonormalization (n = 8) in the infarct-related leads. ST-T wave changes were reproduced in all patients during thallium-201 exercise myocardial scintigraphy. A fixed perfusion defect was observed in 24 of the 25 patients. A reversible defect was seen in 16 (94%) of 17 patients who exhibited transient ST elevation during exercise but in only 4 (50%) of the 8 patients who had only T wave pseudonormalization. In conclusion, in patients with recent myocardial infarction, analysis of simple ST segment variables obtained during exercise testing may allow a first-line discrimination of those who may potentially benefit from a revascularization procedure.

  15. Determination of Location, Size and Transmurality of Chronic Myocardial Infarction Without Exogenous Contrast Media Using Cardiac Magnetic Resonance Imaging at 3T

    PubMed Central

    Kali, Avinash; Cokic, Ivan; Tang, Richard L Q; Yang, Hsin-Jung; Sharif, Behzad; Marbán, Eduardo; Li, Debiao; Berman, Daniel; Dharmakumar, Rohan

    2014-01-01

    Background LGE CMR is a powerful method for characterizing MI, but the requisite gadolinium infusion is estimated to be contraindicated in nearly 20% of MI patients due to end-stage chronic kidney disease. The purpose of this study is to investigate whether T1 Cardiovascular-Magnetic-Resonance Imaging (CMR) obtained without contrast agents at 3T could be an alternative to Late-Gadolinium-Enhanced (LGE) CMR for characterizing chronic myocardial infarctions (MIs) using a canine model of MI. Methods and Results Canines (n=29) underwent CMR at 7 days (acute, AMI) and 4 months (chronic, CMI) post-MI. Infarct location, size and transmurality measured using native T1 maps and LGE images at 1.5T and 3T were compared. Resolution of edema between AMI and CMI was examined with T2 maps. T1 maps overestimated infarct size and transmurality relative to LGE images in AMI (p=0.016 and p=0.007, respectively), which was not observed in CMI (p=0.49 and p=0.81, respectively), at 3T. T1 maps underestimated infarct size and transmurality relative to LGE images in AMI and CMI (p<0.001), at 1.5T. Relative to the remote territories, T1 of the infarcted myocardium was increased in CMI and AMI (p<0.05); and T2 of the infarcted myocardium was increased in AMI (p<0.001), but not in CMI (p >0.20) at both field strengths. Histology showed extensive replacement fibrosis within the CMI territories. CMI detection sensitivity and specificity of T1 CMR at 3T were 95% and 97%, respectively. Conclusions Native T1 maps at 3T can determine the location, size and transmurality of CMI with high diagnostic accuracy. Patient studies are necessary for clinical translation. PMID:24682268

  16. Role of leukocytes and platelets in acute myocardial infarction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bednar, M.M.

    1986-01-01

    Myocardial ischemia initiates an inflammatory-like response in which invading neutrophils exacerbate the degree of injury. The effects of nafazatrom, a new antithrombotic agent, on leukocyte function in vitro and in vivo were related to its ability to salvage ischemic myocardium in an occulsion-reperfusion model of myocardial injury in the anesthetized dogs. Measurements of the neutrophil-specific myeloperoxidase enzyme in ischemic myocardium indicate that the smaller infarct size in dogs treated with nafazatrom is accompanied by a diminished leukocyte infiltration. The results obtained with nafazatrom emphasize the important role of the neutrophil in ischemia-induced myocardial damage. The possibility that myocardial ischemia-induced plateletmore » deposition was secondary to a neutrophil-mediated event was assessed by the injection of PGI{sub 2}-washed autologous {sup 111}indium-labeled platelets and measuring the amount of radioactivity in different regions of the heart following a 90 min. occlusion of the left anterior descending coronary artery followed by reperfusion for periods up to 5 hrs. Neutropenia, induced with specific sheep anti-dog neutrophil antiserum, significantly reduced platelet accumulation in the ischemic myocardium following 5 hrs. reperfusion and abolished the transmural platelet distribution. These results suggest that myocardial platelet deposition is secondary to a neutrophil-mediated event in this occlusion-reperfusion model of myocardial injury.« less

  17. Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging.

    PubMed

    Kuijpers, Dirkjan; Ho, Kai Yiu J A M; van Dijkman, Paul R M; Vliegenthart, Rozemarijn; Oudkerk, Matthijs

    2003-04-01

    The purpose of this study was to assess the value of high-dose dobutamine cardiovascular magnetic resonance (CMR) with myocardial tagging for the detection of wall motion abnormalities as a measure of myocardial ischemia in patients with known or suspected coronary artery disease. Two hundred eleven consecutive patients with chest pain underwent dobutamine-CMR 4 days after antianginal medication was stopped. Dobutamine-CMR was performed at rest and during increasing doses of dobutamine. Cine-images were acquired during breath-hold with and without myocardial tagging at 3 short-axis levels. Regional wall motion was assessed in a 16-segment short-axis model. Patients with new wall motion abnormalities (NWMA) were examined by coronary angiography. Dobutamine-CMR was successfully performed in 194 patients. Dobutamine-CMR without tagging detected NWMA in 58 patients, whereas NWMA were detected in 68 patients with tagging (P=0.002, McNemar). Coronary angiography showed coronary artery disease in 65 (96%) of these 68 patients. All but 3 of the 65 patients needed revascularization. In the 112 patients with a negative dobutamine-CMR study, without baseline wall motion abnormalities, the cardiovascular occurrence-free survival rate was 98.2% during the mean follow-up period of 17.3 months (range, 7 to 31). Dobutamine-CMR with myocardial tagging detected more NWMA compared with dobutamine-CMR without tagging and reliably separated patients with a normal life expectancy from those at increased risk of major adverse cardiac events.

  18. Associations Between Fibrocytes and Postcontrast Myocardial T1 Times in Hypertrophic Cardiomyopathy

    PubMed Central

    Fang, Lu; Beale, Anna; Ellims, Andris H.; Moore, Xiao‐lei; Ling, Liang‐han; Taylor, Andrew J.; Chin‐Dusting, Jaye; Dart, Anthony M.

    2013-01-01

    Background Fibrocytes are bone marrow‐derived mesenchymal progenitors that have been linked to various fibrotic disorders. This study was undertaken to investigate whether fibrocytes are increased in diffuse myocardial fibrosis in humans. Methods and Results Thirty‐seven patients with hypertrophic cardiomyopathy (HCM) and 20 healthy controls were recruited. Cardiac magnetic resonance imaging with postcontrast T1 mapping was performed to non‐invasively quantify diffuse myocardial fibrosis and these patients were classified into 2 groups (T1<470 ms or T1≥470 ms, as likely or unlikely to have diffuse fibrosis, respectively). Circulating fibrocytes (CD45+/CD34+/collagen I+) were measured by flow cytometry. Peripheral blood mononuclear cells (PBMCs) were cultured for 13 days and fibrocytes were quantitated by flow cytometry (CD45+/collagen I+) and real‐time PCR (gene expression of matrix proteins). Plasma cytokines/chemokines mediating fibrocyte trafficking and differentiation were measured by multiplex assays. Circulating fibrocytes were decreased in HCM patients compared to controls. The proportion of fibrocytes derived from PBMCs was increased in patients with diffuse fibrosis compared with those without or controls (31.1±4.1% versus 18.9±3.9% and 10.9±2.0%, P<0.05 and P<0.001, respectively), and the proportion of fibrocytes was inversely correlated with T1 time (r=−0.37, P=0.03). Plasma levels of stromal cell‐derived factor‐1 were elevated in patients with diffuse fibrosis compared with those without or controls (5131±271 pg/mL versus 3893±356 pg/mL and 4172±185 pg/mL, respectively, both P<0.05). Conclusions HCM patients with diffuse fibrosis as assessed by postcontrast T1 mapping have elevated plasma SDF and an enhanced ability of PBMCs to differentiate into fibrocytes, suggesting that fibrocytes may contribute to the pathogenesis of myocardial fibrosis. PMID:24125844

  19. The effects of escitalopram on myocardial apoptosis and the expression of Bax and Bcl-2 during myocardial ischemia/reperfusion in a model of rats with depression.

    PubMed

    Wang, Yiming; Zhang, Hongming; Chai, Fangxian; Liu, Xingde; Berk, Michael

    2014-12-04

    Major depressive disorder (MDD) is an independent risk factor for coronary heart disease (CHD), and influences the occurrence and prognosis of cardiovascular events. Although there is evidence that antidepressants may be cardioprotective after acute myocardial infarction (AMI) comorbid with MDD, the operative pathophysiological mechanisms remain unclear. Our aim was therefore to explore the molecular mechanisms of escitalopram on myocardial apoptosis and the expression of Bax and Bcl-2 in a rat model of depression during myocardial ischemia/reperfusion (I/R). Rats were divided randomly into 3 groups (n = 8): D group (depression), DI/R group (depression with myocardial I/R) and escitalopram + DI/R group. The rats in all three groups underwent the same chronic mild stress and separation for 21 days, at the same time, in the escitalopram + DI/R group, rats were administered escitalopram by gavage (10 mg/kg/day). Ligation of the rat's left anterior descending branch was done in the myocardial I/R model. Following which behavioral tests were done. The size of the myocardial infarction was detected using 1.5% TTC dye. The Tunel method was used to detect apoptotic myocardial cells, and both the Rt-PCR method and immunohistochemical techniques were used to detect the expression of Bcl-2 and Bax. Compared with the D and DI/R groups, rats in Escitalopram + DI/R group showed significantly increased movements and sucrose consumption (P < .01). Compared with the DI/R group, the myocardial infarct size in the escitalopram + DI/R group was significantly decreased (P < .01). Compared with the D group, there were significantly increased apoptotic myocardial cells in the DI/R and escitalopram + DI/R groups (P < .01); however compared with the DI/R group, apoptotic myocardial cell numbers in the escitalopram + DI/R group were significantly decreased (P < .01). Compared with the DI/R group, there was a down-regulated Bax:Bcl-2 ratio in the escitalopram + DI/R group (P < .01). These

  20. Gaseous signalling molecule SO2 via Hippo-MST pathway to improve myocardial fibrosis of diabetic rats

    PubMed Central

    Liu, Maojun; Liu, Shengquan; Tan, Wenting; Tang, Fen; Long, Junrong; Li, Zining; Liang, Biao; Chu, Chun; Yang, Jun

    2017-01-01

    , including CHOP, GRP94, MST1 and MST2, were significantly upregulated. By contrast, these above-mentioned changes were reversed by SO2 treatment. Compared with STZ group, the HDX group had a further increase of myocardial fibrosis and apoptosis, while there were no statistically significant differences in the expression of Bax/Bcl-2, caspase-3, caspase-9 and ERS and Hippo-MST pathway-associated proteins. The results of the present study demonstrated that the gaseous signal molecule SO2 can effectively improve the myocardial fibrosis of diabetic rats, and its mechanism may be associated with reduced apoptosis and ERS by downregulated Hippo-MST pathway. PMID:28990064

  1. Gaseous signalling molecule SO2 via Hippo‑MST pathway to improve myocardial fibrosis of diabetic rats.

    PubMed

    Liu, Maojun; Liu, Shengquan; Tan, Wenting; Tang, Fen; Long, Junrong; Li, Zining; Liang, Biao; Chu, Chun; Yang, Jun

    2017-12-01

    MST pathway‑associated proteins, including CHOP, GRP94, MST1 and MST2, were significantly upregulated. By contrast, these above‑mentioned changes were reversed by SO2 treatment. Compared with STZ group, the HDX group had a further increase of myocardial fibrosis and apoptosis, while there were no statistically significant differences in the expression of Bax/Bcl‑2, caspase‑3, caspase‑9 and ERS and Hippo‑MST pathway‑associated proteins. The results of the present study demonstrated that the gaseous signal molecule SO2 can effectively improve the myocardial fibrosis of diabetic rats, and its mechanism may be associated with reduced apoptosis and ERS by downregulated Hippo‑MST pathway.

  2. Acute myocardial infarction mortality in Cuba, 1999-2008.

    PubMed

    Armas, Nurys B; Ortega, Yanela Y; de la Noval, Reinaldo; Suárez, Ramón; Llerena, Lorenzo; Dueñas, Alfredo F

    2012-10-01

    Acute myocardial infarction is one of the leading causes of death in the world. This is also true in Cuba, where no national-level epidemiologic studies of related mortality have been published in recent years. Describe acute myocardial infarction mortality in Cuba from 1999 through 2008. A descriptive study was conducted of persons aged ≥25 years with a diagnosis of acute myocardial infarction from 1999 through 2008. Data were obtained from the Ministry of Public Health's National Statistics Division database for variables: age; sex; site (out of hospital, in hospital or in hospital emergency room) and location (jurisdiction) of death. Proportions, age- and sex-specific rates and age-standardized overall rates per 100,000 population were calculated and compared over time, using the two five-year time frames within the study period. A total of 145,808 persons who had suffered acute myocardial infarction were recorded, 75,512 of whom died, for a case-fatality rate of 51.8% (55.1% in 1999-2003 and 49.7% in 2004-2008). In the first five-year period, mortality was 98.9 per 100,000 population, falling to 81.8 per 100,000 in the second; most affected were people aged ≥75 years and men. Of Cuba's 14 provinces and special municipality, Havana, Havana City and Camagüey provinces, and the Isle of Youth Special Municipality showed the highest mortality; Holguín, Ciego de Ávila and Granma provinces the lowest. Out-of-hospital deaths accounted for the greatest proportion of deaths in both five-year periods (54.8% and 59.2% in 1999-2003 and 2004-2008, respectively). Although risk of death from acute myocardial infarction decreased through the study period, it remains a major health problem in Cuba. A national acute myocardial infarction case registry is needed. Also required is further research to help elucidate possible causes of Cuba's high acute myocardial infarction mortality: cardiovascular risk studies, studies of out-of-hospital mortality and quality of care

  3. Myocardial Blood Flow and Inflammatory Cardiac Sarcoidosis.

    PubMed

    Kruse, Matthew J; Kovell, Lara; Kasper, Edward K; Pomper, Martin G; Moller, David R; Solnes, Lilja; Chen, Edward S; Schindler, Thomas H

    2017-02-01

    This study sought to evaluate the effects of inflammatory sarcoid disease on coronary circulatory function and the response to immune-suppressive treatment. Although positron emission tomography assessment of myocardial inflammation is increasingly applied to identify active cardiac sarcoidosis, its effect on coronary flow and immune-suppressive treatment remains to be characterized. Thirty-two individuals, who were referred for positron emission tomography/computed tomography, were evaluated for known or suspected cardiac sarcoidosis applying 18 F-fluorodeoxyglucose to determine inflammation and 13 N-ammonia to assess for perfusion deficits following a high-fat/low-carbohydrate diet and fasting state >12 h to suppress myocardial glucose uptake. Inflammation was quantified with standardized uptake value and regional myocardial blood flow at rest and during regadenoson-stimulated hyperemia was determined in ml/g/min. Positron emission tomography studies were repeated in 18 cases with a median follow-up of 2.5 years (interquartile range [IQR]:1.3 to 3.4 years). Twenty-five exams had normal perfusion but evidence of regional inflammation (group 1), and 21 exams presented a regional perfusion deficit associated with inflammation (group 2). Median myocardial blood flow did not differ between inflamed and noninflamed myocardium in both groups (0.86 ml/g/min [IQR: 0.66 to 1.11 ml/g/min] vs. 0.83 ml/g/min [IQR: 0.64 to 1.12 ml/g/min] and 0.74 ml/g/min [IQR: 0.60 to 0.93 ml/g/min] vs. 0.77 ml/g/min [IQR: 0.59 to 0.95 ml/g/min], respectively). As regards median hyperemic myocardial blood flows, they were significantly lower in the inflamed than in the remote regions in group 1 and 2 (2.31 ml/g/min [IQR: 1.81 to 2.95 ml/g/min] vs. 2.70 ml/g/min [IQR: 2.07 to 3.30 ml/g/min] and 1.61 ml/g/min [IQR: 1.17 to 2.18 ml/g/min] vs. 1.94 ml/g/min [IQR: 1.49 to 2.39 ml/g/min]; p < 0.001, respectively). Immune-suppression-mediated decrease in inflammation was associated with

  4. Radionuclide imaging of myocardial infarction using Tc-99m TBI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holman, B.L.; Campbell, S.; Kirshenbaum, J.M.

    The cationic complex Tc-99m t-butylisonitrile (TBI) concentrates in the myocardial tissue of several animal species. Its myocardial distribution is proportional to blood flow both in zones of ischemia and in normal myocardium at rest. Planar, tomographic, and gated myocardial images have been obtained using Tc-99m TBI in the human. The authors investigated the potential application of Tc-99m TBI imaging to detect and localize myocardial infarction. Four subjects without clinical evidence of cardiovascular disease and five patients with ECG evidence of previous myocardial infarction were studied. Tc-99m TBI (10mCi) was injected intravenously with the patient in a resting state with planarmore » imaging in the anterior, 30 and 70 degree LAO projections beginning one hr after injection. The distribution of the tracer was homogeneous throughout the left ventricular wall in the normal subjects. Regional perfusion defects were present in 4/5 of the patients with myocardial infarction. Location of the defects corresponded to the location of the infarct using ECG criteria (2 inferoposterior and 2 anterior). The patient in whom the Tc-99m TBI image appeared normal had sustained a subendocardial myocardial infarct which could not be localized by ECG; the other 4 pts had transmural infarcts. Anterior and 30 degree LAO images were of excellent quality in all cases; there was overlap of the liver on the inferior wall of the left ventricle on the 70 degree LAO views. The authors conclude that accurate perfusion imaging may be possible using Tc-99m TBI in patients with transmural myocardial infarction.« less

  5. Eriodictyol Attenuates Myocardial Ischemia-Reperfusion Injury through the Activation of JAK2

    PubMed Central

    Li, Defang; Lu, Ning; Han, Jichun; Chen, Xiaoyu; Hao, Wenjin; Xu, Wenjuan; Liu, Xiaona; Ye, Lei; Zheng, Qiusheng

    2018-01-01

    Myocardial ischemia-reperfusion (I/R) injury remains the leading risk factor of disability and mortality worldwide. In this study, the myocardial protective effect of eriodictyol (EDT) and the underlying mechanism in an ex vivo model of global myocardial I/R was investigated. After treatment with different concentrations of EDT, the decreased hemodynamic parameters induced by myocardial I/R injury were significantly attenuated by EDT. The elevated levels of IL-6, CRP, IL-8, and TNF-α were effectively reduced by EDT treatment. EDT also remarkably suppressed the levels of Bax and cleaved Caspase-3, and up-regulated the level of Bcl-2 in cardiac tissues from EDT-treated groups. Further studies showed that EDT could increase the levels of p-JAK2 and p-STAT3 in cardiac tissues. Meanwhile, treatment of AG490, a specific inhibitor of JAK2, abolished the protective effect of EDT on hemodynamic parameters, myocardial inflammation and myocardial cell apoptosis induced by I/R injury. These results demonstrated that EDT could protect against myocardial I/R injury through the activation of JAK2, providing a potential treatment with EDT during myocardial I/R injury. PMID:29441020

  6. Contrast agent enhanced pQCT of articular cartilage

    NASA Astrophysics Data System (ADS)

    Kallioniemi, A. S.; Jurvelin, J. S.; Nieminen, M. T.; Lammi, M. J.; Töyräs, J.

    2007-02-01

    The delayed gadolinium enhanced MRI of cartilage (dGEMRIC) technique is the only non-invasive means to estimate proteoglycan (PG) content in articular cartilage. In dGEMRIC, the anionic paramagnetic contrast agent gadopentetate distributes in inverse relation to negatively charged PGs, leading to a linear relation between T1,Gd and spatial PG content in tissue. In the present study, for the first time, contrast agent enhanced peripheral quantitative computed tomography (pQCT) was applied, analogously to dGEMRIC, for the quantitative detection of spatial PG content in cartilage. The suitability of two anionic radiographic contrast agents, gadopentetate and ioxaglate, to detect enzymatically induced PG depletion in articular cartilage was investigated. First, the interrelationships of x-ray absorption, as measured with pQCT, and the contrast agent solution concentration were investigated. Optimal contrast agent concentrations for the following experiments were selected. Second, diffusion rates for both contrast agents were investigated in intact (n = 3) and trypsin-degraded (n = 3) bovine patellar cartilage. The contrast agent concentration of the cartilaginous layer was measured prior to and 2-27 h after immersion. Optimal immersion time for the further experiments was selected. Third, the suitability of gadopentetate and ioxaglate enhanced pQCT to detect the enzymatically induced specific PG depletion was investigated by determining the contrast agent concentrations and uronic acid and water contents in digested and intact osteochondral samples (n = 16). After trypsin-induced PG loss (-70%, p < 0.05) the penetration of gadopentetate and ioxaglate increased (p < 0.05) by 34% and 48%, respectively. Gadopentetate and ioxaglate concentrations both showed strong correlation (r = -0.95, r = -0.94, p < 0.01, respectively) with the uronic acid content. To conclude, contrast agent enhanced pQCT provides a technique to quantify PG content in normal and experimentally

  7. Quantitative analysis of collagens and fibronectin expression in human right ventricular hypertrophy.

    PubMed

    Peters, T H; Sharma, H S; Yilmaz, E; Bogers, A J

    1999-06-30

    One of the main features in human tetralogy of Fallot (TF) is right ventricular hypertrophy (RVH) due to pressure (sub-pulmonary stenosis) and volume overload (ventricular septal defect). Currently, primary correction at a young age is the treatment of choice. To unravel the role of extracellular matrix in RVH, we examined myocardial expression of collagens and fibronectin in TF patients with primary correction (TF1, age 0.7 +/- 0.2 yr.), secondary surgery (TF2, age 36.9 +/- 4.6 yr), and in age-matched control patients. Sirius red staining quantified by video imaging showed significantly increased interstitial staining for collagens in both TF1 and TF2 groups as compared to respective controls. Fibronectin was expressed in extracellular spaces, perivascular regions, and in some cardiomyocytes. Quantitative analysis of fibronectin revealed increased expression in only TF1 group as compared to respective control. Our results indicate an increased amount of myocardial extracellular matrix deposition as a sign of fibrosis during RVH in patients with TF.

  8. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction.

    PubMed

    Zouggari, Yasmine; Ait-Oufella, Hafid; Bonnin, Philippe; Simon, Tabassome; Sage, Andrew P; Guérin, Coralie; Vilar, José; Caligiuri, Giuseppina; Tsiantoulas, Dimitrios; Laurans, Ludivine; Dumeau, Edouard; Kotti, Salma; Bruneval, Patrick; Charo, Israel F; Binder, Christoph J; Danchin, Nicolas; Tedgui, Alain; Tedder, Thomas F; Silvestre, Jean-Sébastien; Mallat, Ziad

    2013-10-01

    Acute myocardial infarction is a severe ischemic disease responsible for heart failure and sudden death. Here, we show that after acute myocardial infarction in mice, mature B lymphocytes selectively produce Ccl7 and induce Ly6C(hi) monocyte mobilization and recruitment to the heart, leading to enhanced tissue injury and deterioration of myocardial function. Genetic (Baff receptor deficiency) or antibody-mediated (CD20- or Baff-specific antibody) depletion of mature B lymphocytes impeded Ccl7 production and monocyte mobilization, limited myocardial injury and improved heart function. These effects were recapitulated in mice with B cell-selective Ccl7 deficiency. We also show that high circulating concentrations of CCL7 and BAFF in patients with acute myocardial infarction predict increased risk of death or recurrent myocardial infarction. This work identifies a crucial interaction between mature B lymphocytes and monocytes after acute myocardial ischemia and identifies new therapeutic targets for acute myocardial infarction.

  9. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction

    PubMed Central

    Zouggari, Yasmine; Ait-Oufella, Hafid; Bonnin, Philippe; Simon, Tabassome; Sage, Andrew P; Guérin, Coralie; Vilar, José; Caligiuri, Giuseppina; Tsiantoulas, Dimitrios; Laurans, Ludivine; Dumeau, Edouard; Kotti, Salma; Bruneval, Patrick; Charo, Israel F; Binder, Christoph J; Danchin, Nicolas; Tedgui, Alain; Tedder, Thomas F; Silvestre, Jean-Sébastien; Mallat, Ziad

    2014-01-01

    Acute myocardial infarction is a severe ischemic disease responsible for heart failure and sudden death. Here, we show that after acute myocardial infarction in mice, mature B lymphocytes selectively produce Ccl7 and induce Ly6Chi monocyte mobilization and recruitment to the heart, leading to enhanced tissue injury and deterioration of myocardial function. Genetic (Baff receptor deficiency) or antibody-mediated (CD20- or Baff-specific antibody) depletion of mature B lymphocytes impeded Ccl7 production and monocyte mobilization, limited myocardial injury and improved heart function. These effects were recapitulated in mice with B cell–selective Ccl7 deficiency. We also show that high circulating concentrations of CCL7 and BAFF in patients with acute myocardial infarction predict increased risk of death or recurrent myocardial infarction. This work identifies a crucial interaction between mature B lymphocytes and monocytes after acute myocardial ischemia and identifies new therapeutic targets for acute myocardial infarction. PMID:24037091

  10. Comparison of 18F SPECT with PET in myocardial imaging: a realistic thorax-cardiac phantom study.

    PubMed

    Knešaurek, Karin; Machac, Josef

    2006-10-31

    Positron emission tomography (PET) imaging with fluorine-18 (18F) Fluorodeoxyglucose (FDG) and flow tracer such as Rubidium-82 (82Rb) is an established method for evaluating an ischemic but viable myocardium. However, the high cost of PET imaging restricts its wider clinical use. Therefore, less expensive 18F FDG single photon emission computed tomography (SPECT) imaging has been considered as an alternative to 18F FDG PET imaging. The purpose of the work is to compare SPECT with PET in myocardial perfusion/viability imaging. A nonuniform RH-2 thorax-heart phantom was used in the SPECT and PET acquisitions. Three inserts, 3 cm, 2 cm and 1 cm in diameter, were placed in the left ventricular (LV) wall to simulate infarcts. The phantom acquisition was performed sequentially with 7.4 MBq of 18F and 22.2 MBq of Technetium-99m (99mTc) in the SPECT study and with 7.4 MBq of 18F and 370 MBq of 82Rb in the PET study. SPECT and PET data were processed using standard reconstruction software provided by vendors. Circumferential profiles of the short-axis slices, the contrast and viability of the inserts were used to evaluate the SPECT and PET images. The contrast for 3 cm, 2 cm and 1 cm inserts were for 18F PET data, 1.0 +/- 0.01, 0.67 +/- 0.02 and 0.25 +/- 0.01, respectively. For 82Rb PET data, the corresponding contrast values were 0.61 +/- 0.02, 0.37 +/- 0.02 and 0.19 +/- 0.01, respectively. For 18F SPECT the contrast values were, 0.31 +/- 0.03 and 0.20 +/- 0.05 for 3 cm and 2 cm inserts, respectively. For 99mTc SPECT the contrast values were, 0.63 +/- 0.04 and 0.24 +/- 0.05 for 3 cm and 2 cm inserts respectively. In SPECT, the 1 cm insert was not detectable. In the SPECT study, all three inserts were falsely diagnosed as "viable", while in the PET study, only the 1 cm insert was diagnosed falsely "viable". For smaller defects the 99mTc/18F SPECT imaging cannot entirely replace the more expensive 82Rb/18F PET for myocardial perfusion/viability imaging, due to poorer image

  11. Myocardial dysfunction occurs prior to changes in ventricular geometry in mice with chronic kidney disease (CKD).

    PubMed

    Winterberg, Pamela D; Jiang, Rong; Maxwell, Josh T; Wang, Bo; Wagner, Mary B

    2016-03-01

    Uremic cardiomyopathy is responsible for high morbidity and mortality rates among patients with chronic kidney disease (CKD), but the underlying mechanisms contributing to this complex phenotype are incompletely understood. Myocardial deformation analyses (ventricular strain) of patients with mild CKD have recently been reported to predict adverse clinical outcome. We aimed to determine if early myocardial dysfunction in a mouse model of CKD could be detected using ventricular strain analyses. CKD was induced in 5-week-old male 129X1/SvJ mice through partial nephrectomy (5/6Nx) with age-matched mice undergoing bilateral sham surgeries serving as controls. Serial transthoracic echocardiography was performed over 16 weeks following induction of CKD. Invasive hemodynamic measurements were performed at 8 weeks. Gene expression and histology was performed on hearts at 8 and 16 weeks. CKD mice developed decreased longitudinal strain (-25 ± 4.2% vs. -29 ± 2.3%; P = 0.01) and diastolic dysfunction (E/A ratio 1.2 ± 0.15 vs. 1.9 ± 0.18; P < 0.001) compared to controls as early as 2 weeks following 5/6Nx. In contrast, ventricular hypertrophy was not apparent until 4 weeks. Hearts from CKD mice developed progressive fibrosis at 8 and 16 weeks with gene signatures suggestive of evolving heart failure with elevated expression of natriuretic peptides. Uremic cardiomyopathy in this model is characterized by early myocardial dysfunction which preceded observable changes in ventricular geometry. The model ultimately resulted in myocardial fibrosis and increased expression of natriuretic peptides suggestive of progressive heart failure. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Early Use of N-acetylcysteine With Nitrate Therapy in Patients Undergoing Primary Percutaneous Coronary Intervention for ST-Segment-Elevation Myocardial Infarction Reduces Myocardial Infarct Size (the NACIAM Trial [N-acetylcysteine in Acute Myocardial Infarction]).

    PubMed

    Pasupathy, Sivabaskari; Tavella, Rosanna; Grover, Suchi; Raman, Betty; Procter, Nathan E K; Du, Yang Timothy; Mahadavan, Gnanadevan; Stafford, Irene; Heresztyn, Tamila; Holmes, Andrew; Zeitz, Christopher; Arstall, Margaret; Selvanayagam, Joseph; Horowitz, John D; Beltrame, John F

    2017-09-05

    Contemporary ST-segment-elevation myocardial infarction management involves primary percutaneous coronary intervention, with ongoing studies focusing on infarct size reduction using ancillary therapies. N-acetylcysteine (NAC) is an antioxidant with reactive oxygen species scavenging properties that also potentiates the effects of nitroglycerin and thus represents a potentially beneficial ancillary therapy in primary percutaneous coronary intervention. The NACIAM trial (N-acetylcysteine in Acute Myocardial Infarction) examined the effects of NAC on infarct size in patients with ST-segment-elevation myocardial infarction undergoing percutaneous coronary intervention. This randomized, double-blind, placebo-controlled, multicenter study evaluated the effects of intravenous high-dose NAC (29 g over 2 days) with background low-dose nitroglycerin (7.2 mg over 2 days) on early cardiac magnetic resonance imaging-assessed infarct size. Secondary end points included cardiac magnetic resonance-determined myocardial salvage and creatine kinase kinetics. Of 112 randomized patients with ST-segment-elevation myocardial infarction, 75 (37 in NAC group, 38 in placebo group) underwent early cardiac magnetic resonance imaging. Median duration of ischemia pretreatment was 2.4 hours. With background nitroglycerin infusion administered to all patients, those randomized to NAC exhibited an absolute 5.5% reduction in cardiac magnetic resonance-assessed infarct size relative to placebo (median, 11.0%; [interquartile range 4.1, 16.3] versus 16.5%; [interquartile range 10.7, 24.2]; P =0.02). Myocardial salvage was approximately doubled in the NAC group (60%; interquartile range, 37-79) compared with placebo (27%; interquartile range, 14-42; P <0.01) and median creatine kinase areas under the curve were 22 000 and 38 000 IU·h in the NAC and placebo groups, respectively ( P =0.08). High-dose intravenous NAC administered with low-dose intravenous nitroglycerin is associated with reduced

  13. Stable and simple quantitative phase-contrast imaging by Fresnel biprism

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Samira; Dashtdar, Masoomeh; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Javidi, Bahram

    2018-03-01

    Digital holographic (DH) microscopy has grown into a powerful nondestructive technique for the real-time study of living cells including dynamic membrane changes and cell fluctuations in nanometer and sub-nanometer scales. The conventional DH microscopy configurations require a separately generated coherent reference wave that results in a low phase stability and a necessity to precisely adjust the intensity ratio between two overlapping beams. In this work, we present a compact, simple, and very stable common-path DH microscope, employing a self-referencing configuration. The microscope is implemented by a diode laser as the source and a Fresnel biprism for splitting and recombining the beams simultaneously. In the overlapping area, linear interference fringes with high contrast are produced. The frequency of the interference pattern could be easily adjusted by displacement of the biprism along the optical axis without a decrease in fringe contrast. To evaluate the validity of the method, the spatial noise and temporal stability of the setup are compared with the common off-axis DH microscope based on a Mach-Zehnder interferometer. It is shown that the proposed technique has low mechanical noise as well as superb temporal stability with sub-nanometer precision without any external vibration isolation. The higher temporal stability improves the capabilities of the microscope for studying micro-object fluctuations, particularly in the case of biological specimens. Experimental results are presented using red blood cells and silica microspheres to demonstrate the system performance.

  14. Registering myocardial fiber orientations with heart geometry using iterative closest points algorithms

    NASA Astrophysics Data System (ADS)

    Deng, Dongdong; Jiao, Peifeng; Shou, Guofa; Xia, Ling

    2009-10-01

    Myocardial electrical excitation propagation is anisotropic, with the most rapid spread of current along the direction of the long axis of the fiber. Fiber orientation is also an important determinant of myocardial mechanics. So myocardial fiber orientations are very important to heart modeling and simulation. Accurately construction of myocardial fiber orientations, however, is still a challenge. The purpose of this paper is to construct a heart geometrical model with myocardial fiber orientations based on CT and 3D laser scanned pictures. The iterative closest points (ICP) algorithms were used to register the fiber orientations with the heart geometry.

  15. Quantitative assessment of placental perfusion by contrast-enhanced ultrasound in macaques and human subjects

    PubMed Central

    Roberts, Victoria HJ; Lo, Jamie O; Salati, Jennifer A; Lewandowski, Katherine S; Lindner, Jonathan R; Morgan, Terry K; Frias, Antonio E

    2016-01-01

    Background The utero-placental vascular supply is a critical determinant of placental function and fetal growth. Current methods for the in vivo assessment of placental blood flow are limited. Objective Here we demonstrate the feasibility of utilizing contrast-enhanced ultrasound to visualize and quantify perfusion kinetics in the intervillous space of the primate placenta. Study design Pregnant Japanese macaques were studied at mid second trimester and in the early third trimester. Markers of injury were assessed in placenta samples from animals with or without contrast-enhanced ultrasound exposure (n=6/group). Human subjects were recruited immediately prior to scheduled first trimester pregnancy termination. All studies were performed with maternal intravenous infusion of lipid-shelled octofluoropropane microbubbles with image acquisition using a multipulse contrast-specific algorithm with destruction-replenishment analysis of signal intensity for assessment of perfusion. Results In macaques, rate of perfusion in the intervillous space was increased with advancing gestation. No evidence of microvascular hemorrhage or acute inflammation was found in placental villous tissue and expression levels of caspase-3, nitrotyrosine and HSP70 as markers of apoptosis, nitrative and oxidative stress respectively were unchanged by contrast-enhanced ultrasound exposure. In humans, placental perfusion was visualized at 11wks gestation and preliminary data reveal regional differences in intervillous space perfusion within an individual placenta. By electron microscopy, we demonstrate no evidence of ultrastructure damage to the microvilli on the syncytiotrophoblast following first trimester ultrasound studies. Conclusions Use of contrast-enhanced ultrasound did not result in placental structural damage, and was able to identify intervillous space perfusion rate differences within a placenta. Contrast-enhanced ultrasound may offer a safe clinical tool for the identification of

  16. Air pollution exposure--a trigger for myocardial infarction?

    PubMed

    Berglind, Niklas; Ljungman, Petter; Möller, Jette; Hallqvist, Johan; Nyberg, Fredrik; Rosenqvist, Mårten; Pershagen, Göran; Bellander, Tom

    2010-04-01

    The association between ambient air pollution exposure and hospitalization for cardiovascular events has been reported in several studies with conflicting results. A case-crossover design was used to investigate the effects of air pollution in 660 first-time myocardial infarction cases in Stockholm in 1993-1994, interviewed shortly after diagnosis using a standard protocol. Air pollution data came from central urban background monitors. No associations were observed between the risk for onset of myocardial infarction and two-hour or 24-hour air pollution exposure. No evidence of susceptible subgroups was found. This study provides no support that moderately elevated air pollution levels trigger first-time myocardial infarction.

  17. Gender differences in the assessment and treatment of myocardial infarction.

    PubMed

    Jortveit, Jarle; Govatsmark, Ragna Elise Støre; Langørgen, Jørund; Hole, Torstein; Mannsverk, Jan; Olsen, Siv; Risøe, Cecilie; Halvorsen, Sigrun

    2016-08-01

    Previous studies have shown that there are gender-related differences in the assessment and treatment of myocardial infarction, despite international guidelines that prescribe identical treatment for women and men. We investigated whether these differences occurred in Norway. All patients admitted to Norwegian hospitals with myocardial infarction from 1 January 2013 to 31 December 2014 and registered in the Norwegian Myocardial Infarction Registry were included. Data from the registry were used to analyse differences in the assessment, treatment, complications and survival of women and men in different age groups. A total of 26 447 myocardial infarctions were registered in the Norwegian Myocardial Infarction Registry in the period 2013 – 2014. Fewer women than men were assessed by means of coronary angiography. Percutaneous coronary intervention (PCI) was used to virtually the same extent for both genders if coronary stenosis was found. Women were recommended secondary prophylactic medication to a lesser extent than men. There were no major differences between men and women in the incidence of complications in the course following myocardial infarction or in survival. Fewer women than men suffering acute myocardial infarction were assessed by means of coronary angiography, and women were recommended secondary prophylactic medication less often than men. The reason for the gender differences is not known, but comorbidity and a potentially greater risk of adverse reactions in women may be contributory factors. The different views of doctors providing treatment may also play a part.

  18. Alcohol and the risk of myocardial infarction.

    PubMed

    Flesch, M; Rosenkranz, S; Erdmann, E; Böhm, M

    2001-04-01

    Epidemiological studies have repeatedly demonstrated a beneficial effect of moderate alcohol consumption on the incidence of coronary heart disease, myocardial infarction and overall mortality. The latter increases with excessive alcohol consumption. Although most epidemiological studies demonstrate a beneficial effect of alcohol consumption independent from the specific kind of alcoholic beverage, there is increasing evidence that wine and in particular red wine might contain pharmacological substances, which prevent atherosclerosis and myocardial infarction independent from the wine ethanol. Pathophysiological mechanisms mediating these beneficial effects include effects of wine phenols and tannins on LDL-cholesterol oxidation status, thrombocyte aggregation, endothelial function and smooth muscle cell proliferation. Identification and characterization of the pharmacologically active substances might provide the stage for the development of new substances to be used in the prevention of coronary artery disease and myocardial infarction.

  19. Residual Myocardial Iron Following Intramyocardial Hemorrhage During the Convalescent Phase of Reperfused ST-Segment-Elevation Myocardial Infarction and Adverse Left Ventricular Remodeling.

    PubMed

    Bulluck, Heerajnarain; Rosmini, Stefania; Abdel-Gadir, Amna; White, Steven K; Bhuva, Anish N; Treibel, Thomas A; Fontana, Marianna; Ramlall, Manish; Hamarneh, Ashraf; Sirker, Alex; Herrey, Anna S; Manisty, Charlotte; Yellon, Derek M; Kellman, Peter; Moon, James C; Hausenloy, Derek J

    2016-10-01

    The presence of intramyocardial hemorrhage (IMH) in ST-segment-elevation myocardial infarction patients reperfused by primary percutaneous coronary intervention has been associated with residual myocardial iron at follow-up, and its impact on adverse left ventricular (LV) remodeling is incompletely understood and is investigated here. Forty-eight ST-segment-elevation myocardial infarction patients underwent cardiovascular magnetic resonance at 4±2 days post primary percutaneous coronary intervention, of whom 40 had a follow-up scan at 5±2 months. Native T1, T2, and T2* maps were acquired. Eight out of 40 (20%) patients developed adverse LV remodeling. A subset of 28 patients had matching T2* maps, of which 15/28 patients (54%) had IMH. Eighteen of 28 (64%) patients had microvascular obstruction on the acute scan, of whom 15/18 (83%) patients had microvascular obstruction with IMH. On the follow-up scan, 13/15 patients (87%) had evidence of residual iron within the infarct zone. Patients with residual iron had higher T2 in the infarct zone surrounding the residual iron when compared with those without. In patients with adverse LV remodeling, T2 in the infarct zone surrounding the residual iron was also higher than in those without (60 [54-64] ms versus 53 [51-56] ms; P=0.025). Acute myocardial infarct size, extent of microvascular obstruction, and IMH correlated with the change in LV end-diastolic volume (Pearson's rho of 0.64, 0.59, and 0.66, respectively; P=0.18 and 0.62, respectively, for correlation coefficient comparison) and performed equally well on receiver operating characteristic curve for predicting adverse LV remodeling (area under the curve: 0.99, 0.94, and 0.95, respectively; P=0.19 for receiver operating characteristic curve comparison). The majority of ST-segment-elevation myocardial infarction patients with IMH had residual myocardial iron at follow-up. This was associated with persistently elevated T2 values in the surrounding infarct tissue and

  20. Dependency of cardiac rubidium-82 imaging quantitative measures on age, gender, vascular territory, and software in a cardiovascular normal population.

    PubMed

    Sunderland, John J; Pan, Xiao-Bo; Declerck, Jerome; Menda, Yusuf

    2015-02-01

    Recent technological improvements to PET imaging equipment combined with the availability of software optimized to calculate regional myocardial blood flow (MBF) and myocardial flow reserve (MFR) create a paradigm shifting opportunity to provide new clinically relevant quantitative information to cardiologists. However, clinical interpretation of the MBF and MFR is entirely dependent upon knowledge of MBF and MFR values in normal populations and subpopulations. This work reports Rb-82-based MBF and MFR measurements for a series of 49 verified cardiovascularly normal subjects as a preliminary baseline for future clinical studies. Forty-nine subjects (24F/25M, ages 41-69) with low probability for coronary artery disease and with normal exercise stress test were included. These subjects underwent rest/dipyridamole stress Rb-82 myocardial perfusion imaging using standard clinical techniques (40 mCi injection, 6-minute acquisition) using a Siemens Biograph 40 PET/CT scanner with high count rate detector option. List mode data was rehistogrammed into 26 dynamic frames (12 × 5 seconds, 6 × 10 seconds, 4 × 20 seconds, 4 × 40 seconds). Cardiac images were processed, and MBF and MFR calculated using Siemens syngo MBF, PMOD, and FlowQuant software using a single compartment Rb-82 model. Global myocardial blood flow under pharmacological stress for the 24 females as measured by PMOD, syngo MBF, and FlowQuant were 3.10 ± 0.72, 2.80 ± 0.66, and 2.60 ± 0.63 mL·minute(-1)·g(-1), and for the 25 males was 2.60 ± 0.84, 2.33 ± 0.75, 2.15 ± 0.62 mL·minute(-1)·g(-1), respectively. Rest flows for PMOD, syngo MBF, and FlowQuant averaged 1.32 ± 0.42, 1.20 ± 0.33, and 1.06 ± 0.38 mL·minute(-1)·g(-1) for the female subjects, and 1.12 ± 0.29, 0.90 ± 0.26, and 0.85 ± 0.24 mL·minute(-1)·g(-1) for the males. Myocardial flow reserves for PMOD, syngo MBF, and FlowQuant for the female normals were calculated to be 2.50 ± 0.80, 2.53 ± 0.67, 2.71 ± 0.90, and 2.50 ± 1.19, 2