Sample records for quantitative non-destructive testing

  1. Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials

    PubMed Central

    Dalecki, Diane; Mercado, Karla P.; Hocking, Denise C.

    2015-01-01

    Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering. PMID:26581347

  2. Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment

    NASA Astrophysics Data System (ADS)

    Williams, W. J.; Robinson, A. B.; Rabin, B. H.

    2017-12-01

    This article reports the results and interpretation of post-irradiation non-destructive examinations performed on four curved full-size fuel plates that comprise the AFIP-7 experiment. These fuel plates, having a U-10 wt.%Mo monolithic design, were irradiated under moderate operating conditions in the Advanced Test Reactor to assess fuel performance for geometries that are prototypic of research reactor fuel assemblies. Non-destructive examinations include visual examination, neutron radiography, profilometry, and precision gamma scanning. This article evaluates the qualitative and quantitative data taken for each plate, compares corresponding data sets, and presents the results of swelling analyses. These characterization results demonstrate that the fuel meets established irradiation performance requirements for mechanical integrity, geometric stability, and stable and predictable behavior.

  3. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiefel, Denis, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Grosse, Christian, E-mail: Grosse@tum.de

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT)more » system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.« less

  4. Guide on the Effective Block Approach for the Fatigue Life Assessment of Metallic Structures

    DTIC Science & Technology

    2013-01-01

    Load Interpretation Truncation Validation coupon test program NDI Non-Destructive Inspection QF Quantitative Fractography RAAF Royal Australian...even more-so with the advent of quantitative fractography . 3 LEFM forms the basis of most state-of-art CG models. UNCLASSIFIED 1 UNCLASSIFIED DSTO...preferred method for obtaining the CGR data is by quantitative fractography (QF). This method is well suited to small cracks where other measurement

  5. Quantitative nondestructive evaluation of materials and structures

    NASA Technical Reports Server (NTRS)

    Smith, Barry T.

    1991-01-01

    An experimental investigation was undertaken to quantify damage tolerance and resistance in composite materials impacted using the drop-weight method. Tests were conducted on laminates of several different carbon-fiber composite systems, such as epoxies, modified epoxies, and amorphous and semicrystalline thermoplastics. Impacted composite specimens were examined using destructive and non-destructive techniques to establish the characteristic damage states. Specifically, optical microscopy, ultrasonic, and scanning electron microscopy techniques were used to identify impact induced damage mechanisms. Damage propagation during post impact compression was also studied.

  6. Evaluation of PLS, LS-SVM, and LWR for quantitative spectroscopic analysis of soils

    USDA-ARS?s Scientific Manuscript database

    Soil testing requires the analysis of large numbers of samples in laboratory that are often time consuming and expensive. Mid-infrared spectroscopy (mid-IR) and near-infrared spectroscopy (NIRS) are fast, non-destructive, and inexpensive analytical methods that have been used for soil analysis, in l...

  7. The Effect of Localized Damage on the Electrical Conductivity of Bare Carbon Fiber Tow and its Use as a Non-Destructive Evaluation Tool for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Wentzel, Daniel

    2015-01-01

    Composite materials are beneficial because of their high specific strength and low weight. Safety, Destructive testing and destructive testing, Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE). Problem: Neither NDT nor NDE can provide sufficient data to determine life expectancy or quantify the damage state of a composite material.

  8. Comparative testing of radiographic testing, ultrasonic testing and phased array advanced ultrasonic testing non destructive testing techniques in accordance with the AWS D1.5 bridge welding code.

    DOT National Transportation Integrated Search

    2014-02-01

    A comprehensive body of non-destructive testing data was collected from steel bridge welds under real-world conditions in a fabricators shop. Three different non-destructive testing (NDT) techniques were used on each weld inspection, these being R...

  9. Flash Thermography to Evaluate Porosity in Carbon Fiber Reinforced Polymer (CFRPs)

    PubMed Central

    Meola, Carosena; Toscano, Cinzia

    2014-01-01

    It is a fact that the presence of porosity in composites has detrimental effects on their mechanical properties. Then, due to the high probability of void formation during manufacturing processes, it is necessary to have the availability of non-destructive evaluation techniques, which may be able to discover the presence and the distribution of porosity in the final parts. In recent years, flash thermography has emerged as the most valuable method, but it is still not adequately enclosed in the industrial enterprise. The main reason of this is the lack of sufficient quantitative data for a full validation of such a technique. The intention of the present work is to supply an overview on the current state-of-the-art regarding the use of flash thermography to evaluate the porosity percentage in fiber reinforced composite materials and to present the latest results, which are gathered by the authors, on porous carbon fiber reinforced polymer laminates. To this end, several coupons of two different stacking sequences and including a different amount of porosity are fabricated and inspected with both non-destructive and destructive testing techniques. Data coming from non-destructive testing with either flash thermography or ultrasonics are plotted against the porosity percentage, which was previously estimated with the volumetric method. The new obtained results are a witness to the efficacy of flash thermography. Some key points that need further consideration are also highlighted. PMID:28788527

  10. PREFACE: III All-Russian Scientific and Practical Conference on Innovations in Non-Destructive Testing (SibTest 2015)

    NASA Astrophysics Data System (ADS)

    2016-01-01

    This issue of the journal is devoted to the research and studies presented at the III All-Russian Scientific and Practical Conference on Innovations in Non-Destructive Testing SibTest. The conference was held in Altai, Russia, on 27-31 July 2015. The conference brought together experts from different countries and organizations who had a great opportunity to share knowledge during oral and poster presentations and to initiate discussions on topics that are of interest to the conference attendees. The conference aimed to discuss innovative methods and the application of advanced technologies in non-destructive testing. The conference also attempted to bring together university, academic and industrial science, to expand the co-operation of scientists from different countries in research and development and the commercialization of innovative technologies in non-destructive testing. The key themes of the conference were: ultrasonic and acoustic testing; electromagnetic and thermal testing; various types of radiation non-destructive testing; passive and active testing techniques. The conference organizers are the Institute of Non-Destructive Testing, Tomsk Polytechnic University, with the assistance of the Russian Society for Non-Destructive Testing and Technical Diagnostics, Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, National Research Tomsk State University, Moscow State Institute of Radio Engineering, Electronics and Automation.

  11. Analysis of Within-Test Variability of Non-Destructive Test Methods to Evaluate Compressive Strength of Normal Vibrated and Self-Compacting Concretes

    NASA Astrophysics Data System (ADS)

    Nepomuceno, Miguel C. S.; Lopes, Sérgio M. R.

    2017-10-01

    Non-destructive tests (NDT) have been used in the last decades for the assessment of in-situ quality and integrity of concrete elements. An important step in the application of NDT methods concerns to the interpretation and validation of the test results. In general, interpretation of NDT results should involve three distinct phases leading to the development of conclusions: processing of collected data, analysis of within-test variability and quantitative evaluation of property under investigation. The analysis of within-test variability can provide valuable information, since this can be compared with that of within-test variability associated with the NDT method in use, either to provide a measure of the quality control or to detect the presence of abnormal circumstances during the in-situ application. This paper reports the analysis of the experimental results of within-test variability of NDT obtained for normal vibrated concrete and self-compacting concrete. The NDT reported includes the surface hardness test, ultrasonic pulse velocity test, penetration resistance test, pull-off test, pull-out test and maturity test. The obtained results are discussed and conclusions are presented.

  12. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods.more » The pressure measured from neutron transmission spectra (~739 ± 98 kPa and ~751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ~758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ~ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. As a result, the ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.« less

  13. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    DOE PAGES

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.; ...

    2017-01-31

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods.more » The pressure measured from neutron transmission spectra (~739 ± 98 kPa and ~751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ~758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ~ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. As a result, the ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.« less

  14. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.; Byler, D. D.; McClellan, K. J.; Bourke, M. A. M.; Vallerga, J. V.

    2017-01-01

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (˜739 ± 98 kPa and ˜751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ˜758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ˜ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.

  15. Rapid and non-destructive assessment of polyunsaturated fatty acids contents in Salmon using near-infrared hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Tao, Feifei; Mba, Ogan; Liu, Li; Ngadi, Michael

    2017-04-01

    Polyunsaturated fatty acids (PUFAs) are important nutrients present in Salmon. However, current methods for quantifying the fatty acids (FAs) contents in foods are generally based on gas chromatography (GC) technique, which is time-consuming, laborious and destructive to the tested samples. Therefore, the capability of near-infrared (NIR) hyperspectral imaging to predict the PUFAs contents of C20:2 n-6, C20:3 n-6, C20:5 n-3, C22:5 n-3 and C22:6 n-3 in Salmon fillets in a rapid and non-destructive way was investigated in this work. Mean reflectance spectra were first extracted from the region of interests (ROIs), and then the spectral pre-processing methods of 2nd derivative and Savitzky-Golay (SG) smoothing were performed on the original spectra. Based on the original and the pre-processed spectra, PLSR technique was employed to develop the quantitative models for predicting each PUFA content in Salmon fillets. The results showed that for all the studied PUFAs, the quantitative models developed using the pre-processed reflectance spectra by "2nd derivative + SG smoothing" could improve their modeling results. Good prediction results were achieved with RP and RMSEP of 0.91 and 0.75 mg/g dry weight, 0.86 and 1.44 mg/g dry weight, 0.82 and 3.01 mg/g dry weight for C20:3 n-6, C22:5 n-3 and C20:5 n-3, respectively after pre-processing by "2nd derivative + SG smoothing". The work demonstrated that NIR hyperspectral imaging could be a useful tool for rapid and non-destructive determination of the PUFA contents in fish fillets.

  16. Shearography for Non-destructive Inspection with applications to BAT Mask Tile Adhesive Bonding and Specular Surface Honeycomb Panels

    NASA Technical Reports Server (NTRS)

    Lysak, Daniel B.

    2003-01-01

    The applicability of shearography techniques for non-destructive evaluation in two unique application areas is examined. In the first application, shearography is used to evaluate the quality of adhesive bonds holding lead tiles to the B.4T gamma ray mask for the NASA Swift program. Using a vibration excitation, the more poorly bonded tiles are readily identifiable in the shearography image. A quantitative analysis is presented that compares the shearography results with a destructive pull test measuring the force at bond failure. The second application is to evaluate the bonding between the skin and core of a honeycomb structure with a specular (mirror-like) surface. In standard shearography techniques, the object under test must have a diffuse surface to generate the speckle patterns in laser light, which are then sheared. A novel configuration using the specular surface as a mirror to image speckles from a diffuser is presented, opening up the use of shearography to a new class of objects that could not have been examined with the traditional approach. This new technique readily identifies large scale bond failures in the panel, demonstrating the validity of this approach.

  17. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting

    PubMed Central

    Tian, Kun V.; Yang, Bin; Yue, Yuanzheng; Bowron, Daniel T.; Mayers, Jerry; Donnan, Robert S.; Dobó-Nagy, Csaba; Nicholson, John W.; Fang, De-Cai; Greer, A. Lindsay; Chass, Gregory A.; Greaves, G. Neville

    2015-01-01

    Bioactive glass ionomer cements (GICs) have been in widespread use for ∼40 years in dentistry and medicine. However, these composites fall short of the toughness needed for permanent implants. Significant impediment to improvement has been the requisite use of conventional destructive mechanical testing, which is necessarily retrospective. Here we show quantitatively, through the novel use of calorimetry, terahertz (THz) spectroscopy and neutron scattering, how GIC's developing fracture toughness during setting is related to interfacial THz dynamics, changing atomic cohesion and fluctuating interfacial configurations. Contrary to convention, we find setting is non-monotonic, characterized by abrupt features not previously detected, including a glass–polymer coupling point, an early setting point, where decreasing toughness unexpectedly recovers, followed by stress-induced weakening of interfaces. Subsequently, toughness declines asymptotically to long-term fracture test values. We expect the insight afforded by these in situ non-destructive techniques will assist in raising understanding of the setting mechanisms and associated dynamics of cementitious materials. PMID:26548704

  18. Frequency response of electrochemical cells

    NASA Technical Reports Server (NTRS)

    Thomas, Daniel L.

    1990-01-01

    The main objective was to examine the feasibility of using frequency response techniques (1) as a tool in destructive physical analysis of batteries, particularly for estimating electrode structural parameters such as specific area, porosity, and tortuosity and (2) as a non-destructive testing technique for obtaining information such as state of charge and acceptability for space flight. The phenomena that contribute to the frequency response of an electrode include: (1) double layer capacitance; (2) Faradaic reaction resistance; (3) mass transfer of Warburg impedance; and (4) ohmic solution resistance. Nickel cadmium cells were investigated in solutions of KOH. A significant amount of data was acquired. Quantitative data analysis, using the developed software, is planned for the future.

  19. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.

    PubMed

    Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu

    2017-11-24

    The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.

  20. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates... test; and Cp = the filtrate concentration measured during the challenge test. Equivalent units must be... or the applicability of the non-destructive performance test and associated QCRV, additional...

  1. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates... test; and Cp = the filtrate concentration measured during the challenge test. Equivalent units must be... or the applicability of the non-destructive performance test and associated QCRV, additional...

  2. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates... test; and Cp = the filtrate concentration measured during the challenge test. Equivalent units must be... or the applicability of the non-destructive performance test and associated QCRV, additional...

  3. Method for detecting damage in carbon-fibre reinforced plastic-steel structures based on eddy current pulsed thermography

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Liu, Zhiping; Jiang, Xiaoli; Lodewijks, Gabrol

    2018-01-01

    Eddy current pulsed thermography (ECPT) is well established for non-destructive testing of electrical conductive materials, featuring the advantages of contactless, intuitive detecting and efficient heating. The concept of divergence characterization of the damage rate of carbon fibre-reinforced plastic (CFRP)-steel structures can be extended to ECPT thermal pattern characterization. It was found in this study that the use of ECPT technology on CFRP-steel structures generated a sizeable amount of valuable information for comprehensive material diagnostics. The relationship between divergence and transient thermal patterns can be identified and analysed by deploying mathematical models to analyse the information about fibre texture-like orientations, gaps and undulations in these multi-layered materials. The developed algorithm enabled the removal of information about fibre texture and the extraction of damage features. The model of the CFRP-glue-steel structures with damage was established using COMSOL Multiphysics® software, and quantitative non-destructive damage evaluation from the ECPT image areas was derived. The results of this proposed method illustrate that damaged areas are highly affected by available information about fibre texture. This proposed work can be applied for detection of impact induced damage and quantitative evaluation of CFRP structures.

  4. Destructive and non-destructive evaluation of cu/cu diffusion bonding with interlayer aluminum

    NASA Astrophysics Data System (ADS)

    Santosh Kumar, A.; Mohan, T.; Kumar, S. Suresh; Ravisankar, B.

    2018-03-01

    The current study is established an inspection procedure for assessing quality of diffusion bonded joints using destructive and non-destructive method. Diffusion bonding of commercially pure copper with aluminium interlayer was carried out uniaxial load at 15MPa for different temperatures under holding time 60 min in vacuum atmosphere. The bond qualities were determined by destructive and non-destructive testing method (ultrasonic C- scan). The bond interface and bonded samples were analysed using optical and scanning electron microscopy (SEM). The element composition of the fractured and bonded area is determined using the Energy Dispersive Spectrometry (EDS). The bond quality obtained by both testing methods and its parameters are correlated. The optimized bonding parameter for best bonding characteristics for copper diffusion bonding with aluminum interlayer is reported.

  5. Isotope specific arbitrary material flow meter

    DOEpatents

    Barty, Christopher P. J.; Post, John C.; Jones, Edwin

    2016-10-25

    A laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  6. Automated Non-Destructive Testing Array Evaluation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, T; Zavaljevski, N; Bakhtiari, S

    2004-12-24

    Automated Non-Destructive Testing Array Evaluation System (ANTARES) sofeware alogrithms were developed for use on X-probe(tm) data. Data used for algorithm development and preliminary perfomance determination was obtained for USNRC mock-up at Argone and data from EPRI.

  7. Atlantis Non-destructive Testing

    NASA Image and Video Library

    2003-10-29

    In the Orbiter Processing Facility, the nose cap (foreground) removed from Atlantis (behind) waits to be shipped to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

  8. NonDestructive Evaluation for Industrial & Development Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, James F.

    2016-10-12

    Provide overview of weld inspection for Non-Destructive Testing at LANL. This includes radiography (RT/DR/CR/CT for x-ray & neutron sources), ultrasonic testing (UT/PAUT), dye penetrant inspection (PT), eddy current inspection (ET) and magnetic particle testing (MT). Facilities and capabilities for weld inspection will be summarized with examples.

  9. Photoacoustic Spectroscopy as a Non-destructive Tool for Quantification of Pesticide Residue in Apple Cuticle

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Wang, Yafei; Gao, Chunming; Huan, Huiting; Zhao, Binxing; Yan, Laijun

    2015-06-01

    Photoacoustic spectroscopy (PAS), the non-destructive method to detect residue of dimethyl-dichloro-vinyl-phosphate (DDVP) pesticide in a cuticle of apple, is described. After constructing the PA experimental setup and identifying three characteristic peaks of DDVP in the near ultraviolet region, the PA spectra of an apple cuticle contaminated with DDVP were collected. The artificial neural network method was then applied to analyze data quantitatively. The results show a correlation coefficient exceeding 0.99 and a detection limit of 0.2 ppm, which is within the national food safety standard for maximum residue limits for pesticides in food (GB 2763-2012). This fact and the non-destructive character of PAS make the approach promising for detection of pesticide residue in fruits.

  10. Procedure for quantitative determination of effectiveness of photoinduced destruction of malignant tumors

    NASA Astrophysics Data System (ADS)

    Bizyuk, S. A.; Istomin, Yu. P.; Dzhagarov, B. M.

    2006-07-01

    We have developed a procedure for analysis of the functional status of blood vessels in tumor tissues using computer-assisted color scanning of tumor slices and also for a quantitative assessment of the effectiveness of photoinduced destruction of tumor tissues in animal experiments. Its major advantage is direct determination of the size of the tumor necrosis zone. The procedure has been tested in an experiment on three strains of malignant tumors with different morphologies.

  11. Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhong, Shuncong; Shen, Yao-Chun; Ho, Louise; May, Robert K.; Zeitler, J. Axel; Evans, Mike; Taday, Philip F.; Pepper, Michael; Rades, Thomas; Gordon, Keith C.; Müller, Ronny; Kleinebudde, Peter

    2011-03-01

    Optical coherence tomography (OCT) and terahertz pulsed imaging (TPI) are two powerful techniques allowing high quality cross-sectional images from within scattering media to be obtained non-destructively. In this paper, we report experimental results of using OCT and TPI for quantitatively characterizing pharmaceutical tablet coatings in the thickness range of 10-140 μm. We found that the spectral OCT system developed in-house has an axial resolution of 0.9 μm, and is capable of quantifying very thin coatings in the range of 10-60 μm. The upper limit of 60 μm within the tablet coating and core is owed to the strong scattering of OCT light, which has relatively short wavelengths in the range of 0.5-1.0 μm. On the other hand, TPI utilizes terahertz radiation that has substantially long wavelengths in the range of hundreds of microns, and thus is less prone to the scattering problem. Consequently TPI has been demonstrated to be able to quantify thicker coatings in the range of 40-140 μm and beyond. We concluded that OCT and TPI are two complementary analytical techniques for non-destructive and quantitative characterization of pharmaceutical tablet coatings.

  12. Non-Destructive Techniques Based on Eddy Current Testing

    PubMed Central

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  13. Non-destructive techniques based on eddy current testing.

    PubMed

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.

  14. Identification of the Thickness of Nugget on Worksheet Spot Welding Using Non Destructive Test (NDT) - Effect of Pressure

    NASA Astrophysics Data System (ADS)

    Sifa, A.; Baskoro, A. S.; Sugeng, S.; Badruzzaman, B.; Endramawan, T.

    2018-02-01

    Resistance Spot Welding (RSW) is a process of connecting between two worksheet with thermomechanical loading process, RSW is widely used in automotive industry, the quality of splicing spot welding is influenced by several factors. One of the factors at the time of the welding process is pressure. The quality of welding on the nuggets can be determined by undertaking non-destructive testing by using Non Destructive Test (NDT) - Ultrasonic Test. In the NDT test is done by detecting the thickness of the nugget area, the purpose of research conducted to determine the effect of pressure to welding quality with Nugget thickness gauge measurement with Non Destructive Test method and manual measurement with micrometer, Experimental welding process by entering the welding parameters that have been specified and pressure variables 1 -5 bars on the worksheet thickness of 1 mm. The results of testing with NDT show there is addition of thickness in nugget superiority after compare with measurement result of thickness of nugget with micrometer which slightly experience thickness in nugget area, this indicates that the welding results have a connection between worksheet 1 and worksheet 2.

  15. Porosity estimation of aged mortar using a micromechanical model.

    PubMed

    Hernández, M G; Anaya, J J; Sanchez, T; Segura, I

    2006-12-22

    Degradation of concrete structures located in high humidity atmospheres or under flowing water is a very important problem. In this study, a method for ultrasonic non-destructive characterization in aged mortar is presented. The proposed method makes a prediction of the behaviour of aged mortar accomplished with a three phase micromechanical model using ultrasonic measurements. Aging mortar was accelerated by immersing the probes in ammonium nitrate solution. Both destructive and non-destructive characterization of mortar was performed. Destructive tests of porosity were performed using a vacuum saturation method and non-destructive characterization was carried out using ultrasonic velocities. Aging experiments show that mortar degradation not only involves a porosity increase, but also microstructural changes in the cement matrix. Experimental results show that the estimated porosity using the proposed non-destructive methodology had a comparable performance to classical destructive techniques.

  16. Estimation of masonry mechanical characteristics by ESPI fringe interpretation

    NASA Astrophysics Data System (ADS)

    Facchini, M.; Zanetta, P.; Binda, L.; Roberti, G. Mirabella; Tiraboschi, C.

    Electronic speckle pattern interferometry (ESPI) can be a powerful tool for efficient non-destructive testing and evaluation of micro-deformations of masonry materials and structures. Unlike traditional transducers, ESPI requires no direct contact with the object, and the full-field visualisation it offers provides for a better understanding of the surface behaviour. This paper describes an in-plane deformation inspection system which has been built up for an automatic acquisition of interferograms at different stages of a test. The system is applied to the evaluation of some mechanical characteristics of masonry components. Qualitative and quantitative results are obtained and an overall discussion is presented.

  17. Non-destructive geographical traceability of sea cucumber (Apostichopus japonicus) using near infrared spectroscopy combined with chemometric methods

    PubMed Central

    Cai, Rui; Wang, Shisheng; Tang, Bo; Li, Yueqing; Zhao, Weijie

    2018-01-01

    Sea cucumber is the major tonic seafood worldwide, and geographical origin traceability is an important part of its quality and safety control. In this work, a non-destructive method for origin traceability of sea cucumber (Apostichopus japonicus) from northern China Sea and East China Sea using near infrared spectroscopy (NIRS) and multivariate analysis methods was proposed. Total fat contents of 189 fresh sea cucumber samples were determined and partial least-squares (PLS) regression was used to establish the quantitative NIRS model. The ordered predictor selection algorithm was performed to select feasible wavelength regions for the construction of PLS and identification models. The identification model was developed by principal component analysis combined with Mahalanobis distance and scaling to the first range algorithms. In the test set of the optimum PLS models, the root mean square error of prediction was 0.45, and correlation coefficient was 0.90. The correct classification rates of 100% were obtained in both identification calibration model and test model. The overall results indicated that NIRS method combined with chemometric analysis was a suitable tool for origin traceability and identification of fresh sea cucumber samples from nine origins in China. PMID:29410795

  18. Non-destructive geographical traceability of sea cucumber (Apostichopus japonicus) using near infrared spectroscopy combined with chemometric methods.

    PubMed

    Guo, Xiuhan; Cai, Rui; Wang, Shisheng; Tang, Bo; Li, Yueqing; Zhao, Weijie

    2018-01-01

    Sea cucumber is the major tonic seafood worldwide, and geographical origin traceability is an important part of its quality and safety control. In this work, a non-destructive method for origin traceability of sea cucumber ( Apostichopus japonicus ) from northern China Sea and East China Sea using near infrared spectroscopy (NIRS) and multivariate analysis methods was proposed. Total fat contents of 189 fresh sea cucumber samples were determined and partial least-squares (PLS) regression was used to establish the quantitative NIRS model. The ordered predictor selection algorithm was performed to select feasible wavelength regions for the construction of PLS and identification models. The identification model was developed by principal component analysis combined with Mahalanobis distance and scaling to the first range algorithms. In the test set of the optimum PLS models, the root mean square error of prediction was 0.45, and correlation coefficient was 0.90. The correct classification rates of 100% were obtained in both identification calibration model and test model. The overall results indicated that NIRS method combined with chemometric analysis was a suitable tool for origin traceability and identification of fresh sea cucumber samples from nine origins in China.

  19. Quantitative non-destructive evaluation of composite materials based on ultrasonic parameters

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1987-01-01

    Research into the nondestructive evaluation of advanced reinforced composite laminates is summarized. The applicability of the Framers-Kronig equations to the nondestructive evaluation of composite materials is described.

  20. Mechanical DT and NDT: characterisation of building stones and research of correlation for in situ analysis of ancient masonries

    NASA Astrophysics Data System (ADS)

    Vasanelli, E.; Calia, A.; Aiello, M. A.; Sileo, M.; Leucci, G.

    2012-04-01

    Restoration works of the historical-architectural built heritage move from the typological and mechanical qualification of the buildings. Minimum destructive impact is required in preliminary diagnostic studies for the interventions, as it is possible. The use of the undestructive and non-invasive diagnostic techniques has always advantages in the activities on pre-existing buildings, in terms of sustainability; moreover, it is a need with respect to the conservation constraints when we act on the historical-architectural heritage. This work deals with destructive and non-destructive tests for the mechanical characterisation of some traditional soft stones, used as building materials in the Southern Italy; it is a part of a larger activity devoted to set up non-invasive diagnostic procedures for the mechanical analysis and qualification of ancient masonries. The laboratory experimental activity is based on the use of mechanical compressive tests, ultrasonic and Schmidt-Hammer tests, and the research of correlation between the results obtained by these crossed tests. It is aimed to verify the effectiveness and/or to point out critical aspects and limits of the above mentioned non-destructive tests - already applied in the field of the concrete and compact stones - with reference to the characterisation of the soft stones. The research of correlations between the results of destructive and non destructive tests has the final aim to reduce the use of destructive analyses on the masonries, by acquiring substitutive information derivable from performing NDT in laboratory, as well as in situ conditions. Finally, data gathered by the mechanical characterisation give reference values for the evaluation and control of the effectiveness of restoration interventions and their monitoring. This activity is carried out in an interdisciplinary way within the AITECH network (Applied Innovation Technologies for Diagnosis and Conservation of Built Heritage), a regional research laboratory infrastructure (Apulian region, Southern Italy) funded within the FSE and FESR programs and realised by the contribution of the Italian CNR and Salento University.

  1. A Quantitative, Non-Destructive Methodology for Habitat Characterisation and Benthic Monitoring at Offshore Renewable Energy Developments

    PubMed Central

    Sheehan, Emma V.; Stevens, Timothy F.; Attrill, Martin J.

    2010-01-01

    Following governments' policies to tackle global climate change, the development of offshore renewable energy sites is likely to increase substantially over coming years. All such developments interact with the seabed to some degree and so a key need exists for suitable methodology to monitor the impacts of large-scale Marine Renewable Energy Installations (MREIs). Many of these will be situated on mixed or rocky substrata, where conventional methods to characterise the habitat are unsuitable. Traditional destructive sampling is also inappropriate in conservation terms, particularly as safety zones around (MREIs) could function as Marine Protected Areas, with positive benefits for biodiversity. Here we describe a technique developed to effectively monitor the impact of MREIs and report the results of its field testing, enabling large areas to be surveyed accurately and cost-effectively. The methodology is based on a high-definition video camera, plus LED lights and laser scale markers, mounted on a “flying array” that maintains itself above the seabed grounded by a length of chain, thus causing minimal damage. Samples are taken by slow-speed tows of the gear behind a boat (200 m transects). The HD video and randomly selected frame grabs are analysed to quantify species distribution. The equipment was tested over two years in Lyme Bay, UK (25 m depth), then subsequently successfully deployed in demanding conditions at the deep (>50 m) high-energy Wave Hub site off Cornwall, UK, and a potential tidal stream energy site in Guernsey, Channel Islands (1.5 ms−1 current), the first time remote samples from such a habitat have been achieved. The next stage in the monitoring development process is described, involving the use of Remote Operated Vehicles to survey the seabed post-deployment of MREI devices. The complete methodology provides the first quantitative, relatively non-destructive method for monitoring mixed-substrate benthic communities beneath MPAs and MREIs pre- and post-device deployment. PMID:21206748

  2. A quantitative, non-destructive methodology for habitat characterisation and benthic monitoring at offshore renewable energy developments.

    PubMed

    Sheehan, Emma V; Stevens, Timothy F; Attrill, Martin J

    2010-12-29

    Following governments' policies to tackle global climate change, the development of offshore renewable energy sites is likely to increase substantially over coming years. All such developments interact with the seabed to some degree and so a key need exists for suitable methodology to monitor the impacts of large-scale Marine Renewable Energy Installations (MREIs). Many of these will be situated on mixed or rocky substrata, where conventional methods to characterise the habitat are unsuitable. Traditional destructive sampling is also inappropriate in conservation terms, particularly as safety zones around (MREIs) could function as Marine Protected Areas, with positive benefits for biodiversity. Here we describe a technique developed to effectively monitor the impact of MREIs and report the results of its field testing, enabling large areas to be surveyed accurately and cost-effectively. The methodology is based on a high-definition video camera, plus LED lights and laser scale markers, mounted on a "flying array" that maintains itself above the seabed grounded by a length of chain, thus causing minimal damage. Samples are taken by slow-speed tows of the gear behind a boat (200 m transects). The HD video and randomly selected frame grabs are analysed to quantify species distribution. The equipment was tested over two years in Lyme Bay, UK (25 m depth), then subsequently successfully deployed in demanding conditions at the deep (>50 m) high-energy Wave Hub site off Cornwall, UK, and a potential tidal stream energy site in Guernsey, Channel Islands (1.5 ms⁻¹ current), the first time remote samples from such a habitat have been achieved. The next stage in the monitoring development process is described, involving the use of Remote Operated Vehicles to survey the seabed post-deployment of MREI devices. The complete methodology provides the first quantitative, relatively non-destructive method for monitoring mixed-substrate benthic communities beneath MPAs and MREIs pre- and post-device deployment.

  3. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    PubMed Central

    Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  4. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications.

    PubMed

    Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan

    2016-02-26

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  5. Infrared Thermography for Temperature Measurement and Non-Destructive Testing

    PubMed Central

    Usamentiaga, Rubèn; Venegas, Pablo; Guerediaga, Jon; Vega, Laura; Molleda, Julio; Bulnes, Francisco G.

    2014-01-01

    The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed. PMID:25014096

  6. Non-destructive testing (NDT) of a segmental concrete bridge scheduled for demolition, with a focus on condition assessment and corrosion detection of internal tendons : [summary].

    DOT National Transportation Integrated Search

    2017-06-01

    In this project, Florida International University researchers used segments from a demolished concrete segmental bridge with internal tendons to study damage to post-stressed tendons and to test the effectiveness of various methods of non-destructive...

  7. Pre-processing of data coming from a laser-EMAT system for non-destructive testing of steel slabs.

    PubMed

    Sgarbi, Mirko; Colla, Valentina; Cateni, Sivia; Higson, Stuart

    2012-01-01

    Non destructive test systems are increasingly applied in the industrial context for their strong potentialities in improving and standardizing quality control. Especially in the intermediate manufacturing stages, early detection of defects on semi-finished products allow their direction towards later production processes according to their quality, with consequent considerable savings in time, energy, materials and work. However, the raw data coming from non destructive test systems are not always immediately suitable for sophisticated defect detection algorithms, due to noise and disturbances which are unavoidable, especially in harsh operating conditions, such as the ones which are typical of the steelmaking cycle. The paper describes some pre-processing operations which are required in order to exploit the data coming from a non destructive test system. Such a system is based on the joint exploitation of Laser and Electro-Magnetic Acoustic Transducer technologies and is applied to the detection of surface and sub-surface cracks in cold and hot steel slabs. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Research on Non-Destructive Testing Technology in Conservation Repair Project of Ancestral Temple in Mukden Palace

    NASA Astrophysics Data System (ADS)

    Yang, J.; Fu, M.

    2017-08-01

    Due to the use of wood and other non-permanent materials, traditional Chinese architecture is one of the most fragile constructions in various heritage objects today. With the increasing emphasis on the protection of cultural relics, the repair project of wooden structure has become more and more important. There are various kinds of destructions, which pose a hidden danger to the overall safety of the ancient buildings, caused not only by time and nature, but also by improper repairs in history or nowadays. Today, the use of digital technology is a basic requirement in the conservation of cultural heritage. Detection technology, especially non-destructive testing technology, could provide more accurate records in capturing detailed physical characteristics of structures such as geometric deformation and invisible damage, as well as prevent a man-made destruction in the process of repair project. This paper aims to interpret with a typical example, Ancestral Temple in Mukden Palace, along with a discussion of how to use the non-destructive testing technology with ground penetrating radar, stress wave, resistograph and so on, in addition to find an appropriate protection method in repair project of traditional Chinese wooden architecture.

  9. Non-destructive Measurement of Calcium and Potassium in Apple and Pear Using Handheld X-ray Fluorescence

    PubMed Central

    Kalcsits, Lee A.

    2016-01-01

    Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape. PMID:27092160

  10. Development of Cellular Absorptive Tracers (CATs) for a Quantitative Characterization of Microbial Mass in Flow Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saripalli, Prasad; Brown, Christopher F.; Lindberg, Michael J.

    We report on a new Cellular Absorptive Tracers (CATs) method, for a simple, non-destructive characterization of bacterial mass in flow systems. Results show that adsorption of a CAT molecule into the cellular mass results in its retardation during flow, which is a good, quantitative measure of the biomass quantity and distribution. No such methods are currently available for a quantitative characterization of cell mass.

  11. Profiling System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A non-destructive testing system, originally developed for Langley Research Center, is sold commercially. The DyLASP Profilometer locates defects in composite and metallic materials and assemblies. It operates in real time and displays results as a contour map of the assembly with defects indicated by size and location. Applications are in non-destructive testing and evaluation, and the company will customize to user requirements.

  12. 75 FR 38953 - Airworthiness Directives; BAE Systems (OPERATIONS) LIMITED Model BAe 146 and Avro 146-RJ Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ..., requiring repetitive non- destructive testing (NDT) inspections for cracking on the upper end of the NLG... Aviation Authority under AD number 002-06-2000, requiring repetitive non-destructive testing (NDT... that section, Congress charges the FAA with promoting safe flight of civil aircraft in air commerce by...

  13. QUANTITATIVE NON-DESTRUCTIVE EVALUATION (QNDE) OF THE ELASTIC MODULI OF POROUS TIAL ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeheskel, O.

    2008-02-28

    The elastic moduli of {gamma}-TiA1 were studied in porous samples consolidated by various techniques e.g. cold isostatic pressing (CIP), pressure-less sintering, or hot isostatic pressing (HIP). Porosity linearly affects the dynamic elastic moduli of samples. The results indicate that the sound wave velocities and the elastic moduli affected by the processing route and depend not only on the attained density but also on the consolidation temperature. In this paper we show that there is linear correlation between the shear and the longitudinal sound velocities in porous TiA1. This opens the way to use a single sound velocity as a toolmore » for quantitative non-destructive evaluation (QNDE) of porous TiA1 alloys. Here we demonstrate the applicability of an equation derived from the elastic theory and used previously for porous cubic metals.« less

  14. The use of fractional order derivatives for eddy current non-destructive testing

    NASA Astrophysics Data System (ADS)

    Sikora, Ryszard; Grzywacz, Bogdan; Chady, Tomasz

    2018-04-01

    The paper presents the possibility of using the fractional derivatives for non-destructive testing when a multi-frequency method based on eddy current is applied. It is shown that frequency characteristics obtained during tests can be approximated by characteristics of a proposed model in the form of fractional order transfer function, and values of parameters of this model can be utilized for detection and identification of defects.

  15. Étude de la réponse photoacoustique d'objets massifs en 3D

    NASA Astrophysics Data System (ADS)

    Séverac, H.; Mousseigne, M.; Franceschi, J. L.

    1996-11-01

    In some sectors such as microelectronics or the physics of materials, reliability is of capital importance. It is also particularly attractive to have access on informations on the material behaviour without the use of a destructive test like chemical analysis or others mechanical tests. The submitted method for non-destructive testing is based on the waves generation with a laser beam. The aim of studying the various waves in the three-dimensional space is to bring informations about materials response. Thermoelastic modelisation allowed a rigorous analytic approach and to give rise to a software written in Turbo-Pascal for a more general solution. Dans les secteurs où la fiabilité est capitale, tels la micro-électronique ou la physique des matériaux, il est particulièrement utile d'accéder aux informations sur le comportement du matériau sans avoir à utiliser une méthode destructive (analyses chimiques ou autres essais mécaniques). La méthode de contrôle non destructif présentée est basée sur la génération d'ondes par impact d'un faisceau laser focalisé à la surface d'un échantillon, sans atteindre le régime d'ablation. L'étude de la propagation des diverses ondes dans l'espace tridimensionnel permet d'apporter des mesures quantitatives sur l'analyse de la réponse des matériaux utilisés. La modélisation des phénomènes thermoélastiques a permis une approche analytique rigoureuse et donné naissance à un logiciel de simulation écrit en Turbo-Pascal pour des études plus générales.

  16. Method for non-destructive testing

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2011-08-30

    Non-destructive testing method may include providing a source material that emits positrons in response to bombardment of the source material with photons. The source material is exposed to photons. The source material is positioned adjacent the specimen, the specimen being exposed to at least some of the positrons emitted by the source material. Annihilation gamma rays emitted by the specimen are detected.

  17. MicroCT parameters for multimaterial elements assessment

    NASA Astrophysics Data System (ADS)

    de Araújo, Olga M. O.; Silva Bastos, Jaqueline; Machado, Alessandra S.; dos Santos, Thaís M. P.; Ferreira, Cintia G.; Rosifini Alves Claro, Ana Paula; Lopes, Ricardo T.

    2018-03-01

    Microtomography is a non-destructive testing technique for quantitative and qualitative analysis. The investigation of multimaterial elements with great difference of density can result in artifacts that degrade image quality depending on combination of additional filter. The aim of this study is the selection of parameters most appropriate for analysis of bone tissue with metallic implant. The results show the simulation with MCNPX code for the distribution of energy without additional filter, with use of aluminum, copper and brass filters and their respective reconstructed images showing the importance of the choice of these parameters in image acquisition process on computed microtomography.

  18. A quantitative non-destructive residual stress assessment tool for pipelines.

    DOT National Transportation Integrated Search

    2014-09-01

    G2MT successfully demonstrated the eStress system, a powerful new nondestructive evaluation : system for analyzing through-thickness residual stresses in mechanical damaged areas of steel : pipelines. The eStress system is designed to help pipe...

  19. Non-destructive monitoring of creaming of oil-in-water emulsion-based formulations using magnetic resonance imaging.

    PubMed

    Onuki, Yoshinori; Horita, Akihiro; Kuribayashi, Hideto; Okuno, Yoshihide; Obata, Yasuko; Takayama, Kozo

    2014-07-01

    A non-destructive method for monitoring creaming of emulsion-based formulations is in great demand because it allows us to understand fully their instability mechanisms. This study was aimed at demonstrating the usefulness of magnetic resonance (MR) techniques, including MR imaging (MRI) and MR spectroscopy (MRS), for evaluating the physicochemical stability of emulsion-based formulations. Emulsions that are applicable as the base of practical skin creams were used as test samples. Substantial creaming was developed by centrifugation, which was then monitored by MRI. The creaming oil droplet layer and aqueous phase were clearly distinguished by quantitative MRI by measuring T1 and the apparent diffusion coefficient. Components in a selected volume in the emulsions could be analyzed using MRS. Then, model emulsions having different hydrophilic-lipophilic balance (HLB) values were tested, and the optimal HLB value for a stable dispersion was determined. In addition, the MRI examination enables the detection of creaming occurring in a polyethylene tube, which is commonly used for commercial products, without losing any image quality. These findings strongly indicate that MR techniques are powerful tools to evaluate the physicochemical stability of emulsion-based formulations. This study will make a great contribution to the development and quality control of emulsion-based formulations.

  20. Geometrical optimization of sensors for eddy currents nondestructive testing and evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thollon, F.; Burais, N.

    1995-05-01

    Design of Non Destructive Testing (NDT) and Non Destructive Evaluation (NDE) sensors is possible by solving Maxwell`s relations with FEM or BIM. But the large number of geometrical and electrical parameters of sensor and tested material implies many results that don`t give necessarily a well adapted sensor. The authors have used a genetic algorithm for automatic optimization. After having tested this algorithm with analytical solution of Maxwell`s relations for cladding thickness measurement, the method has been implemented in finite element package.

  1. High resolution X-ray CT for advanced electronics packaging

    NASA Astrophysics Data System (ADS)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  2. Influence of Structural Features and Fracture Processes on Surface Roughness: A Case Study from the Krosno Sandstones of the Górka-Mucharz Quarry (Little Beskids, Southern Poland)

    NASA Astrophysics Data System (ADS)

    Pieczara, Łukasz

    2015-09-01

    The paper presents the results of analysis of surface roughness parameters in the Krosno Sandstones of Mucharz, southern Poland. It was aimed at determining whether these parameters are influenced by structural features (mainly the laminar distribution of mineral components and directional distribution of non-isometric grains) and fracture processes. The tests applied in the analysis enabled us to determine and describe the primary statistical parameters used in the quantitative description of surface roughness, as well as specify the usefulness of contact profilometry as a method of visualizing spatial differentiation of fracture processes in rocks. These aims were achieved by selecting a model material (Krosno Sandstones from the Górka-Mucharz Quarry) and an appropriate research methodology. The schedule of laboratory analyses included: identification analyses connected with non-destructive ultrasonic tests, aimed at the preliminary determination of rock anisotropy, strength point load tests (cleaved surfaces were obtained due to destruction of rock samples), microscopic analysis (observation of thin sections in order to determine the mechanism of inducing fracture processes) and a test method of measuring surface roughness (two- and three-dimensional diagrams, topographic and contour maps, and statistical parameters of surface roughness). The highest values of roughness indicators were achieved for surfaces formed under the influence of intragranular fracture processes (cracks propagating directly through grains). This is related to the structural features of the Krosno Sandstones (distribution of lamination and bedding).

  3. Nondestructive examination of recovery stage during annealing of a cold-rolled low-carbon steel using eddy current testing technique

    NASA Astrophysics Data System (ADS)

    Seyfpour, M.; Ghanei, S.; Mazinani, M.; Kashefi, M.; Davis, C.

    2018-04-01

    The recovery process in steel is usually investigated by conventional destructive tests that are expensive, time-consuming and also cumbersome. In this study, an alternative non-destructive test technique (based on eddy current testing) is used to characterise the recovery process during annealing of cold-rolled low-carbon steels. For assessing the reliability of eddy current results corresponding to different levels of recovery, X-ray line broadening analysis is also employed. It is shown that there is a strong relationship between eddy current outputs and the extent to which recovery occurs at different annealing temperatures. Accordingly, the non-destructive eddy current test technique represents the potential to be used as a reliable process for detection of the occurrence of recovery in the steel microstructure.

  4. Mechanical properties and eddy current testing of thermally aged Z3CN20.09M cast duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Liu, Tonghua; Wang, Wei; Qiang, Wenjiang; Shu, Guogang

    2018-04-01

    To study the thermal aging embrittlement of Z3CN20.09M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 380 °C up to 9000 h. Microhardness measurements, Charpy impact and eddy current tests were performed on aged samples to characterize their thermal aging embrittlement. The results showed that the signal amplitude of eddy current decreased with the increase in aging time. Two quantitative correlations of the eddy current signal amplitude with both the Charpy impact energy, and the Vickers microhardness of the ferrite phase are obtained. The study showed that eddy current testing could be used to non-destructively evaluate the thermal aging embrittlement of cast duplex stainless steels.

  5. THz QCL-based active imaging dedicated to non-destructive testing of composite materials used in aeronautics

    NASA Astrophysics Data System (ADS)

    Destic, F.; Petitjean, Y.; Massenot, S.; Mollier, J.-C.; Barbieri, S.

    2010-08-01

    This paper presents a CW raster-scanning THz imaging setup, used to perform Non-Destructive Testing of KevlarTMand carbon fibre samples. The setup uses a 2.5 THz Quantum Cascade Laser as a source. Delamination defect in a Kevlar sample was detected showing a sensitivity to laser polarization orientation. Detection of a break in a carbon/epoxy sample was also performed.

  6. Quantitative non-destructive evaluation of composite materials based on ultrasonic wave propagation

    NASA Technical Reports Server (NTRS)

    Miller, J. G.

    1986-01-01

    The application and interpretation of specific ultrasonic nondestructive evaluation techniques are studied. The Kramers-Kronig or generalized dispersion relationships are applied to nondestructive techniques. Progress was made on an improved determination of material properties of composites inferred from elastic constant measurements.

  7. Roof Moisture Surveys: Current State Of The Technology

    NASA Astrophysics Data System (ADS)

    Tobiasson, Wayne

    1983-03-01

    Moisture is the big enemy of compact roofing systems. Non-destructive nuclear, capacitance and infrared methods can all find wet insulation in such roofs but a few core samples are needed for verification. Nuclear and capacitance surveys generate quantitative results at grid points but examine only a small portion of the roof. Quantitative results are not usually provided by infrared scanners but they can rapidly examine every square inch of the roof. Being able to find wet areas when they are small is an important advantage. Prices vary with the scope of the investigation. For a particular scope, the three techniques are often cost-competitive. The limitations of each technique are related to the people involved as well as the equipment. When the right people are involved, non-destructive surveys are a very effective method for improving the long-term performance and reducing the life-cycle costs of roofing systems. Plans for the maintenance, repair or replacement of a roof should include a roof moisture survey.

  8. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    NASA Astrophysics Data System (ADS)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  9. Determination of mechanical stiffness of bone by pQCT measurements: correlation with non-destructive mechanical four-point bending test data.

    PubMed

    Martin, Daniel E; Severns, Anne E; Kabo, J M J Michael

    2004-08-01

    Mechanical tests of bone provide valuable information about material and structural properties important for understanding bone pathology in both clinical and research settings, but no previous studies have produced applicable non-invasive, quantitative estimates of bending stiffness. The goal of this study was to evaluate the effectiveness of using peripheral quantitative computed tomography (pQCT) data to accurately compute the bending stiffness of bone. Normal rabbit humeri (N=8) were scanned at their mid-diaphyses using pQCT. The average bone mineral densities and the cross-sectional moments of inertia were computed from the pQCT cross-sections. Bending stiffness was determined as a function of the elastic modulus of compact bone (based on the local bone mineral density), cross-sectional moment of inertia, and simulated quasistatic strain rate. The actual bending stiffness of the bones was determined using four-point bending tests. Comparison of the bending stiffness estimated from the pQCT data and the mechanical bending stiffness revealed excellent correlation (R2=0.96). The bending stiffness from the pQCT data was on average 103% of that obtained from the four-point bending tests. The results indicate that pQCT data can be used to accurately determine the bending stiffness of normal bone. Possible applications include temporal quantification of fracture healing and risk management of osteoporosis or other bone pathologies.

  10. 3D robust Chan-Vese model for industrial computed tomography volume data segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Linghui; Zeng, Li; Luan, Xiao

    2013-11-01

    Industrial computed tomography (CT) has been widely applied in many areas of non-destructive testing (NDT) and non-destructive evaluation (NDE). In practice, CT volume data to be dealt with may be corrupted by noise. This paper addresses the segmentation of noisy industrial CT volume data. Motivated by the research on the Chan-Vese (CV) model, we present a region-based active contour model that draws upon intensity information in local regions with a controllable scale. In the presence of noise, a local energy is firstly defined according to the intensity difference within a local neighborhood. Then a global energy is defined to integrate local energy with respect to all image points. In a level set formulation, this energy is represented by a variational level set function, where a surface evolution equation is derived for energy minimization. Comparative analysis with the CV model indicates the comparable performance of the 3D robust Chan-Vese (RCV) model. The quantitative evaluation also shows the segmentation accuracy of 3D RCV. In addition, the efficiency of our approach is validated under several types of noise, such as Poisson noise, Gaussian noise, salt-and-pepper noise and speckle noise.

  11. Thermal history sensors for non-destructive temperature measurements in harsh environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilgrim, C. C.; Heyes, A. L.; Feist, J. P.

    2014-02-18

    The operating temperature is a critical physical parameter in many engineering applications, however, can be very challenging to measure in certain environments, particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally, rare earth dopants make the ceramic phosphorescent so that the temperature informationmore » can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range, namely between 300°C and 900°C. Furthermore, results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.« less

  12. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review

    USDA-ARS?s Scientific Manuscript database

    Current wet chemical methods for biomass composition analysis using two-step sulfuric acid hydrolysis are time-consuming, labor-intensive, and unable to provide structural information about biomass. Infrared techniques provide fast, low-cost analysis, are non-destructive, and have shown promising re...

  13. Trends of non-destructive analytical methods for identification of biodiesel feedstock in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC and detecting diesel-biodiesel blend adulteration: A brief review.

    PubMed

    Mazivila, Sarmento Júnior

    2018-04-01

    Discrimination of biodiesel feedstock present in diesel-biodiesel blend is challenging due to the great similarity in the spectral profile as well as digital image profile of each type of feedstock employed in biodiesel production. Once the marketed diesel-biodiesel blend is subsidized, in which motivates adulteration in biofuel blend by cheaper supplies with high solubility to obtain profits associated with the subsidies involved in biodiesel production. Non-destructive analytical methods based on qualitative and quantitative analysis for detecting marketed diesel-biodiesel blend adulteration are reviewed. Therefore, at the end is discussed the advantage of the qualitative analysis over quantitative analysis, when the systems require immediate decisions such as to know if the marketed diesel-biodiesel blend is unadulterated or adulterated in order to aid the analyst in selecting the most appropriate green analytical procedure for detecting diesel-biodiesel blend adulteration proceeding in fast way. This critical review provides a brief review on the non-destructive analytical methods reported in scientific literature based on different first-order multivariate calibration models coupled with spectroscopy data and digital image data to identify the type of biodiesel feedstock present in diesel-biodiesel blend in order to meets the strategies adopted by European Commission Directive 2012/0288/EC as well as to monitoring diesel-biodiesel adulteration. According to that Directive, from 2020 biodiesel produced from first-generation feedstock, that is, oils employed in human food such as sunflower, soybean, rapeseed, palm oil, among other oils should not be subsidized. Therefore, those non-destructive analytical methods here reviewed are helpful for discrimination of biodiesel feedstock present in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC as well as for detecting diesel-biodiesel blend adulteration. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics.

    PubMed

    Mulaveesala, Ravibabu; Venkata Ghali, Subbarao

    2011-05-01

    This paper proposes a Barker coded excitation for defect detection using infrared non-destructive testing. Capability of the proposed excitation scheme is highlighted with recently introduced correlation based post processing approach and compared with the existing phase based analysis by taking the signal to noise ratio into consideration. Applicability of the proposed scheme has been experimentally validated on a carbon fiber reinforced plastic specimen containing flat bottom holes located at different depths.

  15. Non-Destructive Sampling of Ancient Insect DNA

    PubMed Central

    Thomsen, Philip Francis; Elias, Scott; Gilbert, M. Thomas P.; Haile, James; Munch, Kasper; Kuzmina, Svetlana; Froese, Duane G.; Holdaway, Richard N.; Willerslev, Eske

    2009-01-01

    Background A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological damage. We test the applicability of this protocol on historic museum beetle specimens dating back to AD 1820 and on ancient beetle chitin remains from permafrost (permanently frozen soil) dating back more than 47,000 years. Finally, we test the possibility of obtaining ancient insect DNA directly from non-frozen sediments deposited 3280-1800 years ago - an alternative approach that also does not involve destruction of valuable material. Methodology/Principal Findings The success of the methodological approaches are tested by PCR and sequencing of COI and 16S mitochondrial DNA (mtDNA) fragments of 77–204 base pairs (-bp) in size using species-specific and general insect primers. Conclusion/Significance The applied non-destructive DNA extraction method shows promising potential on insect museum specimens of historical age as far back as AD 1820, but less so on the ancient permafrost-preserved insect fossil remains tested, where DNA was obtained from samples up to ca. 26,000 years old. The non-frozen sediment DNA approach appears to have great potential for recording the former presence of insect taxa not normally preserved as macrofossils and opens new frontiers in research on ancient biodiversity. PMID:19337382

  16. Correlation analysis of the variation of weld seam and tensile strength in laser welding of galvanized steel

    NASA Astrophysics Data System (ADS)

    Sinha, Amit Kumar; Kim, Duck Young; Ceglarek, Darek

    2013-10-01

    Many advantages of laser welding technology such as high speed and non-contact welding make the use of the technology more attractive in the automotive industry. Many studies have been conducted to search the optimal welding condition experimentally that ensure the joining quality of laser welding that relies both on welding system configuration and welding parameter specification. Both non-destructive and destructive techniques, for example, ultrasonic inspection and tensile test are widely used in practice for estimating the joining quality. Non-destructive techniques are attractive as a rapid quality testing method despite relatively low accuracy. In this paper, we examine the relationship between the variation of weld seam and tensile shear strength in the laser welding of galvanized steel in a lap joint configuration in order to investigate the potential of the variation of weld seam as a joining quality estimator. From the experimental analysis, we identify a trend in between maximum tensile shear strength and the variation of weld seam that clearly supports the fact that laser welded parts having larger variation in the weld seam usually have lower tensile strength. The discovered relationship leads us to conclude that the variation of weld seam can be used as an indirect non-destructive testing method for estimating the tensile strength of the welded parts.

  17. High-fidelity detection of crop biomass quantitative trait loci from low-cost imaging in the field

    USDA-ARS?s Scientific Manuscript database

    Field-based, rapid, and non-destructive techniques for assessing plant productivity can accelerate the discovery of genotype-to-phenotype relationships needed to improve next-generation biomass grass crops. The use of hemispherical imaging and light attenuation modeling was evaluated against destruc...

  18. A miniaturized, optically accessible bioreactor for systematic 3D tissue engineering research.

    PubMed

    Laganà, Matteo; Raimondi, Manuela T

    2012-02-01

    Perfusion bioreactors are widely used in tissue engineering and pharmaceutical research to provide reliable models of tissue growth under controlled conditions. Destructive assays are not able to follow the evolution of the growing tissue on the same construct, so it is necessary to adopt non-destructive analysis. We have developed a miniaturized, optically accessible bioreactor for interstitial perfusion of 3D cell-seeded scaffolds. The scaffold adopted was optically transparent, with highly defined architecture. Computational fluid dynamics (CFD) analysis was useful to predict the flow behavior in the bioreactor scaffold chamber (that was laminar flow, Re = 0.179, with mean velocity equal to 100 microns/s). Moreover, experimental characterization of the bioreactor performance gave that the maximum allowable pressure was 0.06 MPa and allowable flow rate up to 25 ml/min. A method, to estimate quantitatively and non destructively the cell proliferation (from 15 to 43 thousand cells) and tissue growth (from 2% to 43%) during culture time, was introduced and validated. An end point viability test was performed to check the experimental set-up overall suitability for cell culture with successful results. Morphological analysis was performed at the end time point to show the complex tridimensional pattern of the biological tissue growth. Our system, characterized by controlled conditions in a wide range of allowable flow rate and pressure, permits to systematically study the influence of several parameters on engineered tissue growth, using viable staining and a standard fluorescence microscope.

  19. Non-destructive characterization of corroded glass surfaces by spectroscopic ellipsometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspar, Tiffany C.; Reiser, Joelle T.; Ryan, Joseph V.

    Characterization of the alteration layers that form on glass surfaces during corrosion processes provides valuable information on both the mechanisms and rate of glass alteration. In recent years, state-of-the-art materials and surface characterization techniques have been employed to study various aspects of the alteration layers that result from corrosion. In most cases, these techniques are destructive and thus can only be employed at the end of the corrosion experiment. We show that the alteration layers can be investigated by non-destructive spectroscopic ellipsometry (SE), which provides pertinent information on alteration layer thickness, morphology, and, through correlation of the index of refraction,more » porosity. SE measurements of silicate glass coupons altered in aqueous solutions of pH 3, 5, 7, 9, and 11 at 90 °C for 7 days are compared to cross-sectional secondary electron microscopy images. In most cases, quantitative agreement of the alteration layer thickness is obtained. The fractional porosity calculated from the index of refraction is lower than the porosity calculated from elemental analysis of the aqueous solutions, indicating that the alteration layer has compacted during corrosion or the subsequent supercritical CO 2 drying process. Our results confirm the utility of performing non-destructive SE measurements on corroded glass surfaces.« less

  20. Non-destructive characterization of corroded glass surfaces by spectroscopic ellipsometry

    DOE PAGES

    Kaspar, Tiffany C.; Reiser, Joelle T.; Ryan, Joseph V.; ...

    2017-11-03

    Characterization of the alteration layers that form on glass surfaces during corrosion processes provides valuable information on both the mechanisms and rate of glass alteration. In recent years, state-of-the-art materials and surface characterization techniques have been employed to study various aspects of the alteration layers that result from corrosion. In most cases, these techniques are destructive and thus can only be employed at the end of the corrosion experiment. We show that the alteration layers can be investigated by non-destructive spectroscopic ellipsometry (SE), which provides pertinent information on alteration layer thickness, morphology, and, through correlation of the index of refraction,more » porosity. SE measurements of silicate glass coupons altered in aqueous solutions of pH 3, 5, 7, 9, and 11 at 90 °C for 7 days are compared to cross-sectional secondary electron microscopy images. In most cases, quantitative agreement of the alteration layer thickness is obtained. The fractional porosity calculated from the index of refraction is lower than the porosity calculated from elemental analysis of the aqueous solutions, indicating that the alteration layer has compacted during corrosion or the subsequent supercritical CO 2 drying process. Our results confirm the utility of performing non-destructive SE measurements on corroded glass surfaces.« less

  1. 49 CFR 192.328 - Additional construction requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stringing, field bending, welding, non-destructive examination of girth welds, applying and testing field...: (i) Equivalent to that required under § 192.112(f)(3) for pipe; and (ii) Performed by an individual...) All girth welds on a new pipeline segment must be non-destructively examined in accordance with § 192...

  2. 49 CFR 192.328 - Additional construction requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... stringing, field bending, welding, non-destructive examination of girth welds, applying and testing field...: (i) Equivalent to that required under § 192.112(f)(3) for pipe; and (ii) Performed by an individual...) All girth welds on a new pipeline segment must be non-destructively examined in accordance with § 192...

  3. 49 CFR 192.328 - Additional construction requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... stringing, field bending, welding, non-destructive examination of girth welds, applying and testing field...: (i) Equivalent to that required under § 192.112(f)(3) for pipe; and (ii) Performed by an individual...) All girth welds on a new pipeline segment must be non-destructively examined in accordance with § 192...

  4. Industrial plastics waste: Identification and segregation

    NASA Technical Reports Server (NTRS)

    Widener, Edward L.

    1990-01-01

    Throwaway plastic products, mainly packaging, are inundating our landfills and incinerators. Most are ethenic thermoplastics, which can be recycled as new products or fossil-fuels. Lab experiments are described, involving destructive and non-destructive tests for identifying and using plastics. The burn-test, with simple apparatus and familiar samples, is recommended as quick, cheap and effective.

  5. High-Energy Laser for Detection, Inspection, and Non-Destructive Testing

    DTIC Science & Technology

    2011-03-21

    at the gra odes. The -2 at 0.1 Hz -cm-2, and mage thre n array of beam. Th burns on pled to a to measur laser is eq micron lev ent beam ( rget...project or resulting research?  Defense Threat Reduction Agency, “Compact Source of Laser -Driven Monoenergetic Gamma-Rays” --$2,982,685... LASER FOR DETECTION, INSPECTION, AND NON-DESTRUCTIVE TESTING 3) Grant/Contract Number: FA9550-07-1-0521 4) Reporting Period Start: 06/21/2007

  6. Application of golay complementary coded excitation schemes for non-destructive testing of sandwich structures

    NASA Astrophysics Data System (ADS)

    Arora, Vanita; Mulaveesala, Ravibabu

    2017-06-01

    In recent years, InfraRed Thermography (IRT) has become a widely accepted non-destructive testing technique to evaluate the structural integrity of composite sandwich structures due to its full-field, remote, fast and in-service inspection capabilities. This paper presents a novel infrared thermographic approach named as Golay complementary coded thermal wave imaging is presented to detect disbonds in a sandwich structure having face sheets from Glass/Carbon Fibre Reinforced (GFR/CFR) laminates and core of the wooden block.

  7. Interdigital Capacitance Local Non-Destructive Examination of Nuclear Power Plant Cable for Aging Management Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.; Bowler, Nicola

    This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of non-destructive test methods focusing on local cable insulation and jacket testing using an interdigital capacitance (IDC) approach. Earlier studies have assessed a number of non-destructive examination (NDE) methods for bulk, distributed, and local cable tests. A typical test strategy is to perform bulk assessments of the cable response using dielectric spectroscopy, Tan , or partial discharge followed by distributed tests like time domain reflectometry or frequency domain reflectometry to identify the most likely defect location followed by a local test that can include visual inspection,more » indenter modulus tests, or Fourier Transform Infrared Spectroscopy (FTIR) or Near Infrared Spectroscopy FTIR (FTNIR). If a cable is covered with an overlaying jacket, the jacket’s condition is likely to be more severely degraded than the underlying insulation. None of the above local test approaches can be used to evaluate insulation beneath a cable jacket. Since the jacket’s function is neither structural nor electrical, a degraded jacket may not have any significance regarding the cable’s performance or suitability for service. IDC measurements offer a promising alternative or complement to these local test approaches including the possibility to test insulation beneath an overlaying jacket.« less

  8. Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy.

    PubMed

    Bergholt, Mads S; Albro, Michael B; Stevens, Molly M

    2017-09-01

    Tissue engineering (TE) has the potential to improve the outcome for patients with osteoarthritis (OA). The successful clinical translation of this technique as part of a therapy requires the ability to measure extracellular matrix (ECM) production of engineered tissues in vitro, in order to ensure quality control and improve the likelihood of tissue survival upon implantation. Conventional techniques for assessing the ECM content of engineered cartilage, such as biochemical assays and histological staining are inherently destructive. Raman spectroscopy, on the other hand, represents a non-invasive technique for in situ biochemical characterization. Here, we outline current roadblocks in translational Raman spectroscopy in TE and introduce a comprehensive workflow designed to non-destructively monitor and quantify ECM biomolecules in large (>3 mm), live cell TE constructs online. Diffuse near-infrared fiber-optic Raman spectra were measured from live cell cartilaginous TE constructs over a 56-day culturing period. We developed a multivariate curve resolution model that enabled quantitative biochemical analysis of the TE constructs. Raman spectroscopy was able to non-invasively quantify the ECM components and showed an excellent correlation with biochemical assays for measurement of collagen (R 2  = 0.84) and glycosaminoglycans (GAGs) (R 2  = 0.86). We further demonstrated the robustness of this technique for online prospective analysis of live cell TE constructs. The fiber-optic Raman spectroscopy strategy developed in this work offers the ability to non-destructively monitor construct growth online and can be adapted to a broad range of TE applications in regenerative medicine toward controlled clinical translation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Depth of penetration of a 785nm laser for Raman spectral measurement in food powders.

    USDA-ARS?s Scientific Manuscript database

    Raman spectroscopy is a useful, rapid, and non-destructive method for both qualitative and quantitative evaluation of chemical composition. However it is important to measure the depth of penetration of the laser light to ensure that chemical particles at the very bottom of a sample volume are detec...

  10. What Are the 50 Cent Euro Coins Made of?

    ERIC Educational Resources Information Center

    Peralta, Luis; Farinha, Ana Catarina; Rego, Florbela

    2008-01-01

    X-ray fluorescence is a non-destructive technique that allows elemental composition analysis. In this paper we describe a prescription to obtain the elemental composition of homogeneous coins, like 50 cent Euro coins, and how to get the quantitative proportions of each element with the help of Monte Carlo simulation. Undergraduate students can…

  11. Model-assisted development of a laminography inspection system

    NASA Astrophysics Data System (ADS)

    Grandin, R.; Gray, J.

    2012-05-01

    Traditional computed tomography (CT) is an effective method of determining the internal structure of an object through non-destructive means; however, inspection of certain objects, such as those with planar geometrics or with limited access, requires an alternate approach. An alternative is laminography and has been the focus of a number of researchers in the past decade for both medical and industrial inspections. Many research efforts rely on geometrically-simple analytical models, such as the Shepp-Logan phantom, for the development of their algorithms. Recent work at the Center for Non-Destructive Evaluation makes extensive use of a forward model, XRSIM, to study artifacts arising from the reconstruction method, the effects of complex geometries and known issues such as high density features on the laminography reconstruction process. The use of a model provides full knowledge of all aspects of the geometry and provides a means to quantitatively evaluate the impact of methods designed to reduce artifacts generated by the reconstruction methods or that are result of the part geometry. We will illustrate the use of forward simulations to quantitatively assess reconstruction algorithm development and artifact reduction.

  12. Shearography for Non-Destructive Evaluation with Applications to BAT Mask Tile Adhesive Bonding and Specular Surface Honeycomb Panels

    NASA Technical Reports Server (NTRS)

    Lysak, Daniel B.

    2003-01-01

    In this report we examine the applicability of shearography techniques for nondestructive inspection and evaluation in two unique application areas. In the first application, shearography is used to evaluate the quality of adhesive bonds holding lead tiles to the BAT gamma ray mask for the NASA Swift program. By exciting the mask with a vibration, the more poorly bonded tiles can be distinguished by their greater displacement response, which is readily identifiable in the shearography image. A quantitative analysis is presented that compares the shearography results with a destructive pull test measuring the force at bond failure. Generally speaking, the results show good agreement. Further investigation would be useful to optimize certain test parameters such as vibration frequency and amplitude. The second application is to evaluate the bonding between the skin and core of a honeycomb structure with a specular (mirror-like) surface. In standard shearography techniques, the object under test must have a diffuse surface to generate the speckle patterns in laser light, which are then sheared. A novel configuration using the specular surface as a mirror to image speckles from a diffuser is presented, opening up the use of shearography to a new class of objects that could not have been examined with the traditional approach. This new technique readily identifies large scale bond failures in the panel, demonstrating the validity of this approach. For the particular panel examined here, some scaling issues should be examined further to resolve the measurement scale down to the very small size of the core cells. In addition, further development should be undertaken to determine the general applicability of the new approach and to establish a firm quantitative foundation.

  13. Cell wall proteome of sugarcane stems: comparison of a destructive and a non-destructive extraction method showed differences in glycoside hydrolases and peroxidases.

    PubMed

    Calderan-Rodrigues, Maria Juliana; Jamet, Elisabeth; Douché, Thibaut; Bonassi, Maria Beatriz Rodrigues; Cataldi, Thaís Regiani; Fonseca, Juliana Guimarães; San Clemente, Hélène; Pont-Lezica, Rafael; Labate, Carlos Alberto

    2016-01-11

    Sugarcane has been used as the main crop for ethanol production for more than 40 years in Brazil. Recently, the production of bioethanol from bagasse and straw, also called second generation (2G) ethanol, became a reality with the first commercial plants started in the USA and Brazil. However, the industrial processes still need to be improved to generate a low cost fuel. One possibility is the remodeling of cell walls, by means of genetic improvement or transgenesis, in order to make the bagasse more accessible to hydrolytic enzymes. We aimed at characterizing the cell wall proteome of young sugarcane culms, to identify proteins involved in cell wall biogenesis. Proteins were extracted from the cell walls of 2-month-old culms using two protocols, non-destructive by vacuum infiltration vs destructive. The proteins were identified by mass spectrometry and bioinformatics. A predicted signal peptide was found in 84 different proteins, called cell wall proteins (CWPs). As expected, the non-destructive method showed a lower percentage of proteins predicted to be intracellular than the destructive one (33% vs 44%). About 19% of CWPs were identified with both methods, whilst the infiltration protocol could lead to the identification of 75% more CWPs. In both cases, the most populated protein functional classes were those of proteins related to lipid metabolism and oxido-reductases. Curiously, a single glycoside hydrolase (GH) was identified using the non-destructive method whereas 10 GHs were found with the destructive one. Quantitative data analysis allowed the identification of the most abundant proteins. The results highlighted the importance of using different protocols to extract proteins from cell walls to expand the coverage of the cell wall proteome. Ten GHs were indicated as possible targets for further studies in order to obtain cell walls less recalcitrant to deconstruction. Therefore, this work contributed to two goals: enlarge the coverage of the sugarcane cell wall proteome, and provide target proteins that could be used in future research to facilitate 2G ethanol production.

  14. Template synthesis of test tube nanoparticles using non-destructive replication

    PubMed Central

    Wagner, Jonathan; Yao, Jingyuan; Rodgers, David; Hinds, Bruce

    2013-01-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive “bionanoreactors” loaded with enzymes. PMID:23376956

  15. Fuzzy Neural Classifiers for Multi-Wavelength Interdigital Sensors

    NASA Astrophysics Data System (ADS)

    Xenides, D.; Vlachos, D. S.; Simos, T. E.

    2007-12-01

    The use of multi-wavelength interdigital sensors for non-destructive testing is based on the capability of the measuring system to classify the measured impendence according to some physical properties of the material under test. By varying the measuring frequency and the wavelength of the sensor (and thus the penetration depth of the electric field inside the material under test) we can produce images that correspond to various configurations of dielectric materials under different geometries. The implementation of a fuzzy neural network witch inputs these images for both quantitative and qualitative sensing is demonstrated. The architecture of the system is presented with some references to the general theory of fuzzy sets and fuzzy calculus. Experimental results are presented in the case of a set of 8 well characterized dielectric layers. Finally the effect of network parameters to the functionality of the system is discussed, especially in the case of functions evaluating the fuzzy AND and OR operations.

  16. Utility of Quantitative Parameters from Single-Photon Emission Computed Tomography/Computed Tomography in Patients with Destructive Thyroiditis.

    PubMed

    Kim, Ji-Young; Kim, Ji Hyun; Moon, Jae Hoon; Kim, Kyoung Min; Oh, Tae Jung; Lee, Dong-Hwa; So, Young; Lee, Won Woo

    2018-01-01

    Quantitative parameters from Tc-99m pertechnetate single-photon emission computed tomography/computed tomography (SPECT/CT) are emerging as novel diagnostic markers for functional thyroid diseases. We intended to assess the utility of SPECT/CT parameters in patients with destructive thyroiditis. Thirty-five destructive thyroiditis patients (7 males and 28 females; mean age, 47.3 ± 13.0 years) and 20 euthyroid patients (6 males and 14 females; mean age, 45.0 ± 14.8 years) who underwent Tc-99m pertechnetate quantitative SPECT/CT were retrospectively enrolled. Quantitative parameters from the SPECT/CT (%uptake, standardized uptake value [SUV], thyroid volume, and functional thyroid mass [SUVmean × thyroid volume]) and thyroid hormone levels were investigated to assess correlations and predict the prognosis for destructive thyroiditis. The occurrence of hypothyroidism was the outcome for prognosis. All the SPECT/CT quantitative parameters were significantly lower in the 35 destructive thyroiditis patients compared to the 20 euthyroid patients using the same SPECT/CT scanner and protocol ( p < 0.001 for all parameters). T3 and free T4 did not correlate with any SPECT/CT parameters, but thyroid-stimulating hormone (TSH) significantly correlated with %uptake ( p = 0.004), SUVmean ( p < 0.001), SUVmax ( p = 0.002), and functional thyroid mass ( p < 0.001). Of the 35 destructive thyroiditis patients, 16 progressed to hypothyroidism. On univariate and multivariate analyses, only T3 levels were associated with the later occurrence of hypothyroidism ( p = 0.002, exp(β) = 1.022, 95% confidence interval: 1.008 - 1.035). Novel quantitative SPECT/CT parameters could discriminate patients with destructive thyroiditis from euthyroid patients, suggesting the robustness of the quantitative SPECT/CT approach. However, disease progression of destructive thyroiditis could not be predicted using the parameters, as these only correlated with TSH, but not with T3, the sole predictor of the later occurrence of hypothyroidism.

  17. Utility of Quantitative Parameters from Single-Photon Emission Computed Tomography/Computed Tomography in Patients with Destructive Thyroiditis

    PubMed Central

    Kim, Ji-Young; Kim, Ji Hyun; Moon, Jae Hoon; Kim, Kyoung Min; Oh, Tae Jung; Lee, Dong-Hwa; So, Young

    2018-01-01

    Objective Quantitative parameters from Tc-99m pertechnetate single-photon emission computed tomography/computed tomography (SPECT/CT) are emerging as novel diagnostic markers for functional thyroid diseases. We intended to assess the utility of SPECT/CT parameters in patients with destructive thyroiditis. Materials and Methods Thirty-five destructive thyroiditis patients (7 males and 28 females; mean age, 47.3 ± 13.0 years) and 20 euthyroid patients (6 males and 14 females; mean age, 45.0 ± 14.8 years) who underwent Tc-99m pertechnetate quantitative SPECT/CT were retrospectively enrolled. Quantitative parameters from the SPECT/CT (%uptake, standardized uptake value [SUV], thyroid volume, and functional thyroid mass [SUVmean × thyroid volume]) and thyroid hormone levels were investigated to assess correlations and predict the prognosis for destructive thyroiditis. The occurrence of hypothyroidism was the outcome for prognosis. Results All the SPECT/CT quantitative parameters were significantly lower in the 35 destructive thyroiditis patients compared to the 20 euthyroid patients using the same SPECT/CT scanner and protocol (p < 0.001 for all parameters). T3 and free T4 did not correlate with any SPECT/CT parameters, but thyroid-stimulating hormone (TSH) significantly correlated with %uptake (p = 0.004), SUVmean (p < 0.001), SUVmax (p = 0.002), and functional thyroid mass (p < 0.001). Of the 35 destructive thyroiditis patients, 16 progressed to hypothyroidism. On univariate and multivariate analyses, only T3 levels were associated with the later occurrence of hypothyroidism (p = 0.002, exp(β) = 1.022, 95% confidence interval: 1.008 – 1.035). Conclusion Novel quantitative SPECT/CT parameters could discriminate patients with destructive thyroiditis from euthyroid patients, suggesting the robustness of the quantitative SPECT/CT approach. However, disease progression of destructive thyroiditis could not be predicted using the parameters, as these only correlated with TSH, but not with T3, the sole predictor of the later occurrence of hypothyroidism. PMID:29713225

  18. Nuclear code case development of printed-circuit heat exchangers with thermal and mechanical performance testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aakre, Shaun R.; Jentz, Ian W.; Anderson, Mark H.

    The U.S. Department of Energy has agreed to fund a three-year integrated research project to close technical gaps involved with compact heat exchangers to be used in nuclear applications. This paper introduces the goals of the project, the research institutions, and industrial partners working in collaboration to develop a draft Boiler and Pressure Vessel Code Case for this technology. Heat exchanger testing, as well as non-destructive and destructive evaluation, will be performed by researchers across the country to understand the performance of compact heat exchangers. Testing will be performed using coolants and conditions proposed for Gen IV Reactor designs. Preliminarymore » observations of the mechanical failure mechanisms of the heat exchangers using destructive and non-destructive methods is presented. Unit-cell finite element models assembled to help predict the mechanical behavior of these high-temperature components are discussed as well. Performance testing methodology is laid out in this paper along with preliminary modeling results, an introduction to x-ray and neutron inspection techniques, and results from a recent pressurization test of a printed-circuit heat exchanger. The operational and quality assurance knowledge gained from these models and validation tests will be useful to developers of supercritical CO 2 systems, which commonly employ printed-circuit heat exchangers.« less

  19. Augmented reality application for industrial non-destructive inspection training

    NASA Astrophysics Data System (ADS)

    Amza, Catalin Gheorghe; Zapciu, Aurelian; Teodorescu, Octav

    2018-02-01

    Such a technology - Augmented Reality (AR) has great potential of use, especially for training purposes of new operators on using expensive equipment. In this context, the paper presents an augmented reality training system developed for phased-array ultrasonic non-destructive testing (NDT) equipment. The application has been developed using Unity 5.6.0 game-engine platform integrated with Vuforia sdk toolkit for devices with Android operating system. The test results performed by several NDT operators showed good results, thus proving the potential of using the application in the industrial field.

  20. Quantitative evaluation methods of skin condition based on texture feature parameters.

    PubMed

    Pang, Hui; Chen, Tianhua; Wang, Xiaoyi; Chang, Zhineng; Shao, Siqi; Zhao, Jing

    2017-03-01

    In order to quantitatively evaluate the improvement of the skin condition after using skin care products and beauty, a quantitative evaluation method for skin surface state and texture is presented, which is convenient, fast and non-destructive. Human skin images were collected by image sensors. Firstly, the median filter of the 3 × 3 window is used and then the location of the hairy pixels on the skin is accurately detected according to the gray mean value and color information. The bilinear interpolation is used to modify the gray value of the hairy pixels in order to eliminate the negative effect of noise and tiny hairs on the texture. After the above pretreatment, the gray level co-occurrence matrix (GLCM) is calculated. On the basis of this, the four characteristic parameters, including the second moment, contrast, entropy and correlation, and their mean value are calculated at 45 ° intervals. The quantitative evaluation model of skin texture based on GLCM is established, which can calculate the comprehensive parameters of skin condition. Experiments show that using this method evaluates the skin condition, both based on biochemical indicators of skin evaluation methods in line, but also fully consistent with the human visual experience. This method overcomes the shortcomings of the biochemical evaluation method of skin damage and long waiting time, also the subjectivity and fuzziness of the visual evaluation, which achieves the non-destructive, rapid and quantitative evaluation of skin condition. It can be used for health assessment or classification of the skin condition, also can quantitatively evaluate the subtle improvement of skin condition after using skin care products or stage beauty.

  1. Monitoring of live and woody elements

    NASA Astrophysics Data System (ADS)

    Guastini, Enrico; Preti, Federico

    2013-04-01

    This study deals with surveys operated on crib walls in Casentino and Versilia (Tuscany), where Salix alba cuttings did not develop as expected from literature data. After more then 10 years since realization and and an initial very high survival rate, a few plants are yet alive among those put in place and the root strengthening is localized in the first 0.30 m just below the structure front face, while at further depth the detected root area ratio (R.A.R.) does not determine a noticeable increase in soil cohesion (Guastini et al., 2012). Mortality curve in willow cuttings is comparable with growing curve in Alnus nigra plants born in front of the structure, due to shading as failing cause. Assessing quantitatively the residual strength of the timber elements and estimating their possible duration allow comparison with the time needed for a complete stabilisation of the para-natural succession. The two spans of time must be almost similar to avoid unexpected collapse of the frame or unacceptable costs for oversized structures. Since the realization of a new live crib-wall in Casentino we sampled Alnus and Salix cuttings to compare rooting, survivability and evolution in randomized block design. Tests with Resistograph carried out on timber elements gives a good relationship between test results and density; through the non-destructive test it is possible to differentiate portions of wood with a noticeable residual strength from the decayed parts without any more load bearing capacity. MOR value (flexural strength) of timber elements has been estimated on the basis of the effective section verified by the Resistograph (Guastini et al., 2012), and then confirmed through rupture in bending of the same elements (Wood Technology DEISTAF lab), by proving the non-destructive test utility.

  2. Influence of Kaolin in Fly Ash Based Geopolymer Concrete: Destructive and Non-Destructive Testing

    NASA Astrophysics Data System (ADS)

    Yahya, Z.; Abdullah, M. M. A. B.; Ramli, N. Mohd; Burduhos-Nergis, D. D.; Razak, R. Abd

    2018-06-01

    Development of geopolymer concrete is mainly to reduce the production of ordinary Portland cement (OPC) that adverse the natural effect. Fly ash is a by-product collected from electrical generating power plant which resulted from burning pulverized coal. Since fly ash is waste materials, it can be recycled for future advantages particularly as pozzolanic materials in construction industry. This study focused on the feasibility of fly ash based geopolymer concrete to which kaolin has been added. The main constituents of geopolymer production for this study were class F fly ash, sodium silicate and sodium hydroxide (NaOH) solution. The concentration of NaOH solution was fixed at 12 Molar, ratio of fly ash/alkaline activator and sodium silicate/NaOH fixed at 1.5 and 2.5, respectively. Kaolin was added in range 5% to 15% from the mass of fly ash and all the samples were cured at room temperature. Destructive and non-destructive test were performed on geopolymer concrete to evaluate the best mix proportions that yield the highest strength as well as the quality of the concrete. Compressive strength, flexural strength, rebound hammer and ultrasonic pulse velocity (UPV) result have been obtained. It shown that 5% replacement of kaolin contributed to maximum compressive strength and flexural strength of 40.4 MPa and 12.35 MPa at 28 days. These result was supported by non-destructive test for the same mix proportion.

  3. Pulse compression favourable aperiodic infrared imaging approach for non-destructive testing and evaluation of bio-materials

    NASA Astrophysics Data System (ADS)

    Mulaveesala, Ravibabu; Dua, Geetika; Arora, Vanita; Siddiqui, Juned A.; Muniyappa, Amarnath

    2017-05-01

    In recent years, aperiodic, transient pulse compression favourable infrared imaging methodologies demonstrated as reliable, quantitative, remote characterization and evaluation techniques for testing and evaluation of various biomaterials. This present work demonstrates a pulse compression favourable aperiodic thermal wave imaging technique, frequency modulated thermal wave imaging technique for bone diagnostics, especially by considering the bone with tissue, skin and muscle over layers. In order to find the capabilities of the proposed frequency modulated thermal wave imaging technique to detect the density variations in a multi layered skin-fat-muscle-bone structure, finite element modeling and simulation studies have been carried out. Further, frequency and time domain post processing approaches have been adopted on the temporal temperature data in order to improve the detection capabilities of frequency modulated thermal wave imaging.

  4. Non-contact, non-destructive, quantitative probing of interfacial trap sites for charge carrier transport at semiconductor-insulator boundary

    NASA Astrophysics Data System (ADS)

    Choi, Wookjin; Miyakai, Tomoyo; Sakurai, Tsuneaki; Saeki, Akinori; Yokoyama, Masaaki; Seki, Shu

    2014-07-01

    The density of traps at semiconductor-insulator interfaces was successfully estimated using microwave dielectric loss spectroscopy with model thin-film organic field-effect transistors. The non-contact, non-destructive analysis technique is referred to as field-induced time-resolved microwave conductivity (FI-TRMC) at interfaces. Kinetic traces of FI-TRMC transients clearly distinguished the mobile charge carriers at the interfaces from the immobile charges trapped at defects, allowing both the mobility of charge carriers and the number density of trap sites to be determined at the semiconductor-insulator interfaces. The number density of defects at the interface between evaporated pentacene on a poly(methylmethacrylate) insulating layer was determined to be 1012 cm-2, and the hole mobility was up to 6.5 cm2 V-1 s-1 after filling the defects with trapped carriers. The FI-TRMC at interfaces technique has the potential to provide rapid screening for the assessment of interfacial electronic states in a variety of semiconductor devices.

  5. X-ray chemical analyzer for field applications

    DOEpatents

    Gamba, Otto O. M.

    1977-01-01

    A self-supporting portable field multichannel X-ray chemical analyzer system comprising a lightweight, flexibly connected, remotely locatable, radioisotope-excited sensing probe utilizing a cryogenically-cooled solid state semi-conductor crystal detector for fast in situ non-destructive, qualitative and quantitative analysis of elements in solid, powder, liquid or slurried form, utilizing an X-ray energy dispersive spectrometry technique.

  6. Optical spectroscopy of ancient paper and textiles

    NASA Astrophysics Data System (ADS)

    Missori, M.

    2016-03-01

    Ancient paper and textiles represent a striking example of optically inhomogenous materials whose optical responses are strongly governed by scattering effects. In order to recover the absorption coefficient from non-invasive and non-destructive reflectance measurements a specific approach based on Kubelka-Munk two-flux theory must be applied. In this way quantitative chemical information, such as chromophores concentration, can be obtained, as well as quantitative spectra of additional substances such as pigments or dyes. Results on a folio of the Codex on the Flight of Birds by Leonardo da Vinci and a linen cloth dated back to 1653 and called the Shroud of Arquata, a copy of the Shroud of Turin, will be presented.

  7. Improving Non-Destructive Concrete Strength Tests Using Support Vector Machines

    PubMed Central

    Shih, Yi-Fan; Wang, Yu-Ren; Lin, Kuo-Liang; Chen, Chin-Wen

    2015-01-01

    Non-destructive testing (NDT) methods are important alternatives when destructive tests are not feasible to examine the in situ concrete properties without damaging the structure. The rebound hammer test and the ultrasonic pulse velocity test are two popular NDT methods to examine the properties of concrete. The rebound of the hammer depends on the hardness of the test specimen and ultrasonic pulse travelling speed is related to density, uniformity, and homogeneity of the specimen. Both of these two methods have been adopted to estimate the concrete compressive strength. Statistical analysis has been implemented to establish the relationship between hammer rebound values/ultrasonic pulse velocities and concrete compressive strength. However, the estimated results can be unreliable. As a result, this research proposes an Artificial Intelligence model using support vector machines (SVMs) for the estimation. Data from 95 cylinder concrete samples are collected to develop and validate the model. The results show that combined NDT methods (also known as SonReb method) yield better estimations than single NDT methods. The results also show that the SVMs model is more accurate than the statistical regression model. PMID:28793627

  8. Medicine, material science and security: the versatility of the coded-aperture approach.

    PubMed

    Munro, P R T; Endrizzi, M; Diemoz, P C; Hagen, C K; Szafraniec, M B; Millard, T P; Zapata, C E; Speller, R D; Olivo, A

    2014-03-06

    The principal limitation to the widespread deployment of X-ray phase imaging in a variety of applications is probably versatility. A versatile X-ray phase imaging system must be able to work with polychromatic and non-microfocus sources (for example, those currently used in medical and industrial applications), have physical dimensions sufficiently large to accommodate samples of interest, be insensitive to environmental disturbances (such as vibrations and temperature variations), require only simple system set-up and maintenance, and be able to perform quantitative imaging. The coded-aperture technique, based upon the edge illumination principle, satisfies each of these criteria. To date, we have applied the technique to mammography, materials science, small-animal imaging, non-destructive testing and security. In this paper, we outline the theory of coded-aperture phase imaging and show an example of how the technique may be applied to imaging samples with a practically important scale.

  9. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts.

    PubMed

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-14

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO₂-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car's base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  10. Spectroscopic Measurements of L X-rays with a TES Microcalorimeter for a Non-destructive Assay of Transuranium Elements

    NASA Astrophysics Data System (ADS)

    Nakamura, Keisuke; Morishita, Yuki; Takasaki, Koji; Maehata, Keisuke; Sugimoto, Tetsuya; Kiguchi, Yu; Iyomoto, Naoko; Mitsuda, Kazuhisa

    2018-05-01

    Spectroscopic measurement of the L X-rays emitted from transuranium elements is one of the most useful techniques for the non-destructive assays of nuclear materials. In this study, we fabricated a transition-edge-sensor (TES) microcalorimeter using a 5-μm-thick Au absorber and tested its ability to measure the L X-rays emitted from two transuranium elements, Np-237 and Cm-244 sources. The microcalorimeter was found to successfully measure the L X-rays with an energy resolution (full width at half maximum) below 70 eV. These results confirm that L X-rays can be identified using the proposed TES microcalorimeter to enable non-destructive assays of transuranium elements.

  11. A new holistic 3D non-invasive analysis of cellular distribution and motility on fibroin-alginate microcarriers using light sheet fluorescent microscopy

    PubMed Central

    Pierini, Michela; Bevilacqua, Alessandro; Torre, Maria Luisa; Lucarelli, Enrico

    2017-01-01

    Cell interaction with biomaterials is one of the keystones to developing medical devices for tissue engineering applications. Biomaterials are the scaffolds that give three-dimensional support to the cells, and are vectors that deliver the cells to the injured tissue requiring repair. Features of biomaterials can influence the behaviour of the cells and consequently the efficacy of the tissue-engineered product. The adhesion, distribution and motility of the seeded cells onto the scaffold represent key aspects, and must be evaluated in vitro during the product development, especially when the efficacy of a specific tissue-engineered product depends on viable and functional cell loading. In this work, we propose a non-invasive and non-destructive imaging analysis for investigating motility, viability and distribution of Mesenchymal Stem Cells (MSCs) on silk fibroin-based alginate microcarriers, to test the adhesion capacity of the fibroin coating onto alginate which is known to be unsuitable for cell adhesion. However, in depth characterization of the biomaterial is beyond the scope of this paper. Scaffold-loaded MSCs were stained with Calcein-AM and Ethidium homodimer-1 to detect live and dead cells, respectively, and counterstained with Hoechst to label cell nuclei. Time-lapse Light Sheet Fluorescent Microscopy (LSFM) was then used to produce three-dimensional images of the entire cells-loaded fibroin/alginate microcarriers. In order to quantitatively track the cell motility over time, we also developed an open source user friendly software tool called Fluorescent Cell Tracker in Three-Dimensions (F-Tracker3D). Combining LSFM with F-Tracker3D we were able for the first time to assess the distribution and motility of stem cells in a non-invasive, non-destructive, quantitative, and three-dimensional analysis of the entire surface of the cell-loaded scaffold. We therefore propose this imaging technique as an innovative holistic tool for monitoring cell-biomaterial interactions, and as a tool for the design, fabrication and functionalization of a scaffold as a medical device. PMID:28817694

  12. Single-Event Effect Testing of the Linear Technology LTC6103HMS8#PBF Current Sense Amplifier

    NASA Technical Reports Server (NTRS)

    Yau, Ka-Yen; Campola, Michael J.; Wilcox, Edward

    2016-01-01

    The LTC6103HMS8#PBF (henceforth abbreviated as LTC6103) current sense amplifier from Linear Technology was tested for both destructive and non-destructive single-event effects (SEE) using the heavy-ion cyclotron accelerator beam at Lawrence Berkeley National Laboratory (LBNL) Berkeley Accelerator Effects (BASE) facility. During testing, the input voltages and output currents were monitored to detect single event latch-up (SEL) and single-event transients (SETs).

  13. Application of Non-destructive Methods of Stress-strain State at Hazardous Production Facilities

    NASA Astrophysics Data System (ADS)

    Shram, V.; Kravtsova, Ye; Selsky, A.; Bezborodov, Yu; Lysyannikova, N.; Lysyannikov, A.

    2016-06-01

    The paper deals with the sources of accidents in distillation columns, on the basis of which the most dangerous defects are detected. The analysis of the currently existing methods of non-destructive testing of the stress-strain state is performed. It is proposed to apply strain and acoustic emission techniques to continuously monitor dangerous objects, which helps prevent the possibility of accidents, as well as reduce the work.

  14. Evaluation of Electromagnetic Near-Field Measurement Technique as Non-Destructive Testing for Composite Structures

    NASA Astrophysics Data System (ADS)

    Raad Hussein, Alaa; Badri Albarody, Thar M.; Megat Yusoff, Puteri Sri Melor Bt

    2018-05-01

    Nowadays there is no viable non-destructive method that could detect flaws in complex composite products. Such a method could provide unique tools to allow engineers to minimize time consumption and cost during the evaluation of various product parameters without disturbing production. The latest research and development on propagation waves introduce micro, radio and millimetre waves as new potential non-destructive test methods for evaluation of mechanical flaws and prediction of failure in a product during production. This paper focuses on recent developments, usage, classification of electromagnetic waves under the range of radio frequency, millimetre and micro-waves. In addition, this paper reviews the application of propagation wave and proposed a new health monitoring technique based on Doppler Effect for vibration measurement in complex composite structures. Doppler Effect is influenced by dynamic behaviour of the composite structures and both are effect by flaws occurred inside the structure. Composite manufacturers, especially Aerospace industry are demanding these methods comprehensively inspect and evaluate the damages and defects in their products.

  15. Combining the 3D model generated from point clouds and thermography to identify the defects presented on the facades of a building

    NASA Astrophysics Data System (ADS)

    Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang

    2018-03-01

    Defects presented on the facades of a building do have profound impacts on extending the life cycle of the building. How to identify the defects is a crucial issue; destructive and non-destructive methods are usually employed to identify the defects presented on a building. Destructive methods always cause the permanent damages for the examined objects; on the other hand, non-destructive testing (NDT) methods have been widely applied to detect those defects presented on exterior layers of a building. However, NDT methods cannot provide efficient and reliable information for identifying the defects because of the huge examination areas. Infrared thermography is often applied to quantitative energy performance measurements for building envelopes. Defects on the exterior layer of buildings may be caused by several factors: ventilation losses, conduction losses, thermal bridging, defective services, moisture condensation, moisture ingress, and structure defects. Analyzing the collected thermal images can be quite difficult when the spatial variations of surface temperature are small. In this paper the authors employ image segmentation to cluster those pixels with similar surface temperatures such that the processed thermal images can be composed of limited groups. The surface temperature distribution in each segmented group is homogenous. In doing so, the regional boundaries of the segmented regions can be identified and extracted. A terrestrial laser scanner (TLS) is widely used to collect the point clouds of a building, and those point clouds are applied to reconstruct the 3D model of the building. A mapping model is constructed such that the segmented thermal images can be projected onto the 2D image of the specified 3D building. In this paper, the administrative building in Chaoyang University campus is used as an example. The experimental results not only provide the defect information but also offer their corresponding spatial locations in the 3D model.

  16. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT.

    PubMed

    Alomari, Ali Hamed; Wille, Marie-Luise; Langton, Christian M

    2018-02-01

    Conventional mechanical testing is the 'gold standard' for assessing the stiffness (N mm -1 ) and strength (MPa) of bone, although it is not applicable in-vivo since it is inherently invasive and destructive. The mechanical integrity of a bone is determined by its quantity and quality; being related primarily to bone density and structure respectively. Several non-destructive, non-invasive, in-vivo techniques have been developed and clinically implemented to estimate bone density, both areal (dual-energy X-ray absorptiometry (DXA)) and volumetric (quantitative computed tomography (QCT)). Quantitative ultrasound (QUS) parameters of velocity and attenuation are dependent upon both bone quantity and bone quality, although it has not been possible to date to transpose one particular QUS parameter into separate estimates of quantity and quality. It has recently been shown that ultrasound transit time spectroscopy (UTTS) may provide an accurate estimate of bone density and hence quantity. We hypothesised that UTTS also has the potential to provide an estimate of bone structure and hence quality. In this in-vitro study, 16 human femoral bone samples were tested utilising three techniques; UTTS, micro computed tomography (μCT), and mechanical testing. UTTS was utilised to estimate bone volume fraction (BV/TV) and two novel structural parameters, inter-quartile range of the derived transit time (UTTS-IQR) and the transit time of maximum proportion of sonic-rays (TTMP). μCT was utilised to derive BV/TV along with several bone structure parameters. A destructive mechanical test was utilised to measure the stiffness and strength (failure load) of the bone samples. BV/TV was calculated from the derived transit time spectrum (TTS); the correlation coefficient (R 2 ) with μCT-BV/TV was 0.885. For predicting mechanical stiffness and strength, BV/TV derived by both μCT and UTTS provided the strongest correlation with mechanical stiffness (R 2 =0.567 and 0.618 respectively) and mechanical strength (R 2 =0.747 and 0.736 respectively). When respective structural parameters were incorporated to BV/TV, multiple regression analysis indicated that none of the μCT histomorphometric parameters could improve the prediction of mechanical stiffness and strength, while for UTTS, adding TTMP to BV/TV increased the prediction of mechanical stiffness to R 2 =0.711 and strength to R 2 =0.827. It is therefore envisaged that UTTS may have the ability to estimate BV/TV along with providing an improved prediction of osteoporotic fracture risk, within routine clinical practice in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Characterizing the Effects of Washing by Different Detergents on the Wavelength-Scale Microstructures of Silk Samples Using Mueller Matrix Polarimetry.

    PubMed

    Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui

    2016-08-10

    Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials.

  18. Characterizing the Effects of Washing by Different Detergents on the Wavelength-Scale Microstructures of Silk Samples Using Mueller Matrix Polarimetry

    PubMed Central

    Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui

    2016-01-01

    Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials. PMID:27517919

  19. Detection of melamine in milk powder using MCT-based short-wave infrared hyperspectral imaging system.

    PubMed

    Lee, Hoonsoo; Kim, Moon S; Lohumi, Santosh; Cho, Byoung-Kwan

    2018-06-05

    Extensive research has been conducted on non-destructive and rapid detection of melamine in powdered foods in the last decade. While Raman and near-infrared hyperspectral imaging techniques have been successful in terms of non-destructive and rapid measurement, they have limitations with respect to measurement time and detection capability, respectively. Therefore, the objective of this study was to develop a mercury cadmium telluride (MCT)-based short-wave infrared (SWIR) hyperspectral imaging system and algorithm to detect melamine quantitatively in milk powder. The SWIR hyperspectral imaging system consisted of a custom-designed illumination system, a SWIR hyperspectral camera, a data acquisition module and a sample transfer table. SWIR hyperspectral images were obtained for melamine-milk samples with different melamine concentrations, pure melamine and pure milk powder. Analysis of variance and the partial least squares regression method over the 1000-2500 nm wavelength region were used to develop an optimal model for detection. The results showed that a melamine concentration as low as 50 ppm in melamine-milk powder samples could be detected. Thus, the MCT-based SWIR hyperspectral imaging system has the potential for quantitative and qualitative detection of adulterants in powder samples.

  20. Method for Smoke Spread Testing of Large Premises

    NASA Astrophysics Data System (ADS)

    Walmerdahl, P.; Werling, P.

    2001-11-01

    A method for performing non-destructive smoke spread tests has been developed, tested and applied to several existing buildings. Burning methanol in different size steel trays cooled by water generates the heat source. Several tray sizes are available to cover fire sources up to nearly 1MW. The smoke is supplied by means of a suitable number of smoke generators that produce a smoke, which can be described as a non-toxic aerosol. The advantage of the method is that it provides a means for performing non-destructive tests in already existing buildings and other installations for the purpose of evaluating the functionality and design of the active fire protection measures such as smoke extraction systems, etc. In the report, the method is described in detail and experimental data from the try-out of the method are also presented in addition to a discussion on applicability and flexibility of the method.

  1. EPRI/DOE High Burnup Fuel Sister Pin Test Plan Simplification and Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltzstein, Sylvia J.; Sorenson, Ken B.; Hanson, Brady

    The EPRI/DOE High Burnup Confirmatory Data Project (herein called the "Demo") is a multi-year, multi-entity confirmation demonstration test with the purpose of providing quantitative and qualitative data to show how high-burnup fuel ages in dry storage over a ten-year period. The Demo involves obtaining 32 assemblies of high-burnup PWR fuel of four common cladding alloys from the North Anna Nuclear Power Plant, drying them according to standard plant procedures, and then storing them in an NRC-licensed TN-3 2B cask on the North Anna dry storage pad for ten years. After the ten-year storage time, the cask will be opened andmore » the rods will be examined for signs of aging. Twenty-five rods from assemblies of similar claddings, in-reactor placement, and burnup histories (herein called "sister rods") have been shipped from the North Anna Nuclear Power Plant and are currently being nondestructively tested at Oak Ridge National Laboratory. After the non-destructive testing has been completed for each of the twenty-five rods, destructive analysis will be performed at ORNL, PNNL, and ANL to obtain mechanical data. Opinions gathered from the expert interviews, ORNL and PNNL Sister Rod Test Plans, and numerous meetings has resulted in the Simplified Test Plan described in this document. Some of the opinions and discussions leading to the simplified test plan are included here. Detailed descriptions and background are in the ORNL and PNNL plans in the appendices . After the testing described in this simplified test plan h as been completed , the community will review all the collected data and determine if additional testing is needed.« less

  2. Research Performed within the Non-Destructive Evaluation Team at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Burns, Erin A.

    2004-01-01

    Non-destructive testing is essential in many fields of manufacturing and research in order to perform reliable examination of potentially damaged materials and parts without destroying the inherent structure of the materials. Thus, the Non-Destructive Evaluation (NDE) Team at NASA Glenn Research Center partakes in various projects to improve materials testing equipment as well as analyze materials, material defects, and material deficiencies. Due to the array of projects within the NDE Team at this time, five research aims were supplemental to some current projects. A literature survey of "DE and testing methodologies as related to rocks was performed. Also, Mars Expedition Rover technology was assessed to understand the requirements for instrumentation in harsh space environments (e.g. temperature). Potential instrumentation and technologies were also considered and documented. The literature survey provided background and potential sources for a proposal to acquire funding for ultrasonic instrumentation on board a future Mars expedition. The laboratory uses a Santec Systems AcousticScope AS200 acoustography system. Labview code was written within the current program in order to improve the current performance of the acoustography system. A sample of Reinforced Carbon/Carbon (RCC) material from the leading edge of the space shuttle underwent various non-destructive tests (guided wave scanning, thermography, computed tomography, real time x-ray, etc.) in order to characterize its structure and examine possible defects. Guided wave scan data of a ceramic matrix composite (CMC) panel was reanalyzed utilizing image correlations and signal processing variables. Additional guided wave scans and thermography were also performed on the CMC panel. These reevaluated data and images will be used in future presentations and publications. An additional axis for the guided wave scanner was designed, constructed, and implemented. This additional axis allowed incremental spacing of the previously fixed transducers for ultrasonic velocity measurements.

  3. Non-destructive testing of concrete.

    DOT National Transportation Integrated Search

    1979-11-01

    This research project was initiated to evaluate the performance of an ultrasonic testing device device in predicting compressive strengths from tests performed on samples of fresh concrete. : The initial phase of this study involved laboratory perora...

  4. Ultrasonic guided wave for monitoring corrosion of steel bar

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  5. Feasibility Study of Non-Destructive Techniques to Measure Corrosion in SAVY Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Matthew Nicholas

    2016-07-15

    Stainless Steel SAVY containers are used to transport and store nuclear material. They are prone to interior corrosion in the presence of certain chemicals and a low-oxygen environment. SAVY containers also have relatively thin walls to reduce their weight, making their structural integrity more vulnerable to the effects of corrosion. A nondestructive evaluation system that finds and monitors corrosion within containers in use would improve safety conditions and preclude hazards. Non-destructive testing can determine whether oxidation or corrosion is occurring inside the SAVY containers, and there are a variety of non-destructive testing methods that may be viable. The feasibility studymore » described will objectively decide which method best fits the requirements of the facility and the problem. To improve efficiency, the containers cannot be opened during the non-destructive examination. The chosen technique should also be user-friendly and relatively quick to apply. It must also meet facility requirements regarding wireless technology and maintenance. A feasibility study is an objective search for a new technology or product to solve a particular problem. First, the design, technical, and facility feasibility requirements are chosen and ranked in order of importance. Then each technology considered is given a score based upon a standard ranking system. The technology with the highest total score is deemed the best fit for a certain application.« less

  6. Spermatozoa quality assessment: a combined holographic and Raman microscopy approach

    NASA Astrophysics Data System (ADS)

    De Angelis, Annalisa; Ferrara, Maria A.; Di Caprio, Giuseppe; Managò, Stefano; Sirleto, Luigi; Coppola, Giuseppe; De Luca, Anna Chiara

    2015-05-01

    Semen analysis is widely used as diagnostic tool for assessing male fertility, controlling and managing the animal reproduction. The most important parameters measured in a semen analysis are the morphology and biochemical alterations. For obtaining such information, non-invasive, label-free and non-destructive techniques have to be used. Digital Holography (DH) combined with Raman Spectroscopy (RS) could represent the perfect candidate for a rapid, non-destructive and high-sensitive morphological and biochemical sperm cell analysis. In this study, DH-RS combined approach is used for a complete analysis of single bovine spermatozoa. High-resolution images of bovine sperm have been obtained by DH microscopy from the reconstruction of a single acquired hologram, highlighting in some cases morphological alterations. Quantitative 3D reconstructions of sperm head, both normal and anomalous, have been studied and an unexpected structure of the post-acrosomal region of the head has been detected. Such anomalies have been also confirmed by Raman imaging analysis, suggesting the protein vibrations as associated Raman marker of the defect.

  7. Non-destructive geochemical analysis and element mapping using bench-top μ-XRF: applications and uses for geoscience problems

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Haschke, Michael; Tagle, Roald; Storey, Michael

    2013-04-01

    X-Ray Fluorescence (XRF) has long been used to provide valuable geochemical analysis of bulk rock samples in geological studies. However, it is a destructive technique, requiring samples to be homogenised by grinding to a fine powder and formed into a compacted pellet, or fused glass disk and the resulting sample has to be completely flat for reliable analysis. Until recently, non-destructive, high spatial resolution µ- XRF analysis was possible only at specialised Synchrotron radiation facilities, where high excitation beam energies are possible and specialised X-ray focussing optical systems are available. Recently, a number of bench-top µ-XRF systems have become available, allowing easy, rapid and non-destructive geochemical analysis of various materials. We present a number of examples of how the new bench-top M4 Tornado µ-XRF system, developed by Bruker Nano, can be used to provide valuable geochemical information on geological samples. Both quantitative and qualitative (in the form of X-Ray area-maps) data can be quickly and easily acquired for a wide range of elements (as light as Na, using a vacuum), with minimal sample preparation, using an X-Ray spot size as low as 25 µm. Large specimens up to 30 cm and 5 kg in weight can be analysed due to the large sample chamber, allowing non-destructive characterisation of rare or valuable materials. This technique is particularly useful in characterising heterogeneous samples, such as drill cores, sedimentary and pyroclastic rocks containing a variety of clasts, lavas sourced from mixed and mingled magmas, mineralised samples and fossils. An obvious application is the ability to produce element maps or line-scans of minerals, allowing zoning of major and trace elements to be identified and thus informing on crystallisation histories. An application of particular interest to 40Ar/39Ar geochronologists is the ability to screen and assess the purity of mineral separates, or to characterise polished slabs for subsequent in-situ 40Ar/39Ar laser probe analysis; in the past such samples may have been characterised using SEM, but recent work [1] suggests that charging of a sample during electron-beam excitation can cause redistribution of K, thus disturb the 40Ar/39Ar system. Finally, we assess data accuracy and precision by presenting quantitative analyses of a number of standards. [1] Flude et al., The effect of SEM imaging on the Ar/Ar system in feldspars, V51C-2215 Poster, AGU Fall Meeting 2010

  8. Non-destructive testing method for determining the solvent diffusion coefficient in the porous materials products

    NASA Astrophysics Data System (ADS)

    Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.

    2018-01-01

    Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.

  9. 40 CFR 52.2220 - Identification of plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Coke Battery Underfire (combustion) Stacks 06/07/92 08/15/97, 62 FR 43643 CHAPTER 1200-3-6NON-PROCESS... Destruction or Removal Efficiency and Monitoring Requirements 05/18/93 02/27/95, 60 FR 10504 Section 1200-3-18-.84 Test Methods and Compliance Procedures: Determining the Destruction or Removal Efficiency of a...

  10. Physics-Based Image Segmentation Using First Order Statistical Properties and Genetic Algorithm for Inductive Thermography Imaging.

    PubMed

    Gao, Bin; Li, Xiaoqing; Woo, Wai Lok; Tian, Gui Yun

    2018-05-01

    Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.

  11. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers remove the overhead crane from the nose cap that was removed from Atlantis. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

    NASA Image and Video Library

    2003-10-29

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers remove the overhead crane from the nose cap that was removed from Atlantis. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

  12. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the nose cap from Atlantis is secured on a shipping pallet. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

    NASA Image and Video Library

    2003-10-29

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the nose cap from Atlantis is secured on a shipping pallet. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

  13. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, packing material is placed over the nose cap that was removed from Atlantis. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

    NASA Image and Video Library

    2003-10-29

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, packing material is placed over the nose cap that was removed from Atlantis. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

  14. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the nose cap from Atlantis is lowered toward a shipping pallet. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

    NASA Image and Video Library

    2003-10-29

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the nose cap from Atlantis is lowered toward a shipping pallet. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

  15. Comparison of normal and phase stepping shearographic NDE

    NASA Astrophysics Data System (ADS)

    Andhee, A.; Gryzagoridis, J.; Findeis, D.

    2005-05-01

    The paper presents results of non-destructive testing of composite main rotor helicopter blade calibration specimens using the laser based optical NDE technique known as Shearography. The tests were performed initially using the already well established near real-time non-destructive technique of Shearography, with the specimens perturbed during testing for a few seconds using the hot air from a domestic hair dryer. Subsequent to modification of the shearing device utilized in the shearographic setup, phase stepping of one of the sheared images to be captured by the CCD camera was enabled and identical tests were performed on the composite main rotor helicopter blade specimens. Considerable enhancement of the images manifesting or depicting the defects on the specimens is noted suggesting that phase stepping is a desirable enhancement technique to the traditional Shearographic setup.

  16. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    PubMed Central

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-01

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts. PMID:28788464

  17. Non-contact, non-destructive, quantitative probing of interfacial trap sites for charge carrier transport at semiconductor-insulator boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Wookjin; Miyakai, Tomoyo; Sakurai, Tsuneaki

    The density of traps at semiconductor–insulator interfaces was successfully estimated using microwave dielectric loss spectroscopy with model thin-film organic field-effect transistors. The non-contact, non-destructive analysis technique is referred to as field-induced time-resolved microwave conductivity (FI-TRMC) at interfaces. Kinetic traces of FI-TRMC transients clearly distinguished the mobile charge carriers at the interfaces from the immobile charges trapped at defects, allowing both the mobility of charge carriers and the number density of trap sites to be determined at the semiconductor-insulator interfaces. The number density of defects at the interface between evaporated pentacene on a poly(methylmethacrylate) insulating layer was determined to be 10{supmore » 12 }cm{sup −2}, and the hole mobility was up to 6.5 cm{sup 2} V{sup −1} s{sup −1} after filling the defects with trapped carriers. The FI-TRMC at interfaces technique has the potential to provide rapid screening for the assessment of interfacial electronic states in a variety of semiconductor devices.« less

  18. Nonintrusive tools to detect salts contamination in masonry: case study of Fontaine-Chaalis church

    NASA Astrophysics Data System (ADS)

    Giovannacci, David; Brissaud, Didier; Mertz, Jean-Didier; Mouhoubi, Kamel; Bodnar, Jean-Luc

    2017-07-01

    Such developments come from conservation experts in the community of cultural heritage - encompassing artworks, museum artifacts or historical monuments - for less intrusive and non-destructive tools to gain information about the subject. Increasingly the demand is for information regarding internal structures and indications of life histories and behaviors of an object. As it is well known, the deterioration due to the capillary rise of water through the walls is a very widespread problem. In this paper, a study of Stimulated Infrared thermography and Evanescent-Field Dielectrometry was applied to a non-destructive mapping, in situ, and in a semi-quantitative way the distribution of water, salt and the structural deterioration induced in a wall of the 13th century of the abbey's church of Chaalis. Complementarity of the both techniques will be underlined. The Stimulated Infra-Red Thermography (SIRT) is a contact free technique and allows the detection of plaster layers delamination of masonry. Evanescent-Field Dielectrometry (EFD) is a recent diagnostic method based on dielectric spectroscopy at microwave frequency. The measuring instrument is a portable resonant microwave device for mapping the water content and salinity on flat surface up to a depth of 2-3 cm in real time, in a non-destructive way. The method detects the water content and salt concentration in frescoes and walls by estimating the dielectric properties of tested porous materials that is viewed as a "binary" dielectric mixture consisting of bulk material and water, by the contrast between the dielectric constant of a dry material and water. According to the resolution of the optics, the SIRT has a less lateral resolution and more limited in depth, but it is easy to implement and can be used on-site, like in scaffolding conditions. Moreover, this technique gives an overview at a larger scale (metric) than EFD (centimetric).

  19. Infrared thermography quantitative image processing

    NASA Astrophysics Data System (ADS)

    Skouroliakou, A.; Kalatzis, I.; Kalyvas, N.; Grivas, TB

    2017-11-01

    Infrared thermography is an imaging technique that has the ability to provide a map of temperature distribution of an object’s surface. It is considered for a wide range of applications in medicine as well as in non-destructive testing procedures. One of its promising medical applications is in orthopaedics and diseases of the musculoskeletal system where temperature distribution of the body’s surface can contribute to the diagnosis and follow up of certain disorders. Although the thermographic image can give a fairly good visual estimation of distribution homogeneity and temperature pattern differences between two symmetric body parts, it is important to extract a quantitative measurement characterising temperature. Certain approaches use temperature of enantiomorphic anatomical points, or parameters extracted from a Region of Interest (ROI). A number of indices have been developed by researchers to that end. In this study a quantitative approach in thermographic image processing is attempted based on extracting different indices for symmetric ROIs on thermograms of the lower back area of scoliotic patients. The indices are based on first order statistical parameters describing temperature distribution. Analysis and comparison of these indices result in evaluating the temperature distribution pattern of the back trunk expected in healthy, regarding spinal problems, subjects.

  20. Non-destructive forensic latent fingerprint acquisition with chromatic white light sensors

    NASA Astrophysics Data System (ADS)

    Leich, Marcus; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus

    2011-02-01

    Non-destructive latent fingerprint acquisition is an emerging field of research, which, unlike traditional methods, makes latent fingerprints available for additional verification or further analysis like tests for substance abuse or age estimation. In this paper a series of tests is performed to investigate the overall suitability of a high resolution off-the-shelf chromatic white light sensor for the contact-less and non-destructive latent fingerprint acquisition. Our paper focuses on scanning previously determined regions with exemplary acquisition parameter settings. 3D height field and reflection data of five different latent fingerprints on six different types of surfaces (HDD platter, brushed metal, painted car body (metallic and non-metallic finish), blued metal, veneered plywood) are experimentally studied. Pre-processing is performed by removing low-frequency gradients. The quality of the results is assessed subjectively; no automated feature extraction is performed. Additionally, the degradation of the fingerprint during the acquisition period is observed. While the quality of the acquired data is highly dependent on surface structure, the sensor is capable of detecting the fingerprint on all sample surfaces. On blued metal the residual material is detected; however, the ridge line structure dissolves within minutes after fingerprint placement.

  1. Industrial applications of THz systems

    NASA Astrophysics Data System (ADS)

    Wietzke, S.; Jansen, C.; Jördens, C.; Krumbholz, N.; Vieweg, N.; Scheller, M.; Shakfa, M. K.; Romeike, D.; Hochrein, T.; Mikulics, M.; Koch, M.

    2009-07-01

    Terahertz time-domain spectroscopy (THz TDS) holds high potential as a non-destructive, non-contact testing tool. We have identified a plethora of emerging industrial applications such as quality control of industrial processes and products in the plastics industry. Polymers are transparent to THz waves while additives show a significantly higher permittivity. This dielectric contrast allows for detecting the additive concentration and the degree of dispersion. We present a first inline configuration of a THz TDS spectrometer for monitoring polymeric compounding processes. To evaluate plastic components, non-destructive testing is strongly recommended. For instance, THz imaging is capable of inspecting plastic weld joints or revealing the orientation of fiber reinforcements. Water strongly absorbs THz radiation. However, this sensitivity to water can be employed in order to investigate the moisture absorption in plastics and the water content in plants. Furthermore, applications in food technology are discussed. Moreover, security scanning applications are addressed in terms of identifying liquid explosives. We present the vision and first components of a handheld security scanner. In addition, a new approach for parameter extraction of THz TDS data is presented. All in all, we give an overview how industry can benefit from THz TDS completing the tool box of non-destructive evaluation.

  2. Detection of Secondary Phases in UNS S32760 Superduplex Stainless Steel by Destructive and Non-destructive Techniques

    NASA Astrophysics Data System (ADS)

    Argandona, G.; Biezma, M. V.; Berrueta, J. M.; Berlanga, C.; Ruiz, A.

    2016-12-01

    Duplex stainless steels (DSS), with a microstructure of an approximately equal mixture of ferrite ( α) and austenite ( γ) phases, are susceptible to the formation of undesirable phases if manufacturing processes are not carefully controlled. In particular, sigma phase (σ) is a Cr- and Mo-rich intermetallic phase, formed generally when DSS are by the temperature range from 600 to 900 °C, even for very short time periods. The precipitation of this phase induces detrimental effects in mechanical and corrosion resistance properties in the material, and even a low volume percentage of σ phase can significantly affect these properties. The current paper presents the effect of thermal treatments on UNS S32760 superduplex stainless steel seamless tubes, applied in order to promote the precipitation of different σ phase percentages in a ferrite/austenite microstructure. The detection and quantification of the σ phase using non-destructive ultrasounds testing has been one of the most relevant events of this study that contributes to improving the correlation of the results obtained using destructive and non-destructive techniques for the quantification of undesirable phases in superduplex seamless tubes during the manufacturing process.

  3. A New Non-Destructive TDR System Combined with a Piezoelectric Stack for Measuring Properties of Geomaterials

    PubMed Central

    Choi, Chanyong; Song, Minwoo; Kim, Daehyeon; Yu, Xiong

    2016-01-01

    Dry density and water content are two important factors affecting the degree of soil compaction. Conventional methods such as the sand cone test and the plate load test are used to measure such properties for evaluating the degree of compaction and the stiffness of soil in the field. However, these tests are generally very time-consuming and are inherent with some errors depending on the operator (in particular for the sand cone test). Elastic modulus is an indicator to describe the stress-strain behavior of soil and in some cases is used as a design input parameter. Although a rod type TDR (Time Domain Reflectometry) system has been recently proposed to overcome some shortcomings of the conventional methods (particularly the sand cone test), it requires driving the probes into the ground, thus implying that it is still a time-consuming and destructive testing method. This study aims to develop a new non-destructive TDR system that can rapidly measure the dry density, water content, and elastic modulus of soil on the surface of compacted soil, without disturbing the ground. In this study, the Piezoelectric Stack, which is an instrument for measuring the elastic modulus of soil, has been added to the TDR system with a flat type probe, leading to a non-destructive TDR system that is capable of measuring the dry density, water content, and elastic modulus of soil. The new TDR system developed is light enough for an engineer to carry. Results of the standard compaction and TDR tests on sand showed that the dry densities and the moisture contents measured with the new TDR system were in good agreement with those measured with the standard compaction test, respectively. Consequently, it appears that the new TDR system developed will be very useful to advance the current practice of compaction quality control. PMID:28773563

  4. A New Non-Destructive TDR System Combined with a Piezoelectric Stack for Measuring Properties of Geomaterials.

    PubMed

    Choi, Chanyong; Song, Minwoo; Kim, Daehyeon; Yu, Xiong

    2016-06-02

    Dry density and water content are two important factors affecting the degree of soil compaction. Conventional methods such as the sand cone test and the plate load test are used to measure such properties for evaluating the degree of compaction and the stiffness of soil in the field. However, these tests are generally very time-consuming and are inherent with some errors depending on the operator (in particular for the sand cone test). Elastic modulus is an indicator to describe the stress-strain behavior of soil and in some cases is used as a design input parameter. Although a rod type TDR (Time Domain Reflectometry) system has been recently proposed to overcome some shortcomings of the conventional methods (particularly the sand cone test), it requires driving the probes into the ground, thus implying that it is still a time-consuming and destructive testing method. This study aims to develop a new non-destructive TDR system that can rapidly measure the dry density, water content, and elastic modulus of soil on the surface of compacted soil, without disturbing the ground. In this study, the Piezoelectric Stack, which is an instrument for measuring the elastic modulus of soil, has been added to the TDR system with a flat type probe, leading to a non-destructive TDR system that is capable of measuring the dry density, water content, and elastic modulus of soil. The new TDR system developed is light enough for an engineer to carry. Results of the standard compaction and TDR tests on sand showed that the dry densities and the moisture contents measured with the new TDR system were in good agreement with those measured with the standard compaction test, respectively. Consequently, it appears that the new TDR system developed will be very useful to advance the current practice of compaction quality control.

  5. The RAMANITA © method for non-destructive and in situ semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts

    NASA Astrophysics Data System (ADS)

    Smith, David C.

    2005-08-01

    The "RAMANITA ©" method, for semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts and mathematical calculation by simultaneous equations, is published here in detail in English for the first time. It was conceived by the present writer 20 years ago for binary and ternary pyroxene and garnet systems. The mathematical description was set out in 1989, but in an abstract in an obscure French special publication. Detailed "step-by-step" calibration of two garnet ternaries, followed by their linking, by M. Pinet and D.C. Smith in the early 1990s provided a hexary garnet database. Much later, using this garnet database, which forms part of his personal database called RAMANITA ©, the present writer began to develop the method by improving the terminology, automating the calculations, discussing problems and experimenting with different real chemical problems in archaeometry. Although this RAMANITA © method has been very briefly mentioned in two recent books, the necessary full mathematical explanation is given only here. The method will find application in any study which requires obtaining a non-destructive semi-quantitative chemical analysis from mineral solid solutions that cannot be analysed by any destructive analytical method, in particular for archaeological, geological or extraterrestrial research projects, e.g. from gemstones or other crystalline artworks of the cultural heritage (especially by Mobile Raman Microscopy (MRM)) in situ in museums or at archaeological sites, including under water for subaquatic archaeometry; from scientifically precious mineral microinclusions (such as garnet or pyroxene within diamond); from minerals in rocks analysed in situ on planetary bodies by a rover (especially "at distance" by telescopy). Recently some other workers have begun deducing chemical compositions from Raman wavenumber shifts in multivariate chemical space, but the philosophical approach is quite different.

  6. Nondestructive evaluation of warm mix asphalt through resonant column testing.

    DOT National Transportation Integrated Search

    2014-02-01

    Non-destructive testing has been used for decades to characterize engineering properties of hot-mix asphalt. Among such tests is the resonant column (RC) test, which is commonly used to characterize soil materials. The resonant column device at Penn ...

  7. Quantitative assessment in thermal image segmentation for artistic objects

    NASA Astrophysics Data System (ADS)

    Yousefi, Bardia; Sfarra, Stefano; Maldague, Xavier P. V.

    2017-07-01

    The application of the thermal and infrared technology in different areas of research is considerably increasing. These applications involve Non-destructive Testing (NDT), Medical analysis (Computer Aid Diagnosis/Detection- CAD), Arts and Archaeology among many others. In the arts and archaeology field, infrared technology provides significant contributions in term of finding defects of possible impaired regions. This has been done through a wide range of different thermographic experiments and infrared methods. The proposed approach here focuses on application of some known factor analysis methods such as standard Non-Negative Matrix Factorization (NMF) optimized by gradient-descent-based multiplicative rules (SNMF1) and standard NMF optimized by Non-negative least squares (NNLS) active-set algorithm (SNMF2) and eigen decomposition approaches such as Principal Component Thermography (PCT), Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT) to obtain the thermal features. On one hand, these methods are usually applied as preprocessing before clustering for the purpose of segmentation of possible defects. On the other hand, a wavelet based data fusion combines the data of each method with PCT to increase the accuracy of the algorithm. The quantitative assessment of these approaches indicates considerable segmentation along with the reasonable computational complexity. It shows the promising performance and demonstrated a confirmation for the outlined properties. In particular, a polychromatic wooden statue and a fresco were analyzed using the above mentioned methods and interesting results were obtained.

  8. Prediction of Moisture Content for Congou Black Tea Withering Leaves Using Image Features and Nonlinear Method.

    PubMed

    Liang, Gaozhen; Dong, Chunwang; Hu, Bin; Zhu, Hongkai; Yuan, Haibo; Jiang, Yongwen; Hao, Guoshuang

    2018-05-18

    Withering is the first step in the processing of congou black tea. With respect to the deficiency of traditional water content detection methods, a machine vision based NDT (Non Destructive Testing) method was established to detect the moisture content of withered leaves. First, according to the time sequences using computer visual system collected visible light images of tea leaf surfaces, and color and texture characteristics are extracted through the spatial changes of colors. Then quantitative prediction models for moisture content detection of withered tea leaves was established through linear PLS (Partial Least Squares) and non-linear SVM (Support Vector Machine). The results showed correlation coefficients higher than 0.8 between the water contents and green component mean value (G), lightness component mean value (L * ) and uniformity (U), which means that the extracted characteristics have great potential to predict the water contents. The performance parameters as correlation coefficient of prediction set (Rp), root-mean-square error of prediction (RMSEP), and relative standard deviation (RPD) of the SVM prediction model are 0.9314, 0.0411 and 1.8004, respectively. The non-linear modeling method can better describe the quantitative analytical relations between the image and water content. With superior generalization and robustness, the method would provide a new train of thought and theoretical basis for the online water content monitoring technology of automated production of black tea.

  9. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing.

    PubMed

    Capriotti, Margherita; Kim, Hyungsuk E; Scalea, Francesco Lanza di; Kim, Hyonny

    2017-06-04

    This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers.

  10. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing

    PubMed Central

    Capriotti, Margherita; Kim, Hyungsuk E.; Lanza di Scalea, Francesco; Kim, Hyonny

    2017-01-01

    This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers. PMID:28772976

  11. Complementary Electromagnetic Non-Destructive Evaluation

    NASA Astrophysics Data System (ADS)

    Tian, Gui Yun; Wilson, John; Morozov, Maxim

    2011-06-01

    The use of non-destructive evaluation (NDE) for defect detection and failure prediction in structures and specimens is widespread in energy industries, aimed at ageing power plants and pipelines, material degradation, fatigue and radiation damage, etc. At present there are no suitable electromagnetic NDE methods for the measurement and characterization of material degradation, in irradiated samples in particular, which is very important and timely for the nuclear power industry in the UK. This paper reports recent developments in the field of electromagnetic (EM) NDE at Newcastle University, including pulsed eddy current (PEC), pulsed magnetic flux leakage (PMFL), magnetic Barkhausen emission (MBE) and magneto-acoustic emission (MAE). As different EM methods have different strengths, an integrative EM framework is introduced. Case studies through the second round robin tests organized by the Universal Network for Magnetic Non-Destructive Evaluation (UNMNDE), representing eighteen leading research groups worldwide in the area of electromagnetic NDE, are reported. Twelve samples with different ageing times and rolling reduction ratios were tested using different magnetic methods among the UNMNDE members. Based on the studies, the complementary characteristics of electromagnetic techniques for NDE are discussed.

  12. Fiber-Optic Defect and Damage Locator System for Wind Turbine Blades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Vahid Sotoudeh; Dr. Richard J. Black; Dr. Behzad Moslehi

    2010-10-30

    IFOS in collaboration with Auburn University demonstrated the feasibility of a Fiber Bragg Grating (FBG) integrated sensor system capable of providing real time in-situ defect detection, localization and quantification of damage. In addition, the system is capable of validating wind turbine blade structural models, using recent advances in non-contact, non-destructive dynamic testing of composite structures. This new generation method makes it possible to analyze wind turbine blades not only non-destructively, but also without physically contacting or implanting intrusive electrical elements and transducers into the structure. Phase I successfully demonstrated the feasibility of the technology with the construction of a 1.5more » kHz sensor interrogator and preliminary instrumentation and testing of both composite material coupons and a wind turbine blade.« less

  13. A Review of Optical NDT Technologies

    PubMed Central

    Zhu, Yong-Kai; Tian, Gui-Yun; Lu, Rong-Sheng; Zhang, Hong

    2011-01-01

    Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress. PMID:22164045

  14. The metallic sphere in a uniform ac magnetic field: A simple and precise experiment for exploring eddy currents and non-destructive testing

    NASA Astrophysics Data System (ADS)

    Honke, Michael L.; Bidinosti, Christopher P.

    2018-06-01

    We describe a very simple experiment that utilizes standard laboratory equipment to measure the electromagnetic response of a metallic sphere exposed to a uniform ac magnetic field. Measurements were made for a variety of non-magnetic and magnetic metals, and in all cases the results fit very well with theory over the four orders of frequency (25 Hz to 102 kHz) explored here. Precise values of magnetic permeability and electrical conductivity can be extracted from fits to the data given the sphere radius only. The same apparatus is also used to explore the effects of geometry on eddy current generation as well as to demonstrate non-destructive testing through measurements on coins of different composition.

  15. A new measurement method of coatings thickness based on lock-in thermography

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Yu; Meng, Xiang-bin; Ma, Yong-chao

    2016-05-01

    Coatings have been widely used in modern industry and it plays an important role. Coatings thickness is directly related to the performance of the functional coatings, therefore, rapid and accurate coatings thickness inspection has great significance. Existing coatings thickness measurement method is difficult to achieve fast and accurate on-site non-destructive coatings inspection due to cost, accuracy, destruction during inspection and other reasons. This paper starts from the introduction of the principle of lock-in thermography, and then performs an in-depth study on the application of lock-in thermography in coatings inspection through numerical modeling and analysis. The numerical analysis helps explore the relationship between coatings thickness and phase, and the relationship lays the foundation for accurate calculation of coatings thickness. The author sets up a lock-in thermography inspection system and uses thermal barrier coatings specimens to conduct an experiment. The specimen coatings thickness is measured and calibrated to verify the quantitative inspection. Experiment results show that the lock-in thermography method can perform fast coatings inspection and the inspection accuracy is about 95%. Therefore, the method can meet the field testing requirements for engineering projects.

  16. Non-destructive testing principles and accurate evaluation of the hydraulic measure impact range using the DC method

    NASA Astrophysics Data System (ADS)

    Qiu, Liming; Shen, Rongxi; Song, Dazhao; Wang, Enyuan; Liu, Zhentang; Niu, Yue; Jia, Haishan; Xia, Shankui; Zheng, Xiangxin

    2017-12-01

    An accurate and non-destructive evaluation method for the hydraulic measure impact range in coal seams is urgently needed. Aiming at the application demands, a theoretical study and field test are presented using the direct current (DC) method to evaluate the impact range of coal seam hydraulic measures. We firstly analyzed the law of the apparent resistivity response of an abnormal conductive zone in a coal seam, and then investigated the principle of non-destructive testing of the coal seam hydraulic measure impact range using the DC method, and used an accurate evaluation method based on the apparent resistivity cloud chart. Finally, taking hydraulic fracturing and hydraulic flushing as examples, field experiments were carried out in coal mines to evaluate the impact ranges. The results showed that: (1) in the process of hydraulic fracturing, coal conductivity was enhanced by high-pressure water in the coal seam, and after hydraulic fracturing, the boundary of the apparent resistivity decrease area was the boundary impact range. (2) In the process of hydraulic flushing, coal conductivity was reduced by holes and cracks in the coal seam, and after hydraulic flushing, the boundary of the apparent resistivity increase area was the boundary impact range. (3) After the implementation of the hydraulic measures, there may be some blind zones in the coal seam; in hydraulic fracturing blind zones, the apparent resistivity increased or stayed constant, while in hydraulic flushing blind zones, the apparent resistivity decreased or stayed constant. The DC method realized a comprehensive and non-destructive evaluation of the impact range of the hydraulic measures, and greatly reduced the time and cost of evaluation.

  17. FRET sensor-based quantification of intracellular trehalose in mammalian cells.

    PubMed

    Kikuta, Shingo; Hou, Bi-Huei; Sato, Ryoichi; Frommer, Wolf B; Kikawada, Takahiro

    2016-01-01

    Trehalose acts as a stress protectant and an autophagy inducer in mammalian cells. The molecular mechanisms of action remain obscure because intracellular trehalose at micromolar level is difficult to quantitate. Here, we show a novel trehalose monitoring technology based on FRET. FLIP-suc90μ∆1Venus sensor expressed in mammalian cells enables to quickly and non-destructively detect an infinitesimal amount of intracellular trehalose.

  18. Evaluation of macrozone dimensions by ultrasound and EBSD techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, Andre, E-mail: Andre.Moreau@cnrc-nrc.gc.ca; Toubal, Lotfi; Ecole de technologie superieure, 1100, rue Notre-Dame Ouest, Montreal, QC, Canada H3C 1K3

    2013-01-15

    Titanium alloys are known to have texture heterogeneities, i.e. regions much larger than the grain dimensions, where the local orientation distribution of the grains differs from one region to the next. The electron backscattering diffraction (EBSD) technique is the method of choice to characterize these macro regions, which are called macrozones. Qualitatively, the images obtained by EBSD show that these macrozones may be larger or smaller, elongated or equiaxed. However, often no well-defined boundaries are observed between the macrozones and it is very hard to obtain objective and quantitative estimates of the macrozone dimensions from these data. In the presentmore » work, we present a novel, non-destructive ultrasonic technique that provides objective and quantitative characteristic dimensions of the macrozones. The obtained dimensions are based on the spatial autocorrelation function of fluctuations in the sound velocity. Thus, a pragmatic definition of macrozone dimensions naturally arises from the ultrasonic measurement. This paper has three objectives: 1) to disclose the novel, non-destructive ultrasonic technique to measure macrozone dimensions, 2) to propose a quantitative and objective definition of macrozone dimensions adapted to and arising from the ultrasonic measurement, and which is also applicable to the orientation data obtained by EBSD, and 3) to compare the macrozone dimensions obtained using the two techniques on two samples of the near-alpha titanium alloy IMI834. In addition, it was observed that macrozones may present a semi-periodical arrangement. - Highlights: Black-Right-Pointing-Pointer Discloses a novel, ultrasonic NDT technique to measure macrozone dimensions Black-Right-Pointing-Pointer Proposes a quantitative and objective definition of macrozone dimensions Black-Right-Pointing-Pointer Compares macrozone dimensions obtained using EBSD and ultrasonics on 2 Ti samples Black-Right-Pointing-Pointer Observes that macrozones may have a semi-periodical arrangement.« less

  19. Lack of Penetration in Friction Stir Welds: Effects on Mechanical Properties and NDE Feasibility

    NASA Technical Reports Server (NTRS)

    Kinchen, David G.; Adams, Glynn P.

    2000-01-01

    This presentation reviews the issue of lack of penetration (LOP) in Friction Stir Welding and the feasibility of using non-destructive tests to detect . Friction Stir Welding takes place in the solid phase below the melting point of the materials to be joined. It thus gives the ability to join materials which are difficult to fusion weld, for example 2000 and 7000 aluminium alloys. This process though can result in a lack of penetration, due to an incomplete penetration of the DXZ. This is frequently referred to as a "kissing bond", which requires micro examination to detect. The presentation then discusses the surface crack tension tests. It then reviews the simulated service test and results. It then discusses the feasibility of using non-destructive examination to detect LOP, the forms of test which can be used, and the results the tests.

  20. White-Nose Syndrome Disease Severity and a Comparison of Diagnostic Methods.

    PubMed

    McGuire, Liam P; Turner, James M; Warnecke, Lisa; McGregor, Glenna; Bollinger, Trent K; Misra, Vikram; Foster, Jeffrey T; Frick, Winifred F; Kilpatrick, A Marm; Willis, Craig K R

    2016-03-01

    White-nose syndrome is caused by the fungus Pseudogymnoascus destructans and has killed millions of hibernating bats in North America but the pathophysiology of the disease remains poorly understood. Our objectives were to (1) assess non-destructive diagnostic methods for P. destructans infection compared to histopathology, the current gold-standard, and (2) to evaluate potential metrics of disease severity. We used data from three captive inoculation experiments involving 181 little brown bats (Myotis lucifugus) to compare histopathology, quantitative PCR (qPCR), and ultraviolet fluorescence as diagnostic methods of P. destructans infection. To assess disease severity, we considered two histology metrics (wing area with fungal hyphae, area of dermal necrosis), P. destructans fungal load (qPCR), ultraviolet fluorescence, and blood chemistry (hematocrit, sodium, glucose, pCO2, and bicarbonate). Quantitative PCR was most effective for early detection of P. destructans, while all three methods were comparable in severe infections. Correlations among hyphae and necrosis scores, qPCR, ultraviolet fluorescence, blood chemistry, and hibernation duration indicate a multi-stage pattern of disease. Disruptions of homeostasis occurred rapidly in late hibernation. Our results provide valuable information about the use of non-destructive techniques for monitoring, and provide novel insight into the pathophysiology of white-nose syndrome, with implications for developing and implementing potential mitigation strategies.

  1. Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    2003-01-01

    An acoustic nonlinearity parameter (.beta.) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the .beta. of the test material. The dielectric material is ferroelectric with a high dielectric constant .di-elect cons.. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (.beta.) without the costly, low field reliability methods of the prior art.

  2. Non-destructive testing method and apparatus

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2011-10-04

    Non-destructive testing apparatus may comprise a photon source and a source material that emits positrons in response to bombardment of the source material with photons. The source material is positionable adjacent the photon source and a specimen so that when the source material is positioned adjacent the photon source it is exposed to photons produced thereby. When the source material is positioned adjacent the specimen, the specimen is exposed to at least some of the positrons emitted by the source material. A detector system positioned adjacent the specimen detects annihilation gamma rays emitted by the specimen. Another embodiment comprises a neutron source and a source material that emits positrons in response to neutron bombardment.

  3. New approaches for the analysis of confluent cell layers with quantitative phase digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Pohl, L.; Kaiser, M.; Ketelhut, S.; Pereira, S.; Goycoolea, F.; Kemper, Björn

    2016-03-01

    Digital holographic microscopy (DHM) enables high resolution non-destructive inspection of technical surfaces and minimally-invasive label-free live cell imaging. However, the analysis of confluent cell layers represents a challenge as quantitative DHM phase images in this case do not provide sufficient information for image segmentation, determination of the cellular dry mass or calculation of the cell thickness. We present novel strategies for the analysis of confluent cell layers with quantitative DHM phase contrast utilizing a histogram based-evaluation procedure. The applicability of our approach is illustrated by quantification of drug induced cell morphology changes and it is shown that the method is capable to quantify reliable global morphology changes of confluent cell layers.

  4. Non destructive examination of interface of molecular assembly

    NASA Astrophysics Data System (ADS)

    Perez, Guy; Richard, Isaline; Lecomte, Jean-Claude

    2017-11-01

    Molecular assembly interfaces can be characterised by mechanical testing and/or the interaction between waves and the interface. The disadvantage of the mechanical approach is that new defects may be produced at the interface, or existing defects may be destroyed. Using the interaction between waves and the interface is a non-destructive approach. But what kind of waves should be used? Electromagnetic waves in the visible range depend on wave attenuation in the material, infrared waves also depend on the thickness and X-ray waves have a too short a wave length to detect interface defects. In this article, the use of acoustic waves is proposed for non-destructive examination of molecular assembly interfaces. Acoustic wave propagation is very sensitive to variations in interface characteristics depending on whether the waves are reflected or transmitted. To improve the sensitivity and resolution of this technique, small wave lengths have been used with a scanning acoustic microscope (S.A.M.) with a band width from 1MHz to 400 MHz. After a short description of the principle of the method, results are given for different types of components. Different applications of acoustic microscopy are proposed for non-destructive examination of interfaces and defect detection in materials.

  5. Analytical modeling, finite-difference simulation and experimental validation of air-coupled ultrasound beam refraction and damping through timber laminates, with application to non-destructive testing.

    PubMed

    Sanabria, Sergio J; Furrer, Roman; Neuenschwander, Jürg; Niemz, Peter; Schütz, Philipp

    2015-12-01

    Reliable non-destructive testing (NDT) ultrasound systems for timber composite structures require quantitative understanding of the propagation of ultrasound beams in wood. A finite-difference time-domain (FDTD) model is described, which incorporates local anisotropy variations of stiffness, damping and density in timber elements. The propagation of pulsed air-coupled ultrasound (ACU) beams in normal and slanted incidence configurations is reproduced by direct definition of material properties (gas, solid) at each model pixel. First, the model was quantitatively validated against analytical derivations. Time-varying wavefronts in unbounded timber with curved growth rings were accurately reproduced, as well as the acoustic properties (velocity, attenuation, beam skewing) of ACU beams transmitted through timber lamellas. An experimental sound field imaging (SFI) setup was implemented at NDT frequencies (120 kHz), which for specific beam incidence positions allows spatially resolved ACU field characterization at the receiver side. The good agreement of experimental and modeled beam shifts across timber laminates allowed extrapolation of the inner propagation paths. The modeling base is an orthotropic stiffness dataset for the desired wood species. In cross-grain planes, beam skewing leads to position-dependent wave paths. They are well-described in terms of the growth ring curvature, which is obtained by visual observation of the laminate. Extraordinary refraction phenomena were observed, which lead to well-collimated quasi-shear wave coupling at grazing beam incidence angles. The anisotropic damping in cross-grain planes is satisfactorily explained in terms of the known anisotropic stiffness dataset and a constant loss tangent. The incorporation of high-resolution density maps (X-ray computed tomography) provided insight into ultrasound scattering effects in the layered growth ring structure. Finally, the combined potential of the FDTD model and the SFI setup for material property and defect inversion in anisotropic materials was demonstrated. A portable SFI demonstrator was implemented with a multi-sensor MEMs receiver array that captures and compensates for variable wave propagation paths in glued laminated timber, and improves the imaging of lamination defects. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Metal Matrix Composites: Fatigue and Fracture Testing. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning techniques and results of testing metal matrix composites for fatigue and fracture. Methods include non-destructive testing techniques, and static and cyclic techniques for assessing compression, tensile, bending, and impact characteristics.

  7. Large field of view quantitative phase imaging of induced pluripotent stem cells and optical pathlength reference materials

    NASA Astrophysics Data System (ADS)

    Kwee, Edward; Peterson, Alexander; Stinson, Jeffrey; Halter, Michael; Yu, Liya; Majurski, Michael; Chalfoun, Joe; Bajcsy, Peter; Elliott, John

    2018-02-01

    Induced pluripotent stem cells (iPSCs) are reprogrammed cells that can have heterogeneous biological potential. Quality assurance metrics of reprogrammed iPSCs will be critical to ensure reliable use in cell therapies and personalized diagnostic tests. We present a quantitative phase imaging (QPI) workflow which includes acquisition, processing, and stitching multiple adjacent image tiles across a large field of view (LFOV) of a culture vessel. Low magnification image tiles (10x) were acquired with a Phasics SID4BIO camera on a Zeiss microscope. iPSC cultures were maintained using a custom stage incubator on an automated stage. We implement an image acquisition strategy that compensates for non-flat illumination wavefronts to enable imaging of an entire well plate, including the meniscus region normally obscured in Zernike phase contrast imaging. Polynomial fitting and background mode correction was implemented to enable comparability and stitching between multiple tiles. LFOV imaging of reference materials indicated that image acquisition and processing strategies did not affect quantitative phase measurements across the LFOV. Analysis of iPSC colony images demonstrated mass doubling time was significantly different than area doubling time. These measurements were benchmarked with prototype microsphere beads and etched-glass gratings with specified spatial dimensions designed to be QPI reference materials with optical pathlength shifts suitable for cell microscopy. This QPI workflow and the use of reference materials can provide non-destructive traceable imaging method for novel iPSC heterogeneity characterization.

  8. Non-Destructive Assessment of Residual Strength of Thermally Damaged Concrete Made with Different Aggregate Types

    NASA Astrophysics Data System (ADS)

    Mróz, Katarzyna; Hager, Izabela

    2017-10-01

    The paper presents the results obtained for four concretes made with four different aggregate types: basalt, granite, dolomite and riverbed gravel. In this study, the cement paste and mortar compositions and their volumes remained the same for all the four concretes that allow clear comparisons and conclusions of aggregate type effect. Moreover, the aggregate particle size distribution is chosen to be quasi identical for all concretes so that this factor does not affect the concrete behaviour. The residual material properties (after heating and cooling down) are determined with the use of destructive and non-destructive testing methods for each concrete type being not thermally damaged and after thermal exposure at temperature of 200 °C. 400 °C, 600 °C, 800 °C and 1000 °C. Residual mechanical properties are compared with diagnostic parameters obtained with NDT methods. The aim of this study is to provide and compare the regression curves between selected non-destructive diagnostic parameters and the residual values of mechanical properties. The NDT methods used in this experiment are: surface hardness and Ultrasonic Pulse Velocity.

  9. Feasibility of using ground-penetrating radar to quantify root mass in Florida's intensively managed pine plantations

    Treesearch

    John Butnor; Brian Roth; Kurt Johnsen

    2005-01-01

    Tree root systems are commonly evaluated via labor intensive, destructive, time-consuming excavations. Ground-penetrating radar (GPR) can be used to detect and monitor roots if there is sufficient electromagnetic contrast with the surrounding soil matrix. This methodology is commonly used in civil engineering for non-destructive testing of concrete as well as road and...

  10. APPARATUS FOR NON-DESTRUCTIVE INSPECTION OF CANTILEVERED MEMBERS

    DOEpatents

    Taylor, E.R.; Mahoney, C.H.; Lay, C.R.

    1961-10-24

    An apparatus for non-destructive inspection of cantilevered members, such as compressor blades, is described. The member under inspection is vibrated with a regulated source of air under pressure. The amplitude of vibration of the member is maintained at its natural frequency. The frequency of vibration of the member is measured. An indication of an excessive decay or erratic shifting in the measured frequency above an allowable hysteretic decay is provided as an indication of a fault in the member. The member is vibrated for a selected test period. (AEC)

  11. Nonlinear optical THz generation and sensing applications

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo

    2012-03-01

    We have suggested a wide range of real-life applications using novel terahertz imaging techniques. A high-resolution terahertz tomography was demonstrated by ultra short terahertz pulses using optical fiber and a nonlinear organic crystal. We also report on the thickness measurement of very thin films using high-sensitivity metal mesh filter. Further we have succeeded in a non-destructive inspection that can monitor the soot distribution in the ceramic filter using millimeter-to-terahertz wave computed tomography. These techniques are directly applicable to the non-destructive testing in industries.

  12. Energy dispersive X-ray fluorescence spectroscopy/Monte Carlo simulation approach for the non-destructive analysis of corrosion patina-bearing alloys in archaeological bronzes: The case of the bowl from the Fareleira 3 site (Vidigueira, South Portugal)

    NASA Astrophysics Data System (ADS)

    Bottaini, C.; Mirão, J.; Figuereido, M.; Candeias, A.; Brunetti, A.; Schiavon, N.

    2015-01-01

    Energy dispersive X-ray fluorescence (EDXRF) is a well-known technique for non-destructive and in situ analysis of archaeological artifacts both in terms of the qualitative and quantitative elemental composition because of its rapidity and non-destructiveness. In this study EDXRF and realistic Monte Carlo simulation using the X-ray Monte Carlo (XRMC) code package have been combined to characterize a Cu-based bowl from the Iron Age burial from Fareleira 3 (Southern Portugal). The artifact displays a multilayered structure made up of three distinct layers: a) alloy substrate; b) green oxidized corrosion patina; and c) brownish carbonate soil-derived crust. To assess the reliability of Monte Carlo simulation in reproducing the composition of the bulk metal of the objects without recurring to potentially damaging patina's and crust's removal, portable EDXRF analysis was performed on cleaned and patina/crust coated areas of the artifact. Patina has been characterized by micro X-ray Diffractometry (μXRD) and Back-Scattered Scanning Electron Microscopy + Energy Dispersive Spectroscopy (BSEM + EDS). Results indicate that the EDXRF/Monte Carlo protocol is well suited when a two-layered model is considered, whereas in areas where the patina + crust surface coating is too thick, X-rays from the alloy substrate are not able to exit the sample.

  13. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface waves in typical materials tested with a non-destructive technique (e.g., marble, unweathered and weathered concrete and natural stone).

  14. Non destructive neutron diffraction measurements of cavities, inhomogeneities, and residual strain in bronzes of Ghiberti's relief from the Gates of Paradise

    NASA Astrophysics Data System (ADS)

    Festa, G.; Senesi, R.; Alessandroni, M.; Andreani, C.; Vitali, G.; Porcinai, S.; Giusti, A. M.; Materna, T.; Paradowska, A. M.

    2011-03-01

    Quantitative neutron studies of cultural heritage objects provide access to microscopic, mesoscopic, and macroscopic structures in a nondestructive manner. In this paper we present a neutron diffraction investigation of a Ghiberti Renaissance gilded bronze relief devoted to the measurement of cavities and inhomogeneities in the bulk of the sample, along with the bulk phase composition and residual strain distribution. The quantitative measurements allowed the determination of the re-melting parts extension, as well as improving current knowledge about the manufacturing process. The study provides significant and unique information to conservators and restorators about the history of the relief.

  15. 12. VIEW OF THE NONDESTRUCTIVE TESTING EQUIPMENT BEING USED TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF THE NON-DESTRUCTIVE TESTING EQUIPMENT BEING USED TO DETECT FLAWS IN FABRICATED COMPONENTS. (6/76) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  16. Laser ultrasonic evaluation of human dental enamel during remineralization treatment

    PubMed Central

    Wang, Hsiao-Chuan; Fleming, Simon; Lee, Yung-Chun; Swain, Michael; Law, Susan; Xue, Jing

    2011-01-01

    In this work a non-destructive laser ultrasonic technique is used to quantitatively evaluate the progressive change in the elastic response of human dental enamel during a remineralization treatment. The condition of the enamel was measured during two weeks treatment using laser generated and detected surface acoustic waves in sound and demineralized enamel. Analysis of the acoustic velocity dispersion confirms the efficacy, as well as illuminating the progress, of the treatment. PMID:21339879

  17. Non-destructive evaluation of composite materials using ultrasound

    NASA Technical Reports Server (NTRS)

    Miller, J. G.

    1984-01-01

    Investigation of the nondestructive evaluation of advanced composite-laminates is summarized. Indices derived from the measurement of fundamental acoustic parameters are used in order to quantitatively estimate the local material properties of the laminate. The following sections describe ongoing studies of phase insensitive attenuation measurements, and discuss several phenomena which influences the previously reported technique of polar backscatter. A simple and effective programmable gate circuit designed for use in estimating attenuation from backscatter is described.

  18. A comparison of visible wavelength reflectance hyperspectral imaging and Acid Black 1 for the detection and identification of blood stained fingerprints.

    PubMed

    Cadd, Samuel; Li, Bo; Beveridge, Peter; O Hare, William T; Campbell, Andrew; Islam, Meez

    2016-07-01

    Bloodstains are often encountered at scenes of violent crime and have significant forensic value for criminal investigations. Blood is one of the most commonly encountered types of biological evidence and is the most commonly observed fingerprint contaminant. Presumptive tests are used to test blood stain and blood stained fingerprints are targeted with chemical enhancement methods, such as acid stains, including Acid Black 1, Acid Violet 17 or Acid Yellow 7. Although these techniques successfully visualise ridge detail, they are destructive, do not confirm the presence of blood and can have a negative impact on DNA sampling. A novel application of visible wavelength hyperspectral imaging (HSI) is used for the non-contact, non-destructive detection and identification of blood stained fingerprints on white tiles both before and after wet chemical enhancement using Acid Black 1. The identification was obtained in a non-contact and non-destructive manner, based on the unique visible absorption spectrum of haemoglobin between 400 and 500nm. Results from the exploration of the selectivity of the setup to detect blood against ten other non-blood protein contaminants are also presented. A direct comparison of the effectiveness of HSI with chemical enhancement using Acid Black 1 on white tiles is also shown. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Phased laser diode array permits selective excitation of ultrasonic guided waves in coated bone-mimicking tubes

    NASA Astrophysics Data System (ADS)

    Moilanen, Petro; Salmi, Ari; Kilappa, Vantte; Zhao, Zuomin; Timonen, Jussi; Hæggström, Edward

    2017-10-01

    This paper validates simulation predictions, which state that specific modes could be enhanced in quantitative ultrasonic bone testing. Tunable selection of ultrasonic guided wave excitation is useful in non-destructive testing since it permits the mediation of energy into diagnostically useful modes while reducing the energy mediated into disturbing contributions. For instance, it is often challenging to distinguish and extract the useful modes from ultrasound signals measured in bone covered by a soft tissue. We show that a laser diode array can selectively excite ultrasound in bone mimicking phantoms. A fiber-coupled diode array (4 elements) illuminated two solid tubes (2-3 mm wall thickness) embraced by an opaque soft-tissue mimicking elastomer coating (5 mm thick). A predetermined time delay matching the selected mode and frequency was employed between the outputs of the elements. The generated ultrasound was detected by a 215 kHz piezo receiver. Our results suggest that this array reduces the disturbances caused by the elastomer cover and so pave way to permit non-contacting in vivo guided wave ultrasound assessment of human bones. The implementation is small, inexpensive, and robust in comparison with the conventional pulsed lasers.

  20. Computed tomographic-based quantification of emphysema and correlation to pulmonary function and mechanics.

    PubMed

    Washko, George R; Criner, Gerald J; Mohsenifar, Zab; Sciurba, Frank C; Sharafkhaneh, Amir; Make, Barry J; Hoffman, Eric A; Reilly, John J

    2008-06-01

    Computed tomographic based indices of emphysematous lung destruction may highlight differences in disease pathogenesis and further enable the classification of subjects with Chronic Obstructive Pulmonary Disease. While there are multiple techniques that can be utilized for such radiographic analysis, there is very little published information comparing the performance of these methods in a clinical case series. Our objective was to examine several quantitative and semi-quantitative methods for the assessment of the burden of emphysema apparent on computed tomographic scans and compare their ability to predict lung mechanics and function. Automated densitometric analysis was performed on 1094 computed tomographic scans collected upon enrollment into the National Emphysema Treatment Trial. Trained radiologists performed an additional visual grading of emphysema on high resolution CT scans. Full pulmonary function test results were available for correlation, with a subset of subjects having additional measurements of lung static recoil. There was a wide range of emphysematous lung destruction apparent on the CT scans and univariate correlations to measures of lung function were of modest strength. No single method of CT scan analysis clearly outperformed the rest of the group. Quantification of the burden of emphysematous lung destruction apparent on CT scan is a weak predictor of lung function and mechanics in severe COPD with no uniformly superior method found to perform this analysis. The CT based quantification of emphysema may augment pulmonary function testing in the characterization of COPD by providing complementary phenotypic information.

  1. Non-destructive evaluation techniques, high temperature ceramic component parts for gas turbines

    NASA Technical Reports Server (NTRS)

    Reiter, H.; Hirsekorn, S.; Lottermoser, J.; Goebbels, K.

    1984-01-01

    This report concerns studies conducted on various tests undertaken on material without destroying the material. Tests included: microradiographic techniques, vibration analysis, high-frequency ultrasonic tests with the addition of evaluation of defects and structure through analysis of ultrasonic scattering data, microwave tests and analysis of sound emission.

  2. Comparative evaluation of subgrade resilient modulus from non-destructive, in-situ, and laboratory methods.

    DOT National Transportation Integrated Search

    2007-08-01

    Field and laboratory testing programs were conducted to develop models that predict the resilient modulus of subgrade soils from : the test results of DCP, CIMCPT, FWD, Dynaflect, and soil properties. The field testing program included DCP, CIMCPT, F...

  3. Non-destructive inspection in industrial equipment using robotic mobile manipulation

    NASA Astrophysics Data System (ADS)

    Maurtua, Iñaki; Susperregi, Loreto; Ansuategui, Ander; Fernández, Ane; Ibarguren, Aitor; Molina, Jorge; Tubio, Carlos; Villasante, Cristobal; Felsch, Torsten; Pérez, Carmen; Rodriguez, Jorge R.; Ghrissi, Meftah

    2016-05-01

    MAINBOT project has developed service robots based applications to autonomously execute inspection tasks in extensive industrial plants in equipment that is arranged horizontally (using ground robots) or vertically (climbing robots). The industrial objective has been to provide a means to help measuring several physical parameters in multiple points by autonomous robots, able to navigate and climb structures, handling non-destructive testing sensors. MAINBOT has validated the solutions in two solar thermal plants (cylindrical-parabolic collectors and central tower), that are very demanding from mobile manipulation point of view mainly due to the extension (e.g. a thermal solar plant of 50Mw, with 400 hectares, 400.000 mirrors, 180 km of absorber tubes, 140m height tower), the variability of conditions (outdoor, day-night), safety requirements, etc. Once the technology was validated in simulation, the system was deployed in real setups and different validation tests carried out. In this paper two of the achievements related with the ground mobile inspection system are presented: (1) Autonomous navigation localization and planning algorithms to manage navigation in huge extensions and (2) Non-Destructive Inspection operations: thermography based detection algorithms to provide automatic inspection abilities to the robots.

  4. Assessment of non-destructive testing technologies for quality control/quality assurance of asphalt mixtures : [tech transfer summary].

    DOT National Transportation Integrated Search

    2015-02-01

    Evaluation of the actual performance (quality) of pavements requires : in situ nondestructive testing (NDT) techniques that can accurately : measure the most critical, objective, and sensitive properties of : pavement systems.

  5. Rapid and non-destructive identification of water-injected beef samples using multispectral imaging analysis.

    PubMed

    Liu, Jinxia; Cao, Yue; Wang, Qiu; Pan, Wenjuan; Ma, Fei; Liu, Changhong; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2016-01-01

    Water-injected beef has aroused public concern as a major food-safety issue in meat products. In the study, the potential of multispectral imaging analysis in the visible and near-infrared (405-970 nm) regions was evaluated for identifying water-injected beef. A multispectral vision system was used to acquire images of beef injected with up to 21% content of water, and partial least squares regression (PLSR) algorithm was employed to establish prediction model, leading to quantitative estimations of actual water increase with a correlation coefficient (r) of 0.923. Subsequently, an optimized model was achieved by integrating spectral data with feature information extracted from ordinary RGB data, yielding better predictions (r = 0.946). Moreover, the prediction equation was transferred to each pixel within the images for visualizing the distribution of actual water increase. These results demonstrate the capability of multispectral imaging technology as a rapid and non-destructive tool for the identification of water-injected beef. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    1993-01-01

    A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.

  7. Effect of biofilm formation, and biocorrosion on denture base fractures.

    PubMed

    Sahin, Cem; Ergin, Alper; Ayyildiz, Simel; Cosgun, Erdal; Uzun, Gulay

    2013-05-01

    The aim of this study was to investigate the destructive effects of biofilm formation and/or biocorrosive activity of 6 different oral microorganisms. Three different heat polymerized acrylic resins (Ivocap Plus, Lucitone 550, QC 20) were used to prepare three different types of samples. Type "A" samples with "V" type notch was used to measure the fracture strength, "B" type to evaluate the surfaces with scanning electron microscopy and "C" type for quantitative biofilm assay. Development and calculation of biofilm covered surfaces on denture base materials were accomplished by SEM and quantitative biofilm assay. According to normality assumptions ANOVA or Kruskal-Wallis was selected for statistical analysis (α=0.05). Significant differences were obtained among the adhesion potential of 6 different microorganisms and there were significant differences among their adhesion onto 3 different denture base materials. Compared to the control groups after contamination with the microorganisms, the three point bending test values of denture base materials decreased significantly (P<.05); microorganisms diffused at least 52% of the denture base surface. The highest median quantitative biofilm value within all the denture base materials was obtained with P. aeruginosa on Lucitone 550. The type of denture base material did not alter the diffusion potential of the microorganisms significantly (P>.05). All the tested microorganisms had destructive effect over the structure and composition of the denture base materials.

  8. Effect of biofilm formation, and biocorrosion on denture base fractures

    PubMed Central

    Ergin, Alper; Ayyildiz, Simel; Cosgun, Erdal; Uzun, Gulay

    2013-01-01

    PURPOSE The aim of this study was to investigate the destructive effects of biofilm formation and/or biocorrosive activity of 6 different oral microorganisms. MATERIALS AND METHODS Three different heat polymerized acrylic resins (Ivocap Plus, Lucitone 550, QC 20) were used to prepare three different types of samples. Type "A" samples with "V" type notch was used to measure the fracture strength, "B" type to evaluate the surfaces with scanning electron microscopy and "C" type for quantitative biofilm assay. Development and calculation of biofilm covered surfaces on denture base materials were accomplished by SEM and quantitative biofilm assay. According to normality assumptions ANOVA or Kruskal-Wallis was selected for statistical analysis (α=0.05). RESULTS Significant differences were obtained among the adhesion potential of 6 different microorganisms and there were significant differences among their adhesion onto 3 different denture base materials. Compared to the control groups after contamination with the microorganisms, the three point bending test values of denture base materials decreased significantly (P<.05); microorganisms diffused at least 52% of the denture base surface. The highest median quantitative biofilm value within all the denture base materials was obtained with P. aeruginosa on Lucitone 550. The type of denture base material did not alter the diffusion potential of the microorganisms significantly (P>.05). CONCLUSION All the tested microorganisms had destructive effect over the structure and composition of the denture base materials. PMID:23755339

  9. Investigation of Carbon Fiber Architecture in Braided Composites Using X-Ray CT Inspection

    NASA Technical Reports Server (NTRS)

    Rhoads, Daniel J.; Miller, Sandi G.; Roberts, Gary D.; Rauser, Richard W.; Golovaty, Dmitry; Wilber, J. Patrick; Espanol, Malena I.

    2017-01-01

    During the fabrication of braided carbon fiber composite materials, process variations occur which affect the fiber architecture. Quantitative measurements of local and global fiber architecture variations are needed to determine the potential effect of process variations on mechanical properties of the cured composite. Although non-destructive inspection via X-ray CT imaging is a promising approach, difficulties in quantitative analysis of the data arise due to the similar densities of the material constituents. In an effort to gain more quantitative information about features related to fiber architecture, methods have been explored to improve the details that can be captured by X-ray CT imaging. Metal-coated fibers and thin veils are used as inserts to extract detailed information about fiber orientations and inter-ply behavior from X-ray CT images.

  10. Impedance-based cellular assays for regenerative medicine.

    PubMed

    Gamal, W; Wu, H; Underwood, I; Jia, J; Smith, S; Bagnaninchi, P O

    2018-07-05

    Therapies based on regenerative techniques have the potential to radically improve healthcare in the coming years. As a result, there is an emerging need for non-destructive and label-free technologies to assess the quality of engineered tissues and cell-based products prior to their use in the clinic. In parallel, the emerging regenerative medicine industry that aims to produce stem cells and their progeny on a large scale will benefit from moving away from existing destructive biochemical assays towards data-driven automation and control at the industrial scale. Impedance-based cellular assays (IBCA) have emerged as an alternative approach to study stem-cell properties and cumulative studies, reviewed here, have shown their potential to monitor stem-cell renewal, differentiation and maturation. They offer a novel method to non-destructively assess and quality-control stem-cell cultures. In addition, when combined with in vitro disease models they provide complementary insights as label-free phenotypic assays. IBCA provide quantitative and very sensitive results that can easily be automated and up-scaled in multi-well format. When facing the emerging challenge of real-time monitoring of three-dimensional cell culture dielectric spectroscopy and electrical impedance tomography represent viable alternatives to two-dimensional impedance sensing.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Author(s).

  11. Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long-Duration Test Hardware: Discharge and Neutralizer Cathodes

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Soulas, George C.

    2016-01-01

    The NEXT Long-Duration Test is part of a comprehensive thruster service life assessment intended to demonstrate overall throughput capability, validate service life models, quantify wear rates as a function of time and operating condition, and identify any unknown life-limiting mechanisms. The test was voluntarily terminated in April 2014 after demonstrating 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The post-test inspection of the thruster hardware began shortly afterwards with a combination of non-destructive and destructive analysis techniques, and is presently nearing completion. This presentation presents relevant results of the post-test inspection for both discharge and neutralizer cathodes.

  12. Non-Destructive Testing with Atmospheric Pressure Radio-Frequency Plasma

    NASA Astrophysics Data System (ADS)

    May, A.; Andarawis, E.

    2007-03-01

    We summarize our recent work using radio-frequency (RF) atmospheric pressure plasma (APP) for non-destructive evaluation (NDE), specifically for: (1) Clearance sensing (0-5mm) on rotating components, and (2) Generation of broadband ultrasound in air at 900kHz. RF-APP showed potential in both of these common NDE requirements, but further work is required to better characterize and optimize the performance of the new techniques. Application of RF-APP to other NDE disciplines, such as plasma spectroscopy and gas flow measurement, is also likely to be advantageous, especially in harsh environments where existing approaches are prohibitively expensive or complex.

  13. Calibrating the Iowa pore index with mercury intrusion porosimetry and petrography.

    DOT National Transportation Integrated Search

    2017-10-31

    The Iowa Pore Index (IPI) test is a fast, non-destructive, inexpensive, and environmentally friendly test used by several Midwestern state departments of transportation to determine the volume ratio of macropores to micropores in a coarse rock aggreg...

  14. Nuclear gauge application in road industry

    NASA Astrophysics Data System (ADS)

    Azmi Ismail, Mohd

    2017-11-01

    Soil compaction is essential in road construction. The evaluation of the degree of compaction relies on the knowledge of density and moisture of the compacted layers is very important to the performance of the pavement structure. Among the various tests used for making these determinations, the sand replacement density test and the moisture content determination by oven drying are perhaps the most widely used. However, these methods are not only time consuming and need wearisome procedures to obtain the results but also destructive and the number of measurements that can be taken at any time is limited. The test can on be fed back to the construction site the next day. To solve these problems, a nuclear technique has been introduced as a quicker and easier way of measuring the density and moisture of construction materials. Nuclear moisture density gauges have been used for many years in pavement construction as a method of non-destructive density testing The technique which can determine both wet density and moisture content offers an in situ method for construction control at the work site. The simplicity, the speed, and non-destructive nature offer a great advantage for quality control. This paper provides an overview of nuclear gauge application in road construction and presents a case study of monitoring compaction status of in Sedenak - Skudai, Johor rehabilitation projects.

  15. Local defect resonance for sensitive non-destructive testing

    NASA Astrophysics Data System (ADS)

    Adebahr, W.; Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M.

    2016-02-01

    Ultrasonic wave-defect interaction is a background of ultrasound activated techniques for imaging and non-destructive testing (NDT) of materials and industrial components. The interaction, primarily, results in acoustic response of a defect which provides attenuation and scattering of ultrasound used as an indicator of defects in conventional ultrasonic NDT. The derivative ultrasonic-induced effects include e.g. nonlinear, thermal, acousto-optic, etc. responses also applied for NDT and defect imaging. These secondary effects are normally relatively inefficient so that the corresponding NDT techniques require an elevated acoustic power and stand out from conventional ultrasonic NDT counterparts for their specific instrumentation particularly adapted to high-power ultrasonic. In this paper, a consistent way to enhance ultrasonic, optical and thermal defect responses and thus to reduce an ultrasonic power required is suggested by using selective ultrasonic activation of defects based on the concept of local defect resonance (LDR). A strong increase in vibration amplitude at LDR enables to reliably detect and visualize the defect as soon as the driving ultrasonic frequency is matched to the LDR frequency. This also provides a high frequency selectivity of the LDR-based imaging, i.e. an opportunity of detecting a certain defect among a multitude of other defects in material. Some examples are shown how to use LDR in non-destructive testing techniques, like vibrometry, ultrasonic thermography and shearography in order to enhance the sensitivity of defect visualization.

  16. Detection of Tephra Layers in Antarctic Sediment Cores with Hyperspectral Imaging

    PubMed Central

    Aymerich, Ismael F.; Oliva, Marc; Giralt, Santiago; Martín-Herrero, Julio

    2016-01-01

    Tephrochronology uses recognizable volcanic ash layers (from airborne pyroclastic deposits, or tephras) in geological strata to set unique time references for paleoenvironmental events across wide geographic areas. This involves the detection of tephra layers which sometimes are not evident to the naked eye, including the so-called cryptotephras. Tests that are expensive, time-consuming, and/or destructive are often required. Destructive testing for tephra layers of cores from difficult regions, such as Antarctica, which are useful sources of other kinds of information beyond tephras, is always undesirable. Here we propose hyperspectral imaging of cores, Self-Organizing Map (SOM) clustering of the preprocessed spectral signatures, and spatial analysis of the classified images as a convenient, fast, non-destructive method for tephra detection. We test the method in five sediment cores from three Antarctic lakes, and show its potential for detection of tephras and cryptotephras. PMID:26815202

  17. Application of micromechanics to the characterization of mortar by ultrasound.

    PubMed

    Hernández, M G; Anaya, J J; Izquierdo, M A G; Ullate, L G

    2002-05-01

    Mechanical properties of concrete and mortar structures can be estimated by ultrasonic non-destructive testing. When the ultrasonic velocity is known, there are standardized methods based on considering the concrete a homogeneous material. Cement composites, however, are heterogeneous and porous, and have a negative effect on the mechanical properties of structures. This work studies the impact of porosity on mechanical properties by considering concrete a multiphase material. A micromechanical model is applied in which the material is considered to consist of two phases: a solid matrix and pores. From this method, a set of expressions is obtained that relates the acoustic velocity and Young's modulus of mortar. Experimental work is based on non-destructive and destructive procedures over mortar samples whose porosity is varied. A comparison is drawn between micromechanical and standard methods, showing positive results for the method here proposed.

  18. Non-destructive testing of ceramic materials using mid-infrared ultrashort-pulse laser

    NASA Astrophysics Data System (ADS)

    Sun, S. C.; Qi, Hong; An, X. Y.; Ren, Y. T.; Qiao, Y. B.; Ruan, Liming M.

    2018-04-01

    The non-destructive testing (NDT) of ceramic materials using mid-infrared ultrashort-pulse laser is investigated in this study. The discrete ordinate method is applied to solve the transient radiative transfer equation in 2D semitransparent medium and the emerging radiative intensity on boundary serves as input for the inverse analysis. The sequential quadratic programming algorithm is employed as the inverse technique to optimize objective function, in which the gradient of objective function with respect to reconstruction parameters is calculated using the adjoint model. Two reticulated porous ceramics including partially stabilized zirconia and oxide-bonded silicon carbide are tested. The retrieval results show that the main characteristics of defects such as optical properties, geometric shapes and positions can be accurately reconstructed by the present model. The proposed technique is effective and robust in NDT of ceramics even with measurement errors.

  19. Non-destructive measurement of soil liquefaction density change by crosshole radar tomography, Treasure Island, California

    USGS Publications Warehouse

    Kayen, Robert E.; Barnhardt, Walter A.; Ashford, Scott; Rollins, Kyle

    2000-01-01

    A ground penetrating radar (GPR) experiment at the Treasure Island Test Site [TILT] was performed to non-destructively image the soil column for changes in density prior to, and following, a liquefaction event. The intervening liquefaction was achieved by controlled blasting. A geotechnical borehole radar technique was used to acquire high-resolution 2-D radar velocity data. This method of non-destructive site characterization uses radar trans-illumination surveys through the soil column and tomographic data manipulation techniques to construct radar velocity tomograms, from which averaged void ratios can be derived at 0.25 - 0.5m pixel footprints. Tomograms of void ratio were constructed through the relation between soil porosity and dielectric constant. Both pre- and post-blast tomograms were collected and indicate that liquefaction related densification occurred at the site. Volumetric strains estimated from the tomograms correlate well with the observed settlement at the site. The 2-D imagery of void ratio can serve as high-resolution data layers for numerical site response analysis.

  20. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, D.F.; Fan, C.; Ruan, J.Z.

    1994-12-31

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDTmore » device will have a significant impact on metal corrosion or crack detection technology.« less

  1. Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin.

    PubMed

    Edwards, N P; Barden, H E; van Dongen, B E; Manning, P L; Larson, P L; Bergmann, U; Sellers, W I; Wogelius, R A

    2011-11-07

    Non-destructive Fourier Transform InfraRed (FTIR) mapping of Eocene aged fossil reptile skin shows that biological control on the distribution of endogenous organic components within fossilized soft tissue can be resolved. Mapped organic functional units within this approximately 50 Myr old specimen from the Green River Formation (USA) include amide and sulphur compounds. These compounds are most probably derived from the original beta keratin present in the skin because fossil leaf- and other non-skin-derived organic matter from the same geological formation do not show intense amide or thiol absorption bands. Maps and spectra from the fossil are directly comparable to extant reptile skin. Furthermore, infrared results are corroborated by several additional quantitative methods including Synchrotron Rapid Scanning X-Ray Fluorescence (SRS-XRF) and Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). All results combine to clearly show that the organic compound inventory of the fossil skin is different from the embedding sedimentary matrix and fossil plant material. A new taphonomic model involving ternary complexation between keratin-derived organic molecules, divalent trace metals and silicate surfaces is presented to explain the survival of the observed compounds. X-ray diffraction shows that suitable minerals for complex formation are present. Previously, this study would only have been possible with major destructive sampling. Non-destructive FTIR imaging methods are thus shown to be a valuable tool for understanding the taphonomy of high-fidelity preservation, and furthermore, may provide insight into the biochemistry of extinct organisms.

  2. Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin

    PubMed Central

    Edwards, N. P.; Barden, H. E.; van Dongen, B. E.; Manning, P. L.; Larson, P. L.; Bergmann, U.; Sellers, W. I.; Wogelius, R. A.

    2011-01-01

    Non-destructive Fourier Transform InfraRed (FTIR) mapping of Eocene aged fossil reptile skin shows that biological control on the distribution of endogenous organic components within fossilized soft tissue can be resolved. Mapped organic functional units within this approximately 50 Myr old specimen from the Green River Formation (USA) include amide and sulphur compounds. These compounds are most probably derived from the original beta keratin present in the skin because fossil leaf- and other non-skin-derived organic matter from the same geological formation do not show intense amide or thiol absorption bands. Maps and spectra from the fossil are directly comparable to extant reptile skin. Furthermore, infrared results are corroborated by several additional quantitative methods including Synchrotron Rapid Scanning X-Ray Fluorescence (SRS-XRF) and Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). All results combine to clearly show that the organic compound inventory of the fossil skin is different from the embedding sedimentary matrix and fossil plant material. A new taphonomic model involving ternary complexation between keratin-derived organic molecules, divalent trace metals and silicate surfaces is presented to explain the survival of the observed compounds. X-ray diffraction shows that suitable minerals for complex formation are present. Previously, this study would only have been possible with major destructive sampling. Non-destructive FTIR imaging methods are thus shown to be a valuable tool for understanding the taphonomy of high-fidelity preservation, and furthermore, may provide insight into the biochemistry of extinct organisms. PMID:21429928

  3. Infrared Spectroscopy as a Versatile Analytical Tool for the Quantitative Determination of Antioxidants in Agricultural Products, Foods and Plants

    PubMed Central

    Cozzolino, Daniel

    2015-01-01

    Spectroscopic methods provide with very useful qualitative and quantitative information about the biochemistry and chemistry of antioxidants. Near infrared (NIR) and mid infrared (MIR) spectroscopy are considered as powerful, fast, accurate and non-destructive analytical tools that can be considered as a replacement of traditional chemical analysis. In recent years, several reports can be found in the literature demonstrating the usefulness of these methods in the analysis of antioxidants in different organic matrices. This article reviews recent applications of infrared (NIR and MIR) spectroscopy in the analysis of antioxidant compounds in a wide range of samples such as agricultural products, foods and plants. PMID:26783838

  4. Titanium Honeycomb Panel Testing

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance; Thompson, Randolph C.

    1996-01-01

    Thermal-mechanical tests were performed on a titanium honeycomb sandwich panel to experimentally validate the hypersonic wing panel concept and compare test data with analysis. Details of the test article, test fixture development, instrumentation, and test results are presented. After extensive testing to 900 deg. F, non-destructive evaluation of the panel has not detected any significant structural degradation caused by the applied thermal-mechanical loads.

  5. Rhizoslides: paper-based growth system for non-destructive, high throughput phenotyping of root development by means of image analysis.

    PubMed

    Le Marié, Chantal; Kirchgessner, Norbert; Marschall, Daniela; Walter, Achim; Hund, Andreas

    2014-01-01

    A quantitative characterization of root system architecture is currently being attempted for various reasons. Non-destructive, rapid analyses of root system architecture are difficult to perform due to the hidden nature of the root. Hence, improved methods to measure root architecture are necessary to support knowledge-based plant breeding and to analyse root growth responses to environmental changes. Here, we report on the development of a novel method to reveal growth and architecture of maize root systems. The method is based on the cultivation of different root types within several layers of two-dimensional, large (50 × 60 cm) plates (rhizoslides). A central plexiglass screen stabilizes the system and is covered on both sides with germination paper providing water and nutrients for the developing root, followed by a transparent cover foil to prevent the roots from falling dry and to stabilize the system. The embryonic roots grow hidden between a Plexiglas surface and paper, whereas crown roots grow visible between paper and the transparent cover. Long cultivation with good image quality up to 20 days (four fully developed leaves) was enhanced by suppressing fungi with a fungicide. Based on hyperspectral microscopy imaging, the quality of different germination papers was tested and three provided sufficient contrast to distinguish between roots and background (segmentation). Illumination, image acquisition and segmentation were optimised to facilitate efficient root image analysis. Several software packages were evaluated with regard to their precision and the time investment needed to measure root system architecture. The software 'Smart Root' allowed precise evaluation of root development but needed substantial user interference. 'GiaRoots' provided the best segmentation method for batch processing in combination with a good analysis of global root characteristics but overestimated root length due to thinning artefacts. 'WhinRhizo' offered the most rapid and precise evaluation of root lengths in diameter classes, but had weaknesses with respect to image segmentation and analysis of root system architecture. A new technique has been established for non-destructive root growth studies and quantification of architectural traits beyond seedlings stages. However, automation of the scanning process and appropriate software remains the bottleneck for high throughput analysis.

  6. Non-Destructive Evaluation of Aerospace Composites

    DTIC Science & Technology

    2009-03-01

    security as well as non-invasive epithelial and breast cancer detection [3, 23]. Figure 8 shows a pair of examples of current THz imaging systems...conduction videos; each test lasting approximately 10 seconds. 3.3.2 Thermography Procedure The samples were set flat on two wooden slats to

  7. A diagnostic system for articular cartilage using non-destructive pulsed laser irradiation.

    PubMed

    Sato, Masato; Ishihara, Miya; Kikuchi, Makoto; Mochida, Joji

    2011-07-01

    Osteoarthritis involves dysfunction caused by cartilage degeneration, but objective evaluation methodologies based on the original function of the articular cartilage remain unavailable. Evaluations for osteoarthritis are mostly based simply on patient symptoms or the degree of joint space narrowing on X-ray images. Accurate measurement and quantitative evaluation of the mechanical characteristics of the cartilage is important, and the tissue properties of the original articular cartilage must be clarified to understand the pathological condition in detail and to correctly judge the efficacy of treatment. We have developed new methods to measure some essential properties of cartilage: a photoacoustic measurement method; and time-resolved fluorescence spectroscopy. A nanosecond-pulsed laser, which is completely non-destructive, is focused onto the target cartilage and induces a photoacoustic wave that will propagate with attenuation and is affected by the viscoelasticity of the surrounding cartilage. We also investigated whether pulsed laser irradiation and the measurement of excited autofluorescence allow real-time, non-invasive evaluation of tissue characteristics. The decay time, during which the amplitude of the photoacoustic wave is reduced by a factor of 1/e, represents the key numerical value used to characterize and evaluate the viscoelasticity and rheological behavior of the cartilage. Our findings show that time-resolved laser-induced autofluorescence spectroscopy (TR-LIFS) is useful for evaluating tissue-engineered cartilage. Photoacoustic measurement and TR-LIFS, predicated on the interactions between optics and living organs, is a suitable methodology for diagnosis during arthroscopy, allowing quantitative and multidirectional evaluation of the original function of the cartilage based on a variety of parameters. Copyright © 2011 Wiley-Liss, Inc.

  8. Evaluating of NASA-Langley Research Center explosion seam welding

    NASA Technical Reports Server (NTRS)

    Otto, H. E.; Wittman, R.

    1977-01-01

    An explosion bonding technique to meet current fabrication requirements was demonstrated. A test program was conducted on explosion bonded joints, compared to fusion joints in 6061-T6 aluminum. The comparison was made in required fixtures, non-destructive testing, static strength and fatigue strength.

  9. Compressed Sensing mm-Wave SAR for Non-Destructive Testing Applications Using Multiple Weighted Side Information.

    PubMed

    Becquaert, Mathias; Cristofani, Edison; Van Luong, Huynh; Vandewal, Marijke; Stiens, Johan; Deligiannis, Nikos

    2018-05-31

    This work explores an innovative strategy for increasing the efficiency of compressed sensing applied on mm-wave SAR sensing using multiple weighted side information. The approach is tested on synthetic and on real non-destructive testing measurements performed on a 3D-printed object with defects while taking advantage of multiple previous SAR images of the object with different degrees of similarity. The tested algorithm attributes autonomously weights to the side information at two levels: (1) between the components inside the side information and (2) between the different side information. The reconstruction is thereby almost immune to poor quality side information while exploiting the relevant components hidden inside the added side information. The presented results prove that, in contrast to common compressed sensing, good SAR image reconstruction is achieved at subsampling rates far below the Nyquist rate. Moreover, the algorithm is shown to be much more robust for low quality side information compared to coherent background subtraction.

  10. Simulation and experiment for the inspection of stainless steel bolts in servicing using an ultrasonic phased array

    NASA Astrophysics Data System (ADS)

    Chen, Jinzhong; He, Renyang; Kang, Xiaowei; Yang, Xuyun

    2015-10-01

    The non-destructive testing of small-sized (M12-M20) stainless steel bolts in servicing is always a technical problem. This article focuses on the simulation and experimental research of stainless steel bolts with an artificial defect reflector using ultrasonic phased array inspection. Based on the observation of the sound field distribution of stainless steel bolts in ultrasonic phased array as well as simulation modelling and analysis of the phased array probes' detection effects with various defect sizes, different artificial defect reflectors of M16 stainless steel bolts are machined in reference to the simulation results. Next, those bolts are tested using a 10-wafer phased array probe with 5 MHz. The test results finally prove that ultrasonic phased array can detect 1-mm cracks in diameter with different depths of M16 stainless steel bolts and a metal loss of Φ1 mm of through-hole bolts, which provides technical support for future non-destructive testing of stainless steel bolts in servicing.

  11. Test plan for Geo-Cleanse{reg_sign} demonstration (in situ destruction of dense non-aqueous phase liquid (DNAPL))

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerome, K.M.; Looney, B.B.; Accorsi, F.

    1996-09-01

    Soils and groundwater beneath an abandoned process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLs, or dense non-aqueous phase liquids. Technologies targeted at the efficient characterization or removal of DNAPL are not currently proven. For example, mostmore » DNAPL studies rely on traditional soil and water sampling and the fortuitous observation of immiscible solvent. Once DNAPL is identified, soil excavation (which is only applicable to small contained spill sites) is the only proven cleanup method. New cleanup approaches based on destruction of DNAPL either in situ or ex situ have been proposed and tested at the pilot scale. The proposed demonstration, as described in this report will evaluate the applicability to DNAPL plumes of a technology proven for in situ destruction of light non-aqueous phase liquids (LNAPLs) such as oils.« less

  12. Laser active thermography for non-destructive testing

    NASA Astrophysics Data System (ADS)

    Semerok, A.; Grisolia, C.; Fomichev, S. V.; Thro, P.-Y.

    2013-11-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed.

  13. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... either magnetic particle, penetrant or other approved equivalent non-destructive inspection method; or... percent approved non-destructive inspection. When an approved quality control procedure is established and an acceptable statistical analysis supports reduction, non-destructive inspection may be reduced from...

  14. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... either magnetic particle, penetrant or other approved equivalent non-destructive inspection method; or... percent approved non-destructive inspection. When an approved quality control procedure is established and an acceptable statistical analysis supports reduction, non-destructive inspection may be reduced from...

  15. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... either magnetic particle, penetrant or other approved equivalent non-destructive inspection method; or... percent approved non-destructive inspection. When an approved quality control procedure is established and an acceptable statistical analysis supports reduction, non-destructive inspection may be reduced from...

  16. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... either magnetic particle, penetrant or other approved equivalent non-destructive inspection method; or... percent approved non-destructive inspection. When an approved quality control procedure is established and an acceptable statistical analysis supports reduction, non-destructive inspection may be reduced from...

  17. Continual in situ monitoring of pore water stable isotopes in the subsurface

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Weiler, M.

    2014-05-01

    Stable isotope signatures provide an integral fingerprint of origin, flow paths, transport processes, and residence times of water in the environment. However, the full potential of stable isotopes to quantitatively characterize subsurface water dynamics is yet unfolded due to the difficulty in obtaining extensive, detailed, and repeated measurements of pore water in the unsaturated and saturated zone. This paper presents a functional and cost-efficient system for non-destructive continual in situ monitoring of pore water stable isotope signatures with high resolution. Automatic controllable valve arrays are used to continuously extract diluted water vapor in soil air via a branching network of small microporous probes into a commercial laser-based isotope analyzer. Normalized liquid-phase isotope signatures are then obtained based on a specific on-site calibration approach along with basic corrections for instrument bias and temperature dependent isotopic fractionation. The system was applied to sample depth profiles on three experimental plots with varied vegetation cover in southwest Germany. Two methods (i.e., based on advective versus diffusive vapor extraction) and two modes of sampling (i.e., using multiple permanently installed probes versus a single repeatedly inserted probe) were tested and compared. The results show that the isotope distribution along natural profiles could be resolved with sufficiently high accuracy and precision at sampling intervals of less than four minutes. The presented in situ approaches may thereby be used interchangeably with each other and with concurrent laboratory-based direct equilibration measurements of destructively collected samples. It is thus found that the introduced sampling techniques provide powerful tools towards a detailed quantitative understanding of dynamic and heterogeneous shallow subsurface and vadose zone processes.

  18. VIEW OF ULTRASONIC TESTING EQUIPMENT IN BUILDING 991. THIS EQUIPMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF ULTRA-SONIC TESTING EQUIPMENT IN BUILDING 991. THIS EQUIPMENT NON-DESTRUCTIVELY TESTS WEAPONS COMPONENTS FOR FLAWS AND CRACKS. (9/11/85) - Rocky Flats Plant, Final Assembly & Shipping, Eastern portion of plant site, south of Spruce Avenue, east of Tenth Street & north of Central Avenue, Golden, Jefferson County, CO

  19. Non-destructive scanning for applied stress by the continuous magnetic Barkhausen noise method

    NASA Astrophysics Data System (ADS)

    Franco Grijalba, Freddy A.; Padovese, L. R.

    2018-01-01

    This paper reports the use of a non-destructive continuous magnetic Barkhausen noise technique to detect applied stress on steel surfaces. The stress profile generated in a sample of 1070 steel subjected to a three-point bending test is analyzed. The influence of different parameters such as pickup coil type, scanner speed, applied magnetic field and frequency band analyzed on the effectiveness of the technique is investigated. A moving smoothing window based on a second-order statistical moment is used to analyze the time signal. The findings show that the technique can be used to detect applied stress profiles.

  20. Comparative testing of radiographic testing, ultrasonic testing and phased array advanced ultrasonic testing non destructive testing techniques in accordance with the AWS D1.5 bridge welding code : [summary].

    DOT National Transportation Integrated Search

    2014-02-01

    To ensure that Florida bridges remain safe and structurally secure for their 50-year-plus service life, they are inspected regularly. For steel bridges, welds critical to the bridges integrity do not even leave the workshop unless they meet rigoro...

  1. Ancient sandstone condition assessment in relation to degradation, cleaning and consolidation phenomena

    NASA Astrophysics Data System (ADS)

    Drdácký, Miloš; Frankeová, Dita; Slížková, Zuzana

    2015-04-01

    Non-invasive methods for assessing the state of historic stone types rely on measurement of their surface or subsurface characteristics, which are supposed to correlate with objective physical characteristics. Such measurements are influenced by surface conditions of stone, as well as by previous conservation treatments. The authors performed a comprehensive study of characteristics and behaviour of typical sandstone types present in the Charles' Bridge in Prague as a preparatory work for its diagnostic and restoration in order to understand the problem of a large, important, and non-homogeneous (from the material point of view) historic structure, that was intended for repair interventions. The study itself took advantage of the combination of non-invasive, or considerately destructive methods and fully destructive tests, because it was possible to use damaged sandstone blocks, which were extracted from a masonry rail of the bridge before replacement with new elements. Stone characteristics were studied on test specimens prepared from materials in various conditions and after various interventions. Seven types of sandstone were tested in nine sets (degraded surface layer with a crust, degraded surface layer after cleaning, and unweathered core material; all three without any consolidation treatment, and all three after consolidation with two products based on silicic acid ester - Funcosil 100 and 300). The paper will present only selected results of experiments and the most important conclusions taken from the tests and their comparison. During experimental work the following characteristics were investigated: bending strength, modulus of elasticity, ultrasonic velocity, micro-drilling resistance, water uptake, porosity, frost resistance, hydric dilation and thermal dilation. The degraded stone had a rather strong variation of its characteristics along the depth profile from the surface inside the stone ashlar. Therefore, the stone samples were prepared in a form of cubes for non-destructive US tests and micro drilling. Then the cubes were cut into thin plates and they were tested for volumetric change due to hydric and temperature variations. That procedure allowed a comparison of results of the US tests on cubes and destructive bending tests on thin plates. The remains of these plates were used for porosity measurements. The overall test procedure was planned and carried out in a way which ensured testing of appropriately corresponding specimens. The results supplied data for studying efficiency of the consolidation treatment with silicic acid ester products in relation to three pre-treatment stone conditions, as well as to the type of sandstone cementation (the tested stones had mostly a kaolin or silica, rarely a goethit cementation). The tested stone types were documented by macroscopic and microscopic (thin section) descriptions. The results further indicate capacity of individual testing and assessment methods, and help to select methods suitable for in situ diagnostics.

  2. Comparative evaluation of subgrade resilient modulus from non-destructive, in-situ, and laboratory methods : technical summary report.

    DOT National Transportation Integrated Search

    2008-09-01

    The Resilient Modulus (Mr) of pavement materials and subgrades is an important input : parameter for the design of pavement structures. The Repeated Loading Triaxial (RLT) test : typically determines Mr. However, the RLT test requires well trained pe...

  3. Study of Lamb Waves for Non-Destructive Testing Behind Screens

    NASA Astrophysics Data System (ADS)

    Kauffmann, P.; Ploix, M.-A.; Chaix, J.-F.; Gueudré, C.; Corneloup, G.; Baqué, F. AF(; )

    2018-01-01

    The inspection and control of sodium-cooled fast reactors (SFR) is a major issue for the nuclear industry. Ultrasonic solutions are under study because of the opacity of liquid sodium. In this paper, the use of leaky Lamb waves is considered for non-destructive testing (NDT) on parallel and immersed structures assimilated as plates. The first phase of our approach involved studying the propagation properties of leaky Lamb waves. Equations that model the propagation of Lamb waves in an immersed plate were solved numerically. The phase velocity can be experimentally measured using a two dimensional Fourier transform. The group velocity can be experimentally measured using a short-time Fourier transform technique. Attenuation of leaky Lamb waves is mostly due to the re-emission of energy into the surrounding fluid, and it can be measured by these two techniques.

  4. Adhesive Defect Monitoring of Glass Fiber Epoxy Plate Using an Impedance-Based Non-Destructive Testing Method for Multiple Structures

    PubMed Central

    Na, Wongi S.; Baek, Jongdae

    2017-01-01

    The emergence of composite materials has revolutionized the approach to building engineering structures. With the number of applications for composites increasing every day, maintaining structural integrity is of utmost importance. For composites, adhesive bonding is usually the preferred choice over the mechanical fastening method, and monitoring for delamination is an essential factor in the field of composite materials. In this study, a non-destructive method known as the electromechanical impedance method is used with an approach of monitoring multiple areas by specifying certain frequency ranges to correspond to a certain test specimen. Experiments are conducted using various numbers of stacks created by attaching glass fiber epoxy composite plates onto one another, and two different debonding damage types are introduced to evaluate the performance of the multiple monitoring electromechanical impedance method. PMID:28629194

  5. Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments

    NASA Astrophysics Data System (ADS)

    Baronian, Vahan; Bourgeois, Laurent; Chapuis, Bastien; Recoquillay, Arnaud

    2018-07-01

    This paper presents an application of the linear sampling method to ultrasonic non destructive testing of an elastic waveguide. In particular, the NDT context implies that both the solicitations and the measurements are located on the surface of the waveguide and are given in the time domain. Our strategy consists in using a modal formulation of the linear sampling method at multiple frequencies, such modal formulation being justified theoretically in Bourgeois et al (2011 Inverse Problems 27 055001) for rigid obstacles and in Bourgeois and Lunéville (2013 Inverse Problems 29 025017) for cracks. Our strategy requires the inversion of some emission and reception matrices which deserve some special attention due to potential ill-conditioning. The feasibility of our method is proved with the help of artificial data as well as real data.

  6. Non destructive testing of works of art by terahertz analysis

    NASA Astrophysics Data System (ADS)

    Bodnar, Jean-Luc; Metayer, Jean-Jacques; Mouhoubi, Kamel; Detalle, Vincent

    2013-11-01

    Improvements in technologies and the growing security needs in airport terminals lead to the development of non destructive testing devices using terahertz waves. Indeed, these waves have the advantage of being, on one hand, relatively penetrating. They also have the asset of not being ionizing. It is thus potentially an interesting contribution in the non destructive testing field. With the help of the VISIOM Company, the possibilities of this new industrial analysis method in assisting the restoration of works of art were then approached. The results obtained within this framework are presented here and compared with those obtained by infrared thermography. The results obtained show first that the THZ method, like the stimulated infrared thermography allows the detection of delamination located in murals paintings or in marquetries. They show then that the THZ method seems to allow detecting defects located relatively deeply (10 mm) and defects potentially concealed by other defects. It is an advantage compared to the stimulated infra-red thermography which does not make it possible to obtain these results. Furthermore, they show that the method does not seem sensitive to the various pigments constituting the pictorial layer, to the presence of a layer of "Japan paper" and to the presence of a layer of whitewash. It is not the case of the stimulated infrared thermography. It is another advantage of the THZ method. Finally, they show that the THZ method is limited in the detection of low-size defects. It is a disadvantage compared to the stimulated infrared thermography.

  7. Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness

    NASA Astrophysics Data System (ADS)

    Das, Anshuman J.; Wahi, Akshat; Kothari, Ishan; Raskar, Ramesh

    2016-09-01

    We demonstrate a smartphone based spectrometer design that is standalone and supported on a wireless platform. The device is inherently low-cost and the power consumption is minimal making it portable to carry out a range of studies in the field. All essential components of the device like the light source, spectrometer, filters, microcontroller and wireless circuits have been assembled in a housing of dimensions 88 mm × 37 mm × 22 mm and the entire device weighs 48 g. The resolution of the spectrometer is 15 nm, delivering accurate and repeatable measurements. The device has a dedicated app interface on the smartphone to communicate, receive, plot and analyze spectral data. The performance of the smartphone spectrometer is comparable to existing bench-top spectrometers in terms of stability and wavelength resolution. Validations of the device were carried out by demonstrating non-destructive ripeness testing in fruit samples. Ultra-Violet (UV) fluorescence from Chlorophyll present in the skin was measured across various apple varieties during the ripening process and correlated with destructive firmness tests. A satisfactory agreement was observed between ripeness and fluorescence signals. This demonstration is a step towards possible consumer, bio-sensing and diagnostic applications that can be carried out in a rapid manner.

  8. Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness.

    PubMed

    Das, Anshuman J; Wahi, Akshat; Kothari, Ishan; Raskar, Ramesh

    2016-09-08

    We demonstrate a smartphone based spectrometer design that is standalone and supported on a wireless platform. The device is inherently low-cost and the power consumption is minimal making it portable to carry out a range of studies in the field. All essential components of the device like the light source, spectrometer, filters, microcontroller and wireless circuits have been assembled in a housing of dimensions 88 mm × 37 mm × 22 mm and the entire device weighs 48 g. The resolution of the spectrometer is 15 nm, delivering accurate and repeatable measurements. The device has a dedicated app interface on the smartphone to communicate, receive, plot and analyze spectral data. The performance of the smartphone spectrometer is comparable to existing bench-top spectrometers in terms of stability and wavelength resolution. Validations of the device were carried out by demonstrating non-destructive ripeness testing in fruit samples. Ultra-Violet (UV) fluorescence from Chlorophyll present in the skin was measured across various apple varieties during the ripening process and correlated with destructive firmness tests. A satisfactory agreement was observed between ripeness and fluorescence signals. This demonstration is a step towards possible consumer, bio-sensing and diagnostic applications that can be carried out in a rapid manner.

  9. Comparison of an Ultrasonic Phased Array Evaluation with Destructive Analysis of a Documented Leak Path in a Nozzle Removed from Service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinson, Anthony D.; Crawford, Susan L.; MacFarlan, Paul J.

    2012-09-24

    Non-destructive and destructive testing methods were employed to evaluate a documented boric acid leakage path through an Alloy 600 control rod drive mechanism (CRDM) penetration from the North Anna Unit 2 reactor pressure vessel head that was removed from service in 2002. A previous ultrasonic in-service-inspection (ISI) conducted by industry prior to the head removal, identified a probable leakage path in Nozzle 63 located in the interference fit between the penetration tube and the vessel head. In this current examination, Nozzle 63 was examined using phased array (PA) ultrasonic testing with a 5.0-MHz, eight-element annular array; immersion data were acquiredmore » from the nozzle inner diameter (ID) surface. A variety of focal laws were employed to evaluate the signal responses from the interference fit region. These responses were compared to responses obtained from a mockup specimen that was used to determine detection limits and characterization capabilities for wastage and boric acid presence in the interference fit region. Nozzle 63 was destructively examined after the completion of the ultrasonic nondestructive evaluation (NDE) to visually assess the leak paths. These destructive and nondestructive results compared favorably« less

  10. In vivo visualisation of different modes of action of biological DMARDs inhibiting osteoclastic bone resorption.

    PubMed

    Matsuura, Yoshinobu; Kikuta, Junichi; Kishi, Yuika; Hasegawa, Tetsuo; Okuzaki, Daisuke; Hirano, Toru; Minoshima, Masafumi; Kikuchi, Kazuya; Kumanogoh, Atsushi; Ishii, Masaru

    2018-04-28

    Osteoclasts play critical roles in inflammatory bone destruction. Precursor cell migration, cell differentiation, and functional cell activation are all in play. Biological disease-modifying antirheumatic drugs (DMARDs) have been shown to significantly inhibit both bone erosion as well as synovitis, although how such agents reduce osteoclastic bone destruction in vivo has not been fully explained. Here, we used an intravital time-lapse imaging technique to directly visualise mature osteoclasts and their precursors, and explored how different biological DMARDs acted in vivo . Lipopolysaccharide (LPS) was injected into the calvarial periosteum of fluorescent reporter mice to induce inflammatory bone destruction. Time-lapse imaging was performed via intravital multiphoton microscopy 5 days after LPS injection. Biological DMARDs, including monoclonal antibodies (mAbs) against the interleukin (IL) 6 receptor (IL-6R) and tumour necrosis factor α (TNFα), or cytotoxic T-lymphocyte-associated protein 4 (CTLA4)-Ig, were intraperitoneally administered at the time of LPS injection. We determined CD80/86 expression levels in mature osteoclasts and their precursors by flow cytometry, quantitative PCR and immunohistochemistry. Of the biologicals tested, anti-IL-6R and anti-TNFα mAbs affected mature osteoclasts and switched bone-resorbing osteoclasts to non-resorbing cells. CTLA4-Ig had no action on mature osteoclasts but mobilised osteoclast precursors, eliminating their firm attachment to bone surfaces. In agreement with these results, CD80/86 (the target molecules of CTLA4-Ig) were prominently expressed only in osteoclast precursor cells, being suppressed during osteoclast maturation. Intravital imaging revealed that various biological DMARDs acted at specific therapeutic time points during osteoclastic bone destruction, with different efficacies. These results enable us to grasp the real modes of action of drugs, optimising the usage of drug regimens. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Implementation of thermographers' certification in Brazil

    NASA Astrophysics Data System (ADS)

    dos Santos, Laerte; Alves, Luiz M.; da Costa Bortoni, Edson

    2011-05-01

    In recent years Brazil has experienced extraordinary growth despite the recent economic global crisis. The demand for infrared thermography products and services has accompanied this growth. Like other non-destructive testing and inspection, the results obtained by thermography are highly dependent on the skills of thermographer. Therefore, it is very important to establish a serious and recognized process of certification to assess thermographers' qualifications and help services suppliers to establish credibility with their customers and increase the confidence of these costumers on the quality of these services. The Brazilian Society of Non-Destructive Testing and Inspection, ABENDI, a non-profitable, private technical-scientific entity, recognized nationally and internationally, has observed the necessity of starting a process for certification of thermographers in Brazil. With support of a work group composed by experts from oil and energy industries, transportation, universities and manufactures, the activities started in 2005. This paper describes the economic background required for installation of the certification process, its initial steps, the main characteristics of the Brazilian certification and the expectation for initiating the certification process.

  12. Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings.

    PubMed

    Hobbs, Brian; Tchoketch Kebir, Mohamed

    2007-04-11

    This study describes in detail the results of a laboratory investigation where the compressive strength of 150mm side-length cubes was evaluated. Non-destructive testing (NDT) was carried out using ultrasonic pulse velocity (UPV) and impact rebound hammer (IRH) techniques to establish a correlation with the compressive strengths of compression tests. To adapt the Schmidt hammer apparatus and the ultrasonic pulse velocity tester to the type of concrete used in Algeria, concrete mix proportions that are recommended by the Algerian code were chosen. The resulting correlation curve for each test is obtained by changing the level of compaction, water/cement ratio and concrete age of specimens. Unlike other works, the research highlights the significant effect of formwork material on surface hardness of concrete where two different mould materials for specimens were used (plastic and wood). A combined method for the above two tests, reveals an improvement in the strength estimation of concrete. The latter shows more improvement by including the concrete density. The resulting calibration curves for strength estimation were compared with others from previous published literature.

  13. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates... Detection Limit) (5) Challenge testing must be conducted at the maximum design flow rate for the filter as... representative hydraulic conditions at the maximum design flux and maximum design process recovery specified by...

  14. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates... Detection Limit) (5) Challenge testing must be conducted at the maximum design flow rate for the filter as... representative hydraulic conditions at the maximum design flux and maximum design process recovery specified by...

  15. Use of coal fly ash and other waste products in soil stabilization and road construction including non-destructive testing of roadways.

    DOT National Transportation Integrated Search

    2012-06-01

    An extensive laboratory testing program was performed on subgrade soils stabilized using fly ash and : lime kiln dust. The laboratory program included measurements of: compaction curves, small strain elastic moduli, : resilient modulus (Mr), Briaud C...

  16. Use of coal fly ash and other waste products in soil stabilization and road construction-including non-destructive testing of roadways.

    DOT National Transportation Integrated Search

    2012-02-01

    An extensive laboratory testing program was performed on subgrade soils stabilized using fly ash and lime kiln dust. The laboratory : program included measurements of: compaction curves, small strain elastic moduli, resilient modulus (Mr), Briaud Com...

  17. Microbial biofilms are able to destroy hydroxyapatite in the absence of host immunity in vitro.

    PubMed

    Junka, Adam Feliks; Szymczyk, Patrycja; Smutnicka, Danuta; Kos, Marcin; Smolina, Iryna; Bartoszewicz, Marzenna; Chlebus, Edward; Turniak, Michal; Sedghizadeh, Parish P

    2015-03-01

    It is widely thought that inflammation and osteoclastogenesis result in hydroxyapatite (HA) resorption and sequestrum formation during osseous infections, and microbial biofilm pathogens induce the inflammatory destruction of HA. We hypothesized that biofilms associated with infectious bone disease can directly resorb HA in the absence of host inflammation or osteoclastogenesis. Therefore we developed an in vitro model to test this hypothesis. Customized HA discs were manufactured as a substrate for growing clinically relevant biofilm pathogens. Single-species biofilms of Streptococcus mutans, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans and mixed-species biofilms of C albicans plus S mutans were incubated on HA discs for 72 hours to grow mature biofilms. Three different non-biofilm control groups also were established for testing. HA discs were then evaluated by means of scanning electron microscopy, micro-computed tomography metrotomography, x-ray spectroscopy, and confocal microscopy with planimetric analysis. In addition, quantitative cultures and pH assessment were performed. Analysis of variance was used to test for significance between treatment and control groups. All investigated biofilms were able to cause significant (P < .05) and morphologically characteristic alterations in HA structure as compared with controls. The highest number of alterations observed was caused by mixed biofilms of C albicans plus S mutans. S mutans biofilm incubated in medium with additional sucrose content was the most detrimental to HA surfaces among single-species biofilms. Our findings suggest that direct microbial resorption of bone is possible in addition to immune-mediated destruction, which has important translational implications for the pathogenesis of chronic bone infections and for targeted antimicrobial therapeutics. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. All rights reserved.

  18. Holocene Temperature Reconstructions from Arctic Lakes based on Alkenone Paleothermometry and Non-Destructive Scanning Techniques

    NASA Astrophysics Data System (ADS)

    D'Andrea, W. J.; Balascio, N. L.; Bradley, R. S.; Bakke, J.; Gjerde, M.; Kaufman, D. S.; Briner, J. P.; von Gunten, L.

    2014-12-01

    Generating continuous, accurate and quantitative Holocene temperature estimates from the Arctic is an ongoing challenge. In many Arctic regions, tree ring-based approaches cannot be used and lake sediments provide the most valuable repositories for extracting paleotemperature information. Advances in lacustrine alkenone paleothermometry now allow for quantitative reconstruction of lake-water temperature based on the UK37 values of sedimentary alkenones. In addition, a recent study demonstrated the efficacy of non-destructive scanning reflectance spectroscopy in the visible range (VIS-RS) for high-resolution quantitative temperature reconstruction from arctic lake sediments1. In this presentation, I will report a new UK37-based temperature reconstruction and a scanning VIS-RS record (using the RABD660;670 index as a measure of sedimentary chlorin content) from Kulusuk Lake in southeastern Greenland (65.6°N, 37.1°W). The UK37 record reveals a ~3°C increase in summer lake water temperatures between ~10ka and ~7ka followed by sustained warmth until ~4ka and a gradual (~3°C) cooling until ~400 yr BP. The strong correlation between UK37 and RABD660;670 measured in the same sediment core provides further evidence that in arctic lakes where temperature regulates primary productivity, and thereby sedimentary chlorin content, these proxies can be combined to develop high-resolution quantitative temperature records. The Holocene temperature history of Kulusuk Lake determined using this approach corresponds to changes in the size of the glaciers adjacent to the lake, as inferred from sediment minerogenic properties measured with scanning XRF. Glaciers retreated during early Holocene warming, likely disappeared during the period of mid-Holocene warmth, and advanced after 4ka. I will also discuss new UK37 and RABD660;670 reconstructions from northwestern Svalbard and the central Brooks Range of Alaska within the framework of published regional temperature reconstructions and model simulations of Holocene temperature around the Arctic. 1. von Gunten, L., D'Andrea, W.J., Bradley, R.S. and Huang, Y., 2012, Proxy-to-proxy calibration: Increasing the temporal resolution of quantitative climate reconstructions. Scientific Reports, v. 2, 609. doi: 10:1038/srep00609.

  19. Manipulation of Molecular Quantum Wavepackets with Ultrashort Laser Pulses for Non-destructive Detection of Volatile Explosives

    DTIC Science & Technology

    2013-02-01

    DTRA-TR-12-65 Manipulation of Molecular Quantum Wavepackets with Ultrashort Laser Pulses for Non-destructive Detection of Volatile Explosives ...Manipulation of Molecular Quantum Wavepackets with Ultrashort Laser Pulses for Non-destructive Detection of Volatile Explosives HDTRA1-09-1-0021 Valery...destructive detection of volatile explosives . Moshe Shapiro1, Valery Milner1 and Jun Ye2 1University of British Columbia, Vancouver, Canada 2JILA

  20. Wire Crimp Termination Verification Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.

  1. Combined Use of Terrestrial Laser Scanning and IR Thermography Applied to a Historical Building

    PubMed Central

    Costanzo, Antonio; Minasi, Mario; Casula, Giuseppe; Musacchio, Massimo; Buongiorno, Maria Fabrizia

    2015-01-01

    The conservation of architectural heritage usually requires a multidisciplinary approach involving a variety of specialist expertise and techniques. Nevertheless, destructive techniques should be avoided, wherever possible, in order to preserve the integrity of the historical buildings, therefore the development of non-destructive and non-contact techniques is extremely important. In this framework, a methodology for combining the terrestrial laser scanning and the infrared thermal images is proposed, in order to obtain a reconnaissance of the conservation state of a historical building. The proposed case study is represented by St. Augustine Monumental Compound, located in the historical centre of the town of Cosenza (Calabria, South Italy). Adopting the proposed methodology, the paper illustrates the main results obtained for the building test overlaying and comparing the collected data with both techniques, in order to outline the capabilities both to detect the anomalies and to improve the knowledge on health state of the masonry building. The 3D model, also, allows to provide a reference model, laying the groundwork for implementation of a monitoring multisensor system based on the use of non-destructive techniques. PMID:25609042

  2. Combined use of terrestrial laser scanning and IR thermography applied to a historical building.

    PubMed

    Costanzo, Antonio; Minasi, Mario; Casula, Giuseppe; Musacchio, Massimo; Buongiorno, Maria Fabrizia

    2014-12-24

    The conservation of architectural heritage usually requires a multidisciplinary approach involving a variety of specialist expertise and techniques. Nevertheless, destructive techniques should be avoided, wherever possible, in order to preserve the integrity of the historical buildings, therefore the development of non-destructive and non-contact techniques is extremely important. In this framework, a methodology for combining the terrestrial laser scanning and the infrared thermal images is proposed, in order to obtain a reconnaissance of the conservation state of a historical building. The proposed case study is represented by St. Augustine Monumental Compound, located in the historical centre of the town of Cosenza (Calabria, South Italy). Adopting the proposed methodology, the paper illustrates the main results obtained for the building test overlaying and comparing the collected data with both techniques, in order to outline the capabilities both to detect the anomalies and to improve the knowledge on health state of the masonry building. The 3D model, also, allows to provide a reference model, laying the groundwork for implementation of a monitoring multisensor system based on the use of non-destructive techniques.

  3. Non-destructive analysis of sensory traits of dry-cured loins by MRI-computer vision techniques and data mining.

    PubMed

    Caballero, Daniel; Antequera, Teresa; Caro, Andrés; Ávila, María Del Mar; G Rodríguez, Pablo; Perez-Palacios, Trinidad

    2017-07-01

    Magnetic resonance imaging (MRI) combined with computer vision techniques have been proposed as an alternative or complementary technique to determine the quality parameters of food in a non-destructive way. The aim of this work was to analyze the sensory attributes of dry-cured loins using this technique. For that, different MRI acquisition sequences (spin echo, gradient echo and turbo 3D), algorithms for MRI analysis (GLCM, NGLDM, GLRLM and GLCM-NGLDM-GLRLM) and predictive data mining techniques (multiple linear regression and isotonic regression) were tested. The correlation coefficient (R) and mean absolute error (MAE) were used to validate the prediction results. The combination of spin echo, GLCM and isotonic regression produced the most accurate results. In addition, the MRI data from dry-cured loins seems to be more suitable than the data from fresh loins. The application of predictive data mining techniques on computational texture features from the MRI data of loins enables the determination of the sensory traits of dry-cured loins in a non-destructive way. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Proxy-to-proxy calibration: Increasing the temporal resolution of quantitative climate reconstructions

    PubMed Central

    von Gunten, Lucien; D'Andrea, William J.; Bradley, Raymond S.; Huang, Yongsong

    2012-01-01

    High-resolution paleoclimate reconstructions are often restricted by the difficulties of sampling geologic archives in great detail and the analytical costs of processing large numbers of samples. Using sediments from Lake Braya Sø, Greenland, we introduce a new method that provides a quantitative high-resolution paleoclimate record by combining measurements of the alkenone unsaturation index () with non-destructive scanning reflectance spectroscopic measurements in the visible range (VIS-RS). The proxy-to-proxy (PTP) method exploits two distinct calibrations: the in situ calibration of to lake water temperature and the calibration of scanning VIS-RS data to down core data. Using this approach, we produced a quantitative temperature record that is longer and has 5 times higher sampling resolution than the original time series, thereby allowing detection of temperature variability in frequency bands characteristic of the AMO over the past 7,000 years. PMID:22934132

  5. Ultrasonic Non-destructive Prediction of Spot Welding Shear Strength

    NASA Astrophysics Data System (ADS)

    Himawan, R.; Haryanto, M.; Subekti, R. M.; Sunaryo, G. R.

    2018-02-01

    To enhance a corrosion resistant of ferritic steel in reactor pressure vessel, stainless steel was used as a cladding. Bonding process between these two steels may result a inhomogenity either sub-clad crack or un-joined part. To ensure the integrity, effective inspection method is needed for this purpose. Therefore, in this study, an experiment of ultrasonic test for inspection of two bonding plate was performed. The objective of this study is to develop an effective method in predicting the shear fracture load of the join. For simplicity, these joined was modelled with two plate of stainless steel with spot welding. Ultrasonic tests were performed using contact method with 5 MHz in frequency and 10 mm in diameter of transducer. Amplitude of reflected wave from intermediate layer was used as a quantitative parameter. A set of experiment results show that shear fracture load has a linear correlation with amplitude of reflected wave. Besides, amplitude of reflected wave also has relation with nugget diameter. It could be concluded that ultrasonic contact method could be applied in predicting a shear fracture load.

  6. Specific destruction of islet transplants in NOD<-->C57BL/6 and NOD<-->C3H/Tif embryo aggregation chimeras irrespective of allelic differences in beta-cell antigens.

    PubMed

    Leijon, K; Hillörn, V; Bergqvist, I; Holmberg, D

    1995-06-01

    We have tested the hypothesis that allelic differences in the antigens expressed by the beta-cells of the islets of Langerhans influence the development of insulitis in the non-obese diabetic (NOD) mouse. Islets of Langerhans from NOD, C57BL/6 and C3H/Tif mice were transplanted under the kidney capsule of NOD<-->C57BL/6 and NOD<-->C3H/Tif embryo aggregation (EA) chimeras and the infiltration was scored 5-7 weeks later. Mononuclear cell infiltration of pancreatic islets was observed in 60% of the NOD<-->C57BL/6 and in 55% of the NOD<-->C3H/Tif EA chimeras. All transplanted EA chimeras that developed insulitis also displayed mononuclear cell infiltrates in the transplants, irrespective of the origin of the transplanted islets. In contrast, no infiltration of transplants was detected in EA chimeras scoring negative for insulitis. These results demonstrate that the specific destruction of islet transplants does not require the expression of NOD specific antigens by the islets. Moreover, the beta-cell destruction appears not to be restricted to NOD-MHC. The correlation between insulitis and transplant beta-cell destruction suggests the possibility that the development of insulitis is a prerequisite for transplant specific destruction. MHC restricted destruction may, therefore, precede the beta-cell destruction of transplanted islets. The chimerism among the mononuclear cells infiltrating the islet transplants was found to correlate with the overall haematopoetic chimerism in each of the individual EA chimeras. This observation suggests that NOD bone marrow, as well as non-NOD bone marrow, generates cells contributing to the beta-cell destruction process.

  7. Optimization of PZT ceramic IDT sensors for health monitoring of structures.

    PubMed

    Takpara, Rafatou; Duquennoy, Marc; Ouaftouh, Mohammadi; Courtois, Christian; Jenot, Frédéric; Rguiti, Mohamed

    2017-08-01

    Surface acoustic waves (SAW) are particularly suited to effectively monitoring and characterizing structural surfaces (condition of the surface, coating, thin layer, micro-cracks…) as their energy is localized on the surface, within approximately one wavelength. Conventionally, in non-destructive testing, wedge sensors are used to the generation guided waves but they are especially suited to flat surfaces and sized for a given type material (angle of refraction). Additionally, these sensors are quite expensive so it is quite difficult to leave the sensors permanently on the structure for its health monitoring. Therefore we are considering in this study, another type of ultrasonic sensors, able to generate SAW. These sensors are interdigital sensors or IDT sensors for InterDigital Transducer. This paper focuses on optimization of IDT sensors for non-destructive structural testing by using PZT ceramics. The challenge was to optimize the dimensional parameters of the IDT sensors in order to efficiently generate surface waves. Acoustic tests then confirmed these parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effect of Temperature on Ultrasonic Signal Propagation for Extra Virgin Olive Oil Adulteration

    NASA Astrophysics Data System (ADS)

    Alias, N. A.; Hamid, S. B. Abdul; Sophian, A.

    2017-11-01

    Fraud cases involving adulteration of extra virgin olive oil has become significant nowadays due to increasing in cost of supply and highlight given the benefit of extra virgin olive oil for human consumption. This paper presents the effects of temperature variation on spectral formed utilising pulse-echo technique of ultrasound signal. Several methods had been introduced to characterize the adulteration of extra virgin olive oil with other fluid sample such as mass chromatography, standard method by ASTM (density test, distillation test and evaporation test) and mass spectrometer. Pulse-echo method of ultrasound being a non-destructive method to be used to analyse the sound wave signal captured by oscilloscope. In this paper, a non-destructive technique utilizing ultrasound to characterize extra virgin olive oil adulteration level will be presented. It can be observed that frequency spectrum of sample with different ratio and variation temperature shows significant percentages different from 30% up to 70% according to temperature variation thus possible to be used for sample characterization.

  9. Additive Manufacturing (AM) Activities and Non-Destructive Evaluation (NDE) at GSFC

    NASA Technical Reports Server (NTRS)

    Jones, Justin S.

    2017-01-01

    NASA personnel will be meeting with a delegation from the Japan Aerospace Exploration Agency (JAXA) Office of Safety and Mission Assurance (OSMA) at Langley Research Center on 2217 through 3217. The purpose of the meeting is a technical interchange between NASA and JAXA to discuss Non-Destructive Evaluation (NDE) of Additive Manufacturing (AM) parts and the HALT process (relates to accelerated life testing). The visitors will be a small group of Japanese citizens. Goddard Space Flight Center (GSFC) has been asked to participate in the meeting, either in person or via teleconference. This presentation covers NDE efforts at GSFC and provides a cursory overview of AM and lab capabilities.

  10. Adaptive texture filtering for defect inspection in ultrasound images

    NASA Astrophysics Data System (ADS)

    Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Nash, Charles

    1993-05-01

    The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly-textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.

  11. Material characterization and defect inspection in ultrasound images

    NASA Astrophysics Data System (ADS)

    Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Mahdavieh, Jacob; Ross, Joseph; Nash, Charles

    1992-08-01

    The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.

  12. Possible Nuclear Safeguards Applications: Workshop on Next-Generation Laser Compton Gamma Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, J. Matthew

    2016-11-17

    These are a set of slides for the development of a next-generation photon source white paper. The following topics are covered in these slides: Nuclear Safeguards; The Nuclear Fuel Cycle; Precise isotopic determination via NRF; UF 6 Enrichment Assay; and Non-Destructive Assay of Spent Nuclear Fuel. In summary: A way to non-destructively measure precise isotopics of ~kg and larger samples has multiple uses in nuclear safeguards; Ideally this is a compact, fieldable device that can be used by international inspectors. Must be rugged and reliable; A next-generation source can be used as a testing ground for these techniques as technologymore » develops.« less

  13. Modelling the attenuation in the ATHENA finite elements code for the ultrasonic testing of austenitic stainless steel welds.

    PubMed

    Chassignole, B; Duwig, V; Ploix, M-A; Guy, P; El Guerjouma, R

    2009-12-01

    Multipass welds made in austenitic stainless steel, in the primary circuit of nuclear power plants with pressurized water reactors, are characterized by an anisotropic and heterogeneous structure that disturbs the ultrasonic propagation and makes ultrasonic non-destructive testing difficult. The ATHENA 2D finite element simulation code was developed to help understand the various physical phenomena at play. In this paper, we shall describe the attenuation model implemented in this code to give an account of wave scattering phenomenon through polycrystalline materials. This model is in particular based on the optimization of two tensors that characterize this material on the basis of experimental values of ultrasonic velocities attenuation coefficients. Three experimental configurations, two of which are representative of the industrial welds assessment case, are studied in view of validating the model through comparison with the simulation results. We shall thus provide a quantitative proof that taking into account the attenuation in the ATHENA code dramatically improves the results in terms of the amplitude of the echoes. The association of the code and detailed characterization of a weld's structure constitutes a remarkable breakthrough in the interpretation of the ultrasonic testing on this type of component.

  14. Non-destructive testing of satellite nozzles made of carbon fibre ceramic matrix composite, C/SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebelo Kornmeier, J.; Hofmann, M.; Schmidt, S.

    Carbon fibre ceramic matrix composite materials, C/SiC, are excellent candidates as lightweight structural materials for high performance hot structures such as in aerospace applications. Satellite nozzles are manufactured from C/SiC, using, for instance, the Liquid Polymer Infiltration (LPI) process. In this article the applicability of different non-destructive analysis methods for the characterisation of C/SiC components will be discussed. By using synchrotron and neutron tomography it is possible to characterise the C/SiC material in each desired location or orientation. Synchrotron radiation using tomography on small samples with a resolution of 1.4 {mu}m, i.e. the fibre scale, was used to characterise threemore » dimensionally fibre orientation and integrity, matrix homogeneity and dimensions and distributions of micro pores. Neutron radiation tomography with a resolution of about 300 {mu}m was used to analyse the over-all C/SiC satellite nozzle component with respect to the fibre content. The special solder connection of a C/SiC satellite nozzle to a metallic ring was also successfully analysed by neutron tomography. In addition, the residual stress state of a temperature tested satellite nozzle was analysed non-destructively in depth by neutron diffraction. The results revealed almost zero stress for the principal directions, radial, axial and tangential, which can be considered to be the principal directions.« less

  15. Application of non-destructive testing to evaluate unknown foundations for Pennsylvania bridges.

    DOT National Transportation Integrated Search

    2013-08-01

    Unknown bridge foundations present a unique challenge to Departments of Transportation (DOT) across the country since : foundation characteristics are a necessary input to assess scour vulnerability and to develop appropriate scour countermeasures. :...

  16. Shallow Reflection Method for Water-Filled Void Detection and Characterization

    NASA Astrophysics Data System (ADS)

    Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Hazreek, Z. A. M.; Mohammad, A. H.; Izzaty, R. A.

    2018-04-01

    Shallow investigation is crucial in enhancing the characteristics of subsurface void commonly encountered in civil engineering, and one such technique commonly used is seismic-reflection technique. An assessment of the effectiveness of such an approach is critical to determine whether the quality of the works meets the prescribed requirements. Conventional quality testing suffers limitations including: limited coverage (both area and depth) and problems with resolution quality. Traditionally quality assurance measurements use laboratory and in-situ invasive and destructive tests. However geophysical approaches, which are typically non-invasive and non-destructive, offer a method by which improvement of detection can be measured in a cost-effective way. Of this seismic reflection have proved useful to assess void characteristic, this paper evaluates the application of shallow seismic-reflection method in characterizing the water-filled void properties at 0.34 m depth, specifically for detection and characterization of void measurement using 2-dimensional tomography.

  17. NON-DESTRUCTIVE FLAW DETECTION APPARATUS

    DOEpatents

    Stateman, M.J.; Holloway, H.R.

    1957-12-17

    An apparatus is described for the non-destructive detection of flaws in electrical conducting articles. The particular feature of the detection apparatus is that a flaw in the front or back of the test article will not be masked by signals caused by the passage of the end and front of the article through the detection apparatus. The present invention alleviates the above problem by mounting detection coils on directly opposite sides of the test passageway so that the axes of the pickup coils are perpendicular to the axis of an energizing coil through which the article is passed. A flaw in the article will cause a change in the voltage induced in one pickup coil, but passage of the end or front of the article will not produce unequal signals. The signals are compared in appropriate electrical circuitry to actuate a recorder only when unequal signals are present, indicating the presence of a flaw.

  18. Signal processing for non-destructive testing of railway tracks

    NASA Astrophysics Data System (ADS)

    Heckel, Thomas; Casperson, Ralf; Rühe, Sven; Mook, Gerhard

    2018-04-01

    Increased speed, heavier loads, altered material and modern drive systems result in an increasing number of rail flaws. The appearance of these flaws also changes continually due to the rapid change in damage mechanisms of modern rolling stock. Hence, interpretation has become difficult when evaluating non-destructive rail testing results. Due to the changed interplay between detection methods and flaws, the recorded signals may result in unclassified types of rail flaws. Methods for automatic rail inspection (according to defect detection and classification) undergo continual development. Signal processing is a key technology to master the challenge of classification and maintain resolution and detection quality, independent of operation speed. The basic ideas of signal processing, based on the Glassy-Rail-Diagram for classification purposes, are presented herein. Examples for the detection of damages caused by rolling contact fatigue also are given, and synergetic effects of combined evaluation of diverse inspection methods are shown.

  19. Test Operations Procedure (TOP) 5-2-521 Pyrotechnic Shock Test Procedures

    DTIC Science & Technology

    2007-11-20

    Clipping will produce a signal that resembles a square wave . (2) Filters are used to limit the frequency bandwidth of the signal . Low pass filters...video systems permit observation of explosive items under test. c. Facilities to perform non-destructive inspections such as x-ray, ultrasonic , magna...test. (1) Accelerometers (2) Signal Conditioners (3) Digital Recording System (4) Data Processing System with hardcopy output

  20. Acousto-Optic Tunable Filter Spectroscopic Instrumentation for Quantitative Near-Ir Analysis of Organic Materials.

    NASA Astrophysics Data System (ADS)

    Eilert, Arnold James

    1995-01-01

    The utility of near-IR spectroscopy for routine quantitative analyses of a wide variety of compositional, chemical, or physical parameters of organic materials is well understood. It can be used for relatively fast and inexpensive non-destructive bulk material analysis before, during, and after processing. It has been demonstrated as being a particularly useful technique for numerous analytical applications in cereal (food and feed) science and industry. Further fulfillment of the potential of near-IR spectroscopic analysis, both in the process and laboratory environment, is reliant upon the development of instrumentation that is capable of meeting the challenges of increasingly difficult applications. One approach to the development of near-IR spectroscopic instrumentation that holds a great deal of promise is acousto-optic tunable filter (AOTF) technology. A combination of attributes offered by AOTF spectrometry, including speed, optical throughput, wavelength reproducibility, ruggedness (no -moving-parts operation) and flexibility, make it particularly desirable for numerous applications. A series of prototype (research model) acousto -optic tunable filter instruments were developed and tested in order to investigate the feasibility of the technology for quantitative near-IR spectrometry. Development included design, component procurement, assembly and/or configuration of the optical and electronic subsystems of which each functional spectrometer arrangement was comprised, as well as computer interfacing and acquisition/control software development. Investigation of this technology involved an evolution of several operational spectrometer systems, each of which offered improvements over its predecessor. Appropriate testing was conducted at various stages of development. Demonstrations of the potential applicability of our AOTF spectrometer to quantitative process monitoring or laboratory analysis of numerous organic substances, including food materials, were performed. Lipid determination in foods by spectroscopic analysis of a solvent used after cold batch extraction and simulated supercritical fluid extraction monitoring were among the applications tested. The ultimate performance specifications of our instrument included full-range wavelength coverage from 1250 to 2400 nm (with random, segmented range, or continuous range wavelength access capability), real -time quantitative analysis rates in excess of 150 determinations per second, and full range (2 nm increment) scanning speeds of 200 milliseconds.

  1. Fast, quantitative, and nondestructive evaluation of hydrided LWR fuel cladding by small angle incoherent neutron scattering of hydrogen

    DOE PAGES

    Yan, Y.; Qian, S.; Littrell, K.; ...

    2015-02-13

    A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distributionmore » of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. This study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor will be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.« less

  2. Comparison of optimised germanium gamma spectrometry and multicollector inductively coupled plasma mass spectrometry for the determination of 134Cs, 137Cs and 154Eu single ratios in highly burnt UO 2

    NASA Astrophysics Data System (ADS)

    Caruso, S.; Günther-Leopold, I.; Murphy, M. F.; Jatuff, F.; Chawla, R.

    2008-05-01

    Non-destructive and destructive methods have been compared to validate their corresponding assessed accuracies in the measurement of 134Cs/137Cs and 154Eu/137Cs isotopic concentration ratios in four spent UO2 fuel samples with very high (52 and 71 GWd/t) and ultra-high (91 and 126 GWd/t) burnup values, and about 10 (in the first three samples) and 4 years (in the latter sample) cooling time. The non-destructive technique tested was high-resolution gamma spectrometry using a high-purity germanium detector (HPGe) and a special tomographic station for the handling of highly radioactive 400 mm spent fuel segments that included a tungsten collimator, lead filter (to enhance the signal to Compton background ratio and reduce the dead time) and paraffin wax (to reduce neutron damage). The non-destructive determination of these isotopic concentration ratios has been particularly challenging for these segments because of the need to properly derive non-Gaussian gamma-peak areas and subtract the background from perturbing capture gammas produced by the intrinsic high-intensity neutron emissions from the spent fuel. Additionally, the activity distribution within each pin was determined tomographically to correct appropriately for self-attenuation and geometrical effects. The ratios obtained non-destructively showed a 1σ statistical error in the range 1.9-2.9%. The destructive technique used was a high-performance liquid chromatographic separation system, combined online to a multicollector inductively coupled plasma mass spectrometer (HPLC-MC-ICP-MS), for the analysis of dissolved fuel solutions. During the mass spectrometric analyses, special care was taken in the optimisation of the chromatographic separation for Eu and the interfering element Gd, as also in the mathematical correction of the 154Gd background from the 154Eu signal. The ratios obtained destructively are considerably more precise (1σ statistical error in the range 0.4-0.8% for most of the samples, but up to 2.8% for one sample). The HPGe gamma spectrometry can achieve a high degree of accuracy (agreement with HPLC-MC-ICP-MS within a few percent), only by virtue of the optimised setup, and the refined measurement strategy and data treatment employed.

  3. Towards a non-invasive quantitative analysis of the organic components in museum objects varnishes by vibrational spectroscopies: methodological approach.

    PubMed

    Daher, Céline; Pimenta, Vanessa; Bellot-Gurlet, Ludovic

    2014-11-01

    The compositions of ancient varnishes are mainly determined destructively by separation methods coupled to mass spectrometry. In this study, a methodology for non-invasive quantitative analyses of varnishes by vibrational spectroscopies is proposed. For that, experimental simplified varnishes of colophony and linseed oil were prepared according to 18th century traditional recipes with an increasing mass concentration ratio of colophony/linseed oil. FT-Raman and IR analyses using ATR and non-invasive reflectance modes were done on the "pure" materials and on the different mixtures. Then, a new approach involving spectral decomposition calculation was developed considering the mixture spectra as a linear combination of the pure materials ones, and giving a relative amount of each component. Specific spectral regions were treated and the obtained results show a good accuracy between the prepared and calculated amounts of the two compounds. We were thus able to detect and quantify from 10% to 50% of colophony in linseed oil using non-invasive techniques that can also be conducted in situ with portable instruments when it comes to museum varnished objects and artifacts. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Identification of characteristic frequencies of damaged railway tracks using field hammer test measurements

    NASA Astrophysics Data System (ADS)

    Oregui, M.; Li, Z.; Dollevoet, R.

    2015-03-01

    In this paper, the feasibility of the Frequency Response Function (FRF)-based statistical method to identify the characteristic frequencies of railway track defects is studied. The method compares a damaged track state to a healthy state based on non-destructive field hammer test measurements. First, a study is carried out to investigate the repeatability of hammer tests in railway tracks. By changing the excitation and measurement locations it is shown that the variability introduced by the test process is negligible. Second, following the concepts of control charts employed in process monitoring, a method to define an approximate healthy state is introduced by using hammer test measurements at locations without visual damage. Then, the feasibility study includes an investigation into squats (i.e. a major type of rail surface defect) of varying severity. The identified frequency ranges related to squats agree with those found in an extensively validated vehicle-borne detection system. Therefore, the FRF-based statistical method in combination with the non-destructive hammer test measurements has the potential to be employed to identify the characteristic frequencies of damaged conditions in railway tracks in the frequency range of 300-3000 Hz.

  5. Magic Angle Spinning NMR Metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhi Hu, Jian

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  6. Recent advances in the use of non-destructive near infrared spectroscopy on intact olive fruits

    USDA-ARS?s Scientific Manuscript database

    The objective of this review is to illustrate the state of the art in the use of non-destructive near infrared (NIR) spectroscopy for quality evaluation of intact fruit in the olive industry. First, the most recent studies regarding the application of non-destructive NIR spectroscopy methods to asse...

  7. 39 CFR 762.41 - Advice of non-receipt or loss, destruction, or mutilation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 39 Postal Service 1 2011-07-01 2011-07-01 false Advice of non-receipt or loss, destruction, or..., Mutilated, and Defaced Disbursement Postal Money Orders § 762.41 Advice of non-receipt or loss, destruction... purpose for which it was issued, giving, if possible, its date, number, and amount, and requesting that...

  8. 39 CFR 762.41 - Advice of non-receipt or loss, destruction, or mutilation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Advice of non-receipt or loss, destruction, or..., Mutilated, and Defaced Disbursement Postal Money Orders § 762.41 Advice of non-receipt or loss, destruction... purpose for which it was issued, giving, if possible, its date, number, and amount, and requesting that...

  9. A Gradient-Field Pulsed Eddy Current Probe for Evaluation of Hidden Material Degradation in Conductive Structures Based on Lift-Off Invariance

    PubMed Central

    Li, Yong; Jing, Haoqing; Zainal Abidin, Ilham Mukriz; Yan, Bei

    2017-01-01

    Coated conductive structures are widely adopted in such engineering fields as aerospace, nuclear energy, etc. The hostile and corrosive environment leaves in-service coated conductive structures vulnerable to Hidden Material Degradation (HMD) occurring under the protection coating. It is highly demanded that HMD can be non-intrusively assessed using non-destructive evaluation techniques. In light of the advantages of Gradient-field Pulsed Eddy Current technique (GPEC) over other non-destructive evaluation methods in corrosion evaluation, in this paper the GPEC probe for quantitative evaluation of HMD is intensively investigated. Closed-form expressions of GPEC responses to HMD are formulated via analytical modeling. The Lift-off Invariance (LOI) in GPEC signals, which makes the HMD evaluation immune to the variation in thickness of the protection coating, is introduced and analyzed through simulations involving HMD with variable depths and conductivities. A fast inverse method employing magnitude and time of the LOI point in GPEC signals for simultaneously evaluating the conductivity and thickness of HMD region is proposed, and subsequently verified by finite element modeling and experiments. It has been found from the results that along with the proposed inverse method the GPEC probe is applicable to evaluation of HMD in coated conductive structures without much loss in accuracy. PMID:28441328

  10. Study on for soluble solids contents measurement of grape juice beverage based on Vis/NIRS and chemomtrics

    NASA Astrophysics Data System (ADS)

    Wu, Di; He, Yong

    2007-11-01

    The aim of this study is to investigate the potential of the visible and near infrared spectroscopy (Vis/NIRS) technique for non-destructive measurement of soluble solids contents (SSC) in grape juice beverage. 380 samples were studied in this paper. Smoothing way of Savitzky-Golay and standard normal variate were applied for the pre-processing of spectral data. Least-squares support vector machines (LS-SVM) with RBF kernel function was applied to developing the SSC prediction model based on the Vis/NIRS absorbance data. The determination coefficient for prediction (Rp2) of the results predicted by LS-SVM model was 0. 962 and root mean square error (RMSEP) was 0. 434137. It is concluded that Vis/NIRS technique can quantify the SSC of grape juice beverage fast and non-destructively.. At the same time, LS-SVM model was compared with PLS and back propagation neural network (BP-NN) methods. The results showed that LS-SVM was superior to the conventional linear and non-linear methods in predicting SSC of grape juice beverage. In this study, the generation ability of LS-SVM, PLS and BP-NN models were also investigated. It is concluded that LS-SVM regression method is a promising technique for chemometrics in quantitative prediction.

  11. A Gradient-Field Pulsed Eddy Current Probe for Evaluation of Hidden Material Degradation in Conductive Structures Based on Lift-Off Invariance.

    PubMed

    Li, Yong; Jing, Haoqing; Zainal Abidin, Ilham Mukriz; Yan, Bei

    2017-04-25

    Coated conductive structures are widely adopted in such engineering fields as aerospace, nuclear energy, etc. The hostile and corrosive environment leaves in-service coated conductive structures vulnerable to Hidden Material Degradation (HMD) occurring under the protection coating. It is highly demanded that HMD can be non-intrusively assessed using non-destructive evaluation techniques. In light of the advantages of Gradient-field Pulsed Eddy Current technique (GPEC) over other non-destructive evaluation methods in corrosion evaluation, in this paper the GPEC probe for quantitative evaluation of HMD is intensively investigated. Closed-form expressions of GPEC responses to HMD are formulated via analytical modeling. The Lift-off Invariance (LOI) in GPEC signals, which makes the HMD evaluation immune to the variation in thickness of the protection coating, is introduced and analyzed through simulations involving HMD with variable depths and conductivities. A fast inverse method employing magnitude and time of the LOI point in GPEC signals for simultaneously evaluating the conductivity and thickness of HMD region is proposed, and subsequently verified by finite element modeling and experiments. It has been found from the results that along with the proposed inverse method the GPEC probe is applicable to evaluation of HMD in coated conductive structures without much loss in accuracy.

  12. Assessment of non-destructive testing technologies for quality control/quality assurance of asphalt mixtures.

    DOT National Transportation Integrated Search

    2015-03-01

    Asphalt pavements suffer various failures due to insufficient quality within their design lives. The American Association of State : Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) has been proposed :...

  13. Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Quinn, Kyle P.; Sridharan, Gautham V.; Hayden, Rebecca S.; Kaplan, David L.; Lee, Kyongbum; Georgakoudi, Irene

    2013-12-01

    The non-invasive high-resolution spatial mapping of cell metabolism within tissues could provide substantial advancements in assessing the efficacy of stem cell therapy and understanding tissue development. Here, using two-photon excited fluorescence microscopy, we elucidate the relationships among endogenous cell fluorescence, cell redox state, and the differentiation of human mesenchymal stem cells into adipogenic and osteoblastic lineages. Using liquid chromatography/mass spectrometry and quantitative PCR, we evaluate the sensitivity of an optical redox ratio of FAD/(NADH + FAD) to metabolic changes associated with stem cell differentiation. Furthermore, we probe the underlying physiological mechanisms, which relate a decrease in the redox ratio to the onset of differentiation. Because traditional assessments of stem cells and engineered tissues are destructive, time consuming, and logistically intensive, the development and validation of a non-invasive, label-free approach to defining the spatiotemporal patterns of cell differentiation can offer a powerful tool for rapid, high-content characterization of cell and tissue cultures.

  14. Infrared spectroscopy as a tool to characterise starch ordered structure--a joint FTIR-ATR, NMR, XRD and DSC study.

    PubMed

    Warren, Frederick J; Gidley, Michael J; Flanagan, Bernadine M

    2016-03-30

    Starch has a heterogeneous, semi-crystalline granular structure and the degree of ordered structure can affect its behaviour in foods and bioplastics. A range of methodologies are employed to study starch structure; differential scanning calorimetry, (13)C nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Despite the appeal of FTIR as a rapid, non-destructive methodology, there is currently no systematically defined quantitative relationship between FTIR spectral features and other starch structural measures. Here, we subject 61 starch samples to structural analysis, and systematically correlate FTIR spectra with other measures of starch structure. A hydration dependent peak position shift in the FTIR spectra of starch is observed, resulting from increased molecular order, but with complex, non-linear behaviour. We demonstrate that FTIR is a tool that can quantitatively probe short range interactions in starch structure. However, the assumptions of linear relationships between starch ordered structure and peak ratios are overly simplistic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Fast solver for large scale eddy current non-destructive evaluation problems

    NASA Astrophysics Data System (ADS)

    Lei, Naiguang

    Eddy current testing plays a very important role in non-destructive evaluations of conducting test samples. Based on Faraday's law, an alternating magnetic field source generates induced currents, called eddy currents, in an electrically conducting test specimen. The eddy currents generate induced magnetic fields that oppose the direction of the inducing magnetic field in accordance with Lenz's law. In the presence of discontinuities in material property or defects in the test specimen, the induced eddy current paths are perturbed and the associated magnetic fields can be detected by coils or magnetic field sensors, such as Hall elements or magneto-resistance sensors. Due to the complexity of the test specimen and the inspection environments, the availability of theoretical simulation models is extremely valuable for studying the basic field/flaw interactions in order to obtain a fuller understanding of non-destructive testing phenomena. Theoretical models of the forward problem are also useful for training and validation of automated defect detection systems. Theoretical models generate defect signatures that are expensive to replicate experimentally. In general, modelling methods can be classified into two categories: analytical and numerical. Although analytical approaches offer closed form solution, it is generally not possible to obtain largely due to the complex sample and defect geometries, especially in three-dimensional space. Numerical modelling has become popular with advances in computer technology and computational methods. However, due to the huge time consumption in the case of large scale problems, accelerations/fast solvers are needed to enhance numerical models. This dissertation describes a numerical simulation model for eddy current problems using finite element analysis. Validation of the accuracy of this model is demonstrated via comparison with experimental measurements of steam generator tube wall defects. These simulations generating two-dimension raster scan data typically takes one to two days on a dedicated eight-core PC. A novel direct integral solver for eddy current problems and GPU-based implementation is also investigated in this research to reduce the computational time.

  16. Quantitative ultrasound molecular imaging by modeling the binding kinetics of targeted contrast agent

    NASA Astrophysics Data System (ADS)

    Turco, Simona; Tardy, Isabelle; Frinking, Peter; Wijkstra, Hessel; Mischi, Massimo

    2017-03-01

    Ultrasound molecular imaging (USMI) is an emerging technique to monitor diseases at the molecular level by the use of novel targeted ultrasound contrast agents (tUCA). These consist of microbubbles functionalized with targeting ligands with high-affinity for molecular markers of specific disease processes, such as cancer-related angiogenesis. Among the molecular markers of angiogenesis, the vascular endothelial growth factor receptor 2 (VEGFR2) is recognized to play a major role. In response, the clinical-grade tUCA BR55 was recently developed, consisting of VEGFR2-targeting microbubbles which can flow through the entire circulation and accumulate where VEGFR2 is over-expressed, thus causing selective enhancement in areas of active angiogenesis. Discrimination between bound and free microbubbles is crucial to assess cancer angiogenesis. Currently, this is done non-quantitatively by looking at the late enhancement, about 10 min after injection, or by calculation of the differential targeted enhancement, requiring the application of a high-pressure ultrasound (US) burst to destroy all the microbubbles in the acoustic field and isolate the signal coming only from bound microbubbles. In this work, we propose a novel method based on mathematical modeling of the binding kinetics during the tUCA first pass, thus reducing the acquisition time and with no need for a destructive US burst. Fitting time-intensity curves measured with USMI by the proposed model enables the assessment of cancer angiogenesis at both the vascular and molecular levels. This is achieved by estimation of quantitative parameters related to the microvascular architecture and microbubble binding. The proposed method was tested in 11 prostate-tumor bearing rats by performing USMI after injection of BR55, and showed good agreement with current USMI methods. The novel information provided by the proposed method, possibly combined with the current non-quantitative methods, may bring deeper insight into cancer angiogenesis, and thus potentially improve cancer diagnosis and management.

  17. Non-destructive testing on aramid fibres for the long-term assessment of interventions on heritage structures

    NASA Astrophysics Data System (ADS)

    Ceravolo, R.; De Marchi, A.; Pinotti, E.; Surace, C.; Zanotti Fragonara, L.

    2015-07-01

    High strength fibre reinforced polymers (FRPs) are composite materials made of fibres such as carbon, aramid and/or glass, and a resin matrix. FRPs are commonly used for structural repair and strengthening interventions and exhibit high potential for applications to existing constructions, including heritage buildings. In regard to aramid fibres, uncertainties about the long-term behaviour of these materials have often made the designers reluctant to use them in structural engineering. The present study describes simple and non-destructive nonlinearity tests for assessing damage or degradation of structural properties in Kevlar fibres. This was obtained by using high precision measurements to detect small deviations in the dynamic response measured on fibres and ropes. The change in dynamic properties was then related to a damage produced by exposure of the sample to UV rays for a defined time period, which simulated long-term sun exposure. In order to investigate the sensitivity of such an approach to damage detection, non-linearity characterisation tests were conducted on aramid fibres in both damaged and undamaged states. With the purpose of carrying out dynamic tests on small fibre specimens, a dedicated instrumentation was designed and built in cooperation with the Metrology Laboratory of the Department of Electronics at the Politecnico di Torino.

  18. Non-contact weight measurement of flat-faced pharmaceutical tablets using terahertz transmission pulse delay measurements.

    PubMed

    Bawuah, Prince; Silfsten, Pertti; Ervasti, Tuomas; Ketolainen, Jarkko; Zeitler, J Axel; Peiponen, Kai-Erik

    2014-12-10

    By measuring the time delay of a terahertz pulse traversing a tablet, and hence its effective refractive index, it is possible to non-invasively and non-destructively detect the weight of tablets made of microcrystalline cellulose (MCC). Two sets of MCC tablets were used in the study: Set A (training set) consisted of 13 tablets with nominally constant height but varying porosities, whereas Set B (test set) comprised of 21 tablets with nominally constant porosity but different heights. A linear correlation between the estimated absolute weight based on the terahertz measurement and the measured weight of both sets of MCC tablets was found. In addition, it was possible to estimate the height of the tablets by utilizing the estimated absolute weight and calculating the relative change of height of each tablet with respect to an ideal tablet. A good agreement between the experimental and the calculated results was found highlighting the potential of this technique for in-line sensing of the weight, porosity and the relative change in height of the tablets compared to a reference/ideal tablet. In this context, we propose a quantitative quality control method to assess the deviations in porosity of tablets immediately after compaction. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Sharma, Vishal

    2017-03-01

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%).

  20. Inconsistency in 9 mm bullets: correlation of jacket thickness to post-impact geometry measured with non-destructive X-ray computed tomography.

    PubMed

    Thornby, John; Landheer, Dirk; Williams, Tim; Barnes-Warden, Jane; Fenne, Paul; Norman, Danielle G; Attridge, Alex; Williams, Mark A

    2014-01-01

    Fundamental to any ballistic armour standard is the reference projectile to be defeated. Typically, for certification purposes, a consistent and symmetrical bullet geometry is assumed, however variations in bullet jacket dimensions can have far reaching consequences. Traditionally, characteristics and internal dimensions have been analysed by physically sectioning bullets--an approach which is of restricted scope and which precludes subsequent ballistic assessment. The use of a non-destructive X-ray computed tomography (CT) method has been demonstrated and validated (Kumar et al., 2011 [15]); the authors now apply this technique to correlate bullet impact response with jacket thickness variations. A set of 20 bullets (9 mm DM11) were selected for comparison and an image-based analysis method was employed to map jacket thickness and determine the centre of gravity of each specimen. Both intra- and inter-bullet variations were investigated, with thickness variations of the order of 200 μm commonly found along the length of all bullets and angular variations of up to 50 μm in some. The bullets were subsequently impacted against a rigid flat plate under controlled conditions (observed on a high-speed video camera) and the resulting deformed projectiles were re-analysed. The results of the experiments demonstrate a marked difference in ballistic performance between bullets from different manufacturers and an asymmetric thinning of the jacket is observed in regions of pre-impact weakness. The conclusions are relevant for future soft armour standards and provide important quantitative data for numerical model correlation and development. The implications of the findings of the work on the reliability and repeatability of the industry standard V50 ballistic test are also discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science.

    PubMed

    Svarcová, Silvie; Kocí, Eva; Bezdicka, Petr; Hradil, David; Hradilová, Janka

    2010-09-01

    The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.

  2. Optical metrics of the extracellular matrix predict compositional and mechanical changes after myocardial infarction

    NASA Astrophysics Data System (ADS)

    Quinn, Kyle P.; Sullivan, Kelly E.; Liu, Zhiyi; Ballard, Zachary; Siokatas, Christos; Georgakoudi, Irene; Black, Lauren D.

    2016-11-01

    Understanding the organization and mechanical function of the extracellular matrix (ECM) is critical for the development of therapeutic strategies that regulate wound healing following disease or injury. However, these relationships are challenging to elucidate during remodeling following myocardial infarction (MI) due to rapid changes in cellularity and an inability to characterize both ECM microstructure and function non-destructively. In this study, we overcome those challenges through whole organ decellularization and non-linear optical microscopy to directly relate the microstructure and mechanical properties of myocardial ECM. We non-destructively quantify collagen organization, content, and cross-linking within decellularized healthy and infarcted myocardium using second harmonic generation (SHG) and two photon excited autofluorescence. Tensile mechanical testing and compositional analysis reveal that the cumulative SHG intensity within each image volume and the average collagen autofluorescence are significantly correlated with collagen content and elastic modulus of the ECM, respectively. Compared to healthy ECM, infarcted tissues demonstrate a significant increase in collagen content and fiber alignment, and a decrease in cross-linking and elastic modulus. These findings indicate that cross-linking plays a key role in stiffness at the collagen fiber level following infarction, and highlight how this non-destructive approach to assessing remodeling can be used to understand ECM structure-function relationships.

  3. ESDA®-Lite collection of DNA from latent fingerprints on documents.

    PubMed

    Plaza, Dane T; Mealy, Jamia L; Lane, J Nicholas; Parsons, M Neal; Bathrick, Abigail S; Slack, Donia P

    2015-05-01

    The ability to detect and non-destructively collect biological samples for DNA processing would benefit the forensic community by preserving the physical integrity of evidentiary items for more thorough evaluations by other forensic disciplines. The Electrostatic Detection Apparatus (ESDA®) was systemically evaluated for its ability to non-destructively collect DNA from latent fingerprints deposited on various paper substrates for short tandem repeat (STR) DNA profiling. Fingerprints were deposited on a variety of paper substrates that included resume paper, cotton paper, magazine paper, currency, copy paper, and newspaper. Three DNA collection techniques were performed: ESDA collection, dry swabbing, and substrate cutting. Efficacy of each collection technique was evaluated by the quantity of DNA present in each sample and the percent profile generated by each sample. Both the ESDA and dry swabbing non-destructive sampling techniques outperformed the destructive methodology of substrate cutting. A greater number of full profiles were generated from samples collected with the non-destructive dry swabbing collection technique than were generated from samples collected with the ESDA; however, the ESDA also allowed the user to visualize the area of interest while non-destructively collecting the biological material. The ability to visualize the biological material made sampling straightforward and eliminated the need for numerous, random swabbings/cuttings. Based on these results, the evaluated non-destructive ESDA collection technique has great potential for real-world forensic implementation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. 77 FR 52067 - In the Matter of Quality Inspection and Testing, Inc., New Iberia, LA; General License Pursuant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... June 27, 2012, the NRC and QIT representatives met in an ADR session with a professional mediator... of QIT must submit a paper for presentation at an NDT professional society meeting (national or local... professional society meeting (national or local chapter), such as the Non-Destructive Testing Management...

  5. Acoustic emission analysis as a non-destructive test procedure for fiber compound structures

    NASA Technical Reports Server (NTRS)

    Block, J.

    1983-01-01

    The concept of acoustic emission analysis is explained in scientific terms. The detection of acoustic events, their localization, damage discrimination, and event summation curves are discussed. A block diagram of the concept of damage-free testing of fiber-reinforced synthetic materials is depicted. Prospects for application of the concept are assessed.

  6. Multispectral UV imaging for fast and non-destructive quality control of chemical and physical tablet attributes.

    PubMed

    Klukkert, Marten; Wu, Jian X; Rantanen, Jukka; Carstensen, Jens M; Rades, Thomas; Leopold, Claudia S

    2016-07-30

    Monitoring of tablet quality attributes in direct vicinity of the production process requires analytical techniques that allow fast, non-destructive, and accurate tablet characterization. The overall objective of this study was to investigate the applicability of multispectral UV imaging as a reliable, rapid technique for estimation of the tablet API content and tablet hardness, as well as determination of tablet intactness and the tablet surface density profile. One of the aims was to establish an image analysis approach based on multivariate image analysis and pattern recognition to evaluate the potential of UV imaging for automatized quality control of tablets with respect to their intactness and surface density profile. Various tablets of different composition and different quality regarding their API content, radial tensile strength, intactness, and surface density profile were prepared using an eccentric as well as a rotary tablet press at compression pressures from 20MPa up to 410MPa. It was found, that UV imaging can provide both, relevant information on chemical and physical tablet attributes. The tablet API content and radial tensile strength could be estimated by UV imaging combined with partial least squares analysis. Furthermore, an image analysis routine was developed and successfully applied to the UV images that provided qualitative information on physical tablet surface properties such as intactness and surface density profiles, as well as quantitative information on variations in the surface density. In conclusion, this study demonstrates that UV imaging combined with image analysis is an effective and non-destructive method to determine chemical and physical quality attributes of tablets and is a promising approach for (near) real-time monitoring of the tablet compaction process and formulation optimization purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Acoustic imaging with time reversal methods: From medicine to NDT

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    2015-03-01

    This talk will present an overview of the research conducted on ultrasonic time-reversal methods applied to biomedical imaging and to non-destructive testing. We will first describe iterative time-reversal techniques that allow both focusing ultrasonic waves on reflectors in tissues (kidney stones, micro-calcifications, contrast agents) or on flaws in solid materials. We will also show that time-reversal focusing does not need the presence of bright reflectors but it can be achieved only from the speckle noise generated by random distributions of non-resolved scatterers. We will describe the applications of this concept to correct distortions and aberrations in ultrasonic imaging and in NDT. In the second part of the talk we will describe the concept of time-reversal processors to get ultrafast ultrasonic images with typical frame rates of order of 10.000 F/s. It is the field of ultrafast ultrasonic imaging that has plenty medical applications and can be of great interest in NDT. We will describe some applications in the biomedical domain: Quantitative Elasticity imaging of tissues by following shear wave propagation to improve cancer detection and Ultrafast Doppler imaging that allows ultrasonic functional imaging.

  8. Near infrared spectroscopic evaluation of water in hyaline cartilage.

    PubMed

    Padalkar, M V; Spencer, R G; Pleshko, N

    2013-11-01

    In diseased conditions of cartilage such as osteoarthritis, there is typically an increase in water content from the average normal of 60-85% to greater than 90%. As cartilage has very little capability for self-repair, methods of early detection of degeneration are required, and assessment of water could prove to be a useful diagnostic method. Current assessment methods are either destructive, time consuming, or have limited sensitivity. Here, we investigated the hypotheses that non-destructive near infrared spectroscopy (NIRS) of articular cartilage can be used to differentiate between free and bound water, and to quantitatively assess water content. The absorbances centered at 5200 and 6890 cm(-1) were attributed to a combination of free and bound water, and to free water only, respectively. The integrated areas of both absorbance bands were found to correlate linearly with the absolute water content (R = 0.87 and 0.86) and with percent water content (R = 0.97 and 0.96) of the tissue. Partial least square models were also successfully developed and were used to predict water content, and percent free water. These data demonstrate that NIRS can be utilized to quantitatively determine water content in articular cartilage, and may aid in early detection of degenerative tissue changes in a laboratory setting, and with additional validations, possibly in a clinical setting.

  9. A new high-resolution 3-D quantitative method for analysing small morphological features: an example using a Cambrian trilobite.

    PubMed

    Esteve, Jorge; Zhao, Yuan-Long; Maté-González, Miguel Ángel; Gómez-Heras, Miguel; Peng, Jin

    2018-02-12

    Taphonomic processes play an important role in the preservation of small morphological features such as granulation or pits. However, the assessment of these features may face the issue of the small size of the specimens and, sometimes, the destructiveness of these analyses, which makes impossible carrying them out in singular specimen, such as holotypes or lectotypes. This paper takes a new approach to analysing small-morphological features, by using an optical surface roughness (OSR) meter to create a high-resolution three-dimensional digital-elevation model (DEM). This non-destructive technique allows analysing quantitatively the DEM using geometric morphometric methods (GMM). We created a number of DEMs from three populations putatively belonging to the same species of trilobite (Oryctocephalus indicus) that present the same cranidial outline, but differ in the presence or absence of the second and third transglabellar furrows. Profile analysis of the DEMs demonstrate that all three populations show similar preservation variation in the glabellar furrows and lobes. The GMM shows that all populations exhibit the same range of variation. Differences in preservation are a consequence of different degrees of cementation and rates of dissolution. Fast cementation enhances the preservation of glabellar furrows and lobes, while fast dissolution hampers preservation of the same structures.

  10. Elasticity dominates strength and failure in metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z. Q.; Qu, R. T.; Zhang, Z. F., E-mail: zhfzhang@imr.ac.cn

    2015-01-07

    Two distinct deformation mechanisms of shearing and volume dilatation are quantitatively analyzed in metallic glasses (MGs) from the fundamental thermodynamics. Their competition is deduced to intrinsically dominate the strength and failure behaviors of MGs. Both the intrinsic shear and normal strengths give rise to the critical mechanical energies to activate destabilization of amorphous structures, under pure shearing and volume dilatation, respectively, and can be determined in terms of elastic constants. By adopting an ellipse failure criterion, the strength and failure behaviors of MGs can be precisely described just according to their shear modulus and Poisson's ratio without mechanical testing. Quantitativemore » relations are established systematically and verified by experimental results. Accordingly, the real-sense non-destructive failure prediction can be achieved in various MGs. By highlighting the broad key significance of elasticity, a “composition-elasticity-property” scheme is further outlined for better understanding and controlling the mechanical properties of MGs and other glassy materials from the elastic perspectives.« less

  11. Radial basis function neural networks in non-destructive determination of compound aspirin tablets on NIR spectroscopy.

    PubMed

    Dou, Ying; Mi, Hong; Zhao, Lingzhi; Ren, Yuqiu; Ren, Yulin

    2006-09-01

    The application of the second most popular artificial neural networks (ANNs), namely, the radial basis function (RBF) networks, has been developed for quantitative analysis of drugs during the last decade. In this paper, the two components (aspirin and phenacetin) were simultaneously determined in compound aspirin tablets by using near-infrared (NIR) spectroscopy and RBF networks. The total database was randomly divided into a training set (50) and a testing set (17). Different preprocessing methods (standard normal variate (SNV), multiplicative scatter correction (MSC), first-derivative and second-derivative) were applied to two sets of NIR spectra of compound aspirin tablets with different concentrations of two active components and compared each other. After that, the performance of RBF learning algorithm adopted the nearest neighbor clustering algorithm (NNCA) and the criterion for selection used a cross-validation technique. Results show that using RBF networks to quantificationally analyze tablets is reliable, and the best RBF model was obtained by first-derivative spectra.

  12. Quantitative Imaging of Microwave Electric Fields through Near-Field Scanning Microwave Microscopy

    NASA Astrophysics Data System (ADS)

    Dutta, S. K.; Vlahacos, C. P.; Steinhauer, D. E.; Thanawalla, A.; Feenstra, B. J.; Wellstood, F. C.; Anlage, Steven M.; Newman, H. S.

    1998-03-01

    The ability to non-destructively image electric field patterns generated by operating microwave devices (e.g. filters, antennas, circulators, etc.) would greatly aid in the design and testing of these structures. Such detailed information can be used to reconcile discrepancies between simulated behavior and experimental data (such as scattering parameters). The near-field scanning microwave microscope we present uses a coaxial probe to provide a simple, broadband method of imaging electric fields.(S. M. Anlage, et al.) IEEE Trans. Appl. Supercond. 7, 3686 (1997).^,(See http://www.csr.umd.edu/research/hifreq/micr_microscopy.html) The signal that is measured is related to the incident electric flux normal to the face of the center conductor of the probe, allowing different components of the field to be measured by orienting the probe appropriately. By using a simple model of the system, we can also convert raw data to absolute electric field. Detailed images of standing waves on copper microstrip will be shown and compared to theory.

  13. Subcellular analysis of interaction between breast cancer cells and drug by digital holography

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Lin, Qiaowen; Wang, Dayong; Wang, Yunxin; Ouyang, Liting; Guo, Sha; Yao, Qian

    2017-10-01

    Digital holographic microscopy is a promising quantitative phase-contrast imaging technique, which exhibits the advantages of non-destruction, full field of view, quasi-real time, and don't need dye and external marker to the living biological sample. In this paper, the inverted off-axis image-plane digital holography with pre-magnification is built up to study the living MDA-MB-231 breast cancer cells. The lateral resolution of the proposed experimental setup is 0.87μm, which is verified by the standard USAF test target. Then the system is used to visualize the interaction between living breast cancer cells and drug. The blebbing is observed after the cells are treated by paclitaxel drug, and the distribution of the paclitaxel inside the cells is detected, which is near the cytomembrane, or in other words the end of the microtubules. It will stop the mitosis and cause the death of the cells. It is helpful to reveal the anticancer mechanism of paclitaxel in the subcellular scale.

  14. Assessment of MARMOT Grain Growth Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fromm, B.; Zhang, Y.; Schwen, D.

    2015-12-01

    This report assesses the MARMOT grain growth model by comparing modeling predictions with experimental results from thermal annealing. The purpose here is threefold: (1) to demonstrate the validation approach of using thermal annealing experiments with non-destructive characterization, (2) to test the reconstruction capability and computation efficiency in MOOSE, and (3) to validate the grain growth model and the associated parameters that are implemented in MARMOT for UO 2. To assure a rigorous comparison, the 2D and 3D initial experimental microstructures of UO 2 samples were characterized using non-destructive Synchrotron x-ray. The same samples were then annealed at 2273K for grainmore » growth, and their initial microstructures were used as initial conditions for simulated annealing at the same temperature using MARMOT. After annealing, the final experimental microstructures were characterized again to compare with the results from simulations. So far, comparison between modeling and experiments has been done for 2D microstructures, and 3D comparison is underway. The preliminary results demonstrated the usefulness of the non-destructive characterization method for MARMOT grain growth model validation. A detailed analysis of the 3D microstructures is in progress to fully validate the current model in MARMOT.« less

  15. Relation between small airways disease and parenchymal destruction in surgical lung specimens.

    PubMed Central

    Willems, L N; Kramps, J A; Stijnen, T; Sterk, P J; Weening, J J; Dijkman, J H

    1990-01-01

    The relation between small airways disease and parenchymal destruction was investigated in lungs and lobes removed at surgery from 27 patients aged 15-70 years. Eight of the 27 patients were life-long non-smokers. The degree of small airways disease was assessed by semi-quantitative grading (SAD score) and by measuring diameter and wall thickness of membranous bronchioles. Parenchymal destruction was measured in three ways. Firstly, the number of alveolar attachments on membranous bronchioles per millimetre of circumference (AA/mm) was counted; the number of broken attachments was subtracted from the total AA/mm to give the numbers of intact attachments (normal AA/mm). Secondly, a point counting technique was used to give a destructive index (DI). Thirdly, the mean linear intercept (Lm) was determined. Total and normal AA/mm correlated negatively with the SAD score of membranous bronchioles (rs = -0.48 and -0.51) and with wall thickness (rs = -0.37 and -0.45) and DI correlated with wall thickness (rs = 0.5) and with the SAD score of respiratory bronchioles (rs = 0.53). Lm did not correlate with indices of small airway disease and total and normal AA/mm did not correlate with diameter. Multiple regression analyses showed that the correlation of total AA/mm with the SAD score of membranous and respiratory bronchioles and with wall thickness were not confounded by age or smoking. It is concluded that small airways disease is related to destruction of peribronchiolar alveoli, and it is postulated that small airways disease has a direct role in the causation of centrilobular emphysema. PMID:2315880

  16. Rapid monitoring of grape withering using visible near-infrared spectroscopy.

    PubMed

    Beghi, Roberto; Giovenzana, Valentina; Marai, Simone; Guidetti, Riccardo

    2015-12-01

    Wineries need new practical and quick instruments, non-destructive and able to quantitatively evaluate during withering the parameters that impact product quality. The aim of the work was to test an optical portable system (visible near-infrared (NIR) spectrophotometer) in a wavelength range of 400-1000 nm for the prediction of quality parameters of grape berries during withering. A total of 300 red grape samples (Vitis vinifera L., Corvina cultivar) harvested in vintage year 2012 from the Valpolicella area (Verona, Italy) were analyzed. Qualitative (principal component analysis, PCA) and quantitative (partial least squares regression algorithm, PLS) evaluations were performed on grape spectra. PCA showed a clear sample grouping for the different withering stages. PLS models gave encouraging predictive capabilities for soluble solids content (R(2) val  = 0.62 and ratio performance deviation, RPD = 1.87) and firmness (R(2) val  = 0.56 and RPD = 1.79). The work demonstrated the applicability of visible NIR spectroscopy as a rapid technique for the analysis of grape quality directly in barns, during withering. The sector could be provided with simple and inexpensive optical systems that could be used to monitor the withering degree of grape for better management of the wine production process. © 2014 Society of Chemical Industry.

  17. Quantitative high dynamic range beam profiling for fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly withinmore » the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.« less

  18. Characterization of Si (sub X)Ge (sub 1-x)/Si Heterostructures for Device Applications Using Spectroscopic Ellipsometry

    NASA Technical Reports Server (NTRS)

    Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.; Tanner, M.; Wang, K. L.; Mena, R. A.; Young, P. G.

    1993-01-01

    Spectroscopic ellipsometry (SE) characterization of several complex Si (sub X)Ge (sub 1-x)/Si heterostructures prepared for device fabrication, including structures for heterojunction bipolar transistors (HBT), p-type and n-type heterostructure modulation doped field effect transistors, has been performed. We have shown that SE can simultaneously determine all active layer thicknesses, Si (sub X)Ge (sub 1-x) compositions, and the oxide overlayer thickness, with only a general knowledge of the structure topology needed a priori. The characterization of HBT material included the SE analysis of a Si (sub X)Ge (sub 1-x) layer deeply buried (600 nanometers) under the silicon emitter and cap layers. In the SE analysis of n-type heterostructures, we examined for the first time a silicon layer under tensile strain. We found that an excellent fit can be obtained using optical constants of unstrained silicon to represent the strained silicon conduction layer. We also used SE to measure lateral sample homogeneity, providing quantitative identification of the inhomogeneous layer. Surface overlayers resulting from prior sample processing were also detected and measured quantitatively. These results should allow SE to be used extensively as a non-destructive means of characterizing Si (sub X)Ge (sub 1-x)/Si heterostructures prior to device fabrication and testing.

  19. Identify Structural Flaw Location and Type with an Inverse Algorithm of Resonance Inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wei; Lai, Canhai; Sun, Xin

    To evaluate the fitness-for-service of a structural component and to quantify its remaining useful life, aging and service-induced structural flaws must be quantitatively determined in service or during scheduled maintenance shutdowns. Resonance inspection (RI), a non-destructive evaluation (NDE) technique, distinguishes the anomalous parts from the good parts based on changes in the natural frequency spectra. Known for its numerous advantages, i.e., low inspection cost, high testing speed, and broad applicability to complex structures, RI has been widely used in the automobile industry for quality inspection. However, compared to other contemporary direct visualization-based NDE methods, a more widespread application of RImore » faces a fundamental challenge because such technology is unable to quantify the flaw details, e.g. location, dimensions, and types. In this study, the applicability of a maximum correlation-based inverse RI algorithm developed by the authors is further studied for various flaw cases. It is demonstrated that a variety of common structural flaws, i.e. stiffness degradation, voids, and cracks, can be accurately retrieved by this algorithm even when multiple different types of flaws coexist. The quantitative relations between the damage identification results and the flaw characteristics are also developed to assist the evaluation of the actual state of health of the engineering structures.« less

  20. Mechanical and Acoustic Characteristics of the Weld and the Base Metal Machine Part of Career Transport

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexander N.; Knjaz'kov, Victor L.; Levashova, Elena E.; Ababkov, Nikolay V.; Pimonov, Maksim V.

    2018-01-01

    Currently, many industries use foreign-made machinery. There is no opportunity to purchase quality original spare parts for which machinery. Therefore, enterprises operating this equipment are looking for producers of analogues of various parts and assemblies. Quite often, the metal of such analog components turns out to be substandard, which leads to their breakdown at a much earlier date and the enterprises incur material losses. Due to the fact that the complex of performance characteristics and the resource of products are laid at the stage of their production, it is extremely important to control the quality of the raw materials. The structure, mechanical, acoustic and magnetic characteristics of metal samples of such destroyed details of quarry transport as hydraulic cylinders and detail “axis” of an excavator are investigated. A significant spread of data on the chemical composition of metal, hardness and characteristics of non-destructive testing is established, which gives grounds to recommend to manufacturers and suppliers of parts is more responsible to approach the incoming quality control. The results of the investigation of metal samples by destructive and non-destructive methods of control are compared, which showed that the spectral-acoustic method of nondestructive testing can be used to control the quality of the responsible machine parts under conditions of import substitution.

  1. A new fiber-optic non-contact compact laser-ultrasound scanner for fast non-destructive testing and evaluation of aircraft composites

    PubMed Central

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O'Donnell, Matthew

    2014-01-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for non-destructive testing and evaluation of aircraft composites. The performance of the LU system is demonstrated on a composite sample with known defects. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed fiber laser delivering nanosecond laser pulses at a repetition rate up to 76 kHz rate with a pulse energy of 0.6 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals at the same point on the composite surface. A- and B-scans obtained with the Sagnac interferometer are compared to those made with a contact wide-band polyvinylidene fluoride transducer. PMID:24737921

  2. Measurement of the Length of Installed Rock Bolt Based on Stress Wave Reflection by Using a Giant Magnetostrictive (GMS) Actuator and a PZT Sensor.

    PubMed

    Luo, Mingzhang; Li, Weijie; Wang, Bo; Fu, Qingqing; Song, Gangbing

    2017-02-23

    Rock bolts, as a type of reinforcing element, are widely adopted in underground excavations and civil engineering structures. Given the importance of rock bolts, the research outlined in this paper attempts to develop a portable non-destructive evaluation method for assessing the length of installed rock bolts for inspection purposes. Traditionally, piezoelectric elements or hammer impacts were used to perform non-destructive evaluation of rock bolts. However, such methods suffered from many major issues, such as the weak energy generated and the requirement for permanent installation for piezoelectric elements, and the inconsistency of wave generation for hammer impact. In this paper, we proposed a portable device for the non-destructive evaluation of rock bolt conditions based on a giant magnetostrictive (GMS) actuator. The GMS actuator generates enough energy to ensure multiple reflections of the stress waves along the rock bolt and a lead zirconate titantate (PZT) sensor is used to detect the reflected waves. A new integrated procedure that involves correlation analysis, wavelet denoising, and Hilbert transform was proposed to process the multiple reflection signals to determine the length of an installed rock bolt. The experimental results from a lab test and field tests showed that, by analyzing the instant phase of the periodic reflections of the stress wave generated by the GMS transducer, the length of an embedded rock bolt can be accurately determined.

  3. Measurement of the Length of Installed Rock Bolt Based on Stress Wave Reflection by Using a Giant Magnetostrictive (GMS) Actuator and a PZT Sensor

    PubMed Central

    Luo, Mingzhang; Li, Weijie; Wang, Bo; Fu, Qingqing; Song, Gangbing

    2017-01-01

    Rock bolts, as a type of reinforcing element, are widely adopted in underground excavations and civil engineering structures. Given the importance of rock bolts, the research outlined in this paper attempts to develop a portable non-destructive evaluation method for assessing the length of installed rock bolts for inspection purposes. Traditionally, piezoelectric elements or hammer impacts were used to perform non-destructive evaluation of rock bolts. However, such methods suffered from many major issues, such as the weak energy generated and the requirement for permanent installation for piezoelectric elements, and the inconsistency of wave generation for hammer impact. In this paper, we proposed a portable device for the non-destructive evaluation of rock bolt conditions based on a giant magnetostrictive (GMS) actuator. The GMS actuator generates enough energy to ensure multiple reflections of the stress waves along the rock bolt and a lead zirconate titantate (PZT) sensor is used to detect the reflected waves. A new integrated procedure that involves correlation analysis, wavelet denoising, and Hilbert transform was proposed to process the multiple reflection signals to determine the length of an installed rock bolt. The experimental results from a lab test and field tests showed that, by analyzing the instant phase of the periodic reflections of the stress wave generated by the GMS transducer, the length of an embedded rock bolt can be accurately determined. PMID:28241503

  4. KSC-03PD-2982

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, the nose cap (foreground) removed from Atlantis (behind) waits to be shipped to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non- destructive testing such as CAT scan and thermography.

  5. Nondestructive evaluation of pavement structural condition for rehabilitation design : final report.

    DOT National Transportation Integrated Search

    2016-05-31

    Falling Weight Deflectometer (FWD) is the common non-destructive testing method for in-situ evaluation of pavement condition. : This study aims to develop finite element (FE) models that can simulate FWD loading on pavement system and capture the : c...

  6. Non-destructive bridge testing with advanced micro-II digital AE system.

    DOT National Transportation Integrated Search

    2011-02-02

    The proposed research at the Coast Guard Blvd. in the City of Portsmouth was completed according to the plan of action prepared in consultation with the VDOT and the Virginia Council of Transportation Innovation and Research (VCTIR). The major elemen...

  7. Development of nondestructive methods for measurement of slab thickness and modulus of rupture in concrete pavements.

    DOT National Transportation Integrated Search

    2005-01-01

    This report describes work to develop non-destructive testing methods for concrete pavements. Two methods, for pavement thickness and in-place strength estimation, respectively, were developed and evaluated. The thickness estimation method is based o...

  8. Evaluation of non-destructive density determination for QA/QC acceptance testing : research project capsule.

    DOT National Transportation Integrated Search

    2017-08-01

    LTRCs Geotechnical and Asphalt groups will be conducting two separate field and laboratory evaluations. The Geotechnical group will evaluate field densities of soil layers and the asphalt group will evaluate field densities on asphalt pavement lay...

  9. Non-destructive detection and quantification of blueberry bruising using near-infrared (NIR) hyperspectral reflectance imaging

    USDA-ARS?s Scientific Manuscript database

    Currently, blueberry bruising is evaluated by either human visual/tactile inspection or firmness measurement instruments. These methods are destructive and time-consuming. The goal of this paper was to develop a non-destructive approach for blueberry bruising detection and quantification. The spe...

  10. Fast, Low-Cost and Non-Destructive Physico-Chemical Analysis of Virgin Olive Oils Using Near-Infrared Reflectance Spectroscopy

    PubMed Central

    Garrido-Varo, Ana; Sánchez, María-Teresa; De la Haba, María-José; Torres, Irina; Pérez-Marín, Dolores

    2017-01-01

    Near-Infrared (NIR) Spectroscopy was used for the non-destructive assessment of physico-chemical quality parameters in olive oil. At the same time, the influence of the sample presentation mode (spinning versus static cup) was evaluated using two spectrophotometers with similar optical characteristics. A total of 478 olive oil samples were used to develop calibration models, testing various spectral signal pre-treatments. The models obtained by applying MPLS regression to spectroscopic data yielded promising results for olive oil quality measurements, particularly for acidity, the peroxide index and alkyl and ethyl ester content. The results obtained indicate that this non-invasive technology can be used successfully by the olive oil sector to categorize olive oils, to detect potential fraud and to provide consumers with more reliable information. Although both sample presentation modes yielded comparable results, equations constructed with samples scanned using the spinning mode provided greater predictive capacity. PMID:29144417

  11. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application.

    PubMed

    Kumar, Raj; Sharma, Vishal

    2017-03-15

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%). Copyright © 2016 Elsevier B.V. All rights reserved.

  12. An experimental study of non-destructive testing on glass fibre reinforced polymer composites after high velocity impact event

    NASA Astrophysics Data System (ADS)

    Razali, N.; Sultan, M. T. H.; Cardona, F.

    2016-10-01

    A non-destructive testing method on Glass Fibre Reinforced Polymer (GFRP) after high velocity impact event using single stage gas gun (SSGG) is presented. Specimens of C- type and E-type fibreglass reinforcement, which were fabricated with 6mm, 8mm, 10mm and 12mm thicknesses and size 100 mm x 100 mm, were subjected to a high velocity impact with three types of bullets: conical, hemispherical and blunt at various gas gun pressure levels from 6 bar to 60 bar. Visual observation techniques using a lab microscope were used to determine the infringed damage by looking at the crack zone. Dye penetrants were used to inspect the area of damage, and to evaluate internal and external damages on the specimens after impact. The results from visual analysis of the impacted test laminates were discussed and presented. It was found that the impact damage started with induced delamination, fibre cracking and then failure, simultaneously with matrix cracking and breakage, and finally followed by the fibres pulled out. C-type experienced more damaged areas compared to E-type of GFRP.

  13. Response to: Dittrich et al.: Non-Embryo-Destructive Extraction of Pluripotent Embryonic Stem Cells – Overlooked Legal Prohibitions, Professional Legal Consequences and Inconsistencies in Patent Law

    PubMed Central

    Faltus, T.; Storz, U.

    2016-01-01

    The publication of “Non-embryo-destructive Extraction of Pluripotent Embryonic Stem Cells: Implications for Regenerative Medicine and Reproductive Medicine” by Dittrich et al. in Geburtshilfe und Frauenheilkunde 2015; 75: 1239–1242 1 describes various possibilities which could result from the non-embryo-destructive extraction of embryonic stem cells from human blastocysts. But implementing this method is more problematic, both legally and ethically, than the authors have represented it to be and is illegal in Germany. German patent DE 10 2004 062 184 on the non-embryo-destructive extraction of embryonic stem cells referred to by Dittrich et al. contravenes the higher-ranking case-law of the European Court of Justice. Ultimately, the non-embryo-destructive harvesting of embryonic stem cells with the aim of storing these cells for use in potential therapies as proposed by Dittrich et al. is prohibited in Germany and could lead to criminal prosecution. PMID:28094826

  14. Non-destructive NIR-FT-Raman analyses in practice. Part I. Analyses of plants and historic textiles.

    PubMed

    Andreev, G N; Schrader, B; Schulz, H; Fuchs, R; Popov, S; Handjieva, N

    2001-12-01

    Non-destructive analysis of natural substances in plants as well as of old dyed textiles by Raman spectroscopy has not been possible using conventional techniques. Exciting lines from the visible part of the spectrum produced photochemical and thermal decomposition of the objects as well as strong fluorescence. Using Nd:YAG laser excitation at 1,064 nm together with a special sample arrangement and interferometric recording, various polyacetylenes in Aethusa cynapium and in chamomile (Chamomilla recutita) and the main valuable substances in gentian species (Gentiana lutea and G. punctata), curcuma roots (Curcuma longa), cinnamon (Cinnamomum zeylanicum), fennel (Foeniculum vulgare), clove (Caryophyllus aromaticus), and ginger (Zingiber officinale) were analyzed non-destructively and discussed in comparison with the corresponding pure standard compounds. We further analyzed non-destructively the FT Raman spectra of collections of historical textiles and lakes used for dyeing. It is possible to distinguish the main dye component non-destructively by using Raman bands.

  15. Life Test Approach for Refractory Metal/Sodium Heat Pipes

    NASA Astrophysics Data System (ADS)

    Martin, James J.; Reid, Robert S.

    2006-01-01

    Heat pipe life tests described in the literature have seldom been conducted on a systematic basis. Typically one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. The objective of this work was to establish an approach to generate carefully controlled data that can conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. Approximately 10 years of operational life might be compressed into 3 years of laboratory testing through a combination of increased temperature and mass fluence. To accomplish this goal test series have been identified, based on American Society for Testing and Materials (ASTM) specifications, to investigate long term corrosion rates. The heat pipes selected for demonstration purposes are fabricated from a Molybdenum-44.5%Rhenium refractory metal alloy and include an internal crescent annular wick design formed by hot isostatic pressing. A processing methodology has been devised that incorporates vacuum distillation filling with an integrated purity sampling technique for the sodium working fluid. Energy is supplied by radio frequency induction coils coupled to the heat pipe evaporator with an input range of 1 to 5 kW per unit while a static gas gap coupled water calorimeter provides condenser cooling for heat pipe temperatures ranging from 1123 to 1323 K. The test chamber's atmosphere would require active purification to maintain low oxygen concentrations at an operating pressure of approximately 75 torr. The test is designed to operate round-the-clock with 6-month non-destructive inspection intervals to identify the onset and level of corrosion. At longer intervals specific heat pipes are destructively evaluated to verify the non-destructive observations. Accomplishments prior to project cancellation included successful demonstration of the heat pipe wick fabrication technique, establishment of all engineering designs, baselined operational test requirements and procurement/assembly of supporting test hardware systems.

  16. Destructive Leadership Behaviors and Workplace Attitudes in Schools

    ERIC Educational Resources Information Center

    Woestman, Daniel S.; Wasonga, Teresa Akinyi

    2015-01-01

    The study investigated destructive leadership behaviors (DLBs) and their influence on K-12 workplace attitudes (subordinate consideration for leaving their job, job satisfaction, and levels of stress). Quantitative survey method was used to gather data from experienced professional educators. Analyses of data show that the practice of DLB exists…

  17. Survey of Non-Destructive Tire Inspection Techniques

    DOT National Transportation Integrated Search

    1971-07-01

    The status of several promising methods for non-destructive tire inspection is surveyed with the conclusion that radiographic, infrared, holographic and ultrasonic techniques warrant further evaluation. A program plan is outlined to correlate non-des...

  18. Nondestructive analysis and development

    NASA Technical Reports Server (NTRS)

    Moslehy, Faissal A.

    1993-01-01

    This final report summarizes the achievements of project #4 of the NASA/UCF Cooperative Agreement from January 1990 to December 1992. The objectives of this project are to review NASA's NDE program at Kennedy Space Center (KSC) and recommend means for enhancing the present testing capabilities through the use of improved or new technologies. During the period of the project, extensive development of a reliable nondestructive, non-contact vibration technique to determine and quantify the bond condition of the thermal protection system (TPS) tiles of the Space Shuttle Orbiter was undertaken. Experimental modal analysis (EMA) is used as a non-destructive technique for the evaluation of Space Shuttle thermal protection system (TPS) tile bond integrity. Finite element (FE) models for tile systems were developed and were used to generate their vibration characteristics (i.e. natural frequencies and mode shapes). Various TPS tile assembly configurations as well as different bond conditions were analyzed. Results of finite element analyses demonstrated a drop in natural frequencies and a change in mode shapes which correlate with both size and location of disbond. Results of experimental testing of tile panels correlated with FE results and demonstrated the feasibility of EMA as a viable technique for tile bond verification. Finally, testing performed on the Space Shuttle Columbia using a laser doppler velocimeter demonstrated the application of EMA, when combined with FE modeling, as a non-contact, non-destructive bond evaluation technique.

  19. Measuring glomerular number from kidney MRI images

    NASA Astrophysics Data System (ADS)

    Thiagarajan, Jayaraman J.; Natesan Ramamurthy, Karthikeyan; Kanberoglu, Berkay; Frakes, David; Bennett, Kevin; Spanias, Andreas

    2016-03-01

    Measuring the glomerular number in the entire, intact kidney using non-destructive techniques is of immense importance in studying several renal and systemic diseases. Commonly used approaches either require destruction of the entire kidney or perform extrapolation from measurements obtained from a few isolated sections. A recent magnetic resonance imaging (MRI) method, based on the injection of a contrast agent (cationic ferritin), has been used to effectively identify glomerular regions in the kidney. In this work, we propose a robust, accurate, and low-complexity method for estimating the number of glomeruli from such kidney MRI images. The proposed technique has a training phase and a low-complexity testing phase. In the training phase, organ segmentation is performed on a few expert-marked training images, and glomerular and non-glomerular image patches are extracted. Using non-local sparse coding to compute similarity and dissimilarity graphs between the patches, the subspace in which the glomerular regions can be discriminated from the rest are estimated. For novel test images, the image patches extracted after pre-processing are embedded using the discriminative subspace projections. The testing phase is of low computational complexity since it involves only matrix multiplications, clustering, and simple morphological operations. Preliminary results with MRI data obtained from five kidneys of rats show that the proposed non-invasive, low-complexity approach performs comparably to conventional approaches such as acid maceration and stereology.

  20. 40 CFR 53.33 - Test Procedure for Methods for Lead (Pb).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... than specified in 40 CFR Appendix G, may be tested by analyzing pairs of filter strips taken from a... of two PM10 reference samplers because a single 46.2-mm filter from a reference sampler may not be divided prior to analysis. It is possible to analyze a 46.2-mm filter first with the non-destructive X-ray...

  1. 40 CFR 53.33 - Test Procedure for Methods for Lead (Pb).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... than specified in 40 CFR Appendix G, may be tested by analyzing pairs of filter strips taken from a... of two PM10 reference samplers because a single 46.2-mm filter from a reference sampler may not be divided prior to analysis. It is possible to analyze a 46.2-mm filter first with the non-destructive X-ray...

  2. 40 CFR 53.33 - Test Procedure for Methods for Lead (Pb).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... than specified in 40 CFR Appendix G, may be tested by analyzing pairs of filter strips taken from a... of two PM10 reference samplers because a single 46.2-mm filter from a reference sampler may not be divided prior to analysis. It is possible to analyze a 46.2-mm filter first with the non-destructive X-ray...

  3. Validation of mechanical models for reinforced concrete structures: Presentation of the French project ``Benchmark des Poutres de la Rance''

    NASA Astrophysics Data System (ADS)

    L'Hostis, V.; Brunet, C.; Poupard, O.; Petre-Lazar, I.

    2006-11-01

    Several ageing models are available for the prediction of the mechanical consequences of rebar corrosion. They are used for service life prediction of reinforced concrete structures. Concerning corrosion diagnosis of reinforced concrete, some Non Destructive Testing (NDT) tools have been developed, and have been in use for some years. However, these developments require validation on existing concrete structures. The French project “Benchmark des Poutres de la Rance” contributes to this aspect. It has two main objectives: (i) validation of mechanical models to estimate the influence of rebar corrosion on the load bearing capacity of a structure, (ii) qualification of the use of the NDT results to collect information on steel corrosion within reinforced-concrete structures. Ten French and European institutions from both academic research laboratories and industrial companies contributed during the years 2004 and 2005. This paper presents the project that was divided into several work packages: (i) the reinforced concrete beams were characterized from non-destructive testing tools, (ii) the mechanical behaviour of the beams was experimentally tested, (iii) complementary laboratory analysis were performed and (iv) finally numerical simulations results were compared to the experimental results obtained with the mechanical tests.

  4. Application Of Pulsed Laser Holography To Nondestructive Testing Of Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Fagot, Hubert; Smigielski, Paul; Arnaud, Jean-Louis

    1983-03-01

    Subsequently to laboratory tests, experiments were conducted on an aircraft undergoing maintenance in order to assess the possible uses of holographic interferometry for non-destructive testing of large aircraft structures. A double ruby laser was used delivering two pulses with a duration of 20 ns each. The two pulses are separated by an arbitrary time interval At which is determined as a function of both the amplitude and frequency of the surface displacement. Shocks of the order of 100 mJ cause the structure under investigation to vibrate, the time interval At thereby ranging from 10 to 100 ps for a delay of a few ms after shock initiation. The method used is relatively insensitive to environmental disturbances. Although the laser delivers pulses of light of less than 100 mJ in energy, it is possible to visualize a field of 0.5 x1 m. Some results will be reported which have been obtained at the lower surface of an aerofoil, on a wheel well and on an air-brake. Finally a brief review will be made on the improvements envisaged on both the laser and the recording method in order to obtain an operational system for holographic non-destructive testing.

  5. Resonant ultrasound spectroscopy and non-destructive testing

    NASA Astrophysics Data System (ADS)

    Migliori, A.; Darling, T. W.

    The use of mechanical resonances to test properties of materials is perhaps older than the industrial revolution. Early documented cases of British railroad engineers tapping the wheels of a train and using the sound to detect cracks perhaps mark the first real use of resonances to test the integrity of high-performance alloys. Attempts were made in the following years to understand the resonances of solids mathematically, based on the shape and composition. But Nobel Laureate Lord Rayleigh best summarized the state of affairs in 1894, stating 'the problem has, for the most part, resisted attack'. More recently, modern computers and electronics have enabled Anderson and co-workers with their work on minerals, and our work at Los Alamos on new materials and manufactured components to advance the use of resonances to a precision non-destructive testing tool that makes anisotropic modulus measurements, defect detection and geometry error detection routine. The result is that resonances can achieve the highest absolute accuracy for any dynamic modulus measurement technique, can be used on the smallest samples, and can also enable detection of errors in certain classes of precision manufactured components faster and more accurately than any other technique.

  6. Summary of Professional Activities, Center for Intelligence and Special Programs. 1990

    DTIC Science & Technology

    1991-06-01

    Interest History of Science American Society for Group on Information (U.K.) Non-Destructive Testing RetrievalCogtive Science Society American Society for...Apple Programmers and Information Systems Science Developers Association i 1990 Professional Summary of Societies Professional Activities History of Science Society

  7. Quality and monitoring of structural rehabilitation measures , part 2 : review and assessment of non-destructive testing (NDT) techniques.

    DOT National Transportation Integrated Search

    2002-03-01

    As CFRP composites continue to gain acceptance in structural rehabilitation of deteriorating infrastructure, the consequent need for comprehensive and rapid in-situ quality assessment has arisen. Conditioned by the inevitable presence of material-, i...

  8. Development of Recording Materials for Holographic Non-Destructive Testing

    DTIC Science & Technology

    1979-08-01

    fuse together and appear as one. The reconstructed image may therefore be substituted for the actual object in an interferometric application, for...re- flective gold layer, the overall path change becomes A. When examined micros- copically with a Nomarski polarization interferometer, however, the

  9. Electronic Noses for Composites Surface Contamination Detection in Aerospace Industry

    PubMed Central

    De Vito, Saverio; Miglietta, Maria Lucia; Massera, Ettore; Fattoruso, Grazia; Formisano, Fabrizio; Polichetti, Tiziana; Salvato, Maria; Alfano, Brigida; Esposito, Elena; Di Francia, Girolamo

    2017-01-01

    The full exploitation of Composite Fiber Reinforced Polymers (CFRP) in so-called green aircrafts design is still limited by the lack of adequate quality assurance procedures for checking the adhesive bonding assembly, especially in load-critical primary structures. In this respect, contamination of the CFRP panel surface is of significant concern since it may severely affect the bonding and the mechanical properties of the joint. During the last years, the authors have developed and tested an electronic nose as a non-destructive tool for pre-bonding surface inspection for contaminants detection, identification and quantification. Several sensors and sampling architectures have been screened in view of the high Technology Readiness Level (TRL) scenarios requirements. Ad-hoc pattern recognition systems have also been devised to ensure a fast and reliable assessment of the contamination status, by combining real time classifiers and the implementation of a suitable rejection option. Results show that e-noses could be used as first line low cost Non Destructive Test (NDT) tool in aerospace CFRP assembly and maintenance scenarios. PMID:28368338

  10. Electronic Noses for Composites Surface Contamination Detection in Aerospace Industry.

    PubMed

    Vito, Saverio De; Miglietta, Maria Lucia; Massera, Ettore; Fattoruso, Grazia; Formisano, Fabrizio; Polichetti, Tiziana; Salvato, Maria; Alfano, Brigida; Esposito, Elena; Francia, Girolamo Di

    2017-04-02

    The full exploitation of Composite Fiber Reinforced Polymers (CFRP) in so-called green aircrafts design is still limited by the lack of adequate quality assurance procedures for checking the adhesive bonding assembly, especially in load-critical primary structures. In this respect, contamination of the CFRP panel surface is of significant concern since it may severely affect the bonding and the mechanical properties of the joint. During the last years, the authors have developed and tested an electronic nose as a non-destructive tool for pre-bonding surface inspection for contaminants detection, identification and quantification. Several sensors and sampling architectures have been screened in view of the high Technology Readiness Level (TRL) scenarios requirements. Ad-hoc pattern recognition systems have also been devised to ensure a fast and reliable assessment of the contamination status, by combining real time classifiers and the implementation of a suitable rejection option. Results show that e-noses could be used as first line low cost Non Destructive Test (NDT) tool in aerospace CFRP assembly and maintenance scenarios.

  11. Lock-in thermography using a cellphone attachment infrared camera

    NASA Astrophysics Data System (ADS)

    Razani, Marjan; Parkhimchyk, Artur; Tabatabaei, Nima

    2018-03-01

    Lock-in thermography (LIT) is a thermal-wave-based, non-destructive testing, technique which has been widely utilized in research settings for characterization and evaluation of biological and industrial materials. However, despite promising research outcomes, the wide spread adaptation of LIT in industry, and its commercialization, is hindered by the high cost of the infrared cameras used in the LIT setups. In this paper, we report on the feasibility of using inexpensive cellphone attachment infrared cameras for performing LIT. While the cost of such cameras is over two orders of magnitude less than their research-grade counterparts, our experimental results on block sample with subsurface defects and tooth with early dental caries suggest that acceptable performance can be achieved through careful instrumentation and implementation of proper data acquisition and image processing steps. We anticipate this study to pave the way for development of low-cost thermography systems and their commercialization as inexpensive tools for non-destructive testing of industrial samples as well as affordable clinical devices for diagnostic imaging of biological tissues.

  12. Application of finite elements heterogeneous multi-scale method to eddy currents non destructive testing of carbon composites material

    NASA Astrophysics Data System (ADS)

    Khebbab, Mohamed; Feliachi, Mouloud; El Hadi Latreche, Mohamed

    2018-03-01

    In this present paper, a simulation of eddy current non-destructive testing (EC NDT) on unidirectional carbon fiber reinforced polymer is performed; for this magneto-dynamic formulation in term of magnetic vector potential is solved using finite element heterogeneous multi-scale method (FE HMM). FE HMM has as goal to compute the homogenized solution without calculating the homogenized tensor explicitly, the solution is based only on the physical characteristic known in micro domain. This feature is well adapted to EC NDT to evaluate defect in carbon composite material in microscopic scale, where the defect detection is performed by coil impedance measurement; the measurement value is intimately linked to material characteristic in microscopic level. Based on this, our model can handle different defects such as: cracks, inclusion, internal electrical conductivity changes, heterogeneities, etc. The simulation results were compared with the solution obtained with homogenized material using mixture law, a good agreement was found.

  13. Label-free assessment of endothelial cell metabolic state using autofluorescent microscopy

    NASA Astrophysics Data System (ADS)

    Pullen, Benjamin J.; Nguyen, Tam; Gosnell, Martin; Anwer, Ayad G.; Goldys, Ewa; Nicholls, Stephen J.; Psaltis, Peter J.

    2016-12-01

    To examine the process of endothelial cell aging we utilised hyperspectral imaging to collect broad autofluorescence emission at the individual cellular level and mathematically isolate the characteristic spectra of nicotinamide and flavin adenine dinucleotides (NADH and FAD, respectively). Quantitative analysis of this data provides the basis for a non-destructive spatial imaging method for cells and tissue. FAD and NADH are important factors in cellular metabolism and have been shown to be involved with the redox state of the cell; with the ratio between the two providing the basis for an `optical redox ratio'.

  14. Usefulness of threshold dose to prevent damage of underlying tissue by PDT treatment: an in-vitro study on chondrocytes

    NASA Astrophysics Data System (ADS)

    Placzek, R.; Kempka, G.; Ruether, W.; Moser, Joerg G.

    1995-03-01

    Arthritic synovitis is best cured by total removal of the inflamed synovia (equals synovectomy). This can be performed by open chirurgy, by arthroscopy, or by radiosynoviothesis, i.e., injection of (beta) -radiating rare earth metals into the joint cavity. All these procedures are more or less non-quantitative and may lead to a recidive. The idea was to destroy the inflamed synovia by PDT without destruction of the underlying tissue (cartilage and bone). So, the sensitivity of the cartilage-building cells, which can be grown in cell culture, has to be studied.

  15. Quantitative assessment of submicron scale anisotropy in tissue multifractality by scattering Mueller matrix in the framework of Born approximation

    NASA Astrophysics Data System (ADS)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya

    2018-04-01

    A number of tissue-like disordered media exhibit local anisotropy of scattering in the scaling behavior. Scaling behavior contains wealth of fractal or multifractal properties. We demonstrate that the spatial dielectric fluctuations in a sample of biological tissue exhibit multifractal anisotropy. Multifractal anisotropy encoded in the wavelength variation of the light scattering Mueller matrix and manifesting as an intriguing spectral diattenuation effect. We developed an inverse method for the quantitative assessment of the multifractal anisotropy. The method is based on the processing of relevant Mueller matrix elements in Fourier domain by using Born approximation, followed by the multifractal analysis. The approach promises for probing subtle micro-structural changes in biological tissues associated with the cancer and precancer, as well as for non-destructive characterization of a wide range of scattering materials.

  16. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borring, J.; Gundtoft, H.E.; Borum, K.K.

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptancemore » of a thinner nominal cladding than normally used today.« less

  17. Orbital Debris Quarterly News. Volume 13; No. 1

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    Topics discussed include: new debris from a decommissioned satellite with a nuclear power source; debris from the destruction of the Fengyun-1C meteorological satellite; quantitative analysis of the European Space Agency's Automated Transfer Vehicle 'Jules Verne' reentry event; microsatellite impact tests; solar cycle 24 predictions and other long-term projections and geosynchronus (GEO) environment for the Orbital Debris Engineering Model (ORDEM2008). Abstracts from the NASA Orbital Debris Program Office, examining satellite reentry risk assessments and statistical issues for uncontrolled reentry hazards, are also included.

  18. Non-destructive imaging of spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Samson, E.; Vinit, Anshuman; Raman, Chandra

    2013-05-01

    We present a non-destructive differential imaging technique that enables the observation of the spatial distribution of the magnetization in a spinor Bose-Einstein condensate (BEC) through a Faraday rotation protocol. In our procedure, we utilize a linearly polarized, far-detuned laser beam as our imaging probe, and upon interaction with the condensate, the beam's polarization direction undergoes Faraday rotation. A differential measurement of the orthogonal polarization components of the rotated beam provides a spatial map of the net magnetization density within the BEC. The non-destructive aspect of this method allows for continuous imaging of the condensate. This imaging technique will prove useful in experimental BEC studies, such as spatially resolved magnetometry using ultracold atoms, and non-destructive imaging of non-equilibrium behavior of antiferromagnetic spinor condensates. This work was supported by the DARPA QuASAR program through a grant from ARO.

  19. Cryogenic gamma detectors enable direct detection of 236U and minor actinides for non-destructive assay [Cryogenic gamma detectors enable direct detection of minor actinides for non-destructive assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velazquez, Miguel; Dreyer, Jonathan; Drury, Owen B.

    2015-09-05

    Here, we demonstrate the utility of a superconducting transition edge sensor (TES) γ-ray detector with high energy resolution and low Compton background for non-destructive assay (NDA) of a uranium sample from reprocessed nuclear fuel. We show that TES γ-detectors can separate low energy actinide γ-emissions from the background and nearby lines, even from minor isotopes whose signals are often obscured in NDA with conventional Ge detectors. Superconducting γ detectors may therefore bridge the gap between high-accuracy destructive assay (DA) and easier to-use NDA.

  20. Nondestructive Methods and Special Test Instrumentation Supporting NASA Composite Overwrapped Pressure Vessel Assessments

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor; Greene, Nathanael; Cameron, Ken; Madaras, Eric; Grimes-Ledesma, Lorie; Thesken, John; Phoenix, Leigh; Murthy, Pappu; Revilock, Duane

    2007-01-01

    Many aging composite overwrapped pressure vessels (COPVs), being used by the National Aeronautics and Space Administration (NASA) are currently under evaluation to better quantify their reliability and clarify their likelihood of failure due to stress rupture and age-dependent issues. As a result, some test and analysis programs have been successfully accomplished and other related programs are still in progress at the NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) and other NASA centers, with assistance from the commercial sector. To support this effort, a group of Nondestructive Evaluation (NDE) experts was assembled to provide NDE competence for pretest evaluation of test articles and for application of NDE technology to real-time testing. Techniques were required to provide assurance that the test article had adequate structural integrity and manufacturing consistency to be considered acceptable for testing and these techniques were successfully applied. Destructive testing is also being accomplished to better understand the physical and chemical property changes associated with progression toward "stress rupture" (SR) failure, and it is being associated with NDE response, so it can potentially be used to help with life prediction. Destructive work also includes the evaluation of residual stresses during dissection of the overwrap, laboratory evaluation of specimens extracted from the overwrap to evaluate physical property changes, and quantitative microscopy to inform the theoretical micromechanics.

  1. Edward's sword? - A non-destructive study of a medieval king's sword

    NASA Astrophysics Data System (ADS)

    Segebade, Chr.

    2013-04-01

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  2. Edward's sword? - A non-destructive study of a medieval king's sword

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segebade, Chr.

    2013-04-19

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  3. Evaluation of concrete structures affected by alkali-silica reaction and delayed ettringite formation - part 2.

    DOT National Transportation Integrated Search

    2012-12-01

    This report details the results of a comprehensive research project aimed at evaluating the potential use of : non-destructive testing (NDT) to assess structures affected by ASR and/or DEF. This project was a : collaborative effort between the Univer...

  4. Investigation of the extended use of Ground Penetrating Radar (GPR) for measuring in-situ material quality characteristics : final report.

    DOT National Transportation Integrated Search

    2008-09-01

    This report tests the application of Ground Penetrating Radar (GPR) as a non-destructive tool for highway infrastructure assessment. Multiple antennas with different frequency ranges were used on a variety infrastructure projects. This report highlig...

  5. Stress-strain state of mechanical rebar couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimenov, Vasilij, E-mail: nauka@tsuab.ru; Tomsk State University of Architecture and Buildings, 2 Solyanaya Sq., Tomsk, 634003; Ovchinnikov, Artem

    Mechanical rebar couplers are preferable in the advanced building construction and structural design of anti-seismic elements. The paper presents destructive inspection techniques used to investigate stress fields (tensile and compressive) and deformation curves for mechanical rebar splicing. The properties of mechanical rebar splicing are investigated by the non-destructive testing digital radiography. The behavior of real connections (column-to-column, beam-to-column) is studied under static and dynamic loads. Investigation results allow the elaboration of recommendations on their application in the universal prefabricated anti-seismic structural system developed at Tomsk State University of Architecture and Building, Tomsk, Russia.

  6. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene.

    PubMed

    Virkler, Kelly; Lednev, Igor K

    2009-07-01

    Body fluid traces recovered at crime scenes are among the most important types of evidence to forensic investigators. They contain valuable DNA evidence which can identify a suspect or victim as well as exonerate an innocent individual. The first step of identifying a particular body fluid is highly important since the nature of the fluid is itself very informative to the investigation, and the destructive nature of a screening test must be considered when only a small amount of material is available. The ability to characterize an unknown stain at the scene of the crime without having to wait for results from a laboratory is another very critical step in the development of forensic body fluid analysis. Driven by the importance for forensic applications, body fluid identification methods have been extensively developed in recent years. The systematic analysis of these new developments is vital for forensic investigators to be continuously educated on possible superior techniques. Significant advances in laser technology and the development of novel light detectors have dramatically improved spectroscopic methods for molecular characterization over the last decade. The application of this novel biospectroscopy for forensic purposes opens new and exciting opportunities for the development of on-field, non-destructive, confirmatory methods for body fluid identification at a crime scene. In addition, the biospectroscopy methods are universally applicable to all body fluids unlike the majority of current techniques which are valid for individual fluids only. This article analyzes the current methods being used to identify body fluid stains including blood, semen, saliva, vaginal fluid, urine, and sweat, and also focuses on new techniques that have been developed in the last 5-6 years. In addition, the potential of new biospectroscopic techniques based on Raman and fluorescence spectroscopy is evaluated for rapid, confirmatory, non-destructive identification of a body fluid at a crime scene.

  7. Application of non-destructive impedance-based monitoring technique for cyclic fatigue evaluation of endodontic nickel-titanium rotary instruments.

    PubMed

    Chang, Yau-Zen; Liu, Mou-Chuan; Pai, Che-An; Lin, Chun-Li; Yen, Kuang-I

    2011-06-01

    This study investigates the application of non-destructive testing based on the impedance theory in the cyclic fatigue evaluation of endodontic Ni-Ti rotary instruments. Fifty Ni-Ti ProTaper instruments were divided into five groups (n=10 in Groups A to E). Groups A to D were subjected to cyclic fatigue within an artificial canal (Group E was the control group). The mean value of the total life limit (TLL), defined as the instrument being rotated until fracture occurred was found to be 104 s in Group A. Each rotary instrument in Groups B, C and D were rotated until the tested instruments reached 80% (84 s), 60% (62 s) and 40% (42 s) of the TLL. After fatigue testing, each rotary instrument was mounted onto a custom-developed non-destructive testing device to give the tip of the instrument a progressive sideways bend in four mutually perpendicular directions to measure the corresponding impedance value (including the resistance and the reactance). The results indicated that the impedance value showed the same trend as the resistance, implying that the impedance was primarily affected by the resistance. The impedance value for the instruments in the 80% and 60% TLL groups increased by about 6 mΩ (about 7.5%) more than that of the instruments in the intact and 40% TLL groups. The SEM analysis result showed that crack striations were only found at the tip of the thread on the cracked surface of the instrument, consistent with the impedance measurements that found the impedance value of the cracked surface to be significantly different from those in other surfaces. These findings indicate that the impedance value may represent an effective parameter for evaluating the micro-structural status of Ni-Ti rotary instruments subjected to fatigue loading. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Non-destructive Moisture Content Measurement of Bioabsorbable Polymers Used in Medical Implants

    NASA Astrophysics Data System (ADS)

    Carroll, P. A.; Bell, S. A.; Maxwell, A. S.; Tomlins, P. E.

    2012-09-01

    Measurements have been made that link moisture content to the degradation of a bioabsorbable polymeric material, poly ( dl-lactide- co-glycolide) (PLGA). Bioabsorbable polymers used in medical implants degrade and are absorbed into the body. In the course of degradation, these polymers absorb water. Progressive non-destructive laboratory measurements of moisture content can be used as a means of tracking changes in these materials over the course of their degradation. Measurements of moisture content were made using a non-destructive microwave resonance instrument. The measurement approach, more usually applied to granular materials, was adapted to measure small, individual solid samples that do not fill the conventional sample volume of the resonator. Using the microwave resonance technique, gains in moisture content were measurable in increasingly degraded samples. The results were confirmed using alternative (destructive) measurements of sample moisture content. The microwave resonance technique offers a non-destructive measurement that can be used to study the degradation characteristics of PLGA. Better understanding of the degradation process can enable the polymer break-down rate to be tailored to match the healing rate of tissue. Non-destructive measurement allows effective study using single rather than multiple samples. This is a strong advantage when novel materials under study may be either expensive or in strictly limited availability.

  9. Non-destructive inspection of polymer composite products

    NASA Astrophysics Data System (ADS)

    Anoshkin, A. N.; Sal'nikov, A. F.; Osokin, V. M.; Tretyakov, A. A.; Luzin, G. S.; Potrakhov, N. N.; Bessonov, V. B.

    2018-02-01

    The paper considers the main types of defects encountered in products made of polymer composite materials for aviation use. The analysis of existing methods of nondestructive testing is carried out, features of their application are considered taking into account design features, geometrical parameters and internal structure of objects of inspection. The advantages and disadvantages of the considered methods of nondestructive testing used in industrial production are shown.

  10. Non-destructive evaluation of containment walls in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Garnier, V.; Payan, C.; Lott, M.; Ranaivomanana, N.; Balayssac, J. P.; Verdier, J.; Larose, E.; Zhang, Y.; Saliba, J.; Boniface, A.; Sbartai, Z. M.; Piwakowski, B.; Ciccarone, C.; Hafid, H.; Henault, J. M.; Buffet, F. Ouvrier

    2017-02-01

    Two functions are regularly tested on containment walls in order to anticipate a possible accident. The first is mechanical to resist a possible internal over-pressure and the second is to prevent leakage. The AAPR reference accident is the rupture of a pipe in the primary circuit of a nuclear plant. In this case, the pressure and temperature can reach 5 bar and 180°C in 20 seconds. The national project `Non-destructive testing of the containment structures of nuclear plants' aims at studying the non-destructive techniques capable to evaluate the concrete properties and its damaging and cracks. This 4-year-project is segmented into two parts. The first consists in developing and selecting the most relevant NDEs in the laboratory to reach these goals. These evaluations are developed in conditions representing the real conditions of the stresses generated during ten-yearly visits of the plants or those related to an accident. The second part consists in applying the selected techniques to two containment structures under pressure. The first structure is proposed by ONERA and the second is a mockup of a containment wall on a 1/3 scale made by EDF within the VeRCoRs project. Communication is focused on the part of the project that concerns the damage and crack process characterization by means of NDT. The tests are done in 3 or 4 points bending in order to study the cracks' generation, their propagation, as well as their opening and closing. The main ultrasonic techniques developed concern linear or non-linear acoustic: acoustic emission [1], Locadiff [2], energy diffusion, surface wave's velocity and attenuation, DAET [3]. The recorded data contribute to providing the mapping of the investigated parameters, either in volume, in surface or globally. Digital image correlation is an important additional asset to validate the coherence of the data. The spatial normalization of the data in the specimen space allows proposing algorithms on the combination of the experimental data. The tests results are presented and they show the capacity and the limits of the evaluation of the volume, surface or global data. A data fusion procedure is associated with these results.

  11. Missile airframe simulation testbed: MANPADS (MAST-M) for test and evaluation of aircraft survivability equipment

    NASA Astrophysics Data System (ADS)

    Clements, Jim; Robinson, Richard; Bunt, Leslie; Robinson, Joe

    2011-06-01

    A number of techniques have been utilized to evaluate the performance of Aircraft Survivability Equipment (ASE) against threat Man-Portable Air Defense Systems (MANPADS). These techniques include flying actual threat MANPADS against stationary ASE with simulated aircraft signatures, testing installed ASE systems against simulated threat signatures, and laboratory hardware-in-the-loop (HWIL) testing with simulated aircraft and simulated missile signatures. All of these tests lack the realism of evaluating installed ASE against in-flight MANPADS on a terminal homing intercept path toward the actual ASE equipped aircraft. This limitation is due primarily to the current inability to perform non-destructive MANPADS/Aircraft flight testing. The U.S. Army Aviation and Missile Research and Development and Engineering Center (AMRDEC) is working to overcome this limitation with the development of a recoverable surrogate MANPADS missile system capable of engaging aircraft equipped with ASE while guaranteeing collision avoidance with the test aircraft. Under its Missile Airframe Simulation Testbed - MANPADS (MAST-M) program, the AMRDEC is developing a surrogate missile system which will utilize actual threat MANPADS seeker/guidance sections to control the flight of a surrogate missile which will perform a collision avoidance and recovery maneuver prior to intercept to insure non-destructive test and evaluation of the ASE and reuse of the MANPADS seeker/guidance section. The remainder of this paper provides an overview of this development program and intended use.

  12. Towards the feasibility of using ultrasound to determine mechanical properties of tissues in a bioreactor.

    PubMed

    Mansour, Joseph M; Gu, Di-Win Marine; Chung, Chen-Yuan; Heebner, Joseph; Althans, Jake; Abdalian, Sarah; Schluchter, Mark D; Liu, Yiying; Welter, Jean F

    2014-10-01

    Our ultimate goal is to non-destructively evaluate mechanical properties of tissue-engineered (TE) cartilage using ultrasound (US). We used agarose gels as surrogates for TE cartilage. Previously, we showed that mechanical properties measured using conventional methods were related to those measured using US, which suggested a way to non-destructively predict mechanical properties of samples with known volume fractions. In this study, we sought to determine whether the mechanical properties of samples, with unknown volume fractions could be predicted by US. Aggregate moduli were calculated for hydrogels as a function of SOS, based on concentration and density using a poroelastic model. The data were used to train a statistical model, which we then used to predict volume fractions and mechanical properties of unknown samples. Young's and storage moduli were measured mechanically. The statistical model generally predicted the Young's moduli in compression to within <10% of their mechanically measured value. We defined positive linear correlations between the aggregate modulus predicted from US and both the storage and Young's moduli determined from mechanical tests. Mechanical properties of hydrogels with unknown volume fractions can be predicted successfully from US measurements. This method has the potential to predict mechanical properties of TE cartilage non-destructively in a bioreactor.

  13. Towards the feasibility of using ultrasound to determine mechanical properties of tissues in a bioreactor

    PubMed Central

    Mansour, Joseph M.; Gu, Di-Win Marine; Chung, Chen-Yuan; Heebner, Joseph; Althans, Jake; Abdalian, Sarah; Schluchter, Mark D.; Liu, Yiying; Welter, Jean F.

    2016-01-01

    Introduction Our ultimate goal is to non-destructively evaluate mechanical properties of tissue-engineered (TE) cartilage using ultrasound (US). We used agarose gels as surrogates for TE cartilage. Previously, we showed that mechanical properties measured using conventional methods were related to those measured using US, which suggested a way to non-destructively predict mechanical properties of samples with known volume fractions. In this study, we sought to determine whether the mechanical properties of samples, with unknown volume fractions could be predicted by US. Methods Aggregate moduli were calculated for hydrogels as a function of SOS, based on concentration and density using a poroelastic model. The data were used to train a statistical model, which we then used to predict volume fractions and mechanical properties of unknown samples. Young's and storage moduli were measured mechanically. Results The statistical model generally predicted the Young's moduli in compression to within < 10% of their mechanically measured value. We defined positive linear correlations between the aggregate modulus predicted from US and both the storage and Young's moduli determined from mechanical tests. Conclusions Mechanical properties of hydrogels with unknown volume fractions can be predicted successfully from US measurements. This method has the potential to predict mechanical properties of TE cartilage non-destructively in a bioreactor. PMID:25092421

  14. Simple Educational Tool for Digital Speckle Shearography

    ERIC Educational Resources Information Center

    Spagnolo, Giuseppe Schirripa; Martocchia, Andrea; Papalillo, Donato; Cozzella, Lorenzo

    2012-01-01

    In this study, an educational tool has been prepared for obtaining short-term and more economic training on digital speckle shearography (DSS). Shearography non-destructive testing (NDT) has gained wide acceptance over the last decade, providing a number of important and exciting inspection solutions in aerospace, electronics and medical device…

  15. Evaluation of bridge decks using non-destructive evaluation (NDE) at near highway speeds for effective asset management.

    DOT National Transportation Integrated Search

    2015-06-01

    Remote sensing technologies allow for the condition evaluation of bridge decks at near highway speed. : Data collection at near highway speed for assessment of the top of the concrete deck and proof of : concept testing for the underside of the deck ...

  16. Detection of extracellular matrix modification in cancer models with inverse spectroscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Spicer, Graham L. C.; Azarin, Samira M.; Yi, Ji; Young, Scott T.; Ellis, Ronald; Bauer, Greta M.; Shea, Lonnie D.; Backman, Vadim

    2016-10-01

    In cancer biology, there has been a recent effort to understand tumor formation in the context of the tissue microenvironment. In particular, recent progress has explored the mechanisms behind how changes in the cell-extracellular matrix ensemble influence progression of the disease. The extensive use of in vitro tissue culture models in simulant matrix has proven effective at studying such interactions, but modalities for non-invasively quantifying aspects of these systems are scant. We present the novel application of an imaging technique, Inverse Spectroscopic Optical Coherence Tomography, for the non-destructive measurement of in vitro biological samples during matrix remodeling. Our findings indicate that the nanoscale-sensitive mass density correlation shape factor D of cancer cells increases in response to a more crosslinked matrix. We present a facile technique for the non-invasive, quantitative study of the micro- and nano-scale structure of the extracellular matrix and its host cells.

  17. A new non-destructive readout by using photo-recovered surface potential contrast

    NASA Astrophysics Data System (ADS)

    Wang, Le; Jin, Kui-Juan; Gu, Jun-Xing; Ma, Chao; He, Xu; Zhang, Jiandi; Wang, Can; Feng, Yu; Wan, Qian; Shi, Jin-An; Gu, Lin; He, Meng; Lu, Hui-Bin; Yang, Guo-Zhen

    2014-11-01

    Ferroelectric random access memory is still challenging in the feature of combination of room temperature stability, non-destructive readout and high intensity storage. As a non-contact and non-destructive information readout method, surface potential has never been paid enough attention because of the unavoidable decay of the surface potential contrast between oppositely polarized domains. That is mainly due to the recombination of the surface movable charges around the domain walls. Here, by introducing a laser beam into the combination of piezoresponse force microscopy and Kelvin probe force microscopy, we demonstrate that the surface potential contrast of BiFeO3 films can be recovered under light illumination. The recovering mechanism is understood based on the redistribution of the photo-induced charges driven by the internal electric field. Furthermore, we have created a 12-cell memory pattern based on BiFeO3 films to show the feasibility of such photo-assisted non-volatile and non-destructive readout of the ferroelectric memory.

  18. A review of modern instrumental techniques for measurements of ice cream characteristics.

    PubMed

    Bahram-Parvar, Maryam

    2015-12-01

    There is an increasing demand of the food industries and research institutes to have means of measurement allowing the characterization of foods. Ice cream, as a complex food system, consists of a frozen matrix containing air bubbles, fat globules, ice crystals, and an unfrozen serum phase. Some deficiencies in conventional methods for testing this product encourage the use of alternative techniques such as rheometry, spectroscopy, X-ray, electro-analytical techniques, ultrasound, and laser. Despite the development of novel instrumental applications in food science, use of some of them in ice cream testing is few, but has shown promising results. Developing the novel methods should increase our understanding of characteristics of ice cream and may allow online testing of the product. This review article discusses the potential of destructive and non-destructive methodologies in determining the quality and characteristics of ice cream and similar products. Copyright © 2015. Published by Elsevier Ltd.

  19. Sensitivity and Calibration of Non-Destructive Evaluation Method That Uses Neural-Net Processing of Characteristic Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Weiland, Kenneth E.

    2003-01-01

    This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.

  20. Results from Mechanical Testing of Silicon Carbide for Space Applications: Non-Destructive Evalution Samples and MISSE-6 Experiment Samples

    DTIC Science & Technology

    2010-06-07

    the materials properties of silicon carbide plates”, S. Kenderian et al., 2009 SPIE Proceedings, vol. 7425 • Materials – 10” x 16” SiC plates...CONFERENCE PROCEEDING 3. DATES COVERED (From - To) 2008-2010 4. TITLE AND SUBTITLE Results from Mechanical Testing of Silicon Carbide for Space...for silicon carbide optical systems that covers material verification through system development. Recent laboratory results for testing of materials

  1. Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method

    PubMed Central

    Li, Zuohua; He, Jingbo; Teng, Jun; Wang, Ying

    2016-01-01

    Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members. PMID:28773347

  2. Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method.

    PubMed

    Li, Zuohua; He, Jingbo; Teng, Jun; Wang, Ying

    2016-03-23

    Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members.

  3. Gas Metal Arc Welding Parameters Effect on Properties of Tailored Orbital Weld of SS304 and BS1387

    NASA Astrophysics Data System (ADS)

    Ayof, M. N.; Hussein, N. I. S.; Noh, M. Z. Mohd

    2017-09-01

    Dissimilar material pipes in a power plant boiler water piping system are used to transmit water at various temperatures, either in extremely high temperature water or room temperature water. In this study, tailored orbital welding of dissimilar material of Stainless Steel (SS) 304 and British Steel (BS) 1387 were performed by Gas Metal Arc Welding (GMAW) with automated fixed nozzle-rotational jig. This study focused on GMAW parameters variation effects on mechanical properties of SS304 and BS1387 dissimilar material tailored orbital welding. The weldment quality was tested by performing non-destructive dye penetrant test. The tensile strength and microhardness were studied to verify the influence of welding parameters variations. Design of Experiment (DOE) was employed to generate process parameter using Response Surface Methodology (RSM) method. Welding parameters that were arc current, arc voltage and travel speed as input response, whilst, tensile strength and microhardness as output response. Results from non-destructive test showed no major defect occurred. The tensile strength and microhardness increased when arc current and voltage increased and travel speed decreased. Microhardness at weldment was higher than base material.

  4. Non-destructive characterization of SiC coated carbon-carbon composites by multiple techniques

    NASA Astrophysics Data System (ADS)

    Nixon, Thomas D.; Hemstad, Stan N.; Pfeifer, William H.

    SiC coated carbon-carbon composites were evaluated using several non-destructive techniques as a means of quantifying the quality of both the coating and substrate. The techniques employed included dye penetrant infiltration, eddy current measurement, C-scan, and computed tomography (CT). The NDE results were then correlated to oxidation performance and destructive evaluations by electron and optical microscopy.

  5. Non-destructive elemental analysis of vertebral body trabecular bone using muonic X-rays.

    PubMed

    Hosoi, Y; Watanabe, Y; Sugita, R; Tanaka, Y; Nagamine, K; Ono, T; Sakamoto, K

    1995-12-01

    Non-destructive elemental analysis with muonic X-rays was performed on human vertebral bone and lumbar torso phantoms. It can provide quantitative information on all elements in small deep-seated localized volumes. The experiment was carried out using the superconducting muon channel at TRIUMF in Vancouver, Canada and a lithium drifted germanium detector with an active area of 18.5 cm2. The muon channel produced backward-decayed negative muons with wide kinetic energy range from 0.5 to 54.2 MeV. The muon beam was collimated to a diameter of 18 mm. The number of incoming muons was about 4 x 10(6) approximately 5 x 10(7) per data point. In the measurements with human vertebral bones fixed with neutralized formaldehyde, the correlation coefficient between calcium content measured by muons and by atomic absorption analysis was 0.99 and the level of significance was 0.0003. In the measurements with lumbar torso phantoms, the correlation coefficient between calcium content measured by muons and by atomic absorption analysis was 0.99 and the level of significance was 0.02. The results suggest that elemental analysis in vertebral body trabecular bone using muonic X-rays closely correlates with measurements by atomic absorption analysis.

  6. General solution for quantitative dark-field contrast imaging with grating interferometers

    NASA Astrophysics Data System (ADS)

    Strobl, M.

    2014-11-01

    Grating interferometer based imaging with X-rays and neutrons has proven to hold huge potential for applications in key research fields conveying biology and medicine as well as engineering and magnetism, respectively. The thereby amenable dark-field imaging modality implied the promise to access structural information beyond reach of direct spatial resolution. However, only here a yet missing approach is reported that finally allows exploiting this outstanding potential for non-destructive materials characterizations. It enables to obtain quantitative structural small angle scattering information combined with up to 3-dimensional spatial image resolution even at lab based x-ray or at neutron sources. The implied two orders of magnitude efficiency gain as compared to currently available techniques in this regime paves the way for unprecedented structural investigations of complex sample systems of interest for material science in a vast range of fields.

  7. Quantitative Study on Corrosion of Steel Strands Based on Self-Magnetic Flux Leakage.

    PubMed

    Xia, Runchuan; Zhou, Jianting; Zhang, Hong; Liao, Leng; Zhao, Ruiqiang; Zhang, Zeyu

    2018-05-02

    This paper proposed a new computing method to quantitatively and non-destructively determine the corrosion of steel strands by analyzing the self-magnetic flux leakage (SMFL) signals from them. The magnetic dipole model and three growth models (Logistic model, Exponential model, and Linear model) were proposed to theoretically analyze the characteristic value of SMFL. Then, the experimental study on the corrosion detection by the magnetic sensor was carried out. The setup of the magnetic scanning device and signal collection method were also introduced. The results show that the Logistic Growth model is verified as the optimal model for calculating the magnetic field with good fitting effects. Combined with the experimental data analysis, the amplitudes of the calculated values ( B xL ( x,z ) curves) agree with the measured values in general. This method provides significant application prospects for the evaluation of the corrosion and the residual bearing capacity of steel strand.

  8. Accuracy of Non-Destructive Testing of PBRs to Estimate Fragilities

    NASA Astrophysics Data System (ADS)

    Brune, J. N.; Brune, R.; Biasi, G. P.; Anooshehpoor, R.; Purvance, M.

    2011-12-01

    Prior studies of Precariously Balanced Rocks (PBRs) have involved various methods of documenting rock shapes and fragilities. These have included non-destructive testing (NDT) methods such as photomodeling, and potentially destructive testing (PDT) such as forced tilt tests. PDT methods usually have the potential of damaging or disturbing the rock or its pedestal so that the PBR usefulness for future generations is compromised. To date we have force-tilt tested approximately 28 PBRs, and of these we believe 7 have been compromised. We suggest here that given other inherent uncertainties in the current methodologies, NDT methods are now sufficiently advanced as to be adequate for the current state of the art use for comparison with Ground Motion Prediction Equations (GMPEs) and seismic hazard maps (SHMs). Here we compare tilt-test static toppling estimates to three non-destructive methods: (1) 3-D photographic modeling (2) profile analysis assuming the rock is 2-D, and (3) expert judgments from photographs. 3-D modeling uses the commercial Photomodeler program and photographs in the field taken from numerous directions around the rock. The output polyhedral shape is analyzed in Matlab determine the center of mass and in Autocad to estimate the static overturning angle alpha. For the 2-D method we chose the photograph in profile looking perpendicular to the estimated direction of toppling. The rock is outlined as a 2-D object in Matlab. Rock dimensions, rocking points, and a vertical reference are supplied by the photo analyst to estimate the center of gravity and static force overturning angles. For the expert opinion method we used additional photographs taken from different directions to improve the estimates of the center of mass and the rocking points. We used 7 rocks for comparisons. The error in estimating tan alpha from 3-D modeling is about 0.05. For 2-D estimates an average error is about 0.1 (?). For expert opinion estimates the error is about 0.06. For individual rocks the uncertainties may be reduced with more extensive study. The one case (*) where tilt-testing differs materially from 3-D is because an irregular base on the rock allowed the rock to begin to tilt at a lower angle onto a second rocking point with higher alpha. 2-D methods perform well enough to use as a screening method for the larger archive, and reserve the more accurate photographic analyses for the rocks deemed most important. The table below gives a list of the tan alpha data:
    Tilt vs. NDT Tan(alpha) values

  9. Matrix phased array (MPA) imaging technology for resistance spot welds

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-02-01

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  10. Matrix phased array (MPA) imaging technology for resistance spot welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Jeong K.; Gleeson, Sean T.

    2014-02-18

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth ofmore » scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.« less

  11. Raman tweezers in microfluidic systems for analysis and sorting of living cells

    NASA Astrophysics Data System (ADS)

    Pilát, Zdeněk.; Ježek, Jan; Kaňka, Jan; Zemánek, Pavel

    2014-12-01

    We have devised an analytical and sorting system combining optical trapping with Raman spectroscopy in microfluidic environment, dedicated to identification and sorting of biological objects, such as living cells of various unicellular organisms. Our main goal was to create a robust and universal platform for non-destructive and non-contact sorting of micro-objects based on their Raman spectral properties. This approach allowed us to collect spectra containing information about the chemical composition of the objects, such as the presence and composition of pigments, lipids, proteins, or nucleic acids, avoiding artificial chemical probes such as fluorescent markers. The non-destructive nature of this optical analysis and manipulation allowed us to separate individual living cells of our interest in a sterile environment and provided the possibility to cultivate the selected cells for further experiments. We used a mixture of polystyrene micro-particles and algal cells to test and demonstrate the function of our analytical and sorting system. The devised system could find its use in many medical, biotechnological, and biological applications.

  12. Clinical evaluation of tuberculosis viability microscopy for assessing treatment response.

    PubMed

    Datta, Sumona; Sherman, Jonathan M; Bravard, Marjory A; Valencia, Teresa; Gilman, Robert H; Evans, Carlton A

    2015-04-15

    It is difficult to determine whether early tuberculosis treatment is effective in reducing the infectiousness of patients' sputum, because culture takes weeks and conventional acid-fast sputum microscopy and molecular tests cannot differentiate live from dead tuberculosis. To assess treatment response, sputum samples (n=124) from unselected patients (n=35) with sputum microscopy-positive tuberculosis were tested pretreatment and after 3, 6, and 9 days of empiric first-line therapy. Tuberculosis quantitative viability microscopy with fluorescein diacetate, quantitative culture, and acid-fast auramine microscopy were all performed in triplicate. Tuberculosis quantitative viability microscopy predicted quantitative culture results such that 76% of results agreed within ±1 logarithm (rS=0.85; P<.0001). In 31 patients with non-multidrug-resistant (MDR) tuberculosis, viability and quantitative culture results approximately halved (both 0.27 log reduction, P<.001) daily. For patients with non-MDR tuberculosis and available data, by treatment day 9 there was a >10-fold reduction in viability in 100% (24/24) of cases and quantitative culture in 95% (19/20) of cases. Four other patients subsequently found to have MDR tuberculosis had no significant changes in viability (P=.4) or quantitative culture (P=.6) results during early treatment. The change in viability and quantitative culture results during early treatment differed significantly between patients with non-MDR tuberculosis and those with MDR tuberculosis (both P<.001). Acid-fast microscopy results changed little during early treatment, and this change was similar for non-MDR tuberculosis vs MDR tuberculosis (P=.6). Tuberculosis quantitative viability microscopy is a simple test that within 1 hour predicted quantitative culture results that became available weeks later, rapidly indicating whether patients were responding to tuberculosis therapy. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  13. Non Destructive Test Dye Penetrant and Ultrasonic on Welding SMAW Butt Joint with Acceptance Criteria ASME Standard

    NASA Astrophysics Data System (ADS)

    Endramawan, T.; Sifa, A.

    2018-02-01

    The purpose of this research is to know the type of discontinuity of SMAW welding result and to determine acceptance criteria based on American Society of Mechanical Engineer (ASME) standard. Material used is mild steel 98,71% Fe and 0,212% C with hardness 230 VHN with specimen diameter 20 cm and thickness 1.2 cm which is welded use SMAW butt joint with electrode for rooting LB 52U diameter 2.6 mm, current 70 Ampere and voltage 380 volt, filler used LB 5218 electrode diameter 3.2 mm with current 80 Ampere and 380 volt. The method used to analyze the welded with non destructive test dye penetrant (PT) method to see indication on the surface of the object and Ultrasonic (UT) to see indication on the sub and inner the surface of the object, the result is discontinuity recorded and analyzed and then the discontinuity is determine acceptance criteria based on the American Society of Mechanical Engineer (ASME) standards. The result show the discontinuity of porosity on the surface of the welded and inclusion on sub material used ultrasonic test, all indication on dye penetrant or ultrasonic test if there were rejected of result of welded that there must be gouging on part which rejected and then re-welding.

  14. Microstructural investigation using synchrotron radiation X-ray microtomography reveals taste-masking mechanism of acetaminophen microspheres.

    PubMed

    Guo, Zhen; Yin, Xianzhen; Liu, Congbiao; Wu, Li; Zhu, Weifeng; Shao, Qun; York, Peter; Patterson, Laurence; Zhang, Jiwen

    2016-02-29

    The structure of solid drug delivery systems has considerable influence on drug release behaviors from particles and granules and also impacts other properties relevant to release characteristics such as taste. In this study, lipid-based microspheres of acetaminophen were prepared to mask the undesirable taste of drug and therefore to identify the optimal formulation for drug release. Synchrotron radiation X-ray computed microtomography (SR-μCT) was used to investigate the fine structural architectures of microspheres non-destructively at different sampling times during drug release test, which were simultaneously determined to quantitatively correlate the structural data with drug release behaviors. The results demonstrated that the polymeric formulation component, namely, cationic polymethacrylate (Eudragit E100), was the key factor to mask the bitter taste of acetaminophen by inhibiting immediate drug release thereby reducing the interaction intensity of the bitter material with the oral cavity taste buds. The structure and morphology of the microspheres were found to be influenced by the shape and particle size of the drug, which was also an important factor for taste-masking performance. The quantitative analysis generated detailed structural information which was correlated well with drug release behaviors. Thus, SR-μCT has been proved as a powerful tool to investigate the fine microstructure of particles and provides a new approach in the design of particles for taste masking. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. SPERT Destructive Test - I on Aluminum, Highly Enriched Plate Type Core

    ScienceCinema

    None

    2018-01-16

    SPERT - Special Power Excursion Reactor Tests Destructive Test number 1 On Aluminum, Highly Enriched Plate Type Core. A test studying the behavior of the reactor under destructive conditions on a light water moderated pool-type reactor with a plate-type core.

  16. Investigation of methods for sterilization of potting compounds and mated surfaces

    NASA Technical Reports Server (NTRS)

    Tulius, J. J.; Daley, D. J.; Phillips, G. B.

    1972-01-01

    The feasibility of using formaldehyde-liberating synthetic resins or polymers for the sterilization of potting compounds, mated and occluded areas, and spacecraft surfaces was demonstrated. The detailed study of interrelated parameters of formaldehyde gas sterilization revealed that efficient cycle conditions can be developed for the sterilization of spacecraft components. It was determined that certain parameters were more important than others in the development of cycles for specific applications. The use of formaldehyde gas for the sterilization of spacecraft components provides NASA with a highly efficient method which is inexpensive, reproducible, easily quantitated, materials compatible, operationally simple, generally non-hazardous and not thermally destructive.

  17. Quantitative analysis of urea in human urine and serum by 1H nuclear magnetic resonance†

    PubMed Central

    Liu, Lingyan; Mo, Huaping; Wei, Siwei

    2016-01-01

    A convenient and fast method for quantifying urea in biofluids is demonstrated using NMR analysis and the solvent water signal as a concentration reference. The urea concentration can be accurately determined with errors less than 3% between 1 mM and 50 mM, and less than 2% above 50 mM in urine and serum. The method is promising for various applications with advantages of simplicity, high accuracy, and fast non-destructive detection. With an ability to measure other metabolites simultaneously, this NMR method is also likely to find applications in metabolic profiling and system biology. PMID:22179722

  18. Non-destructive testing of full-length bonded rock bolts based on HHT signal analysis

    NASA Astrophysics Data System (ADS)

    Shi, Z. M.; Liu, L.; Peng, M.; Liu, C. C.; Tao, F. J.; Liu, C. S.

    2018-04-01

    Full-length bonded rock bolts are commonly used in mining, tunneling and slope engineering because of their simple design and resistance to corrosion. However, the length of a rock bolt and grouting quality do not often meet the required design standards in practice because of the concealment and complexity of bolt construction. Non-destructive testing is preferred when testing a rock bolt's quality because of the convenience, low cost and wide detection range. In this paper, a signal analysis method for the non-destructive sound wave testing of full-length bonded rock bolts is presented, which is based on the Hilbert-Huang transform (HHT). First, we introduce the HHT analysis method to calculate the bolt length and identify defect locations based on sound wave reflection test signals, which includes decomposing the test signal via empirical mode decomposition (EMD), selecting the intrinsic mode functions (IMF) using the Pearson Correlation Index (PCI) and calculating the instantaneous phase and frequency via the Hilbert transform (HT). Second, six model tests are conducted using different grouting defects and bolt protruding lengths to verify the effectiveness of the HHT analysis method. Lastly, the influence of the bolt protruding length on the test signal, identification of multiple reflections from defects, bolt end and protruding end, and mode mixing from EMD are discussed. The HHT analysis method can identify the bolt length and grouting defect locations from signals that contain noise at multiple reflected interfaces. The reflection from the long protruding end creates an irregular test signal with many frequency peaks on the spectrum. The reflections from defects barely change the original signal because they are low energy, which cannot be adequately resolved using existing methods. The HHT analysis method can identify reflections from the long protruding end of the bolt and multiple reflections from grouting defects based on mutations in the instantaneous frequency, which makes weak reflections more noticeable. The mode mixing phenomenon is observed in several tests, but this does not markedly affect the identification results due to the simple medium in bolt tests. The mode mixing can be reduced by ensemble EMD (EEMD) or complete ensemble EMD with adaptive noise (CEEMDAN), which are powerful tools to used analyze the test signal in a complex medium and may play an important role in future studies. The HHT bolt signal analysis method is a self-adaptive and automatic process, which can be programed as analysis software and will make bolt tests more convenient in practice.

  19. Apparatus for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2007-06-12

    Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

  20. Development of an automated ultrasonic testing system

    NASA Astrophysics Data System (ADS)

    Shuxiang, Jiao; Wong, Brian Stephen

    2005-04-01

    Non-Destructive Testing is necessary in areas where defects in structures emerge over time due to wear and tear and structural integrity is necessary to maintain its usability. However, manual testing results in many limitations: high training cost, long training procedure, and worse, the inconsistent test results. A prime objective of this project is to develop an automatic Non-Destructive testing system for a shaft of the wheel axle of a railway carriage. Various methods, such as the neural network, pattern recognition methods and knowledge-based system are used for the artificial intelligence problem. In this paper, a statistical pattern recognition approach, Classification Tree is applied. Before feature selection, a thorough study on the ultrasonic signals produced was carried out. Based on the analysis of the ultrasonic signals, three signal processing methods were developed to enhance the ultrasonic signals: Cross-Correlation, Zero-Phase filter and Averaging. The target of this step is to reduce the noise and make the signal character more distinguishable. Four features: 1. The Auto Regressive Model Coefficients. 2. Standard Deviation. 3. Pearson Correlation 4. Dispersion Uniformity Degree are selected. And then a Classification Tree is created and applied to recognize the peak positions and amplitudes. Searching local maximum is carried out before feature computing. This procedure reduces much computation time in the real-time testing. Based on this algorithm, a software package called SOFRA was developed to recognize the peaks, calibrate automatically and test a simulated shaft automatically. The automatic calibration procedure and the automatic shaft testing procedure are developed.

  1. Identification of the Quality Spot Welding used Non Destructive Test-Ultrasonic Testing: (Effect of Welding Time)

    NASA Astrophysics Data System (ADS)

    Sifa, A.; Endramawan, T.; Badruzzaman

    2017-03-01

    Resistance Spot Welding (RSW) is frequently used as one way of welding is used in the manufacturing process, especially in the automotive industry [4][5][6][7]. Several parameters influence the process of welding points. To determine the quality of a welding job needs to be tested, either by damaging or testing without damage, in this study conducted experimental testing the quality of welding or identify quality of the nugget by using Non-Destructive Test (NDT) -Ultrasonic Testing (UT), in which the identification of the quality of the welding is done with parameter thickness of worksheet after welding using NDT-UT with use same material worksheet and have more thickness of worksheet, the thickness of the worksheet single plate 1mm, with the capability of propagation Ultrasonic Testing (UT) standard limited> 3 mm [1], welding process parameters such as the time difference between 1-10s and the welding current of 8 KV, visually Heat Affected Zone ( HAZ ) have different results due to the length of time of welding. UT uses a probe that is used with a frequency of 4 MHz, diameter 10 mm, range 100 and the couplant used is oil. Identification techniques using drop 6dB, with sound velocity 2267 m / s of Fe, with the result that the effect of the Welding time affect the size of the HAZ, identification with the lowest time 1s show results capable identified joined through NDT - UT.

  2. Concealed identification symbols and nondestructive determination of the identification symbols

    DOEpatents

    Nance, Thomas A.; Gibbs, Kenneth M.

    2014-09-16

    The concealing of one or more identification symbols into a target object and the subsequent determination or reading of such symbols through non-destructive testing is described. The symbols can be concealed in a manner so that they are not visible to the human eye and/or cannot be readily revealed to the human eye without damage or destruction of the target object. The identification symbols can be determined after concealment by e.g., the compilation of multiple X-ray images. As such, the present invention can also provide e.g., a deterrent to theft and the recovery of lost or stolen objects.

  3. Secure Retrieval of FFTF Testing, Design, and Operating Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butner, R. Scott; Wootan, David W.; Omberg, Ronald P.

    One of the goals of the Advanced Fuel Cycle Initiative (AFCI) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMR). In addition, preserving LMR information and knowledge is part of a larger international collaborative activity conducted under the auspices of the International Atomic Energy Agency (IAEA). A similar program is being conducted for EBR-II at the Idaho Nuclear Laboratory (INL) and international programs are also in progress. Knowledge preservation at the FFTF is focused on the areas of design, construction, startup, and operation of the reactor. As the primary function ofmore » the FFTF was testing, the focus is also on preserving information obtained from irradiation testing of fuels and materials. This information will be invaluable when, at a later date, international decisions are made to pursue new LMRs. In the interim, this information may be of potential use for international exchanges with other LMR programs around the world. At least as important in the United States, which is emphasizing large-scale computer simulation and modeling, this information provides the basis for creating benchmarks for validating and testing these large scale computer programs. Although the preservation activity with respect to FFTF information as discussed below is still underway, the team of authors above is currently retrieving and providing experimental and design information to the LMR modeling and simulation efforts for use in validating their computer models. On the Hanford Site, the FFTF reactor plant is one of the facilities intended for decontamination and decommissioning consistent with the cleanup mission on this site. The reactor facility has been deactivated and is being maintained in a cold and dark minimal surveillance and maintenance mode until final decommissioning is pursued. In order to ensure protection of information at risk, the program to date has focused on sequestering and secure retrieval. Accomplishments include secure retrieval of: more than 400 boxes of FFTF information, several hundred microfilm reels including Clinch River Breeder Reactor (CRBR) information, and 40 boxes of information on the Fuels and Materials Examination Facility (FMEF). All information preserved to date is now being stored and categorized consistent with the IAEA international standardized taxonomy. Earlier information largely related to irradiation testing is likewise being categorized. The fuel test results information exists in several different formats depending upon the final stage of the test evaluation. In some cases there is information from both non-destructive and destructive examination while in other cases only non-destructive results are available. Non-destructive information would include disassembly records, dimensional profilometry, gamma spectrometry, and neutron radiography. Information from destructive examinations would include fission gas analysis, metallography, and photomicrographs. Archiving of FFTF data, including both the reactor plant and the fuel test information, is being performed in coordination with other data archiving efforts underway under the aegis of the AFCI program. In addition to the FFTF efforts, archiving of data from the EBR-II reactor is being carried out by INL. All material at risk associated with FFTF documentation has been secured in a timely manner consistent with the stated plan. This documentation is now being categorized consistent with internationally agreed upon IAEA standards. Documents are being converted to electronic format for transfer to a large searchable electronic database being developed by INL. In addition, selected FFTF information is being used to generate test cases for large-scale simulation modeling efforts and for providing Design Data Need (DDN) packages as requested by the AFCI program.« less

  4. OXIDATIVE TREATMENT OF INDUSTRIAL WASTEWATER

    EPA Science Inventory

    This paper defines industrial waste treatment process as falling into categories of oxidative destruction, reductive destruction, and non-destructive, separation operations. The various oxidative approaches, including biological, chemical and thermal methods, are then discussed i...

  5. Non-Destructive Testing of Semiconductors Using Surface Acoustic Wave.

    DTIC Science & Technology

    1983-12-31

    are thin film A). fingers (1 ;im) alternately connected to bus pads as shown in fig. 1.lb. An RF voltage applied to the transducer creates an...inversion 140 layer sets in (the deep depletion regime). This timing arrangement is not difficult to attain, due to the long minoritv carriler response

  6. 46 CFR 115.645 - Alternative Hull Examination (AHE) Procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Allow access to all internal areas of the hull for examination, except internal tanks that carry fuel... potable water tanks may be examined visually or by non-destructive testing to the satisfaction of the... the extent of damage or to effect permanent repairs if the assessment or repairs cannot be completed...

  7. 46 CFR 71.50-25 - Alternative Hull Examination (AHE) procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... areas of the hull for examination, except internal tanks that carry fuel, sewage, or potable water. Internal tanks that carry fuel must be examined in accordance with § 71.53-1 of this part. Internal sewage and potable water tanks may be examined visually or by non-destructive testing to the satisfaction of...

  8. 46 CFR 71.50-25 - Alternative Hull Examination (AHE) procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... areas of the hull for examination, except internal tanks that carry fuel, sewage, or potable water. Internal tanks that carry fuel must be examined in accordance with § 71.53-1 of this part. Internal sewage and potable water tanks may be examined visually or by non-destructive testing to the satisfaction of...

  9. 46 CFR 115.645 - Alternative Hull Examination (AHE) Procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Allow access to all internal areas of the hull for examination, except internal tanks that carry fuel... potable water tanks may be examined visually or by non-destructive testing to the satisfaction of the... the extent of damage or to effect permanent repairs if the assessment or repairs cannot be completed...

  10. 46 CFR 115.645 - Alternative Hull Examination (AHE) Procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Allow access to all internal areas of the hull for examination, except internal tanks that carry fuel... potable water tanks may be examined visually or by non-destructive testing to the satisfaction of the... the extent of damage or to effect permanent repairs if the assessment or repairs cannot be completed...

  11. 46 CFR 71.50-25 - Alternative Hull Examination (AHE) procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... areas of the hull for examination, except internal tanks that carry fuel, sewage, or potable water. Internal tanks that carry fuel must be examined in accordance with § 71.53-1 of this part. Internal sewage and potable water tanks may be examined visually or by non-destructive testing to the satisfaction of...

  12. 46 CFR 115.645 - Alternative Hull Examination (AHE) Procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Allow access to all internal areas of the hull for examination, except internal tanks that carry fuel... potable water tanks may be examined visually or by non-destructive testing to the satisfaction of the... the extent of damage or to effect permanent repairs if the assessment or repairs cannot be completed...

  13. 46 CFR 71.50-25 - Alternative Hull Examination (AHE) procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... areas of the hull for examination, except internal tanks that carry fuel, sewage, or potable water. Internal tanks that carry fuel must be examined in accordance with § 71.53-1 of this part. Internal sewage and potable water tanks may be examined visually or by non-destructive testing to the satisfaction of...

  14. KSC-03PD-2981

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, packing material is placed over the nose cap that was removed from Atlantis. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non- destructive testing such as CAT scan and thermography.

  15. KSC-03PD-2980

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, workers remove the overhead crane from the nose cap that was removed from Atlantis. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

  16. KSC-03PD-2978

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, the nose cap from Atlantis is lowered toward a shipping pallet. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

  17. KSC-03PD-2979

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, the nose cap from Atlantis is secured on a shipping pallet. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

  18. Special Engineering Services to Establish Inspection Criteria for Bearings to Improve Life Prediction.

    DTIC Science & Technology

    1979-12-01

    ll i . -- II 53 I V. REFERENCES 1. Barton, J. R., "Early Fatigue Damage Detection in 4140 Steel Tubes", Proc. Fifth Annual Symposium on NDE of...34Advanced Non- destructive Testing Methods for Bearing Inspection", SAE Paper No. 720172, Automotive Engineering Congress, Detroit, Michigan, January

  19. Sampling by sponge wipe or skin excision for recovery of inoculated Salmonella and Campylobacter from defeathered broiler carcasses

    USDA-ARS?s Scientific Manuscript database

    Broilers may carry Salmonella and Campylobacter on inner and outer surfaces upon arrival at the slaughter plant and carcasses can be further contaminated during commercial processing. A sensitive, non-destructive, repeatable sampling method would be useful to test carcasses for levels of bacteria b...

  20. Field assessment of wood stake decomposition in forest soil

    Treesearch

    Xiping Wang; Deborah Page-Dumroese; Martin F. Jurgensen; Robert J. Ross

    2007-01-01

    A pulse-echo acoustic method was investigated for evaluating wood stake decomposition in the field. A total of 58 wood stakes (29 loblolly pine, Pinus taeda, and 29 aspen, Populus tremuloides) that were vertically installed (full length) in forest soils were non-destructively tested by means of a laboratory-type acoustic...

  1. Non-destructive testing (NDT) of a segmental concrete bridge scheduled for demolition, with a focus on condition assessment and corrosion detection of internal tendons.

    DOT National Transportation Integrated Search

    2017-05-01

    The service life and durability of prestressed concrete in bridges are vulnerable to corrosion damages due to many factors such as construction, material, and environment. To ensure public safety, it is important to inspect these structures and to de...

  2. Colony differences in termiticide transfer studies, a role for behavior?

    Treesearch

    Thomas Shelton

    2010-01-01

    Donor-recipient termiticide transfer laboratory tests were performed by using destructive sampling with two delayed-action non-repellent (DANR) termiticides against each of three colonies of Reticulitermes flavipes (Kollar). Two of the three colonies showed no response to indoxacarb, but all three showed a response to chlorantraniliprole. These results indicate that...

  3. A system to measure minute hydraulic permeability of nanometer scale devices in a non-destructive manner

    NASA Astrophysics Data System (ADS)

    Smith, Ross A.; Fleischman, Aaron J.; Fissell, William H.; Zorman, Christian A.; Roy, Shuvo

    2011-04-01

    We report an automated system for measuring the hydraulic permeability of nanoporous membranes in a tangential-flow configuration. The system was designed and built specifically for micromachined silicon nanoporous membranes (SNM) with monodisperse slit-shaped pores. These novel membranes are under development for water filtration, artificial organ and drug delivery applications. The filtration cell permits non-destructive testing of the membrane over many remove-modify-replace testing cycles, allowing for direct experiments into the effects of surface modifications on such membranes. The experimental apparatus was validated using microfluidic tubing with circular cross sections that provided similar fluidic resistances to SNM. Further validation was performed with SNM chips for which the pore dimensions were known from scanning electron microscopy measurements. The system was then used to measure the hydraulic permeability of nanoporous membranes before and after surface modification. The system yields measurements with low variance and excellent agreement with predicted values, providing a platform for determining pore sizes in micro/nanofluidic systems with tight pore size distributions to a higher degree of precision than can be achieved with traditional techniques.

  4. Study of aluminum content in a welding metal by thermoelectric measurements

    NASA Astrophysics Data System (ADS)

    Carreón, H.; Ramirez, S.; Coronado, C.; Salazar, M.

    2018-03-01

    This work investigates the effect caused by the aluminum content in a welding metal and its variation in mechanical properties through the use of a non-destructive thermoelectric technique. It is known that aluminum has positive effects as deoxidizer in low percentages and alloying element together with Niobium and Vanadium. Aluminum has a positive and negative effect, initially improves the mechanical properties of the metal, as it acts as a grain refiner, increasing the yield strength, but in larger quantities, important mechanical properties such as hardness and toughness are seriously affected. For this purpose, HSLA ASTM 572 Gr. 50 steel was used as the base metal, where the weld metal was deposited, after which the specimens were fabricated and the mechanical tests and non-destructive tests were carried out. The sensitivity of the thermoelectric potential technique to microstructural and chemical composition changes was confirmed. The evolution of absolute thermoelectric potential (TEP) values with respect to the percentage of aluminum added to the weld was observed, being also quite sensitive to defects such as micro-cracks.

  5. Metal composite as backing for ultrasonic transducers dedicated to non-destructive measurements in hostile

    NASA Astrophysics Data System (ADS)

    Boubenia, R.; Rosenkrantz, E.; Despetis, F.; P, P.; Ferrandis, J.-Y.

    2016-03-01

    Our team is specialized in ultrasonic measurements in hostile environment especially under high temperatures. There is a need for acoustic transducers capable of continuous measurement at temperatures up to 700°C. To improve the performances of acoustic sensors we focus our works on the realisation and characterisation of transducer backings able to operate under very high temperature. Commercially, they are produced by the incorporation of tungsten powder in a plastic matrix, which limits the working temperature. The realisation of ultrasonic transducers for non-destructive measures at high temperatures requires adequate materials, manufacturing and assembly processes. To produce the backings, composites were made using very ductile metals such as tin and tungsten. These composites are manufactured by uniaxial hot pressing. First, we studied the influence of temperature and pressure on the densification of tin pellets. Then, several specimens made of tin/W were made and characterised by measuring the specific weight, speed and attenuation of sound. The acoustic measures were realised by ultrasonic spectroscopy. This test-bench was designed and tested on control samples of PMMA and on standard backings (epoxy / tungsten).

  6. Application of optical interferometric techniques for non-destructive evaluation of novel "green" composite materials

    NASA Astrophysics Data System (ADS)

    Pagliarulo, Vito; Russo, Pietro; Bianco, Vittorio; Ferraro, Pietro; Simeoli, Giorgio; Cimino, Francesca; Ruggiero, Berardo

    2018-04-01

    Nowadays the use of advanced composite materials in aeronautics, both civil and military, in automotive and in sport applications, citing some, is well established. The characteristics of composite materials in terms of weight, fatigue resistance and corrosion resistance make them competitive with respect to conventional ones. On the other side, the fabrication process of the most employed composites reinforced by carbon fibers or glass fibers, needs of complex steps that not always are environmental complaisant. Moreover, such fibers are not themselves "green". For these reasons, in the last decades, the use of natural reinforcing fibers has gained an increasing attention allowing the development of new materials with the same advantages of composite systems but respecting the environment. Furthermore, such materials for their structural complexity are not always compatible with the use of standard non-destructive evaluation as the ultrasounds methods. In this work the efficiency of the employment of optical interferometric techniques as nondestructive evaluation methods in full field modality is proved on novel "green" composite materials. In particular, Electronic Speckle Pattern Interferometry has been tested on different kinds of specimens after flexural tests.

  7. Non-destructive analysis of flake properties in automotive paints with full-field optical coherence tomography and 3D segmentation.

    PubMed

    Zhang, Jinke; Williams, Bryan M; Lawman, Samuel; Atkinson, David; Zhang, Zijian; Shen, Yaochun; Zheng, Yalin

    2017-08-07

    Automotive coating systems are designed to protect vehicle bodies from corrosion and enhance their aesthetic value. The number, size and orientation of small metallic flakes in the base coat of the paint has a significant effect on the appearance of automotive bodies. It is important for quality assurance (QA) to be able to measure the properties of these small flakes, which are approximately 10μm in radius, yet current QA techniques are limited to measuring layer thickness. We design and develop a time-domain (TD) full-field (FF) optical coherence tomography (OCT) system to scan automotive panels volumetrically, non-destructively and without contact. We develop and integrate a segmentation method to automatically distinguish flakes and allow measurement of their properties. We test our integrated system on nine sections of five panels and demonstrate that this integrated approach can characterise small flakes in automotive coating systems in 3D, calculating the number, size and orientation accurately and consistently. This has the potential to significantly impact QA testing in the automotive industry.

  8. Non-destructive system to evaluate critical properties of asphalt compaction : [research brief].

    DOT National Transportation Integrated Search

    2013-12-01

    The Wisconsin Highway Research Program sponsored a two-stage investigation to develop a non-destructive system to evaluate critical compaction properties and characteristics of asphalt pavements during the densification process. Stage One activities ...

  9. Non-destructive single-pass low-noise detection of ions in a beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Stefan; Institut für Kernchemie, Johannes Gutenberg–Universität Mainz, 55099 Mainz; Murböck, Tobias

    2015-11-15

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles’ beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highlymore » charged ions (such as Ar{sup 13+}) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.« less

  10. Non-Destructive Detection of Wire Rope Discontinuities from Residual Magnetic Field Images Using the Hilbert-Huang Transform and Compressed Sensing

    PubMed Central

    Zhang, Juwei; Tan, Xiaojiang; Zheng, Pengbo

    2017-01-01

    Electromagnetic methods are commonly employed to detect wire rope discontinuities. However, determining the residual strength of wire rope based on the quantitative recognition of discontinuities remains problematic. We have designed a prototype device based on the residual magnetic field (RMF) of ferromagnetic materials, which overcomes the disadvantages associated with in-service inspections, such as large volume, inconvenient operation, low precision, and poor portability by providing a relatively small and lightweight device with improved detection precision. A novel filtering system consisting of the Hilbert-Huang transform and compressed sensing wavelet filtering is presented. Digital image processing was applied to achieve the localization and segmentation of defect RMF images. The statistical texture and invariant moment characteristics of the defect images were extracted as the input of a radial basis function neural network. Experimental results show that the RMF device can detect defects in various types of wire rope and prolong the service life of test equipment by reducing the friction between the detection device and the wire rope by accommodating a high lift-off distance. PMID:28300790

  11. Quantitative non-destructive testing

    NASA Technical Reports Server (NTRS)

    Welch, C. S.

    1985-01-01

    The work undertaken during this period included two primary efforts. The first is a continuation of theoretical development from the previous year of models and data analyses for NDE using the Optical Thermal Infra-Red Measurement System (OPTITHIRMS) system, which involves heat injection with a laser and observation of the resulting thermal pattern with an infrared imaging system. The second is an investigation into the use of the thermoelastic effect as an effective tool for NDE. As in the past, the effort is aimed towards NDE techniques applicable to composite materials in structural applications. The theoretical development described produced several models of temperature patterns over several geometries and material types. Agreement between model data and temperature observations was obtained. A model study with one of these models investigated some fundamental difficulties with the proposed method (the primitive equation method) for obtaining diffusivity values in plates of thickness and supplied guidelines for avoiding these difficulties. A wide range of computing speeds was found among the various models, with a one-dimensional model based on Laplace's integral solution being both very fast and very accurate.

  12. Grain Destruction in a Supernova Remnant Shock Wave

    NASA Technical Reports Server (NTRS)

    Raymond, John C.; Ghavamian, Parviz; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Gaetz, Terrance J.; Sankrit, Ravi

    2014-01-01

    Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants, gradually enriching the gas phase with refractory elements. We have measured emission in C IV (lambda)1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 micron and the X-ray intensity profiles. Thus these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the CIV intensity 10'' behind the shock is too high compared to the intensities at the shock and 25'' behind it. Variations in the density, hydrogen neutral fraction and the dust properties over parsec scales in the pre- shock medium limit our ability to test dust destruction models in detail.

  13. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis.

    PubMed

    Kamruzzaman, Mohammed; Sun, Da-Wen; ElMasry, Gamal; Allen, Paul

    2013-01-15

    Many studies have been carried out in developing non-destructive technologies for predicting meat adulteration, but there is still no endeavor for non-destructive detection and quantification of adulteration in minced lamb meat. The main goal of this study was to develop and optimize a rapid analytical technique based on near-infrared (NIR) hyperspectral imaging to detect the level of adulteration in minced lamb. Initial investigation was carried out using principal component analysis (PCA) to identify the most potential adulterate in minced lamb. Minced lamb meat samples were then adulterated with minced pork in the range 2-40% (w/w) at approximately 2% increments. Spectral data were used to develop a partial least squares regression (PLSR) model to predict the level of adulteration in minced lamb. Good prediction model was obtained using the whole spectral range (910-1700 nm) with a coefficient of determination (R(2)(cv)) of 0.99 and root-mean-square errors estimated by cross validation (RMSECV) of 1.37%. Four important wavelengths (940, 1067, 1144 and 1217 nm) were selected using weighted regression coefficients (Bw) and a multiple linear regression (MLR) model was then established using these important wavelengths to predict adulteration. The MLR model resulted in a coefficient of determination (R(2)(cv)) of 0.98 and RMSECV of 1.45%. The developed MLR model was then applied to each pixel in the image to obtain prediction maps to visualize the distribution of adulteration of the tested samples. The results demonstrated that the laborious and time-consuming tradition analytical techniques could be replaced by spectral data in order to provide rapid, low cost and non-destructive testing technique for adulterate detection in minced lamb meat. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. RF Testing Of Microwave Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.

    1988-01-01

    Fixtures and techniques are undergoing development. Four test fixtures and two advanced techniques developed in continuing efforts to improve RF characterization of MMIC's. Finline/waveguide test fixture developed to test submodules of 30-GHz monolithic receiver. Universal commercially-manufactured coaxial test fixture modified to enable characterization of various microwave solid-state devices in frequency range of 26.5 to 40 GHz. Probe/waveguide fixture is compact, simple, and designed for non destructive testing of large number of MMIC's. Nondestructive-testing fixture includes cosine-tapered ridge, to match impedance wavequide to microstrip. Advanced technique is microwave-wafer probing. Second advanced technique is electro-optical sampling.

  15. First overpower tests of metallic IFR [Integral Fast Reactor] fuel in TREAT [Transient Reactor Test Facility]: Data and analysis from tests M5, M6, and M7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, T. H.; Robinson, W. R.; Holland, J. W.

    1989-12-01

    Results and analyses of margin to cladding failure and pre-failure axial expansion of metallic fuel are reported for TREAT in-pile transient overpower tests M5--M7. These are the first such tests on reference binary and ternary alloy fuel of the Integral Fast Reactor (IFR) concept with burnup ranging from 1 to 10 at. %. In all cases, test fuel was subjected to an exponential power rise on an 8 s period until either incipient or actual cladding failure was achieved. Objectives, designs and methods are described with emphasis on developments unique to metal fuel safety testing. The resulting database for claddingmore » failure threshold and prefailure fuel expansion is presented. The nature of the observed cladding failure and resultant fuel dispersals is described. Simple models of cladding failures and pre-failure axial expansions are described and compared with experimental results. Reported results include: temperature, flow, and pressure data from test instrumentation; fuel motion diagnostic data principally from the fast neutron hodoscope; and test remains described from both destructive and non-destructive post-test examination. 24 refs., 144 figs., 17 tabs.« less

  16. The determination of resistance of marble to thermal and moisture cycles: relevance and limits of the recent European natural stone standard

    NASA Astrophysics Data System (ADS)

    Bellopede, Rossana; Castelletto, Eleonora; Marini, Paola; Zichella, Lorena

    2015-04-01

    The recent European standard EN 16306:2013 specifies laboratory methodology on the determination of the resistance to thermal and moisture cycling of marble for cladding of building façades. In particular measurements of bowing and flexural strength should be performed before and at the end of the ageing cycles. Bowing is measured on specimens of dimension 30*100*400mm exposed to moisture from beneath and heating (gradually till 80°C) on the upper face. The flexural strength should be measured both on reference and on exposed specimens in order to assess the variation of mechanical properties. Additional non-destructive tests are foreseen but are not compulsory for the standard. Moreover, the Annex A of the EN 16306, contains a guidance of the limit values that could be useful for the building planner for façade panels dimensioning. Different varieties of marble (two from Italy, one from Greece and three from Portugal) have been tested by means of this laboratory ageing test. Non-destructive tests such as the measurements of Ultrasonic Pulse Velocity (UPV), porosity, and water absorption have been executed together with the conventional flexural strength test. Image analysis on thin sections soaked with methylene blue have been analysed to further investigate the correlation between porosity and tendency to bowing. Base on the results obtained, some consideration on the decrease of mechanical resistance and the bowing in relation to the variety of marble tested and the limit values indicated the Annex A of EN 16306 can be drawn. Besides, from the data analysed a deepened discussion has been made. It is known that bowing and rapid strength loss occur in some varieties of marble when used as exterior cladding but further considerations can be made: bowing and flexural strength are correlate and in which way? Often the bowing is related to the decrease of flexural strength but it happens that there is a decrease in the mechanical resistance of the stone also without the bowing phenomenon. Non-destructive tests are surely useful to evaluate deterioration of mechanical properties but attention should be paid to the analysis of results, correlating the information coming from UPV measures with that from porosity evaluation.

  17. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T. M.; Sigloch, K.

    2011-12-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and engineering structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to analyze ultrasonic waveforms measured at the surface of Plexiglas and rock samples, and to define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface waves in typical materials tested with a non-destructive technique (e.g., marble, unweathered and weathered concrete and natural stone).

  18. SERS quantitative urine creatinine measurement of human subject

    NASA Astrophysics Data System (ADS)

    Wang, Tsuei Lian; Chiang, Hui-hua K.; Lu, Hui-hsin; Hung, Yung-da

    2005-03-01

    SERS method for biomolecular analysis has several potentials and advantages over traditional biochemical approaches, including less specimen contact, non-destructive to specimen, and multiple components analysis. Urine is an easily available body fluid for monitoring the metabolites and renal function of human body. We developed surface-enhanced Raman scattering (SERS) technique using 50nm size gold colloidal particles for quantitative human urine creatinine measurements. This paper shows that SERS shifts of creatinine (104mg/dl) in artificial urine is from 1400cm-1 to 1500cm-1 which was analyzed for quantitative creatinine measurement. Ten human urine samples were obtained from ten healthy persons and analyzed by the SERS technique. Partial least square cross-validation (PLSCV) method was utilized to obtain the estimated creatinine concentration in clinically relevant (55.9mg/dl to 208mg/dl) concentration range. The root-mean square error of cross validation (RMSECV) is 26.1mg/dl. This research demonstrates the feasibility of using SERS for human subject urine creatinine detection, and establishes the SERS platform technique for bodily fluids measurement.

  19. Report on the analysis of common beverages spiked with gamma-hydroxybutyric acid (GHB) and gamma-butyrolactone (GBL) using NMR and the PURGE solvent-suppression technique.

    PubMed

    Lesar, Casey T; Decatur, John; Lukasiewicz, Elaan; Champeil, Elise

    2011-10-10

    In forensic evidence, the identification and quantitation of gamma-hydroxybutyric acid (GHB) in "spiked" beverages is challenging. In this report, we present the analysis of common alcoholic beverages found in clubs and bars spiked with gamma-hydroxybutyric acid (GHB) and gamma-butyrolactone (GBL). Our analysis of the spiked beverages consisted of using (1)H NMR with a water suppression method called Presaturation Utilizing Relaxation Gradients and Echoes (PURGE). The following beverages were analyzed: water, 10% ethanol in water, vodka-cranberry juice, rum and coke, gin and tonic, whisky and diet coke, white wine, red wine, and beer. The PURGE method allowed for the direct identification and quantitation of both compounds in all beverages except red and white wine where small interferences prevented accurate quantitation. The NMR method presented in this paper utilizes PURGE water suppression. Thanks to the use of a capillary internal standard, the method is fast, non-destructive, sensitive and requires no sample preparation which could disrupt the equilibrium between GHB and GBL. Published by Elsevier Ireland Ltd.

  20. Methodology for Life Testing of Refractory Metal/Sodium Heat Pipes

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Reid, Robert S.

    2006-01-01

    The focus of this work was to establish an approach to generate carefully controlled data that can conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. To accomplish this goal acceleration is required to compress 10 years of operational life into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Specific test series have been identi3ed, based on American Society for Testing and Materials (ASTM) specifications, to investigate long term corrosion rates. The refractory metal selected for demonstration purposes is a Molybdenum-44.5%Rhenium alloy formed by powder metallurgy. The heat pipe makes use of an annular crescent wick design formed by hot isostatic pressing of Molybdenum-Rhenium wire mesh. The heat pipes are filled using vacuum distillation and purity sampling is considered. Testing of these units is round-the-clock with 6-month destructive and non-destructive inspection intervals to identify the onset and level of corrosion. Non-contact techniques are employed for providing power to the evaporator (radio frequency induction heating at I to 5 kW per unit) and calorimetry at the condenser (static gas gap coupled water cooled calorimeter). The planned operating temperature range would extend from 1123 to 1323 K. Accomplishments prior to project cancellation included successful demonstration of the heat pipe wick fabrication technique, establishment of all engineering designs, baselined operational test requirements and procurement/assembly of supporting test hardware systems.

  1. Time-frequency analysis of acoustic emission signals generated by the Glass Fibre Reinforced Polymer Composites during the tensile test

    NASA Astrophysics Data System (ADS)

    Świt, G.; Adamczak, A.; Krampikowska, A.

    2017-10-01

    Fibre reinforced polymer composites are currently dominating in the composite materials market. The lack of detailed knowledge about their properties and behaviour in various conditions of exposure under load significantly limits the broad possibilities of application of these materials. Occurring and accumulation of defects in material during the exploitation of the construction lead to the changes of its technical condition. The necessity to control the condition of the composite is therefore justified. For this purpose, non-destructive method of acoustic emission can be applied. This article presents an example of application of acoustic emission method based on time analysis and time-frequency analysis for the evaluation of the progress of the destructive processes and the level of degradation of glass fibre reinforced composite tapes that were subject to tensile testing.

  2. Futurepath: The Story of Research and Technology at NASA Lewis Research Center. Structures for Flight Propulsion, ARC Sprayed Monotape, National Aero-Space Plane

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.

  3. Reflexion measurements for inverse characterization of steel diffusion bond mechanical properties

    NASA Astrophysics Data System (ADS)

    Le Bourdais, Florian; Cachon, Lionel; Rigal, Emmanuel

    2017-02-01

    The present work describes a non-destructive testing method aimed at securing high manufacturing quality of the innovative compact heat exchanger developed under the framework of the CEA R&D program dedicated to the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID). The heat exchanger assembly procedure currently proposed involves high temperature and high pressure diffusion welding of stainless steel plates. The aim of the non-destructive method presented herein is to characterize the quality of the welds obtained through this assembly process. Based on a low-frequency model developed by Baik and Thompson [1], pulse-echo normal incidence measurements are calibrated according to a specific procedure and allow the determination of the welding interface stiffness using a nonlinear fitting procedure in the frequency domain. Performing the characterization of plates after diffusion welding using this method allows a useful assessment of the material state as a function of the diffusion bonding process.

  4. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    PubMed Central

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  5. Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis

    PubMed Central

    Her, Shiuh-Chuan; Lin, Sheng-Tung

    2014-01-01

    Ultrasonic is one of the most common uses of a non-destructive evaluation method for crack detection and characterization. The effectiveness of the acoustic-ultrasound Structural Health Monitoring (SHM) technique for the determination of the depth of the surface crack was presented. A method for ultrasonic sizing of surface cracks combined with the time domain and frequency spectrum was adopted. The ultrasonic frequency spectrum was obtained by Fourier transform technique. A series of test specimens with various depths of surface crack ranging from 1 mm to 8 mm was fabricated. The depth of the surface crack was evaluated using the pulse-echo technique. In this work, three different longitudinal waves with frequencies of 2.25 MHz, 5 MHz and 10 MHz were employed to investigate the effect of frequency on the sizing detection of surface cracks. Reasonable accuracies were achieved with measurement errors less than 7%. PMID:25225875

  6. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique.

    PubMed

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G; Alver, Ninel

    2015-08-05

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods.

  7. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    NASA Astrophysics Data System (ADS)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  8. Application of terahertz pulse imaging as PAT tool for non-destructive evaluation of film-coated tablets under different manufacturing conditions.

    PubMed

    Dohi, Masafumi; Momose, Wataru; Yoshino, Hiroyuki; Hara, Yuko; Yamashita, Kazunari; Hakomori, Tadashi; Sato, Shusaku; Terada, Katsuhide

    2016-02-05

    Film-coated tablets (FCTs) are a popular solid dosage form in pharmaceutical industry. Manufacturing conditions during the film-coating process affect the properties of the film layer, which might result in critical quality problems. Here, we analyzed the properties of the film layer using a non-destructive approach with terahertz pulsed imaging (TPI). Hydrophilic tablets that become distended upon water absorption were used as core tablets and coated with film under different manufacturing conditions. TPI-derived parameters such as film thickness (FT), film surface reflectance (FSR), and interface density difference (IDD) between the film layer and core tablet were affected by manufacturing conditions and influenced critical quality attributes of FCTs. Relative standard deviation of FSR within tablets correlated well with surface roughness. Tensile strength could be predicted in a non-destructive manner using the multivariate regression equation to estimate the core tablet density by film layer density and IDD. The absolute value of IDD (Lateral) correlated with the risk of cracking on the lateral film layer when stored in a high-humidity environment. Further, in-process control was proposed for this value during the film-coating process, which will enable a feedback control system to be applied to process parameters and reduced risk of cracking without a stability test. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. DNA recovery from microhymenoptera using six non-destructive methodologies with considerations for subsequent preparation of museum slides.

    PubMed

    Guzmán-Larralde, Adriana J; Suaste-Dzul, Alba P; Gallou, Adrien; Peña-Carrillo, Kenzy I

    2017-01-01

    Because of the tiny size of microhymenoptera, successful morphological identification typically requires specific mounting protocols that require time, skills, and experience. Molecular taxonomic identification is an alternative, but many DNA extraction protocols call for maceration of the whole specimen, which is not compatible with preserving museum vouchers. Thus, non-destructive DNA isolation methods are attractive alternatives for obtaining DNA without damaging sample individuals. However, their performance needs to be assessed in microhymenopterans. We evaluated six non-destructive methods: (A) DNeasy® Blood & Tissue Kit; (B) DNeasy® Blood & Tissue Kit, modified; (C) Protocol with CaCl 2 buffer; (D) Protocol with CaCl 2 buffer, modified; (E) HotSHOT; and (F) Direct PCR. The performance of each DNA extraction method was tested across several microhymenopteran species by attempting to amplify the mitochondrial gene COI from insect specimens of varying ages: 1 day, 4 months, 3 years, 12 years, and 23 years. Methods B and D allowed COI amplification in all insects, while methods A, C, and E were successful in DNA amplification from insects up to 12 years old. Method F, the fastest, was useful in insects up to 4 months old. Finally, we adapted permanent slide preparation in Canada balsam for every technique. The results reported allow for combining morphological and molecular methodologies for taxonomic studies.

  10. Programmatic Environmental Assessment High Speed Test Track (HSTT) Operations Holloman Air Force Base, New Mexico

    DTIC Science & Technology

    2007-09-01

    include a machine shop, a welding shop, carpenter and wood shop, metal heat treatment shop, bead blast shop, paint shop, non-destructive inspection...annually. In 2005, 227 motors were fired. Sled operation can involve activities such as carrying explosives, testing ejection seats, shooting lasers ...Cinetheodolite-type metric cameras and/or laser tracking equipment are used for aircraft flight trajectories exceeding 500 feet above ground level

  11. Non-destructive electromechanical assessment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties.

    PubMed

    Sim, S; Chevrier, A; Garon, M; Quenneville, E; Yaroshinsky, A; Hoemann, C D; Buschmann, M D

    2014-11-01

    The hand-held Arthro-BST™ device is used to map electromechanical properties of articular cartilage. The purpose of the study was to evaluate correlation of electromechanical properties with histological, biochemical and biomechanical properties of cartilage. Electromechanical properties (quantitative parameter (QP)) of eight human distal femurs were mapped manually ex vivo using the Arthro-BST (1 measure/site, 5 s/measure, 3209 sites). Osteochondral cores were then harvested from different areas on the femurs and assessed with the Mankin histological score. Prior to histoprocessing, cores were tested in unconfined compression. A subset of the cores was analyzed with polarized light microscopy (PLM) to assess collagen structure. Biochemical assays were done on additional cores to obtain water content and glycosaminoglycan (GAG) content. The QP corresponding to each core was calculated by averaging all QPs collected within 6 mm of the core center. The electromechanical QP correlated strongly with both the Mankin score and the PLM score (r = 0.73, P < 0.0001 and r = -0.70, P < 0.0001 respectively) thus accurately reflecting tissue quality and collagen architecture. Electromechanical QP also correlated strongly with biomechanical properties including fibril modulus (r = -0.76, P < 0.0001), matrix modulus (r = -0.69, P < 0.0001), and log of permeability (r = 0.72, P < 0.0001). The QP correlated weakly with GAG per wet weight and with water content (r = -0.50, P < 0.0003 and r = 0.39, P < 0.006 respectively). Non-destructive electromechanical QP measurements correlate strongly with histological scores and biomechanical parameters providing a rapid and reliable assessment of articular cartilage quality. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. Contrast-Enhanced CT using a Cationic Contrast Agent Enables Non-Destructive Assessment of the Biochemical and Biomechanical Properties of Mouse Tibial Plateau Cartilage

    PubMed Central

    Lakin, Benjamin A.; Patel, Harsh; Holland, Conor; Freedman, Jonathan D.; Shelofsky, Joshua S.; Snyder, Brian D.; Stok, Kathryn S.; Grinstaff, Mark W.

    2017-01-01

    Mouse models of osteoarthritis (OA) are commonly used to study the disease’s pathogenesis and efficacy of potential treatments. However, measuring the biochemical and mechanical properties of articular cartilage in these models currently requires destructive and time-consuming histology and mechanical testing. Therefore, we examined the feasibility of using contrast-enhanced CT (CECT) to rapidly and non-destructively image and assess the glycosaminoglycan (GAG) content. Using three ex vivo C57BL/6 mouse tibial plateaus, we determined the time required for the cationic contrast agent CA4+ to equilibrate in the cartilage. The whole-joint coefficient of friction (μ) of thirteen mouse knees (some digested with Chondroitenase ABC to introduce variation in GAG) was evaluated using a modified Stanton pendulum. For both the medial and lateral tibial plateau cartilage of these knees, linear regression was used to compare the equilibrium CECT attenuations to μ, as well as each side’s indentation equilibrium modulus (E) and Safranin-O determined GAG content. CA4+ equilibrated in the cartilage in 30.9 ± 0.95 min (mean ± SD, tau value of 6.17 ± 0.19 min). The mean medial and lateral CECT attenuation was correlated with μ (R2=0.69, p<0.05), and the individual medial and lateral CECT attenuations correlated with their respective GAG contents (R2≥0.63, p<0.05) and E (R2≥0.63, p<0.05). In conclusion, CECT using CA4+ is a simple, non-destructive technique for three-dimensional imaging of ex vivo mouse cartilage, and significant correlations between CECT attenuation and GAG, E, and μ are observed. PMID:26697956

  13. Guided ultrasonic wave beam skew in silicon wafers

    NASA Astrophysics Data System (ADS)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2018-04-01

    In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.

  14. Intermodal transportation infrastructure interactions : utilizing acoustic emission and other non-destructive evaluation technologies.

    DOT National Transportation Integrated Search

    2014-09-01

    This project studied application of acoustic emission (AE) technology to perform structural : health monitoring of highway bridges. Highway bridges are a vital part of transportation : infrastructure and there is need for reliable non-destructive met...

  15. 14 CFR 23.621 - Casting factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... either magnetic particle, penetrant or other approved equivalent non-destructive inspection method; or... percent approved non-destructive inspection. When an approved quality control procedure is established and...) of this section must be applied in addition to those necessary to establish foundry quality control...

  16. Non-destructive evaluation of ripening and quality traits in apples using a multiparametric fluorescence sensor.

    PubMed

    Betemps, Débora L; Fachinello, José Carlos; Galarça, Simone P; Portela, Nicácia M; Remorini, Damiano; Massai, Rossano; Agati, Giovanni

    2012-07-01

    The detection of pigments and colourless flavonoids in apples can provide a useful indication of fruit quality. Optical methods are preferable because they are fast and non-destructive. In this study, a fluorescence-based portable sensor was used in order to non-invasively determine the content of chlorophylls, anthocyanins and flavonols in Fuji, Granny Smith and Golden Delicious apple cultivars. The aim was to define new non-destructive optical indices of apple quality. The anthocyanin index (ANTH) in Fuji was higher in the sunny (i.e. sun-exposed) side of the fruit compared to the shady side. For all cultivars, the flavonol index (FLAV) was higher in the sunny side compared with the shady side. The chlorophyll index (CHL) for the shady sides of Granny Smith and Golden Delicious was significantly higher than for the sunny sides. Fine linear regressions were found between the ANTH, FLAV and CHL indices and the actual anthocyanin, flavonol and chlorophyll concentrations, respectively, which were determined destructively on the apple peel extracts. A negative correlation was found between the apple sugar content and the chlorophyll fluorescence in the far-red spectral band. Our results indicate that a single multiparametric fluorescence-based sensor can provide valuable non-destructive markers of ripening and quality in apples. Copyright © 2012 Society of Chemical Industry.

  17. Evaluating quantitative 3-D image analysis as a design tool for low enriched uranium fuel compacts for the transient reactor test facility: A preliminary study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, J. J.; van Rooyen, I. J.; Craft, A. E.

    In this study, 3-D image analysis when combined with a non-destructive examination technique such as X-ray computed tomography (CT) provides a highly quantitative tool for the investigation of a material’s structure. In this investigation 3-D image analysis and X-ray CT were combined to analyze the microstructure of a preliminary subsized fuel compact for the Transient Reactor Test Facility’s low enriched uranium conversion program to assess the feasibility of the combined techniques for use in the optimization of the fuel compact fabrication process. The quantitative image analysis focused on determining the size and spatial distribution of the surrogate fuel particles andmore » the size, shape, and orientation of voids within the compact. Additionally, the maximum effect of microstructural features on heat transfer through the carbonaceous matrix of the preliminary compact was estimated. The surrogate fuel particles occupied 0.8% of the compact by volume with a log-normal distribution of particle sizes with a mean diameter of 39 μm and a standard deviation of 16 μm. Roughly 39% of the particles had a diameter greater than the specified maximum particle size of 44 μm suggesting that the particles agglomerate during fabrication. The local volume fraction of particles also varies significantly within the compact although uniformities appear to be evenly dispersed throughout the analysed volume. The voids produced during fabrication were on average plate-like in nature with their major axis oriented perpendicular to the compaction direction of the compact. Finally, the microstructure, mainly the large preferentially oriented voids, may cause a small degree of anisotropy in the thermal diffusivity within the compact. α∥/α⊥, the ratio of thermal diffusivities parallel to and perpendicular to the compaction direction are expected to be no less than 0.95 with an upper bound of 1.« less

  18. Evaluating quantitative 3-D image analysis as a design tool for low enriched uranium fuel compacts for the transient reactor test facility: A preliminary study

    DOE PAGES

    Kane, J. J.; van Rooyen, I. J.; Craft, A. E.; ...

    2016-02-05

    In this study, 3-D image analysis when combined with a non-destructive examination technique such as X-ray computed tomography (CT) provides a highly quantitative tool for the investigation of a material’s structure. In this investigation 3-D image analysis and X-ray CT were combined to analyze the microstructure of a preliminary subsized fuel compact for the Transient Reactor Test Facility’s low enriched uranium conversion program to assess the feasibility of the combined techniques for use in the optimization of the fuel compact fabrication process. The quantitative image analysis focused on determining the size and spatial distribution of the surrogate fuel particles andmore » the size, shape, and orientation of voids within the compact. Additionally, the maximum effect of microstructural features on heat transfer through the carbonaceous matrix of the preliminary compact was estimated. The surrogate fuel particles occupied 0.8% of the compact by volume with a log-normal distribution of particle sizes with a mean diameter of 39 μm and a standard deviation of 16 μm. Roughly 39% of the particles had a diameter greater than the specified maximum particle size of 44 μm suggesting that the particles agglomerate during fabrication. The local volume fraction of particles also varies significantly within the compact although uniformities appear to be evenly dispersed throughout the analysed volume. The voids produced during fabrication were on average plate-like in nature with their major axis oriented perpendicular to the compaction direction of the compact. Finally, the microstructure, mainly the large preferentially oriented voids, may cause a small degree of anisotropy in the thermal diffusivity within the compact. α∥/α⊥, the ratio of thermal diffusivities parallel to and perpendicular to the compaction direction are expected to be no less than 0.95 with an upper bound of 1.« less

  19. Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Wyering, L. D.; Villeneuve, M. C.; Wallis, I. C.; Siratovich, P. A.; Kennedy, B. M.; Gravley, D. M.; Cant, J. L.

    2014-11-01

    Mechanical characterization of hydrothermally altered rocks from geothermal reservoirs will lead to an improved understanding of rock mechanics in a geothermal environment. To characterize rock properties of the selected formations, we prepared samples from intact core for non-destructive (porosity, density and ultrasonic wave velocities) and destructive laboratory testing (uniaxial compressive strength). We characterised the hydrothermal alteration assemblage using optical mineralogy and existing petrography reports and showed that lithologies had a spread of secondary mineralisation that occurred across the smectite, argillic and propylitic alteration zones. The results from the three geothermal fields show a wide variety of physical rock properties. The testing results for the non-destructive testing shows that samples that originated from the shallow and low temperature section of the geothermal field had higher porosity (15 - 56%), lower density (1222 - 2114 kg/m3) and slower ultrasonic waves (1925 - 3512 m/s (vp) and 818 - 1980 m/s (vs)), than the samples from a deeper and higher temperature section of the field (1.5 - 20%, 2072 - 2837 kg/m3, 2639 - 4593 m/s (vp) and 1476 - 2752 m/s (vs), respectively). The shallow lithologies had uniaxial compressive strengths of 2 - 75 MPa, and the deep lithologies had strengths of 16 - 211 MPa. Typically samples of the same lithologies that originate from multiple wells across a field have variable rock properties because of the different alteration zones from which each sample originates. However, in addition to the alteration zones, the primary rock properties and burial depth of the samples also have an impact on the physical and mechanical properties of the rock. Where this data spread exists, we have been able to derive trends for this specific dataset and subsequently have gained an improved understanding of how hydrothermal alteration affects physical and mechanical properties.

  20. Non-invasive and Non-destructive Characterization of Tissue Engineered Constructs Using Ultrasound Imaging Technologies: A Review.

    PubMed

    Kim, Kang; Wagner, William R

    2016-03-01

    With the rapid expansion of biomaterial development and coupled efforts to translate such advances toward the clinic, non-invasive and non-destructive imaging tools to evaluate implants in situ in a timely manner are critically needed. The required multi-level information is comprehensive, including structural, mechanical, and biological changes such as scaffold degradation, mechanical strength, cell infiltration, extracellular matrix formation and vascularization to name a few. With its inherent advantages of non-invasiveness and non-destructiveness, ultrasound imaging can be an ideal tool for both preclinical and clinical uses. In this review, currently available ultrasound imaging technologies that have been applied in vitro and in vivo for tissue engineering and regenerative medicine are discussed and some new emerging ultrasound technologies and multi-modality approaches utilizing ultrasound are introduced.

  1. Non-invasive and non-destructive characterization of tissue engineered constructs using ultrasound imaging technologies: a review

    PubMed Central

    Kim, Kang; Wagner, William R.

    2015-01-01

    With the rapid expansion of biomaterial development and coupled efforts to translate such advances toward the clinic, non-invasive and non-destructive imaging tools to evaluate implants in situ in a timely manner are critically needed. The required multilevel information is comprehensive, including structural, mechanical, and biological changes such as scaffold degradation, mechanical strength, cell infiltration, extracellular matrix formation and vascularization to name a few. With its inherent advantages of non-invasiveness and non-destructiveness, ultrasound imaging can be an ideal tool for both preclinical and clinical uses. In this review, currently available ultrasound imaging technologies that have been applied in vitro and in vivo for tissue engineering and regenerative medicine are discussed and some new emerging ultrasound technologies and multi-modality approaches utilizing ultrasound are introduced. PMID:26518412

  2. Processing of Fine-Scale Piezoelectric Ceramic/Polymer Composites for Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Janas, V. F.; Safari, A.

    1996-01-01

    The objective of the research effort at Rutgers is the development of lead zirconate titanate (PZT) ceramic/polymer composites with different designs for transducer applications including hydrophones, biomedical imaging, non-destructive testing, and air imaging. In this review, methods for processing both large area and multifunctional ceramic/polymer composites for acoustic transducers were discussed.

  3. Ultra-short wavelength x-ray system

    DOEpatents

    Umstadter, Donald [Ann Arbor, MI; He, Fei [Ann Arbor, MI; Lau, Yue-Ying [Potomac, MD

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  4. Three-dimensional visualisation of the internal anatomy of the sparrowhawk (Accipiter nisus) forelimb using contrast-enhanced micro-computed tomography.

    PubMed

    Bribiesca-Contreras, Fernanda; Sellers, William I

    2017-01-01

    Gross dissection is a widespread method for studying animal anatomy, despite being highly destructive and time-consuming. X-ray computed tomography (CT) has been shown to be a non-destructive alternative for studying anatomical structures. However, in the past it has been limited to only being able to visualise mineralised tissues. In recent years, morphologists have started to use traditional X-ray contrast agents to allow the visualisation of soft tissue elements in the CT context. The aim of this project is to assess the ability of contrast-enhanced micro-CT (μCT) to construct a three-dimensional (3D) model of the musculoskeletal system of the bird wing and to quantify muscle geometry and any systematic changes due to shrinkage. We expect that this reconstruction can be used as an anatomical guide to the sparrowhawk wing musculature and form the basis of further biomechanical analysis of flight. A 3% iodine-buffered formalin solution with a 25-day staining period was used to visualise the wing myology of the sparrowhawk ( Accipiter nisus ). μCT scans of the wing were taken over the staining period until full penetration of the forelimb musculature by iodine was reached. A 3D model was reconstructed by manually segmenting out the individual elements of the avian wing using 3D visualisation software. Different patterns of contrast were observed over the duration of the staining treatment with the best results occurring after 25 days of staining. Staining made it possible to visualise and identify different elements of the soft tissue of the wing. Finally, a 3D reconstruction of the musculoskeletal system of the sparrowhawk wing is presented and numerical data of muscle geometry is compared to values obtained by dissection. Contrast-enhanced μCT allows the visualisation and identification of the wing myology of birds, including the smaller muscles in the hand, and provides a non-destructive way for quantifying muscle volume with an accuracy of 96.2%. By combining contrast-enhanced μCT with 3D visualisation techniques, it is possible to study the individual muscles of the forelimb in their original position and 3D design, which can be the basis of further biomechanical analysis. Because the stain can be washed out post analysis, this technique provides a means of obtaining quantitative muscle data from museum specimens non-destructively.

  5. Potential applicability of stress wave velocity method on pavement base materials as a non-destructive testing technique

    NASA Astrophysics Data System (ADS)

    Mahedi, Masrur

    Aggregates derived from natural sources have been used traditionally as the pavement base materials. But in recent times, the extraction of these natural aggregates has become more labor intensive and costly due to resource depletion and environmental concerns. Thus, the uses of recycled aggregates as the supplementary of natural aggregates are increasing considerably in pavement construction. Use of recycled aggregates such as recycled crushed concrete (RCA) and recycled asphalt pavement (RAP) reduces the rate of natural resource depletion, construction debris and cost. Although recycled aggregates could be used as a viable alternative of conventional base materials, strength characteristics and product variability limit their utility to a great extent. Hence, their applicability is needed to be evaluated extensively based on strength, stiffness and cost factors. But for extensive evaluation, traditionally practiced test methods are proven to be unreasonable in terms of time, cost, reliability and applicability. On the other hand, rapid non-destructive methods have the potential to be less time consuming and inexpensive along with the low variability of test results; therefore improving the reliability of estimated performance of the pavement. In this research work, the experimental program was designed to assess the potential application of stress wave velocity method as a non-destructive test in evaluating recycled base materials. Different combinations of cement treated recycled concrete aggregate (RAP) and recycled crushed concrete (RCA) were used to evaluate the applicability of stress wave velocity method. It was found that, stress wave velocity method is excellent in characterizing the strength and stiffness properties of cement treated base materials. Statistical models, based on P-wave velocity were derived for predicting the modulus of elasticity and compressive strength of different combinations of cement treated RAP, Grade-1 and Grade-2 materials. Two, three and four parameter modeling were also done for characterizing the resilient modulus response. It is anticipated that, derived correlations can be useful in estimating the strength and stiffness response of cement treated base materials with satisfactory level of confidence, if the P-wave velocity remains within the range of 500 ft/sec to 1500 ft/sec.

  6. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Keywords: Extreme temperatures, High density CCGA qualification, CCGA reliability, solder joint failures, optical inspection, and x-ray inspection.

  7. A study to ascertain the viability of ultrasonic nondestructive testing to determine the mechanical characteristics of wood/agricultural hardboards with soybean based adhesives

    NASA Astrophysics Data System (ADS)

    Colen, Charles Raymond, Jr.

    There have been numerous studies with ultrasonic nondestructive testing and wood fiber composites. The problem of the study was to ascertain whether ultrasonic nondestructive testing can be used in place of destructive testing to obtain the modulus of elasticity (MOE) of the wood/agricultural material with comparable results. The uniqueness of this research is that it addressed the type of content (cornstalks and switchgrass) being used with the wood fibers and the type of adhesives (soybean-based) associated with the production of these composite materials. Two research questions were addressed in the study. The major objective was to determine if one can predict the destructive test MOE value based on the nondestructive test MOE value. The population of the study was wood/agricultural fiberboards made from wood fibers, cornstalks, and switchgrass bonded together with soybean-based, urea-formaldehyde, and phenol-formaldehyde adhesives. Correlational analysis was used to determine if there was a relationship between the two tests. Regression analysis was performed to determine a prediction equation for the destructive test MOE value. Data were collected on both procedures using ultrasonic nondestructing testing and 3-point destructive testing. The results produced a simple linear regression model for this study which was adequate in the prediction of destructive MOE values if the nondestructive MOE value is known. An approximation very close to the entire error in the model equation was explained from the destructive test MOE values for the composites. The nondestructive MOE values used to produce a linear regression model explained 83% of the variability in the destructive test MOE values. The study also showed that, for the particular destructive test values obtained with the equipment used, the model associated with the study is as good as it could be due to the variability in the results from the destructive tests. In this study, an ultrasonic signal was used to determine the MOE values on nondestructive tests. Future research studies could use the same or other hardboards to examine how the resins affect the ultrasonic signal.

  8. Evaluation of thresholding techniques for segmenting scaffold images in tissue engineering

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Srinivasan; Yaszemski, Michael J.; Robb, Richard A.

    2004-05-01

    Tissue engineering attempts to address the ever widening gap between the demand and supply of organ and tissue transplants using natural and biomimetic scaffolds. The regeneration of specific tissues aided by synthetic materials is dependent on the structural and morphometric properties of the scaffold. These properties can be derived non-destructively using quantitative analysis of high resolution microCT scans of scaffolds. Thresholding of the scanned images into polymeric and porous phase is central to the outcome of the subsequent structural and morphometric analysis. Visual thresholding of scaffolds produced using stochastic processes is inaccurate. Depending on the algorithmic assumptions made, automatic thresholding might also be inaccurate. Hence there is a need to analyze the performance of different techniques and propose alternate ones, if needed. This paper provides a quantitative comparison of different thresholding techniques for segmenting scaffold images. The thresholding algorithms examined include those that exploit spatial information, locally adaptive characteristics, histogram entropy information, histogram shape information, and clustering of gray-level information. The performance of different techniques was evaluated using established criteria, including misclassification error, edge mismatch, relative foreground error, and region non-uniformity. Algorithms that exploit local image characteristics seem to perform much better than those using global information.

  9. Trace element mapping in Parkinsonian brain by quantitative ion beam microscopy

    NASA Astrophysics Data System (ADS)

    Barapatre, Nirav; Morawski, Markus; Butz, Tilman; Reinert, Tilo

    2010-06-01

    The role of iron in the pathogenesis of the Parkinson's disease (PD) is a current subject of research in Neurochemistry, since an abnormal increase in iron is reported in the substantia nigra (SN) of Parkinsonian patients. A severe loss of the cells containing dopamine in the SN in the PD has also drawn attention towards the function of a browny-black pigment called neuromelanin, which accumulates predominantly in these dopaminergic neurons. The neuromelanin has an ability to chelate metal ions, which, in free state, may cause considerable damage to cells by reacting with their lipid-rich membranes. However, it could also potentiate free radical production if it releases the bound metal ions. The highly sensitive and non-destructive micro-PIXE method suits best to quantify and map the trace elements in the SN. The accuracy in charge measurement for such microanalysis studies is of utmost importance for quantitative analysis. Since a Faraday cup is usually placed behind the thin biological sample to measure the charge, the primary and the secondary electrons, knocked out from the sample by traversing ion beam, hamper an exact charge determination. Hence, a new non-interceptive technique was developed for precise charge measurement and for continuous monitoring of beam current.

  10. Application of near-infrared spectroscopy in the detection of fat-soluble vitamins in premix feed

    NASA Astrophysics Data System (ADS)

    Jia, Lian Ping; Tian, Shu Li; Zheng, Xue Cong; Jiao, Peng; Jiang, Xun Peng

    2018-02-01

    Vitamin is the organic compound and necessary for animal physiological maintenance. The rapid determination of the content of different vitamins in premix feed can help to achieve accurate diets and efficient feeding. Compared with high-performance liquid chromatography and other wet chemical methods, near-infrared spectroscopy is a fast, non-destructive, non-polluting method. 168 samples of premix feed were collected and the contents of vitamin A, vitamin E and vitamin D3 were detected by the standard method. The near-infrared spectra of samples ranging from 10 000 to 4 000 cm-1 were obtained. Partial least squares regression (PLSR) and support vector machine regression (SVMR) were used to construct the quantitative model. The results showed that the RMSEP of PLSR model of vitamin A, vitamin E and vitamin D3 were 0.43×107 IU/kg, 0.09×105 IU/kg and 0.17×107 IU/kg, respectively. The RMSEP of SVMR model was 0.45×107 IU/kg, 0.11×105 IU/kg and 0.18×107 IU/kg. Compared with nonlinear regression method (SVMR), linear regression method (PLSR) is more suitable for the quantitative analysis of vitamins in premix feed.

  11. Metabolism of a sea lamprey pesticide by fish liver enzymes part A: identification and synthesis of TFM metabolites.

    PubMed

    Bussy, Ugo; Chung-Davidson, Yu-Wen; Buchinger, Tyler; Li, Ke; Smith, Scott A; Jones, A Daniel; Li, Weiming

    2018-02-01

    The sea lamprey (Petromyzon marinus) is a destructive invasive species in the Great Lakes that contributed to the collapse of native fish populations in the mid-1900s. 3-Trifluoromethyl-4-nitrophenol (TFM) is a selective pesticide that has been applied to sea lamprey infested tributaries of the Great Lakes to kill larvae since the 1960s and has reduced the populations by as much as 90%. However, the metabolism of TFM by sea lamprey and non-target species is not fully illuminated. Elucidation of TFM metabolism is critical for understanding its mode of action and possible environmental impact. Here, we describe the screening, identification, synthesis and structural characterization of TFM metabolites in livers from sea lamprey and three non-target species that differ in their ability to survive TFM exposure. We identified glucuronidation, sulfation, N-acetylation, glutathione conjugation, and aromatic nitro group reduction as potential detoxification mechanisms. Seven metabolites were synthesized for use as markers of TFM metabolism in fish. Quantitative 1 H NMR was used to assay synthesized metabolite stock solutions that were then used as standard material to develop a quantitative LC-MS/MS method for TFM metabolites.

  12. Material Inspection Using THz and Thermal Wave

    NASA Astrophysics Data System (ADS)

    Zhang, Cunlin; Mu, Kaijun; Li, Yanhong; Zhang, X.-C.

    2007-03-01

    Terahertz (THz) and thermal wave imaging technologies are complementary inspection modalities for use in non-contact and non-destructive evaluation. Both of them are applied in order to evaluate damages on a variety of composite samples. We will also report the test of a large number of insulation foam panels used in NASA's External Fuel Tank through pulse and CW terahertz systems. The study of defects using the two techniques in selected materials, including metal plates, carbon fibers, glass fibers, carbon silicon composites, etc is also shown.

  13. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, M.; Ebel, D.S.

    2009-03-19

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length ofmore » {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.« less

  14. Infrared thermographic detection of buried grave sites

    NASA Astrophysics Data System (ADS)

    Weil, Gary J.; Graf, Richard J.

    1992-04-01

    Since time began, people have been born and people have died. For a variety of reasons grave sites have had to be located and investigated. These reasons have included legal, criminal, religious, construction and even simple curiosity problems. Destructive testing methods such as shovels and backhoes, have traditionally been used to determine grave site locations in fields, under pavements, and behind hidden locations. These existing techniques are slow, inconvenient, dirty, destructive, visually obtrusive, irritating to relatives, explosive to the media and expensive. A new, nondestructive, non-contact technique, infrared thermography has been developed to address these problems. This paper will describe how infrared thermography works and will be illustrated by several case histories.

  15. NON-DESTRUCTIVE SOIL CARBON ANALYZER.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wielopolski, Lucian; Hendrey, G.; Orion, I.

    2004-02-01

    This report describes the feasibility, calibration, and safety considerations of a non-destructive, in situ, quantitative, volumetric soil carbon analytical method based on inelastic neutron scattering (INS). The method can quantify values as low as 0.018 gC/cc, or about 1.2% carbon by weight with high precision under the instrument's configuration and operating conditions reported here. INS is safe and easy to use, residual soil activation declines to background values in under an hour, and no radiological requirements are needed for transporting the instrument. The labor required to obtain soil-carbon data is about 10-fold less than with other methods, and the instrumentmore » offers a nearly instantaneous rate of output of carbon-content values. Furthermore, it has the potential to quantify other elements, particularly nitrogen. New instrumentation was developed in response to a research solicitation from the U.S. Department of Energy (DOE LAB 00-09 Carbon Sequestration Research Program) supporting the Terrestrial Carbon Processes (TCP) program of the Office of Science, Biological and Environmental Research (BER). The solicitation called for developing and demonstrating novel techniques for quantitatively measuring changes in soil carbon. The report includes raw data and analyses of a set of proof-of-concept, double-blind studies to evaluate the INS approach in the first phase of developing the instrument. Managing soils so that they sequester massive amounts of carbon was suggested as a means to mitigate the atmospheric buildup of anthropogenic CO{sub 2}. Quantifying changes in the soils' carbon stocks will be essential to evaluating such schemes and documenting their performance. Current methods for quantifying carbon in soil by excavation and core sampling are invasive, slow, labor-intensive and locally destroy the system being observed. Newly emerging technologies, such as Laser Induced Breakdown Spectroscopy and Near-Infrared Spectroscopy, offer soil-carbon analysis; however, these also are invasive and destructive techniques. The INS approach permits quantification in a relatively large volume of soil without disrupting the measurement site. The technique is very fast and provides nearly instantaneous results thereby reducing the cost, and speeding up the rate of analysis. It also has the potential to cover large areas in a mobile scanning mode. These capabilities will significantly advance the tracking carbon sequestration and offer a tool for research in agronomy, forestry, soil ecology and biogeochemistry.« less

  16. 77 FR 12175 - Airworthiness Directives; DASSAULT AVIATION Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... specified products. The MCAI states: The Maintenance Procedure (MP) 57-607, related to non destructive check... Recommended Maintenance Schedules chapter of the Aircraft Maintenance Documentation. After the implementation... maintenance program to include ``Non-Destructive Check of Flap Tracks 2 and 5,'' Maintenance Procedure 57-607...

  17. Evaluation of the MIT-Scan-T2 for non-destructive PCC pavement thickness determination.

    DOT National Transportation Integrated Search

    2008-07-01

    The MIT-Scan-T2 device is marketed as a non-destructive way to determine pavement thickness on both : HMA and PCC pavements. PCC pavement thickness determination is an important incentivedisincentive : measurement for the Iowa DOT and contractors. Th...

  18. a Study of Ultrasonic Wave Propagation Through Parallel Arrays of Immersed Tubes

    NASA Astrophysics Data System (ADS)

    Cocker, R. P.; Challis, R. E.

    1996-06-01

    Tubular array structures are a very common component in industrial heat exchanging plant and the non-destructive testing of these arrays is essential. Acoustic methods using microphones or ultrasound are attractive but require a thorough understanding of the acoustic properties of tube arrays. This paper details the development and testing of a small-scale physical model of a tube array to verify the predictions of a theoretical model for acoustic propagation through tube arrays developed by Heckl, Mulholland, and Huang [1-5] as a basis for the consideration of small-scale physical models in the development of non-destructive testing procedures for tube arrays. Their model predicts transmission spectra for plane waves incident on an array of tubes arranged in straight rows. Relative transmission is frequency dependent with bands of high and low attenuation caused by resonances within individual tubes and between tubes in the array. As the number of rows in the array increases the relative transmission spectrum becomes more complex, with increasingly well-defined bands of high and low attenuation. Diffraction of acoustic waves with wavelengths less than the tube spacing is predicted and appears as step reductions in the transmission spectrum at frequencies corresponding to integer multiples of the tube spacing. Experiments with the physical model confirm the principle features of the theoretical treatment.

  19. Infrared Thermography as a Non-destructive Testing Solution for Thermal Spray Metal Coatings

    NASA Astrophysics Data System (ADS)

    Santangelo, Paolo E.; Allesina, Giulio; Bolelli, Giovanni; Lusvarghi, Luca; Matikainen, Ville; Vuoristo, Petri

    2017-12-01

    In this work, an infrared (IR) thermographic procedure was evaluated as a non-destructive testing tool to detect damage in thermal spray metallic coatings. As model systems, polished HVOF- and HVAF-sprayed Fe-based layers deposited onto steel plates were employed. Damage by external-object impingement was simulated through a cyclic impact-test apparatus, which induced circumferential and radial cracks across all model systems, and interface cracks of different sizes in distinct samples. Damaged and undamaged plates were bulk-heated to above 100 °C using an IR lamp; their free-convection cooling was then recorded by an IR thermocamera. The intentionally induced defects were hardly detectable in IR thermograms, due to IR reflection and artificial "hot" spots induced by residuals of transfer material from the impacting counterbody. As a micrometer-thin layer of black paint was applied, surface emissivity got homogenized and any artifacts were effectively suppressed, so that failed coating areas clearly showed up as "cold spots." This effect was more apparent when large interface cracks occurred. Finite-element modeling proved the physical significance of the IR-thermography approach, showing that failed coating areas are cooled by surrounding air faster than they are heated by conduction from the hot substrate, which is due to the insulating effect of cracks.

  20. Defect Detection on Carbon Fibre Reinforced Plastics (cfrp) with Laser Generated Lamb Waves

    NASA Astrophysics Data System (ADS)

    Focke, O.; Huke, P.; Hildebrandt, A.

    2011-06-01

    Standard ultrasound methods using a phased-array or a single transducer are commonly used for non-destructive evaluation (NDE) during manufacturing of carbon fiber reinforced plastics (CFRP) parts and certificated testing schemes were developed for individual parts and geometries. However, most testing methods need direct contact, matching gels and remain therefore time consuming. Laser-Ultrasonics is advantageous due to the contactless measurement technology and high accessibility even on complex parts. Despite the non-destructive testing with body waves, we show that the NDE can be expanded using two-dimensional surface (Lamb) waves for detection of delaminations close to the surface or small deteriorations caused by e.g. impacts. Lamb waves have been excited with a single transducer and with a short-pulse Laser with additionally producing A0-and S0-Lamb waves. The waves were detected with a shearography setup that allows for measuring two-dimensionally the displacement of a surface. Short integration times of the camera were realized using a pulsed ruby laser for illumination. As a consequence to the anisotropy the propagation in different directions exhibits individual characteristics like amplitude, damping and velocity. This has motivated to build up models for the propagation of Lamb waves and to compare them with experimental results.

  1. Opto-Technical Monitoring - a Standardized Methodology to Assess the Treatment of Historical Stone Surfaces

    NASA Astrophysics Data System (ADS)

    Rahrig, M.; Drewello, R.; Lazzeri, A.

    2018-05-01

    Monitoring is an essential requirement for the planning, assessment and evaluation of conservation measures. It should be based on a standardized and reproducible observation of the historical surface. For many areas and materials suitable methods for long-term monitoring already exist. But hardly any non-destructive testing methods have been used to test new materials for conservation of damaged stone surfaces. The Nano-Cathedral project, funded by the European Union's Horizon 2020 research and innovation program, is developing new materials and technologies for preserving damaged stone surfaces of built heritage. The prototypes developed are adjusted to the needs and problems of a total of six major cultural monuments in Europe. In addition to the testing of the materials under controlled laboratory conditions, the products have been applied to trial areas on the original stone surfaces. For a location-independent standardized assessment of surface changes of the entire trial areas a monitoring method based on opto-technical, non-contact and non-destructive testing methods has been developed. This method involves a three-dimensional measurement of the surface topography using Structured-Light-Scanning and the analysis of the surfaces in different light ranges using high resolution VIS photography, as well as UV-A-fluorescence photography and reflected near-field IR photography. The paper will show the workflow of this methodology, including a detailed description of the equipment used data processing and the advantages for monitoring highly valuable stone surfaces. Alongside the theoretical discussion, the results of two measuring campaigns on trial areas of the Nano-Cathedral project will be shown.

  2. Advances in Non-Destructive Early Assessment of Fruit Ripeness towards Defining Optimal Time of Harvest and Yield Prediction—A Review

    PubMed Central

    Lecourt, Julien; Bishop, Gerard

    2018-01-01

    Global food security for the increasing world population not only requires increased sustainable production of food but a significant reduction in pre- and post-harvest waste. The timing of when a fruit is harvested is critical for reducing waste along the supply chain and increasing fruit quality for consumers. The early in-field assessment of fruit ripeness and prediction of the harvest date and yield by non-destructive technologies have the potential to revolutionize farming practices and enable the consumer to eat the tastiest and freshest fruit possible. A variety of non-destructive techniques have been applied to estimate the ripeness or maturity but not all of them are applicable for in situ (field or glasshouse) assessment. This review focuses on the non-destructive methods which are promising for, or have already been applied to, the pre-harvest in-field measurements including colorimetry, visible imaging, spectroscopy and spectroscopic imaging. Machine learning and regression models used in assessing ripeness are also discussed. PMID:29320410

  3. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larimer, Curtis; Suter, Jonathan D.; Bonheyo, George

    Biofilms are ubiquitous and deleteriously impact a wide range of industrial processes, medical and dental health issues, and environmental problems such as transport of invasive species and the fuel efficiency of ocean going vessels. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein we describe a non-destructive high resolution method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometric optical microscopy. Using this technique, surface morphology, surface roughness, and biofilm thickness can be measured non-destructively and with high resolutionmore » as a function of time without disruption of the biofilm activity and processes. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Typical bacterial growth curves were observed. Increase in surface roughness was a leading indicator of biofilm growth.« less

  4. Destruction of VX by aqueous-phase oxidation using peroxydisulfate (direct chemical oxidation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, J.F.; Krueger, R.; Farmer, J.C.

    1995-10-11

    Chemical warfare agents may be completely destroyed (converted to H{sub 2}O, CO{sub 2}, salts) by oxidation at 90--100 C using acidified ammonium peroxydisulfate, with recycle of NH{sub 4}SO{sub 4} byproduct. The process requires no toxic or expended catalysts and produces no secondary wastes other than the precipitated inorganic content of the agents. To determine oxidative capability of peroxydisulfate at low reductant contents, we measured rate data for oxidation of 20 diverse compounds with diverse functional groups; 4 of these have bonds similar to those found in VX, HD, and GB. On an equivalence basis, integral first-order rate constants for 100more » C oxidation are 0.012{plus_minus}0.005 min{sup {minus}1} for di-isopropyl-methyl-phosphonate, methyl phosphonic acid, triethylamine, and 2,2{prime}-thiodiethanol at low initial concentrations of 50 ppM(as carbon) and pH 1.5. To provide scale-up equations for a bulk chemical agent destruction process, we measured time-dependent oxidation of bulk model chemicals at high concentrations (0.5 N) and developed and tested a quantitative model. A practical process for bulk VX destruction would begin with chemical detoxification by existing techniques (eg, hydrolysis or mild oxidation using oxone), followed by mineralization of the largely detoxified products by peroxydisulfate. Secondary wastes would be avoided by use of commercial electrolysis equipment to regenerate the oxidant. Reagent requirements, mass balance and scaleup parameters are given for VX destruction, using peroxydisulfate alone, or supplemented with hydrogen peroxide. For the use of 2.5 N peroxydisulfate as the oxidant, a 1 m{sup 3} digester will process about 200 kg (as C) per day. The process may be extended to total destruction of HD and hydrolysis products of G agents.« less

  5. Rapid impact testing for quantitative assessment of large populations of bridges

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Prader, John; DeVitis, John; Deal, Adrienne; Zhang, Jian; Moon, Franklin; Aktan, A. Emin

    2011-04-01

    Although the widely acknowledged shortcomings of visual inspection have fueled significant advances in the areas of non-destructive evaluation and structural health monitoring (SHM) over the last several decades, the actual practice of bridge assessment has remained largely unchanged. The authors believe the lack of adoption, especially of SHM technologies, is related to the 'single structure' scenarios that drive most research. To overcome this, the authors have developed a concept for a rapid single-input, multiple-output (SIMO) impact testing device that will be capable of capturing modal parameters and estimating flexibility/deflection basins of common highway bridges during routine inspections. The device is composed of a trailer-mounted impact source (capable of delivering a 50 kip impact) and retractable sensor arms, and will be controlled by an automated data acquisition, processing and modal parameter estimation software. The research presented in this paper covers (a) the theoretical basis for SISO, SIMO and MIMO impact testing to estimate flexibility, (b) proof of concept numerical studies using a finite element model, and (c) a pilot implementation on an operating highway bridge. Results indicate that the proposed approach can estimate modal flexibility within a few percent of static flexibility; however, the estimated modal flexibility matrix is only reliable for the substructures associated with the various SIMO tests. To overcome this shortcoming, a modal 'stitching' approach for substructure integration to estimate the full Eigen vector matrix is developed, and preliminary results of these methods are also presented.

  6. Effect of Friction Stir Process Parameters on the Mechanical and Thermal Behavior of 5754-H111 Aluminum Plates.

    PubMed

    Serio, Livia Maria; Palumbo, Davide; De Filippis, Luigi Alberto Ciro; Galietti, Umberto; Ludovico, Antonio Domenico

    2016-02-23

    A study of the Friction Stir Welding (FSW) process was carried out in order to evaluate the influence of process parameters on the mechanical properties of aluminum plates (AA5754-H111). The process was monitored during each test by means of infrared cameras in order to correlate temperature information with eventual changes of the mechanical properties of joints. In particular, two process parameters were considered for tests: the welding tool rotation speed and the welding tool traverse speed. The quality of joints was evaluated by means of destructive and non-destructive tests. In this regard, the presence of defects and the ultimate tensile strength (UTS) were investigated for each combination of the process parameters. A statistical analysis was carried out to assess the correlation between the thermal behavior of joints and the process parameters, also proving the capability of Infrared Thermography for on-line monitoring of the quality of joints.

  7. Effect of Friction Stir Process Parameters on the Mechanical and Thermal Behavior of 5754-H111 Aluminum Plates

    PubMed Central

    Serio, Livia Maria; Palumbo, Davide; De Filippis, Luigi Alberto Ciro; Galietti, Umberto; Ludovico, Antonio Domenico

    2016-01-01

    A study of the Friction Stir Welding (FSW) process was carried out in order to evaluate the influence of process parameters on the mechanical properties of aluminum plates (AA5754-H111). The process was monitored during each test by means of infrared cameras in order to correlate temperature information with eventual changes of the mechanical properties of joints. In particular, two process parameters were considered for tests: the welding tool rotation speed and the welding tool traverse speed. The quality of joints was evaluated by means of destructive and non-destructive tests. In this regard, the presence of defects and the ultimate tensile strength (UTS) were investigated for each combination of the process parameters. A statistical analysis was carried out to assess the correlation between the thermal behavior of joints and the process parameters, also proving the capability of Infrared Thermography for on-line monitoring of the quality of joints. PMID:28773246

  8. Impact detection method for composite winglets based on neural network implementation

    NASA Astrophysics Data System (ADS)

    Viscardi, Massimo; Arena, Maurizio; Napolitano, Pasquale

    2018-03-01

    Maintenance tasks and safety aspects represent a strategic role in the managing of the modern aircraft fleets. The demand for reliable techniques for structural health monitoring represent so a key aspect looking forward to new generation aircraft. In particular, the use of more technologically complex materials and manufacturing methods requires anyway more efficient as well as rapid application processes to improve the design strength and service life. Actually, it is necessary to rely on survey instruments, which allow for safeguarding the structural integrity of the aircraft, especially after the wide use of composite structures highly susceptible to non-detected damages as delamination of the ply. In this paper, the authors have investigated the feasibility to implement a neural network-based algorithm to predict the impact event at low frequency, typically due to the bird collision. Relying upon a numerical model, representative of a composite flat panel, the approach has been also experimentally validated. The purpose of the work is therefore the presentation of an innovative application within the Non Destructive Testing field based upon vibration measurements. The aim of the research has been the development of a Non Destructive Test which meets most of the mandatory requirements for effective health monitoring systems while, at the same time, reducing as much as possible the complexity of the data analysis algorithm and the experimental acquisition instrumentation. Future activities will be addressed to test such technique on a more complex aeronautical system.

  9. Gold Nanoparticle Labeling Based ICP-MS Detection/Measurement of Bacteria, and Their Quantitative Photothermal Destruction

    PubMed Central

    Lin, Yunfeng

    2015-01-01

    Bacteria such as Salmonella and E. coli present a great challenge in public health care in today’s society. Protection of public safety against bacterial contamination and rapid diagnosis of infection require simple and fast assays for the detection and elimination of bacterial pathogens. After utilizing Salmonella DT104 as an example bacterial strain for our investigation, we report a rapid and sensitive assay for the qualitative and quantitative detection of bacteria by using antibody affinity binding, popcorn shaped gold nanoparticle (GNPOPs) labeling, surfance enchanced Raman spectroscopy (SERS), and inductively coupled plasma mass spectrometry (ICP-MS) detection. For qualitative analysis, our assay can detect Salmonella within 10 min by Raman spectroscopy; for quantitative analysis, our assay has the ability to measure as few as 100 Salmonella DT104 in a 1 mL sample (100 CFU/mL) within 40 min. Based on the quantitative detection, we investigated the quantitative destruction of Salmonella DT104, and the assay’s photothermal efficiency in order to reduce the amount of GNPOPs in the assay to ultimately to eliminate any potential side effects/toxicity to the surrounding cells in vivo. Results suggest that our assay may serve as a promising candidate for qualitative and quantitative detection and elimination of a variety of bacterial pathogens. PMID:26417447

  10. Quantitative detection of caffeine in human skin by confocal Raman spectroscopy--A systematic in vitro validation study.

    PubMed

    Franzen, Lutz; Anderski, Juliane; Windbergs, Maike

    2015-09-01

    For rational development and evaluation of dermal drug delivery, the knowledge of rate and extent of substance penetration into the human skin is essential. However, current analytical procedures are destructive, labor intense and lack a defined spatial resolution. In this context, confocal Raman microscopy bares the potential to overcome current limitations in drug depth profiling. Confocal Raman microscopy already proved its suitability for the acquisition of qualitative penetration profiles, but a comprehensive investigation regarding its suitability for quantitative measurements inside the human skin is still missing. In this work, we present a systematic validation study to deploy confocal Raman microscopy for quantitative drug depth profiling in human skin. After we validated our Raman microscopic setup, we successfully established an experimental procedure that allows correlating the Raman signal of a model drug with its controlled concentration in human skin. To overcome current drawbacks in drug depth profiling, we evaluated different modes of peak correlation for quantitative Raman measurements and offer a suitable operating procedure for quantitative drug depth profiling in human skin. In conclusion, we successfully demonstrate the potential of confocal Raman microscopy for quantitative drug depth profiling in human skin as valuable alternative to destructive state-of-the-art techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Active and passive computed tomography mixed waste focus area final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberson, G P

    1998-08-19

    The Mixed Waste Focus Area (MWFA) Characterization Development Strategy delineates an approach to resolve technology deficiencies associated with the characterization of mixed wastes. The intent of this strategy is to ensure the availability of technologies to support the Department of Energy's (DOE) mixed waste low-level or transuranic (TRU) contaminated waste characterization management needs. To this end the MWFA has defined and coordinated characterization development programs to ensure that data and test results necessary to evaluate the utility of non-destructive assay technologies are available to meet site contact handled waste management schedules. Requirements used as technology development project benchmarks are basedmore » in the National TRU Program Quality Assurance Program Plan. These requirements include the ability to determine total bias and total measurement uncertainty. These parameters must be completely evaluated for waste types to be processed through a given nondestructive waste assay system constituting the foundation of activities undertaken in technology development projects. Once development and testing activities have been completed, Innovative Technology Summary Reports are generated to provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory's (LLNL) is developing the Active and Passive Computed Tomography (A&PCT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of .their classification; low level, transuranic or provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory's (LLNL) is developing the Active and Passive Computed Tomography (A&PCT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of .their classification; low level, transuranic or mixed, which contains radioactivity and hazardous organic species. The scope of our technology is to develop a non-invasive waste-drum scanner that employs the principles of computed tomography and gamma-ray spectral analysis to identify and quantify all of the detectable radioisotopes. Once this and other applicable technologies are developed, waste drums can be non- destructively and accurately characterized to satisfy repository and regulatory guidelines prior to disposal.« less

  12. HPLC-PFD determination of priority pollutant PAHs in water, sediment, and semipermeable membrane devices

    USGS Publications Warehouse

    Williamson, K.S.; Petty, J.D.; Huckins, J.N.; Lebo, J.A.; Kaiser, E.M.

    2002-01-01

    High performance liquid chromatography coupled with programmable fluorescence detection was employed for the determination of 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs) in water, sediment, and semipermeable membrane devices (SPMDs). Chromatographic separation using this analytical method facilitates selectivity, sensitivity (ppt levels), and can serve as a non-destructive technique for subsequent analysis by other chromatographic and spectroscopic techniques. Extraction and sample cleanup procedures were also developed for water, sediment, and SPMDs using various chromatographic and wet chemical methods. The focus of this publication is to examine the enrichment techniques and the analytical methodologies used in the isolation, characterization, and quantitation of 15 PPPAHs in different sample matrices.

  13. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    NASA Astrophysics Data System (ADS)

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin; Chi, Li-Feng; Wang, Sui-Dong

    2015-03-01

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

  14. Comparative analysis of non-destructive methods to control fissile materials in large-size containers

    NASA Astrophysics Data System (ADS)

    Batyaev, V. F.; Sklyarov, S. V.

    2017-09-01

    The analysis of various non-destructive methods to control fissile materials (FM) in large-size containers filled with radioactive waste (RAW) has been carried out. The difficulty of applying passive gamma-neutron monitoring FM in large containers filled with concreted RAW is shown. Selection of an active non-destructive assay technique depends on the container contents; and in case of a concrete or iron matrix with very low activity and low activity RAW the neutron radiation method appears to be more preferable as compared with the photonuclear one. Note to the reader: the pdf file has been changed on September 22, 2017.

  15. Corrosion performance of alternative steam generator materials and designs. Volume 2. Posttest examination of a seawater-faulted alternative materials model steam generator. Final report. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupowicz, J.J.; Scott, D.B.; Fink, G.C.

    Corrosion results obtained from the post-test non-destructive and destructive examinations of an alternative materials model steam generator are described in this final report. The model operated under representative thermal and hydraulic and accelerated (high seawater contaminant concentration) steam generator secondary water chemistry conditions. Total exposure consisted of 114 steaming days under all volatile treatment (AVT) chemistry conditions followed by 282 fault steaming days at a 30 ppM chloride concentration in the secondary bulk water. Various support plate and lattice strip support designs incorporated Types 347, 405, 409 and SCR-3 stainless steels; Alloys 600 and 690; and carbon steel. Heat transfermore » tube materials included Alloy 600 in various heat treated conditions, Alloy 690, and Alloy 800. All tubing materials in this test exhibited moderate pitting, primarily in the sludge pile region above the tubesheet.« less

  16. Corrosion performance of alternative steam generator materials and designs. Volume 3. Posttest examination of a freshwater-faulted alternative materials model steam generator. Final report. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupowicz, J.J.; Scott, D.B.; Rentler, R.M.

    Corrosion results obtained from the post-test non-destructive and destructive examinations of an alternative materials model steam generator are described in this final report. The model operated under representative thermal and hydraulic and accelerated (high fresh water contaminant concentration) steam generator secondary water chemistry conditions. Total exposure consisted of 114 steaming days under all volatile treatment (AVT) chemistry conditions followed by 358 fault steaming days at a 40 ppM sulfate concentration in the secondary bulk water. Various support plate and lattice strip support designs incorporated Types 347, 405, 409 and SCR-3 stainless steels; Alloys 600 and 690; and carbon steel. Heatmore » transfer tube materials included Alloy 600 in various heat treated conditions, Alloy 690, and Alloy 800. All tubing materials in this test exhibited significant general corrosion beneath thick surface deposits.« less

  17. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up

    NASA Astrophysics Data System (ADS)

    Venkiteswaran, C. N.; Jayaraj, V. V.; Ojha, B. K.; Anandaraj, V.; Padalakshmi, M.; Vinodkumar, S.; Karthik, V.; Vijaykumar, Ran; Vijayaraghavan, A.; Divakar, R.; Johny, T.; Joseph, Jojo; Thirunavakkarasu, S.; Saravanan, T.; Philip, John; Rao, B. P. C.; Kasiviswanathan, K. V.; Jayakumar, T.

    2014-06-01

    The 500 MWe Prototype Fast Breeder Reactor (PFBR) which is in advanced stage of construction at Kalpakkam, India, will use mixed oxide (MOX) fuel with a target burnup of 100 GWd/t. The fuel pellet is of annular design to enable operation at a peak linear power of 450 W/cm with the requirement of minimum duration of pre-conditioning. The performance of the MOX fuel and the D9 clad and wrapper material was assessed through Post Irradiation Examinations (PIE) after test irradiation of 37 fuel pin subassembly in Fast Breeder Test Reactor (FBTR) to a burn-up of 112 GWd/t. Fission product distribution, swelling and fuel-clad gap evolution, central hole diameter variation, restructuring, fission gas release and clad wastage due to fuel-clad chemical interaction were evaluated through non-destructive and destructive examinations. The examinations have indicated that the MOX fuel can safely attain the desired target burn-up in PFBR.

  18. Comparative Effect of Bio-waste Ashes on Strength Properties of Cement Mortar

    NASA Astrophysics Data System (ADS)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad; Ahmed, Mohamed Anwar

    Biomass fuels produce about 400 million tonnes of ashes as waste material. This paper discusses the pozzolanic character of bio-waste ashes obtained from dry tree leaves (AML), Korai grass (KRI) and Tifton grass (TFT). Ashes were obtained by control incineration of the wastes at 600°C for 5 hours and mortar specimens were prepared by substituting cement with 10, 20 and 30% ash. Strength development of ash-blended mortar specimens was evaluated by conducting destructive tests as well as non-destructive tests till 91 days. X-ray diffraction, scanning electron microscopic and thermo-gravimetric techniques were used to analyze the influence of ash substitution on strength properties of blended-mortar. Pozzolanic reactivity of AML- and KRI-ash was confirmed, but TFT-ash did not show enough reactivity. Overall results confirmed that up to 20% substitution of cement can be made with AML- or KRI-ash with strength approaching 90% of that of control.

  19. An automated technique for manufacturing thermoplastic stringers in continuous length

    NASA Astrophysics Data System (ADS)

    Pantelakis, Sp.; Baxevani, E.; Spelz, U.

    In the present work an automated Continuous Compression Moulding Technique for the manufacture of stringers in continuous length is presented. The method combines pultrusion and hot-pressing. The technique is utilized for the production of L-shape stringers which are widely applied in aerospace constructions. The investigation was carried out on carbon reinforced PEEK (C/PEEK), as well as, for comparison, on the thermoplastic composites carbon reinforced polyethersulfon (C/PES), glass and carbon reinforced polyphenylene-sulfide (G/PPS, C/PPS) and Kevlar reinforced Polyamide 6 (K/PA 6). For the materials investigated the optimized process parameters for manufacturing the L-shape stringers were derived experimentally. To achieve this goal, the quality of the produced parts was controlled by using non-destructive testing techniques. Parts providing satisfactory quality were also tested destructively to measure their mechanical properties. The investigation results have shown the suitability of the technique to produce continuous length stringers.

  20. Non-Destructive Trace Element Tomography Using Europe's Brightest Synchrotron Sources (ESRF-Grenoble, DESY-Hamburg) — Towards a Better Understanding of Martian Samples

    NASA Astrophysics Data System (ADS)

    Brenker, F. E.; Vincze, L.; Vekemans, B.; de Poulle, E.

    2018-04-01

    Synchrotron sources are valuable tools to measure the main and trace element content of extraterrestrial samples. The non-destructive measurements will allow to identify important geological processes within the martian mantle and crust.

  1. A spatially offset Raman spectroscopy method for non-destructive detection of gelatin-encapsulated powders

    USDA-ARS?s Scientific Manuscript database

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and...

  2. Non-destructive detection of cross-sectional strain and defect structure in an individual Ag five-fold twinned nanowire by 3D electron diffraction mapping.

    PubMed

    Fu, Xin; Yuan, Jun

    2017-07-24

    Coherent x-ray diffraction investigations on Ag five-fold twinned nanowires (FTNWs) have drawn controversial conclusions concerning whether the intrinsic 7.35° angular gap could be compensated homogeneously through phase transformation or inhomogeneously by forming disclination strain field. In those studies, the x-ray techniques only provided an ensemble average of the structural information from all the Ag nanowires. Here, using three-dimensional (3D) electron diffraction mapping approach, we non-destructively explore the cross-sectional strain and the related strain-relief defect structures of an individual Ag FTNW with diameter about 30 nm. The quantitative analysis of the fine structure of intensity distribution combining with kinematic electron diffraction simulation confirms that for such a Ag FTNW, the intrinsic 7.35° angular deficiency results in an inhomogeneous strain field within each single crystalline segment consistent with the disclination model of stress-relief. Moreover, the five crystalline segments are found to be strained differently. Modeling analysis in combination with system energy calculation further indicates that the elastic strain energy within some crystalline segments, could be partially relieved by the creation of stacking fault layers near the twin boundaries. Our study demonstrates that 3D electron diffraction mapping is a powerful tool for the cross-sectional strain analysis of complex 1D nanostructures.

  3. Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography.

    PubMed

    Li, Chen; Zeitler, J Axel; Dong, Yue; Shen, Yao-Chun

    2014-01-01

    Full-field optical coherence tomography (FF-OCT) using a conventional light-emitting diode and a complementary metal-oxide semiconductor camera has been developed for characterising coatings on small pellet samples. A set of en-face images covering an area of 700 × 700 μm(2) was taken over a depth range of 166 μm. The three-dimensional structural information, such as the coating thickness and uniformity, was subsequently obtained by analysis of the recorded en-face images. Drug-loaded pharmaceutical sustained-release pellets with two coating layers and of a sub-millimetre diameter were studied to demonstrate the usefulness of the developed system. We have shown that both coatings can be clearly resolved and the thickness was determined to be 40 and 50 μm for the outer and inner coating layers, respectively. It was also found that the outer coating layer is relatively uniform, whereas the inner coating layer has many particle-like features. X-ray computed microtomography measurements carried out on the same pellet sample confirmed all these findings. The presented FF-OCT approach is inexpensive and has better spatial resolution compared with other non-destructive analysis techniques such as terahertz pulsed imaging, and is thus considered advantageous for the quantitative analysis of thin coatings on small pellet samples. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Real-time monitoring of barrel thickness and barrel/screw separation using ultrasound

    NASA Astrophysics Data System (ADS)

    Jen, Cheng-Kuei; Zun, Zhigang; Kobayashi, Makiko

    2005-03-01

    Ultrasonic sensors together with a fast data acquisition system have been used to monitor the barrel thickness and barrel/screw separation during low-density polyethylene as well as high-density polyethylene extrusion in 30 mm and 50 mm twin-screw extruders. The sensors include sol-gel sprayed high temperature (HT) piezoelectric thick ceramic film ultrasonic transducers (UTs), stand-alone HTUTs and air-cooled buffer rod type sensors consisting of a room temperature UT and a non-clad or clad buffer rod to which the room temperature UT is attached. The installation and use of these sensors are non-intrusive to the extruder and non-destructive to the polymers being processed. This study has demonstrated the capability of appropriately designed ultrasonic sensors in monitoring the barrel and screw integrity at the melting, mixing and pumping zones of the extruder via barrel or flange. The merits and limitations of these sensors are discussed. The measurement speed and analysis of the sensitivity for quantitative wear measurements are also presented.

  5. Non-destructive testing for the structures and civil infrastructures characterization

    NASA Astrophysics Data System (ADS)

    Capozzoli, L.; Rizzo, E.

    2012-04-01

    This work evaluates the ability of non-conventional NDT techniques such as GPR, geoelectrical method and conventional ones such as infrared thermography (IRT) and sonic test for the characterization of building structures in laboratory and in-situ. Moreover, the integration of the different techniques were evaluated in order to reduce the degree of uncertainties associated. The presence of electromagnetic, resistivity or thermal anomalies in the behavior may be related to the presence of defects, crack, decay or moisture. The research was conducted in two phases: the first phase was performed in laboratory and the second one mainly in the field work. The laboratory experiments proceeded to calibrate the geophysical techniques GPR and geoelectrical method on building structures. A multi-layer structure was reconstructed in laboratory, in order to simulate a back-bridge: asphalt, reinforced concrete, sand and gravel layers. In the deep sandy layer, PVC, aluminum and steel pipes were introduced. This structure has also been brought to crack in a predetermined area and hidden internal fractures were investigated. GPR has allowed to characterize the panel in a non-invasive mode; radar maps were developed using various algorithms during post-process about 2D maps and 3D models with aerial acquisition of 400 MHz, 900MHz, 1500MHz, 2000MHz. Geoelectrical testing was performed with a network of 25 electrodes spaced at mutual distance of 5 cm. Two different configurations were used dipole-dipole and pole-dipole approaches. In the second phase, we proceeded to the analysis of pre-tensioned concrete in order to detect the possible presence of criticality in the structure. For this purpose by GPR 2GHz antenna, a '70 years precast bridge characterized by a high state of decay was studied; then were also analyzed a pillar and a beam of recent production directly into the processing plant. Moreover, results obtained using GPR were compared with those obtained through the use of infrared thermography and sonic testing. Finally, we investigated a radiant floor by GPR (900 MHz to 2000 MHz antennas) and long-wave infrared camera. Non-destructive diagnostic techniques allow to investigate a building structure in reinforced concrete or masonry without altering the characteristics of the element investigated. For this reason, geo-electrical and electromagnetic surveys of masonry are a suitable non-destructive tool for the diagnosis of a deteriorated concrete structure. Moreover, the integration of different NDT techniques (conventional and no-conventional) is a very powerful to maximize the capabilities and to compensate for the limitations of each method.

  6. Development of a Tomography Technique for Assessment of the Material Condition of Concrete Using Optimized Elastic Wave Parameters.

    PubMed

    Chai, Hwa Kian; Liu, Kit Fook; Behnia, Arash; Yoshikazu, Kobayashi; Shiotani, Tomoki

    2016-04-16

    Concrete is the most ubiquitous construction material. Apart from the fresh and early age properties of concrete material, its condition during the structure life span affects the overall structural performance. Therefore, development of techniques such as non-destructive testing which enable the investigation of the material condition, are in great demand. Tomography technique has become an increasingly popular non-destructive evaluation technique for civil engineers to assess the condition of concrete structures. In the present study, this technique is investigated by developing reconstruction procedures utilizing different parameters of elastic waves, namely the travel time, wave amplitude, wave frequency, and Q-value. In the development of algorithms, a ray tracing feature was adopted to take into account the actual non-linear propagation of elastic waves in concrete containing defects. Numerical simulation accompanied by experimental verifications of wave motion were conducted to obtain wave propagation profiles in concrete containing honeycomb as a defect and in assessing the tendon duct filling of pre-stressed concrete (PC) elements. The detection of defects by the developed tomography reconstruction procedures was evaluated and discussed.

  7. Ultrasonic test of resistance spot welds based on wavelet package analysis.

    PubMed

    Liu, Jing; Xu, Guocheng; Gu, Xiaopeng; Zhou, Guanghao

    2015-02-01

    In this paper, ultrasonic test of spot welds for stainless steel sheets has been studied. It is indicated that traditional ultrasonic signal analysis in either time domain or frequency domain remains inadequate to evaluate the nugget diameter of spot welds. However, the method based on wavelet package analysis in time-frequency domain can easily distinguish the nugget from the corona bond by extracting high-frequency signals in different positions of spot welds, thereby quantitatively evaluating the nugget diameter. The results of ultrasonic test fit the actual measured value well. Mean value of normal distribution of error statistics is 0.00187, and the standard deviation is 0.1392. Furthermore, the quality of spot welds was evaluated, and it is showed ultrasonic nondestructive test based on wavelet packet analysis can be used to evaluate the quality of spot welds, and it is more reliable than single tensile destructive test. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Quality parameters of mango and potential of non-destructive techniques for their measurement - a review.

    PubMed

    Jha, S N; Narsaiah, K; Sharma, A D; Singh, M; Bansal, S; Kumar, R

    2010-01-01

    The king of fruits "Mango" (Mangifera indica L.) is very nutritious and rich in carotenes. India produces about 50% of the total world's mango. Many researchers have reported the maturity indices and quality parameters for determination of harvesting time and eating quality. The methods currently used for determination of quality of mango are mostly based on the biochemical analysis, which leads to destruction of the fruits. Numerous works are being carried out to explore some non-destructive methods such as Near Infrared (NIR), Nuclear Magnetic Resonance (NMR), X-ray and Computed Tomography (CT), electronic nose, machine vision and ultrasound for quality determination of fruits. This paper deals with some recent work reported on quality parameters, harvesting and post-harvest treatments in relation to quality of mango fruits and reviews on some of the potential non-destructive techniques that can be explored for quality determination of mango cultivars.

  9. Non-destructive testing method and apparatus utilizing phase multiplication holography

    DOEpatents

    Collins, H. Dale; Prince, James M.; Davis, Thomas J.

    1984-01-01

    An apparatus and method for imaging of structural characteristics in test objects using radiation amenable to coherent signal processing methods. Frequency and phase multiplication of received flaw signals is used to simulate a test wavelength at least one to two orders of magnitude smaller than the actual wavelength. The apparent reduction in wavelength between the illumination and recording radiation performs a frequency translation hologram. The hologram constructed with a high synthetic frequency and flaw phase multiplication is similar to a conventional acoustic hologram construction at the high frequency.

  10. Correlation between standard Charpy and sub-size Charpy test results of selected steels in upper shelf region

    NASA Astrophysics Data System (ADS)

    Konopík, P.; Džugan, J.; Bucki, T.; Rzepa, S.; Rund, M.; Procházka, R.

    2017-02-01

    Absorbed energy obtained from impact Charpy tests is one of the most important values in many applications, for example in residual lifetime assessment of components in service. Minimal absorbed energy is often the value crucial for extending components service life, e.g. turbines, boilers and steam lines. Using a portable electric discharge sampling equipment (EDSE), it is possible to sample experimental material non-destructively and subsequently produce mini-Charpy specimens. This paper presents a new approach in correlation from sub-size to standard Charpy test results.

  11. Supporting the potential of quantitative ultrasonic techniques for the evaluation of platelet concentration

    NASA Astrophysics Data System (ADS)

    Villamarín, J. A.; Jiménez, Y. M.; Molano, L. Tatiana; Gutierrez, W. Edgar; Londoño, L. Fernando; Gutierrez, D. A.

    2017-11-01

    This article describes the results obtained by making use of a non-destructive, non-invasive ultrasonic system for the acoustic characterization of bovine plasma rich in platelets using digital signal processing techniques. This study includes computational methods based on acoustic spectrometry estimation and experimental measurements of the speed of sound in blood plasma from different samples analyzed, using an ultrasonic field with resonance frequency of 5 MHz. The results showed that the measurements on ultrasonic signals can contribute to the hematological predictions based on the linear regression model applied to the relationship between experimental ultrasonic parameters calculated and platelet concentration, indicating a growth rate of 1 m/s for each 0.90 x103 platelet per mm3. On the other hand, the attenuation coefficient presented changes of 20% in the platelet concentration using a resolution of 0.057 dB/cm MHz.

  12. How do we know if plants in our nursery have Phytophthora? Detection methods and an integrated approach to monitoring

    Treesearch

    Christa Conforti

    2017-01-01

    A Phytophthora cactorum-infected nursery crop of Ceanothus thyrsiflorus was used to evaluate three Phytophthora monitoring methods. The Phytophthora detection level of three non-destructive sampling methods was quantified and compared to the detection level of destructive sampling. Non-...

  13. Investigation and development of a non-destructive system to evaluate critical properties of asphalt pavements during the compaction process.

    DOT National Transportation Integrated Search

    2013-10-01

    The purpose of this report is to present findings from a two-stage investigation to develop a non-destructive system to : evaluate critical properties and characteristics of asphalt pavements during the compaction process. The first stage aligned : c...

  14. Direct, non-destructive, and rapid evaluation of developmental cotton fibers by ATR FT-IR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Chemical, compositional, and structural differences within the fibers at different growth stages have been investigated considerably through a number of methodologies. Due to its direct, non-destructive, and rapid attribute, this study reports the utilization of attenuated total reflection Fourier t...

  15. Indirect Effects of Functional Communication Training on Non-Targeted Disruptive Behavior

    ERIC Educational Resources Information Center

    Schieltz, Kelly M.; Wacker, David P.; Harding, Jay W.; Berg, Wendy K.; Lee, John F.; Padilla Dalmau, Yaniz C.; Mews, Jayme; Ibrahimovic, Muska

    2011-01-01

    The purpose of this study was to evaluate the effects of functional communication training (FCT) on the occurrence of non-targeted disruptive behavior. The 10 participants were preschool-aged children with developmental disabilities who engaged in both destructive (property destruction, aggression, self-injury) and disruptive (hand flapping,…

  16. Non destructive testing of soft body armor

    NASA Astrophysics Data System (ADS)

    Bhise, Karan

    Pristine bullet proof vests are extremely effective at halting pre-determined projectile threats and have saved over 3000 lives. However, the effectiveness of these vests to halt a bullet is seen to decrease over time.Owing to the importance of bullet proof vests over a period of time, tests to determine their effectiveness have been carried out on every batch of vests at the time of inception and at certain time intervals by shooting a bullet through them. A few vests from every batch are picked up and shot at to check for bullet penetration during this process while these results are extrapolated onto the other vests from the batch.One of the main issues with this method is the fact that testing a few jackets among a large set of jackets does not guarantee the safety of every jacket in the entire batch.Further the jackets that are shot-at have the possibility of undergoing substantial damage during the process thus compromising its safety rendering them unsafe for future use.As the vest penetration phenomenon is extremely complex too, there arose a need for a better testing procedure that could not only help ensure more safety, but also save time and money.The new testing procedure proposed a non-destructive evaluation of the jackets that would solve the issues previous faced in testing the vests. This would lead to the building of a portable set up which could be carried to any location to test jackets in a matter of minutes thus saving time and money.

  17. Testing an Impedance Non-destructive Method to Evaluate Steel-Fiber Concrete Samples

    NASA Astrophysics Data System (ADS)

    Komarkova, Tereza; Fiala, Pavel; Steinbauer, Miloslav; Roubal, Zdenek

    2018-02-01

    Steel-fiber reinforced concrete is a composite material characterized by outstanding tensile properties and resistance to the development of cracks. The concrete, however, exhibits such characteristics only on the condition that the steel fibers in the final, hardened composite have been distributed evenly. The current methods to evaluate the distribution and concentration of a fiber composite are either destructive or exhibit a limited capability of evaluating the concentration and orientation of the fibers. In this context, the paper discusses tests related to the evaluation of the density and orientation of fibers in a composite material. Compared to the approaches used to date, the proposed technique is based on the evaluation of the electrical impedance Z in the band close to the resonance of the sensor-sample configuration. Using analytically expressed equations, we can evaluate the monitored part of the composite and its density at various depths of the tested sample. The method employs test blocks of composites, utilizing the resonance of the measuring device and the measured sample set; the desired state occurs within the interval of between f=3 kHz and 400 kHz.

  18. Non-destructive digital imaging in poplar allows detailed analysis of adventitious rooting dynamics

    Treesearch

    R.J. Kodrzycki; R.B. Michaels; A.L. Friend; R.S. Zalesny; Ch.P. Mawata; D.W. McDonald

    2008-01-01

    The dynamics of root formation are difficult to observe directly over time without disturbing the rooting environment. A novel system for a non-destructive, non-invasive root analysis (RootViz FS, Phenotype Screening Corp.) was evaluated for its ability to analyze root formation from cuttings over a 32 day period in three poplar genotypes (DN70, P. Deltoides x...

  19. Using bark char codes to predict post-fire cambium mortality

    Treesearch

    Sharon M. Hood; Danny R. Cluck; Sheri L. Smith; Kevin C. Ryan

    2008-01-01

    Cambium injury is an important factor in post-fire tree survival. Measurements that quantify the degree of bark charring on tree stems after fire are often used as surrogates for direct cambium injury because they are relatively easy to assign and are non-destructive. However, bark char codes based on these measurements have been inadequately tested to determine how...

  20. CT Image Sequence Processing For Wood Defect Recognition

    Treesearch

    Dongping Zhu; R.W. Conners; Philip A. Araman

    1991-01-01

    The research reported in this paper explores a non-destructive testing application of x-ray computed tomography (CT) in the forest products industry. This application involves a computer vision system that uses CT to locate and identify internal defects in hardwood logs. The knowledge of log defects is critical in deciding whether to veneer or to saw up a log, and how...

Top