Sample records for quantitative nondestructive testing

  1. The Quantitative Significance of Nondestructive Evaluation of Graphite and Ceramic Materials.

    DTIC Science & Technology

    NONDESTRUCTIVE TESTING), (* GRAPHITE , (*BORIDES, NONDESTRUCTIVE TESTING), (*REFRACTORY MATERIALS, NONDESTRUCTIVE TESTING), DEFECTS(MATERIALS), TENSILE PROPERTIES, RADIOGRAPHY, ULTRASONIC PROPERTIES, DENSITY.

  2. Study Of Nondestructive Techniques For Testing Composites

    NASA Technical Reports Server (NTRS)

    Roth, D.; Kautz, H.; Draper, S.; Bansal, N.; Bowles, K.; Bashyam, M.; Bishop, C.

    1995-01-01

    Study evaluates some nondestructive methods for characterizing ceramic-, metal-, and polymer-matrix composite materials. Results demonstrated utility of two ultrasonic methods for obtaining quantitative data on microstructural anomalies in composite materials.

  3. Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials

    PubMed Central

    Dalecki, Diane; Mercado, Karla P.; Hocking, Denise C.

    2015-01-01

    Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering. PMID:26581347

  4. Nondestructive application of laser-induced fluorescence spectroscopy for quantitative analyses of phenolic compounds in strawberry fruits (Fragaria x ananassa).

    PubMed

    Wulf, J S; Rühmann, S; Rego, I; Puhl, I; Treutter, D; Zude, M

    2008-05-14

    Laser-induced fluorescence spectroscopy (LIFS) was nondestructively applied on strawberries (EX = 337 nm, EM = 400-820 nm) to test the feasibility of quantitatively determining native phenolic compounds in strawberries. Eighteen phenolic compounds were identified in fruit skin by UV and MS spectroscopy and quantitatively determined by use of rp-HPLC for separation and diode-array or chemical reaction detection. Partial least-squares calibration models were built for single phenolic compounds by means of nondestructively recorded fluorescence spectra in the blue-green wavelength range using different data preprocessing methods. The direct orthogonal signal correction resulted in r (2) = 0.99 and rmsep < 8% for p-coumaroyl-glucose, and r (2) = 0.99 and rmsep < 24% for cinnamoyl-glucose. In comparison, the correction of the fluorescence spectral data with simultaneously recorded reflectance spectra did not further improve the calibration models. Results show the potential of LIFS for a rapid and nondestructive assessment of contents of p-coumaroyl-glucose and cinnamoyl-glucose in strawberry fruits.

  5. A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Pengpeng; Zheng, Xiaojing, E-mail: xjzheng@xidian.edu.cn; Jin, Ke

    2016-04-14

    Weak magnetic nondestructive testing (e.g., metal magnetic memory method) concerns the magnetization variation of ferromagnetic materials due to its applied load and a weak magnetic surrounding them. One key issue on these nondestructive technologies is the magnetomechanical effect for quantitative evaluation of magnetization state from stress–strain condition. A representative phenomenological model has been proposed to explain the magnetomechanical effect by Jiles in 1995. However, the Jiles' model has some deficiencies in quantification, for instance, there is a visible difference between theoretical prediction and experimental measurements on stress–magnetization curve, especially in the compression case. Based on the thermodynamic relations and themore » approach law of irreversible magnetization, a nonlinear coupled model is proposed to improve the quantitative evaluation of the magnetomechanical effect. Excellent agreement has been achieved between the predictions from the present model and previous experimental results. In comparison with Jiles' model, the prediction accuracy is improved greatly by the present model, particularly for the compression case. A detailed study has also been performed to reveal the effects of initial magnetization status, cyclic loading, and demagnetization factor on the magnetomechanical effect. Our theoretical model reveals that the stable weak magnetic signals of nondestructive testing after multiple cyclic loads are attributed to the first few cycles eliminating most of the irreversible magnetization. Remarkably, the existence of demagnetization field can weaken magnetomechanical effect, therefore, significantly reduces the testing capability. This theoretical model can be adopted to quantitatively analyze magnetic memory signals, and then can be applied in weak magnetic nondestructive testing.« less

  6. Assessment of and standardization for quantitative nondestructive test

    NASA Technical Reports Server (NTRS)

    Neuschaefer, R. W.; Beal, J. B.

    1972-01-01

    Present capabilities and limitations of nondestructive testing (NDT) as applied to aerospace structures during design, development, production, and operational phases are assessed. It will help determine what useful structural quantitative and qualitative data may be provided from raw materials to vehicle refurbishment. This assessment considers metal alloys systems and bonded composites presently applied in active NASA programs or strong contenders for future use. Quantitative and qualitative data has been summarized from recent literature, and in-house information, and presented along with a description of those structures or standards where the information was obtained. Examples, in tabular form, of NDT technique capabilities and limitations have been provided. NDT techniques discussed and assessed were radiography, ultrasonics, penetrants, thermal, acoustic, and electromagnetic. Quantitative data is sparse; therefore, obtaining statistically reliable flaw detection data must be strongly emphasized. The new requirements for reusable space vehicles have resulted in highly efficient design concepts operating in severe environments. This increases the need for quantitative NDT evaluation of selected structural components, the end item structure, and during refurbishment operations.

  7. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiefel, Denis, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Grosse, Christian, E-mail: Grosse@tum.de

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT)more » system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.« less

  8. Guide on the Effective Block Approach for the Fatigue Life Assessment of Metallic Structures

    DTIC Science & Technology

    2013-01-01

    Load Interpretation Truncation Validation coupon test program NDI Non-Destructive Inspection QF Quantitative Fractography RAAF Royal Australian...even more-so with the advent of quantitative fractography . 3 LEFM forms the basis of most state-of-art CG models. UNCLASSIFIED 1 UNCLASSIFIED DSTO...preferred method for obtaining the CGR data is by quantitative fractography (QF). This method is well suited to small cracks where other measurement

  9. Nondestructive evaluation using dipole model analysis with a scan type magnetic camera

    NASA Astrophysics Data System (ADS)

    Lee, Jinyi; Hwang, Jiseong

    2005-12-01

    Large structures such as nuclear power, thermal power, chemical and petroleum refining plants are drawing interest with regard to the economic aspect of extending component life in respect to the poor environment created by high pressure, high temperature, and fatigue, securing safety from corrosion and exceeding their designated life span. Therefore, technology that accurately calculates and predicts degradation and defects of aging materials is extremely important. Among different methods available, nondestructive testing using magnetic methods is effective in predicting and evaluating defects on the surface of or surrounding ferromagnetic structures. It is important to estimate the distribution of magnetic field intensity for applicable magnetic methods relating to industrial nondestructive evaluation. A magnetic camera provides distribution of a quantitative magnetic field with a homogeneous lift-off and spatial resolution. It is possible to interpret the distribution of magnetic field when the dipole model was introduced. This study proposed an algorithm for nondestructive evaluation using dipole model analysis with a scan type magnetic camera. The numerical and experimental considerations of the quantitative evaluation of several sizes and shapes of cracks using magnetic field images of the magnetic camera were examined.

  10. a History of Emats

    NASA Astrophysics Data System (ADS)

    Alers, George

    2008-02-01

    This paper was prepared for a Special Session in the 34th Annual Review of Quantitative NDE devoted to "Applications of EMATs". As such, it reviews the past history of electromagnetic induction of vibrations in metals with special attention to the application to nondestructive testing. The first patent describing the use of Electromagnetic Acoustic Transducers (EMATs) to replace the commonly used piezoelectric transducer was in 1969 but their first appearance in the scientific literature was in 1939 when the principles were applied to exciting and detecting the longitudinal resonance modes of bars of brass. The first true application to nondestructive testing was an R&D program sponsored by the American Gas Association to develop a device for inspecting buried gas pipelines for stress corrosion cracks in the early 1970's. During this same time period, theoretical models to describe the transduction mechanism appeared and led to the engineering of solutions to NDT and NDE problems that could not be accomplished with piezoelectric devices. The papers in the session to follow this historical summary show how the field has developed over the past 30 years and expose an impressive array of applications to quantitative nondestructive evaluation (QNDE) practices.

  11. Quantitative nondestructive evaluation of materials and structures

    NASA Technical Reports Server (NTRS)

    Smith, Barry T.

    1991-01-01

    An experimental investigation was undertaken to quantify damage tolerance and resistance in composite materials impacted using the drop-weight method. Tests were conducted on laminates of several different carbon-fiber composite systems, such as epoxies, modified epoxies, and amorphous and semicrystalline thermoplastics. Impacted composite specimens were examined using destructive and non-destructive techniques to establish the characteristic damage states. Specifically, optical microscopy, ultrasonic, and scanning electron microscopy techniques were used to identify impact induced damage mechanisms. Damage propagation during post impact compression was also studied.

  12. Quantitative Detection of Cracks in Steel Using Eddy Current Pulsed Thermography.

    PubMed

    Shi, Zhanqun; Xu, Xiaoyu; Ma, Jiaojiao; Zhen, Dong; Zhang, Hao

    2018-04-02

    Small cracks are common defects in steel and often lead to catastrophic accidents in industrial applications. Various nondestructive testing methods have been investigated for crack detection; however, most current methods focus on qualitative crack identification and image processing. In this study, eddy current pulsed thermography (ECPT) was applied for quantitative crack detection based on derivative analysis of temperature variation. The effects of the incentive parameters on the temperature variation were analyzed in the simulation study. The crack profile and position are identified in the thermal image based on the Canny edge detection algorithm. Then, one or more trajectories are determined through the crack profile in order to determine the crack boundary through its temperature distribution. The slope curve along the trajectory is obtained. Finally, quantitative analysis of the crack sizes was performed by analyzing the features of the slope curves. The experimental verification showed that the crack sizes could be quantitatively detected with errors of less than 1%. Therefore, the proposed ECPT method was demonstrated to be a feasible and effective nondestructive approach for quantitative crack detection.

  13. Quantitative non-destructive evaluation of composite materials based on ultrasonic parameters

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1987-01-01

    Research into the nondestructive evaluation of advanced reinforced composite laminates is summarized. The applicability of the Framers-Kronig equations to the nondestructive evaluation of composite materials is described.

  14. Nondestructive Evaluation of Adhesive Bond Quality: State of the Art Review

    DTIC Science & Technology

    1989-06-01

    conducted using a and Harnik (6) developed a quantitative medium-focused, 1/4-inch diameter, 10-MHz method of testing adhesive bonded joints transducer...Couchman." Spectral Analysis Tech- E. Harnik . "The Testing of Adhesive- nique of Ultrasonic NDT of Advanced Bonded Joints by a Very High Resolu

  15. Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment

    NASA Astrophysics Data System (ADS)

    Williams, W. J.; Robinson, A. B.; Rabin, B. H.

    2017-12-01

    This article reports the results and interpretation of post-irradiation non-destructive examinations performed on four curved full-size fuel plates that comprise the AFIP-7 experiment. These fuel plates, having a U-10 wt.%Mo monolithic design, were irradiated under moderate operating conditions in the Advanced Test Reactor to assess fuel performance for geometries that are prototypic of research reactor fuel assemblies. Non-destructive examinations include visual examination, neutron radiography, profilometry, and precision gamma scanning. This article evaluates the qualitative and quantitative data taken for each plate, compares corresponding data sets, and presents the results of swelling analyses. These characterization results demonstrate that the fuel meets established irradiation performance requirements for mechanical integrity, geometric stability, and stable and predictable behavior.

  16. Nondestructive testing of moisture separator reheater tubing system using Hall sensor array

    NASA Astrophysics Data System (ADS)

    Le, Minhhuy; Kim, Jungmin; Kim, Jisoo; Do, Hwa Sik; Lee, Jinyi

    2018-01-01

    This paper presents a nondestructive testing system for inspecting the moisture separator reheater (MSR) tubing system in a nuclear power plant. The technique is based on partial saturation eddy current testing in which a Hall sensor array is used to measure the radial component of the electromagnetic field distributed in the tubes. A finned MRS tube of ferritic stainless steel (SS439) with artificial, flat-bottom hole-type defects was used in the experiments. The results show that the proposed system has potential applications in the MSR system or ferromagnetic material tubes in general, which could detect the artificial defects of about 20% of the wall thickness (0.24 mm). Furthermore, the defect volume could be quantitatively evaluated.

  17. Quantitative nondestructive evaluation of ceramic matrix composite by the resonance method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, T.; Aizawa, T.; Kihara, J.

    The resonance method was developed to make quantitative nondestructive evaluation on the mechanical properties without any troublesome procedure. Since the present method is indifferent to the geometry of specimen, both monolithic and ceramic matrix composite materials in process can be evaluated in the nondestructive manner. Al{sub 2}O{sub 3}, Si{sub 3}N{sub 4}, SiC/Si{sub 3}N{sub 4}, and various C/C composite materials are employed to demonstrate the validity and effectiveness of the present method.

  18. Quantitative non-destructive evaluation of composite materials based on ultrasonic wave propagation

    NASA Technical Reports Server (NTRS)

    Miller, J. G.

    1986-01-01

    The application and interpretation of specific ultrasonic nondestructive evaluation techniques are studied. The Kramers-Kronig or generalized dispersion relationships are applied to nondestructive techniques. Progress was made on an improved determination of material properties of composites inferred from elastic constant measurements.

  19. Evaluation of PLS, LS-SVM, and LWR for quantitative spectroscopic analysis of soils

    USDA-ARS?s Scientific Manuscript database

    Soil testing requires the analysis of large numbers of samples in laboratory that are often time consuming and expensive. Mid-infrared spectroscopy (mid-IR) and near-infrared spectroscopy (NIRS) are fast, non-destructive, and inexpensive analytical methods that have been used for soil analysis, in l...

  20. Continuous-wave ultrasound reflectometry for surface roughness imaging applications

    PubMed Central

    Kinnick, R. R.; Greenleaf, J. F.; Fatemi, M.

    2009-01-01

    Background Measurement of surface roughness irregularities that result from various sources such as manufacturing processes, surface damage, and corrosion, is an important indicator of product quality for many nondestructive testing (NDT) industries. Many techniques exist, however because of their qualitative, time-consuming and direct-contact modes, it is of some importance to work out new experimental methods and efficient tools for quantitative estimation of surface roughness. Objective and Method Here we present continuous-wave ultrasound reflectometry (CWUR) as a novel nondestructive modality for imaging and measuring surface roughness in a non-contact mode. In CWUR, voltage variations due to phase shifts in the reflected ultrasound waves are recorded and processed to form an image of surface roughness. Results An acrylic test block with surface irregularities ranging from 4.22 μm to 19.05 μm as measured by a coordinate measuring machine (CMM), is scanned by an ultrasound transducer having a diameter of 45 mm, a focal distance of 70 mm, and a central frequency of 3 MHz. It is shown that CWUR technique gives very good agreement with the results obtained through CMM inasmuch as the maximum average percent error is around 11.5%. Conclusion Images obtained here demonstrate that CWUR may be used as a powerful noncontact and quantitative tool for nondestructive inspection and imaging of surface irregularities at the micron-size level with an average error of less than 11.5%. PMID:18664399

  1. Application of X-ray phase contrast micro-tomography to the identification of traditional Chinese medicines

    NASA Astrophysics Data System (ADS)

    Ye, L. L.; Xue, Y. L.; Ni, L. H.; Tan, H.; Wang, Y. D.; Xiao, T. Q.

    2013-07-01

    Nondestructive and in situ investigation to the characteristic microstructures are important to the identification of traditional Chinese medicines (TCMs), especially for precious specimens and samples with oil contains. X-ray phase contrast micro-tomography (XPCMT) could be a practical solution for this kind of investigation. Fructus Foeniculi, a fruit kind of TCMs, is selected as the test sample. Experimental results show that the characteristic microstructures of Fructus Foeniculi, including vittae, vascular bundles, embryo, endosperm and the mesocarp reticulate cells around the vittae can be clearly distinguished and the integrated dissepiments microstructure in the vittae was observed successfully. Especially, for the first time, with virtual slice technique, it can investigate the liquid contains inside the TCMs. The results show that the vittae filled with volatile oil in the oil chamber were observed with this nondestructive and in situ 3-dimensional imaging technique. Furthermore, taking the advantage of micro-computed tomography, we can obtain the characteristic microstructures' quantitative information of the volume in liquid state. The volume of the oil chambers and the volatile oil, which are contained inside the vittae, was quantitatively analyzed. Accordingly, it can calculate the volume ratio of the volatile oil easily and accurately. As a result, we could conclude that XPCMT could be a useful tool for the nondestructive identification and quantitative analysis to TCMs.

  2. Applications of aerospace technology in industry: A technology transfer profile, nondestructive testing

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of nondestructive testing procedures by NASA and the transfer of nondestructive testing to technology to civilian industry are discussed. The subjects presented are: (1) an overview of the nondestructive testing field, (2) NASA contributions to the field of nondestructive testing, (3) dissemination of NASA contributions, and (4) a transfer profile. Attachments are included which provide a brief description of common nondestructive testing methods and summarize the technology transfer reports involving NASA generated nondestructive testing technology.

  3. Quantitative multi-modal NDT data analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heideklang, René; Shokouhi, Parisa

    2014-02-18

    A single NDT technique is often not adequate to provide assessments about the integrity of test objects with the required coverage or accuracy. In such situations, it is often resorted to multi-modal testing, where complementary and overlapping information from different NDT techniques are combined for a more comprehensive evaluation. Multi-modal material and defect characterization is an interesting task which involves several diverse fields of research, including signal and image processing, statistics and data mining. The fusion of different modalities may improve quantitative nondestructive evaluation by effectively exploiting the augmented set of multi-sensor information about the material. It is the redundantmore » information in particular, whose quantification is expected to lead to increased reliability and robustness of the inspection results. There are different systematic approaches to data fusion, each with its specific advantages and drawbacks. In our contribution, these will be discussed in the context of nondestructive materials testing. A practical study adopting a high-level scheme for the fusion of Eddy Current, GMR and Thermography measurements on a reference metallic specimen with built-in grooves will be presented. Results show that fusion is able to outperform the best single sensor regarding detection specificity, while retaining the same level of sensitivity.« less

  4. Developing High-Frequency Quantitative Ultrasound Techniques to Characterize Three-Dimensional Engineered Tissues

    NASA Astrophysics Data System (ADS)

    Mercado, Karla Patricia E.

    Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.

  5. Nondestructive Evaluation for Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Cramer, Elliott; Perey, Daniel

    2015-01-01

    Nondestructive evaluation (NDE) techniques are important for enabling NASA's missions in space exploration and aeronautics. The expanded and continued use of composite materials for aerospace components and vehicles leads to a need for advanced NDE techniques capable of quantitatively characterizing damage in composites. Quantitative damage detection techniques help to ensure safety, reliability and durability of space and aeronautic vehicles. This presentation will give a broad outline of NASA's range of technical work and an overview of the NDE research performed in the Nondestructive Evaluation Sciences Branch at NASA Langley Research Center. The presentation will focus on ongoing research in the development of NDE techniques for composite materials and structures, including development of automated data processing tools to turn NDE data into quantitative location and sizing results. Composites focused NDE research in the areas of ultrasonics, thermography, X-ray computed tomography, and NDE modeling will be discussed.

  6. Analysis of Within-Test Variability of Non-Destructive Test Methods to Evaluate Compressive Strength of Normal Vibrated and Self-Compacting Concretes

    NASA Astrophysics Data System (ADS)

    Nepomuceno, Miguel C. S.; Lopes, Sérgio M. R.

    2017-10-01

    Non-destructive tests (NDT) have been used in the last decades for the assessment of in-situ quality and integrity of concrete elements. An important step in the application of NDT methods concerns to the interpretation and validation of the test results. In general, interpretation of NDT results should involve three distinct phases leading to the development of conclusions: processing of collected data, analysis of within-test variability and quantitative evaluation of property under investigation. The analysis of within-test variability can provide valuable information, since this can be compared with that of within-test variability associated with the NDT method in use, either to provide a measure of the quality control or to detect the presence of abnormal circumstances during the in-situ application. This paper reports the analysis of the experimental results of within-test variability of NDT obtained for normal vibrated concrete and self-compacting concrete. The NDT reported includes the surface hardness test, ultrasonic pulse velocity test, penetration resistance test, pull-off test, pull-out test and maturity test. The obtained results are discussed and conclusions are presented.

  7. A quantitative non-destructive residual stress assessment tool for pipelines.

    DOT National Transportation Integrated Search

    2014-09-01

    G2MT successfully demonstrated the eStress system, a powerful new nondestructive evaluation : system for analyzing through-thickness residual stresses in mechanical damaged areas of steel : pipelines. The eStress system is designed to help pipe...

  8. 46 CFR 151.03-38 - Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing. Nondestructive testing includes ultrasonic examination, liquid penetrant examination, magnetic particle... 46 Shipping 5 2010-10-01 2010-10-01 false Nondestructive testing. 151.03-38 Section 151.03-38...

  9. 49 CFR 192.243 - Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Nondestructive testing. 192.243 Section 192.243... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Welding of Steel in Pipelines § 192.243 Nondestructive testing. (a) Nondestructive testing of welds must be performed by any process, other than trepanning, that...

  10. Nondestructive evaluation of degradation in papaya fruit using intensity based algorithms

    NASA Astrophysics Data System (ADS)

    Kumari, Shubhashri; Nirala, Anil Kumar

    2018-05-01

    In the proposed work degradation in Papaya fruit has been evaluated nondestructively using laser biospeckle technique. The biospeckle activity inside the fruit has been evaluated qualitatively and quantitatively during its maturity to degradation stage using intensity based algorithms. Co-occurrence matrix (COM) has been used for qualitative analysis whereas Inertia Moment (IM), Absolute value Difference (AVD) and Autocovariance methods have been used for quantitative analysis. The biospeckle activity has been found to first increase and then decrease during study period of five days. In addition Granulometric size distribution (GSD) has also been used for the first time for the evaluation of degradation of the papaya. It is concluded that the degradation process of papaya fruit can be evaluated nondestructively using all the mentioned algorithms.

  11. 49 CFR 195.234 - Welds: Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welds: Nondestructive testing. 195.234 Section 195... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.234 Welds: Nondestructive testing. (a) A weld may be... weld. (b) Any nondestructive testing of welds must be performed— (1) In accordance with a written set...

  12. Opportunities for Nondestructive Evaluation: Quantitative Characterization (Postprint)

    DTIC Science & Technology

    2017-07-01

    between the design and the as- manufactured and, ultimately, the as-maintained state. As this occurs with the article of interest being placed in...TESTING (STINFO COPY) AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR FORCE...MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY ACRONYM(S) Air Force Research Laboratory Materials and Manufacturing

  13. 46 CFR 151.04-7 - Nondestructive testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Nondestructive testing. 151.04-7 Section 151.04-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Inspection and Certification § 151.04-7 Nondestructive testing. (a) Before nondestructive testing may b...

  14. 46 CFR 151.04-7 - Nondestructive testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Nondestructive testing. 151.04-7 Section 151.04-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Inspection and Certification § 151.04-7 Nondestructive testing. (a) Before nondestructive testing may b...

  15. 46 CFR 151.04-7 - Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Nondestructive testing. 151.04-7 Section 151.04-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Inspection and Certification § 151.04-7 Nondestructive testing. (a) Before nondestructive testing may b...

  16. 46 CFR 151.04-7 - Nondestructive testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Nondestructive testing. 151.04-7 Section 151.04-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Inspection and Certification § 151.04-7 Nondestructive testing. (a) Before nondestructive testing may b...

  17. 46 CFR 151.04-7 - Nondestructive testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Nondestructive testing. 151.04-7 Section 151.04-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Inspection and Certification § 151.04-7 Nondestructive testing. (a) Before nondestructive testing may b...

  18. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1993-01-01

    In this Progress Report, we describe our current research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the characterization of stitched composite materials and bonded aluminum plate specimens. One purpose of this investigation is to identify and characterize specific features of polar backscatter interrogation which enhance the ability of ultrasound to detect flaws in a stitched composite laminate. Another focus is to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize bonded aluminum lap joints. As an approach to implementing quantitative ultrasonic inspection methods to both of these materials, we focus on the physics that underlies the detection of flaws in such materials.

  19. Research of x-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Miao, Changyun; Wang, Wei; Lu, Xiaocui

    2008-03-01

    An X-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes is researched in the paper. The principle of X-ray nondestructive testing (NDT) is analyzed, the general scheme of the X-ray nondestructive testing system is proposed, and the nondestructive detector for high-speed running conveyor belt with steel wire ropes is developed. The hardware of system is designed with Xilinx's VIRTEX-4 FPGA that embeds PowerPC and MAC IP core, and its network communication software based on TCP/IP protocol is programmed by loading LwIP to PowerPC. The nondestructive testing of high-speed conveyor belt with steel wire ropes and network transfer function are implemented. It is a strong real-time system with rapid scanning speed, high reliability and remotely nondestructive testing function. The nondestructive detector can be applied to the detection of product line in industry.

  20. High Sensitivity, One-Sided X-Ray Inspection System.

    DTIC Science & Technology

    1985-07-01

    8217. X-Ray Imaging Quantitative NDT One-Sided Inspection Backs cat ter De laminat ions .. Nondestructive Testing (NDT) Rocket Motor Case NDT ’j 20...epoxy composites and other low atomic number materials have been detected. Wall thick nesses up to 7 cm thick have been interrogated. The results show...fiber composite rocket motor pressure vessels, the anticipated backscatter x-ray instrument will offer high sensitivity (contact delaminations have

  1. 46 CFR 38.25-3 - Nondestructive testing-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Nondestructive testing-TB/ALL. 38.25-3 Section 38.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Periodic Tests and Inspections § 38.25-3 Nondestructive testing—TB/ALL. (a) Before nondestructive testing may be conducted to meet § 38.25-1 (a)(4) and (a)(5...

  2. 46 CFR 38.25-3 - Nondestructive testing-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Nondestructive testing-TB/ALL. 38.25-3 Section 38.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Periodic Tests and Inspections § 38.25-3 Nondestructive testing—TB/ALL. (a) Before nondestructive testing may be conducted to meet § 38.25-1 (a)(4) and (a)(5...

  3. 46 CFR 38.25-3 - Nondestructive testing-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Nondestructive testing-TB/ALL. 38.25-3 Section 38.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Periodic Tests and Inspections § 38.25-3 Nondestructive testing—TB/ALL. (a) Before nondestructive testing may be conducted to meet § 38.25-1 (a)(4) and (a)(5...

  4. 46 CFR 38.25-3 - Nondestructive testing-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Nondestructive testing-TB/ALL. 38.25-3 Section 38.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Periodic Tests and Inspections § 38.25-3 Nondestructive testing—TB/ALL. (a) Before nondestructive testing may be conducted to meet § 38.25-1 (a)(4) and (a)(5...

  5. 46 CFR 38.25-3 - Nondestructive testing-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Nondestructive testing-TB/ALL. 38.25-3 Section 38.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS LIQUEFIED FLAMMABLE GASES Periodic Tests and Inspections § 38.25-3 Nondestructive testing—TB/ALL. (a) Before nondestructive testing may be conducted to meet § 38.25-1 (a)(4) and (a)(5...

  6. Quality Control and Nondestructive Evaluation Techniques for Composites. Part 1. Overview of Characterization Techniques for Composite Reliability

    DTIC Science & Technology

    1982-05-01

    MONITORING AND MANAGEMENT , 34 7.0 NONDESTRUCTIVE EVALUATION ( NDE ) 37 8. 0 SURFACE NDE 44 9.0 PERFORMANCE AND PROOF TESTING 46 10.0 SUMMARY AND...Chemical Quality Assurance Testing 2. Processability Testing 3. Cure Monitoring and Management 4. Nondestructive Evaluation ( NDE ) 5. Performance and...the management concept for implementing the specific tests. Chemical analysis, nondestructive evaluation ( NDE ) and environmental fatigue testing of

  7. Nondestructive Testing and Evaluation of Wood—50 Years of Research: International Nondestructive Testing and Evaluation of Wood Symposium Series

    Treesearch

    Robert J. Ross; Xiping Wang

    2012-01-01

    The International Nondestructive Testing and Evaluation of Wood Symposium Series was initiated by Washington State University and the USDA Forest Products Laboratory (FPL) in 1963 with the convening of a symposium on the topic of nondestructive testing of wood at FPL. Including that meeting, 17 symposia have been held during the last 50 years at various sites around...

  8. Proceedings: 19th International Nondestructive Testing and Evaluation of Wood Symposium

    Treesearch

    Robert J. Ross; Raquel Gonçalves; Xiping Wang

    2015-01-01

    The 19th International Nondestructive Testing and Evaluation of Wood Symposium was hosted by the University of Campinas, College of Agricultural Engineering (FEAGRI/UNICAMP), and the Brazilian Association of Nondestructive Testing and Evaluation (ABENDI) in Rio de Janeiro, Brazil, on September 22–25, 2015. This Symposium was a forum for those involved in nondestructive...

  9. Applications of FT-IR spectrophotometry in cancer diagnostics.

    PubMed

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2015-01-01

    This review provides a brief background to the application of infrared spectroscopy, including Fourier transform-infrared spectroscopy, in biological fluids. It is not meant to be complete or exhaustive but to provide the reader with sufficient background for selected applications in cancer diagnostics. Fourier transform-infrared spectroscopy (FT-IR) is a fast and nondestructive analytical method. The infrared spectrum of a mixture serves as the basis to quantitate its constituents, and a number of common clinical chemistry tests have proven to be feasible using this approach. This review focuses on biomedical FT-IR applications, published in the period 2009-2013, used for early detection of cancer through qualitative and quantitative analysis.

  10. Quantitative detection of melamine based on terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaojing; Wang, Cuicui; Liu, Shangjian; Zuo, Jian; Zhou, Zihan; Zhang, Cunlin

    2018-01-01

    Melamine is an organic base and a trimer of cyanamide, with a 1, 3, 5-triazine skeleton. It is usually used for the production of plastics, glue and flame retardants. Melamine combines with acid and related compounds to form melamine cyanurate and related crystal structures, which have been implicated as contaminants or biomarkers in protein adulterations by lawbreakers, especially in milk powder. This paper is focused on developing an available method for quantitative detection of melamine in the fields of security inspection and nondestructive testing based on THz-TDS. Terahertz (THz) technology has promising applications for the detection and identification of materials because it exhibits the properties of spectroscopy, good penetration and safety. Terahertz time-domain spectroscopy (THz-TDS) is a key technique that is applied to spectroscopic measurement of materials based on ultrafast femtosecond laser. In this study, the melamine and its mixture with polyethylene powder in different consistence are measured using the transmission THz-TDS. And we obtained the refractive index spectra and the absorption spectrum of different concentrations of melamine on 0.2-2.8THz. In the refractive index spectra, it is obvious to see that decline trend with the decrease of concentration; and in the absorption spectrum, two peaks of melamine at 1.98THz and 2.28THz can be obtained. Based on the experimental result, the absorption coefficient and the consistence of the melamine in the mixture are determined. Finally, methods for quantitative detection of materials in the fields of nondestructive testing and quality control based on THz-TDS have been studied.

  11. PREFACE: III All-Russian Scientific and Practical Conference on Innovations in Non-Destructive Testing (SibTest 2015)

    NASA Astrophysics Data System (ADS)

    2016-01-01

    This issue of the journal is devoted to the research and studies presented at the III All-Russian Scientific and Practical Conference on Innovations in Non-Destructive Testing SibTest. The conference was held in Altai, Russia, on 27-31 July 2015. The conference brought together experts from different countries and organizations who had a great opportunity to share knowledge during oral and poster presentations and to initiate discussions on topics that are of interest to the conference attendees. The conference aimed to discuss innovative methods and the application of advanced technologies in non-destructive testing. The conference also attempted to bring together university, academic and industrial science, to expand the co-operation of scientists from different countries in research and development and the commercialization of innovative technologies in non-destructive testing. The key themes of the conference were: ultrasonic and acoustic testing; electromagnetic and thermal testing; various types of radiation non-destructive testing; passive and active testing techniques. The conference organizers are the Institute of Non-Destructive Testing, Tomsk Polytechnic University, with the assistance of the Russian Society for Non-Destructive Testing and Technical Diagnostics, Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, National Research Tomsk State University, Moscow State Institute of Radio Engineering, Electronics and Automation.

  12. 49 CFR 193.2321 - Nondestructive tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Nondestructive tests. 193.2321 Section 193.2321 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY...: FEDERAL SAFETY STANDARDS Construction § 193.2321 Nondestructive tests. (a) The butt welds in metal shells...

  13. Proceedings of the DARPA/AFML Review of Progress in Quantitative Nondestructive Evaluation, 8-13 July, La Jolla, California.

    DTIC Science & Technology

    1980-07-01

    Solution of the Nonlinear Eddy Current and Loss Problems in Quasilinear Poisson Equation in a Nonuniform the Solid Rotors of Large Turbogenerators...stable probe support and aiid possibly also for the effect of a nonuniform Scanning mechanisms, especially for test pieces of magnetic field...without specimen): defects such as inclusions, voids, delaminations, 55 db and nonuniform particle distribution. Due to im- Dynamic range: 50 to 70

  14. 46 CFR 151.03-38 - Nondestructive testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... examination, radiographic examination, eddy current, and acoustic emission. [CGD 85-061, 54 FR 50965, Dec. 11... 46 Shipping 5 2011-10-01 2011-10-01 false Nondestructive testing. 151.03-38 Section 151.03-38... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing...

  15. 46 CFR 151.03-38 - Nondestructive testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... examination, radiographic examination, eddy current, and acoustic emission. [CGD 85-061, 54 FR 50965, Dec. 11... 46 Shipping 5 2012-10-01 2012-10-01 false Nondestructive testing. 151.03-38 Section 151.03-38... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing...

  16. 46 CFR 151.03-38 - Nondestructive testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... examination, radiographic examination, eddy current, and acoustic emission. [CGD 85-061, 54 FR 50965, Dec. 11... 46 Shipping 5 2013-10-01 2013-10-01 false Nondestructive testing. 151.03-38 Section 151.03-38... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing...

  17. 46 CFR 151.03-38 - Nondestructive testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... examination, radiographic examination, eddy current, and acoustic emission. [CGD 85-061, 54 FR 50965, Dec. 11... 46 Shipping 5 2014-10-01 2014-10-01 false Nondestructive testing. 151.03-38 Section 151.03-38... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-38 Nondestructive testing...

  18. Fast, quantitative, and nondestructive evaluation of hydrided LWR fuel cladding by small angle incoherent neutron scattering of hydrogen

    DOE PAGES

    Yan, Y.; Qian, S.; Littrell, K.; ...

    2015-02-13

    A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distributionmore » of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. This study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor will be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.« less

  19. Method for detecting damage in carbon-fibre reinforced plastic-steel structures based on eddy current pulsed thermography

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Liu, Zhiping; Jiang, Xiaoli; Lodewijks, Gabrol

    2018-01-01

    Eddy current pulsed thermography (ECPT) is well established for non-destructive testing of electrical conductive materials, featuring the advantages of contactless, intuitive detecting and efficient heating. The concept of divergence characterization of the damage rate of carbon fibre-reinforced plastic (CFRP)-steel structures can be extended to ECPT thermal pattern characterization. It was found in this study that the use of ECPT technology on CFRP-steel structures generated a sizeable amount of valuable information for comprehensive material diagnostics. The relationship between divergence and transient thermal patterns can be identified and analysed by deploying mathematical models to analyse the information about fibre texture-like orientations, gaps and undulations in these multi-layered materials. The developed algorithm enabled the removal of information about fibre texture and the extraction of damage features. The model of the CFRP-glue-steel structures with damage was established using COMSOL Multiphysics® software, and quantitative non-destructive damage evaluation from the ECPT image areas was derived. The results of this proposed method illustrate that damaged areas are highly affected by available information about fibre texture. This proposed work can be applied for detection of impact induced damage and quantitative evaluation of CFRP structures.

  20. Flash Thermography to Evaluate Porosity in Carbon Fiber Reinforced Polymer (CFRPs)

    PubMed Central

    Meola, Carosena; Toscano, Cinzia

    2014-01-01

    It is a fact that the presence of porosity in composites has detrimental effects on their mechanical properties. Then, due to the high probability of void formation during manufacturing processes, it is necessary to have the availability of non-destructive evaluation techniques, which may be able to discover the presence and the distribution of porosity in the final parts. In recent years, flash thermography has emerged as the most valuable method, but it is still not adequately enclosed in the industrial enterprise. The main reason of this is the lack of sufficient quantitative data for a full validation of such a technique. The intention of the present work is to supply an overview on the current state-of-the-art regarding the use of flash thermography to evaluate the porosity percentage in fiber reinforced composite materials and to present the latest results, which are gathered by the authors, on porous carbon fiber reinforced polymer laminates. To this end, several coupons of two different stacking sequences and including a different amount of porosity are fabricated and inspected with both non-destructive and destructive testing techniques. Data coming from non-destructive testing with either flash thermography or ultrasonics are plotted against the porosity percentage, which was previously estimated with the volumetric method. The new obtained results are a witness to the efficacy of flash thermography. Some key points that need further consideration are also highlighted. PMID:28788527

  1. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods.more » The pressure measured from neutron transmission spectra (~739 ± 98 kPa and ~751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ~758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ~ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. As a result, the ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.« less

  2. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    DOE PAGES

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.; ...

    2017-01-31

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods.more » The pressure measured from neutron transmission spectra (~739 ± 98 kPa and ~751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ~758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ~ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. As a result, the ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.« less

  3. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.; Byler, D. D.; McClellan, K. J.; Bourke, M. A. M.; Vallerga, J. V.

    2017-01-01

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (˜739 ± 98 kPa and ˜751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ˜758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ˜ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.

  4. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.

    PubMed

    Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu

    2017-11-24

    The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.

  5. PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON NONDESTRUCTIVE TESTING, [HELD AT MONTREAL, CANADA, MAY 21--26, 1967].

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1969-07-01

    The Fifth International Conference on Nondestructive Testing was held in Montreal, Canada, for the purpose of promoting international collaboration in all matters related to the development and use of nondestructive test methods. A total of 82 papers were selected for presentation. Session titles included: evaluation of material quality; ultrasonics - identification and measurements; thermal methods; testing of welds; visual aids in nondestructive testing; measurements of stress and elastic properties; magnetic and eddy-current methods; surface methods and neutron radiography; standardization - general; ultrasonics at elevated temperatures; applications; x-ray techniques; radiography; ultrasonic standardization; training and qualification; and, correlation of weld defects.

  6. Instruments for the nondestructive testing of materials and products: Handbook. Volumes 1 & 2 (2nd revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Kliuev, V. V.

    Data on the general design and principles of operation of various instruments and systems for the nondestructive testing of materials and products of various kinds are presented, and test procedures are described. Methods discussed include optical, thermal, capillary, RF, and X-ray testing techniques. The discussion also covers magnetic, electromagnetic, eddy-current, acoustic, and combined nondestructive testing methods.

  7. Nondestructive Methods and Special Test Instrumentation Supporting NASA Composite Overwrapped Pressure Vessel Assessments

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor; Greene, Nathanael; Cameron, Ken; Madaras, Eric; Grimes-Ledesma, Lorie; Thesken, John; Phoenix, Leigh; Murthy, Pappu; Revilock, Duane

    2007-01-01

    Many aging composite overwrapped pressure vessels (COPVs), being used by the National Aeronautics and Space Administration (NASA) are currently under evaluation to better quantify their reliability and clarify their likelihood of failure due to stress rupture and age-dependent issues. As a result, some test and analysis programs have been successfully accomplished and other related programs are still in progress at the NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) and other NASA centers, with assistance from the commercial sector. To support this effort, a group of Nondestructive Evaluation (NDE) experts was assembled to provide NDE competence for pretest evaluation of test articles and for application of NDE technology to real-time testing. Techniques were required to provide assurance that the test article had adequate structural integrity and manufacturing consistency to be considered acceptable for testing and these techniques were successfully applied. Destructive testing is also being accomplished to better understand the physical and chemical property changes associated with progression toward "stress rupture" (SR) failure, and it is being associated with NDE response, so it can potentially be used to help with life prediction. Destructive work also includes the evaluation of residual stresses during dissection of the overwrap, laboratory evaluation of specimens extracted from the overwrap to evaluate physical property changes, and quantitative microscopy to inform the theoretical micromechanics.

  8. Proceedings of the Symposium on Nondestructive Testing of Wood.

    Treesearch

    1964-01-01

    This report summarizes the main points considered and the conclusions reached during the Symposium on Nondestructive Testing, October 7 to 9, 1963, at the Forest Products Laboratory. The purpose of this symposium was to bring research and industry leaders together to examine what is being done in nondestructive testing and discuss its applications to the wood products...

  9. Ultrasound excited thermography: an efficient tool for the characterization of vertical cracks

    NASA Astrophysics Data System (ADS)

    Mendioroz, A.; Celorrio, R.; Salazar, A.

    2017-11-01

    Ultrasound excited thermography has gained a renewed interest in the last two decades as a nondestructive testing technique aimed at detecting and characterizing surface breaking and shallow subsurface discontinuities. It is based on measurement of the IR radiation emitted by the specimen surface to detect temperature rises produced by the heating of defects under high amplitude ultrasound excitation and is primarily addressed to flaws with contacting faces, such as kissing cracks or tight delaminations. The simplicity of application and the ability to detect small cracks in challenging media makes it an attractive emerging technology, which is still in a development stage. However, it has proven to provide an opportunity for the quantitative characterization of defects, mainly of vertical cracks. In this review, we present the principles of the technique and the different experimental implementations, we put it in context with other nondestructive tests and we summarize the work done in order to improve defect detectability and test reliability, with the final goal of determining the probability of detection. Then we review the contributions aimed at characterizing vertical cracks, i.e. retrieving the geometry and location of the crack from surface temperature data, generated by ultrasonic excitation.

  10. 46 CFR 151.01-2 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., are: American Society for Nondestructive Testing (ASNT) 4153 Arlingate Road, Caller #28518, Columbus... Certification in Nondestructive Testing” 151.04-7(c)(2) American Society of Mechanical Engineers (ASME..., Nondestructive Examination (1986) 151.04-7(a)(1) American Society for Testing and Materials (ASTM) 100 Barr...

  11. Proceedings of the Symposium on Needs for Nondestructive Testing in the Forest Products Industries

    Treesearch

    1965-01-01

    The purpose of this meeting was to bring together about 30 representatives of the various forest products industries and a few affiliated research and educational institutions to discuss and define industry needs for nondestructive testing. The necessity for such a meeting was made clear in the Symposium on Nondestructive Testing of Wood held at this Laboratory in...

  12. A study to ascertain the viability of ultrasonic nondestructive testing to determine the mechanical characteristics of wood/agricultural hardboards with soybean based adhesives

    NASA Astrophysics Data System (ADS)

    Colen, Charles Raymond, Jr.

    There have been numerous studies with ultrasonic nondestructive testing and wood fiber composites. The problem of the study was to ascertain whether ultrasonic nondestructive testing can be used in place of destructive testing to obtain the modulus of elasticity (MOE) of the wood/agricultural material with comparable results. The uniqueness of this research is that it addressed the type of content (cornstalks and switchgrass) being used with the wood fibers and the type of adhesives (soybean-based) associated with the production of these composite materials. Two research questions were addressed in the study. The major objective was to determine if one can predict the destructive test MOE value based on the nondestructive test MOE value. The population of the study was wood/agricultural fiberboards made from wood fibers, cornstalks, and switchgrass bonded together with soybean-based, urea-formaldehyde, and phenol-formaldehyde adhesives. Correlational analysis was used to determine if there was a relationship between the two tests. Regression analysis was performed to determine a prediction equation for the destructive test MOE value. Data were collected on both procedures using ultrasonic nondestructing testing and 3-point destructive testing. The results produced a simple linear regression model for this study which was adequate in the prediction of destructive MOE values if the nondestructive MOE value is known. An approximation very close to the entire error in the model equation was explained from the destructive test MOE values for the composites. The nondestructive MOE values used to produce a linear regression model explained 83% of the variability in the destructive test MOE values. The study also showed that, for the particular destructive test values obtained with the equipment used, the model associated with the study is as good as it could be due to the variability in the results from the destructive tests. In this study, an ultrasonic signal was used to determine the MOE values on nondestructive tests. Future research studies could use the same or other hardboards to examine how the resins affect the ultrasonic signal.

  13. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  14. Estimation of masonry mechanical characteristics by ESPI fringe interpretation

    NASA Astrophysics Data System (ADS)

    Facchini, M.; Zanetta, P.; Binda, L.; Roberti, G. Mirabella; Tiraboschi, C.

    Electronic speckle pattern interferometry (ESPI) can be a powerful tool for efficient non-destructive testing and evaluation of micro-deformations of masonry materials and structures. Unlike traditional transducers, ESPI requires no direct contact with the object, and the full-field visualisation it offers provides for a better understanding of the surface behaviour. This paper describes an in-plane deformation inspection system which has been built up for an automatic acquisition of interferograms at different stages of a test. The system is applied to the evaluation of some mechanical characteristics of masonry components. Qualitative and quantitative results are obtained and an overall discussion is presented.

  15. Rapid and non-destructive assessment of polyunsaturated fatty acids contents in Salmon using near-infrared hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Tao, Feifei; Mba, Ogan; Liu, Li; Ngadi, Michael

    2017-04-01

    Polyunsaturated fatty acids (PUFAs) are important nutrients present in Salmon. However, current methods for quantifying the fatty acids (FAs) contents in foods are generally based on gas chromatography (GC) technique, which is time-consuming, laborious and destructive to the tested samples. Therefore, the capability of near-infrared (NIR) hyperspectral imaging to predict the PUFAs contents of C20:2 n-6, C20:3 n-6, C20:5 n-3, C22:5 n-3 and C22:6 n-3 in Salmon fillets in a rapid and non-destructive way was investigated in this work. Mean reflectance spectra were first extracted from the region of interests (ROIs), and then the spectral pre-processing methods of 2nd derivative and Savitzky-Golay (SG) smoothing were performed on the original spectra. Based on the original and the pre-processed spectra, PLSR technique was employed to develop the quantitative models for predicting each PUFA content in Salmon fillets. The results showed that for all the studied PUFAs, the quantitative models developed using the pre-processed reflectance spectra by "2nd derivative + SG smoothing" could improve their modeling results. Good prediction results were achieved with RP and RMSEP of 0.91 and 0.75 mg/g dry weight, 0.86 and 1.44 mg/g dry weight, 0.82 and 3.01 mg/g dry weight for C20:3 n-6, C22:5 n-3 and C20:5 n-3, respectively after pre-processing by "2nd derivative + SG smoothing". The work demonstrated that NIR hyperspectral imaging could be a useful tool for rapid and non-destructive determination of the PUFA contents in fish fillets.

  16. Non-destructive evaluation of composite materials using ultrasound

    NASA Technical Reports Server (NTRS)

    Miller, J. G.

    1984-01-01

    Investigation of the nondestructive evaluation of advanced composite-laminates is summarized. Indices derived from the measurement of fundamental acoustic parameters are used in order to quantitatively estimate the local material properties of the laminate. The following sections describe ongoing studies of phase insensitive attenuation measurements, and discuss several phenomena which influences the previously reported technique of polar backscatter. A simple and effective programmable gate circuit designed for use in estimating attenuation from backscatter is described.

  17. Nondestructive evaluation of composite materials by pulsed time domain methods in imbedded optical fibers

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Bennett, K. D.; Jackson, B. S.

    1986-01-01

    The application of fiber-optical time domain reflectometry (OTDR) to nondestructive quantitative measurements of distributed internal strain in graphite-epoxy composites, using optical fiber waveguides imbedded between plies, is discussed. The basic OTDR measurement system is described, together with the methods used to imbed optical fibers within composites. Measurement results, system limitations, and the effect of the imbedded fiber on the integrity of the host composite material are considered.

  18. The Effect of Localized Damage on the Electrical Conductivity of Bare Carbon Fiber Tow and its Use as a Non-Destructive Evaluation Tool for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Wentzel, Daniel

    2015-01-01

    Composite materials are beneficial because of their high specific strength and low weight. Safety, Destructive testing and destructive testing, Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE). Problem: Neither NDT nor NDE can provide sufficient data to determine life expectancy or quantify the damage state of a composite material.

  19. Nondestructive Evaluation of Wood: Second Edition

    Treesearch

    Robert J. Ross

    2015-01-01

    This report summarizes information on nondestructive testing and evaluation of wood. It includes information on a wide range of nondestructive assessment technologies and their uses for evaluating various wood products.

  20. Quantitative nondestructive evaluation: Requirements for tomorrow's reliability

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1991-01-01

    Quantitative Nondestructive Evaluation (QNDE) is the technology of measurement, analysis, and prediction of the state of material/structural systems for safety, reliability, and mission assurance. QNDE has impact on everyday life from the cars we drive, the planes we fly, the buildings we work or live in, literally to the infrastructure of our world. Here, researchers highlight some of the new sciences and technologies that are part of a safer, cost effective tomorrow. Specific technologies that are discussed are thermal QNDE of aircraft structural integrity, ultrasonic QNDE for materials characterization, and technology spinoffs from aerospace to the medical sector. In each case, examples are given of how new requirements result in enabling measurement technologies, which in turn change the boundaries of design/practice.

  1. Shearography for Non-Destructive Evaluation with Applications to BAT Mask Tile Adhesive Bonding and Specular Surface Honeycomb Panels

    NASA Technical Reports Server (NTRS)

    Lysak, Daniel B.

    2003-01-01

    In this report we examine the applicability of shearography techniques for nondestructive inspection and evaluation in two unique application areas. In the first application, shearography is used to evaluate the quality of adhesive bonds holding lead tiles to the BAT gamma ray mask for the NASA Swift program. By exciting the mask with a vibration, the more poorly bonded tiles can be distinguished by their greater displacement response, which is readily identifiable in the shearography image. A quantitative analysis is presented that compares the shearography results with a destructive pull test measuring the force at bond failure. Generally speaking, the results show good agreement. Further investigation would be useful to optimize certain test parameters such as vibration frequency and amplitude. The second application is to evaluate the bonding between the skin and core of a honeycomb structure with a specular (mirror-like) surface. In standard shearography techniques, the object under test must have a diffuse surface to generate the speckle patterns in laser light, which are then sheared. A novel configuration using the specular surface as a mirror to image speckles from a diffuser is presented, opening up the use of shearography to a new class of objects that could not have been examined with the traditional approach. This new technique readily identifies large scale bond failures in the panel, demonstrating the validity of this approach. For the particular panel examined here, some scaling issues should be examined further to resolve the measurement scale down to the very small size of the core cells. In addition, further development should be undertaken to determine the general applicability of the new approach and to establish a firm quantitative foundation.

  2. Portable apparatus with CRT display for nondestructive testing of concrete by the ultrasonic pulse method

    NASA Technical Reports Server (NTRS)

    Manta, G.; Gurau, Y.; Nica, P.; Facacaru, I.

    1974-01-01

    The development of methods for the nondestructive study of concrete structures is discussed. The nondestructive test procedure is based on the method of ultrasonic pulse transmission through the material. The measurements indicate that the elastic properties of concrete or other heterogeneous materials are a function of the rate of ultrasonic propagation. Diagrams of the test equipment are provided. Mathematical models are included to support the theoretical aspects.

  3. Finite Element Analysis of Quantitative Percussion Diagnostics for Evaluating the Strength of Bonds Between Composite Laminates

    NASA Astrophysics Data System (ADS)

    Poveromo, Scott; Malcolm, Doug; Earthman, James

    Conventional nondestructive (NDT) techniques used to detect defects in composites are not able to determine intact bond integrity within a composite structure and are costly to use on large and complex shaped surfaces. To overcome current NDT limitations, a new technology was adopted based on quantitative percussion diagnostics (QPD) to better quantify bond quality in fiber reinforced composite materials. Results indicate that this technology is capable of detecting weak (`kiss') bonds between flat composite laminates. Specifically, the local value of the probe force determined from quantitative percussion testing was predicted to be significantly lower for a laminate that contained a `kiss' bond compared to that for a well-bonded sample, which is in agreement with experimental findings. Experimental results were compared to a finite element analysis (FEA) using MSC PATRAN/NASTRAN to understand the visco-elastic behavior of the laminates during percussion testing. The dynamic FEA models were used to directly predict changes in the probe force, as well as effective stress distributions across the bonded panels as a function of time.

  4. Nondestructive evaluation of warm mix asphalt through resonant column testing.

    DOT National Transportation Integrated Search

    2014-02-01

    Non-destructive testing has been used for decades to characterize engineering properties of hot-mix asphalt. Among such tests is the resonant column (RC) test, which is commonly used to characterize soil materials. The resonant column device at Penn ...

  5. Ultrasonic infrared thermal wave nondestructive evaluation for crack detection of several aerospace materials

    NASA Astrophysics Data System (ADS)

    Xu, Weichao; Shen, Jingling; Zhang, Cunlin; Tao, Ning; Feng, Lichun

    2008-03-01

    The applications of ultrasonic infrared thermal wave nondestructive evaluation for crack detection of several materials, which often used in aviation alloy. For instance, steel and carbon fiber. It is difficult to test cracks interfacial or vertical with structure's surface by the traditional nondestructive testing methods. Ultrasonic infrared thermal wave nondestructive testing technology uses high-power and low-frequency ultrasonic as heat source to excite the sample and an infrared video camera as a detector to detect the surface temperature. The ultrasonic emitter launch pulses of ultrasonic into the skin of the sample, which causes the crack interfaces to rub and dissipate energy as heat, and then caused local increase in temperature at one of the specimen surfaces. The infrared camera images the returning thermal wave reflections from subsurface cracks. A computer collects and processes the thermal images according to different properties of samples to get the satisfied effect. In this paper, a steel plate with fatigue crack we designed and a juncture of carbon fiber composite that has been used in a space probe were tested and get satisfying results. The ultrasonic infrared thermal wave nondestructive detection is fast, sensitive for cracks, especially cracks that vertical with structure's surface. It is significative for nondestructive testing in manufacture produce and application of aviation, cosmography and optoelectronics.

  6. Characterization of Nitinol Laser-Weld Joints by Nondestructive Testing

    NASA Astrophysics Data System (ADS)

    Wohlschlögel, Markus; Gläßel, Gunter; Sanchez, Daniela; Schüßler, Andreas; Dillenz, Alexander; Saal, David; Mayr, Peter

    2015-12-01

    Joining technology is an integral part of today's Nitinol medical device manufacturing. Besides crimping and riveting, laser welding is often applied to join components made from Nitinol to Nitinol, as well as Nitinol components to dissimilar materials. Other Nitinol joining techniques include adhesive bonding, soldering, and brazing. Typically, the performance of joints is assessed by destructive mechanical testing, on a process validation base. In this study, a nondestructive testing method—photothermal radiometry—is applied to characterize small Nitinol laser-weld joints used to connect two wire ends via a sleeve. Two different wire diameters are investigated. Effective joint connection cross sections are visualized using metallography techniques. Results of the nondestructive testing are correlated to data from destructive torsion testing, where the maximum torque at fracture is evaluated for the same joints and criteria for the differentiation of good and poor laser-welding quality by nondestructive testing are established.

  7. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates... test; and Cp = the filtrate concentration measured during the challenge test. Equivalent units must be... or the applicability of the non-destructive performance test and associated QCRV, additional...

  8. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates... test; and Cp = the filtrate concentration measured during the challenge test. Equivalent units must be... or the applicability of the non-destructive performance test and associated QCRV, additional...

  9. 40 CFR 141.719 - Additional filtration toolbox components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... establish a quality control release value (QCRV) for a non-destructive performance test that demonstrates... test; and Cp = the filtrate concentration measured during the challenge test. Equivalent units must be... or the applicability of the non-destructive performance test and associated QCRV, additional...

  10. Summary of nondestructive testing theory and practice

    NASA Technical Reports Server (NTRS)

    Meister, R. P.; Randall, M. D.; Mitchell, D. K.; Williams, L. P.; Pattee, H. E.

    1972-01-01

    The ability to fabricate design critical and man-rated aerospace structures using materials near the limits of their capabilities requires a comprehensive and dependable assurance program. The quality assurance program must rely heavily on nondestructive testing methods for thorough inspection to assess properties and quality of hardware items. A survey of nondestructive testing methods is presented to provide space program managers, supervisors and engineers who are unfamiliar with this technical area with appropriate insight into the commonly accepted nondestructive testing methods available, their interrelationships, used, advantages and limitations. Primary emphasis is placed on the most common methods: liquid penetrant, magnetic particle, radiography, ultrasonics and eddy current. A number of the newer test techniques including thermal, acoustic emission, holography, microwaves, eddy-sonic and exo-electron emission, which are beginning to be used in applications of interest to NASA, are also discussed briefly.

  11. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    PubMed Central

    Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  12. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications.

    PubMed

    Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan

    2016-02-26

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  13. Nondestructive evaluation of MoDOT bridge decks : pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  14. Nondestructive evaluation of MoDOT bridge decks : pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition assessments. The primary nondestructive : testing/evaluation (NDT/NDE) technique utilized in this research was ground-coupled ground penetrating radar ...

  15. Nondestructive tests of regenerative chambers. [evaluating nondestructive methods of determining metal bond integrity

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Vecchies, L.; Wood, R.

    1974-01-01

    The capabilities and limitations of nondestructive evaluation methods were studied to detect and locate bond deficiencies in regeneratively cooled thrust chambers for rocket engines. Flat test panels and a cylinder were produced to simulate regeneratively cooled thrust chamber walls. Planned defects with various bond integrities were produced in the panels to evaluate the sensitivity, accuracy, and limitations of nondestructive methods to define and locate bond anomalies. Holography, acoustic emission, and ultrasonic scan were found to yield sufficient data to discern bond quality when used in combination and in selected sequences. Bonding techniques included electroforming and brazing. Materials of construction included electroformed nickel bonded to Nickel 200 and OFHC copper, electroformed copper bonded to OFHC copper, and 300 series stainless steel brazed to OFHC copper. Variations in outer wall strength, wall thickness, and defect size were evaluated for nondestructive test response.

  16. Shearography for Non-destructive Inspection with applications to BAT Mask Tile Adhesive Bonding and Specular Surface Honeycomb Panels

    NASA Technical Reports Server (NTRS)

    Lysak, Daniel B.

    2003-01-01

    The applicability of shearography techniques for non-destructive evaluation in two unique application areas is examined. In the first application, shearography is used to evaluate the quality of adhesive bonds holding lead tiles to the B.4T gamma ray mask for the NASA Swift program. Using a vibration excitation, the more poorly bonded tiles are readily identifiable in the shearography image. A quantitative analysis is presented that compares the shearography results with a destructive pull test measuring the force at bond failure. The second application is to evaluate the bonding between the skin and core of a honeycomb structure with a specular (mirror-like) surface. In standard shearography techniques, the object under test must have a diffuse surface to generate the speckle patterns in laser light, which are then sheared. A novel configuration using the specular surface as a mirror to image speckles from a diffuser is presented, opening up the use of shearography to a new class of objects that could not have been examined with the traditional approach. This new technique readily identifies large scale bond failures in the panel, demonstrating the validity of this approach.

  17. Non-destructive geographical traceability of sea cucumber (Apostichopus japonicus) using near infrared spectroscopy combined with chemometric methods

    PubMed Central

    Cai, Rui; Wang, Shisheng; Tang, Bo; Li, Yueqing; Zhao, Weijie

    2018-01-01

    Sea cucumber is the major tonic seafood worldwide, and geographical origin traceability is an important part of its quality and safety control. In this work, a non-destructive method for origin traceability of sea cucumber (Apostichopus japonicus) from northern China Sea and East China Sea using near infrared spectroscopy (NIRS) and multivariate analysis methods was proposed. Total fat contents of 189 fresh sea cucumber samples were determined and partial least-squares (PLS) regression was used to establish the quantitative NIRS model. The ordered predictor selection algorithm was performed to select feasible wavelength regions for the construction of PLS and identification models. The identification model was developed by principal component analysis combined with Mahalanobis distance and scaling to the first range algorithms. In the test set of the optimum PLS models, the root mean square error of prediction was 0.45, and correlation coefficient was 0.90. The correct classification rates of 100% were obtained in both identification calibration model and test model. The overall results indicated that NIRS method combined with chemometric analysis was a suitable tool for origin traceability and identification of fresh sea cucumber samples from nine origins in China. PMID:29410795

  18. Non-destructive geographical traceability of sea cucumber (Apostichopus japonicus) using near infrared spectroscopy combined with chemometric methods.

    PubMed

    Guo, Xiuhan; Cai, Rui; Wang, Shisheng; Tang, Bo; Li, Yueqing; Zhao, Weijie

    2018-01-01

    Sea cucumber is the major tonic seafood worldwide, and geographical origin traceability is an important part of its quality and safety control. In this work, a non-destructive method for origin traceability of sea cucumber ( Apostichopus japonicus ) from northern China Sea and East China Sea using near infrared spectroscopy (NIRS) and multivariate analysis methods was proposed. Total fat contents of 189 fresh sea cucumber samples were determined and partial least-squares (PLS) regression was used to establish the quantitative NIRS model. The ordered predictor selection algorithm was performed to select feasible wavelength regions for the construction of PLS and identification models. The identification model was developed by principal component analysis combined with Mahalanobis distance and scaling to the first range algorithms. In the test set of the optimum PLS models, the root mean square error of prediction was 0.45, and correlation coefficient was 0.90. The correct classification rates of 100% were obtained in both identification calibration model and test model. The overall results indicated that NIRS method combined with chemometric analysis was a suitable tool for origin traceability and identification of fresh sea cucumber samples from nine origins in China.

  19. Training manuals for nondestructive testing using magnetic particles

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Training manuals containing the fundamentals of nondestructive testing using magnetic particle as detection media are used by metal parts inspectors and quality assurance specialists. Magnetic particle testing involves magnetization of the test specimen, application of the magnetic particle and interpretation of the patterns formed.

  20. Determine the Compressive Strength of Calcium Silicate Bricks by Combined Nondestructive Method

    PubMed Central

    2014-01-01

    The paper deals with the application of combined nondestructive method for assessment of compressive strength of calcium silicate bricks. In this case, it is a combination of the rebound hammer method and ultrasonic pulse method. Calibration relationships for determining compressive strength of calcium silicate bricks obtained from nondestructive parameter testing for the combined method as well as for the L-type Schmidt rebound hammer and ultrasonic pulse method are quoted here. Calibration relationships are known for their close correlation and are applicable in practice. The highest correlation between parameters from nondestructive measurement and predicted compressive strength is obtained using the SonReb combined nondestructive method. Combined nondestructive SonReb method was proved applicable for determination of compressive strength of calcium silicate bricks at checking tests in a production plant and for evaluation of bricks built in existing masonry structures. PMID:25276864

  1. Non-destructive inspection of polymer composite products

    NASA Astrophysics Data System (ADS)

    Anoshkin, A. N.; Sal'nikov, A. F.; Osokin, V. M.; Tretyakov, A. A.; Luzin, G. S.; Potrakhov, N. N.; Bessonov, V. B.

    2018-02-01

    The paper considers the main types of defects encountered in products made of polymer composite materials for aviation use. The analysis of existing methods of nondestructive testing is carried out, features of their application are considered taking into account design features, geometrical parameters and internal structure of objects of inspection. The advantages and disadvantages of the considered methods of nondestructive testing used in industrial production are shown.

  2. Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools : a guide for use and interpretation

    Treesearch

    Xiping Wang; Ferenc Divos; Crystal Pilon; Brian K. Brashaw; Robert J. Ross; Roy F. Pellerin

    2004-01-01

    This guide was prepared to assist field foresters in the use of stress wave timing instruments to locate and define areas of decay in standing timber. The first three sections provide background information, the principles of stress wave nondestructive testing, and measurement techniques for stress wave nondestructive testing. The last section is a detailed description...

  3. Comparative testing of radiographic testing, ultrasonic testing and phased array advanced ultrasonic testing non destructive testing techniques in accordance with the AWS D1.5 bridge welding code.

    DOT National Transportation Integrated Search

    2014-02-01

    A comprehensive body of non-destructive testing data was collected from steel bridge welds under real-world conditions in a fabricators shop. Three different non-destructive testing (NDT) techniques were used on each weld inspection, these being R...

  4. Bridge A1187 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  5. Bridge A3406 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  6. Bridge A1479 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  7. Bridge A2966 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  8. Bridge A2111 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  9. Bridge A1297 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  10. Bridge A1193 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  11. Bridge A0569 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  12. Bridge K0197 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  13. Bridge A3017 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  14. Bridge A3405 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  15. Holographic Techniques for Nondestructive Testing of Tires

    DOT National Transportation Integrated Search

    1972-04-01

    Holographic interferometric techniques were used in a development program to evaluate the feasibility of the technique in the nondestructive testing (NDT) of commercial automobile tires. Passenger tires with built-in defects were holographically insp...

  16. Railroad tank car nondestructive methods evaluation.

    DOT National Transportation Integrated Search

    2002-01-01

    An evaluation of nondestructive testing (NDT) methods, authorized for use in replacing the current hydrostatic pressure test for qualification or re-qualification of railroad tank cars, has been performed by the Transportation Technology Center, Inc....

  17. Correlation Between Ultrasonic Nondestructive Inspection and Wheel Test of 34 Retreaded Tires

    DOT National Transportation Integrated Search

    1979-11-01

    The report covers a test in which 34 retread tires were inspected using reflection ultrasound nondestructive inspection, wheel tested and then subjected to failure analysis by sectioning. The results demonstrate for the first time the ability of ultr...

  18. Interdisciplinary Program for Quantitative Flaw Definition.

    DTIC Science & Technology

    1978-01-01

    Ceramics .................... 284 UNIT C, TASK 4 - Microfocus X-Ray and Image Enhance- ment of Radiographic Data ....................... 292 UNIT C, TASK 5...Conventional Ultrasonic Inspection Methods Applied to Ceramics ..................... 294 iii 7! SC595.32SA OVERVIEW PROJECT I - QUANTITATIVE...parameters. Unit C was initiated in October of 1977 following encouraging nondestructive defect detectability studies in structural ceramics , using

  19. Advanced NDE techniques for quantitative characterization of aircraft

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.

    1990-01-01

    Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.

  20. Development of Cellular Absorptive Tracers (CATs) for a Quantitative Characterization of Microbial Mass in Flow Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saripalli, Prasad; Brown, Christopher F.; Lindberg, Michael J.

    We report on a new Cellular Absorptive Tracers (CATs) method, for a simple, non-destructive characterization of bacterial mass in flow systems. Results show that adsorption of a CAT molecule into the cellular mass results in its retardation during flow, which is a good, quantitative measure of the biomass quantity and distribution. No such methods are currently available for a quantitative characterization of cell mass.

  1. Mechanical behavior of a ceramic matrix composite material. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Grosskopf, Paul P.; Duke, John C., Jr.

    1991-01-01

    Monolithic ceramic materials have been used in industry for hundreds of years. These materials have proven their usefulness in many applications, yet, their potential for critical structural applications is limited. The existence of an imperfection in a monolithic ceramic on the order of several microns in size may be critical, resulting in catastrophic failure. To overcome this extreme sensitivity to small material imperfections, reinforced ceramic materials were developed. A ceramic matrix which has been reinforced with continuous fibers is not only less sensitive to microscopic flaws, but is also able to sustain significant damage without suffering catastrophic failure. A borosilicate glass reinforced with several layers of plain weave silicon carbide cloth (Nicalon) was studied. The mechanical testing which was performed included both flexural and tensile loading configurations. This testing was done not only to determine the material properties, but also to initiate a controlled amount of damage within each specimen. Several nondestructive testing techniques, including acousto-ultrasonics (AU), were performed on the specimens periodically during testing. The AU signals were monitored through the use of an IBM compatible personal computer with a high speed data acquisition board. Software was written which manipulates the AU signals in both the time and frequency domains, resulting in quantitative measures of the mechanical response of the material. The measured AU parameters are compared to both the mechanical test results and data from other nondestructive methods including ultrasonic C-scans and penetrant enhanced x ray radiography.

  2. MicroCT parameters for multimaterial elements assessment

    NASA Astrophysics Data System (ADS)

    de Araújo, Olga M. O.; Silva Bastos, Jaqueline; Machado, Alessandra S.; dos Santos, Thaís M. P.; Ferreira, Cintia G.; Rosifini Alves Claro, Ana Paula; Lopes, Ricardo T.

    2018-03-01

    Microtomography is a non-destructive testing technique for quantitative and qualitative analysis. The investigation of multimaterial elements with great difference of density can result in artifacts that degrade image quality depending on combination of additional filter. The aim of this study is the selection of parameters most appropriate for analysis of bone tissue with metallic implant. The results show the simulation with MCNPX code for the distribution of energy without additional filter, with use of aluminum, copper and brass filters and their respective reconstructed images showing the importance of the choice of these parameters in image acquisition process on computed microtomography.

  3. Evaluation of bridge deck delamination investigation methods

    DOT National Transportation Integrated Search

    1998-07-01

    An objective view of the relative advantages and limitations of the nondestructive, testing and evaluation methods that currently used in the inspection of bridge decks is presented and discussed. The three main nondestructive testing technologies th...

  4. Nondestructive Tire Testing Studies

    DOT National Transportation Integrated Search

    1972-10-01

    A number of nondestructive testing procedures are being investigated in depth to determine the feasibility of each individually, and in combination, to detect and identify defects in tires that can lead to failure. The facility, equipment, and data h...

  5. Probability of detection evaluation results for railroad tank car nondestructive testing : final report.

    DOT National Transportation Integrated Search

    2016-08-01

    The Federal Railroad Administration (FRA), Transportation Technology Center, Inc. (TTCI), and rail industry participants have : performed probability of detection (POD) assessments to evaluate nondestructive testing (NDT) technologies, which are : pr...

  6. Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhong, Shuncong; Shen, Yao-Chun; Ho, Louise; May, Robert K.; Zeitler, J. Axel; Evans, Mike; Taday, Philip F.; Pepper, Michael; Rades, Thomas; Gordon, Keith C.; Müller, Ronny; Kleinebudde, Peter

    2011-03-01

    Optical coherence tomography (OCT) and terahertz pulsed imaging (TPI) are two powerful techniques allowing high quality cross-sectional images from within scattering media to be obtained non-destructively. In this paper, we report experimental results of using OCT and TPI for quantitatively characterizing pharmaceutical tablet coatings in the thickness range of 10-140 μm. We found that the spectral OCT system developed in-house has an axial resolution of 0.9 μm, and is capable of quantifying very thin coatings in the range of 10-60 μm. The upper limit of 60 μm within the tablet coating and core is owed to the strong scattering of OCT light, which has relatively short wavelengths in the range of 0.5-1.0 μm. On the other hand, TPI utilizes terahertz radiation that has substantially long wavelengths in the range of hundreds of microns, and thus is less prone to the scattering problem. Consequently TPI has been demonstrated to be able to quantify thicker coatings in the range of 40-140 μm and beyond. We concluded that OCT and TPI are two complementary analytical techniques for non-destructive and quantitative characterization of pharmaceutical tablet coatings.

  7. Mechanical properties and eddy current testing of thermally aged Z3CN20.09M cast duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Liu, Tonghua; Wang, Wei; Qiang, Wenjiang; Shu, Guogang

    2018-04-01

    To study the thermal aging embrittlement of Z3CN20.09M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 380 °C up to 9000 h. Microhardness measurements, Charpy impact and eddy current tests were performed on aged samples to characterize their thermal aging embrittlement. The results showed that the signal amplitude of eddy current decreased with the increase in aging time. Two quantitative correlations of the eddy current signal amplitude with both the Charpy impact energy, and the Vickers microhardness of the ferrite phase are obtained. The study showed that eddy current testing could be used to non-destructively evaluate the thermal aging embrittlement of cast duplex stainless steels.

  8. Infrared On-Orbit Inspection of Shuttle Orbiter Reinforced Carbon-Carbon Using Solar Heating

    NASA Technical Reports Server (NTRS)

    Howell, P. A.; Winfree, W. P.; Cramer, K. Elliott

    2005-01-01

    Thermographic nondestructive inspection techniques have been shown to provide quantitative, large area damage detection capabilities for the ground inspection of the reinforced carbon-carbon (RCC) used for the wing leading edge of the Shuttle orbiter. The method is non-contacting and able to inspect large areas in a relatively short inspection time. Thermal nondestructive evaluation (NDE) inspections have been shown to be applicable for several applications to the Shuttle in preparation for return to flight, including for inspection of RCC panels during impact testing, and for between-flight orbiter inspections. The focus of this work is to expand the capabilities of the thermal NDE methodology to enable inspection by an astronaut during orbital conditions. The significant limitations of available resources, such as weight and power, and the impact of these limitations on the inspection technique are discussed, as well as the resultant impact on data analysis and processing algorithms. Of particular interest is the impact to the inspection technique resulting from the use of solar energy as a heat source, the effect on the measurements due to working in the vacuum of space, and the effect of changes in boundary conditions, such as radiation losses seen by the material, on the response of the RCC. The resultant effects on detectability limits are discussed. Keywords: Nondestructive Evaluation, Shuttle, on-orbit inspection, thermography, infrared

  9. Saturn S-2 quality assurance techniques: Nondestructive testing processes. Volume 1: Requirements and procedures

    NASA Technical Reports Server (NTRS)

    Eller, H. H.; Sugg, F. E.

    1970-01-01

    The methods and procedures used to perform nondestructive testing inspections of the Saturn S-2 liquid hydrogen and liquid oxygen tank weldments during fabrication and after proof testing are described to document special skills developed during the program. All post-test inspection requirements are outlined including radiographic inspections procedures.

  10. Detailed Concepts in Performing Oversight on an Army Radiographic Inspection Site

    DTIC Science & Technology

    2017-03-01

    number of facilities that perform various nondestructive tests , inspections, and evaluations. The U.S. Army Armament Research, Development and...procedures, and documentation in place to conform to nationally recognized standards. This report specifically reviews the radiographic testing ...X-ray Nondestructive testing (NDT) Radiographic testing (RT) Computed tomography (CT) 16. SECURITY

  11. 12. VIEW OF THE NONDESTRUCTIVE TESTING EQUIPMENT BEING USED TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF THE NON-DESTRUCTIVE TESTING EQUIPMENT BEING USED TO DETECT FLAWS IN FABRICATED COMPONENTS. (6/76) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  12. Semi-Automated Pulse-Echo Ultrasonic System for Inspecting Tires

    DOT National Transportation Integrated Search

    1977-07-01

    A nondestructive tire-testing system has been developed using the pulse-echo ultrasonic technique, which offers substantial advantages over all other physical nondestructive-testing methods and shows promise of reducing the cost of production-tire in...

  13. Nondestructive testing of a weld repair on the I-65 Bridge over the Ohio River at Louisville.

    DOT National Transportation Integrated Search

    2009-06-01

    Nondestructive evaluation methods were applied to verify the structural integrity of a fracture critical structural member on the I-65 John F. Kennedy Memorial Bridge over the Ohio River at Louisville. Several nondestructive evaluation methods includ...

  14. Photoacoustic Spectroscopy as a Non-destructive Tool for Quantification of Pesticide Residue in Apple Cuticle

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Wang, Yafei; Gao, Chunming; Huan, Huiting; Zhao, Binxing; Yan, Laijun

    2015-06-01

    Photoacoustic spectroscopy (PAS), the non-destructive method to detect residue of dimethyl-dichloro-vinyl-phosphate (DDVP) pesticide in a cuticle of apple, is described. After constructing the PA experimental setup and identifying three characteristic peaks of DDVP in the near ultraviolet region, the PA spectra of an apple cuticle contaminated with DDVP were collected. The artificial neural network method was then applied to analyze data quantitatively. The results show a correlation coefficient exceeding 0.99 and a detection limit of 0.2 ppm, which is within the national food safety standard for maximum residue limits for pesticides in food (GB 2763-2012). This fact and the non-destructive character of PAS make the approach promising for detection of pesticide residue in fruits.

  15. The Nuclear Renaissance — Implications on Quantitative Nondestructive Evaluations

    NASA Astrophysics Data System (ADS)

    Matzie, Regis A.

    2007-03-01

    The world demand for energy is growing rapidly, particularly in developing countries that are trying to raise the standard of living for billions of people, many of whom do not even have access to electricity. With this increased energy demand and the high and volatile price of fossil fuels, nuclear energy is experiencing resurgence. This so-called nuclear renaissance is broad based, reaching across Asia, the United States, Europe, as well as selected countries in Africa and South America. Some countries, such as Italy, that have actually turned away from nuclear energy are reconsidering the advisability of this design. This renaissance provides the opportunity to deploy more advanced reactor designs that are operating today, with improved safety, economy, and operations. In this keynote address, I will briefly present three such advanced reactor designs in whose development Westinghouse is participating. These designs include the advanced passive PWR, AP1000, which recently received design certification for the US Nuclear Regulatory Commission; the Pebble Bed Modular reactor (PBMR) which is being demonstrated in South Africa; and the International Reactor Innovative and Secure (IRIS), which was showcased in the US Department of Energy's recently announced Global Nuclear Energy Partnership (GNEP), program. The salient features of these designs that impact future requirements on quantitative nondestructive evaluations will be discussed. Such features as reactor vessel materials, operating temperature regimes, and new geometric configurations will be described, and mention will be made of the impact on quantitative nondestructive evaluation (NDE) approaches.

  16. NonDestructive Evaluation for Industrial & Development Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, James F.

    2016-10-12

    Provide overview of weld inspection for Non-Destructive Testing at LANL. This includes radiography (RT/DR/CR/CT for x-ray & neutron sources), ultrasonic testing (UT/PAUT), dye penetrant inspection (PT), eddy current inspection (ET) and magnetic particle testing (MT). Facilities and capabilities for weld inspection will be summarized with examples.

  17. Nondestructive test determines overload destruction characteristics of current limiter fuses

    NASA Technical Reports Server (NTRS)

    Swartz, G. A.

    1968-01-01

    Nondestructive test predicts the time required for current limiters to blow /open the circuit/ when subjected to a given overload. The test method is based on an empirical relationship between the voltage rise across a current limiter for a fixed time interval and the time to blow.

  18. Assessment of non-destructive testing technologies for quality control/quality assurance of asphalt mixtures : [tech transfer summary].

    DOT National Transportation Integrated Search

    2015-02-01

    Evaluation of the actual performance (quality) of pavements requires : in situ nondestructive testing (NDT) techniques that can accurately : measure the most critical, objective, and sensitive properties of : pavement systems.

  19. Current and proposed practices for nondestructive highway pavement testing

    DOT National Transportation Integrated Search

    1997-11-01

    In September 1994 the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) distributed a short survey on nondestructive testing practices to each of the 50 state Departments of Transportation (DOTs). The compilation of results constitut...

  20. Automated Non-Destructive Testing Array Evaluation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, T; Zavaljevski, N; Bakhtiari, S

    2004-12-24

    Automated Non-Destructive Testing Array Evaluation System (ANTARES) sofeware alogrithms were developed for use on X-probe(tm) data. Data used for algorithm development and preliminary perfomance determination was obtained for USNRC mock-up at Argone and data from EPRI.

  1. Use of medical and dental X-ray equipment for nondestructive testing

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Industrial X ray equipment is used for nondestructive testing to detect defects in metal joints, electrical terminal blocks, sealed assemblies, and other hardware. Medical and dental X ray equipment is also used for hardware troubleshooting.

  2. Atlantis Non-destructive Testing

    NASA Image and Video Library

    2003-10-29

    In the Orbiter Processing Facility, the nose cap (foreground) removed from Atlantis (behind) waits to be shipped to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

  3. Nondestructive evaluation of fiber reinforced polymer bridges and decks.

    DOT National Transportation Integrated Search

    2003-10-01

    The research described herein involved both nondestructive evaluation and destructive testing of an FRP honeycomb specimen. The specimen is representative of an FRP bridge that is to be constructed in Troupsburg, New York. The specimen was tested in ...

  4. 49 CFR 193.2321 - Nondestructive tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Nondestructive tests. 193.2321 Section 193.2321 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES...

  5. EPRI/DOE High Burnup Fuel Sister Pin Test Plan Simplification and Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltzstein, Sylvia J.; Sorenson, Ken B.; Hanson, Brady

    The EPRI/DOE High Burnup Confirmatory Data Project (herein called the "Demo") is a multi-year, multi-entity confirmation demonstration test with the purpose of providing quantitative and qualitative data to show how high-burnup fuel ages in dry storage over a ten-year period. The Demo involves obtaining 32 assemblies of high-burnup PWR fuel of four common cladding alloys from the North Anna Nuclear Power Plant, drying them according to standard plant procedures, and then storing them in an NRC-licensed TN-3 2B cask on the North Anna dry storage pad for ten years. After the ten-year storage time, the cask will be opened andmore » the rods will be examined for signs of aging. Twenty-five rods from assemblies of similar claddings, in-reactor placement, and burnup histories (herein called "sister rods") have been shipped from the North Anna Nuclear Power Plant and are currently being nondestructively tested at Oak Ridge National Laboratory. After the non-destructive testing has been completed for each of the twenty-five rods, destructive analysis will be performed at ORNL, PNNL, and ANL to obtain mechanical data. Opinions gathered from the expert interviews, ORNL and PNNL Sister Rod Test Plans, and numerous meetings has resulted in the Simplified Test Plan described in this document. Some of the opinions and discussions leading to the simplified test plan are included here. Detailed descriptions and background are in the ORNL and PNNL plans in the appendices . After the testing described in this simplified test plan h as been completed , the community will review all the collected data and determine if additional testing is needed.« less

  6. Failure analysis of electronic parts: Laboratory methods. [for destructive and nondestructive testing

    NASA Technical Reports Server (NTRS)

    Anstead, R. J. (Editor); Goldberg, E. (Editor)

    1975-01-01

    Failure analysis test methods are presented for use in analyzing candidate electronic parts and in improving future design reliability. Each test is classified as nondestructive, semidestructive, or destructive. The effects upon applicable part types (i.e. integrated circuit, transitor) are discussed. Methodology is given for performing the following: immersion tests, radio graphic tests, dewpoint tests, gas ambient analysis, cross sectioning, and ultraviolet examination.

  7. Ultrasonic test of resistance spot welds based on wavelet package analysis.

    PubMed

    Liu, Jing; Xu, Guocheng; Gu, Xiaopeng; Zhou, Guanghao

    2015-02-01

    In this paper, ultrasonic test of spot welds for stainless steel sheets has been studied. It is indicated that traditional ultrasonic signal analysis in either time domain or frequency domain remains inadequate to evaluate the nugget diameter of spot welds. However, the method based on wavelet package analysis in time-frequency domain can easily distinguish the nugget from the corona bond by extracting high-frequency signals in different positions of spot welds, thereby quantitatively evaluating the nugget diameter. The results of ultrasonic test fit the actual measured value well. Mean value of normal distribution of error statistics is 0.00187, and the standard deviation is 0.1392. Furthermore, the quality of spot welds was evaluated, and it is showed ultrasonic nondestructive test based on wavelet packet analysis can be used to evaluate the quality of spot welds, and it is more reliable than single tensile destructive test. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. International Seminar on Laser and Opto-Electronic Technology in Industry: State-of-the-Art Review, Xiamen, People's Republic of China, June 25-28, 1986, Proceedings

    NASA Astrophysics Data System (ADS)

    Ke, Jingtang; Pryputniewicz, Ryszard J.

    Various papers on the state of the art in laser and optoelectronic technology in industry are presented. Individual topics addressed include: wavelength compensation for holographic optical element, optoelectronic techniques for measurement and inspection, new optical measurement methods in Western Europe, applications of coherent optics at ISL, imaging techniques for gas turbine development, the Rolls-Royce experience with industrial holography, panoramic holocamera for tube and borehole inspection, optical characterization of electronic materials, optical strain measurement of rotating components, quantitative interpretation of holograms and specklegrams, laser speckle technique for hydraulic structural model test, study of holospeckle interferometry, common path shearing fringe scanning interferometer, and laser interferometry applied to nondestructive testing of tires.

  9. 49 CFR 193.2321 - Nondestructive tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Nondestructive tests. 193.2321 Section 193.2321 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS...

  10. 49 CFR 193.2321 - Nondestructive tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Nondestructive tests. 193.2321 Section 193.2321 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS...

  11. Case Studies on Application of Data Integration Techniques to Nondestructive Testing of Pavements

    DOT National Transportation Integrated Search

    2005-11-01

    The nondestructive testing devices currently in use by TxDOT are the falling weight deflectometer, the seismic pavement analyzer, the portable seismic pavement analyzer, and ground penetrating radar, which provide thickness or modulus information. In...

  12. Non-destructive monitoring of creaming of oil-in-water emulsion-based formulations using magnetic resonance imaging.

    PubMed

    Onuki, Yoshinori; Horita, Akihiro; Kuribayashi, Hideto; Okuno, Yoshihide; Obata, Yasuko; Takayama, Kozo

    2014-07-01

    A non-destructive method for monitoring creaming of emulsion-based formulations is in great demand because it allows us to understand fully their instability mechanisms. This study was aimed at demonstrating the usefulness of magnetic resonance (MR) techniques, including MR imaging (MRI) and MR spectroscopy (MRS), for evaluating the physicochemical stability of emulsion-based formulations. Emulsions that are applicable as the base of practical skin creams were used as test samples. Substantial creaming was developed by centrifugation, which was then monitored by MRI. The creaming oil droplet layer and aqueous phase were clearly distinguished by quantitative MRI by measuring T1 and the apparent diffusion coefficient. Components in a selected volume in the emulsions could be analyzed using MRS. Then, model emulsions having different hydrophilic-lipophilic balance (HLB) values were tested, and the optimal HLB value for a stable dispersion was determined. In addition, the MRI examination enables the detection of creaming occurring in a polyethylene tube, which is commonly used for commercial products, without losing any image quality. These findings strongly indicate that MR techniques are powerful tools to evaluate the physicochemical stability of emulsion-based formulations. This study will make a great contribution to the development and quality control of emulsion-based formulations.

  13. Nuclear Technology. Course 32: Nondestructive Examination (NDE) II. Module 32-3, Fundamentals of Magnetic Particle Testing.

    ERIC Educational Resources Information Center

    Groseclose, Richard

    This third in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II explains the principles of magnets and magnetic fields and how they are applied in magnetic particle testing, describes the theory and methods of magnetizing test specimens, describes the test equipment used, discusses the principles and…

  14. Non-Destructive Techniques Based on Eddy Current Testing

    PubMed Central

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  15. Non-destructive techniques based on eddy current testing.

    PubMed

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.

  16. QUANTITATIVE NON-DESTRUCTIVE EVALUATION (QNDE) OF THE ELASTIC MODULI OF POROUS TIAL ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeheskel, O.

    2008-02-28

    The elastic moduli of {gamma}-TiA1 were studied in porous samples consolidated by various techniques e.g. cold isostatic pressing (CIP), pressure-less sintering, or hot isostatic pressing (HIP). Porosity linearly affects the dynamic elastic moduli of samples. The results indicate that the sound wave velocities and the elastic moduli affected by the processing route and depend not only on the attained density but also on the consolidation temperature. In this paper we show that there is linear correlation between the shear and the longitudinal sound velocities in porous TiA1. This opens the way to use a single sound velocity as a toolmore » for quantitative non-destructive evaluation (QNDE) of porous TiA1 alloys. Here we demonstrate the applicability of an equation derived from the elastic theory and used previously for porous cubic metals.« less

  17. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, M.; Ebel, D.S.

    2009-03-19

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length ofmore » {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.« less

  18. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-4, Operation of Magnetic Particle Test Equipment.

    ERIC Educational Resources Information Center

    Groseclose, Richard

    This fourth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II describes the specific technique variables and options which are available to the test technician, provides instructions for selecting and operating the appropriate test equipment, describes physical criteria for detectable discontinuities,…

  19. Evaluation of the influence of acquisition parameters of microtomography in image quality applied by carbonate rocks

    NASA Astrophysics Data System (ADS)

    Santos, T. M. P.; Machado, A. S.; Araújo, O. M. O.; Ferreira, C. G.; Lopes, R. T.

    2018-03-01

    X-ray computed microtomography is a powerful nondestructive technique for 2D and 3D structure analysis. However, parameters used in acquisition promote directs influence in qualitative and quantitative results in characterization of samples, due image resolution. The aim of this study is value the influence of theses parameters in results through of tests changing these parameters in different situations and system characterization. Results demonstrate those pixel size and detector matrixes are the main parameters that influence in resolution and image quality. Microtomography was considered an excellent technique for characterization using the best image resolution possible.

  20. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Nondestructive testing. 98.25-97 Section 98.25-97 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...

  1. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Nondestructive testing. 98.25-97 Section 98.25-97 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...

  2. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Nondestructive testing. 98.25-97 Section 98.25-97 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...

  3. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Nondestructive testing. 98.25-97 Section 98.25-97 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...

  4. 46 CFR 98.25-97 - Nondestructive testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Nondestructive testing. 98.25-97 Section 98.25-97 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...

  5. Novel integrated nondestructive testing methodology for detection and evaluation of corrosion in cement-based materials.

    DOT National Transportation Integrated Search

    2014-06-01

    The objective of this project focused on the development of a hybrid nondestructive testing and evaluation (NDT&E) methodology that combines the benefits of microwave NDT and thermography into one new technique. In this way, unique features of both N...

  6. Isotope specific arbitrary material flow meter

    DOEpatents

    Barty, Christopher P. J.; Post, John C.; Jones, Edwin

    2016-10-25

    A laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  7. Nondestructive examination of recovery stage during annealing of a cold-rolled low-carbon steel using eddy current testing technique

    NASA Astrophysics Data System (ADS)

    Seyfpour, M.; Ghanei, S.; Mazinani, M.; Kashefi, M.; Davis, C.

    2018-04-01

    The recovery process in steel is usually investigated by conventional destructive tests that are expensive, time-consuming and also cumbersome. In this study, an alternative non-destructive test technique (based on eddy current testing) is used to characterise the recovery process during annealing of cold-rolled low-carbon steels. For assessing the reliability of eddy current results corresponding to different levels of recovery, X-ray line broadening analysis is also employed. It is shown that there is a strong relationship between eddy current outputs and the extent to which recovery occurs at different annealing temperatures. Accordingly, the non-destructive eddy current test technique represents the potential to be used as a reliable process for detection of the occurrence of recovery in the steel microstructure.

  8. Review of progress in quantitative NDE. [Nondestructive Evaluation (NDE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    This booklet is composed of abstracts from papers submitted at a meeting on quantitative NDE. A multitude of topics are discussed including analysis of composite materials, NMR uses, x-ray instruments and techniques, manufacturing uses, neural networks, eddy currents, stress measurements, magnetic materials, adhesive bonds, signal processing, NDE of mechanical structures, tomography,defect sizing, NDE of plastics and ceramics, new techniques, optical and electromagnetic techniques, and nonlinear techniques. (GHH)

  9. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-1, Fundamentals of Ultrasonic Testing.

    ERIC Educational Resources Information Center

    Spaulding, Bruce

    This first in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II introduces the student/trainee to the basic behavior of ultrasound, describes ultrasonic test equipment, and outlines the principal methods of ultrasonic testing. The module follows a typical format that includes the following sections: (1)…

  10. CLT and AE methods of in-situ load testing : comparison and development of evaluation criteria : in-situ evaluation of post-tensioned parking garage, Kansas City, Missouri

    DOT National Transportation Integrated Search

    2008-02-01

    The objective of the proposed research project is to compare the results of two recently introduced nondestructive load test methods to the existing 24-hour load test method described in Chapter 20 of ACI 318-05. The two new methods of nondestructive...

  11. Nondestructive testing techniques

    NASA Astrophysics Data System (ADS)

    Bray, Don E.; McBride, Don

    A comprehensive reference covering a broad range of techniques in nondestructive testing is presented. Based on years of extensive research and application at NASA and other government research facilities, the book provides practical guidelines for selecting the appropriate testing methods and equipment. Topics discussed include visual inspection, penetrant and chemical testing, nuclear radiation, sonic and ultrasonic, thermal and microwave, magnetic and electromagnetic techniques, and training and human factors. (No individual items are abstracted in this volume)

  12. Total Internal Reflection Microscopy (TIRM) as a nondestructive surface damage assessment tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Z.M.; Cohen, S.J.; Taylor, J.R.

    1994-10-01

    An easy to use, nondestructive, method for evaluating subsurface damage in polished substrates has been established at LLNL. Subsurface damage has been related to laser damage in coated optical components used in high power, high repetition rate laser systems. Total Internal Reflection Microscopy (TIRM) has been shown to be a viable nondestructive technique in analyzing subsurface damage in optical components. A successful TIRM system has been established for evaluating subsurface damage on fused silica components. Laser light scattering from subsurface damage sites is collected through a Nomarski microscope. These images are then captured by a CCD camera for analysis onmore » a computer. A variety of optics, including components with intentional subsurface damage due to grinding and polishing, have been analyzed and their TIRM images compared to an existing destructive etching method. Methods for quantitative measurement of subsurface damage are also discussed.« less

  13. Variable selection based near infrared spectroscopy quantitative and qualitative analysis on wheat wet gluten

    NASA Astrophysics Data System (ADS)

    Lü, Chengxu; Jiang, Xunpeng; Zhou, Xingfan; Zhang, Yinqiao; Zhang, Naiqian; Wei, Chongfeng; Mao, Wenhua

    2017-10-01

    Wet gluten is a useful quality indicator for wheat, and short wave near infrared spectroscopy (NIRS) is a high performance technique with the advantage of economic rapid and nondestructive test. To study the feasibility of short wave NIRS analyzing wet gluten directly from wheat seed, 54 representative wheat seed samples were collected and scanned by spectrometer. 8 spectral pretreatment method and genetic algorithm (GA) variable selection method were used to optimize analysis. Both quantitative and qualitative model of wet gluten were built by partial least squares regression and discriminate analysis. For quantitative analysis, normalization is the optimized pretreatment method, 17 wet gluten sensitive variables are selected by GA, and GA model performs a better result than that of all variable model, with R2V=0.88, and RMSEV=1.47. For qualitative analysis, automatic weighted least squares baseline is the optimized pretreatment method, all variable models perform better results than those of GA models. The correct classification rates of 3 class of <24%, 24-30%, >30% wet gluten content are 95.45, 84.52, and 90.00%, respectively. The short wave NIRS technique shows potential for both quantitative and qualitative analysis of wet gluten for wheat seed.

  14. Infrared Thermography for Temperature Measurement and Non-Destructive Testing

    PubMed Central

    Usamentiaga, Rubèn; Venegas, Pablo; Guerediaga, Jon; Vega, Laura; Molleda, Julio; Bulnes, Francisco G.

    2014-01-01

    The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed. PMID:25014096

  15. Non-destructive testing (NDT) of a segmental concrete bridge scheduled for demolition, with a focus on condition assessment and corrosion detection of internal tendons : [summary].

    DOT National Transportation Integrated Search

    2017-06-01

    In this project, Florida International University researchers used segments from a demolished concrete segmental bridge with internal tendons to study damage to post-stressed tendons and to test the effectiveness of various methods of non-destructive...

  16. Nondestructive Testing Introduction RQA/M1 and M3-5330.9.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As the first in the series of programmed instruction handbooks, prepared by the U. S. space program, home study material is presented in this volume concerning familiarization and orientation on nondestructive testing. The subject is presented under the following headings: The Need for Higher Quality; Working the Billet; Forging Discontinuities;…

  17. PARENT Quick Blind Round-Robin Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braatz, Brett G.; Heasler, Patrick G.; Meyer, Ryan M.

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) whose goal is to investigate the effectiveness of current and novel nondestructive examination procedures and techniques to find flaws in nickel-alloy welds and base materials. This is to be done by conducting a series of open and blind international round-robin tests on a set of piping components that include large-bore dissimilar metal welds, small-bore dissimilar metal welds, and bottom-mounted instrumentation penetration welds. The blind testing is being conducted in two segments, one is called Quick-Blind and the other is called Blind. Themore » Quick-Blind testing and destructive analysis of the test blocks has been completed. This report describes the four Quick-Blind test blocks used, summarizes their destructive analysis, gives an overview of the nondestructive evaluation (NDE) techniques applied, provides an analysis inspection data, and presents the conclusions drawn.« less

  18. Aging aircraft NDI Development and Demonstration Center (AANC): An overview. [nondestructive inspection

    NASA Technical Reports Server (NTRS)

    Walter, Patrick L.

    1992-01-01

    A major center with emphasis on validation of nondestructive inspection (NDI) techniques for aging aircraft, the Aging Aircraft NDI Development and Demonstration Center (AANC), has been funded by the FAA at Sandia National Laboratories. The Center has been assigned specific tasks in developing techniques for the nondestructive inspection of static engine parts, assessing inspection reliability (POD experiments), developing testbeds for NDI validation, maintaining a FAA library of characterized aircraft structural test specimens, and leasing a hangar to house a high flight cycle transport aircraft for use as a full scale test bed.

  19. Nondestructive mechanical characterization of developing biological tissues using inflation testing.

    PubMed

    Oomen, P J A; van Kelle, M A J; Oomens, C W J; Bouten, C V C; Loerakker, S

    2017-10-01

    One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Damage detection techniques for concrete applications.

    DOT National Transportation Integrated Search

    2016-08-01

    New technological advances in nondestructive testing technology have created the opportunity to better utilize ultrasonic waves to aid in damage detection applications for concrete. This research utilizes an ultrasonic array device for nondestructive...

  1. Fuzzy Neural Classifiers for Multi-Wavelength Interdigital Sensors

    NASA Astrophysics Data System (ADS)

    Xenides, D.; Vlachos, D. S.; Simos, T. E.

    2007-12-01

    The use of multi-wavelength interdigital sensors for non-destructive testing is based on the capability of the measuring system to classify the measured impendence according to some physical properties of the material under test. By varying the measuring frequency and the wavelength of the sensor (and thus the penetration depth of the electric field inside the material under test) we can produce images that correspond to various configurations of dielectric materials under different geometries. The implementation of a fuzzy neural network witch inputs these images for both quantitative and qualitative sensing is demonstrated. The architecture of the system is presented with some references to the general theory of fuzzy sets and fuzzy calculus. Experimental results are presented in the case of a set of 8 well characterized dielectric layers. Finally the effect of network parameters to the functionality of the system is discussed, especially in the case of functions evaluating the fuzzy AND and OR operations.

  2. Microstructure-Sensitive Investigation of Fracture Using Acoustic Emission Coupled With Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Wisner, Brian; Cabal, Mike; Vanniamparambiland, Prashanth A.; Leser, William; Hochhalter, Jacob; Kontsos, Antonios

    2015-01-01

    A novel technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is proposed to investigate microstructure-sensitive fatigue and fracture of metals. The coupling between quasi in situ microscopy with actual in situ nondestructive evaluation falls into the ICME framework and the idea of quantitative data-driven characterization of material behavior. To validate the use of AE monitoring inside the SEM chamber, Aluminum 2024-B sharp notch specimen were tested both inside and outside the microscope using a small scale mechanical testing device. Subsequently, the same type of specimen was tested inside the SEM chamber. Load data were correlated with both AE information and observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The preliminary results are in excellent agreement with similar findings at the mesoscale. Extensions of the application of this novel technique are discussed.

  3. Quantitative Nondestructive Evaluation

    DTIC Science & Technology

    1979-10-01

    reliability has been discussed by a number of researchers, including Pachman, et. al. [25,28], Hastings [29], Ehret [30], Kaplan and Reiman [31], and...123 REFERENCES (Continued) 31. Kaplan, M.P. and Reiman , J.A. "Use of Fracture Mechanics in Estimating Structural Life and Inspection Intervals

  4. A1297 GPR vs. hydro video clip.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research was ground-coupled ground penetrating radar (G...

  5. A Practical Framework Toward Prediction of Breaking Force and Disintegration of Tablet Formulations Using Machine Learning Tools.

    PubMed

    Akseli, Ilgaz; Xie, Jingjin; Schultz, Leon; Ladyzhynsky, Nadia; Bramante, Tommasina; He, Xiaorong; Deanne, Rich; Horspool, Keith R; Schwabe, Robert

    2017-01-01

    Enabling the paradigm of quality by design requires the ability to quantitatively correlate material properties and process variables to measureable product performance attributes. Conventional, quality-by-test methods for determining tablet breaking force and disintegration time usually involve destructive tests, which consume significant amount of time and labor and provide limited information. Recent advances in material characterization, statistical analysis, and machine learning have provided multiple tools that have the potential to develop nondestructive, fast, and accurate approaches in drug product development. In this work, a methodology to predict the breaking force and disintegration time of tablet formulations using nondestructive ultrasonics and machine learning tools was developed. The input variables to the model include intrinsic properties of formulation and extrinsic process variables influencing the tablet during manufacturing. The model has been applied to predict breaking force and disintegration time using small quantities of active pharmaceutical ingredient and prototype formulation designs. The novel approach presented is a step forward toward rational design of a robust drug product based on insight into the performance of common materials during formulation and process development. It may also help expedite drug product development timeline and reduce active pharmaceutical ingredient usage while improving efficiency of the overall process. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Quantitative nondestructive in-service evaluation of stay cables of cable-stayed bridges: methods and practical experience

    NASA Astrophysics Data System (ADS)

    Weischedel, Herbert R.; Hoehle, Hans-Werner

    1995-05-01

    Stay cables of cable-stayed bridges have corrosion protection systems that can be elaborate. For example, such a system may simply consist of one or several coats of paint, or--more complex--of plastic pipes that are wrapped with tape and filled with grout. Frequently, these corrosion protection systems prevent visual inspections. Therefore, alternative nondestructive examination methods are called for. For example, modern dual-function electromagnetic (EM) instruments allow the simultaneous detection of external and internal localized flaws (such as external and internal broken wires and corrosion piting) and the measurement of loss of metallic cross-sectional area (typically caused by external or internal corrosion or wear). Initially developed for mining and skiing applications, these instruments have been successfully used for the inspection of stays of cable-stayed bridges, and for the inspection of guys of smoke stacks, flare stacks, broadcast towers, suspended roofs, etc. As a rule, guys and bridge cables are not subjected to wear and bending stresses. However, their safety can be compromised by corrosion caused by the failure of corrosion protection systems. Furthermore, live loads and wind forces create intermittent tensile stresses that can cause fatigue breaks of wires. This paper discusses the use of dual-function EM instruments for the detection and the nondestructive quantitative evaluation of cable deterioration. It explains the underlying principles. Experiences with this method together with field inspection results will be presented.

  7. Optical and mechanical nondestructive tests for measuring tomato fruit firmness

    NASA Astrophysics Data System (ADS)

    Manivel-Chávez, Ricardo A.; Garnica-Romo, M. G.; Arroyo-Correa, Gabriel; Aranda-Sánchez, Jorge I.

    2011-08-01

    Ripening is one of the most important processes to occur in fruits which involve changes in color, flavor, and texture. An important goal in quality control of fruits is to substitute traditional sensory testing methods with reliable nondestructive tests (NDT). In this work we study the firmness of tomato fruits by using optical and mechanical NDT. Optical and mechanical parameters, measured along the tomato shelf life, are shown.

  8. The use of fractional order derivatives for eddy current non-destructive testing

    NASA Astrophysics Data System (ADS)

    Sikora, Ryszard; Grzywacz, Bogdan; Chady, Tomasz

    2018-04-01

    The paper presents the possibility of using the fractional derivatives for non-destructive testing when a multi-frequency method based on eddy current is applied. It is shown that frequency characteristics obtained during tests can be approximated by characteristics of a proposed model in the form of fractional order transfer function, and values of parameters of this model can be utilized for detection and identification of defects.

  9. Ultrasonic-Based Nondestructive Evaluation Methods for Wood: A Primer and Historical Review

    Treesearch

    Adam C. Senalik; Greg Schueneman; Robert J. Ross

    2014-01-01

    The authors conducted a review of ultrasonic testing and evaluation of wood and wood products, starting with a description of basic ultrasonic inspection setups and commonly used equations. The literature review primarily covered wood research presented between 1965 and 2013 in the Proceedings of the Nondestructive Testing of Wood Symposiums. A table that lists the...

  10. An Instructional Program for Training Nondestructive Testing and Inspection Technicians.

    ERIC Educational Resources Information Center

    Stokes, Vernon L.

    This document, the second portion of a two-part study, is designed to provide a guide for the formal training of technicians for nondestructive testing and inspection. Information in the guide is based on results of the industrial survey discussed in Part I. The subject matter is intended to be both flexible and comprehensive, and instructional…

  11. A Heat Pipe Coupled Planar Thermionic Converter: Performance Characterization, Nondestructive Testing, and Evaluation.

    DTIC Science & Technology

    1992-03-15

    Pipes, Computer Modelling, Nondestructive Testing. Tomography , Planar Converter, Cesium Reservoir 19. ABSTRACT (Continue on reverse if necessary and...Investigation ........................ 32 4.3 Computed Tomography ................................ 33 4.4 X-Ray Radiography...25 3.4 LEOS generated output data for Mo-Re converter ................ 26 4.1 Distance along converter imaged by the computed tomography

  12. Profiling System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A non-destructive testing system, originally developed for Langley Research Center, is sold commercially. The DyLASP Profilometer locates defects in composite and metallic materials and assemblies. It operates in real time and displays results as a contour map of the assembly with defects indicated by size and location. Applications are in non-destructive testing and evaluation, and the company will customize to user requirements.

  13. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-3, Hydrostatic Tests.

    ERIC Educational Resources Information Center

    Pelton, Rick; Espy, John

    This third in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes the principles and practices associated with hydrostatic testing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student,…

  14. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-5, Fundamentals of Eddy Current Testing.

    ERIC Educational Resources Information Center

    Espy, John

    This fifth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II describes the fundamental concepts applicable to eddy current testing in general. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to…

  15. Quantifying voids effecting delamination in carbon/epoxy composites: static and fatigue fracture behavior

    NASA Astrophysics Data System (ADS)

    Hakim, I.; May, D.; Abo Ras, M.; Meyendorf, N.; Donaldson, S.

    2016-04-01

    On the present work, samples of carbon fiber/epoxy composites with different void levels were fabricated using hand layup vacuum bagging process by varying the pressure. Thermal nondestructive methods: thermal conductivity measurement, pulse thermography, pulse phase thermography and lock-in-thermography, and mechanical testing: modes I and II interlaminar fracture toughness were conducted. Comparing the parameters resulted from the thermal nondestructive testing revealed that voids lead to reductions in thermal properties in all directions of composites. The results of mode I and mode II interlaminar fracture toughness showed that voids lead to reductions in interlaminar fracture toughness. The parameters resulted from thermal nondestructive testing were correlated to the results of mode I and mode II interlaminar fracture toughness and voids were quantified.

  16. Nondestructive examination of decarburised layer of steels using eddy current and magnetic Barkhausen noise testing techniques

    NASA Astrophysics Data System (ADS)

    Falahat, S.; Ghanei, S.; Kashefi, M.

    2018-04-01

    Eddy current and Barkhausen noise nondestructive testing techniques were considered to evaluate the magnetic properties of the decarburised steels as a function of microstructure. To make changes in decarburising depth, carbon steel samples were austenitised at 890 °C for 120-270 min. Considering different decarburised depths, height, position and width of the noise profiles were extracted in order to analyse the magnetic Barkhausen noise measurements. Next, the eddy current test was performed to detect the changes in the microstructure through decarburising of the steel taking into account the impedance variations. According to the results, both techniques allow us to detect changes in the magnetic properties of the decarburised steels and link them with their microstructural changes, nondestructively.

  17. Cross-validated detection of crack initiation in aerospace materials

    NASA Astrophysics Data System (ADS)

    Vanniamparambil, Prashanth A.; Cuadra, Jefferson; Guclu, Utku; Bartoli, Ivan; Kontsos, Antonios

    2014-03-01

    A cross-validated nondestructive evaluation approach was employed to in situ detect the onset of damage in an Aluminum alloy compact tension specimen. The approach consisted of the coordinated use primarily the acoustic emission, combined with the infrared thermography and digital image correlation methods. Both tensile loads were applied and the specimen was continuously monitored using the nondestructive approach. Crack initiation was witnessed visually and was confirmed by the characteristic load drop accompanying the ductile fracture process. The full field deformation map provided by the nondestructive approach validated the formation of a pronounced plasticity zone near the crack tip. At the time of crack initiation, a burst in the temperature field ahead of the crack tip as well as a sudden increase of the acoustic recordings were observed. Although such experiments have been attempted and reported before in the literature, the presented approach provides for the first time a cross-validated nondestructive dataset that can be used for quantitative analyses of the crack initiation information content. It further allows future development of automated procedures for real-time identification of damage precursors including the rarely explored crack incubation stage in fatigue conditions.

  18. Theory and Application of Magnetic Flux Leakage Pipeline Detection.

    PubMed

    Shi, Yan; Zhang, Chao; Li, Rui; Cai, Maolin; Jia, Guanwei

    2015-12-10

    Magnetic flux leakage (MFL) detection is one of the most popular methods of pipeline inspection. It is a nondestructive testing technique which uses magnetic sensitive sensors to detect the magnetic leakage field of defects on both the internal and external surfaces of pipelines. This paper introduces the main principles, measurement and processing of MFL data. As the key point of a quantitative analysis of MFL detection, the identification of the leakage magnetic signal is also discussed. In addition, the advantages and disadvantages of different identification methods are analyzed. Then the paper briefly introduces the expert systems used. At the end of this paper, future developments in pipeline MFL detection are predicted.

  19. Theory and Application of Magnetic Flux Leakage Pipeline Detection

    PubMed Central

    Shi, Yan; Zhang, Chao; Li, Rui; Cai, Maolin; Jia, Guanwei

    2015-01-01

    Magnetic flux leakage (MFL) detection is one of the most popular methods of pipeline inspection. It is a nondestructive testing technique which uses magnetic sensitive sensors to detect the magnetic leakage field of defects on both the internal and external surfaces of pipelines. This paper introduces the main principles, measurement and processing of MFL data. As the key point of a quantitative analysis of MFL detection, the identification of the leakage magnetic signal is also discussed. In addition, the advantages and disadvantages of different identification methods are analyzed. Then the paper briefly introduces the expert systems used. At the end of this paper, future developments in pipeline MFL detection are predicted. PMID:26690435

  20. Frequency response of electrochemical cells

    NASA Technical Reports Server (NTRS)

    Thomas, Daniel L.

    1990-01-01

    The main objective was to examine the feasibility of using frequency response techniques (1) as a tool in destructive physical analysis of batteries, particularly for estimating electrode structural parameters such as specific area, porosity, and tortuosity and (2) as a non-destructive testing technique for obtaining information such as state of charge and acceptability for space flight. The phenomena that contribute to the frequency response of an electrode include: (1) double layer capacitance; (2) Faradaic reaction resistance; (3) mass transfer of Warburg impedance; and (4) ohmic solution resistance. Nickel cadmium cells were investigated in solutions of KOH. A significant amount of data was acquired. Quantitative data analysis, using the developed software, is planned for the future.

  1. Status of holographic interferometry at Wright Patterson Air Force Base

    NASA Technical Reports Server (NTRS)

    Seibert, George

    1987-01-01

    At Wright Patterson AFB, holographic interferometry has been used for nearly 15 years in a variety of supersonic and hypersonic wind tunnels. Specifically, holographic interferometry was used to study boundary layers, shock boundary layer interaction, and general flow diagnostics. Although a considerable amount of quantitative work was done, the difficulty of reducing data severely restricted this. In the future, it is of interest to use holographic interferometry in conjunction with laser Doppler velocimetry to do more complete diagnostics. Also, there is an interest to do particle field diagnostics in the combustion research facility. Finally, there are efforts in nondestructive testing where automated fringe readout and analysis would be extremely helpful.

  2. 3D robust Chan-Vese model for industrial computed tomography volume data segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Linghui; Zeng, Li; Luan, Xiao

    2013-11-01

    Industrial computed tomography (CT) has been widely applied in many areas of non-destructive testing (NDT) and non-destructive evaluation (NDE). In practice, CT volume data to be dealt with may be corrupted by noise. This paper addresses the segmentation of noisy industrial CT volume data. Motivated by the research on the Chan-Vese (CV) model, we present a region-based active contour model that draws upon intensity information in local regions with a controllable scale. In the presence of noise, a local energy is firstly defined according to the intensity difference within a local neighborhood. Then a global energy is defined to integrate local energy with respect to all image points. In a level set formulation, this energy is represented by a variational level set function, where a surface evolution equation is derived for energy minimization. Comparative analysis with the CV model indicates the comparable performance of the 3D robust Chan-Vese (RCV) model. The quantitative evaluation also shows the segmentation accuracy of 3D RCV. In addition, the efficiency of our approach is validated under several types of noise, such as Poisson noise, Gaussian noise, salt-and-pepper noise and speckle noise.

  3. Real-time nondestructive monitoring of the gas tungsten arc welding (GTAW) process by combined airborne acoustic emission and non-contact ultrasonics

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Basantes-Defaz, Alexandra-Del-Carmen; Abbasi, Zeynab; Yuhas, Donald; Ozevin, Didem; Indacochea, Ernesto

    2018-03-01

    Welding is a key manufacturing process for many industries and may introduce defects into the welded parts causing significant negative impacts, potentially ruining high-cost pieces. Therefore, a real-time process monitoring method is important to implement for avoiding producing a low-quality weld. Due to high surface temperature and possible contamination of surface by contact transducers, the welding process should be monitored via non-contact transducers. In this paper, airborne acoustic emission (AE) transducers tuned at 60 kHz and non-contact ultrasonic testing (UT) transducers tuned at 500 kHz are implemented for real time weld monitoring. AE is a passive nondestructive evaluation method that listens for the process noise, and provides information about the uniformity of manufacturing process. UT provides more quantitative information about weld defects. One of the most common weld defects as burn-through is investigated. The influences of weld defects on AE signatures (time-driven data) and UT signals (received signal energy, change in peak frequency) are presented. The level of burn-through damage is defined by using single method or combine AE/UT methods.

  4. Thermal history sensors for non-destructive temperature measurements in harsh environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilgrim, C. C.; Heyes, A. L.; Feist, J. P.

    2014-02-18

    The operating temperature is a critical physical parameter in many engineering applications, however, can be very challenging to measure in certain environments, particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally, rare earth dopants make the ceramic phosphorescent so that the temperature informationmore » can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range, namely between 300°C and 900°C. Furthermore, results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.« less

  5. Quantitative assessment of neural outgrowth using spatial light interference microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Young Jae; Cintora, Pati; Arikkath, Jyothi; Akinsola, Olaoluwa; Kandel, Mikhail; Popescu, Gabriel; Best-Popescu, Catherine

    2017-06-01

    Optimal growth as well as branching of axons and dendrites is critical for the nervous system function. Neuritic length, arborization, and growth rate determine the innervation properties of neurons and define each cell's computational capability. Thus, to investigate the nervous system function, we need to develop methods and instrumentation techniques capable of quantifying various aspects of neural network formation: neuron process extension, retraction, stability, and branching. During the last three decades, fluorescence microscopy has yielded enormous advances in our understanding of neurobiology. While fluorescent markers provide valuable specificity to imaging, photobleaching, and photoxicity often limit the duration of the investigation. Here, we used spatial light interference microscopy (SLIM) to measure quantitatively neurite outgrowth as a function of cell confluence. Because it is label-free and nondestructive, SLIM allows for long-term investigation over many hours. We found that neurons exhibit a higher growth rate of neurite length in low-confluence versus medium- and high-confluence conditions. We believe this methodology will aid investigators in performing unbiased, nondestructive analysis of morphometric neuronal parameters.

  6. Roof Moisture Surveys: Current State Of The Technology

    NASA Astrophysics Data System (ADS)

    Tobiasson, Wayne

    1983-03-01

    Moisture is the big enemy of compact roofing systems. Non-destructive nuclear, capacitance and infrared methods can all find wet insulation in such roofs but a few core samples are needed for verification. Nuclear and capacitance surveys generate quantitative results at grid points but examine only a small portion of the roof. Quantitative results are not usually provided by infrared scanners but they can rapidly examine every square inch of the roof. Being able to find wet areas when they are small is an important advantage. Prices vary with the scope of the investigation. For a particular scope, the three techniques are often cost-competitive. The limitations of each technique are related to the people involved as well as the equipment. When the right people are involved, non-destructive surveys are a very effective method for improving the long-term performance and reducing the life-cycle costs of roofing systems. Plans for the maintenance, repair or replacement of a roof should include a roof moisture survey.

  7. Pulse compression favourable aperiodic infrared imaging approach for non-destructive testing and evaluation of bio-materials

    NASA Astrophysics Data System (ADS)

    Mulaveesala, Ravibabu; Dua, Geetika; Arora, Vanita; Siddiqui, Juned A.; Muniyappa, Amarnath

    2017-05-01

    In recent years, aperiodic, transient pulse compression favourable infrared imaging methodologies demonstrated as reliable, quantitative, remote characterization and evaluation techniques for testing and evaluation of various biomaterials. This present work demonstrates a pulse compression favourable aperiodic thermal wave imaging technique, frequency modulated thermal wave imaging technique for bone diagnostics, especially by considering the bone with tissue, skin and muscle over layers. In order to find the capabilities of the proposed frequency modulated thermal wave imaging technique to detect the density variations in a multi layered skin-fat-muscle-bone structure, finite element modeling and simulation studies have been carried out. Further, frequency and time domain post processing approaches have been adopted on the temporal temperature data in order to improve the detection capabilities of frequency modulated thermal wave imaging.

  8. Developing Raman spectroscopy for the nondestructive testing of composite materials.

    DOT National Transportation Integrated Search

    2009-08-01

    The proposed research will develop the application of Raman Spectroscopy as a nondestructive evaluation tool for the condition assessment of carbon fiber composites. Composite materials are increasingly being used in engineered structures and compone...

  9. A1297 hydro demolition video versus GPR results : west bound lane.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  10. A1193 hydro demolition video versus GPR results : east bound lane.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  11. A1297 hydro demolition video versus GPR results : east bound lane.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  12. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review

    USDA-ARS?s Scientific Manuscript database

    Current wet chemical methods for biomass composition analysis using two-step sulfuric acid hydrolysis are time-consuming, labor-intensive, and unable to provide structural information about biomass. Infrared techniques provide fast, low-cost analysis, are non-destructive, and have shown promising re...

  13. Underwater Concrete Inspection Equipment

    DTIC Science & Technology

    1991-04-01

    nondestructive testing of con- crete waterfront structures. One instrument is a magnetic rebar locator that locates rebar in concrete structures and measures the...amount of con- crete cover over the rebar . Another instrument is a rebound hammer that measures the surface hardness of the concrete . The third...development of three specialized instruments for the underwater nondestructive testing or concrete waterfront structures. One instrument is a magnetic rebar

  14. Method for non-destructive testing

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2011-08-30

    Non-destructive testing method may include providing a source material that emits positrons in response to bombardment of the source material with photons. The source material is exposed to photons. The source material is positioned adjacent the specimen, the specimen being exposed to at least some of the positrons emitted by the source material. Annihilation gamma rays emitted by the specimen are detected.

  15. NDE Conference on Civil Engineering : a joint conference of the 7th Structural Materials Technology Conference (SMT) and the 6th International Symposium on Nondestructive Testing in Civil Engineering (NDT-CE)

    DOT National Transportation Integrated Search

    2007-01-01

    The 2006 NDE conference on Civil Engineering was held in St. Louis, MO on August 14 18, 2006. The conference combined the 7th Structural Materials Technology Conference (SMT) along with the 6th International Symposium on Nondestructive Testing in...

  16. Nondestructive testing for assessing wood members in structures : a review

    Treesearch

    R. J. Ross; R. F. Pellerin

    1994-01-01

    Numerous organizations have conducted research to develop nondestructive testing (NDT) techniques for assessing the condition of wood members in structures. A review of this research was published in 1991. This is an update of the 1991 report. It presents a comprehensive review of published research on the development and use of NDT tools for in-place assessment of...

  17. Measuring Rind Thickness on Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Johnson, C.; Miller, J.; Brown, H.

    1985-01-01

    Nondestructive test determines rind thickness of polyurethane foam. Surface harness of foam measured by Shore durometer method: hardness on Shore D scale correlates well with rind thickness. Shore D hardness of 20, for example, indicates rind thickness of 0.04 inch (1 millimeter). New hardness test makes it easy to determine rind thickness of sample nondestructively and to adjust fabrication variables accordingly.

  18. Application of nondestructive testing in cyclic fatigue evaluation of endodontic Ni-Ti rotary instruments.

    PubMed

    Li, Uei-Ming; Shin, Chow-Shing; Lan, Wan-Hong; Lin, Chun-Pin

    2006-06-01

    The purpose of this study was to investigate the application of nondestructive testing in cyclic fatigue evaluation of endodontic ProFile nickel-titanium (NiTi) rotary instruments. As-received ProFile instruments were made to rotate freely in sloped metal blocks by a contra-angle handpiece mounted on a testing machine. Rotation was interrupted periodically, and the instrument removed and engaged onto a device to monitor its stiffness by using two strain gauges in four different directions. This monitoring method has the potential to be developed into a convenient, nondestructive turnkey system that allows in situ assessment of the integrity of NiTi instruments in the clinic. Upon fracture, which was indicated by a change in instrument stiffness, the fractured surface would be examined under a scanning electron microscope. Microscopic evaluation indicated a small area of fatigue fracture with a large area of final ductile fracture, whereby the latter was the major cyclic failure mode. Based on the results of this study, we concluded that a potential nondestructive integrity assessment method for NiTi rotary instruments was developed.

  19. A Quantitative, Non-Destructive Methodology for Habitat Characterisation and Benthic Monitoring at Offshore Renewable Energy Developments

    PubMed Central

    Sheehan, Emma V.; Stevens, Timothy F.; Attrill, Martin J.

    2010-01-01

    Following governments' policies to tackle global climate change, the development of offshore renewable energy sites is likely to increase substantially over coming years. All such developments interact with the seabed to some degree and so a key need exists for suitable methodology to monitor the impacts of large-scale Marine Renewable Energy Installations (MREIs). Many of these will be situated on mixed or rocky substrata, where conventional methods to characterise the habitat are unsuitable. Traditional destructive sampling is also inappropriate in conservation terms, particularly as safety zones around (MREIs) could function as Marine Protected Areas, with positive benefits for biodiversity. Here we describe a technique developed to effectively monitor the impact of MREIs and report the results of its field testing, enabling large areas to be surveyed accurately and cost-effectively. The methodology is based on a high-definition video camera, plus LED lights and laser scale markers, mounted on a “flying array” that maintains itself above the seabed grounded by a length of chain, thus causing minimal damage. Samples are taken by slow-speed tows of the gear behind a boat (200 m transects). The HD video and randomly selected frame grabs are analysed to quantify species distribution. The equipment was tested over two years in Lyme Bay, UK (25 m depth), then subsequently successfully deployed in demanding conditions at the deep (>50 m) high-energy Wave Hub site off Cornwall, UK, and a potential tidal stream energy site in Guernsey, Channel Islands (1.5 ms−1 current), the first time remote samples from such a habitat have been achieved. The next stage in the monitoring development process is described, involving the use of Remote Operated Vehicles to survey the seabed post-deployment of MREI devices. The complete methodology provides the first quantitative, relatively non-destructive method for monitoring mixed-substrate benthic communities beneath MPAs and MREIs pre- and post-device deployment. PMID:21206748

  20. A quantitative, non-destructive methodology for habitat characterisation and benthic monitoring at offshore renewable energy developments.

    PubMed

    Sheehan, Emma V; Stevens, Timothy F; Attrill, Martin J

    2010-12-29

    Following governments' policies to tackle global climate change, the development of offshore renewable energy sites is likely to increase substantially over coming years. All such developments interact with the seabed to some degree and so a key need exists for suitable methodology to monitor the impacts of large-scale Marine Renewable Energy Installations (MREIs). Many of these will be situated on mixed or rocky substrata, where conventional methods to characterise the habitat are unsuitable. Traditional destructive sampling is also inappropriate in conservation terms, particularly as safety zones around (MREIs) could function as Marine Protected Areas, with positive benefits for biodiversity. Here we describe a technique developed to effectively monitor the impact of MREIs and report the results of its field testing, enabling large areas to be surveyed accurately and cost-effectively. The methodology is based on a high-definition video camera, plus LED lights and laser scale markers, mounted on a "flying array" that maintains itself above the seabed grounded by a length of chain, thus causing minimal damage. Samples are taken by slow-speed tows of the gear behind a boat (200 m transects). The HD video and randomly selected frame grabs are analysed to quantify species distribution. The equipment was tested over two years in Lyme Bay, UK (25 m depth), then subsequently successfully deployed in demanding conditions at the deep (>50 m) high-energy Wave Hub site off Cornwall, UK, and a potential tidal stream energy site in Guernsey, Channel Islands (1.5 ms⁻¹ current), the first time remote samples from such a habitat have been achieved. The next stage in the monitoring development process is described, involving the use of Remote Operated Vehicles to survey the seabed post-deployment of MREI devices. The complete methodology provides the first quantitative, relatively non-destructive method for monitoring mixed-substrate benthic communities beneath MPAs and MREIs pre- and post-device deployment.

  1. Holographic nondestructive testing in bone biomechanics

    NASA Astrophysics Data System (ADS)

    Silvennoinen, Raimo V. J.; Nygren, Kaarlo; Karna, Markku

    1992-08-01

    Holographic nondestructive testing (HNDT) is used to investigate the complex structures of bones of various shapes and sizes subjected to forces. During the course of the present study three antlered deer skulls of different species were investigated, and significant species- specific differences were observed. The HNDT method was also used to verify the advanced healing of an osteosynthetized sheep jawbone. Radioulnar bones of normal and orphaned moose calves were subjected to the bending test. Different bending dynamics were observed.

  2. NDE: An effective approach to improved reliability and safety. A technology survey. [nondestructive testing of aircraft structures

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Stuhrke, W. F.

    1976-01-01

    Technical abstracts are presented for about 100 significant documents relating to nondestructive testing of aircraft structures or related structural testing and the reliability of the more commonly used evaluation methods. Particular attention is directed toward acoustic emission; liquid penetrant; magnetic particle; ultrasonics; eddy current; and radiography. The introduction of the report includes an overview of the state-of-the-art represented in the documents that have been abstracted.

  3. High-fidelity detection of crop biomass quantitative trait loci from low-cost imaging in the field

    USDA-ARS?s Scientific Manuscript database

    Field-based, rapid, and non-destructive techniques for assessing plant productivity can accelerate the discovery of genotype-to-phenotype relationships needed to improve next-generation biomass grass crops. The use of hemispherical imaging and light attenuation modeling was evaluated against destruc...

  4. Nondestructive Characterization of Low-Velocity Impact Damage in Protective Ceramic Components

    DTIC Science & Technology

    2013-09-01

    for direct improvement of protective systems. 15. SUBJECT TERMS impact, damage, ultrasound, quantitative, modeling 16. SECURITY CLASSIFICATION OF...21 (4), 245–265. 5. McMichael, S.; Fischer, S. Understanding Materials with Instrumented Impact. ME 1989, 47–50. 6. Chacon -Nava, J. G.; Stott, F

  5. Application of electromagnetic-acoustic transducers for nondestructive testing in steel bridge structures.

    DOT National Transportation Integrated Search

    1996-01-01

    This report presents the results of a study to (1) assess the applicability of electromagnetic-acoustic transducers for nondestructive evaluation of stresses in bridge structures and (2) evaluate the new ultrasonic instruments as an effective techniq...

  6. Determination of tire quality from nondestructive inspection : final report

    DOT National Transportation Integrated Search

    1979-11-01

    The principal objective of the study was to assess the capability of an ultrasonic nondestructive inspection system to identify tire groups with a high propensity to failure among the groups selected for the Compliance Test under MVSS 109. A secondar...

  7. NTIAC Handbook. Revision/Supplement Number 1

    DTIC Science & Technology

    1982-06-01

    Engi- neering, Ceramics Bldg., 22-17, 2-Chrome, Hyakunincho, Shinjiku-ku, Tokyo, Japan NTIAC-023416 4 Yamanouchi, Kazuhiko; Sachse, Wolfgang "Shear...tional Bureau of Standards, Washington, DC 20234 NTIAC-022425M Sachse, Wolfgang ; Pao, Yih-Hsing "Ultrasonic Nondestructive Testing of Materials...burg, MD, NBS SP 596, 395-406; National Bureau of Standards, Washington, DC 29234 Pao, Yih-Hsing; Sachse, Wolfgang "Ultrasonic Nondestructive Testing of

  8. A Method For The Verification Of Wire Crimp Compression Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. E.; Perey, Daniel F.; Yost, William t.

    2010-01-01

    The development of a new ultrasonic measurement technique to assess quantitatively wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating at right angles to the wire axis and through the junction of a crimp termination is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. To demonstrate the technique, the case of incomplete compression of crimped connections is ultrasonically tested, and the results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently predicts good crimps when the ultrasonic transmission is above a certain threshold amplitude level. A quantitative measure of the quality of the crimped connection based on the ultrasonic energy transmitted is shown to respond accurately to crimp quality. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. A comparison of the results of two different instruments is presented and shows reproducibility between instruments within a 95% confidence bound.

  9. Quantitative evaluation methods of skin condition based on texture feature parameters.

    PubMed

    Pang, Hui; Chen, Tianhua; Wang, Xiaoyi; Chang, Zhineng; Shao, Siqi; Zhao, Jing

    2017-03-01

    In order to quantitatively evaluate the improvement of the skin condition after using skin care products and beauty, a quantitative evaluation method for skin surface state and texture is presented, which is convenient, fast and non-destructive. Human skin images were collected by image sensors. Firstly, the median filter of the 3 × 3 window is used and then the location of the hairy pixels on the skin is accurately detected according to the gray mean value and color information. The bilinear interpolation is used to modify the gray value of the hairy pixels in order to eliminate the negative effect of noise and tiny hairs on the texture. After the above pretreatment, the gray level co-occurrence matrix (GLCM) is calculated. On the basis of this, the four characteristic parameters, including the second moment, contrast, entropy and correlation, and their mean value are calculated at 45 ° intervals. The quantitative evaluation model of skin texture based on GLCM is established, which can calculate the comprehensive parameters of skin condition. Experiments show that using this method evaluates the skin condition, both based on biochemical indicators of skin evaluation methods in line, but also fully consistent with the human visual experience. This method overcomes the shortcomings of the biochemical evaluation method of skin damage and long waiting time, also the subjectivity and fuzziness of the visual evaluation, which achieves the non-destructive, rapid and quantitative evaluation of skin condition. It can be used for health assessment or classification of the skin condition, also can quantitatively evaluate the subtle improvement of skin condition after using skin care products or stage beauty.

  10. Monitoring of live and woody elements

    NASA Astrophysics Data System (ADS)

    Guastini, Enrico; Preti, Federico

    2013-04-01

    This study deals with surveys operated on crib walls in Casentino and Versilia (Tuscany), where Salix alba cuttings did not develop as expected from literature data. After more then 10 years since realization and and an initial very high survival rate, a few plants are yet alive among those put in place and the root strengthening is localized in the first 0.30 m just below the structure front face, while at further depth the detected root area ratio (R.A.R.) does not determine a noticeable increase in soil cohesion (Guastini et al., 2012). Mortality curve in willow cuttings is comparable with growing curve in Alnus nigra plants born in front of the structure, due to shading as failing cause. Assessing quantitatively the residual strength of the timber elements and estimating their possible duration allow comparison with the time needed for a complete stabilisation of the para-natural succession. The two spans of time must be almost similar to avoid unexpected collapse of the frame or unacceptable costs for oversized structures. Since the realization of a new live crib-wall in Casentino we sampled Alnus and Salix cuttings to compare rooting, survivability and evolution in randomized block design. Tests with Resistograph carried out on timber elements gives a good relationship between test results and density; through the non-destructive test it is possible to differentiate portions of wood with a noticeable residual strength from the decayed parts without any more load bearing capacity. MOR value (flexural strength) of timber elements has been estimated on the basis of the effective section verified by the Resistograph (Guastini et al., 2012), and then confirmed through rupture in bending of the same elements (Wood Technology DEISTAF lab), by proving the non-destructive test utility.

  11. Quantitative NDA measurements of advanced reprocessing product materials containing uranium, neptunium, plutonium, and americium

    NASA Astrophysics Data System (ADS)

    Goddard, Braden

    The ability of inspection agencies and facility operators to measure powders containing several actinides is increasingly necessary as new reprocessing techniques and fuel forms are being developed. These powders are difficult to measure with nondestructive assay (NDA) techniques because neutrons emitted from induced and spontaneous fission of different nuclides are very similar. A neutron multiplicity technique based on first principle methods was developed to measure these powders by exploiting isotope-specific nuclear properties, such as the energy-dependent fission cross sections and the neutron induced fission neutron multiplicity. This technique was tested through extensive simulations using the Monte Carlo N-Particle eXtended (MCNPX) code and by one measurement campaign using the Active Well Coincidence Counter (AWCC) and two measurement campaigns using the Epithermal Neutron Multiplicity Counter (ENMC) with various (alpha,n) sources and actinide materials. Four potential applications of this first principle technique have been identified: (1) quantitative measurement of uranium, neptunium, plutonium, and americium materials; (2) quantitative measurement of mixed oxide (MOX) materials; (3) quantitative measurement of uranium materials; and (4) weapons verification in arms control agreements. This technique still has several challenges which need to be overcome, the largest of these being the challenge of having high-precision active and passive measurements to produce results with acceptably small uncertainties.

  12. High resolution X-ray CT for advanced electronics packaging

    NASA Astrophysics Data System (ADS)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  13. Physics-Based Image Segmentation Using First Order Statistical Properties and Genetic Algorithm for Inductive Thermography Imaging.

    PubMed

    Gao, Bin; Li, Xiaoqing; Woo, Wai Lok; Tian, Gui Yun

    2018-05-01

    Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.

  14. Quantitative Percussion Diagnostics For Evaluating Bond Integrity Between Composite Laminates

    NASA Astrophysics Data System (ADS)

    Poveromo, Scott Leonard

    Conventional nondestructive testing (NDT) techniques used to detect defects in composites are not able to determine intact bond integrity within a composite structure and are costly to use on large and complex shaped surfaces. To overcome current NDT limitations, a new technology was utilized based on quantitative percussion diagnostics (QPD) to better quantify bond quality in fiber reinforced composite materials. Experimental results indicate that this technology is capable of detecting 'kiss' bonds (very low adhesive shear strength), caused by the application of release agents on the bonding surfaces, between flat composite laminates bonded together with epoxy adhesive. Specifically, the local value of the loss coefficient determined from quantitative percussion testing was found to be significantly greater for a release coated panel compared to that for a well bonded sample. Also, the local value of the probe force or force returned to the probe after impact was observed to be lower for the release coated panels. The increase in loss coefficient and decrease in probe force are thought to be due to greater internal friction during the percussion event for poorly bonded specimens. NDT standards were also fabricated by varying the cure parameters of an epoxy film adhesive. Results from QPD for the variable cure NDT standards and lap shear strength measurements taken of mechanical test specimens were compared and analyzed. Finally, experimental results have been compared to a finite element analysis to understand the visco-elastic behavior of the laminates during percussion testing. This comparison shows how a lower quality bond leads to a reduction in the percussion force by biasing strain in the percussion tested side of the panel.

  15. Using expert opinion to quantify accuracy and reliability of nondestructive evaluation on bridges : [project brief].

    DOT National Transportation Integrated Search

    2015-08-01

    Research is currently being conducted to improve bridge inspection practices. One potential : improvement is the use of nondestructive testing equipment to supplement visual inspection. To : consider the costs and benefits of this equipment, data abo...

  16. Magnetic sensor for nondestructive evaluation of deteriorated prestressing strand : phase II.

    DOT National Transportation Integrated Search

    2011-08-01

    This report gives an account of the execution and achievements in Phase II of the project completed through August 2011. The main objective of this project is to advance the practical development of a nondestructive testing and evaluation method usin...

  17. Nondestructive evaluation of pavement structural condition for rehabilitation design : final report.

    DOT National Transportation Integrated Search

    2016-05-31

    Falling Weight Deflectometer (FWD) is the common non-destructive testing method for in-situ evaluation of pavement condition. : This study aims to develop finite element (FE) models that can simulate FWD loading on pavement system and capture the : c...

  18. Evaluation of nondestructive evaluation methods for application in early detection Of deterioration in concrete pavements

    DOT National Transportation Integrated Search

    2000-01-01

    Three nondestructive evaluation (NDE) methods for concrete pavements - surface ultrasonic pulse velocity measurements (UPV), the impact-echo (IE) method, and the use of a seismic pavement analyzer (SPA) - were tested on six sections of two continuous...

  19. Development of nondestructive methods for measurement of slab thickness and modulus of rupture in concrete pavements.

    DOT National Transportation Integrated Search

    2005-01-01

    This report describes work to develop non-destructive testing methods for concrete pavements. Two methods, for pavement thickness and in-place strength estimation, respectively, were developed and evaluated. The thickness estimation method is based o...

  20. Nondestructive Testing Information Analysis Center, 1980.

    DTIC Science & Technology

    1981-06-01

    A.-A. 1 50 STHWEbf RESEARCH INST SAN ANTONIO TLX F/, 1*/ NONOESTRUCTIVE TESTING INFORMAtION ANALYSIS CENTER 19J8 SOT U)’JUN 81 R T SMITH OLA90U-T9-C...Feb ~81,J ’. Nondestructive Testing Information Analysis Center, 1980. ., I F l.15-56 7- . E T 7. AUTHORts) W. CNTRACTO--FFArNT NUMBER(s) - ) Richard T...ifdifferent from Report) 18 SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side ifnecessary and identify bv block number) Information analysis centers

  1. Nondestructive equipment study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Identification of existing nondestructive Evaluation (NDE) methods that could be used in a low Earth orbit environment; evaluation of each method with respect to the set of criteria called out in the statement of work; selection of the most promising NDE methods for further evaluation; use of selected NDE methods to test samples of pressure vessel materials in a vacuum; pressure testing of a complex monolythic pressure vessel with known flaws using acoustic emissions in a vacuum; and recommendations for further studies based on analysis and testing are covered.

  2. Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating

    PubMed Central

    Yan, Xiao-Ling; Dong, Shi-Yun; Xu, Bin-Shi; Cao, Yong

    2018-01-01

    Stress in laser cladding coating is an important factor affecting the safe operation of remanufacturing components. Ultrasonic testing has become a popular approach in the nondestructive evaluation of stress, because it has the advantages of safety, nondestructiveness, and online detection. This paper provides a review of ultrasonic testing for stress in remanufacturing laser cladding coating. It summarizes the recent research outcomes on ultrasonic testing for stress, and analyzes the mechanism of ultrasonic testing for stress. Remanufacturing laser cladding coating shows typical anisotropic behaviors. The ultrasonic testing signal in laser cladding coating is influenced by many complex factors, such as microstructure, defect, temperature, and surface roughness, among others. At present, ultrasonic testing for stress in laser cladding coating can only be done roughly. This paper discusses the active mechanism of micro/macro factors in the reliability of stress measurement, as well as the impact of stress measurement on the quality and safety of remanufacturing components. Based on the discussion, this paper proposes strategies to nondestructively, rapidly, and accurately measure stress in remanufacturing laser cladding coating. PMID:29438309

  3. Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating.

    PubMed

    Yan, Xiao-Ling; Dong, Shi-Yun; Xu, Bin-Shi; Cao, Yong

    2018-02-13

    Stress in laser cladding coating is an important factor affecting the safe operation of remanufacturing components. Ultrasonic testing has become a popular approach in the nondestructive evaluation of stress, because it has the advantages of safety, nondestructiveness, and online detection. This paper provides a review of ultrasonic testing for stress in remanufacturing laser cladding coating. It summarizes the recent research outcomes on ultrasonic testing for stress, and analyzes the mechanism of ultrasonic testing for stress. Remanufacturing laser cladding coating shows typical anisotropic behaviors. The ultrasonic testing signal in laser cladding coating is influenced by many complex factors, such as microstructure, defect, temperature, and surface roughness, among others. At present, ultrasonic testing for stress in laser cladding coating can only be done roughly. This paper discusses the active mechanism of micro/macro factors in the reliability of stress measurement, as well as the impact of stress measurement on the quality and safety of remanufacturing components. Based on the discussion, this paper proposes strategies to nondestructively, rapidly, and accurately measure stress in remanufacturing laser cladding coating.

  4. Determination of mechanical stiffness of bone by pQCT measurements: correlation with non-destructive mechanical four-point bending test data.

    PubMed

    Martin, Daniel E; Severns, Anne E; Kabo, J M J Michael

    2004-08-01

    Mechanical tests of bone provide valuable information about material and structural properties important for understanding bone pathology in both clinical and research settings, but no previous studies have produced applicable non-invasive, quantitative estimates of bending stiffness. The goal of this study was to evaluate the effectiveness of using peripheral quantitative computed tomography (pQCT) data to accurately compute the bending stiffness of bone. Normal rabbit humeri (N=8) were scanned at their mid-diaphyses using pQCT. The average bone mineral densities and the cross-sectional moments of inertia were computed from the pQCT cross-sections. Bending stiffness was determined as a function of the elastic modulus of compact bone (based on the local bone mineral density), cross-sectional moment of inertia, and simulated quasistatic strain rate. The actual bending stiffness of the bones was determined using four-point bending tests. Comparison of the bending stiffness estimated from the pQCT data and the mechanical bending stiffness revealed excellent correlation (R2=0.96). The bending stiffness from the pQCT data was on average 103% of that obtained from the four-point bending tests. The results indicate that pQCT data can be used to accurately determine the bending stiffness of normal bone. Possible applications include temporal quantification of fracture healing and risk management of osteoporosis or other bone pathologies.

  5. Nondestructive Testing Technique to Quantify Deterioration from Marine Borer Attack in Sitka Spruce and Western Hemlock Logs: Observations from a Pilot Test

    Treesearch

    Robert Ross; John W. Forsman; John R. Erickson; Allen M. Brackley

    2014-01-01

    Stress-wave nondestructive evaluation (NDE) techniques are used widely in the forest products industry—from the grading of wood veneer to inspection of timber structures. Inspection professionals frequently use stress-wave NDE techniques to locate internal voids and decayed or deteriorated areas in large timbers. Although these techniques have proven useful, little...

  6. A Study of Nondestructive Testing and Inspection Processes Used In Industry with Implications for Program Planning in the Junior Colleges of Texas.

    ERIC Educational Resources Information Center

    Stokes, Vernon L.

    This study, the first of two parts, had two main purposes. The first was to obtain desirable subject matter for an instructional program in nondestructive testing through a survey of selected manufacturing and service companies in Texas, and the second was to determine the degree of emphasis that should be placed on each subject. Fifty-nine…

  7. THz QCL-based active imaging dedicated to non-destructive testing of composite materials used in aeronautics

    NASA Astrophysics Data System (ADS)

    Destic, F.; Petitjean, Y.; Massenot, S.; Mollier, J.-C.; Barbieri, S.

    2010-08-01

    This paper presents a CW raster-scanning THz imaging setup, used to perform Non-Destructive Testing of KevlarTMand carbon fibre samples. The setup uses a 2.5 THz Quantum Cascade Laser as a source. Delamination defect in a Kevlar sample was detected showing a sensitivity to laser polarization orientation. Detection of a break in a carbon/epoxy sample was also performed.

  8. Electromagnetic Imaging Methods for Nondestructive Evaluation Applications

    PubMed Central

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  9. Trends of non-destructive analytical methods for identification of biodiesel feedstock in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC and detecting diesel-biodiesel blend adulteration: A brief review.

    PubMed

    Mazivila, Sarmento Júnior

    2018-04-01

    Discrimination of biodiesel feedstock present in diesel-biodiesel blend is challenging due to the great similarity in the spectral profile as well as digital image profile of each type of feedstock employed in biodiesel production. Once the marketed diesel-biodiesel blend is subsidized, in which motivates adulteration in biofuel blend by cheaper supplies with high solubility to obtain profits associated with the subsidies involved in biodiesel production. Non-destructive analytical methods based on qualitative and quantitative analysis for detecting marketed diesel-biodiesel blend adulteration are reviewed. Therefore, at the end is discussed the advantage of the qualitative analysis over quantitative analysis, when the systems require immediate decisions such as to know if the marketed diesel-biodiesel blend is unadulterated or adulterated in order to aid the analyst in selecting the most appropriate green analytical procedure for detecting diesel-biodiesel blend adulteration proceeding in fast way. This critical review provides a brief review on the non-destructive analytical methods reported in scientific literature based on different first-order multivariate calibration models coupled with spectroscopy data and digital image data to identify the type of biodiesel feedstock present in diesel-biodiesel blend in order to meets the strategies adopted by European Commission Directive 2012/0288/EC as well as to monitoring diesel-biodiesel adulteration. According to that Directive, from 2020 biodiesel produced from first-generation feedstock, that is, oils employed in human food such as sunflower, soybean, rapeseed, palm oil, among other oils should not be subsidized. Therefore, those non-destructive analytical methods here reviewed are helpful for discrimination of biodiesel feedstock present in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC as well as for detecting diesel-biodiesel blend adulteration. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Infrared thermography quantitative image processing

    NASA Astrophysics Data System (ADS)

    Skouroliakou, A.; Kalatzis, I.; Kalyvas, N.; Grivas, TB

    2017-11-01

    Infrared thermography is an imaging technique that has the ability to provide a map of temperature distribution of an object’s surface. It is considered for a wide range of applications in medicine as well as in non-destructive testing procedures. One of its promising medical applications is in orthopaedics and diseases of the musculoskeletal system where temperature distribution of the body’s surface can contribute to the diagnosis and follow up of certain disorders. Although the thermographic image can give a fairly good visual estimation of distribution homogeneity and temperature pattern differences between two symmetric body parts, it is important to extract a quantitative measurement characterising temperature. Certain approaches use temperature of enantiomorphic anatomical points, or parameters extracted from a Region of Interest (ROI). A number of indices have been developed by researchers to that end. In this study a quantitative approach in thermographic image processing is attempted based on extracting different indices for symmetric ROIs on thermograms of the lower back area of scoliotic patients. The indices are based on first order statistical parameters describing temperature distribution. Analysis and comparison of these indices result in evaluating the temperature distribution pattern of the back trunk expected in healthy, regarding spinal problems, subjects.

  11. Advanced imaging of the macrostructure and microstructure of bone

    NASA Technical Reports Server (NTRS)

    Genant, H. K.; Gordon, C.; Jiang, Y.; Link, T. M.; Hans, D.; Majumdar, S.; Lang, T. F.

    2000-01-01

    Noninvasive and/or nondestructive techniques are capable of providing more macro- or microstructural information about bone than standard bone densitometry. Although the latter provides important information about osteoporotic fracture risk, numerous studies indicate that bone strength is only partially explained by bone mineral density. Quantitative assessment of macro- and microstructural features may improve our ability to estimate bone strength. The methods available for quantitatively assessing macrostructure include (besides conventional radiographs) quantitative computed tomography (QCT) and volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), micro-computed tomography (muCT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (muMR). vQCT, hrCT and hrMR are generally applicable in vivo; muCT and muMR are principally applicable in vitro. Although considerable progress has been made in the noninvasive and/or nondestructive imaging of the macro- and microstructure of bone, considerable challenges and dilemmas remain. From a technical perspective, the balance between spatial resolution versus sampling size, or between signal-to-noise versus radiation dose or acquisition time, needs further consideration, as do the trade-offs between the complexity and expense of equipment and the availability and accessibility of the methods. The relative merits of in vitro imaging and its ultrahigh resolution but invasiveness versus those of in vivo imaging and its modest resolution but noninvasiveness also deserve careful attention. From a clinical perspective, the challenges for bone imaging include balancing the relative advantages of simple bone densitometry against the more complex architectural features of bone or, similarly, the deeper research requirements against the broader clinical needs. The considerable potential biological differences between the peripheral appendicular skeleton and the central axial skeleton have to be addressed further. Finally, the relative merits of these sophisticated imaging techniques have to be weighed with respect to their applications as diagnostic procedures requiring high accuracy or reliability on one hand and their monitoring applications requiring high precision or reproducibility on the other. Copyright 2000 S. Karger AG, Basel.

  12. Anisotropic Mechanical Properties of Magnetically Aligned Fibrin Gels Measured by Magnetic Resonance Elastography

    PubMed Central

    Namani, Ravi; Wood, Matthew D.; Sakiyama-Elbert, Shelly E.; Bayly, Philip V.

    2009-01-01

    The anisotropic mechanical properties of magnetically aligned fibrin gels were measured by magnetic resonance elastography (MRE) and by a standard mechanical test: unconfined compression. Soft anisotropic biomaterials are notoriously difficult to characterize, especially in vivo. MRE is well-suited for efficient, non-invasive, and nondestructive assessment of shear modulus. Direction-dependent differences in shear modulus were found to be statistically significant for gels polymerized at magnetic fields of 11.7T and 4.7T compared to control gels. Mechanical anisotropy was greater in the gels polymerized at the higher magnetic field. These observations were consistent with results from unconfined compression tests. Analysis of confocal microscopy images of gels showed measurable alignment of fibrils in gels polymerized at 11.7T. This study provides direct, quantitative measurements of the anisotropy in mechanical properties that accompanies fibril alignment in fibrin gels. PMID:19656516

  13. The use of robotics for nondestructive inspection of steel highway bridges and structures: interim report.

    DOT National Transportation Integrated Search

    1998-01-01

    This interim report describes the progress during the first year of a project to develop robotics hardware for nondestructive evaluation of steel structures. The project objectives are to (1) develop and test an improved prototype (POLECAT-II) crawli...

  14. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging.

    PubMed

    Amato, Mariana; Basso, Bruno; Celano, Giuseppe; Bitella, Giovanni; Morelli, Gianfranco; Rossi, Roberta

    2008-10-01

    Traditional methods for studying tree roots are destructive and labor intensive, but available nondestructive techniques are applicable only to small scale studies or are strongly limited by soil conditions and root size. Soil electrical resistivity measured by geoelectrical methods has the potential to detect belowground plant structures, but quantitative relationships of these measurements with root traits have not been assessed. We tested the ability of two-dimensional (2-D) DC resistivity tomography to detect the spatial variability of roots and to quantify their biomass in a tree stand. A high-resolution resistivity tomogram was generated along a 11.75 m transect under an Alnus glutinosa (L.) Gaertn. stand based on an alpha-Wenner configuration with 48 electrodes spaced 0.25 m apart. Data were processed by a 2-D finite-element inversion algorithm, and corrected for soil temperature. Data acquisition, inversion and imaging were completed in the field within 60 min. Root dry mass per unit soil volume (root mass density, RMD) was measured destructively on soil samples collected to a depth of 1.05 m. Soil sand, silt, clay and organic matter contents, electrical conductivity, water content and pH were measured on a subset of samples. The spatial pattern of soil resistivity closely matched the spatial distribution of RMD. Multiple linear regression showed that only RMD and soil water content were related to soil resistivity along the transect. Regression analysis of RMD against soil resistivity revealed a highly significant logistic relationship (n = 97), which was confirmed on a separate dataset (n = 67), showing that soil resistivity was quantitatively related to belowground tree root biomass. This relationship provides a basis for developing quick nondestructive methods for detecting root distribution and quantifying root biomass, as well as for optimizing sampling strategies for studying root-driven phenomena.

  15. Non-destructive Measurement of Calcium and Potassium in Apple and Pear Using Handheld X-ray Fluorescence

    PubMed Central

    Kalcsits, Lee A.

    2016-01-01

    Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape. PMID:27092160

  16. Analyzing For Light Elements By X-Ray Scattering

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    1993-01-01

    Nondestructive method of determining concentrations of low-atomic-number elements in liquids and solids involves measurements of Compton and Rayleigh scattering of x rays. Applied in quantitative analysis of low-atomic-number constituents of alloys, of contaminants and corrosion products on surfaces of alloys, and of fractions of hydrogen in plastics, oils, and solvents.

  17. Depth of penetration of a 785nm laser for Raman spectral measurement in food powders.

    USDA-ARS?s Scientific Manuscript database

    Raman spectroscopy is a useful, rapid, and non-destructive method for both qualitative and quantitative evaluation of chemical composition. However it is important to measure the depth of penetration of the laser light to ensure that chemical particles at the very bottom of a sample volume are detec...

  18. What Are the 50 Cent Euro Coins Made of?

    ERIC Educational Resources Information Center

    Peralta, Luis; Farinha, Ana Catarina; Rego, Florbela

    2008-01-01

    X-ray fluorescence is a non-destructive technique that allows elemental composition analysis. In this paper we describe a prescription to obtain the elemental composition of homogeneous coins, like 50 cent Euro coins, and how to get the quantitative proportions of each element with the help of Monte Carlo simulation. Undergraduate students can…

  19. Model-assisted development of a laminography inspection system

    NASA Astrophysics Data System (ADS)

    Grandin, R.; Gray, J.

    2012-05-01

    Traditional computed tomography (CT) is an effective method of determining the internal structure of an object through non-destructive means; however, inspection of certain objects, such as those with planar geometrics or with limited access, requires an alternate approach. An alternative is laminography and has been the focus of a number of researchers in the past decade for both medical and industrial inspections. Many research efforts rely on geometrically-simple analytical models, such as the Shepp-Logan phantom, for the development of their algorithms. Recent work at the Center for Non-Destructive Evaluation makes extensive use of a forward model, XRSIM, to study artifacts arising from the reconstruction method, the effects of complex geometries and known issues such as high density features on the laminography reconstruction process. The use of a model provides full knowledge of all aspects of the geometry and provides a means to quantitatively evaluate the impact of methods designed to reduce artifacts generated by the reconstruction methods or that are result of the part geometry. We will illustrate the use of forward simulations to quantitatively assess reconstruction algorithm development and artifact reduction.

  20. Nondestructive examination of the Tropical Rainfall Measuring Mission (TRMM) reaction control subsystem (RCS) propellant tanks

    NASA Technical Reports Server (NTRS)

    Free, James M.

    1993-01-01

    This paper assesses the feasibility of using eddy current nondestructive examination to determine flaw sizes in completely assembled hydrazine propellant tanks. The study was performed by the NASA Goddard Space Flight Center for the Tropical Rainfall Measuring Mission (TRMM) project to help determine whether existing propellant tanks could meet the fracture analysis requirements of the current pressure vessel specification, MIL-STD-1522A and, therefore be used on the TRMM spacecraft. After evaluating several nondestructive test methods, eddy current testing was selected as the most promising method for determining flaw sizes on external and internal surfaces of completely assembled tanks. Tests were conducted to confirm the detection capability of the eddy current NDE, procedures were developed to inspect two candidate tanks, and the test support equipment was designed. The non-spherical tank eddy current NDE test program was terminated when the decision was made to procure new tanks for the TRMM propulsion subsystem. The information on the development phase of this test program is presented in this paper as a reference for future investigation on the subject.

  1. Automatic, nondestructive test monitors in-process weld quality

    NASA Technical Reports Server (NTRS)

    Deal, F. C.

    1968-01-01

    Instrument automatically and nondestructively monitors the quality of welds produced in microresistance welding. It measures the infrared energy generated in the weld as the weld is made and compares this energy with maximum and minimum limits of infrared energy values previously correlated with acceptable weld-strength tolerances.

  2. Whole blood clot optical clearing for nondestructive 3D imaging and quantitative analysis

    PubMed Central

    Höök, Peter; Brito-Robinson, Teresa; Kim, Oleg; Narciso, Cody; Goodson, Holly V.; Weisel, John W.; Alber, Mark S.; Zartman, Jeremiah J.

    2017-01-01

    A technological revolution in both light and electron microscopy imaging now allows unprecedented views of clotting, especially in animal models of hemostasis and thrombosis. However, our understanding of three-dimensional high-resolution clot structure remains incomplete since most of our recent knowledge has come from studies of relatively small clots or thrombi, due to the optical impenetrability of clots beyond a few cell layers in depth. Here, we developed an optimized optical clearing method termed cCLOT that renders large whole blood clots transparent and allows confocal imaging as deep as one millimeter inside the clot. We have tested this method by investigating the 3D structure of clots made from reconstituted pre-labeled blood components yielding new information about the effects of clot contraction on erythrocytes. Although it has been shown recently that erythrocytes are compressed to form polyhedrocytes during clot contraction, observations of this phenomenon have been impeded by the inability to easily image inside clots. As an efficient and non-destructive method, cCLOT represents a powerful research tool in studying blood clot structure and mechanisms controlling clot morphology. Additionally, cCLOT optical clearing has the potential to facilitate imaging of ex vivo clots and thrombi derived from healthy or pathological conditions. PMID:28856043

  3. Global mapping of stratigraphy of an old-master painting using sparsity-based terahertz reflectometry.

    PubMed

    Dong, Junliang; Locquet, Alexandre; Melis, Marcello; Citrin, D S

    2017-11-08

    The process by which art paintings are produced typically involves the successive applications of preparatory and paint layers to a canvas or other support; however, there is an absence of nondestructive modalities to provide a global mapping of the stratigraphy, information that is crucial for evaluation of its authenticity and attribution, for insights into historical or artist-specific techniques, as well as for conservation. We demonstrate sparsity-based terahertz reflectometry can be applied to extract a detailed 3D mapping of the layer structure of the 17th century easel painting Madonna in Preghiera by the workshop of Giovanni Battista Salvi da Sassoferrato, in which the structure of the canvas support, the ground, imprimatura, underpainting, pictorial, and varnish layers are identified quantitatively. In addition, a hitherto unidentified restoration of the varnish has been found. Our approach unlocks the full promise of terahertz reflectometry to provide a global and detailed account of an easel painting's stratigraphy by exploiting the sparse deconvolution, without which terahertz reflectometry in the past has only provided a meager tool for the characterization of paintings with paint-layer thicknesses smaller than 50 μm. The proposed modality can also be employed across a broad range of applications in nondestructive testing and biomedical imaging.

  4. Nondestructive Testing and Target Identification

    DTIC Science & Technology

    2016-12-21

    Dirichlet obstacle coated by a thin layer of non-absorbing media, IMA J. Appl. Math , 80, 1063-1098, (2015). Abstract: We consider the transmission...F. Cakoni, I. De Teresa, H. Haddar and P. Monk, Nondestructive testing of the delami- nated interface between two materials, SIAM J. Appl. Math ., 76...then they form a discrete set. 22. F. Cakoni, D. Colton, S. Meng and P. Monk, Steklov eigenvalues in inverse scattering, SIAM J. Appl. Math . 76, 1737

  5. NASA CR-2120 - Summary of nondestructive testing theory and practice

    NASA Technical Reports Server (NTRS)

    Meister, R. P.

    1974-01-01

    This is a familiarization report of nondestructive testing (ndt) prepared by staff of the Battelle Columbus Laboratories on a NASA contract. There is a short introduction, a chapter on applicability of ndt which is illustrated with examples of typical defects and includes tables comparing the characteristics, interrelationships, and costs of the different techniques. There are chapters dealing with penetrants, magnetic particle radiography, ultrasonics, and eddy currents. New techniques are described.

  6. A Portable Sorption Tester for Nondestructive Testing of Chemical Protective Garments

    DTIC Science & Technology

    1992-08-01

    ö.^ TECHNICAL REPORT NATICK/TR-92/042 Ap AASL MI A PORTABLE SORPTION TESTER FOR NONDESTRUCTIVE TESTING OF CHEMICAL PROTECTIVE GARMENTS ...items. DESTRUCTION NOTICE For Classified Documents: Follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section 11-19 or DoD...disclosure of contents or reconstruction of the document. REPORT DOCUMENTATION PAGE Form Approved OMB No . 0704-0188 Public ’»oor.ra Ouro«" ":> -n

  7. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

    NASA Astrophysics Data System (ADS)

    Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

    2014-06-01

    This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

  8. Use of an ultrasonic-acoustic technique for nondestructive evaluation of fiber composite strength

    NASA Technical Reports Server (NTRS)

    Vary, A.; Bowles, K. J.

    1978-01-01

    Details of the method used to measure the stress wave factor are described. Frequency spectra of the stress waves are analyzed in order to clarify the nature of the wave phenomena involved. The stress wave factor was measured with simple contact probes requiring only one-side access to a part. This is beneficial in nondestructive evaluations because the waves can run parallel to fiber directions and thus measure material properties in directions assumed by actual loads. The technique can be applied where conventional through transmission techniques are impractical or where more quantitative data are required. The stress wave factor was measured for a series of graphite/polyimide composite panels, and results obtained are compared with through transmission immersion ultrasonic scans.

  9. Quantitative Ultrasonic Evaluation of Mechanical Properties of Engineering Materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength of engineering materials is reviewed. A dormant concept in nondestructive evaluation (NDE) is invoked. The availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions is discussed. It was shown that ultrasonic methods yield measurements of elastic moduli, microstructure, hardness, fracture toughness, tensile strength, yield strength, and shear strength for a wide range of materials (including many types of metals, ceramics, and fiber composites). It was also indicated that although most of these methods were shown feasible in laboratory studies, more work is needed before they can be used on actual parts in processing, assembly, inspection, and maintenance lines.

  10. Nondestructive Measurement of Dynamic Modulus for Cellulose Nanofibril Films

    Treesearch

    Yan Qing; Robert J. Ross; Zhiyong Cai; Yiqiang Wu

    2013-01-01

    Nondestructive evaluation of cellulose nanofibril (CNF) films was performed using cantilever beam vibration (CBV) and acoustic methods to measure dynamic modulus. Static modulus was tested using tensile tension method. Correlation analysis shows the data measured by CBV has little linear relationship with static modulus, possessing a correlation coefficient (R

  11. Terahertz NDE of Stressed Composite Overwrapped Pressure Vessels - Initial Testing

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Seebo, Jeffrey P.; Anatasi, Robert F.

    2009-01-01

    Terahertz radiation nondestructive evaluation was applied to a set of Kevlar composite overwrapped pressure vessel bottles that had undergone a series of thermal and pressure tests to simulate stress rupture effects. The bottles in these nondestructive evaluation tests were bottles that had not ruptured but had survived various times at the elevated load and temperature levels. Some of the bottles showed evidence of minor composite failures. The terahertz radiation did detect visible surface flaws, but did not detect any internal chemical or material degradation of the thin overwraps.

  12. Nondestructive evaluation of ceramic matrix composite combustor components.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, J. G.; Verrilli, M. J.; Stephan, R.

    Combustor liners fabricated from a SiC/SiC composite were nondestructively interrogated before and after combustion rig testing. The combustor liners were inspected by X-ray, ultrasonic and thermographic techniques. In addition, mechanical test results were obtained from witness coupons, representing the as-manufactured liners, and from coupons machined from the components after combustion exposure. Thermography indications were found to correlate with reduced material properties obtained after rig testing. Microstructural examination of the SiC/SiC liners revealed the thermography indications to be delaminations and damaged fiber tows.

  13. Quantitative ultrasonic evaluation of engineering properties in metals, composites and ceramics

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    Ultrasonic technology from the perspective of nondestructive evaluation approaches to material strength prediction and property verification is reviewed. Emergent advanced technology involving quantitative ultrasonic techniques for materials characterization is described. Ultrasonic methods are particularly useful in this area because they involve mechanical elastic waves that are strongly modulated by the same morphological factors that govern mechanical strength and dynamic failure processes. It is emphasized that the technology is in its infancy and that much effort is still required before all the available techniques can be transferred from laboratory to industrial environments.

  14. New optoelectronic methodology for nondestructive evaluation of MEMS at the wafer level

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Ferguson, Curtis F.; Melson, Michael J.

    2004-02-01

    One of the approaches to fabrication of MEMS involves surface micromachining to define dies on single crystal silicon wafers, dicing of the wafers to separate the dies, and electronic packaging of the individual dies. Dicing and packaging of MEMS accounts for a large fraction of the fabrication costs, therefore, nondestructive evaluation at the wafer level, before dicing, can have significant implications on improving production yield and costs. In this paper, advances in development of optoelectronic holography (OEH) techniques for nondestructive, noninvasive, full-field of view evaluation of MEMS at the wafer level are described. With OEH techniques, quantitative measurements of shape and deformation of MEMS, as related to their performance and integrity, are obtained with sub-micrometer spatial resolution and nanometer measuring accuracy. To inspect an entire wafer with OEH methodologies, measurements of overlapping regions of interest (ROI) on a wafer are recorded and adjacent ROIs are stitched together through efficient 3D correlation analysis algorithms. Capabilities of the OEH techniques are illustrated with representative applications, including determination of optimal inspection conditions to minimize inspection time while achieving sufficient levels of accuracy and resolution.

  15. Mechanical Properties of Friction Stir Welds in A12195-T8

    NASA Technical Reports Server (NTRS)

    Kinchen, David G.; Li, Zhixian; Adams, Glynn P.

    1999-01-01

    An extensive study of the mechanical properties of friction stir welded Al-Li 2195 has been conducted by Lockheed Martin Michoud Space Systems under contract to NASA. The study was part of a development program in which weld parameters were defined for using FSW to assemble large-scale aluminum cryogenic tanks. In excess of 300 feet of 0.320 in. gage plate material was welded and tested. The tests include room temperature and cryogenic temperature tensile tests and surface crack tension (SCT) tests, nondestructive evaluation, metallurgical studies, and photostress analysis. The results of the testing demonstrated improved mechanical properties with FSW as compared to typical fusion welding processes. Increases in ultimate tensile strength, cryogenic enhancement and elongation were observed with the tensile test results. Increased fracture toughness was observed with the SCT results. Nondestructive evaluations were conducted on all welded Joints. No volumetric defects were indicated. Surface indications on the root side of the welds did not significantly affect weld strength. The results of the nondestructive evaluations were confirmed via metallurgical studies. Photostress analysis revealed strain concentrations in multi-pass and heat-repaired FSW's. Details of the tests and results are presented.

  16. Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics.

    PubMed

    Mulaveesala, Ravibabu; Venkata Ghali, Subbarao

    2011-05-01

    This paper proposes a Barker coded excitation for defect detection using infrared non-destructive testing. Capability of the proposed excitation scheme is highlighted with recently introduced correlation based post processing approach and compared with the existing phase based analysis by taking the signal to noise ratio into consideration. Applicability of the proposed scheme has been experimentally validated on a carbon fiber reinforced plastic specimen containing flat bottom holes located at different depths.

  17. Interdigital Capacitance Local Non-Destructive Examination of Nuclear Power Plant Cable for Aging Management Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.; Bowler, Nicola

    This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of non-destructive test methods focusing on local cable insulation and jacket testing using an interdigital capacitance (IDC) approach. Earlier studies have assessed a number of non-destructive examination (NDE) methods for bulk, distributed, and local cable tests. A typical test strategy is to perform bulk assessments of the cable response using dielectric spectroscopy, Tan , or partial discharge followed by distributed tests like time domain reflectometry or frequency domain reflectometry to identify the most likely defect location followed by a local test that can include visual inspection,more » indenter modulus tests, or Fourier Transform Infrared Spectroscopy (FTIR) or Near Infrared Spectroscopy FTIR (FTNIR). If a cable is covered with an overlaying jacket, the jacket’s condition is likely to be more severely degraded than the underlying insulation. None of the above local test approaches can be used to evaluate insulation beneath a cable jacket. Since the jacket’s function is neither structural nor electrical, a degraded jacket may not have any significance regarding the cable’s performance or suitability for service. IDC measurements offer a promising alternative or complement to these local test approaches including the possibility to test insulation beneath an overlaying jacket.« less

  18. Needs assessment for nondestructive testing and materials characterization for improved reliability in structural ceramics for heat engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.; McClung, R.W.; Janney, M.A.

    1987-08-01

    A needs assessment was performed for nondestructive testing and materials characterization to achieve improved reliability in ceramic materials for heat engine applications. Raw materials, green state bodies, and sintered ceramics were considered. The overall approach taken to improve reliability of structural ceramics requires key inspections throughout the fabrication flowsheet, including raw materials, greed state, and dense parts. The applications of nondestructive inspection and characterization techniques to ceramic powders and other raw materials, green ceramics, and sintered ceramics are discussed. The current state of inspection technology is reviewed for all identified attributes and stages of a generalized flowsheet for advanced structuralmore » ceramics, and research and development requirements are identified and listed in priority order. 164 refs., 3 figs.« less

  19. Destructive and non-destructive evaluation of cu/cu diffusion bonding with interlayer aluminum

    NASA Astrophysics Data System (ADS)

    Santosh Kumar, A.; Mohan, T.; Kumar, S. Suresh; Ravisankar, B.

    2018-03-01

    The current study is established an inspection procedure for assessing quality of diffusion bonded joints using destructive and non-destructive method. Diffusion bonding of commercially pure copper with aluminium interlayer was carried out uniaxial load at 15MPa for different temperatures under holding time 60 min in vacuum atmosphere. The bond qualities were determined by destructive and non-destructive testing method (ultrasonic C- scan). The bond interface and bonded samples were analysed using optical and scanning electron microscopy (SEM). The element composition of the fractured and bonded area is determined using the Energy Dispersive Spectrometry (EDS). The bond quality obtained by both testing methods and its parameters are correlated. The optimized bonding parameter for best bonding characteristics for copper diffusion bonding with aluminum interlayer is reported.

  20. Buckling characteristics of hypersonic aircraft wing tubular panels

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Shideler, John L.; Fields, Roger A.

    1986-01-01

    The buckling characteristics of Rene 41 tubular panels installed as wing panels on a hypersonic wing test structure (HWTS) were determined nondestructively through use of a force/stiffness technique. The nondestructive buckling tests were carried out under different combined load conditions and different temperature environments. Two panels were subsequently tested to buckling failure in a universal tension compression testing machine. In spite of some data scattering because of large extrapolations of data points resulting from termination of the test at a somewhat low applied load, the overall test data correlated fairly well with theoretically predicted buckling interaction curves. The structural efficiency of the tubular panels was slightly higher than that of the beaded panels which they replaced.

  1. X-ray chemical analyzer for field applications

    DOEpatents

    Gamba, Otto O. M.

    1977-01-01

    A self-supporting portable field multichannel X-ray chemical analyzer system comprising a lightweight, flexibly connected, remotely locatable, radioisotope-excited sensing probe utilizing a cryogenically-cooled solid state semi-conductor crystal detector for fast in situ non-destructive, qualitative and quantitative analysis of elements in solid, powder, liquid or slurried form, utilizing an X-ray energy dispersive spectrometry technique.

  2. Nondestructive evaluation of green wood using stress wave and transverse vibration techniques

    Treesearch

    Udaya B. Halabe; Gangadhar M. Bidigalu; Hota V.S. GangaRao; Robert J. Ross

    1997-01-01

    Longitudinal stress wave and transverse vibration nondestructive testing (NDT) techniques have proven to be accurate means of evaluating the quality of wood based products. Researchers have found strong relationships between stress wave and transverse vibration parameters (e.g., wave velocity and modulus of elasticity predicted using NDT measurements) with the actual...

  3. Nondestructive testing methods to predict effect of degradation on wood : a critical assessment

    Treesearch

    J. Kaiserlik

    1978-01-01

    Results are reported for an assessment of methods for predicting strength of wood, wood-based, or related material. Research directly applicable to nondestructive strength prediction was very limited. In wood, strength prediction research is limited to vibration decay, wave attenuation, and multiparameter "degradation models." Nonwood methods with potential...

  4. Nondestructive test of regenerative chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Stauffis, R.; Wood, R.

    1972-01-01

    Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.

  5. Nondestructive Crack Detection in a Fuel System Component

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay; Ruffino, Norman; Wincheski, Russell; Prosser, William; Winfree, William; Russell, Richard; Bryson, Craig; Devries, Robert; Engel, James; Landy, James

    2010-01-01

    The presentation examines the background and objective of nondestructive crack detection, flow control valve assembly and poppet post flight evaluation, poppet properties. magnetic property characterization of lab data, NDE, eddy current inspection, simulation, eddy current criteria, poppet cycle testing and NDE criteria, and the use of ultrasonic surface wave for crack detection.

  6. Automation of disbond detection in aircraft fuselage through thermal image processing

    NASA Technical Reports Server (NTRS)

    Prabhu, D. R.; Winfree, W. P.

    1992-01-01

    A procedure for interpreting thermal images obtained during the nondestructive evaluation of aircraft bonded joints is presented. The procedure operates on time-derivative thermal images and resulted in a disbond image with disbonds highlighted. The size of the 'black clusters' in the output disbond image is a quantitative measure of disbond size. The procedure is illustrated using simulation data as well as data obtained through experimental testing of fabricated samples and aircraft panels. Good results are obtained, and, except in pathological cases, 'false calls' in the cases studied appeared only as noise in the output disbond image which was easily filtered out. The thermal detection technique coupled with an automated image interpretation capability will be a very fast and effective method for inspecting bonded joints in an aircraft structure.

  7. Wire Crimp Termination Verification Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.

  8. Application of Laser Based Ultrasound for NDE of Damage in Thick Stitched Composites

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Friedman, Adam D.; Hinders, Mark K.; Madaras, Eric I.

    1997-01-01

    As design engineers implement new composite systems such as thick, load bearing composite structures, they must have certifiable confidence in structure s durability and worthiness. This confidence builds from understanding the structural response and failure characteristics of simple components loaded in testing machines to tests on full scale sections. Nondestructive evaluation is an important element which can provide quantitative information on the damage initiation, propagation, and final failure modes for the composite structural components. Although ultrasound is generally accepted as a test method, the use of conventional ultrasound for in-situ monitoring of damage during tests of large structures is not practical. The use of lasers to both generate and detect ultrasound extends the application of ultrasound to in- situ sensing of damage in a deformed structure remotely and in a non-contact manner. The goal of the present research is to utilize this technology to monitor damage progression during testing. The present paper describes the application of laser based ultrasound to quantify damage in thick stitched composite structural elements to demonstrate the method. This method involves using a Q-switched laser to generate a rapid, local linear thermal strain on the surface of the structure. This local strain causes the generation of ultrasonic waves into the material. A second laser used with a Fabry-Perot interferometer detects the surface deflections. The use of fiber optics provides for eye safety and a convenient method of delivering the laser over long distances to the specimens. The material for these structural elements is composed of several stacks of composite material assembled together by stitching through the laminate thickness that ranging from 0.5 to 0.8 inches. The specimens used for these nondestructive evaluation studies had either impact damage or skin/stiffener interlaminar failure. Although little or no visible surface damage existed, internal damage was detected by laser based ultrasound.

  9. Template synthesis of test tube nanoparticles using non-destructive replication

    PubMed Central

    Wagner, Jonathan; Yao, Jingyuan; Rodgers, David; Hinds, Bruce

    2013-01-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive “bionanoreactors” loaded with enzymes. PMID:23376956

  10. Development of a Novel Guided Wave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation

    PubMed Central

    Luo, Mingzhang; Li, Weijie; Wang, Junming; Chen, Xuemin; Song, Gangbing

    2018-01-01

    As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation. PMID:29510540

  11. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  12. Development of a Novel Guided Wave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation.

    PubMed

    Luo, Mingzhang; Li, Weijie; Wang, Junming; Wang, Ning; Chen, Xuemin; Song, Gangbing

    2018-03-04

    As a common approach to nondestructive testing and evaluation, guided wave-based methods have attracted much attention because of their wide detection range and high detection efficiency. It is highly desirable to develop a portable guided wave testing system with high actuating energy and variable frequency. In this paper, a novel giant magnetostrictive actuator with high actuation power is designed and implemented, based on the giant magnetostrictive (GMS) effect. The novel GMS actuator design involves a conical energy-focusing head that can focus the amplified mechanical energy generated by the GMS actuator. This design enables the generation of stress waves with high energy, and the focusing of the generated stress waves on the test object. The guided wave generation system enables two kinds of output modes: the coded pulse signal and the sweep signal. The functionality and the advantages of the developed system are validated through laboratory testing in the quality assessment of rock bolt-reinforced structures. In addition, the developed GMS actuator and the supporting system are successfully implemented and applied in field tests. The device can also be used in other nondestructive testing and evaluation applications that require high-power stress wave generation.

  13. High-Energy Laser for Detection, Inspection, and Non-Destructive Testing

    DTIC Science & Technology

    2011-03-21

    at the gra odes. The -2 at 0.1 Hz -cm-2, and mage thre n array of beam. Th burns on pled to a to measur laser is eq micron lev ent beam ( rget...project or resulting research?  Defense Threat Reduction Agency, “Compact Source of Laser -Driven Monoenergetic Gamma-Rays” --$2,982,685... LASER FOR DETECTION, INSPECTION, AND NON-DESTRUCTIVE TESTING 3) Grant/Contract Number: FA9550-07-1-0521 4) Reporting Period Start: 06/21/2007

  14. Application of golay complementary coded excitation schemes for non-destructive testing of sandwich structures

    NASA Astrophysics Data System (ADS)

    Arora, Vanita; Mulaveesala, Ravibabu

    2017-06-01

    In recent years, InfraRed Thermography (IRT) has become a widely accepted non-destructive testing technique to evaluate the structural integrity of composite sandwich structures due to its full-field, remote, fast and in-service inspection capabilities. This paper presents a novel infrared thermographic approach named as Golay complementary coded thermal wave imaging is presented to detect disbonds in a sandwich structure having face sheets from Glass/Carbon Fibre Reinforced (GFR/CFR) laminates and core of the wooden block.

  15. Nondestructive testing of CFRP plates by Lamb waves

    NASA Astrophysics Data System (ADS)

    Tsushima, Satoshi; Fukiage, Norio; Ono, Masao

    1993-03-01

    Nondestructive testing based on low frequency Lamb waves was used to analyze the thickness of plates, the delamination, the fiber contents, and the wave velocities in composite laminates. The thickness of plates was predicted and the delamination was detected using the relationship between the phase velocities of Lamb waves and the product of frequency and plate thickness. The fiber content was predicted from the stationary waves, and the wave velocity propagating at an angle to the fiber direction was calculated using the Young's modulus.

  16. Nondestructive material characterization

    DOEpatents

    Deason, Vance A.; Johnson, John A.; Telschow, Kenneth L.

    1991-01-01

    A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.

  17. Quantitative broadband ultrasonic backscatter - An approach to nondestructive evaluation in acoustically inhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Odonnell, M.; Miller, J. G.

    1981-01-01

    The use of a broadband backscatter technique to obtain the frequency dependence of the longitudinal-wave ultrasonic backscatter coefficient from a collection of scatterers in a solid is investigated. Measurements of the backscatter coefficient were obtained over the range of ultrasonic wave vector magnitude-glass sphere radius product between 0.1 and 3.0 from model systems consisting of dilute suspensions of randomly distributed crown glass spheres in hardened polyester resin. The results of these measurements were in good agreement with theoretical prediction. Consequently, broadband measurements of the ultrasonic backscatter coefficient may represent a useful approach toward characterizing the physical properties of scatterers in intrinsically inhomogeneous materials such as composites, metals, and ceramics, and may represent an approach toward nondestructive evaluation of these materials.

  18. Quantitative Evaluation of the Effect of Porosity on the Local Young's Modulus of Isotropic Composites by Using the Laser Optoacoustic Method

    NASA Astrophysics Data System (ADS)

    Podymova, N. B.; Karabutov, A. A.; Kobeleva, L. I.; Chernyshova, T. A.

    2013-09-01

    An impulse acoustic method with a laser source of ultrasound is proposed and realized experimentally for a quantitative evaluation of the joint effect of porosity (the volume fraction of pores) and the concentration of dispersed filler on the local Young's modulus of isotropic metal-matrix composite materials. The determination of Young's modulus is based on the laser thermooptical excitation of ultrasound and measurements of the phase speed of longitudinal and shears acoustic waves in composite specimens. Silumin-matrix composite specimens reinforced with various volume fractions of silicon carbide (SiC) microparticles of the mean size of 14 μm were investigated. It was found that, to provide an effective growth in Young's modulus by increasing the concentration of SiC, the porosity of a ready specimen should not exceed 2%. The technique developed allows one to carry out a nondestructive local testing of the acoustical and mechanical properties of composites in the actual state, which is necessary for a technological development and improvement of the fabrication process of the materials.

  19. Feasibility Study of Non-Destructive Techniques to Measure Corrosion in SAVY Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Matthew Nicholas

    2016-07-15

    Stainless Steel SAVY containers are used to transport and store nuclear material. They are prone to interior corrosion in the presence of certain chemicals and a low-oxygen environment. SAVY containers also have relatively thin walls to reduce their weight, making their structural integrity more vulnerable to the effects of corrosion. A nondestructive evaluation system that finds and monitors corrosion within containers in use would improve safety conditions and preclude hazards. Non-destructive testing can determine whether oxidation or corrosion is occurring inside the SAVY containers, and there are a variety of non-destructive testing methods that may be viable. The feasibility studymore » described will objectively decide which method best fits the requirements of the facility and the problem. To improve efficiency, the containers cannot be opened during the non-destructive examination. The chosen technique should also be user-friendly and relatively quick to apply. It must also meet facility requirements regarding wireless technology and maintenance. A feasibility study is an objective search for a new technology or product to solve a particular problem. First, the design, technical, and facility feasibility requirements are chosen and ranked in order of importance. Then each technology considered is given a score based upon a standard ranking system. The technology with the highest total score is deemed the best fit for a certain application.« less

  20. Determination of Flaw Type and Location Using an Expert Module in Ultrasonic Nondestructive Testing for Weld Inspection

    NASA Astrophysics Data System (ADS)

    Shahriari, D.; Zolfaghari, A.; Masoumi, F.

    2011-01-01

    Nondestructive evaluation is explained as nondestructive testing, nondestructive inspection, and nondestructive examination. It is a desire to determine some characteristic of the object or to determine whether the object contains irregularities, discontinuities, or flaws. Ultrasound based inspection techniques are used extensively throughout industry for detection of flaws in engineering materials. The range and variety of imperfections encountered is large, and critical assessment of location, size, orientation and type is often difficult. In addition, increasing quality requirements of new standards and codes of practice relating to fitness for purpose are placing higher demands on operators. Applying of an expert knowledge-based analysis in ultrasonic examination is a powerful tool that can help assure safety, quality, and reliability; increase productivity; decrease liability; and save money. In this research, an expert module system is coupled with ultrasonic examination (A-Scan Procedure) to determine and evaluate type and location of flaws that embedded during welding parts. The processing module of this expert system is implemented based on EN standard to classify welding defects, acceptance condition and measuring of their location via echo static pattern and image processing. The designed module introduces new system that can automate evaluating of the results of A-scan method according to EN standard. It can simultaneously recognize the number and type of defects, and determine flaw position during each scan.

  1. Quantitative Three-Dimensional Imaging of Heterogeneous Materials by Thermal Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, J. G.

    2016-07-19

    Infrared thermal imaging based on active thermal excitations has been widely used for nondestructive evaluation ( NDE) of materials. While the experimental systems have remained essentially the same during the last few decades, development of advanced data-processing methods has significantly improved the capabilities of this technology. However, many limitations still exist. One fundamental limitation is the requirement, either explicitly or implicitly, of the tested material to be homogeneous such that detected thermal contrasts may be used to determine an average material property or attributed to flaws. In this paper, a new thermal tomography ( TT) method is introduced, which formore » the first time can evaluate heterogeneous materials by directly imaging their thermal-property variations with space. It utilizes one-sided flash thermal-imaging data to construct the three-dimensional ( 3D) distribution of thermal effusivity in the entire volume of a test sample. Theoretical analyses for single and multilayer material systems were conducted to validate its formulation and to demonstrate its performance. Experimental results for a ceramic composite plate and a thermal barrier coating ( TBC) sample are also presented. It was shown that thermal diffusion is the primary factor that degrades the spatial resolution with depth for TT; the spatial resolutions in the lateral and axial directions were quantitatively evaluated.« less

  2. Applications of laser ultrasound NDT methods on composite structures in aerospace industry

    NASA Astrophysics Data System (ADS)

    Kalms, Michael; Focke, Oliver; v. Kopylow, Christoph

    2008-09-01

    Composite materials are used more and more in aircraft production. Main composite types are Carbon Fiber Reinforced Plastics (CFRP), Glass Fiber Reinforced Plastics (GFRP) and metal-aluminium laminates (e. g. Glass Fiber Aluminium Reinforced GLARE©). Typical parts made of CFRP material are flaps, vertical and horizontal tail planes, center wing boxes, rear pressure bulkheads, ribs and stringers. These composite parts require adequate nondestructive testing (NDT) methods. Flaws to be detected are delaminations and debondings, porosity and foreign body inclusion. Manual ultrasonic testing with single element transducers is still the most applied method for composite parts with small and medium size. The extension of the conventional ultrasound technique for nondestructive testing with the laser ultrasound method brings new possibilities into the production processes for example the inspection of complex CFRP-components and the possibilities of online observation under remote control. In this paper we describe the principle of laser ultrasound with respect to the demands of nondestructive testing especially of small complex CFRP and C/PPS parts. We report applications of laser-based ultrasound options with generated types of guided and bulk waves on modern aircraft materials.

  3. Nondestructive testing of advanced materials using sensors with metamaterials

    NASA Astrophysics Data System (ADS)

    Rozina, Steigmann; Narcis Andrei, Danila; Nicoleta, Iftimie; Catalin-Andrei, Tugui; Frantisek, Novy; Stanislava, Fintova; Petrica, Vizureanu; Adriana, Savin

    2016-11-01

    This work presents a method for nondestructive evaluation (NDE) of advanced materials that makes use of the images in near field and the concentration of flux using the phenomenon of spatial resolution. The method allows the detection of flaws as crack, nonadhesion of coating, degradation or presence delamination stresses correlated with the response of electromagnetic sensor.

  4. 49 CFR 192.328 - Additional construction requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stringing, field bending, welding, non-destructive examination of girth welds, applying and testing field...: (i) Equivalent to that required under § 192.112(f)(3) for pipe; and (ii) Performed by an individual...) All girth welds on a new pipeline segment must be non-destructively examined in accordance with § 192...

  5. 49 CFR 192.328 - Additional construction requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... stringing, field bending, welding, non-destructive examination of girth welds, applying and testing field...: (i) Equivalent to that required under § 192.112(f)(3) for pipe; and (ii) Performed by an individual...) All girth welds on a new pipeline segment must be non-destructively examined in accordance with § 192...

  6. 49 CFR 192.328 - Additional construction requirements for steel pipe using alternative maximum allowable operating...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... stringing, field bending, welding, non-destructive examination of girth welds, applying and testing field...: (i) Equivalent to that required under § 192.112(f)(3) for pipe; and (ii) Performed by an individual...) All girth welds on a new pipeline segment must be non-destructively examined in accordance with § 192...

  7. Quantitative analysis of visible surface defect risk in tablets during film coating using terahertz pulsed imaging.

    PubMed

    Niwa, Masahiro; Hiraishi, Yasuhiro

    2014-01-30

    Tablets are the most common form of solid oral dosage produced by pharmaceutical industries. There are several challenges to successful and consistent tablet manufacturing. One well-known quality issue is visible surface defects, which generally occur due to insufficient physical strength, causing breakage or abrasion during processing, packaging, or shipping. Techniques that allow quantitative evaluation of surface strength and the risk of surface defect would greatly aid in quality control. Here terahertz pulsed imaging (TPI) was employed to evaluate the surface properties of core tablets with visible surface defects of varying severity after film coating. Other analytical methods, such as tensile strength measurements, friability testing, and scanning electron microscopy (SEM), were used to validate TPI results. Tensile strength and friability provided no information on visible surface defect risk, whereas the TPI-derived unique parameter terahertz electric field peak strength (TEFPS) provided spatial distribution of surface density/roughness information on core tablets, which helped in estimating tablet abrasion risk prior to film coating and predicting the location of the defects. TPI also revealed the relationship between surface strength and blending condition and is a nondestructive, quantitative approach to aid formulation development and quality control that can reduce visible surface defect risk in tablets. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Nondestructive Quantitative Sampling for Freshwater Mussels in Variable Substrate Streams

    Treesearch

    John B. Richardson; Winston Paul Smith

    1994-01-01

    Unionidmussels were sampled in the Big South Fork of the Cumberland River, Tennessee and Kentucky, from July to October 1988 with a chain grid of10 l-m2 quadrats. The chain grid was used to define 100-m2 areas along the stream bed by repeatedly moving the10-m2 rectangle upstream. Within each100-m

  9. Characterizing the Effects of Washing by Different Detergents on the Wavelength-Scale Microstructures of Silk Samples Using Mueller Matrix Polarimetry.

    PubMed

    Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui

    2016-08-10

    Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials.

  10. Characterizing the Effects of Washing by Different Detergents on the Wavelength-Scale Microstructures of Silk Samples Using Mueller Matrix Polarimetry

    PubMed Central

    Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui

    2016-01-01

    Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials. PMID:27517919

  11. Detection of melamine in milk powder using MCT-based short-wave infrared hyperspectral imaging system.

    PubMed

    Lee, Hoonsoo; Kim, Moon S; Lohumi, Santosh; Cho, Byoung-Kwan

    2018-06-05

    Extensive research has been conducted on non-destructive and rapid detection of melamine in powdered foods in the last decade. While Raman and near-infrared hyperspectral imaging techniques have been successful in terms of non-destructive and rapid measurement, they have limitations with respect to measurement time and detection capability, respectively. Therefore, the objective of this study was to develop a mercury cadmium telluride (MCT)-based short-wave infrared (SWIR) hyperspectral imaging system and algorithm to detect melamine quantitatively in milk powder. The SWIR hyperspectral imaging system consisted of a custom-designed illumination system, a SWIR hyperspectral camera, a data acquisition module and a sample transfer table. SWIR hyperspectral images were obtained for melamine-milk samples with different melamine concentrations, pure melamine and pure milk powder. Analysis of variance and the partial least squares regression method over the 1000-2500 nm wavelength region were used to develop an optimal model for detection. The results showed that a melamine concentration as low as 50 ppm in melamine-milk powder samples could be detected. Thus, the MCT-based SWIR hyperspectral imaging system has the potential for quantitative and qualitative detection of adulterants in powder samples.

  12. [The occupational radiation-induced cataract in five industrial radiographers].

    PubMed

    Benzarti Mezni, A; Loukil, I; Hriz, N; Kallel, K; Mlaiki, N; Ben Jemaâ, A

    2012-04-01

    The industrial uses of ionizing radiation in Tunisia are expanding, especially in industry and most particularly in the nondestructive testing of welds. Thus workers operating in the non-destructive testing of welds may develop a radiation-induced cataract varying in time to onset depending on the dose. To describe the characteristics of the radiation-induced cataract in patients exposed to ionizing radiation, determine the risk factors of radiation-induced cataracts. This was an anamnestic, clinical, and environmental study of five cases of radiation-induced cataract in workers employed in non-destructive testing of welds. This series of five cases had a mean age of 30.2 years and 5.53 years of work experience, ranging from 14 months to 15 years. All the patients were male and industrial radiographers specialized in nondestructive testing of welds. The average duration of exposure to ionizing radiation was 5.53 years. None of the patients had worn protective gear such as eye goggles. The ophthalmic check-up for the five special industrial radiographers showed punctuate opacities in three cases, punctiform opacities in one eye in one case, and phacosclerosis with bilateral lens multiple crystalline stromal opacities in a case of micro-lens opacities in both eyes with opalescence of both eyes in one case. These cataracts had been declared as occupational diseases. The value of a specialized ophthalmologic surveillance among these workers and the early diagnosis of lens opacities must be emphasized. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  13. Development of Nomarski microscopy for quantitative determination of surface topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J. S.; Gordon, R. L.; Lessor, D. L.

    1979-01-01

    The use of Nomarski differential interference contrast (DIC) microscopy has been extended to provide nondestructive, quantitative analysis of a sample's surface topography. Theoretical modeling has determined the dependence of the image intensity on the microscope's optical components, the sample's optical properties, and the sample's surface orientation relative to the microscope. Results include expressions to allow the inversion of image intensity data to determine sample surface slopes. A commercial Nomarski system has been modified and characterized to allow the evaluation of the optical model. Data have been recorded with smooth, planar samples that verify the theoretical predictions.

  14. Analytical modeling, finite-difference simulation and experimental validation of air-coupled ultrasound beam refraction and damping through timber laminates, with application to non-destructive testing.

    PubMed

    Sanabria, Sergio J; Furrer, Roman; Neuenschwander, Jürg; Niemz, Peter; Schütz, Philipp

    2015-12-01

    Reliable non-destructive testing (NDT) ultrasound systems for timber composite structures require quantitative understanding of the propagation of ultrasound beams in wood. A finite-difference time-domain (FDTD) model is described, which incorporates local anisotropy variations of stiffness, damping and density in timber elements. The propagation of pulsed air-coupled ultrasound (ACU) beams in normal and slanted incidence configurations is reproduced by direct definition of material properties (gas, solid) at each model pixel. First, the model was quantitatively validated against analytical derivations. Time-varying wavefronts in unbounded timber with curved growth rings were accurately reproduced, as well as the acoustic properties (velocity, attenuation, beam skewing) of ACU beams transmitted through timber lamellas. An experimental sound field imaging (SFI) setup was implemented at NDT frequencies (120 kHz), which for specific beam incidence positions allows spatially resolved ACU field characterization at the receiver side. The good agreement of experimental and modeled beam shifts across timber laminates allowed extrapolation of the inner propagation paths. The modeling base is an orthotropic stiffness dataset for the desired wood species. In cross-grain planes, beam skewing leads to position-dependent wave paths. They are well-described in terms of the growth ring curvature, which is obtained by visual observation of the laminate. Extraordinary refraction phenomena were observed, which lead to well-collimated quasi-shear wave coupling at grazing beam incidence angles. The anisotropic damping in cross-grain planes is satisfactorily explained in terms of the known anisotropic stiffness dataset and a constant loss tangent. The incorporation of high-resolution density maps (X-ray computed tomography) provided insight into ultrasound scattering effects in the layered growth ring structure. Finally, the combined potential of the FDTD model and the SFI setup for material property and defect inversion in anisotropic materials was demonstrated. A portable SFI demonstrator was implemented with a multi-sensor MEMs receiver array that captures and compensates for variable wave propagation paths in glued laminated timber, and improves the imaging of lamination defects. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Porosity estimation of aged mortar using a micromechanical model.

    PubMed

    Hernández, M G; Anaya, J J; Sanchez, T; Segura, I

    2006-12-22

    Degradation of concrete structures located in high humidity atmospheres or under flowing water is a very important problem. In this study, a method for ultrasonic non-destructive characterization in aged mortar is presented. The proposed method makes a prediction of the behaviour of aged mortar accomplished with a three phase micromechanical model using ultrasonic measurements. Aging mortar was accelerated by immersing the probes in ammonium nitrate solution. Both destructive and non-destructive characterization of mortar was performed. Destructive tests of porosity were performed using a vacuum saturation method and non-destructive characterization was carried out using ultrasonic velocities. Aging experiments show that mortar degradation not only involves a porosity increase, but also microstructural changes in the cement matrix. Experimental results show that the estimated porosity using the proposed non-destructive methodology had a comparable performance to classical destructive techniques.

  16. New approaches for the analysis of confluent cell layers with quantitative phase digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Pohl, L.; Kaiser, M.; Ketelhut, S.; Pereira, S.; Goycoolea, F.; Kemper, Björn

    2016-03-01

    Digital holographic microscopy (DHM) enables high resolution non-destructive inspection of technical surfaces and minimally-invasive label-free live cell imaging. However, the analysis of confluent cell layers represents a challenge as quantitative DHM phase images in this case do not provide sufficient information for image segmentation, determination of the cellular dry mass or calculation of the cell thickness. We present novel strategies for the analysis of confluent cell layers with quantitative DHM phase contrast utilizing a histogram based-evaluation procedure. The applicability of our approach is illustrated by quantification of drug induced cell morphology changes and it is shown that the method is capable to quantify reliable global morphology changes of confluent cell layers.

  17. Computed Tomography and Thermography Increases CMC Material and Process Development Efficiency and Testing Effectiveness

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Beshears, Ron; Hufnagle, David; Walker, James; Russell, Sam; Stowell, Bob; Myers, David

    2002-01-01

    Nondestructive characterization techniques have been used to steer development and testing of CMCs. Computed tomography is used to determine the volumetric integrity of the CMC plates and components. Thermography is used to determine the near surface integrity of the CMC plates and components. For process and material development, information such as density uniformity, part delamination, and dimensional tolerance conformity is generated. The information from the thermography and computed tomography is correlated and then specimen cutting maps are superimposed on the thermography images. This enables for tighter data and potential explanation of off nominal test data. Examples of nondestructive characterization utilization to make decisions in process and material development and testing are presented.

  18. Overview of the program to assess the reliability of emerging nondestructive techniques open testing and study of flaw type effect on NDE response

    NASA Astrophysics Data System (ADS)

    Meyer, Ryan M.; Komura, Ichiro; Kim, Kyung-cho; Zetterwall, Tommy; Cumblidge, Stephen E.; Prokofiev, Iouri

    2016-02-01

    In February 2012, the U.S. Nuclear Regulatory Commission (NRC) executed agreements with VTT Technical Research Centre of Finland, Nuclear Regulatory Authority of Japan (NRA, former JNES), Korea Institute of Nuclear Safety (KINS), Swedish Radiation Safety Authority (SSM), and Swiss Federal Nuclear Safety Inspectorate (ENSI) to establish the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT). The goal of PARENT is to investigate the effectiveness of current emerging and perspective novel nondestructive examination procedures and techniques to find flaws in nickel-alloy welds and base materials. This is done by conducting a series of open and blind international round-robin tests on a set of large-bore dissimilar metal welds (LBDMW), small-bore dissimilar metal welds (SBDMW), and bottom-mounted instrumentation (BMI) penetration weld test blocks. The purpose of blind testing is to study the reliability of more established techniques and included only qualified teams and procedures. The purpose of open testing is aimed at a more basic capability assessment of emerging and novel technologies. The range of techniques applied in open testing varied with respect to maturity and performance uncertainty and were applied to a variety of simulated flaws. This paper will include a brief overview of the PARENT blind and open testing techniques and test blocks and present some of the blind testing results.

  19. Nondestructive analysis and development

    NASA Technical Reports Server (NTRS)

    Moslehy, Faissal A.

    1993-01-01

    This final report summarizes the achievements of project #4 of the NASA/UCF Cooperative Agreement from January 1990 to December 1992. The objectives of this project are to review NASA's NDE program at Kennedy Space Center (KSC) and recommend means for enhancing the present testing capabilities through the use of improved or new technologies. During the period of the project, extensive development of a reliable nondestructive, non-contact vibration technique to determine and quantify the bond condition of the thermal protection system (TPS) tiles of the Space Shuttle Orbiter was undertaken. Experimental modal analysis (EMA) is used as a non-destructive technique for the evaluation of Space Shuttle thermal protection system (TPS) tile bond integrity. Finite element (FE) models for tile systems were developed and were used to generate their vibration characteristics (i.e. natural frequencies and mode shapes). Various TPS tile assembly configurations as well as different bond conditions were analyzed. Results of finite element analyses demonstrated a drop in natural frequencies and a change in mode shapes which correlate with both size and location of disbond. Results of experimental testing of tile panels correlated with FE results and demonstrated the feasibility of EMA as a viable technique for tile bond verification. Finally, testing performed on the Space Shuttle Columbia using a laser doppler velocimeter demonstrated the application of EMA, when combined with FE modeling, as a non-contact, non-destructive bond evaluation technique.

  20. Nondestructive evaluation of potential quality of creosote-treated piles removed from service

    Treesearch

    Xiping Wang; Robert J. Ross; John R. Erickson; John W. Forsman; Gary D. McGinnis; Rodney C. De Groot

    2001-01-01

    Stress-wave-based nondestructive evaluation methods were used to evaluate the potential quality and modulus of elasticity (MOE) of wood from creosote-treated Douglas-fir and southern pine piles removed from service. Stress-wave measurements were conducted on each pile section. Stress-wave propagation speeds were obtained to estimate the MOE of the wood. Tests were then...

  1. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-6, Operation of Eddy Current Test Equipment.

    ERIC Educational Resources Information Center

    Espy, John; Selleck, Ben

    This sixth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II details eddy current examination of steam generator tubing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject…

  2. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting

    PubMed Central

    Tian, Kun V.; Yang, Bin; Yue, Yuanzheng; Bowron, Daniel T.; Mayers, Jerry; Donnan, Robert S.; Dobó-Nagy, Csaba; Nicholson, John W.; Fang, De-Cai; Greer, A. Lindsay; Chass, Gregory A.; Greaves, G. Neville

    2015-01-01

    Bioactive glass ionomer cements (GICs) have been in widespread use for ∼40 years in dentistry and medicine. However, these composites fall short of the toughness needed for permanent implants. Significant impediment to improvement has been the requisite use of conventional destructive mechanical testing, which is necessarily retrospective. Here we show quantitatively, through the novel use of calorimetry, terahertz (THz) spectroscopy and neutron scattering, how GIC's developing fracture toughness during setting is related to interfacial THz dynamics, changing atomic cohesion and fluctuating interfacial configurations. Contrary to convention, we find setting is non-monotonic, characterized by abrupt features not previously detected, including a glass–polymer coupling point, an early setting point, where decreasing toughness unexpectedly recovers, followed by stress-induced weakening of interfaces. Subsequently, toughness declines asymptotically to long-term fracture test values. We expect the insight afforded by these in situ non-destructive techniques will assist in raising understanding of the setting mechanisms and associated dynamics of cementitious materials. PMID:26548704

  3. Analytical study of acousto/optical holography-interfacing methods for acoustical and optical holography NDT research

    NASA Technical Reports Server (NTRS)

    El-Sum, H. M. A.

    1976-01-01

    The international status of the art of acousto optical imaging techniques adaptable to nondestructive testing and, interfacing methods for acoustical and optical holography in nondestructive testing research are studied. Evaluation of 20 different techniques encompassed investigation of varieties of detectors and detection schemes, all of which are described and summarized. Related investigation is reported in an Appendix. Important remarks on image quality, factors to be considered in designing a particular system, and conclusions and recommendations are presented. Three bibliographies are included.

  4. Eddy current X-Y scanner system

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.

    1983-01-01

    The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning.

  5. Development of nondestructive testing techniques for plated-through holes in multilayer printed circuit boards

    NASA Technical Reports Server (NTRS)

    Anthony, P. L.; Mcmurtrey, J. E.

    1971-01-01

    The development of a nondestructive test with the capability to interrogate plated-through holes as small as 0.51 millimeters inside diameter is discussed. The system can detect defects such as holes, voids, cracks, and thin spots that reduce the current carrying capability of plates-through interconnects by 20 percent or more. Efforts were directed toward the design and fabrication of magnetic circuitry mutual coupling probes and to evaluate the effectiveness of these devices for detecting in multilayer board plated-through holes.

  6. Augmented reality application for industrial non-destructive inspection training

    NASA Astrophysics Data System (ADS)

    Amza, Catalin Gheorghe; Zapciu, Aurelian; Teodorescu, Octav

    2018-02-01

    Such a technology - Augmented Reality (AR) has great potential of use, especially for training purposes of new operators on using expensive equipment. In this context, the paper presents an augmented reality training system developed for phased-array ultrasonic non-destructive testing (NDT) equipment. The application has been developed using Unity 5.6.0 game-engine platform integrated with Vuforia sdk toolkit for devices with Android operating system. The test results performed by several NDT operators showed good results, thus proving the potential of using the application in the industrial field.

  7. Concept for Determining the Life of Ceramic Matrix Composites Using Nondestructive Characterization Techniques

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Ellingson, Bill; Spohnholtz, Todd; Koenig, John

    2000-01-01

    Damping measurements have been taken on ceramic matrix composite (CMC) turbopump blisks in the as fabricated, post proof testing, and post turbopump testing conditions. These results indicate that damping is able to quantify fatigue of the CMC blisk. This gives hope for the potential of determining the actual and residual life of CMC materials using a combination of nondestructive techniques. If successful, then this new paradigm for life prediction of CMCs could revolutionize the approach for designing and servicing CMC components, thereby significantly reducing costs for design, development, health monitoring, and maintenance of CMC components and systems. The Nondestructive Characterization (NDC) life prediction approach would complement life prediction using micromechanics and continuum finite element models. This paper reports on the initial concept of NDC life prediction and how changes in damping and ultrasonic elastic modulus data have established the concept as a possibility.

  8. Damage characterization in engineering materials using a combination of optical, acoustic, and thermal techniques

    NASA Astrophysics Data System (ADS)

    Tragazikis, I. K.; Exarchos, D. A.; Dalla, P. T.; Matikas, T. E.

    2016-04-01

    This paper deals with the use of complimentary nondestructive methods for the evaluation of damage in engineering materials. The application of digital image correlation (DIC) to engineering materials is a useful tool for accurate, noncontact strain measurement. DIC is a 2D, full-field optical analysis technique based on gray-value digital images to measure deformation, vibration and strain a vast variety of materials. In addition, this technique can be applied from very small to large testing areas and can be used for various tests such as tensile, torsion and bending under static or dynamic loading. In this study, DIC results are benchmarked with other nondestructive techniques such as acoustic emission for damage localization and fracture mode evaluation, and IR thermography for stress field visualization and assessment. The combined use of these three nondestructive methods enables the characterization and classification of damage in materials and structures.

  9. Nondestructive Evaluation of Adhesive Bonds via Ultrasonic Phase Measurements

    NASA Technical Reports Server (NTRS)

    Haldren, Harold A.; Perey, Daniel F.; Yost, William T.; Cramer, K. Elliott; Gupta, Mool C.

    2016-01-01

    The use of advanced composites utilizing adhesively bonded structures offers advantages in weight and cost for both the aerospace and automotive industries. Conventional nondestructive evaluation (NDE) has proved unable to reliably detect weak bonds or bond deterioration during service life conditions. A new nondestructive technique for quantitatively measuring adhesive bond strength is demonstrated. In this paper, an ultrasonic technique employing constant frequency pulsed phased-locked loop (CFPPLL) circuitry to monitor the phase response of a bonded structure from change in thermal stress is discussed. Theoretical research suggests that the thermal response of a bonded interface relates well with the quality of the adhesive bond. In particular, the effective stiffness of the adhesive-adherent interface may be extracted from the thermal phase response of the structure. The sensitivity of the CFPPLL instrument allows detection of bond pathologies that have been previously difficult-to-detect. Theoretical results with this ultrasonic technique on single epoxy lap joint (SLJ) specimens are presented and discussed. This technique has the potential to advance the use of adhesive bonds - and by association, advanced composite structures - by providing a reliable method to measure adhesive bond strength, thus permitting more complex, lightweight, and safe designs.

  10. Advanced quantitative magnetic nondestructive evaluation methods - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Barton, J. R.; Kusenberger, F. N.; Beissner, R. E.; Matzkanin, G. A.

    1979-01-01

    The paper reviews the scale of fatigue crack phenomena in relation to the size detection capabilities of nondestructive evaluation methods. An assessment of several features of fatigue in relation to the inspection of ball and roller bearings suggested the use of magnetic methods; magnetic domain phenomena including the interaction of domains and inclusions, and the influence of stress and magnetic field on domains are discussed. Experimental results indicate that simplified calculations can be used to predict many features of these results; the data predicted by analytic models which use finite element computer analysis predictions do not agree with respect to certain features. Experimental analyses obtained on rod-type fatigue specimens which show experimental magnetic measurements in relation to the crack opening displacement and volume and crack depth should provide methods for improved crack characterization in relation to fracture mechanics and life prediction.

  11. Nondestructive techniques for characterizing mechanical properties of structural materials: An overview

    NASA Technical Reports Server (NTRS)

    Vary, A.; Klima, S. J.

    1985-01-01

    An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural materials. The purpose is to review NDE techniques that go beyond the usual emphasis on flaw detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor entrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts.

  12. Evaluation of macrozone dimensions by ultrasound and EBSD techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, Andre, E-mail: Andre.Moreau@cnrc-nrc.gc.ca; Toubal, Lotfi; Ecole de technologie superieure, 1100, rue Notre-Dame Ouest, Montreal, QC, Canada H3C 1K3

    2013-01-15

    Titanium alloys are known to have texture heterogeneities, i.e. regions much larger than the grain dimensions, where the local orientation distribution of the grains differs from one region to the next. The electron backscattering diffraction (EBSD) technique is the method of choice to characterize these macro regions, which are called macrozones. Qualitatively, the images obtained by EBSD show that these macrozones may be larger or smaller, elongated or equiaxed. However, often no well-defined boundaries are observed between the macrozones and it is very hard to obtain objective and quantitative estimates of the macrozone dimensions from these data. In the presentmore » work, we present a novel, non-destructive ultrasonic technique that provides objective and quantitative characteristic dimensions of the macrozones. The obtained dimensions are based on the spatial autocorrelation function of fluctuations in the sound velocity. Thus, a pragmatic definition of macrozone dimensions naturally arises from the ultrasonic measurement. This paper has three objectives: 1) to disclose the novel, non-destructive ultrasonic technique to measure macrozone dimensions, 2) to propose a quantitative and objective definition of macrozone dimensions adapted to and arising from the ultrasonic measurement, and which is also applicable to the orientation data obtained by EBSD, and 3) to compare the macrozone dimensions obtained using the two techniques on two samples of the near-alpha titanium alloy IMI834. In addition, it was observed that macrozones may present a semi-periodical arrangement. - Highlights: Black-Right-Pointing-Pointer Discloses a novel, ultrasonic NDT technique to measure macrozone dimensions Black-Right-Pointing-Pointer Proposes a quantitative and objective definition of macrozone dimensions Black-Right-Pointing-Pointer Compares macrozone dimensions obtained using EBSD and ultrasonics on 2 Ti samples Black-Right-Pointing-Pointer Observes that macrozones may have a semi-periodical arrangement.« less

  13. Probing multiscale transport and inhomogeneity in a lithium-ion cells using in-situ neutron methods

    DOE PAGES

    Zhou, Hui; An, Ke; Allu, Srikanth; ...

    2016-01-01

    Here, we demonstrate for the first time the lithiation process in graphitic anodes using insitu neutron radiography in a pouch cell format. The neutron absorption contrast shows a direct correlation between degree of lithiation and the discharge voltage plateau. Furthermore, we provide a semi-quantitative comparison between the observed spatial variations of neutron attenuation line profile across the graphite electrode and the calculated lithium concentration profiles computed under similar electrochemical discharge conditions. In conjunction, in situ neutron diffraction of a similar pouch cell under identical test protocol was carried to obtain information about the local phase changes upon lithiation. Combined in-situmore » radiography and diffraction opens up a powerful nondestructive method to understand the multi-scale nature of lithium transport and degradation in practical lithium-ion cells.« less

  14. Characterization of delamination onset and growth in a composite laminate

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1981-01-01

    The onset and growth of delaminations in unnotched (+ or - 30/+ or - 30/90/90 bar) sub S graphite epoxy laminates is described quantitatively. These laminates, designed to delaminate at the edges under tensile loads, were tested and analyzed. Delamination growth and stiffness loss were monitored nondestructively. Laminate stiffness decreased linearly with delamination size. The strain energy release rate, G, associated with delamination growth, was calculated from two analyses. A critical G for delamination onset was determined, and then was used to predict the onset of delaminations in (+45 sub n/-45 sub n/o sub n/90 sub n) sub s (n=1,2,3) laminates. A delamination resistance curve (R curve) was developed to characterize the observed stable delamination growth under quasi static loading. A power law correlation between G and delamination growth rates in fatigue was established.

  15. Acoustic vibration test detects intermittent electrical discontinuities

    NASA Technical Reports Server (NTRS)

    Grieve, S. M.; Roberts, D. E.

    1970-01-01

    Nondestructive test method detects faulty electrical connections in inaccessible or hidden portions of electronic harness assemblies and connectors. Method employs readily available commercial equipment.

  16. Comparison of nondestructive testing methods for evaluating No. 2 Southern Pine lumber: Part B, modulus of rupture

    Treesearch

    B.Z. Yang; R.D. Seale; R. Shmulsky; J. Dahlen; X. Wang

    2017-01-01

    The identification of strength-reducing characteristics that impact modulus of rupture (MOR) is a key differentiation between lumber grades. Because global design values for MOR are at the fifth percentile level and in-grade lumber can be highly variable, it is important that nondestructive evaluation technology be used to better discern the potential wood strength. In...

  17. Liquid Crystals for Nondestructive Evaluation

    DTIC Science & Technology

    1978-09-01

    Information Analysis Center (NTIAC), Southwest Resarc Istiut. 620Culebra Road, San Antonio, Texas 78254. NTIAC is a full service information analy-AlI sis...document. or parns thereof, may not be reproduced in ay form without witnpr mission of the Nondestructive Testing Information Analysis Center. J...NUMBER OF PAGES Reserch ente 15a40__Alexandria, VYA 22314 014. MONITORING AGENCY NAME & ADDRESS 15. SECURITY CLASS. (of thireport) fif different from

  18. Application Of Pulsed Laser Holography To Nondestructive Testing Of Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Fagot, Hubert; Smigielski, Paul; Arnaud, Jean-Louis

    1983-03-01

    Subsequently to laboratory tests, experiments were conducted on an aircraft undergoing maintenance in order to assess the possible uses of holographic interferometry for non-destructive testing of large aircraft structures. A double ruby laser was used delivering two pulses with a duration of 20 ns each. The two pulses are separated by an arbitrary time interval At which is determined as a function of both the amplitude and frequency of the surface displacement. Shocks of the order of 100 mJ cause the structure under investigation to vibrate, the time interval At thereby ranging from 10 to 100 ps for a delay of a few ms after shock initiation. The method used is relatively insensitive to environmental disturbances. Although the laser delivers pulses of light of less than 100 mJ in energy, it is possible to visualize a field of 0.5 x1 m. Some results will be reported which have been obtained at the lower surface of an aerofoil, on a wheel well and on an air-brake. Finally a brief review will be made on the improvements envisaged on both the laser and the recording method in order to obtain an operational system for holographic non-destructive testing.

  19. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts.

    PubMed

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-14

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO₂-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car's base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  20. Acousto-Optic Tunable Filter Spectroscopic Instrumentation for Quantitative Near-Ir Analysis of Organic Materials.

    NASA Astrophysics Data System (ADS)

    Eilert, Arnold James

    1995-01-01

    The utility of near-IR spectroscopy for routine quantitative analyses of a wide variety of compositional, chemical, or physical parameters of organic materials is well understood. It can be used for relatively fast and inexpensive non-destructive bulk material analysis before, during, and after processing. It has been demonstrated as being a particularly useful technique for numerous analytical applications in cereal (food and feed) science and industry. Further fulfillment of the potential of near-IR spectroscopic analysis, both in the process and laboratory environment, is reliant upon the development of instrumentation that is capable of meeting the challenges of increasingly difficult applications. One approach to the development of near-IR spectroscopic instrumentation that holds a great deal of promise is acousto-optic tunable filter (AOTF) technology. A combination of attributes offered by AOTF spectrometry, including speed, optical throughput, wavelength reproducibility, ruggedness (no -moving-parts operation) and flexibility, make it particularly desirable for numerous applications. A series of prototype (research model) acousto -optic tunable filter instruments were developed and tested in order to investigate the feasibility of the technology for quantitative near-IR spectrometry. Development included design, component procurement, assembly and/or configuration of the optical and electronic subsystems of which each functional spectrometer arrangement was comprised, as well as computer interfacing and acquisition/control software development. Investigation of this technology involved an evolution of several operational spectrometer systems, each of which offered improvements over its predecessor. Appropriate testing was conducted at various stages of development. Demonstrations of the potential applicability of our AOTF spectrometer to quantitative process monitoring or laboratory analysis of numerous organic substances, including food materials, were performed. Lipid determination in foods by spectroscopic analysis of a solvent used after cold batch extraction and simulated supercritical fluid extraction monitoring were among the applications tested. The ultimate performance specifications of our instrument included full-range wavelength coverage from 1250 to 2400 nm (with random, segmented range, or continuous range wavelength access capability), real -time quantitative analysis rates in excess of 150 determinations per second, and full range (2 nm increment) scanning speeds of 200 milliseconds.

  1. Infrared non-destructive evaluation method and apparatus

    DOEpatents

    Baleine, Erwan; Erwan, James F; Lee, Ching-Pang; Stinelli, Stephanie

    2014-10-21

    A method of nondestructive evaluation and related system. The method includes arranging a test piece (14) having an internal passage (18) and an external surface (15) and a thermal calibrator (12) within a field of view (42) of an infrared sensor (44); generating a flow (16) of fluid characterized by a fluid temperature; exposing the test piece internal passage (18) and the thermal calibrator (12) to fluid from the flow (16); capturing infrared emission information of the test piece external surface (15) and of the thermal calibrator (12) simultaneously using the infrared sensor (44), wherein the test piece infrared emission information includes emission intensity information, and wherein the thermal calibrator infrared emission information includes a reference emission intensity associated with the fluid temperature; and normalizing the test piece emission intensity information against the reference emission intensity.

  2. Nondestructive detection and measurement of hydrogen embrittlement

    DOEpatents

    Alex, Franklin; Byrne, Joseph Gerald

    1977-01-01

    A nondestructive system and method for the determination of the presence and extent of hydrogen embrittlement in metals, alloys, and other crystalline structures subject thereto. Positron annihilation characteristics of the positron-electron annihilation within the tested material provide unique energy distribution curves for each type of material tested at each respective stage of hydrogen embrittlement. Gamma radiation resulting from such annihilation events is detected and statistically summarized by appropriate instrumentation to reveal the variations of electron activity within the tested material caused by hydrogen embrittlement therein. Such data from controlled tests provides a direct indication of the relative stages of hydrogen embrittlement in the form of unique energy distribution curves which may be utilized as calibration curves for future comparison with field tests to give on-site indication of progressive stages of hydrogen embrittlement.

  3. Nonintrusive tools to detect salts contamination in masonry: case study of Fontaine-Chaalis church

    NASA Astrophysics Data System (ADS)

    Giovannacci, David; Brissaud, Didier; Mertz, Jean-Didier; Mouhoubi, Kamel; Bodnar, Jean-Luc

    2017-07-01

    Such developments come from conservation experts in the community of cultural heritage - encompassing artworks, museum artifacts or historical monuments - for less intrusive and non-destructive tools to gain information about the subject. Increasingly the demand is for information regarding internal structures and indications of life histories and behaviors of an object. As it is well known, the deterioration due to the capillary rise of water through the walls is a very widespread problem. In this paper, a study of Stimulated Infrared thermography and Evanescent-Field Dielectrometry was applied to a non-destructive mapping, in situ, and in a semi-quantitative way the distribution of water, salt and the structural deterioration induced in a wall of the 13th century of the abbey's church of Chaalis. Complementarity of the both techniques will be underlined. The Stimulated Infra-Red Thermography (SIRT) is a contact free technique and allows the detection of plaster layers delamination of masonry. Evanescent-Field Dielectrometry (EFD) is a recent diagnostic method based on dielectric spectroscopy at microwave frequency. The measuring instrument is a portable resonant microwave device for mapping the water content and salinity on flat surface up to a depth of 2-3 cm in real time, in a non-destructive way. The method detects the water content and salt concentration in frescoes and walls by estimating the dielectric properties of tested porous materials that is viewed as a "binary" dielectric mixture consisting of bulk material and water, by the contrast between the dielectric constant of a dry material and water. According to the resolution of the optics, the SIRT has a less lateral resolution and more limited in depth, but it is easy to implement and can be used on-site, like in scaffolding conditions. Moreover, this technique gives an overview at a larger scale (metric) than EFD (centimetric).

  4. Through the looking glass: The future for NDE?

    NASA Astrophysics Data System (ADS)

    Bond, Leonard J.

    2014-02-01

    Nondestructive testing (NDT) is a mature industry, with global equipment sales fast moving towards 2B. per year. The use of conventional NDT will grow in developing countries and in developed countries the challenges will include those associated with maintaining aging infrastructure. For some systems the future will move to structural health monitoring (SHM) and for others into integration of online measurements in manufacturing. Nondestructive Evaluation (NDE) is a multi-disciplinary area of endeavor that has its origins in materials science and NDT. It seeks to provide an adequate science base for NDT to become a quantitative science. It was seen to be necessary to better detect, size and type defects, improve the reliability of inspection, and probability of detection (POD). There is particular interest in estimating the potential defects could have on performance or potential for loss of structural integrity, under various loading or stressor conditions, and ultimately implement risk-based reliability assessments. NDE must be seen more as a part of the wide field of engineering, as an interdisciplinary endeavor, that brings together the expertise of materials science and metrology, together with the underlying physics for inspection methods, as well as statistics, computers, robotics and software. The adoption of advanced manufacturing, will require new metrology tools and methods to provide data for assessing new materials including powder metals, as used in additive manufacturing, and various composites. The lessons from the past proceedings of this conference series include that the problems faced today are harder than was expected during the first decade of quantitative NDE research. Even with new types of transducers and much improved A/D and powerful computers new approaches and more basic measurement physics being understood, new insights are needed to provide the data needed to solve many real-world NDE problems, to understand and measure early degradation and to give the required data for remaining safe life or prognostic prediction.

  5. Non destructive neutron diffraction measurements of cavities, inhomogeneities, and residual strain in bronzes of Ghiberti's relief from the Gates of Paradise

    NASA Astrophysics Data System (ADS)

    Festa, G.; Senesi, R.; Alessandroni, M.; Andreani, C.; Vitali, G.; Porcinai, S.; Giusti, A. M.; Materna, T.; Paradowska, A. M.

    2011-03-01

    Quantitative neutron studies of cultural heritage objects provide access to microscopic, mesoscopic, and macroscopic structures in a nondestructive manner. In this paper we present a neutron diffraction investigation of a Ghiberti Renaissance gilded bronze relief devoted to the measurement of cavities and inhomogeneities in the bulk of the sample, along with the bulk phase composition and residual strain distribution. The quantitative measurements allowed the determination of the re-melting parts extension, as well as improving current knowledge about the manufacturing process. The study provides significant and unique information to conservators and restorators about the history of the relief.

  6. Non-destructive testing of concrete.

    DOT National Transportation Integrated Search

    1979-11-01

    This research project was initiated to evaluate the performance of an ultrasonic testing device device in predicting compressive strengths from tests performed on samples of fresh concrete. : The initial phase of this study involved laboratory perora...

  7. Investigation of Carbon Fiber Architecture in Braided Composites Using X-Ray CT Inspection

    NASA Technical Reports Server (NTRS)

    Rhoads, Daniel J.; Miller, Sandi G.; Roberts, Gary D.; Rauser, Richard W.; Golovaty, Dmitry; Wilber, J. Patrick; Espanol, Malena I.

    2017-01-01

    During the fabrication of braided carbon fiber composite materials, process variations occur which affect the fiber architecture. Quantitative measurements of local and global fiber architecture variations are needed to determine the potential effect of process variations on mechanical properties of the cured composite. Although non-destructive inspection via X-ray CT imaging is a promising approach, difficulties in quantitative analysis of the data arise due to the similar densities of the material constituents. In an effort to gain more quantitative information about features related to fiber architecture, methods have been explored to improve the details that can be captured by X-ray CT imaging. Metal-coated fibers and thin veils are used as inserts to extract detailed information about fiber orientations and inter-ply behavior from X-ray CT images.

  8. NON-DESTRUCTIVE METHOD AND MEANS FOR FLAW DETECTION

    DOEpatents

    Hochschild, R.

    1959-03-10

    BS>An improved method is presented for the nondestructive detection of flaws in olectrictilly conductivc articles using magnetic field. According to thc method a homogoneous mignetic field is established in the test article;it right angle" to the artyicle. A probe is aligned with its axis transverse to the translates so hat th4 probe scans the surface of the test article while the axis of the robe is transverse to the direction of translation of the article. In this manner any output current obtained in thc probe is an indication of the size and location of a flaw in the article under test, with a miiiimum of signal pick- up in the probe from the established magnetic field.

  9. Materials and Nondestructive Evaluation Laboratoriers: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Schaschl, Leslie

    2011-01-01

    The Materials and Nondestructive Evaluation Laboratory process, milestones and inputs are unknowns to first-time users. The Materials and Nondestructive Evaluation Laboratory Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware developers. It is intended to assist their project engineering personnel in materials analysis planning and execution. Material covered includes a roadmap of the analysis process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define scope of analysis, cost, and schedule are included as an appendix to the guide.

  10. Using the World-Wide Web to Facilitate Communications of Non-Destructive Evaluation

    NASA Technical Reports Server (NTRS)

    McBurney, Sean

    1995-01-01

    The high reliability required for Aeronautical components is a major reason for extensive Nondestructive Testing and Evaluation. Here at Langley Research Center (LaRC), there are highly trained and certified personal to conduct such testing to prevent hazards from occurring in the workplace and on the research projects for the National Aeronautics and Space Administration (NASA). The purpose of my studies was to develop a communication source to educate others of the services and equipment offered here. This was accomplished by creating documents that are accessible to all in the industry via the World Wide Web.

  11. KSC-2014-1933

    NASA Image and Video Library

    2014-04-02

    CAPE CANAVERAL, Fla. – Tony Corak, manager of nondestructive testing services for PaR Systems Inc., speaks during an Open House event at Hangar N at Cape Canaveral Air Force Station in Florida, to celebrate the one-year anniversary of a partnership with NASA Kennedy Space Center. Under a 15-year lease agreement, PaR Systems is utilizing Hangar N and its unique nondestructive testing equipment. The partnership agreement was established by Kennedy's Center Planning and Development Directorate. The agreement is just one example of the types of partnerships that Kennedy is seeking to create a multi-user spaceport. Photo credit: NASA/Cory Huston

  12. Laser-Compton photon radiography for nondestructive test of bulk materials

    NASA Astrophysics Data System (ADS)

    Toyokawa, Hiroyuki; Ohgaki, Hideaki; Kudo, Katshuhisa; Takeda, Naoto; Mikado, Tomohisa; Yamada, Kawakatsu

    2001-12-01

    Experimental results of transmission photon radiography of bulk materials using the laser-Compton photon beam in the energy range of 2-20 MeV are given. The purpose of this work is to demonstrate the effectiveness and to survey a potential need and a technical limit of the present method for industrial application, such as nondestructive test of bulk materials. Several radiographs of metals, ceramics, and concrete were measured with the present method. Position resolution of the system was measured with using 10 MeV photon beam and slit. It was less than 1 mm.

  13. 75 FR 19665 - Final Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... processes, including welding, heat treating, and nondestructive testing, are controlled and accomplished by... that when stressed under operating, maintenance, testing, and postulated accident conditions (1) the...

  14. Comparison of Nondestructive Testing Methods for Evaluating No. 2 Southern Pine Lumber: Part A, Modulus of Elasticity

    Treesearch

    B.Z. Yang; R.D. Seale; R. Shmulsky; J. Dahlen; Xiping Wang

    2015-01-01

    Modulus of elasticity (MOE, or E) is one of the main quality indicators in structural lumber stress grading systems. Due to a relatively high amount of variability in contemporary sawn lumber, it is important that nondestructive evaluation technology be utilized to better discern high-E-value pieces from low-E-value pieces. The research described in this study is from...

  15. FRET sensor-based quantification of intracellular trehalose in mammalian cells.

    PubMed

    Kikuta, Shingo; Hou, Bi-Huei; Sato, Ryoichi; Frommer, Wolf B; Kikawada, Takahiro

    2016-01-01

    Trehalose acts as a stress protectant and an autophagy inducer in mammalian cells. The molecular mechanisms of action remain obscure because intracellular trehalose at micromolar level is difficult to quantitate. Here, we show a novel trehalose monitoring technology based on FRET. FLIP-suc90μ∆1Venus sensor expressed in mammalian cells enables to quickly and non-destructively detect an infinitesimal amount of intracellular trehalose.

  16. The application of acoustic emission technique to fatigue crack measurement. [in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Crews, J. H., Jr.

    1974-01-01

    The applicability of acoustic emission technique to measure fatigue cracks in aluminum alloy specimens was investigated. There are several variables, such as the metallurgical and the physical treatment of the specimen, that can affect the level of acoustic activity of a fatigue specimen. It is therefore recommended that the acoustic emission technique be supplemented by other nondestructive evaluation methods to obtain quantitative data on crack growth.

  17. Study on evaluation of corrosion condition of reinforcing bar embedded concrete using infrared thermal imaging camera

    NASA Astrophysics Data System (ADS)

    Ruiko, Watanabe; Toshiaki, Mizobuchi

    2017-04-01

    Rapid aging of many concrete structures, which have been developed during rapid economic growth period in Japan, has become a serious problem for us these days. And thus, there is an urgent need to prolong their service life expectancies. For this purpose, the deterioration of reinforcing bars in the concrete structures should be detected quickly and correctly at the early stages. Nevertheless, conventional testing methods such as destructive and nondestructive testing have disadvantages: partial damages on concrete structures; difficulty with quantitative evaluation, etc. Many preceding studies have examined to estimate the deterioration of reinforcing bars based on the temperature of the concrete specimen surfaces. According to those papers, the differences in corrosion degree of reinforcing bars have a certain effect on the temperature of concrete specimen surfaces. In this study, firstly, the quantitative evaluation of the corrosion degree was conducted with 3D scanner which could measure the volume, coverage area and cross-sectional area. Secondly, the surface of the concrete specimen was cooled down with liquid nitrogen, and thirdly, thermographic change was observed up until the air temperature. Finally, the surface of the concrete specimen was detected clearly by the thermal images. As a result, this study shows that the corrosion thickness tends to get bigger, following the uprising temperature of the concrete specimen surfaces. The same kind of tendency can be observed by the thermal images, too.

  18. White-Nose Syndrome Disease Severity and a Comparison of Diagnostic Methods.

    PubMed

    McGuire, Liam P; Turner, James M; Warnecke, Lisa; McGregor, Glenna; Bollinger, Trent K; Misra, Vikram; Foster, Jeffrey T; Frick, Winifred F; Kilpatrick, A Marm; Willis, Craig K R

    2016-03-01

    White-nose syndrome is caused by the fungus Pseudogymnoascus destructans and has killed millions of hibernating bats in North America but the pathophysiology of the disease remains poorly understood. Our objectives were to (1) assess non-destructive diagnostic methods for P. destructans infection compared to histopathology, the current gold-standard, and (2) to evaluate potential metrics of disease severity. We used data from three captive inoculation experiments involving 181 little brown bats (Myotis lucifugus) to compare histopathology, quantitative PCR (qPCR), and ultraviolet fluorescence as diagnostic methods of P. destructans infection. To assess disease severity, we considered two histology metrics (wing area with fungal hyphae, area of dermal necrosis), P. destructans fungal load (qPCR), ultraviolet fluorescence, and blood chemistry (hematocrit, sodium, glucose, pCO2, and bicarbonate). Quantitative PCR was most effective for early detection of P. destructans, while all three methods were comparable in severe infections. Correlations among hyphae and necrosis scores, qPCR, ultraviolet fluorescence, blood chemistry, and hibernation duration indicate a multi-stage pattern of disease. Disruptions of homeostasis occurred rapidly in late hibernation. Our results provide valuable information about the use of non-destructive techniques for monitoring, and provide novel insight into the pathophysiology of white-nose syndrome, with implications for developing and implementing potential mitigation strategies.

  19. Continued monitoring of instrumented pavement in Ohio

    DOT National Transportation Integrated Search

    2003-12-01

    Performance and environmental data continued to be monitored throughout this study on the Ohio SHRP Test Road. : Response testing included three new series of controlled vehicle tests and two sets of nondestructive tests. Cracking in two : SPS-2 sect...

  20. Continued monitoring of instrumented pavement in Ohio.

    DOT National Transportation Integrated Search

    2002-12-01

    Performance and environmental data continued to be monitored throughout this study on the Ohio SHRP Test Road. Response testing included three new series of controlled vehicle tests and two sets of nondestructive tests. Cracking in two SPS-2 sections...

  1. Materials and processes laboratory composite materials characterization task, part 1. Damage tolerance

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Tucker, D. S.; Patterson, W. J.; Franklin, S. W.; Gordon, G. H.; Hart, L.; Hodge, A. J.; Lance, D. G.; Russel, S. S.

    1991-01-01

    A test run was performed on IM6/3501-6 carbon-epoxy in which the material was processed, machined into specimens, and tested for damage tolerance capabilities. Nondestructive test data played a major role in this element of composite characterization. A time chart was produced showing the time the composite material spent within each Branch or Division in order to identify those areas which produce a long turnaround time. Instrumented drop weight testing was performed on the specimens with nondestructive evaluation being performed before and after the impacts. Destructive testing in the form of cross-sectional photomicrography and compression-after-impact testing were used. Results show that the processing and machining steps needed to be performed more rapidly if data on composite material is to be collected within a reasonable timeframe. The results of the damage tolerance testing showed that IM6/3501-6 is a brittle material that is very susceptible to impact damage.

  2. Refractory Metal Heat Pipe Life Test - Test Plan and Standard Operating Procedures

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Reid, R. S.

    2010-01-01

    Refractory metal heat pipes developed during this project shall be subjected to various operating conditions to evaluate life-limiting corrosion factors. To accomplish this objective, various parameters shall be investigated, including the effect of temperature and mass fluence on long-term corrosion rate. The test series will begin with a performance test of one module to evaluate its performance and to establish the temperature and power settings for the remaining modules. The performance test will be followed by round-the-clock testing of 16 heat pipes. All heat pipes shall be nondestructively inspected at 6-month intervals. At longer intervals, specific modules will be destructively evaluated. Both the nondestructive and destructive evaluations shall be coordinated with Los Alamos National Laboratory. During the processing, setup, and testing of the heat pipes, standard operating procedures shall be developed. Initial procedures are listed here and, as hardware is developed, will be updated, incorporating findings and lessons learned.

  3. New International Program to Asses the Reliability of Emerging Nondestructive Techniques (PARENT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokofiev, Iouri; Cumblidge, Stephen E.; Csontos, Aladar A.

    2013-01-25

    The Nuclear Regulatory Commission (NRC) established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) to follow on from the successful Program for the Inspection of Nickel alloy Components (PINC). The goal of the PARENT is to conduct a confirmatory assessment of the reliability of nondestructive evaluation (NDE) techniques for detecting and sizing primary water stress corrosion cracks (PWSCC) and applying the lessons learned from PINC to a series of round-robin tests. These open and blind round-robin tests will comprise a new set of typical pressure boundary components including dissimilar metal welds (DMWs) and bottom-mounted instrumentation penetrations. Openmore » round-robin tests will engage research and industry teams worldwide to investigate and demonstrate the reliability of emerging NDE techniques to detect and size flaws with a wide range of lengths, depths, orientations, and locations. Blind round-robin tests will utilize various testing organizations, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from relatively easy to very difficult for detection and sizing. Blind and open round-robin testing started in late 2011 and early 2012, respectively. This paper will present the work scope with reports on progress, NDE methods evaluated, and project timeline for PARENT.« less

  4. Low-frequency nondestructive analysis of cracks in multilayer structures using a scanning magnetic microscope

    NASA Astrophysics Data System (ADS)

    Adamo, M.; Nappi, C.; Sarnelli, E.

    2010-09-01

    The use of a scanning magnetic microscope (SMM) with a high temperature superconducting quantum interference device (SQUID) for quantitative measurements in eddy current nondestructive analysis (NDA) is presented. The SQUID has been used to detect the weak magnetic field variations around a small defect, close to a structural part generating an intensive magnetic field. The experimental data for a deep crack close to a rivet in a multilayer conducting plate have been taken in a RF-shielded environment and discussed in the light of the theoretical predictions. The results show that eddy current NDA can distinguish subsurface crack signals from wider structural signals, with defects located 10 mm below the surface. Moreover, in order to visualize the structure of the probing current when a circular induction coil is used, the simulation of eddy currents in a thick unflawed conducting plate has been carried out.

  5. A fiber-optic-based imaging system for nondestructive assessment of cell-seeded tissue-engineered scaffolds.

    PubMed

    Hofmann, Matthias C; Whited, Bryce M; Criswell, Tracy; Rylander, Marissa Nichole; Rylander, Christopher G; Soker, Shay; Wang, Ge; Xu, Yong

    2012-09-01

    A major limitation in tissue engineering is the lack of nondestructive methods that assess the development of tissue scaffolds undergoing preconditioning in bioreactors. Due to significant optical scattering in most scaffolding materials, current microscope-based imaging methods cannot "see" through thick and optically opaque tissue constructs. To address this deficiency, we developed a fiber-optic-based imaging method that is capable of nondestructive imaging of fluorescently labeled cells through a thick and optically opaque scaffold, contained in a bioreactor. This imaging modality is based on the local excitation of fluorescent cells, the acquisition of fluorescence through the scaffold, and fluorescence mapping based on the position of the excitation light. To evaluate the capability and accuracy of the imaging system, human endothelial cells (ECs), stably expressing green fluorescent protein (GFP), were imaged through a fibrous scaffold. Without sacrificing the scaffolds, we nondestructively visualized the distribution of GFP-labeled cells through a ~500 μm thick scaffold with cell-level resolution and distinct localization. These results were similar to control images obtained using an optical microscope with direct line-of-sight access. Through a detailed quantitative analysis, we demonstrated that this method achieved a resolution on the order of 20-30 μm, with 10% or less deviation from standard optical microscopy. Furthermore, we demonstrated that the penetration depth of the imaging method exceeded that of confocal laser scanning microscopy by more than a factor of 2. Our imaging method also possesses a working distance (up to 8 cm) much longer than that of a standard confocal microscopy system, which can significantly facilitate bioreactor integration. This method will enable the nondestructive monitoring of ECs seeded on the lumen of a tissue-engineered vascular graft during preconditioning in vitro, as well as for other tissue-engineered constructs in the future.

  6. Evaluation of Electromagnetic Near-Field Measurement Technique as Non-Destructive Testing for Composite Structures

    NASA Astrophysics Data System (ADS)

    Raad Hussein, Alaa; Badri Albarody, Thar M.; Megat Yusoff, Puteri Sri Melor Bt

    2018-05-01

    Nowadays there is no viable non-destructive method that could detect flaws in complex composite products. Such a method could provide unique tools to allow engineers to minimize time consumption and cost during the evaluation of various product parameters without disturbing production. The latest research and development on propagation waves introduce micro, radio and millimetre waves as new potential non-destructive test methods for evaluation of mechanical flaws and prediction of failure in a product during production. This paper focuses on recent developments, usage, classification of electromagnetic waves under the range of radio frequency, millimetre and micro-waves. In addition, this paper reviews the application of propagation wave and proposed a new health monitoring technique based on Doppler Effect for vibration measurement in complex composite structures. Doppler Effect is influenced by dynamic behaviour of the composite structures and both are effect by flaws occurred inside the structure. Composite manufacturers, especially Aerospace industry are demanding these methods comprehensively inspect and evaluate the damages and defects in their products.

  7. Holographic nondestructive tests performed on composite samples of ceramic-epoxy-fiberglass sandwich structure

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.; Liu, H. K.

    1974-01-01

    When a hologram storing more than one wave is illuminated with coherent light, the reconstructed wave fronts interfere with each other or with any other phase-related wave front derived from the illuminating source. This multiple wave front comparison is called holographic interferometry, and its application is called holographic nondestructive testing (HNDT). The theoretical aspects of HNDT techniques and the sensitivity of the holographic system to the geometrical placement of the optical components are briefly discussed. A unique HNDT system which is mobile and possesses variable sensitivity to stress amplitude is discribed, the experimental evidence of the application of this system to the testing of the hidden debonds in a ceramic-epoxy-fiberglass structure used for sample testing of the radome of the Pershing missile system is presented.

  8. Comparison of normal and phase stepping shearographic NDE

    NASA Astrophysics Data System (ADS)

    Andhee, A.; Gryzagoridis, J.; Findeis, D.

    2005-05-01

    The paper presents results of non-destructive testing of composite main rotor helicopter blade calibration specimens using the laser based optical NDE technique known as Shearography. The tests were performed initially using the already well established near real-time non-destructive technique of Shearography, with the specimens perturbed during testing for a few seconds using the hot air from a domestic hair dryer. Subsequent to modification of the shearing device utilized in the shearographic setup, phase stepping of one of the sheared images to be captured by the CCD camera was enabled and identical tests were performed on the composite main rotor helicopter blade specimens. Considerable enhancement of the images manifesting or depicting the defects on the specimens is noted suggesting that phase stepping is a desirable enhancement technique to the traditional Shearographic setup.

  9. Research Performed within the Non-Destructive Evaluation Team at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Burns, Erin A.

    2004-01-01

    Non-destructive testing is essential in many fields of manufacturing and research in order to perform reliable examination of potentially damaged materials and parts without destroying the inherent structure of the materials. Thus, the Non-Destructive Evaluation (NDE) Team at NASA Glenn Research Center partakes in various projects to improve materials testing equipment as well as analyze materials, material defects, and material deficiencies. Due to the array of projects within the NDE Team at this time, five research aims were supplemental to some current projects. A literature survey of "DE and testing methodologies as related to rocks was performed. Also, Mars Expedition Rover technology was assessed to understand the requirements for instrumentation in harsh space environments (e.g. temperature). Potential instrumentation and technologies were also considered and documented. The literature survey provided background and potential sources for a proposal to acquire funding for ultrasonic instrumentation on board a future Mars expedition. The laboratory uses a Santec Systems AcousticScope AS200 acoustography system. Labview code was written within the current program in order to improve the current performance of the acoustography system. A sample of Reinforced Carbon/Carbon (RCC) material from the leading edge of the space shuttle underwent various non-destructive tests (guided wave scanning, thermography, computed tomography, real time x-ray, etc.) in order to characterize its structure and examine possible defects. Guided wave scan data of a ceramic matrix composite (CMC) panel was reanalyzed utilizing image correlations and signal processing variables. Additional guided wave scans and thermography were also performed on the CMC panel. These reevaluated data and images will be used in future presentations and publications. An additional axis for the guided wave scanner was designed, constructed, and implemented. This additional axis allowed incremental spacing of the previously fixed transducers for ultrasonic velocity measurements.

  10. Nondestructive Redox Quantification Reveals Glassmaking of Rare French Gothic Stained Glasses

    PubMed Central

    2017-01-01

    The sophisticated colors of medieval glasses arise from their transition metal (TM) impurities and capture information about ancient glassmaking techniques. Beyond the glass chemical composition, the TM redox is also a key factor in the glass color, but its quantification without any sampling is a challenge. We report a combination of nondestructive and noninvasive quantitative analyses of the chemical composition by particle-induced X-ray emission–particle-induced γ-ray emission mappings and of the color and TM element speciation by optical absorption spectroscopy performed on a red-blue-purple striped glass from the stained glass windows of the Sainte-Chapelle in Paris, France, during its restoration. These particular glass pieces must have been produced as a single shot, which guarantees that the chemical variations reflect the recipe in use in a specific medieval workshop. The quantitative elemental mappings demonstrate that the colored glass parts are derived from the same base glass, to which TMs were deliberately added. Optical absorption spectra reveal the origin of the colors: blue from CoII, red from copper nanoparticles, and purple from MnIII. Furthermore, the derivation of the quantitative redox state of each TM in each color shows that the contents of Fe, Cu, and Mn were adjusted to ensure a reducing glass matrix in the red stripe or a metastable overoxidized glass in the purple stripe. We infer that the agility of the medieval glassmaker allowed him to master the redox kinetics in the glass by rapid shaping and cooling to obtain a snapshot of the thermodynamically unstable glass colors. PMID:28494150

  11. Medicine, material science and security: the versatility of the coded-aperture approach.

    PubMed

    Munro, P R T; Endrizzi, M; Diemoz, P C; Hagen, C K; Szafraniec, M B; Millard, T P; Zapata, C E; Speller, R D; Olivo, A

    2014-03-06

    The principal limitation to the widespread deployment of X-ray phase imaging in a variety of applications is probably versatility. A versatile X-ray phase imaging system must be able to work with polychromatic and non-microfocus sources (for example, those currently used in medical and industrial applications), have physical dimensions sufficiently large to accommodate samples of interest, be insensitive to environmental disturbances (such as vibrations and temperature variations), require only simple system set-up and maintenance, and be able to perform quantitative imaging. The coded-aperture technique, based upon the edge illumination principle, satisfies each of these criteria. To date, we have applied the technique to mammography, materials science, small-animal imaging, non-destructive testing and security. In this paper, we outline the theory of coded-aperture phase imaging and show an example of how the technique may be applied to imaging samples with a practically important scale.

  12. Non-destructive characterization of corroded glass surfaces by spectroscopic ellipsometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspar, Tiffany C.; Reiser, Joelle T.; Ryan, Joseph V.

    Characterization of the alteration layers that form on glass surfaces during corrosion processes provides valuable information on both the mechanisms and rate of glass alteration. In recent years, state-of-the-art materials and surface characterization techniques have been employed to study various aspects of the alteration layers that result from corrosion. In most cases, these techniques are destructive and thus can only be employed at the end of the corrosion experiment. We show that the alteration layers can be investigated by non-destructive spectroscopic ellipsometry (SE), which provides pertinent information on alteration layer thickness, morphology, and, through correlation of the index of refraction,more » porosity. SE measurements of silicate glass coupons altered in aqueous solutions of pH 3, 5, 7, 9, and 11 at 90 °C for 7 days are compared to cross-sectional secondary electron microscopy images. In most cases, quantitative agreement of the alteration layer thickness is obtained. The fractional porosity calculated from the index of refraction is lower than the porosity calculated from elemental analysis of the aqueous solutions, indicating that the alteration layer has compacted during corrosion or the subsequent supercritical CO 2 drying process. Our results confirm the utility of performing non-destructive SE measurements on corroded glass surfaces.« less

  13. Non-destructive characterization of corroded glass surfaces by spectroscopic ellipsometry

    DOE PAGES

    Kaspar, Tiffany C.; Reiser, Joelle T.; Ryan, Joseph V.; ...

    2017-11-03

    Characterization of the alteration layers that form on glass surfaces during corrosion processes provides valuable information on both the mechanisms and rate of glass alteration. In recent years, state-of-the-art materials and surface characterization techniques have been employed to study various aspects of the alteration layers that result from corrosion. In most cases, these techniques are destructive and thus can only be employed at the end of the corrosion experiment. We show that the alteration layers can be investigated by non-destructive spectroscopic ellipsometry (SE), which provides pertinent information on alteration layer thickness, morphology, and, through correlation of the index of refraction,more » porosity. SE measurements of silicate glass coupons altered in aqueous solutions of pH 3, 5, 7, 9, and 11 at 90 °C for 7 days are compared to cross-sectional secondary electron microscopy images. In most cases, quantitative agreement of the alteration layer thickness is obtained. The fractional porosity calculated from the index of refraction is lower than the porosity calculated from elemental analysis of the aqueous solutions, indicating that the alteration layer has compacted during corrosion or the subsequent supercritical CO 2 drying process. Our results confirm the utility of performing non-destructive SE measurements on corroded glass surfaces.« less

  14. Application of Non-destructive Methods of Stress-strain State at Hazardous Production Facilities

    NASA Astrophysics Data System (ADS)

    Shram, V.; Kravtsova, Ye; Selsky, A.; Bezborodov, Yu; Lysyannikova, N.; Lysyannikov, A.

    2016-06-01

    The paper deals with the sources of accidents in distillation columns, on the basis of which the most dangerous defects are detected. The analysis of the currently existing methods of non-destructive testing of the stress-strain state is performed. It is proposed to apply strain and acoustic emission techniques to continuously monitor dangerous objects, which helps prevent the possibility of accidents, as well as reduce the work.

  15. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    PubMed Central

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-01

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts. PMID:28788464

  16. Spectroscopic Measurements of L X-rays with a TES Microcalorimeter for a Non-destructive Assay of Transuranium Elements

    NASA Astrophysics Data System (ADS)

    Nakamura, Keisuke; Morishita, Yuki; Takasaki, Koji; Maehata, Keisuke; Sugimoto, Tetsuya; Kiguchi, Yu; Iyomoto, Naoko; Mitsuda, Kazuhisa

    2018-05-01

    Spectroscopic measurement of the L X-rays emitted from transuranium elements is one of the most useful techniques for the non-destructive assays of nuclear materials. In this study, we fabricated a transition-edge-sensor (TES) microcalorimeter using a 5-μm-thick Au absorber and tested its ability to measure the L X-rays emitted from two transuranium elements, Np-237 and Cm-244 sources. The microcalorimeter was found to successfully measure the L X-rays with an energy resolution (full width at half maximum) below 70 eV. These results confirm that L X-rays can be identified using the proposed TES microcalorimeter to enable non-destructive assays of transuranium elements.

  17. Multi-Wave and Hybrid Imaging Techniques: A New Direction for Nondestructive Testing and Structural Health Monitoring

    PubMed Central

    Cheng, Yuhua; Deng, Yiming; Cao, Jing; Xiong, Xin; Bai, Libing; Li, Zhaojun

    2013-01-01

    In this article, the state-of-the-art multi-wave and hybrid imaging techniques in the field of nondestructive evaluation and structural health monitoring were comprehensively reviewed. A new direction for assessment and health monitoring of various structures by capitalizing the advantages of those imaging methods was discussed. Although sharing similar system configurations, the imaging physics and principles of multi-wave phenomena and hybrid imaging methods are inherently different. After a brief introduction of nondestructive evaluation (NDE), structure health monitoring (SHM) and their related challenges, several recent advances that have significantly extended imaging methods from laboratory development into practical applications were summarized, followed by conclusions and discussion on future directions. PMID:24287536

  18. Generic Algorithms for Estimating Foliar Pigment Content

    NASA Astrophysics Data System (ADS)

    Gitelson, Anatoly; Solovchenko, Alexei

    2017-09-01

    Foliar pigment contents and composition are main factors governing absorbed photosynthetically active radiation, photosynthetic activity, and physiological status of vegetation. In this study the performance of nondestructive techniques based on leaf reflectance were tested for estimating chlorophyll (Chl) and anthocyanin (AnC) contents in species with widely variable leaf structure, pigment content, and composition. Only three spectral bands (green, red edge, and near-infrared) are required for nondestructive Chl and AnC estimation with normalized root-mean-square error (NRMSE) below 4.5% and 6.1%, respectively. The algorithms developed are generic, not requiring reparameterization for each species allowing for accurate nondestructive Chl and AnC estimation using simple handheld field/lab instrumentation. They also have potential in interpretation of airborne and satellite data.

  19. Laser ultrasonic evaluation of human dental enamel during remineralization treatment

    PubMed Central

    Wang, Hsiao-Chuan; Fleming, Simon; Lee, Yung-Chun; Swain, Michael; Law, Susan; Xue, Jing

    2011-01-01

    In this work a non-destructive laser ultrasonic technique is used to quantitatively evaluate the progressive change in the elastic response of human dental enamel during a remineralization treatment. The condition of the enamel was measured during two weeks treatment using laser generated and detected surface acoustic waves in sound and demineralized enamel. Analysis of the acoustic velocity dispersion confirms the efficacy, as well as illuminating the progress, of the treatment. PMID:21339879

  20. Proceedings of the ARPA/AFML Review of Progress in Quantitative Nondestructive Evaluation (NDE)

    DTIC Science & Technology

    1977-09-01

    degradation mechanisms. TABLE II. Experimental Methods for Study of Kolsture Effects Part 1: Malattira Dairadatlon Motatura taka up Intarlaalaat ahaar...1) To determine the effects of moisture de- gradation on the mechanical properties of a gra- phlte-epoxy composite under study for use on B-l. 2...a larger degree of reversibility in moisture damage effects . These are early results; further study of these Interesting results are required

  1. The role of laser technology in materials processing and nondestructive testing in the 21st century

    NASA Astrophysics Data System (ADS)

    Sheinberg, B. M.

    Some of the potential applications of laser technology in the 21st century are explored, and the proposed role of this technology in relation to materials processing, nondestructive testing, and quality control are discussed. Examples illustrating the implementation of this techology include the proposed construction of vehicles and platforms in near and deep space, and construction of underwater platforms. The direction in which today's technology should evolve to pursue the achievement of such goals is indicated. Included in the discussion is an evaluation of laser, robotics, and fiber optics technologies with respect to their ability to achieve a synergistic level of operation.

  2. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers remove the overhead crane from the nose cap that was removed from Atlantis. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

    NASA Image and Video Library

    2003-10-29

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers remove the overhead crane from the nose cap that was removed from Atlantis. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

  3. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the nose cap from Atlantis is secured on a shipping pallet. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

    NASA Image and Video Library

    2003-10-29

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the nose cap from Atlantis is secured on a shipping pallet. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

  4. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, packing material is placed over the nose cap that was removed from Atlantis. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

    NASA Image and Video Library

    2003-10-29

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, packing material is placed over the nose cap that was removed from Atlantis. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

  5. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the nose cap from Atlantis is lowered toward a shipping pallet. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

    NASA Image and Video Library

    2003-10-29

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the nose cap from Atlantis is lowered toward a shipping pallet. The reinforced carbon-carbon (RCC) nose cap is being sent to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

  6. Synthesis study of nondestructive testing devices for use in overlay thickness design of flexible pavements

    NASA Astrophysics Data System (ADS)

    Smith, R. E.; Lytton, R. L.

    1984-04-01

    A ready reference for highway engineers who are interested in purchasing nondestructive testing (NDT) equipment for use in designing overlays for flexible pavements was prepared. All commercially available equipment is described. Information includes basic descriptions plus current prices quoted by the manufacturers/distributors. To determine user comments, a questionnaire was sent to nine State agencies, and one Federal agency. The responses to these questionnaires are summarized. Overlay thickness design procedures for flexible pavements are reviewed. Important components related to the use of NDT deflection measuremnts in overlay design are identified and addressed. Summary tables of equipment characteristics and overlay design procedures are presented.

  7. Damage Tolerance Assessment Branch

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2013-01-01

    The Damage Tolerance Assessment Branch evaluates the ability of a structure to perform reliably throughout its service life in the presence of a defect, crack, or other form of damage. Such assessment is fundamental to the use of structural materials and requires an integral blend of materials engineering, fracture testing and analysis, and nondestructive evaluation. The vision of the Branch is to increase the safety of manned space flight by improving the fracture control and the associated nondestructive evaluation processes through development and application of standards, guidelines, advanced test and analytical methods. The Branch also strives to assist and solve non-aerospace related NDE and damage tolerance problems, providing consultation, prototyping and inspection services.

  8. Waste inspection tomography (WIT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardi, R.T.

    1996-12-31

    WIT is a self-sufficient mobile semitrailer for nondestructive evaluation and nondestructive assay of nuclear waste drums using x-ray and gamma-ray tomography. The recently completed Phase I included the design, fabrication, and initial testing of all WIT subsystems installed on-board the trailer. Initial test results include 2 MeV digital radiography, computed tomography, Anger camera imaging, single photon emission computed tomography, gamma-ray spectroscopy, collimated gamma scanning, and active and passive computed tomography using a 1.4 mCi source of {sup 166}Ho. These techniques were initially demonstrated on a 55-gallon phantom drum with 3 simulated waste matrices of combustibles, heterogeneous metals, and cement usingmore » check sources of gamma active isotopes such as {sup 137}Cs and {sup 133}Ba with 9-250 {mu}Ci activities. Waste matrix identification, isotopic identification, and attenuation-corrected gamma activity determination were demonstrated nondestructively and noninvasively in Phase I. Currently ongoing Phase II involves DOE site field test demonstrations at LLNL, RFETS, and INEL with real nuclear waste drums. Current WIT experience includes 55 gallon drums of cement, graphite, sludge, glass, metals, and combustibles. Thus far WIT has inspected drums with 0-20 gms of {sup 239}Pu.« less

  9. Research on Non-Destructive Testing Technology in Conservation Repair Project of Ancestral Temple in Mukden Palace

    NASA Astrophysics Data System (ADS)

    Yang, J.; Fu, M.

    2017-08-01

    Due to the use of wood and other non-permanent materials, traditional Chinese architecture is one of the most fragile constructions in various heritage objects today. With the increasing emphasis on the protection of cultural relics, the repair project of wooden structure has become more and more important. There are various kinds of destructions, which pose a hidden danger to the overall safety of the ancient buildings, caused not only by time and nature, but also by improper repairs in history or nowadays. Today, the use of digital technology is a basic requirement in the conservation of cultural heritage. Detection technology, especially non-destructive testing technology, could provide more accurate records in capturing detailed physical characteristics of structures such as geometric deformation and invisible damage, as well as prevent a man-made destruction in the process of repair project. This paper aims to interpret with a typical example, Ancestral Temple in Mukden Palace, along with a discussion of how to use the non-destructive testing technology with ground penetrating radar, stress wave, resistograph and so on, in addition to find an appropriate protection method in repair project of traditional Chinese wooden architecture.

  10. Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite-martensite dual-phase steel

    NASA Astrophysics Data System (ADS)

    Ghanei, S.; Kashefi, M.; Mazinani, M.

    2014-04-01

    The magnetic properties of ferrite-martensite dual-phase steels were evaluated using eddy current and Barkhausen noise nondestructive testing methods and correlated with their microstructural changes. Several routes were used to produce different microstructures of dual-phase steels. The first route was different heat treatments in γ region to vary the ferrite grain size (from 9.47 to 11.12 in ASTM number), and the second one was variation in intercritical annealing temperatures (from 750 to 890 °C) in order to produce different percentages of martensite in dual-phase microstructure. The results concerning magnetic Barkhausen noise are discussed in terms of height, position and shape of Barkhausen noise profiles, taking into account two main aspects: ferrite grain size, and different percentages of martensite. Then, eddy current testing was used to study the mentioned microstructural changes by detection of impedance variations. The obtained results show that microstructural changes have a noticeable effect on the magnetic properties of dual-phase steels. The results reveal that both magnetic methods have a high potential to be used as a reliable nondestructive tool to detect and monitor microstructural changes occurring during manufacturing of dual-phase steels.

  11. Infrared Spectroscopy as a Versatile Analytical Tool for the Quantitative Determination of Antioxidants in Agricultural Products, Foods and Plants

    PubMed Central

    Cozzolino, Daniel

    2015-01-01

    Spectroscopic methods provide with very useful qualitative and quantitative information about the biochemistry and chemistry of antioxidants. Near infrared (NIR) and mid infrared (MIR) spectroscopy are considered as powerful, fast, accurate and non-destructive analytical tools that can be considered as a replacement of traditional chemical analysis. In recent years, several reports can be found in the literature demonstrating the usefulness of these methods in the analysis of antioxidants in different organic matrices. This article reviews recent applications of infrared (NIR and MIR) spectroscopy in the analysis of antioxidant compounds in a wide range of samples such as agricultural products, foods and plants. PMID:26783838

  12. Optical spectroscopy of ancient paper and textiles

    NASA Astrophysics Data System (ADS)

    Missori, M.

    2016-03-01

    Ancient paper and textiles represent a striking example of optically inhomogenous materials whose optical responses are strongly governed by scattering effects. In order to recover the absorption coefficient from non-invasive and non-destructive reflectance measurements a specific approach based on Kubelka-Munk two-flux theory must be applied. In this way quantitative chemical information, such as chromophores concentration, can be obtained, as well as quantitative spectra of additional substances such as pigments or dyes. Results on a folio of the Codex on the Flight of Birds by Leonardo da Vinci and a linen cloth dated back to 1653 and called the Shroud of Arquata, a copy of the Shroud of Turin, will be presented.

  13. Lack of Penetration in Friction Stir Welds: Effects on Mechanical Properties and NDE Feasibility

    NASA Technical Reports Server (NTRS)

    Kinchen, David G.; Adams, Glynn P.

    2000-01-01

    This presentation reviews the issue of lack of penetration (LOP) in Friction Stir Welding and the feasibility of using non-destructive tests to detect . Friction Stir Welding takes place in the solid phase below the melting point of the materials to be joined. It thus gives the ability to join materials which are difficult to fusion weld, for example 2000 and 7000 aluminium alloys. This process though can result in a lack of penetration, due to an incomplete penetration of the DXZ. This is frequently referred to as a "kissing bond", which requires micro examination to detect. The presentation then discusses the surface crack tension tests. It then reviews the simulated service test and results. It then discusses the feasibility of using non-destructive examination to detect LOP, the forms of test which can be used, and the results the tests.

  14. A commentary on the implementation of Virginia test method number 39 : electrical resistivity testing of waterproof membranes.

    DOT National Transportation Integrated Search

    1976-01-01

    It was concluded that the electrical resistivity test was not ideally suitable as an inspection tool, but was the only currently available nondestructive test for determining the effectiveness of a waterproof membrane system. Considerable judgment an...

  15. Fault determinations in electroexplosive devices by nondestructive techniques

    NASA Technical Reports Server (NTRS)

    Menichelli, V. J.; Rosenthal, L. A.

    1972-01-01

    Several nondestructive test techniques were developed for electroexplosive devices. The bridgewire responds, when pulsed with a safe level current, by generating a characteristic heating curve. The response is indicative of the electrothermal behavior of the bridgewire-explosive interface. Bridgewires which deviate from the characteristic heating curve were dissected and examined to determine the cause of the abnormality. Deliberate faults were fabricated into squibs. The relationship of the specific abnormality and the fault associated with it is demonstrated.

  16. Ultrasonic guided wave for monitoring corrosion of steel bar

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  17. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  18. NDE Techniques Used in PARENT Open Round Robin Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Ryan M.

    2014-11-05

    This is a draft technical letter report for NRC client describing the NDE techniques used in the open testing portion of the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT).

  19. Analytical techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation, containing articles on a number of analytical techniques for quality control engineers and laboratory workers, is presented. Data cover techniques for testing electronic, mechanical, and optical systems, nondestructive testing techniques, and gas analysis techniques.

  20. Vacuum decay container closure integrity leak test method development and validation for a lyophilized product-package system.

    PubMed

    Patel, Jayshree; Mulhall, Brian; Wolf, Heinz; Klohr, Steven; Guazzo, Dana Morton

    2011-01-01

    A leak test performed according to ASTM F2338-09 Standard Test Method for Nondestructive Detection of Leaks in Packages by Vacuum Decay Method was developed and validated for container-closure integrity verification of a lyophilized product in a parenteral vial package system. This nondestructive leak test method is intended for use in manufacturing as an in-process package integrity check, and for testing product stored on stability in lieu of sterility tests. Method development and optimization challenge studies incorporated artificially defective packages representing a range of glass vial wall and sealing surface defects, as well as various elastomeric stopper defects. Method validation required 3 days of random-order replicate testing of a test sample population of negative-control, no-defect packages and positive-control, with-defect packages. Positive-control packages were prepared using vials each with a single hole laser-drilled through the glass vial wall. Hole creation and hole size certification was performed by Lenox Laser. Validation study results successfully demonstrated the vacuum decay leak test method's ability to accurately and reliably detect those packages with laser-drilled holes greater than or equal to approximately 5 μm in nominal diameter. All development and validation studies were performed at Whitehouse Analytical Laboratories in Whitehouse, NJ, under the direction of consultant Dana Guazzo of RxPax, LLC, using a VeriPac 455 Micro Leak Test System by Packaging Technologies & Inspection (Tuckahoe, NY). Bristol Myers Squibb (New Brunswick, NJ) fully subsidized all work. A leak test performed according to ASTM F2338-09 Standard Test Method for Nondestructive Detection of Leaks in Packages by Vacuum Decay Method was developed and validated to detect defects in stoppered vial packages containing lyophilized product for injection. This nondestructive leak test method is intended for use in manufacturing as an in-process package integrity check, and for testing product stored on stability in lieu of sterility tests. Test method validation study results proved the method capable of detecting holes laser-drilled through the glass vial wall greater than or equal to 5 μm in nominal diameter. Total test time is less than 1 min per package. All method development and validation studies were performed at Whitehouse Analytical Laboratories in Whitehouse, NJ, under the direction of consultant Dana Guazzo of RxPax, LLC, using a VeriPac 455 Micro Leak Test System by Packaging Technologies & Inspection (Tuckahoe, NY). Bristol Myers Squibb (New Brunswick, NJ) fully subsidized all work.

  1. Modelling the attenuation in the ATHENA finite elements code for the ultrasonic testing of austenitic stainless steel welds.

    PubMed

    Chassignole, B; Duwig, V; Ploix, M-A; Guy, P; El Guerjouma, R

    2009-12-01

    Multipass welds made in austenitic stainless steel, in the primary circuit of nuclear power plants with pressurized water reactors, are characterized by an anisotropic and heterogeneous structure that disturbs the ultrasonic propagation and makes ultrasonic non-destructive testing difficult. The ATHENA 2D finite element simulation code was developed to help understand the various physical phenomena at play. In this paper, we shall describe the attenuation model implemented in this code to give an account of wave scattering phenomenon through polycrystalline materials. This model is in particular based on the optimization of two tensors that characterize this material on the basis of experimental values of ultrasonic velocities attenuation coefficients. Three experimental configurations, two of which are representative of the industrial welds assessment case, are studied in view of validating the model through comparison with the simulation results. We shall thus provide a quantitative proof that taking into account the attenuation in the ATHENA code dramatically improves the results in terms of the amplitude of the echoes. The association of the code and detailed characterization of a weld's structure constitutes a remarkable breakthrough in the interpretation of the ultrasonic testing on this type of component.

  2. Spatial and temporal variation in efficiency of the Moore egg collector

    USGS Publications Warehouse

    Worthington, Thomas A.; Brewer, Shannon K.; Farless, Nicole

    2013-01-01

    The Moore egg collector (MEC) was developed for quantitative and nondestructive capture of semibuoyant fish eggs. Previous studies have indicated that capture efficiency of the MEC was low and the use of one device did not adequately represent the spatial distribution within the water column of egg surrogates (gellan beads) of pelagic broadcast-spawning cyprinids. The objective of this study was to assess whether use of multiple MECs showed differences in spatial and temporal distribution of bead catches. Capture efficiency of three MECs was tested at four 500-m sites on the South Canadian River, a Great Plains river in Oklahoma. For each trial, approximately 100,000 beads were released and mean capture efficiency was 0.47–2.16%. Kolmogorov–Smirnov tests indicated the spatial distributions of bead catches were different among multiple MECs at three of four sites. Temporal variability in timing of peak catches of gellan beads was also evident between MECs. We concluded that the use of multiple MECs is necessary to properly sample eggs of pelagic broadcast-spawning cyprinids.

  3. Ultrasonic Non-destructive Prediction of Spot Welding Shear Strength

    NASA Astrophysics Data System (ADS)

    Himawan, R.; Haryanto, M.; Subekti, R. M.; Sunaryo, G. R.

    2018-02-01

    To enhance a corrosion resistant of ferritic steel in reactor pressure vessel, stainless steel was used as a cladding. Bonding process between these two steels may result a inhomogenity either sub-clad crack or un-joined part. To ensure the integrity, effective inspection method is needed for this purpose. Therefore, in this study, an experiment of ultrasonic test for inspection of two bonding plate was performed. The objective of this study is to develop an effective method in predicting the shear fracture load of the join. For simplicity, these joined was modelled with two plate of stainless steel with spot welding. Ultrasonic tests were performed using contact method with 5 MHz in frequency and 10 mm in diameter of transducer. Amplitude of reflected wave from intermediate layer was used as a quantitative parameter. A set of experiment results show that shear fracture load has a linear correlation with amplitude of reflected wave. Besides, amplitude of reflected wave also has relation with nugget diameter. It could be concluded that ultrasonic contact method could be applied in predicting a shear fracture load.

  4. Metal Matrix Composites: Fatigue and Fracture Testing. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning techniques and results of testing metal matrix composites for fatigue and fracture. Methods include non-destructive testing techniques, and static and cyclic techniques for assessing compression, tensile, bending, and impact characteristics.

  5. Applying terahertz technology for nondestructive detection of crack initiation in a film-coated layer on a swelling tablet

    PubMed Central

    Momose, Wataru; Yoshino, Hiroyuki; Katakawa, Yoshifumi; Yamashita, Kazunari; Imai, Keiji; Sako, Kazuhiro; Kato, Eiji; Irisawa, Akiyoshi; Yonemochi, Etsuo; Terada, Katsuhide

    2012-01-01

    Here, we describe a nondestructive approach using terahertz wave to detect crack initiation in a film-coated layer on a drug tablet. During scale-up and scale-down of the film coating process, differences in film density and gaps between the film-coated layer and the uncoated tablet were generated due to differences in film coating process parameters, such as the tablet-filling rate in the coating machine, spray pressure, and gas–liquid ratio etc. Tablets using the PEO/PEG formulation were employed as uncoated tablets. We found that heat and humidity caused tablets to swell, thereby breaking the film-coated layer. Using our novel approach with terahertz wave nondestructively detect film surface density (FSD) and interface density differences (IDDs) between the film-coated layer and an uncoated tablet. We also found that a reduced FSD and IDD between the film-coated layer and uncoated tablet increased the risk of crack initiation in the film-coated layer, thereby enabling us to nondestructively predict initiation of cracks in the film-coated layer. Using this method, crack initiation can be nondestructively assessed in swelling tablets after the film coating process without conducting accelerated stability tests, and film coating process parameters during scale-up and scale-down studies can be appropriately established. PMID:25755992

  6. Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities

    NASA Astrophysics Data System (ADS)

    Juengert, Anne; Dugan, Sandra; Homann, Tobias; Mitzscherling, Steffen; Prager, Jens; Pudovikov, Sergey; Schwender, Thomas

    2018-04-01

    Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains that lead, on the one hand, to high sound scattering and, on the other hand, to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts do not propagate linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due to the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the reliability of ultrasonic testing through the correction of the sound field distortion. The unknown inhomogeneity and anisotropy are investigated using a reference indication and the special optimization algorithm. Both reconstruction techniques give quantitative inspection results and allow the defect sizing. They have been compared to conventional ultrasonic testing with techniques that are state of the art for components in nuclear power plants. The improvement will be quantified by the comparison of the probability of detection (POD) of each technique.

  7. Nondestructive testing of Scout rocket motors

    NASA Technical Reports Server (NTRS)

    Oaks, A. E.

    1972-01-01

    The nondestructive tests applied to Scout rocket motors were reviewed and appraised. Analytical techniques were developed to evaluate the capabilities of the radiographic and ultrasonic procedures used. Major problem areas found were the inadequacy of high voltage radiography for detecting unbonds and propellant cracks having narrow widths, the inability to relate the ultrasonic signals received from flat-bottomed holes in standards to those received from real defects and in the general area of the specification of acceptance criteria and how these were to be met. To counter the deficiencies noted, analyses were conducted to the potential utility of radiometric, acoustic, holographic and thermographic techniques for motor and nozzle bond inspection, a new approach to qualifying magnetic particle inspection and the application of acoustic emission analysis to the evaluation of proof and leak test data.

  8. Quantitative Evaluation of Aged AISI 316L Stainless Steel Sensitization to Intergranular Corrosion: Comparison Between Microstructural Electrochemical and Analytical Methods

    NASA Astrophysics Data System (ADS)

    Sidhom, H.; Amadou, T.; Sahlaoui, H.; Braham, C.

    2007-06-01

    The evaluation of the degree of sensitization (DOS) to intergranular corrosion (IGC) of a commercial AISI 316L austenitic stainless steel aged at temperatures ranging from 550 °C to 800 °C during 100 to 80,000 hours was carried out using three different assessment methods. (1) The microstructural method coupled with the Strauss standard test (ASTM A262). This method establishes the kinetics of the precipitation phenomenon under different aging conditions, by transmission electronic microscope (TEM) examination of thin foils and electron diffraction. The subsequent chromium-depleted zones are characterized by X-ray microanalysis using scanning transmission electronic microscope (STEM). The superimposition of microstructural time-temperature-precipitation (TTP) and ASTM A262 time-temperature-sensitization (TTS) diagrams provides the relationship between aged microstructure and IGC. Moreover, by considering the chromium-depleted zone characteristics, sensitization and desensitization criteria could be established. (2) The electrochemical method involving the double loop-electrochemical potentiokinetic reactivation (DL-EPR) test. The operating conditions of this test were initially optimized using the experimental design method on the bases of the reliability, the selectivity, and the reproducibility of test responses for both annealed and sensitized steels. The TTS diagram of the AISI 316L stainless steel was established using this method. This diagram offers a quantitative assessment of the DOS and a possibility to appreciate the time-temperature equivalence of the IGC sensitization and desensitization. (3) The analytical method based on the chromium diffusion models. Using the IGC sensitization and desensitization criteria established by the microstructural method, numerical solving of the chromium diffusion equations leads to a calculated AISI 316L TTS diagram. Comparison of these three methods gives a clear advantage to the nondestructive DL-EPR test when it is used with its optimized operating conditions. This quantitative method is simple to perform; it is fast, reliable, economical, and presents the best ability to detect the lowest DOS to IGC. For these reasons, this method can be considered as a serious candidate for IGC checking of stainless steel components of industrial plants.

  9. Input-output characterization of fiber reinforced composites by P waves

    NASA Technical Reports Server (NTRS)

    Renneisen, John D.; Williams, James H., Jr.

    1990-01-01

    Input-output characterization of fiber composites is studied theoretically by tracing P waves in the media. A new path motion to aid in the tracing of P and the reflection generated SV wave paths in the continuum plate is developed. A theoretical output voltage from the receiving transducer is calculated for a tone burst. The study enhances the quantitative and qualitative understanding of the nondestructive evaluation of fiber composites which can be modeled as transversely isotropic media.

  10. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1998-01-01

    An overall goal of this research has been to enhance our understanding of the scientific principles necessary to develop advanced ultrasonic nondestructive techniques for the quantitative characterization of advanced composite structures. To this end, we have investigated a thin woven composite (5-harness biaxial weave). We have studied the effects that variations of the physical parameters of the experimental setup can have on the ultrasonic determination of the material properties for this thin composite. In particular, we have considered the variation of the nominal center frequency and the f-number of the transmitting transducer which in turn address issues such as focusing and beam spread of ultrasonic fields. This study has employed a planar, two-dimensional, receiving pseudo-array that has permitted investigation of the diffraction patterns of ultrasonic fields. Distortion of the ultrasonic field due to the spatial anisotropy of the thin composite has prompted investigation of the phenomenon of phase cancellation at the face of a finite-aperture, piezoelectric receiver. We have performed phase-sensitive and phase-insensitive analyses to provide a measure of the amount of phase cancellation at the face of a finite-aperture, piezoelectric receiver. The pursuit of robust measurements of received energy (i.e., those not susceptible to phase cancellation at the face of a finite-aperture, piezoelectric receiver) supports the development of robust techniques to determine material properties from measure ultrasonic parameters.

  11. Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring

    PubMed Central

    Cao, Yuhong; Chen, Haodong; Birey, Fikri; Leal-Ortiz, Sergio A.; Han, Crystal M.; Santiago, Juan G.; Paşca, Sergiu P.; Wu, Joseph C.; Melosh, Nicholas A.

    2017-01-01

    Here, we report a method for time-resolved, longitudinal extraction and quantitative measurement of intracellular proteins and mRNA from a variety of cell types. Cytosolic contents were repeatedly sampled from the same cell or population of cells for more than 5 d through a cell-culture substrate, incorporating hollow 150-nm-diameter nanostraws (NS) within a defined sampling region. Once extracted, the cellular contents were analyzed with conventional methods, including fluorescence, enzymatic assays (ELISA), and quantitative real-time PCR. This process was nondestructive with >95% cell viability after sampling, enabling long-term analysis. It is important to note that the measured quantities from the cell extract were found to constitute a statistically significant representation of the actual contents within the cells. Of 48 mRNA sequences analyzed from a population of cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs), 41 were accurately quantified. The NS platform samples from a select subpopulation of cells within a larger culture, allowing native cell-to-cell contact and communication even during vigorous activity such as cardiomyocyte beating. This platform was applied both to cell lines and to primary cells, including CHO cells, hiPSC-CMs, and human astrocytes derived in 3D cortical spheroids. By tracking the same cell or group of cells over time, this method offers an avenue to understand dynamic cell behavior, including processes such as induced pluripotency and differentiation. PMID:28223521

  12. Noninvasive quantitative measurement of colloid transport in mesoscale porous media using time lapse fluorescence imaging.

    PubMed

    Bridge, Jonathan W; Banwart, Steven A; Heathwaite, A Louise

    2006-10-01

    We demonstrate noninvasive quantitative imaging of colloid and solute transport at millimeter to decimeter (meso-) scale. Ultraviolet (UV) excited fluorescent solute and colloid tracers were independently measured simultaneously during co-advection through saturated quartz sand. Pulse-input experiments were conducted at constant flow rates and ionic strengths 10(-3), 10(-2) and 10(-1) M NaCl. Tracers were 1.9 microm carboxylate latex microspheres and disodium fluorescein. Spatial moments analysis was used to quantify relative changes in mass distribution of the colloid and solute tracers over time. The solute advected through the sand at a constant velocity proportional to flow rate and was described well by a conservative transport model (CXTFIT). In unfavorable deposition conditions increasing ionic strength produced significant reduction in colloid center of mass transport velocity over time. Velocity trends correlated with the increasing fraction of colloid mass retained along the flowpath. Attachment efficiencies (defined by colloid filtration theory) calculated from nondestructive retained mass data were 0.013 +/- 0.03, 0.09 +/- 0.02, and 0.22 +/- 0.05 at 10(-3), 10(-2), and 10(-1) M ionic strength, respectively, which compared well with previously published data from breakthrough curves and destructive sampling. Mesoscale imaging of colloid mass dynamics can quantify key deposition and transport parameters based on noninvasive, nondestructive, spatially high-resolution data.

  13. Nondestructive acoustic electric field probe apparatus and method

    DOEpatents

    Migliori, Albert

    1982-01-01

    The disclosure relates to a nondestructive acoustic electric field probe and its method of use. A source of acoustic pulses of arbitrary but selected shape is placed in an oil bath along with material to be tested across which a voltage is disposed and means for receiving acoustic pulses after they have passed through the material. The received pulses are compared with voltage changes across the material occurring while acoustic pulses pass through it and analysis is made thereof to determine preselected characteristics of the material.

  14. Rapid, Contactless and Non-Destructive Testing of Chemical Composition of Samples

    NASA Astrophysics Data System (ADS)

    Ivanov, O.; Vaseashta, A.; Stoychev, L.

    Our results demonstrate that a new effect can be induced in each solid in a wide spectral range of electromagnetic irradiation. In the present manuscript we prove experimentally that one of the possible applications of this effect is for an express contactless control of the chemical composition of a series of samples, in this case, coins. The method has wide applicability ranging from defense and homeland security to several applications requiring rapid and nondestructive identification of chemical composition.

  15. Nondestructive Technique To Assess Embrittlement In Steels

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Yost, William T.; Cantrell, John H.

    1990-01-01

    Recent research at NASA Langley Research Center led to identification of nondestructive technique for detection of temper embrittlement in HY80 steel. Measures magnetoacoustic emission associated with reversible motion of domain walls at low magnetic fields. Of interest to engineers responsible for reliability and safety of various dynamically loaded and/or thermally cycled steel parts. Applications include testing of landing gears, naval vessels, and parts subjected to heat, such as those found in steam-pipe fittings, boilers, turbine rotors, and nuclear pressure vessels.

  16. Concepts for the Development of a Nondestructive Testing and Evaluation System for Rigid Airfield Pavements.

    DTIC Science & Technology

    1985-11-01

    Aplications 19. ABTRACT (Continue on reverg if necemar and identify by block, number) This technical report develops a complete system for nondestructive...life of rigid airfield pavements. .04-. V UNLSSFED _ IRCURfTY LA MntP A’rION O THIIS PAGE NA PREFACE This report was submitted as a doctoral thesis to...Engineering and Services Laboratory, Tyndall AFB, Florida 32403. t This thesis is being published in its original format by this laboratory because

  17. A blind test of nondestructive underground void detection by ground penetrating radar (GPR)

    NASA Astrophysics Data System (ADS)

    Lai, Wallace W. L.; Chang, Ray K. W.; Sham, Janet F. C.

    2018-02-01

    Blind test/experiment is widely adopted in various scientific disciplines like medicine drug testing/clinical trials/psychology, but not popular in nondestructive testing and evaluation (NDTE) nor near-surface geophysics (NSG). This paper introduces a blind test of nondestructive underground void detection in highway/pavement using ground penetrating radar (GPR). Purpose of which is to help the Highways Department (HyD) of the Hong Kong Government to evaluate the feasibility of large-scale and nationwide application, and examine the ability of appropriate service providers to carry out such works. In the past failure case of such NDTE/NSG based on lowest bid price, it is not easy to know which part(s) in SWIMS (S - service provider, i.e. people; W - work procedure; I - instrumentation; M - materials in the complex underground; S - specifications by client) fails, and how it/they fail(s). This work attempts to carry out the blind test by burying fit balls (as voids) under a site with reinforced concrete road and paving block by PolyU team A. The blind test about the void centroid, spread and cover depth was then carried out by PolyU team B without prior information given. Then with this baseline, a marking scheme, acceptance criteria and passing mark were set to test six local commercial service providers, determine their scores and evaluate the performance. A pass is a prerequisite of the award of a service contract of similar nature. In this first attempt of the blind test, results were not satisfactory and it is concluded that 'S-service provider' and 'W-work procedure' amongst SWIMS contributed to most part of the unsatisfactory performance.+

  18. Nondestructive Integrity Evaluation of PC Pile Using Wigner-Ville Distribution Method

    NASA Astrophysics Data System (ADS)

    Ni, Sheng-Huoo; Lo, Kuo-Feng; Huang, Yan-Hong

    Nondestructive evaluation (NDE) techniques have been used for years to provide a quality control of the construction for both drilled shafts and driven concrete piles. This trace is typically made up of transient pulses reflected from structural features of the pile or changes in its surrounding environment. It is often analyzed in conjunction with the spectral response, mobility curve, arrival time, etc. The Wigner-Ville Distribution is a new numerical analysis tool for signal process technique in the time-frequency domain and it can offer assistance and enhance signal characteristics for better resolution both easily and quickly. In this study, five single pre-cast concrete piles have been tested and evaluated by both sonic echo method and Wigner-Ville distribution (WVD). Furthermore, two difficult problems in nondestructive evaluation problems are discussed and solved: the first one is with a pile with slight defect, whose necking area percentage is less than 10%, and the other is a pile with multiple defects. The results show that WVD can not only recognize the characteristics easily, but also locate the defects more clearly than the traditional pile integrity testing method.

  19. Application of optical interferometric techniques for non-destructive evaluation of novel "green" composite materials

    NASA Astrophysics Data System (ADS)

    Pagliarulo, Vito; Russo, Pietro; Bianco, Vittorio; Ferraro, Pietro; Simeoli, Giorgio; Cimino, Francesca; Ruggiero, Berardo

    2018-04-01

    Nowadays the use of advanced composite materials in aeronautics, both civil and military, in automotive and in sport applications, citing some, is well established. The characteristics of composite materials in terms of weight, fatigue resistance and corrosion resistance make them competitive with respect to conventional ones. On the other side, the fabrication process of the most employed composites reinforced by carbon fibers or glass fibers, needs of complex steps that not always are environmental complaisant. Moreover, such fibers are not themselves "green". For these reasons, in the last decades, the use of natural reinforcing fibers has gained an increasing attention allowing the development of new materials with the same advantages of composite systems but respecting the environment. Furthermore, such materials for their structural complexity are not always compatible with the use of standard non-destructive evaluation as the ultrasounds methods. In this work the efficiency of the employment of optical interferometric techniques as nondestructive evaluation methods in full field modality is proved on novel "green" composite materials. In particular, Electronic Speckle Pattern Interferometry has been tested on different kinds of specimens after flexural tests.

  20. Complementary Electromagnetic Non-Destructive Evaluation

    NASA Astrophysics Data System (ADS)

    Tian, Gui Yun; Wilson, John; Morozov, Maxim

    2011-06-01

    The use of non-destructive evaluation (NDE) for defect detection and failure prediction in structures and specimens is widespread in energy industries, aimed at ageing power plants and pipelines, material degradation, fatigue and radiation damage, etc. At present there are no suitable electromagnetic NDE methods for the measurement and characterization of material degradation, in irradiated samples in particular, which is very important and timely for the nuclear power industry in the UK. This paper reports recent developments in the field of electromagnetic (EM) NDE at Newcastle University, including pulsed eddy current (PEC), pulsed magnetic flux leakage (PMFL), magnetic Barkhausen emission (MBE) and magneto-acoustic emission (MAE). As different EM methods have different strengths, an integrative EM framework is introduced. Case studies through the second round robin tests organized by the Universal Network for Magnetic Non-Destructive Evaluation (UNMNDE), representing eighteen leading research groups worldwide in the area of electromagnetic NDE, are reported. Twelve samples with different ageing times and rolling reduction ratios were tested using different magnetic methods among the UNMNDE members. Based on the studies, the complementary characteristics of electromagnetic techniques for NDE are discussed.

  1. Progress in terahertz nondestructive testing: A review

    NASA Astrophysics Data System (ADS)

    Zhong, Shuncong

    2018-05-01

    Terahertz (THz) waves, whose frequencies range between microwave and infrared, are part of the electromagnetic spectrum. A gap exists in THz literature because investigating THz waves is difficult due to the weak characteristics of the waves and the lack of suitable THz sources and detectors. Recently, THz nondestructive testing (NDT) technology has become an interesting topic. This review outlines several typical THz devices and systems and engineering applications of THz NDT techniques in composite materials, thermal barrier coatings, car paint films, marine protective coatings, and pharmaceutical tablet coatings. THz imaging has higher resolution but lower penetration than ultrasound imaging. This review presents the significance and advantages provided by the emerging THz NDT technique.

  2. Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    2003-01-01

    An acoustic nonlinearity parameter (.beta.) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the .beta. of the test material. The dielectric material is ferroelectric with a high dielectric constant .di-elect cons.. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (.beta.) without the costly, low field reliability methods of the prior art.

  3. Non-destructive testing method and apparatus

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2011-10-04

    Non-destructive testing apparatus may comprise a photon source and a source material that emits positrons in response to bombardment of the source material with photons. The source material is positionable adjacent the photon source and a specimen so that when the source material is positioned adjacent the photon source it is exposed to photons produced thereby. When the source material is positioned adjacent the specimen, the specimen is exposed to at least some of the positrons emitted by the source material. A detector system positioned adjacent the specimen detects annihilation gamma rays emitted by the specimen. Another embodiment comprises a neutron source and a source material that emits positrons in response to neutron bombardment.

  4. Non-destructive evaluation techniques, high temperature ceramic component parts for gas turbines

    NASA Technical Reports Server (NTRS)

    Reiter, H.; Hirsekorn, S.; Lottermoser, J.; Goebbels, K.

    1984-01-01

    This report concerns studies conducted on various tests undertaken on material without destroying the material. Tests included: microradiographic techniques, vibration analysis, high-frequency ultrasonic tests with the addition of evaluation of defects and structure through analysis of ultrasonic scattering data, microwave tests and analysis of sound emission.

  5. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  6. Holocene Temperature Reconstructions from Arctic Lakes based on Alkenone Paleothermometry and Non-Destructive Scanning Techniques

    NASA Astrophysics Data System (ADS)

    D'Andrea, W. J.; Balascio, N. L.; Bradley, R. S.; Bakke, J.; Gjerde, M.; Kaufman, D. S.; Briner, J. P.; von Gunten, L.

    2014-12-01

    Generating continuous, accurate and quantitative Holocene temperature estimates from the Arctic is an ongoing challenge. In many Arctic regions, tree ring-based approaches cannot be used and lake sediments provide the most valuable repositories for extracting paleotemperature information. Advances in lacustrine alkenone paleothermometry now allow for quantitative reconstruction of lake-water temperature based on the UK37 values of sedimentary alkenones. In addition, a recent study demonstrated the efficacy of non-destructive scanning reflectance spectroscopy in the visible range (VIS-RS) for high-resolution quantitative temperature reconstruction from arctic lake sediments1. In this presentation, I will report a new UK37-based temperature reconstruction and a scanning VIS-RS record (using the RABD660;670 index as a measure of sedimentary chlorin content) from Kulusuk Lake in southeastern Greenland (65.6°N, 37.1°W). The UK37 record reveals a ~3°C increase in summer lake water temperatures between ~10ka and ~7ka followed by sustained warmth until ~4ka and a gradual (~3°C) cooling until ~400 yr BP. The strong correlation between UK37 and RABD660;670 measured in the same sediment core provides further evidence that in arctic lakes where temperature regulates primary productivity, and thereby sedimentary chlorin content, these proxies can be combined to develop high-resolution quantitative temperature records. The Holocene temperature history of Kulusuk Lake determined using this approach corresponds to changes in the size of the glaciers adjacent to the lake, as inferred from sediment minerogenic properties measured with scanning XRF. Glaciers retreated during early Holocene warming, likely disappeared during the period of mid-Holocene warmth, and advanced after 4ka. I will also discuss new UK37 and RABD660;670 reconstructions from northwestern Svalbard and the central Brooks Range of Alaska within the framework of published regional temperature reconstructions and model simulations of Holocene temperature around the Arctic. 1. von Gunten, L., D'Andrea, W.J., Bradley, R.S. and Huang, Y., 2012, Proxy-to-proxy calibration: Increasing the temporal resolution of quantitative climate reconstructions. Scientific Reports, v. 2, 609. doi: 10:1038/srep00609.

  7. Nondestructive Evaluation of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    The final report consists of 5 published papers in referred journals and a technical letter to the technical monitor. These papers include the following: (1) Comparison of the effects of debonds and voids in adhesive; (2) On the peak shear stresses in adhesive joints with voids; (3) Nondestructive evaluation of adhesively bonded joints by acousto-ultrasonic technique and acoustic emission; (4) Multiaxial fatigue life evaluation of tubular adhesively bonded joints; (5) Theoretical and experimental evaluation of the bond strength under peeling loads. The letter outlines the progress of the research. Also included is preliminary information on the study of nondestructive evaluation of composite materials subjected to localized heat damage. The investigators studied the effects of localized heat on unidirectional fiber glass epoxy composite panels. Specimens of the fiber glass epoxy composites were subjected to 400 C heat for varying lengths of time. The specimens were subjected to nondestructive tests. The specimens were then pulled to their failure and acoustic emission of these specimens were measured. The analysis of the data was continuing as of the writing of the letter, and includes a finite element stress analysis of the problem.

  8. Multi-frequency local wavenumber analysis and ply correlation of delamination damage.

    PubMed

    Juarez, Peter D; Leckey, Cara A C

    2015-09-01

    Wavenumber domain analysis through use of scanning laser Doppler vibrometry has been shown to be effective for non-contact inspection of damage in composites. Qualitative and semi-quantitative local wavenumber analysis of realistic delamination damage and quantitative analysis of idealized damage scenarios (Teflon inserts) have been performed previously in the literature. This paper presents a new methodology based on multi-frequency local wavenumber analysis for quantitative assessment of multi-ply delamination damage in carbon fiber reinforced polymer (CFRP) composite specimens. The methodology is presented and applied to a real world damage scenario (impact damage in an aerospace CFRP composite). The methodology yields delamination size and also correlates local wavenumber results from multiple excitation frequencies to theoretical dispersion curves in order to robustly determine the delamination ply depth. Results from the wavenumber based technique are validated against a traditional nondestructive evaluation method. Published by Elsevier B.V.

  9. Proxy-to-proxy calibration: Increasing the temporal resolution of quantitative climate reconstructions

    PubMed Central

    von Gunten, Lucien; D'Andrea, William J.; Bradley, Raymond S.; Huang, Yongsong

    2012-01-01

    High-resolution paleoclimate reconstructions are often restricted by the difficulties of sampling geologic archives in great detail and the analytical costs of processing large numbers of samples. Using sediments from Lake Braya Sø, Greenland, we introduce a new method that provides a quantitative high-resolution paleoclimate record by combining measurements of the alkenone unsaturation index () with non-destructive scanning reflectance spectroscopic measurements in the visible range (VIS-RS). The proxy-to-proxy (PTP) method exploits two distinct calibrations: the in situ calibration of to lake water temperature and the calibration of scanning VIS-RS data to down core data. Using this approach, we produced a quantitative temperature record that is longer and has 5 times higher sampling resolution than the original time series, thereby allowing detection of temperature variability in frequency bands characteristic of the AMO over the past 7,000 years. PMID:22934132

  10. Voluntary Consensus Organization Standards for Nondestructive Evaluation of Thin-Walled Metallic Liners and Composite Overwraps in Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Saulsberry, Regor

    2012-01-01

    NASA fracture control requirements outlined in NASA-STD-5009 and NASA-STD-5014 are predicated on the availability and use of sensitive nondestructive evaluation (NDE) methods that can detect and monitor defects, thereby providing data that can be used to predict failure or reduce the risk of failure in fracture critical components. However, in the case of composite materials and components, including composite overwrapped pressure vessels (COPVs), the effect of defects is poorly understood, the NDE methods used to evaluate locate and size defects are typically at lower technical readiness level than analogous NDE methods used for metals, and demonstration studies to verify the probability of detection (POD) are generally lacking or unavailable. These factors together make failure prediction of fracture critical composite materials and components based on size, quantity, or orientation of defects nearly impossible. Also, when inspecting metal liners in as-manufactured COPVs, sensitivity is lost and only the inner surface of the liner is accessible. Also, NDE of COPVs as applied during manufacturing varies significantly from manufacturer to manufacturer and has not yet been standardized. Although requirements exist to perform NDE immediately after manufacturing to establish initial integrity of the parts, procedural detail for NDE of composites is still nonexistent or under development. For example, in practice, only a visual inspection of COPVs is performed during manufacturing and service, leaving in question whether defects of concern, for example, bridging, overwrap winding anomalies, impact damage below visible threshold, out-of-family strain growth, and liner buckling have been adequately detected and monitored. To address these shortcomings, in 2005 the NASA Nondestructive Evaluation Working Group (NNWG) began funding work to develop and adopt standards for nondestructive evaluation of aerospace composites in collaboration with the American Society for Testing and Materials (ASTM) Committee E07 on Nondestructive Testing. Similarly, in 2006 the NASA Engineering and Safety Center (NESC) recommended that nondestructive evaluation methods that can predict composite failure in COPVs should be developed and verified, and integrated into the damage control plan for these vessels

  11. Nondestructive Testing Information Analysis Center, 1979.

    DTIC Science & Technology

    1980-09-01

    transmission and reflectometry Ultrasonic imaging Spectrum analysis Acoustic emission * LIQUID PENETRANT TESTING Dye penetrants Fluorescent penetrants...OPTICAL TESTING Visual testing Optical reflectometry and transmission Holography * THERMAL TESTING Infrared radiometry The rmography 13 The present...on our surveillance effectiveness, we also scan Current Contents, NASA /SCAN, and the monthly Engineering Index and Science Abstracts. New books

  12. Non-destructive testing principles and accurate evaluation of the hydraulic measure impact range using the DC method

    NASA Astrophysics Data System (ADS)

    Qiu, Liming; Shen, Rongxi; Song, Dazhao; Wang, Enyuan; Liu, Zhentang; Niu, Yue; Jia, Haishan; Xia, Shankui; Zheng, Xiangxin

    2017-12-01

    An accurate and non-destructive evaluation method for the hydraulic measure impact range in coal seams is urgently needed. Aiming at the application demands, a theoretical study and field test are presented using the direct current (DC) method to evaluate the impact range of coal seam hydraulic measures. We firstly analyzed the law of the apparent resistivity response of an abnormal conductive zone in a coal seam, and then investigated the principle of non-destructive testing of the coal seam hydraulic measure impact range using the DC method, and used an accurate evaluation method based on the apparent resistivity cloud chart. Finally, taking hydraulic fracturing and hydraulic flushing as examples, field experiments were carried out in coal mines to evaluate the impact ranges. The results showed that: (1) in the process of hydraulic fracturing, coal conductivity was enhanced by high-pressure water in the coal seam, and after hydraulic fracturing, the boundary of the apparent resistivity decrease area was the boundary impact range. (2) In the process of hydraulic flushing, coal conductivity was reduced by holes and cracks in the coal seam, and after hydraulic flushing, the boundary of the apparent resistivity increase area was the boundary impact range. (3) After the implementation of the hydraulic measures, there may be some blind zones in the coal seam; in hydraulic fracturing blind zones, the apparent resistivity increased or stayed constant, while in hydraulic flushing blind zones, the apparent resistivity decreased or stayed constant. The DC method realized a comprehensive and non-destructive evaluation of the impact range of the hydraulic measures, and greatly reduced the time and cost of evaluation.

  13. Continuous long-term health monitoring using ultrasonic wave propagation.

    DOT National Transportation Integrated Search

    2016-12-01

    This report presents the findings of a research project on using ultrasonic testing to : continuously monitor reinforced concrete bridge decks for the onset of delamination. The : report first presents a review of current nondestructive testing techn...

  14. Development of a Rolling Dynamic Deflectometer for Continuous Deflection Testing of Pavements

    DOT National Transportation Integrated Search

    1998-05-01

    A rolling dynamic deflectometer (RDD) was developed as a nondestructive method for determining continuous deflection profiles of pavements. Unlike other commonly used pavement testing methods, the RDD performs continuous rather than discrete measurem...

  15. PAVECHECK : training material updated user's manual including GPS.

    DOT National Transportation Integrated Search

    2009-01-01

    PAVECHECK is a software package used to integrate nondestructive test data from various testing systems to provide the pavement engineer with a comprehensive evaluation of both surface and subsurface conditions. This User's Manual is intended to demo...

  16. Method for Smoke Spread Testing of Large Premises

    NASA Astrophysics Data System (ADS)

    Walmerdahl, P.; Werling, P.

    2001-11-01

    A method for performing non-destructive smoke spread tests has been developed, tested and applied to several existing buildings. Burning methanol in different size steel trays cooled by water generates the heat source. Several tray sizes are available to cover fire sources up to nearly 1MW. The smoke is supplied by means of a suitable number of smoke generators that produce a smoke, which can be described as a non-toxic aerosol. The advantage of the method is that it provides a means for performing non-destructive tests in already existing buildings and other installations for the purpose of evaluating the functionality and design of the active fire protection measures such as smoke extraction systems, etc. In the report, the method is described in detail and experimental data from the try-out of the method are also presented in addition to a discussion on applicability and flexibility of the method.

  17. Nondestructive measurement of the refractive index distribution of a glass molded lens by two-wavelength wavefronts.

    PubMed

    Sugimoto, Tomohiro

    2016-10-01

    This paper presents a nondestructive and non-exact-index-matching method for measuring the refractive index distribution of a glass molded lens with high refractivity. The method measures two-wavelength wavefronts of a test lens immersed in a liquid with a refractive index dispersion different from that of the test lens and calculates the refractive index distribution by eliminating the refractive index distribution error caused by the shape error of the test lens. The estimated uncertainties of the refractive index distributions of test lenses with nd≈1.77 and nd≈1.85 were 1.9×10-5  RMS and 2.4×10-5  RMS, respectively. I validated the proposed method by evaluating the agreement between the estimated uncertainties and experimental values.

  18. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  19. Comparative evaluation of subgrade resilient modulus from non-destructive, in-situ, and laboratory methods.

    DOT National Transportation Integrated Search

    2007-08-01

    Field and laboratory testing programs were conducted to develop models that predict the resilient modulus of subgrade soils from : the test results of DCP, CIMCPT, FWD, Dynaflect, and soil properties. The field testing program included DCP, CIMCPT, F...

  20. Nondestructive testing of railroad wheels and rails by ultrasonics

    NASA Technical Reports Server (NTRS)

    Clotfelter, W. M.; Risch, E. R.

    1974-01-01

    Quality control of wheels and rails can be improved by using ultrasonic technique developed for measuring stresses in metallic materials. In addition, parts already in use can be tested and replaced if they are found to be unsafe. Test equipment includes two transducers.

  1. Large field of view quantitative phase imaging of induced pluripotent stem cells and optical pathlength reference materials

    NASA Astrophysics Data System (ADS)

    Kwee, Edward; Peterson, Alexander; Stinson, Jeffrey; Halter, Michael; Yu, Liya; Majurski, Michael; Chalfoun, Joe; Bajcsy, Peter; Elliott, John

    2018-02-01

    Induced pluripotent stem cells (iPSCs) are reprogrammed cells that can have heterogeneous biological potential. Quality assurance metrics of reprogrammed iPSCs will be critical to ensure reliable use in cell therapies and personalized diagnostic tests. We present a quantitative phase imaging (QPI) workflow which includes acquisition, processing, and stitching multiple adjacent image tiles across a large field of view (LFOV) of a culture vessel. Low magnification image tiles (10x) were acquired with a Phasics SID4BIO camera on a Zeiss microscope. iPSC cultures were maintained using a custom stage incubator on an automated stage. We implement an image acquisition strategy that compensates for non-flat illumination wavefronts to enable imaging of an entire well plate, including the meniscus region normally obscured in Zernike phase contrast imaging. Polynomial fitting and background mode correction was implemented to enable comparability and stitching between multiple tiles. LFOV imaging of reference materials indicated that image acquisition and processing strategies did not affect quantitative phase measurements across the LFOV. Analysis of iPSC colony images demonstrated mass doubling time was significantly different than area doubling time. These measurements were benchmarked with prototype microsphere beads and etched-glass gratings with specified spatial dimensions designed to be QPI reference materials with optical pathlength shifts suitable for cell microscopy. This QPI workflow and the use of reference materials can provide non-destructive traceable imaging method for novel iPSC heterogeneity characterization.

  2. FDTD-based quantitative analysis of terahertz wave detection for multilayered structures.

    PubMed

    Tu, Wanli; Zhong, Shuncong; Shen, Yaochun; Zhou, Qing; Yao, Ligang

    2014-10-01

    Experimental investigations have shown that terahertz pulsed imaging (TPI) is able to quantitatively characterize a range of multilayered media (e.g., biological issues, pharmaceutical tablet coatings, layered polymer composites, etc.). Advanced modeling of the interaction of terahertz radiation with a multilayered medium is required to enable the wide application of terahertz technology in a number of emerging fields, including nondestructive testing. Indeed, there have already been many theoretical analyses performed on the propagation of terahertz radiation in various multilayered media. However, to date, most of these studies used 1D or 2D models, and the dispersive nature of the dielectric layers was not considered or was simplified. In the present work, the theoretical framework of using terahertz waves for the quantitative characterization of multilayered media was established. A 3D model based on the finite difference time domain (FDTD) method is proposed. A batch of pharmaceutical tablets with a single coating layer of different coating thicknesses and different refractive indices was modeled. The reflected terahertz wave from such a sample was computed using the FDTD method, assuming that the incident terahertz wave is broadband, covering a frequency range up to 3.5 THz. The simulated results for all of the pharmaceutical-coated tablets considered were found to be in good agreement with the experimental results obtained using a commercial TPI system. In addition, we studied a three-layered medium to mimic the occurrence of defects in the sample.

  3. Energy dispersive X-ray fluorescence spectroscopy/Monte Carlo simulation approach for the non-destructive analysis of corrosion patina-bearing alloys in archaeological bronzes: The case of the bowl from the Fareleira 3 site (Vidigueira, South Portugal)

    NASA Astrophysics Data System (ADS)

    Bottaini, C.; Mirão, J.; Figuereido, M.; Candeias, A.; Brunetti, A.; Schiavon, N.

    2015-01-01

    Energy dispersive X-ray fluorescence (EDXRF) is a well-known technique for non-destructive and in situ analysis of archaeological artifacts both in terms of the qualitative and quantitative elemental composition because of its rapidity and non-destructiveness. In this study EDXRF and realistic Monte Carlo simulation using the X-ray Monte Carlo (XRMC) code package have been combined to characterize a Cu-based bowl from the Iron Age burial from Fareleira 3 (Southern Portugal). The artifact displays a multilayered structure made up of three distinct layers: a) alloy substrate; b) green oxidized corrosion patina; and c) brownish carbonate soil-derived crust. To assess the reliability of Monte Carlo simulation in reproducing the composition of the bulk metal of the objects without recurring to potentially damaging patina's and crust's removal, portable EDXRF analysis was performed on cleaned and patina/crust coated areas of the artifact. Patina has been characterized by micro X-ray Diffractometry (μXRD) and Back-Scattered Scanning Electron Microscopy + Energy Dispersive Spectroscopy (BSEM + EDS). Results indicate that the EDXRF/Monte Carlo protocol is well suited when a two-layered model is considered, whereas in areas where the patina + crust surface coating is too thick, X-rays from the alloy substrate are not able to exit the sample.

  4. Correlation analysis of the variation of weld seam and tensile strength in laser welding of galvanized steel

    NASA Astrophysics Data System (ADS)

    Sinha, Amit Kumar; Kim, Duck Young; Ceglarek, Darek

    2013-10-01

    Many advantages of laser welding technology such as high speed and non-contact welding make the use of the technology more attractive in the automotive industry. Many studies have been conducted to search the optimal welding condition experimentally that ensure the joining quality of laser welding that relies both on welding system configuration and welding parameter specification. Both non-destructive and destructive techniques, for example, ultrasonic inspection and tensile test are widely used in practice for estimating the joining quality. Non-destructive techniques are attractive as a rapid quality testing method despite relatively low accuracy. In this paper, we examine the relationship between the variation of weld seam and tensile shear strength in the laser welding of galvanized steel in a lap joint configuration in order to investigate the potential of the variation of weld seam as a joining quality estimator. From the experimental analysis, we identify a trend in between maximum tensile shear strength and the variation of weld seam that clearly supports the fact that laser welded parts having larger variation in the weld seam usually have lower tensile strength. The discovered relationship leads us to conclude that the variation of weld seam can be used as an indirect non-destructive testing method for estimating the tensile strength of the welded parts.

  5. Rapid and non-destructive identification of water-injected beef samples using multispectral imaging analysis.

    PubMed

    Liu, Jinxia; Cao, Yue; Wang, Qiu; Pan, Wenjuan; Ma, Fei; Liu, Changhong; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2016-01-01

    Water-injected beef has aroused public concern as a major food-safety issue in meat products. In the study, the potential of multispectral imaging analysis in the visible and near-infrared (405-970 nm) regions was evaluated for identifying water-injected beef. A multispectral vision system was used to acquire images of beef injected with up to 21% content of water, and partial least squares regression (PLSR) algorithm was employed to establish prediction model, leading to quantitative estimations of actual water increase with a correlation coefficient (r) of 0.923. Subsequently, an optimized model was achieved by integrating spectral data with feature information extracted from ordinary RGB data, yielding better predictions (r = 0.946). Moreover, the prediction equation was transferred to each pixel within the images for visualizing the distribution of actual water increase. These results demonstrate the capability of multispectral imaging technology as a rapid and non-destructive tool for the identification of water-injected beef. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    1993-01-01

    A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.

  7. Spermatozoa quality assessment: a combined holographic and Raman microscopy approach

    NASA Astrophysics Data System (ADS)

    De Angelis, Annalisa; Ferrara, Maria A.; Di Caprio, Giuseppe; Managò, Stefano; Sirleto, Luigi; Coppola, Giuseppe; De Luca, Anna Chiara

    2015-05-01

    Semen analysis is widely used as diagnostic tool for assessing male fertility, controlling and managing the animal reproduction. The most important parameters measured in a semen analysis are the morphology and biochemical alterations. For obtaining such information, non-invasive, label-free and non-destructive techniques have to be used. Digital Holography (DH) combined with Raman Spectroscopy (RS) could represent the perfect candidate for a rapid, non-destructive and high-sensitive morphological and biochemical sperm cell analysis. In this study, DH-RS combined approach is used for a complete analysis of single bovine spermatozoa. High-resolution images of bovine sperm have been obtained by DH microscopy from the reconstruction of a single acquired hologram, highlighting in some cases morphological alterations. Quantitative 3D reconstructions of sperm head, both normal and anomalous, have been studied and an unexpected structure of the post-acrosomal region of the head has been detected. Such anomalies have been also confirmed by Raman imaging analysis, suggesting the protein vibrations as associated Raman marker of the defect.

  8. Non-contact, non-destructive, quantitative probing of interfacial trap sites for charge carrier transport at semiconductor-insulator boundary

    NASA Astrophysics Data System (ADS)

    Choi, Wookjin; Miyakai, Tomoyo; Sakurai, Tsuneaki; Saeki, Akinori; Yokoyama, Masaaki; Seki, Shu

    2014-07-01

    The density of traps at semiconductor-insulator interfaces was successfully estimated using microwave dielectric loss spectroscopy with model thin-film organic field-effect transistors. The non-contact, non-destructive analysis technique is referred to as field-induced time-resolved microwave conductivity (FI-TRMC) at interfaces. Kinetic traces of FI-TRMC transients clearly distinguished the mobile charge carriers at the interfaces from the immobile charges trapped at defects, allowing both the mobility of charge carriers and the number density of trap sites to be determined at the semiconductor-insulator interfaces. The number density of defects at the interface between evaporated pentacene on a poly(methylmethacrylate) insulating layer was determined to be 1012 cm-2, and the hole mobility was up to 6.5 cm2 V-1 s-1 after filling the defects with trapped carriers. The FI-TRMC at interfaces technique has the potential to provide rapid screening for the assessment of interfacial electronic states in a variety of semiconductor devices.

  9. Quantitative Acoustic Model for Adhesion Evaluation of Pmma/silicon Film Structures

    NASA Astrophysics Data System (ADS)

    Ju, H. S.; Tittmann, B. R.

    2010-02-01

    A Poly-methyl-methacrylate (PMMA) film on a silicon substrate is a main structure for photolithography in semiconductor manufacturing processes. This paper presents a potential of scanning acoustic microscopy (SAM) for nondestructive evaluation of the PMMA/Si film structure, whose adhesion failure is commonly encountered during the fabrication and post-fabrication processes. A physical model employing a partial discontinuity in displacement is developed for rigorously quantitative evaluation of the interfacial weakness. The model is implanted to the matrix method for the surface acoustic wave (SAW) propagation in anisotropic media. Our results show that variations in the SAW velocity and reflectance are predicted to show their sensitivity to the adhesion condition. Experimental results by the v(z) technique and SAW velocity reconstruction verify the prediction.

  10. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface waves in typical materials tested with a non-destructive technique (e.g., marble, unweathered and weathered concrete and natural stone).

  11. Rapid monitoring of grape withering using visible near-infrared spectroscopy.

    PubMed

    Beghi, Roberto; Giovenzana, Valentina; Marai, Simone; Guidetti, Riccardo

    2015-12-01

    Wineries need new practical and quick instruments, non-destructive and able to quantitatively evaluate during withering the parameters that impact product quality. The aim of the work was to test an optical portable system (visible near-infrared (NIR) spectrophotometer) in a wavelength range of 400-1000 nm for the prediction of quality parameters of grape berries during withering. A total of 300 red grape samples (Vitis vinifera L., Corvina cultivar) harvested in vintage year 2012 from the Valpolicella area (Verona, Italy) were analyzed. Qualitative (principal component analysis, PCA) and quantitative (partial least squares regression algorithm, PLS) evaluations were performed on grape spectra. PCA showed a clear sample grouping for the different withering stages. PLS models gave encouraging predictive capabilities for soluble solids content (R(2) val  = 0.62 and ratio performance deviation, RPD = 1.87) and firmness (R(2) val  = 0.56 and RPD = 1.79). The work demonstrated the applicability of visible NIR spectroscopy as a rapid technique for the analysis of grape quality directly in barns, during withering. The sector could be provided with simple and inexpensive optical systems that could be used to monitor the withering degree of grape for better management of the wine production process. © 2014 Society of Chemical Industry.

  12. Quantitative high dynamic range beam profiling for fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.

    2014-10-15

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly withinmore » the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.« less

  13. Characterization of Si (sub X)Ge (sub 1-x)/Si Heterostructures for Device Applications Using Spectroscopic Ellipsometry

    NASA Technical Reports Server (NTRS)

    Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.; Tanner, M.; Wang, K. L.; Mena, R. A.; Young, P. G.

    1993-01-01

    Spectroscopic ellipsometry (SE) characterization of several complex Si (sub X)Ge (sub 1-x)/Si heterostructures prepared for device fabrication, including structures for heterojunction bipolar transistors (HBT), p-type and n-type heterostructure modulation doped field effect transistors, has been performed. We have shown that SE can simultaneously determine all active layer thicknesses, Si (sub X)Ge (sub 1-x) compositions, and the oxide overlayer thickness, with only a general knowledge of the structure topology needed a priori. The characterization of HBT material included the SE analysis of a Si (sub X)Ge (sub 1-x) layer deeply buried (600 nanometers) under the silicon emitter and cap layers. In the SE analysis of n-type heterostructures, we examined for the first time a silicon layer under tensile strain. We found that an excellent fit can be obtained using optical constants of unstrained silicon to represent the strained silicon conduction layer. We also used SE to measure lateral sample homogeneity, providing quantitative identification of the inhomogeneous layer. Surface overlayers resulting from prior sample processing were also detected and measured quantitatively. These results should allow SE to be used extensively as a non-destructive means of characterizing Si (sub X)Ge (sub 1-x)/Si heterostructures prior to device fabrication and testing.

  14. Identify Structural Flaw Location and Type with an Inverse Algorithm of Resonance Inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wei; Lai, Canhai; Sun, Xin

    To evaluate the fitness-for-service of a structural component and to quantify its remaining useful life, aging and service-induced structural flaws must be quantitatively determined in service or during scheduled maintenance shutdowns. Resonance inspection (RI), a non-destructive evaluation (NDE) technique, distinguishes the anomalous parts from the good parts based on changes in the natural frequency spectra. Known for its numerous advantages, i.e., low inspection cost, high testing speed, and broad applicability to complex structures, RI has been widely used in the automobile industry for quality inspection. However, compared to other contemporary direct visualization-based NDE methods, a more widespread application of RImore » faces a fundamental challenge because such technology is unable to quantify the flaw details, e.g. location, dimensions, and types. In this study, the applicability of a maximum correlation-based inverse RI algorithm developed by the authors is further studied for various flaw cases. It is demonstrated that a variety of common structural flaws, i.e. stiffness degradation, voids, and cracks, can be accurately retrieved by this algorithm even when multiple different types of flaws coexist. The quantitative relations between the damage identification results and the flaw characteristics are also developed to assist the evaluation of the actual state of health of the engineering structures.« less

  15. 49 CFR 192.241 - Inspection and test of welds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... nondestructively tested or visually inspected is determined according to the standards in Section 9 of API Standard... standards for a reason other than a crack, and if Appendix A to API 1104 applies to the weld, the...

  16. 49 CFR 192.241 - Inspection and test of welds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... nondestructively tested or visually inspected is determined according to the standards in Section 9 of API Standard... standards for a reason other than a crack, and if Appendix A to API 1104 applies to the weld, the...

  17. 49 CFR 192.241 - Inspection and test of welds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... nondestructively tested or visually inspected is determined according to the standards in Section 9 of API Standard... standards for a reason other than a crack, and if Appendix A to API 1104 applies to the weld, the...

  18. 49 CFR 192.241 - Inspection and test of welds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... nondestructively tested or visually inspected is determined according to the standards in Section 9 of API Standard... standards for a reason other than a crack, and if Appendix A to API 1104 applies to the weld, the...

  19. Rhizoslides: paper-based growth system for non-destructive, high throughput phenotyping of root development by means of image analysis.

    PubMed

    Le Marié, Chantal; Kirchgessner, Norbert; Marschall, Daniela; Walter, Achim; Hund, Andreas

    2014-01-01

    A quantitative characterization of root system architecture is currently being attempted for various reasons. Non-destructive, rapid analyses of root system architecture are difficult to perform due to the hidden nature of the root. Hence, improved methods to measure root architecture are necessary to support knowledge-based plant breeding and to analyse root growth responses to environmental changes. Here, we report on the development of a novel method to reveal growth and architecture of maize root systems. The method is based on the cultivation of different root types within several layers of two-dimensional, large (50 × 60 cm) plates (rhizoslides). A central plexiglass screen stabilizes the system and is covered on both sides with germination paper providing water and nutrients for the developing root, followed by a transparent cover foil to prevent the roots from falling dry and to stabilize the system. The embryonic roots grow hidden between a Plexiglas surface and paper, whereas crown roots grow visible between paper and the transparent cover. Long cultivation with good image quality up to 20 days (four fully developed leaves) was enhanced by suppressing fungi with a fungicide. Based on hyperspectral microscopy imaging, the quality of different germination papers was tested and three provided sufficient contrast to distinguish between roots and background (segmentation). Illumination, image acquisition and segmentation were optimised to facilitate efficient root image analysis. Several software packages were evaluated with regard to their precision and the time investment needed to measure root system architecture. The software 'Smart Root' allowed precise evaluation of root development but needed substantial user interference. 'GiaRoots' provided the best segmentation method for batch processing in combination with a good analysis of global root characteristics but overestimated root length due to thinning artefacts. 'WhinRhizo' offered the most rapid and precise evaluation of root lengths in diameter classes, but had weaknesses with respect to image segmentation and analysis of root system architecture. A new technique has been established for non-destructive root growth studies and quantification of architectural traits beyond seedlings stages. However, automation of the scanning process and appropriate software remains the bottleneck for high throughput analysis.

  20. Proceedings of the DARPA/AFWAL Review of Progress in Quantitative Nondestructive Evaluation, held 14-18 July 1980, Scripps Institution of Oceanography, La Jolla, California.

    DTIC Science & Technology

    1981-09-01

    them presumably as plan proceeds. A work package description is in- an adjunct in ongoing failure studies . It would cluded for each block on the...Furthermore, the two limiting cases in the unit theoreti-al and laboratory results, lhe most amplitude study are the square wave and the ex - important reason is...of Denver Research Institute ...................................................... 87 STUDY PROGRAM FOR ENCAPSULATION MATERIALS INTERFACE FOR LOW-COST

  1. Advances and challenges in cryo ptychography at the Advanced Photon Source.

    PubMed

    Deng, J; Vine, D J; Chen, S; Nashed, Y S G; Jin, Q; Peterka, T; Vogt, S; Jacobsen, C

    Ptychography has emerged as a nondestructive tool to quantitatively study extended samples at a high spatial resolution. In this manuscript, we report on recent developments from our team. We have combined cryo ptychography and fluorescence microscopy to provide simultaneous views of ultrastructure and elemental composition, we have developed multi-GPU parallel computation to speed up ptychographic reconstructions, and we have implemented fly-scan ptychography to allow for faster data acquisition. We conclude with a discussion of future challenges in high-resolution 3D ptychography.

  2. Energy and Technology Review

    NASA Astrophysics Data System (ADS)

    Poggio, Andrew J.

    1988-10-01

    This issue of Energy and Technology Review contains: Neutron Penumbral Imaging of Laser-Fusion Targets--using our new penumbral-imaging diagnostic, we have obtained the first images that can be used to measure directly the deuterium-tritium burn region in laser-driven fusion targets; Computed Tomography for Nondestructive Evaluation--various computed tomography systems and computational techniques are used in nondestructive evaluation; Three-Dimensional Image Analysis for Studying Nuclear Chromatin Structure--we have developed an optic-electronic system for acquiring cross-sectional views of cell nuclei, and computer codes to analyze these images and reconstruct the three-dimensional structures they represent; Imaging in the Nuclear Test Program--advanced techniques produce images of unprecedented detail and resolution from Nevada Test Site data; and Computational X-Ray Holography--visible-light experiments and numerically simulated holograms test our ideas about an X-ray microscope for biological research.

  3. Titanium Honeycomb Panel Testing

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance; Thompson, Randolph C.

    1996-01-01

    Thermal-mechanical tests were performed on a titanium honeycomb sandwich panel to experimentally validate the hypersonic wing panel concept and compare test data with analysis. Details of the test article, test fixture development, instrumentation, and test results are presented. After extensive testing to 900 deg. F, non-destructive evaluation of the panel has not detected any significant structural degradation caused by the applied thermal-mechanical loads.

  4. Improved Tensile Test for Ceramics

    NASA Technical Reports Server (NTRS)

    Osiecki, R. A.

    1982-01-01

    For almost-nondestructive tensile testing of ceramics, steel rod is bonded to sample of ceramic. Assembly is then pulled apart in conventional tensile-test machine. Test destroys only shallow surface layer which can be machined away making specimen ready for other uses. Method should be useful as manufacturing inspection procedure for low-strength brittle materials.

  5. Laboratory Characterization of Solid Grade SW Brick

    DTIC Science & Technology

    2007-08-01

    Society for Testing and Materials (ASTM) D 2216 (ASTM 2002e). Based on the appropriate values of posttest water content, wet density, and an assumed...strain path (UX/SP) tests. In addition to the mechanical property tests, nondestructive pulse-velocity measurements were performed on each specimen...Figure 3. Spring-arm lateral deformeter mounted on test specimen

  6. System reliability analysis through corona testing

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Mueller, L. A.; Koutnik, E. A.

    1975-01-01

    A corona vacuum test facility for nondestructive testing of power system components was built in the Reliability and Quality Engineering Test Laboratories at the NASA Lewis Research Center. The facility was developed to simulate operating temperature and vacuum while monitoring corona discharges with residual gases. The facility is being used to test various high-voltage power system components.

  7. A new holistic 3D non-invasive analysis of cellular distribution and motility on fibroin-alginate microcarriers using light sheet fluorescent microscopy

    PubMed Central

    Pierini, Michela; Bevilacqua, Alessandro; Torre, Maria Luisa; Lucarelli, Enrico

    2017-01-01

    Cell interaction with biomaterials is one of the keystones to developing medical devices for tissue engineering applications. Biomaterials are the scaffolds that give three-dimensional support to the cells, and are vectors that deliver the cells to the injured tissue requiring repair. Features of biomaterials can influence the behaviour of the cells and consequently the efficacy of the tissue-engineered product. The adhesion, distribution and motility of the seeded cells onto the scaffold represent key aspects, and must be evaluated in vitro during the product development, especially when the efficacy of a specific tissue-engineered product depends on viable and functional cell loading. In this work, we propose a non-invasive and non-destructive imaging analysis for investigating motility, viability and distribution of Mesenchymal Stem Cells (MSCs) on silk fibroin-based alginate microcarriers, to test the adhesion capacity of the fibroin coating onto alginate which is known to be unsuitable for cell adhesion. However, in depth characterization of the biomaterial is beyond the scope of this paper. Scaffold-loaded MSCs were stained with Calcein-AM and Ethidium homodimer-1 to detect live and dead cells, respectively, and counterstained with Hoechst to label cell nuclei. Time-lapse Light Sheet Fluorescent Microscopy (LSFM) was then used to produce three-dimensional images of the entire cells-loaded fibroin/alginate microcarriers. In order to quantitatively track the cell motility over time, we also developed an open source user friendly software tool called Fluorescent Cell Tracker in Three-Dimensions (F-Tracker3D). Combining LSFM with F-Tracker3D we were able for the first time to assess the distribution and motility of stem cells in a non-invasive, non-destructive, quantitative, and three-dimensional analysis of the entire surface of the cell-loaded scaffold. We therefore propose this imaging technique as an innovative holistic tool for monitoring cell-biomaterial interactions, and as a tool for the design, fabrication and functionalization of a scaffold as a medical device. PMID:28817694

  8. Non-destructive geochemical analysis and element mapping using bench-top μ-XRF: applications and uses for geoscience problems

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Haschke, Michael; Tagle, Roald; Storey, Michael

    2013-04-01

    X-Ray Fluorescence (XRF) has long been used to provide valuable geochemical analysis of bulk rock samples in geological studies. However, it is a destructive technique, requiring samples to be homogenised by grinding to a fine powder and formed into a compacted pellet, or fused glass disk and the resulting sample has to be completely flat for reliable analysis. Until recently, non-destructive, high spatial resolution µ- XRF analysis was possible only at specialised Synchrotron radiation facilities, where high excitation beam energies are possible and specialised X-ray focussing optical systems are available. Recently, a number of bench-top µ-XRF systems have become available, allowing easy, rapid and non-destructive geochemical analysis of various materials. We present a number of examples of how the new bench-top M4 Tornado µ-XRF system, developed by Bruker Nano, can be used to provide valuable geochemical information on geological samples. Both quantitative and qualitative (in the form of X-Ray area-maps) data can be quickly and easily acquired for a wide range of elements (as light as Na, using a vacuum), with minimal sample preparation, using an X-Ray spot size as low as 25 µm. Large specimens up to 30 cm and 5 kg in weight can be analysed due to the large sample chamber, allowing non-destructive characterisation of rare or valuable materials. This technique is particularly useful in characterising heterogeneous samples, such as drill cores, sedimentary and pyroclastic rocks containing a variety of clasts, lavas sourced from mixed and mingled magmas, mineralised samples and fossils. An obvious application is the ability to produce element maps or line-scans of minerals, allowing zoning of major and trace elements to be identified and thus informing on crystallisation histories. An application of particular interest to 40Ar/39Ar geochronologists is the ability to screen and assess the purity of mineral separates, or to characterise polished slabs for subsequent in-situ 40Ar/39Ar laser probe analysis; in the past such samples may have been characterised using SEM, but recent work [1] suggests that charging of a sample during electron-beam excitation can cause redistribution of K, thus disturb the 40Ar/39Ar system. Finally, we assess data accuracy and precision by presenting quantitative analyses of a number of standards. [1] Flude et al., The effect of SEM imaging on the Ar/Ar system in feldspars, V51C-2215 Poster, AGU Fall Meeting 2010

  9. Low Velocity Impact Testing and Nondestructive Evaluation of Transparent Materials

    NASA Astrophysics Data System (ADS)

    Brennan, R. E.; Green, W. H.

    2011-06-01

    Advanced transparent materials are used in protective systems for enhancing the survivability of ground vehicles, air vehicles, and personnel in applications such as face shields, riot gear, and vehicle windows. Low velocity impact damage can limit visibility and compromise the structural integrity of a transparent system, increasing the likelihood of further damage or penetration from a high velocity impact strike. For this reason, it is critical to determine damage tolerance levels of transparent systems to indicate whether or not a component should be replaced. In this study, transparent laminate systems will be tested by comparing baseline conditions to experimentally controlled damage states. Destructive testing including air gun and sphere impact testing will be used to replicate low velocity impacts in the field. Characterization of the damaged state will include basic visual inspection as well as nondestructive techniques including cross-polarization, x-ray, and ultrasound. The combination of destructive testing and characterization of the resulting damage can help to establish a damage acceptance criterion for materials used in protective systems.

  10. Identification of ginseng root using quantitative X-ray microtomography.

    PubMed

    Ye, Linlin; Xue, Yanling; Wang, Yudan; Qi, Juncheng; Xiao, Tiqiao

    2017-07-01

    The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ , and three-dimensional quantitative imaging properties. The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

  11. Guided wave technique for non-destructive testing of StifPipe

    NASA Astrophysics Data System (ADS)

    Amjad, Umar; Yadav, Susheel K.; Nguyen, Chi H.; Ehsani, Mohammad; Kundu, Tribikram

    2015-03-01

    The newly-developed StifPipe® is an effective technology for repair and strengthening of existing pipes and culverts. The wall of this pipe consists of a lightweight honeycomb core with carbon or glass fiber reinforced polymer (FRP) applied to the skin. The presence of the hollow honeycomb introduces challenges in the nondestructive testing (NDT) of this pipe. In this study, it is investigated if guided waves, excited by PZT (Lead ZirconateTitanate) transducer can detect damages in the honeycomb layer of the StifPipe®. Multiple signal processing techniques are used for in-depth study and understanding of the recorded signals. The experimental technique for damage detection in StifPipe® material is described and the obtained results are presented in this paper.

  12. Holographic nondestructive testing in bone growth disturbance studies

    NASA Astrophysics Data System (ADS)

    Silvennoinen, Raimo; Nygren, Kaarlo; Mozerov, Mikhail G.

    1994-03-01

    We used isolated radioulnar bones (fused radial and ulnar bones) of subadult European moose collected in various environmentally polluted areas of Finland. The bones were radiographed and holographic interference pictures, for holographic nondestructive testing (HNDT), were produced by using small caudocranial bending forces. The cortical index values were measured in the diaphyses and samples were taken for mineral studies from the mandibles of the same animals. Results indicated that the bones obtained from the heavily polluted area showed biomechanical response comparable to the bones developed partially without mothers milk. Differences were also seen in morphometrical and radiological studies. The mineral contents studied did not differ significantly from randomly collected samples of the same age category. We therefore conclude that environmental factors may influence the bone matrix development.

  13. Non-destructive Testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    NASA Technical Reports Server (NTRS)

    Lu, D. F.; Fan, Chang-Xin; Ruan, J. Z.; Han, S. G.; Wong, K. W.; Sun, G. F.

    1995-01-01

    A SQUID is the most sensitive device to detect change in magnetic field. A nondestructive testing (NDT) device using high temperature SQUID's and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUID's. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  14. Identification of test methods for determining wood guardrail post integrity.

    DOT National Transportation Integrated Search

    2015-06-01

    Wood guardrail posts are subject to decay and deterioration, yet most DOTs have minimal or no : inspection procedures in place for wood guardrail posts. The objective of this study was to : identify nondestructive testing technologies to assess the c...

  15. Calibrating the Iowa pore index with mercury intrusion porosimetry and petrography.

    DOT National Transportation Integrated Search

    2017-10-31

    The Iowa Pore Index (IPI) test is a fast, non-destructive, inexpensive, and environmentally friendly test used by several Midwestern state departments of transportation to determine the volume ratio of macropores to micropores in a coarse rock aggreg...

  16. PARTITIONING TRACERS FOR MEASURING RESIDUAL NAPL: FIELD-SCALE TEST RESULTS

    EPA Science Inventory

    The difficult task of locating and quantifying nonaqueous phase liquids (NAPLs) present in the vadose and saturated zones has prompted the development of innovative, nondestructive characterization techniques. The use of the interwell partitioning tracer's (IWPT) test, in which ...

  17. Preparation and testing of drilled shafts with self-consolidating concrete.

    DOT National Transportation Integrated Search

    2012-06-01

    In this study, self-consolidating concrete (SCC) was evaluated in drilled shafts and the : integrity of drilled shafts was determined using cross-hole sonic logging (CSL), a low-strain : nondestructive integrity testing technique. SCC has very high f...

  18. APPARATUS FOR NON-DESTRUCTIVE INSPECTION OF CANTILEVERED MEMBERS

    DOEpatents

    Taylor, E.R.; Mahoney, C.H.; Lay, C.R.

    1961-10-24

    An apparatus for non-destructive inspection of cantilevered members, such as compressor blades, is described. The member under inspection is vibrated with a regulated source of air under pressure. The amplitude of vibration of the member is maintained at its natural frequency. The frequency of vibration of the member is measured. An indication of an excessive decay or erratic shifting in the measured frequency above an allowable hysteretic decay is provided as an indication of a fault in the member. The member is vibrated for a selected test period. (AEC)

  19. Application of Advanced Nondestructive Evaluation Techniques for Cylindrical Composite Test Samples

    NASA Technical Reports Server (NTRS)

    Martin, Richard E.; Roth, Donald J.; Salem, Jonathan A.

    2013-01-01

    Two nondestructive methods were applied to composite cylinder samples pressurized to failure in order to determine manufacturing quality and monitor damage progression under load. A unique computed tomography (CT) image processing methodology developed at NASA Glenn Research was used to assess the condition of the as-received samples while acoustic emission (AE) monitoring was used to identify both the extent and location of damage within the samples up to failure. Results show the effectiveness of both of these methods in identifying potentially critical fabrication issues and their resulting impact on performance.

  20. Advances in the application of holography for NDE

    NASA Astrophysics Data System (ADS)

    Sciammarella, C. A.

    1985-01-01

    The basic methodology of holographic interferometry in nondestructive testing (NDT) applications are described. Applications to crack detection in ceramic materials, including a crack 50 microns deep in a turbine blade, are discussed in detail. The theoretical principles of holographic interferometry are explained, and a general description of a holographic interferometric recording system is given. A nondestructive interferometric technique for measuring the gradual erosion of calcareous stones exposed to acid rain is also presented. Detailed line drawings illustrating the hologram recording and interferometric fringe pattern analysis elements in an interferometric holographic NDT device are provided.

  1. Nondestructive distributed measurement of supercontinuum generation along highly nonlinear optical fibers.

    PubMed

    Hontinfinde, Régis; Coulibaly, Saliya; Megret, Patrice; Taki, Majid; Wuilpart, Marc

    2017-05-01

    Supercontinuum generation (SCG) in optical fibers arises from the spectral broadening of an intense light, which results from the interplay of both linear and nonlinear optical effects. In this Letter, a nondestructive optical time domain reflectometry method is proposed for the first time, to the best of our knowledge, to measure the spatial (longitudinal) evolution of the SC induced along an optical fiber. The method was experimentally tested on highly nonlinear fibers. The experimental results are in a good agreement with the optical spectra measured at the fiber outputs.

  2. Nondestructive evaluation of plasma-sprayed thermal barrier coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, D.J.; Taylor, J.A.T.

    Acoustic emission has been used as a nondestructive evaluation technique to examine the thermal shock response of thermal barrier coatings. In this study, samples of partially stabilized zirconia powder were sprayed and acoustic emission (AE) data were taken in a series of thermal shock tests in an effort to correlate AE with a given failure mechanism. Microstructural evidence was examined using parallel beam x-ray diffraction and optical microscopy. The AE data are discussed in terms of cumulative amplitude distributions and the use of this technique to characterize fracture events.

  3. Automation for nondestructive inspection of aircraft

    NASA Technical Reports Server (NTRS)

    Siegel, M. W.

    1994-01-01

    We discuss the motivation and an architectural framework for using small mobile robots as automated aids to operators of nondestructive inspection (NDI) equipment. We review the need for aircraft skin inspection, and identify the constraints in commercial airlines operations that make small mobile robots the most attractive alternative for automated aids for NDI procedures. We describe the design and performance of the robot (ANDI) that we designed, built, and are testing for deployment of eddy current probes in prescribed commercial aircraft inspections. We discuss recent work aimed at also providing robotic aids for visual inspection.

  4. Nonlinear optical THz generation and sensing applications

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo

    2012-03-01

    We have suggested a wide range of real-life applications using novel terahertz imaging techniques. A high-resolution terahertz tomography was demonstrated by ultra short terahertz pulses using optical fiber and a nonlinear organic crystal. We also report on the thickness measurement of very thin films using high-sensitivity metal mesh filter. Further we have succeeded in a non-destructive inspection that can monitor the soot distribution in the ceramic filter using millimeter-to-terahertz wave computed tomography. These techniques are directly applicable to the non-destructive testing in industries.

  5. Liberty Bell 7 Recovery Evaluation and Nondestructive Testing

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Smith, William L.

    1999-01-01

    An inspection of the Mercury capsule, Liberty Bell 7, and its contents was made on September 1 and 2, 1999. The condition of the capsule and its contents was consistent with long-term exposure to salt water and high pressures at the bottom of the ocean. Many of the metallic materials suffered corrosion, whereas the polymer-based materials seem to have survived remarkably well. No identifiable items or structures were found that appeared to have any scientific value. At this time, no further nondestructive evaluation appears to be justified.

  6. System reliability analysis through corona testing

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Mueller, L. A.; Koutnik, E. A.

    1975-01-01

    In the Reliability and Quality Engineering Test Laboratory at the NASA Lewis Research Center a nondestructive, corona-vacuum test facility for testing power system components was developed using commercially available hardware. The test facility was developed to simulate operating temperature and vacuum while monitoring corona discharges with residual gases. This facility is being used to test various high voltage power system components.

  7. A Bioreactor to Identify the Driving Mechanical Stimuli of Tissue Growth and Remodeling.

    PubMed

    van Kelle, Mathieu A J; Oomen, Pim J A; Bulsink, Jurgen A; Janssen-van den Broek, Marloes W J T; Lopata, Richard G P; Rutten, Marcel C M; Loerakker, Sandra; Bouten, Carlijn V C

    2017-06-01

    Tissue growth and remodeling are essential processes that should ensure long-term functionality of tissue-engineered (TE) constructs. Even though it is widely recognized that these processes strongly depend on mechanical stimuli, the underlying mechanisms of mechanically induced growth and remodeling are only partially understood. It is generally accepted that cells sense mechanical changes and respond by altering their surroundings, by means of extracellular matrix growth and remodeling, in an attempt to return to a certain preferred mechanical homeostatic state. However, the exact mechanical cues that trigger cells to synthesize and remodel their environment remain unclear. To identify the driving mechanical stimuli of these processes, it is critical to be able to temporarily follow the mechanical state of developing tissues under physiological loading conditions. Therefore, a novel "versatile tissue growth and remodeling" (Vertigro) bioreactor was developed that is capable of tissue culture and mechanical stimulation for a prolonged time period, while simultaneously performing mechanical testing. The Vertigro's unique two-chamber design allows easy, sterile handling of circular 3D TE constructs in a dedicated culture chamber, while a separate pressure chamber facilitates a pressure-driven dynamic loading regime during culture. As a proof-of-concept, temporal changes in the mechanical state of cultured tissues were quantified using nondestructive mechanical testing by means of a classical bulge test, in which the tissue displacement was tracked using ultrasound imaging. To demonstrate the successful development of the bioreactor system, compositional, structural, and geometrical changes were qualitatively and quantitatively assessed using a series of standard analysis techniques. With this bioreactor and associated mechanical analysis technique, a powerful toolbox has been developed to quantitatively study and identify the driving mechanical stimuli of engineered tissue growth and remodeling.

  8. US Air Force perspective on validated NDE - Past, present, and future

    NASA Astrophysics Data System (ADS)

    Lindgren, Eric A.

    2016-02-01

    The concept of inspection has accompanied aviation since the work of the Wright Brothers. Inspection for both initial quality/materials acceptance and readiness for flight have been coupled with US Air Force (USAF) since its inception as the US Army Signal Corps. Initial nondestructive evaluation work expanded beyond visual inspection to include radiography and magnetic particle in the 1920's and 1930's as air frames transitioned to metal and engines used higher strength steels. Within the USAF Research and Development community, a Nondestructive Test Section was stood up in 1952 and the Nondestructive Evaluation Branch (NDE) was established in 1974. In 2012 the name was changed to the Materials State Awareness Branch. This name change reflects the evolution from a primary focus on inspections for damage and defects in materials to the characterization of the underlying materials structure that governs properties of the materials of interest for Air Force applications.

  9. Elasticity dominates strength and failure in metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z. Q.; Qu, R. T.; Zhang, Z. F., E-mail: zhfzhang@imr.ac.cn

    2015-01-07

    Two distinct deformation mechanisms of shearing and volume dilatation are quantitatively analyzed in metallic glasses (MGs) from the fundamental thermodynamics. Their competition is deduced to intrinsically dominate the strength and failure behaviors of MGs. Both the intrinsic shear and normal strengths give rise to the critical mechanical energies to activate destabilization of amorphous structures, under pure shearing and volume dilatation, respectively, and can be determined in terms of elastic constants. By adopting an ellipse failure criterion, the strength and failure behaviors of MGs can be precisely described just according to their shear modulus and Poisson's ratio without mechanical testing. Quantitativemore » relations are established systematically and verified by experimental results. Accordingly, the real-sense non-destructive failure prediction can be achieved in various MGs. By highlighting the broad key significance of elasticity, a “composition-elasticity-property” scheme is further outlined for better understanding and controlling the mechanical properties of MGs and other glassy materials from the elastic perspectives.« less

  10. Multipulse technique exploiting the intermodulation of ultrasound waves in a nonlinear medium.

    PubMed

    Biagi, Elena; Breschi, Luca; Vannacci, Enrico; Masotti, Leonardo

    2009-03-01

    In recent years, the nonlinear properties of materials have attracted much interest in nondestructive testing and in ultrasound diagnostic applications. Acoustic nonlinear parameters represent an opportunity to improve the information that can be extracted from a medium such as structural organization and pathologic status of tissue. In this paper, a method called pulse subtraction intermodulation (PSI), based on a multipulse technique, is presented and investigated both theoretically and experimentally. This method allows separation of the intermodulation products, which arise when 2 separate frequencies are transmitted in a nonlinear medium, from fundamental and second harmonic components, making them available for improved imaging techniques or signal processing algorithms devoted to tissue characterization. The theory of intermodulation product generation was developed according the Khokhlov-Zabolotskaya-Kuznetsov (KZK) nonlinear propagation equation, which is consistent with experimental results. The description of the proposed method, characterization of the intermodulation spectral contents, and quantitative results coming from in vitro experimentation are reported and discussed in this paper.

  11. Radial basis function neural networks in non-destructive determination of compound aspirin tablets on NIR spectroscopy.

    PubMed

    Dou, Ying; Mi, Hong; Zhao, Lingzhi; Ren, Yuqiu; Ren, Yulin

    2006-09-01

    The application of the second most popular artificial neural networks (ANNs), namely, the radial basis function (RBF) networks, has been developed for quantitative analysis of drugs during the last decade. In this paper, the two components (aspirin and phenacetin) were simultaneously determined in compound aspirin tablets by using near-infrared (NIR) spectroscopy and RBF networks. The total database was randomly divided into a training set (50) and a testing set (17). Different preprocessing methods (standard normal variate (SNV), multiplicative scatter correction (MSC), first-derivative and second-derivative) were applied to two sets of NIR spectra of compound aspirin tablets with different concentrations of two active components and compared each other. After that, the performance of RBF learning algorithm adopted the nearest neighbor clustering algorithm (NNCA) and the criterion for selection used a cross-validation technique. Results show that using RBF networks to quantificationally analyze tablets is reliable, and the best RBF model was obtained by first-derivative spectra.

  12. Quantitative Imaging of Microwave Electric Fields through Near-Field Scanning Microwave Microscopy

    NASA Astrophysics Data System (ADS)

    Dutta, S. K.; Vlahacos, C. P.; Steinhauer, D. E.; Thanawalla, A.; Feenstra, B. J.; Wellstood, F. C.; Anlage, Steven M.; Newman, H. S.

    1998-03-01

    The ability to non-destructively image electric field patterns generated by operating microwave devices (e.g. filters, antennas, circulators, etc.) would greatly aid in the design and testing of these structures. Such detailed information can be used to reconcile discrepancies between simulated behavior and experimental data (such as scattering parameters). The near-field scanning microwave microscope we present uses a coaxial probe to provide a simple, broadband method of imaging electric fields.(S. M. Anlage, et al.) IEEE Trans. Appl. Supercond. 7, 3686 (1997).^,(See http://www.csr.umd.edu/research/hifreq/micr_microscopy.html) The signal that is measured is related to the incident electric flux normal to the face of the center conductor of the probe, allowing different components of the field to be measured by orienting the probe appropriately. By using a simple model of the system, we can also convert raw data to absolute electric field. Detailed images of standing waves on copper microstrip will be shown and compared to theory.

  13. NDE of ceramics and ceramic composites

    NASA Technical Reports Server (NTRS)

    Vary, Alex; Klima, Stanley J.

    1991-01-01

    Although nondestructive evaluation (NDE) techniques for ceramics are fairly well developed, they are difficult to apply in many cases for high probability detection of the minute flaws that can cause failure in monolithic ceramics. Conventional NDE techniques are available for monolithic and fiber reinforced ceramic matrix composites, but more exact quantitative techniques needed are still being investigated and developed. Needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in ceramic composites. NDE techniques that will ultimately be applicable to production and quality control of ceramic structures are still emerging from the lab. Needs are different depending on the processing stage, fabrication method, and nature of the finished product. NDE techniques are being developed in concert with materials processing research where they can provide feedback information to processing development and quality improvement. NDE techniques also serve as research tools for materials characterization and for understanding failure processes, e.g., during thermomechanical testing.

  14. Subcellular analysis of interaction between breast cancer cells and drug by digital holography

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Lin, Qiaowen; Wang, Dayong; Wang, Yunxin; Ouyang, Liting; Guo, Sha; Yao, Qian

    2017-10-01

    Digital holographic microscopy is a promising quantitative phase-contrast imaging technique, which exhibits the advantages of non-destruction, full field of view, quasi-real time, and don't need dye and external marker to the living biological sample. In this paper, the inverted off-axis image-plane digital holography with pre-magnification is built up to study the living MDA-MB-231 breast cancer cells. The lateral resolution of the proposed experimental setup is 0.87μm, which is verified by the standard USAF test target. Then the system is used to visualize the interaction between living breast cancer cells and drug. The blebbing is observed after the cells are treated by paclitaxel drug, and the distribution of the paclitaxel inside the cells is detected, which is near the cytomembrane, or in other words the end of the microtubules. It will stop the mitosis and cause the death of the cells. It is helpful to reveal the anticancer mechanism of paclitaxel in the subcellular scale.

  15. Nondestructive Techniques to Evaluate the Characteristics and Development of Engineered Cartilage

    PubMed Central

    Mansour, Joseph M.; Lee, Zhenghong; Welter, Jean F.

    2016-01-01

    In this review, methods for evaluating the properties of tissue engineered (TE) cartilage are described. Many of these have been developed for evaluating properties of native and osteoarthritic articular cartilage. However, with the increasing interest in engineering cartilage, specialized methods are needed for nondestructive evaluation of tissue while it is developing and after it is implanted. Such methods are needed, in part, due to the large inter- and intra-donor variability in the performance of the cellular component of the tissue, which remains a barrier to delivering reliable TE cartilage for implantation. Using conventional destructive tests, such variability makes it near-impossible to predict the timing and outcome of the tissue engineering process at the level of a specific piece of engineered tissue and also makes it difficult to assess the impact of changing tissue engineering regimens. While it is clear that the true test of engineered cartilage is its performance after it is implanted, correlation of pre and post implantation properties determined non-destructively in vitro and/or in vivo with performance should lead to predictive methods to improve quality-control and to minimize the chances of implanting inferior tissue. PMID:26817458

  16. Non-destructive forensic latent fingerprint acquisition with chromatic white light sensors

    NASA Astrophysics Data System (ADS)

    Leich, Marcus; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus

    2011-02-01

    Non-destructive latent fingerprint acquisition is an emerging field of research, which, unlike traditional methods, makes latent fingerprints available for additional verification or further analysis like tests for substance abuse or age estimation. In this paper a series of tests is performed to investigate the overall suitability of a high resolution off-the-shelf chromatic white light sensor for the contact-less and non-destructive latent fingerprint acquisition. Our paper focuses on scanning previously determined regions with exemplary acquisition parameter settings. 3D height field and reflection data of five different latent fingerprints on six different types of surfaces (HDD platter, brushed metal, painted car body (metallic and non-metallic finish), blued metal, veneered plywood) are experimentally studied. Pre-processing is performed by removing low-frequency gradients. The quality of the results is assessed subjectively; no automated feature extraction is performed. Additionally, the degradation of the fingerprint during the acquisition period is observed. While the quality of the acquired data is highly dependent on surface structure, the sensor is capable of detecting the fingerprint on all sample surfaces. On blued metal the residual material is detected; however, the ridge line structure dissolves within minutes after fingerprint placement.

  17. Comparison of an Ultrasonic Phased Array Evaluation with Destructive Analysis of a Documented Leak Path in a Nozzle Removed from Service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinson, Anthony D.; Crawford, Susan L.; MacFarlan, Paul J.

    2012-09-24

    Non-destructive and destructive testing methods were employed to evaluate a documented boric acid leakage path through an Alloy 600 control rod drive mechanism (CRDM) penetration from the North Anna Unit 2 reactor pressure vessel head that was removed from service in 2002. A previous ultrasonic in-service-inspection (ISI) conducted by industry prior to the head removal, identified a probable leakage path in Nozzle 63 located in the interference fit between the penetration tube and the vessel head. In this current examination, Nozzle 63 was examined using phased array (PA) ultrasonic testing with a 5.0-MHz, eight-element annular array; immersion data were acquiredmore » from the nozzle inner diameter (ID) surface. A variety of focal laws were employed to evaluate the signal responses from the interference fit region. These responses were compared to responses obtained from a mockup specimen that was used to determine detection limits and characterization capabilities for wastage and boric acid presence in the interference fit region. Nozzle 63 was destructively examined after the completion of the ultrasonic nondestructive evaluation (NDE) to visually assess the leak paths. These destructive and nondestructive results compared favorably« less

  18. Industrial applications of THz systems

    NASA Astrophysics Data System (ADS)

    Wietzke, S.; Jansen, C.; Jördens, C.; Krumbholz, N.; Vieweg, N.; Scheller, M.; Shakfa, M. K.; Romeike, D.; Hochrein, T.; Mikulics, M.; Koch, M.

    2009-07-01

    Terahertz time-domain spectroscopy (THz TDS) holds high potential as a non-destructive, non-contact testing tool. We have identified a plethora of emerging industrial applications such as quality control of industrial processes and products in the plastics industry. Polymers are transparent to THz waves while additives show a significantly higher permittivity. This dielectric contrast allows for detecting the additive concentration and the degree of dispersion. We present a first inline configuration of a THz TDS spectrometer for monitoring polymeric compounding processes. To evaluate plastic components, non-destructive testing is strongly recommended. For instance, THz imaging is capable of inspecting plastic weld joints or revealing the orientation of fiber reinforcements. Water strongly absorbs THz radiation. However, this sensitivity to water can be employed in order to investigate the moisture absorption in plastics and the water content in plants. Furthermore, applications in food technology are discussed. Moreover, security scanning applications are addressed in terms of identifying liquid explosives. We present the vision and first components of a handheld security scanner. In addition, a new approach for parameter extraction of THz TDS data is presented. All in all, we give an overview how industry can benefit from THz TDS completing the tool box of non-destructive evaluation.

  19. Non-destructive inspection in industrial equipment using robotic mobile manipulation

    NASA Astrophysics Data System (ADS)

    Maurtua, Iñaki; Susperregi, Loreto; Ansuategui, Ander; Fernández, Ane; Ibarguren, Aitor; Molina, Jorge; Tubio, Carlos; Villasante, Cristobal; Felsch, Torsten; Pérez, Carmen; Rodriguez, Jorge R.; Ghrissi, Meftah

    2016-05-01

    MAINBOT project has developed service robots based applications to autonomously execute inspection tasks in extensive industrial plants in equipment that is arranged horizontally (using ground robots) or vertically (climbing robots). The industrial objective has been to provide a means to help measuring several physical parameters in multiple points by autonomous robots, able to navigate and climb structures, handling non-destructive testing sensors. MAINBOT has validated the solutions in two solar thermal plants (cylindrical-parabolic collectors and central tower), that are very demanding from mobile manipulation point of view mainly due to the extension (e.g. a thermal solar plant of 50Mw, with 400 hectares, 400.000 mirrors, 180 km of absorber tubes, 140m height tower), the variability of conditions (outdoor, day-night), safety requirements, etc. Once the technology was validated in simulation, the system was deployed in real setups and different validation tests carried out. In this paper two of the achievements related with the ground mobile inspection system are presented: (1) Autonomous navigation localization and planning algorithms to manage navigation in huge extensions and (2) Non-Destructive Inspection operations: thermography based detection algorithms to provide automatic inspection abilities to the robots.

  20. PARTITIONING INTERWELL TRACER TEST FOR NAPL SOURCE CHARACTERIZATION: A GENERAL OVERVIEW

    EPA Science Inventory

    Innovative and nondestructive characterization techniques have been developed to locate and quantify nonaqueous phase liquids (NAPLs) in the vadose and saturated zones in the subsurface environment. One such technique is the partitioning interwell tracer test (PITT). The PITT i...

Top