Science.gov

Sample records for quantitative pcr methods

  1. [Research progress of real-time quantitative PCR method for group A rotavirus detection].

    PubMed

    Guo, Yan-Qing; Li, Dan-Di; Duan, Zhao-Jun

    2013-11-01

    Group A rotavirus is one of the most significant etiological agents which causes acute gastroenteritis among infants and young children worldwide. So far, several method which includes electron microscopy (EM), enzyme immunoassay (EIA), reverse transcription-polymerase chain reaction (RT-PCR)and Real-time Quantitative PCR has been established for the detection of rotavirus. Compared with other methods, Real-time quantitative PCR have advantages in specificity, sensitivity, genotyping and quantitative accuracy. This article shows a overview of the application of real-time quantitative PCR technique to detecte group A rotavirus.

  2. Quantitative PCR Method for Diagnosis of Citrus Bacterial Canker†

    PubMed Central

    Cubero, J.; Graham, J. H.; Gottwald, T. R.

    2001-01-01

    For diagnosis of citrus bacterial canker by PCR, an internal standard is employed to ensure the quality of the DNA extraction and that proper requisites exist for the amplification reaction. The ratio of PCR products from the internal standard and bacterial target is used to estimate the initial bacterial concentration in citrus tissues with lesions. PMID:11375206

  3. Validation of PCR methods for quantitation of genetically modified plants in food.

    PubMed

    Hübner, P; Waiblinger, H U; Pietsch, K; Brodmann, P

    2001-01-01

    For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.

  4. Optimization of Quantitative PCR Methods for Enteropathogen Detection.

    PubMed

    Liu, Jie; Gratz, Jean; Amour, Caroline; Nshama, Rosemary; Walongo, Thomas; Maro, Athanasia; Mduma, Esto; Platts-Mills, James; Boisen, Nadia; Nataro, James; Haverstick, Doris M; Kabir, Furqan; Lertsethtakarn, Paphavee; Silapong, Sasikorn; Jeamwattanalert, Pimmada; Bodhidatta, Ladaporn; Mason, Carl; Begum, Sharmin; Haque, Rashidul; Praharaj, Ira; Kang, Gagandeep; Houpt, Eric R

    2016-01-01

    Detection and quantification of enteropathogens in stool specimens is useful for diagnosing the cause of diarrhea but is technically challenging. Here we evaluate several important determinants of quantification: specimen collection, nucleic acid extraction, and extraction and amplification efficiency. First, we evaluate the molecular detection and quantification of pathogens in rectal swabs versus stool, using paired flocked rectal swabs and whole stool collected from 129 children hospitalized with diarrhea in Tanzania. Swabs generally yielded a higher quantification cycle (Cq) (average 29.7, standard deviation 3.5 vs. 25.3 ± 2.9 from stool, P<0.001) but were still able to detect 80% of pathogens with a Cq < 30 in stool. Second, a simplified total nucleic acid (TNA) extraction procedure was compared to separate DNA and RNA extractions and showed 92% (318/344) sensitivity and 98% (951/968) specificity, with no difference in Cq value for the positive results (ΔCq(DNA+RNA-TNA) = -0.01 ± 1.17, P = 0.972, N = 318). Third, we devised a quantification scheme that adjusts pathogen quantity to the specimen's extraction and amplification efficiency, and show that this better estimates the quantity of spiked specimens than the raw target Cq. In sum, these methods for enteropathogen quantification, stool sample collection, and nucleic acid extraction will be useful for laboratories studying enteric disease. PMID:27336160

  5. Optimization of Quantitative PCR Methods for Enteropathogen Detection

    PubMed Central

    Liu, Jie; Gratz, Jean; Amour, Caroline; Nshama, Rosemary; Walongo, Thomas; Maro, Athanasia; Mduma, Esto; Platts-Mills, James; Boisen, Nadia; Nataro, James; Haverstick, Doris M.; Kabir, Furqan; Lertsethtakarn, Paphavee; Silapong, Sasikorn; Jeamwattanalert, Pimmada; Bodhidatta, Ladaporn; Mason, Carl; Begum, Sharmin; Haque, Rashidul; Praharaj, Ira; Kang, Gagandeep; Houpt, Eric R.

    2016-01-01

    Detection and quantification of enteropathogens in stool specimens is useful for diagnosing the cause of diarrhea but is technically challenging. Here we evaluate several important determinants of quantification: specimen collection, nucleic acid extraction, and extraction and amplification efficiency. First, we evaluate the molecular detection and quantification of pathogens in rectal swabs versus stool, using paired flocked rectal swabs and whole stool collected from 129 children hospitalized with diarrhea in Tanzania. Swabs generally yielded a higher quantification cycle (Cq) (average 29.7, standard deviation 3.5 vs. 25.3 ± 2.9 from stool, P<0.001) but were still able to detect 80% of pathogens with a Cq < 30 in stool. Second, a simplified total nucleic acid (TNA) extraction procedure was compared to separate DNA and RNA extractions and showed 92% (318/344) sensitivity and 98% (951/968) specificity, with no difference in Cq value for the positive results (ΔCq(DNA+RNA-TNA) = -0.01 ± 1.17, P = 0.972, N = 318). Third, we devised a quantification scheme that adjusts pathogen quantity to the specimen’s extraction and amplification efficiency, and show that this better estimates the quantity of spiked specimens than the raw target Cq. In sum, these methods for enteropathogen quantification, stool sample collection, and nucleic acid extraction will be useful for laboratories studying enteric disease. PMID:27336160

  6. Rapid and Inexpensive Screening of Genomic Copy Number Variations Using a Novel Quantitative Fluorescent PCR Method

    PubMed Central

    Han, Joan C.; Elsea, Sarah H.; Pena, Heloísa B.; Pena, Sérgio Danilo Junho

    2013-01-01

    Detection of human microdeletion and microduplication syndromes poses significant burden on public healthcare systems in developing countries. With genome-wide diagnostic assays frequently inaccessible, targeted low-cost PCR-based approaches are preferred. However, their reproducibility depends on equally efficient amplification using a number of target and control primers. To address this, the recently described technique called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR) was shown to reliably detect four human syndromes by quantifying DNA amplification in an internally controlled PCR reaction. Here, we confirm its utility in the detection of eight human microdeletion syndromes, including the more common WAGR, Smith-Magenis, and Potocki-Lupski syndromes with 100% sensitivity and 100% specificity. We present selection, design, and performance evaluation of detection primers using variety of approaches. We conclude that MQF-PCR is an easily adaptable method for detection of human pathological chromosomal aberrations. PMID:24288428

  7. Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources.

    PubMed

    Raith, Meredith R; Kelty, Catherine A; Griffith, John F; Schriewer, Alexander; Wuertz, Stefan; Mieszkin, Sophie; Gourmelon, Michele; Reischer, Georg H; Farnleitner, Andreas H; Ervin, Jared S; Holden, Patricia A; Ebentier, Darcy L; Jay, Jennifer A; Wang, Dan; Boehm, Alexandria B; Aw, Tiong Gim; Rose, Joan B; Balleste, E; Meijer, W G; Sivaganesan, Mano; Shanks, Orin C

    2013-11-15

    The State of California has mandated the preparation of a guidance document on the application of fecal source identification methods for recreational water quality management. California contains the fifth highest population of cattle in the United States, making the inclusion of cow-associated methods a logical choice. Because the performance of these methods has been shown to change based on geography and/or local animal feeding practices, laboratory comparisons are needed to determine which assays are best suited for implementation. We describe the performance characterization of two end-point PCR assays (CF128 and CF193) and five real-time quantitative PCR (qPCR) assays (Rum2Bac, BacR, BacCow, CowM2, and CowM3) reported to be associated with either ruminant or cattle feces. Each assay was tested against a blinded set of 38 reference challenge filters (19 duplicate samples) containing fecal pollution from 12 different sources suspected to impact water quality. The abundance of each host-associated genetic marker was measured for qPCR-based assays in both target and non-target animals and compared to quantities of total DNA mass, wet mass of fecal material, as well as Bacteroidales, and enterococci determined by 16S rRNA qPCR and culture-based approaches (enterococci only). Ruminant- and cow-associated genetic markers were detected in all filters containing a cattle fecal source. However, some assays cross-reacted with non-target pollution sources. A large amount of variability was evident across laboratories when protocols were not fixed suggesting that protocol standardization will be necessary for widespread implementation. Finally, performance metrics indicate that the cattle-associated CowM2 qPCR method combined with either the BacR or Rum2Bac ruminant-associated methods are most suitable for implementation.

  8. Simple, Rapid and Inexpensive Quantitative Fluorescent PCR Method for Detection of Microdeletion and Microduplication Syndromes

    PubMed Central

    Stofanko, Martin; Gonçalves-Dornelas, Higgor; Cunha, Pricila Silva; Pena, Heloísa B.; Vianna-Morgante, Angela M.; Pena, Sérgio Danilo Junho

    2013-01-01

    Because of economic limitations, the cost-effective diagnosis of patients affected with rare microdeletion or microduplication syndromes is a challenge in developing countries. Here we report a sensitive, rapid, and affordable detection method that we have called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR). Our procedure is based on the finding of genomic regions with high homology to segments of the critical microdeletion/microduplication region. PCR amplification of both using the same primer pair, establishes competitive kinetics and relative quantification of amplicons, as happens in microsatellite-based Quantitative Fluorescence PCR. We used patients with two common microdeletion syndromes, the Williams-Beuren syndrome (7q11.23 microdeletion) and the 22q11.2 microdeletion syndromes and discovered that MQF-PCR could detect both with 100% sensitivity and 100% specificity. Additionally, we demonstrated that the same principle could be reliably used for detection of microduplication syndromes, by using patients with the Lubs (MECP2 duplication) syndrome and the 17q11.2 microduplication involving the NF1 gene. We propose that MQF-PCR is a useful procedure for laboratory confirmation of the clinical diagnosis of microdeletion/microduplication syndromes, ideally suited for use in developing countries, but having general applicability as well. PMID:23620743

  9. Development of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    PubMed

    Oguchi, Taichi; Onishi, Mari; Minegishi, Yasutaka; Kurosawa, Yasunori; Kasahara, Masaki; Akiyama, Hiroshi; Teshima, Reiko; Futo, Satoshi; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2009-06-01

    A duplex real-time PCR method was developed for quantitative screening analysis of GM maize. The duplex real-time PCR simultaneously detected two GM-specific segments, namely the cauliflower mosaic virus (CaMV) 35S promoter (P35S) segment and an event-specific segment for GA21 maize which does not contain P35S. Calibration was performed with a plasmid calibrant specially designed for the duplex PCR. The result of an in-house evaluation suggested that the analytical precision of the developed method was almost equivalent to those of simplex real-time PCR methods, which have been adopted as ISO standard methods for the analysis of GMOs in foodstuffs and have also been employed for the analysis of GMOs in Japan. In addition, this method will reduce both the cost and time requirement of routine GMO analysis by half. The high analytical performance demonstrated in the current study would be useful for the quantitative screening analysis of GM maize. We believe the developed method will be useful for practical screening analysis of GM maize, although interlaboratory collaborative studies should be conducted to confirm this. PMID:19602858

  10. Development of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    PubMed

    Oguchi, Taichi; Onishi, Mari; Minegishi, Yasutaka; Kurosawa, Yasunori; Kasahara, Masaki; Akiyama, Hiroshi; Teshima, Reiko; Futo, Satoshi; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2009-06-01

    A duplex real-time PCR method was developed for quantitative screening analysis of GM maize. The duplex real-time PCR simultaneously detected two GM-specific segments, namely the cauliflower mosaic virus (CaMV) 35S promoter (P35S) segment and an event-specific segment for GA21 maize which does not contain P35S. Calibration was performed with a plasmid calibrant specially designed for the duplex PCR. The result of an in-house evaluation suggested that the analytical precision of the developed method was almost equivalent to those of simplex real-time PCR methods, which have been adopted as ISO standard methods for the analysis of GMOs in foodstuffs and have also been employed for the analysis of GMOs in Japan. In addition, this method will reduce both the cost and time requirement of routine GMO analysis by half. The high analytical performance demonstrated in the current study would be useful for the quantitative screening analysis of GM maize. We believe the developed method will be useful for practical screening analysis of GM maize, although interlaboratory collaborative studies should be conducted to confirm this.

  11. [Development and validation of event-specific quantitative PCR method for genetically modified maize LY038].

    PubMed

    Mano, Junichi; Masubuchi, Tomoko; Hatano, Shuko; Futo, Satoshi; Koiwa, Tomohiro; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Takabatake, Reona; Kitta, Kazumi

    2013-01-01

    In this article, we report a novel real-time PCR-based analytical method for quantitation of the GM maize event LY038. We designed LY038-specific and maize endogenous reference DNA-specific PCR amplifications. After confirming the specificity and linearity of the LY038-specific PCR amplification, we determined the conversion factor required to calculate the weight-based content of GM organism (GMO) in a multilaboratory evaluation. Finally, in order to validate the developed method, an interlaboratory collaborative trial according to the internationally harmonized guidelines was performed with blind DNA samples containing LY038 at the mixing levels of 0, 0.5, 1.0, 5.0 and 10.0%. The precision of the method was evaluated as the RSD of reproducibility (RSDR), and the values obtained were all less than 25%. The limit of quantitation of the method was judged to be 0.5% based on the definition of ISO 24276 guideline. The results from the collaborative trial suggested that the developed quantitative method would be suitable for practical testing of LY038 maize.

  12. [Development and validation of event-specific quantitative PCR method for genetically modified maize LY038].

    PubMed

    Mano, Junichi; Masubuchi, Tomoko; Hatano, Shuko; Futo, Satoshi; Koiwa, Tomohiro; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Takabatake, Reona; Kitta, Kazumi

    2013-01-01

    In this article, we report a novel real-time PCR-based analytical method for quantitation of the GM maize event LY038. We designed LY038-specific and maize endogenous reference DNA-specific PCR amplifications. After confirming the specificity and linearity of the LY038-specific PCR amplification, we determined the conversion factor required to calculate the weight-based content of GM organism (GMO) in a multilaboratory evaluation. Finally, in order to validate the developed method, an interlaboratory collaborative trial according to the internationally harmonized guidelines was performed with blind DNA samples containing LY038 at the mixing levels of 0, 0.5, 1.0, 5.0 and 10.0%. The precision of the method was evaluated as the RSD of reproducibility (RSDR), and the values obtained were all less than 25%. The limit of quantitation of the method was judged to be 0.5% based on the definition of ISO 24276 guideline. The results from the collaborative trial suggested that the developed quantitative method would be suitable for practical testing of LY038 maize. PMID:23470871

  13. Calibration-curve-free quantitative PCR: a quantitative method for specific nucleic acid sequences without using calibration curves.

    PubMed

    Tani, Hidenori; Kanagawa, Takahiro; Morita, Nao; Kurata, Shinya; Nakamura, Kazunori; Tsuneda, Satoshi; Noda, Naohiro

    2007-10-01

    We have developed a simple quantitative method for specific nucleic acid sequences without using calibration curves. This method is based on the combined use of competitive polymerase chain reaction (PCR) and fluorescence quenching. We amplified a gene of interest (target) from DNA samples and an internal standard (competitor) with a sequence-specific fluorescent probe using PCR and measured the fluorescence intensities before and after PCR. The fluorescence of the probe is quenched on hybridization with the target by guanine bases, whereas the fluorescence is not quenched on hybridization with the competitor. Therefore, quench rate (i.e., fluorescence intensity after PCR divided by fluorescence intensity before PCR) is always proportional to the ratio of the target to the competitor. Consequently, we can calculate the ratio from quench rate without using a calibration curve and then calculate the initial copy number of the target from the ratio and the initial copy number of the competitor. We successfully quantified the copy number of a recombinant DNA of genetically modified (GM) soybean and estimated the GM soybean contents. This method will be particularly useful for rapid field tests of the specific gene contamination in samples.

  14. Development and validation of event-specific quantitative PCR method for genetically modified maize MIR604.

    PubMed

    Mano, Junichi; Furui, Satoshi; Takashima, Kaori; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Takabatake, Reona; Kitta, Kazumi

    2012-01-01

    A GM maize event, MIR604, has been widely distributed and an analytical method to quantify its content is required to monitor the validity of food labeling. Here we report a novel real-time PCR-based quantitation method for MIR604 maize. We developed real-time PCR assays specific for MIR604 using event-specific primers designed by the trait developer, and for maize endogenous starch synthase IIb gene (SSIIb). Then, we determined the conversion factor, which is required to calculate the weight-based GM maize content from the copy number ratio of MIR604-specific DNA to the endogenous reference DNA. Finally, to validate the developed method, an interlaboratory collaborative trial according to the internationally harmonized guidelines was performed with blind samples containing MIR604 at the mixing levels of 0, 0.5, 1.0, 5.0 and 10.0%. The reproducibility (RSDr) of the developed method was evaluated to be less than 25%. The limit of quantitation of the method was estimated to be 0.5% based on the ISO 24276 guideline. These results suggested that the developed method would be suitable for practical quantitative analyses of MIR604 maize. PMID:23132355

  15. "Per cell" normalization method for mRNA measurement by quantitative PCR and microarrays

    PubMed Central

    Kanno, Jun; Aisaki, Ken-ichi; Igarashi, Katsuhide; Nakatsu, Noriyuki; Ono, Atsushi; Kodama, Yukio; Nagao, Taku

    2006-01-01

    Background Transcriptome data from quantitative PCR (Q-PCR) and DNA microarrays are typically obtained from a fixed amount of RNA collected per sample. Therefore, variations in tissue cellularity and RNA yield across samples in an experimental series compromise accurate determination of the absolute level of each mRNA species per cell in any sample. Since mRNAs are copied from genomic DNA, the simplest way to express mRNA level would be as copy number per template DNA, or more practically, as copy number per cell. Results Here we report a method (designated the "Percellome" method) for normalizing the expression of mRNA values in biological samples. It provides a "per cell" readout in mRNA copy number and is applicable to both quantitative PCR (Q-PCR) and DNA microarray studies. The genomic DNA content of each sample homogenate was measured from a small aliquot to derive the number of cells in the sample. A cocktail of five external spike RNAs admixed in a dose-graded manner (dose-graded spike cocktail; GSC) was prepared and added to each homogenate in proportion to its DNA content. In this way, the spike mRNAs represented absolute copy numbers per cell in the sample. The signals from the five spike mRNAs were used as a dose-response standard curve for each sample, enabling us to convert all the signals measured to copy numbers per cell in an expression profile-independent manner. A series of samples was measured by Q-PCR and Affymetrix GeneChip microarrays using this Percellome method, and the results showed up to 90 % concordance. Conclusion Percellome data can be compared directly among samples and among different studies, and between different platforms, without further normalization. Therefore, "percellome" normalization can serve as a standard method for exchanging and comparing data across different platforms and among different laboratories. PMID:16571132

  16. Establishment and evaluation of event-specific quantitative PCR method for genetically modified soybean MON89788.

    PubMed

    Takabatake, Reona; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Kitta, Kazumi

    2010-01-01

    A novel real-time PCR-based analytical method was established for the event-specific quantification of a GM soybean event MON89788. The conversion factor (C(f)) which is required to calculate the GMO amount was experimentally determined. The quantitative method was evaluated by a single-laboratory analysis and a blind test in a multi-laboratory trial. The limit of quantitation for the method was estimated to be 0.1% or lower. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)), and the determined bias and RSD(R) values for the method were both less than 20%. These results suggest that the established method would be suitable for practical detection and quantification of MON89788. PMID:21071908

  17. Establishment and evaluation of event-specific quantitative PCR method for genetically modified soybean MON89788.

    PubMed

    Takabatake, Reona; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Kitta, Kazumi

    2010-01-01

    A novel real-time PCR-based analytical method was established for the event-specific quantification of a GM soybean event MON89788. The conversion factor (C(f)) which is required to calculate the GMO amount was experimentally determined. The quantitative method was evaluated by a single-laboratory analysis and a blind test in a multi-laboratory trial. The limit of quantitation for the method was estimated to be 0.1% or lower. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)), and the determined bias and RSD(R) values for the method were both less than 20%. These results suggest that the established method would be suitable for practical detection and quantification of MON89788.

  18. Accuracy, precision, and method detection limits of quantitative PCR for airborne bacteria and fungi.

    PubMed

    Hospodsky, Denina; Yamamoto, Naomichi; Peccia, Jordan

    2010-11-01

    Real-time quantitative PCR (qPCR) for rapid and specific enumeration of microbial agents is finding increased use in aerosol science. The goal of this study was to determine qPCR accuracy, precision, and method detection limits (MDLs) within the context of indoor and ambient aerosol samples. Escherichia coli and Bacillus atrophaeus vegetative bacterial cells and Aspergillus fumigatus fungal spores loaded onto aerosol filters were considered. Efficiencies associated with recovery of DNA from aerosol filters were low, and excluding these efficiencies in quantitative analysis led to underestimating the true aerosol concentration by 10 to 24 times. Precision near detection limits ranged from a 28% to 79% coefficient of variation (COV) for the three test organisms, and the majority of this variation was due to instrument repeatability. Depending on the organism and sampling filter material, precision results suggest that qPCR is useful for determining dissimilarity between two samples only if the true differences are greater than 1.3 to 3.2 times (95% confidence level at n = 7 replicates). For MDLs, qPCR was able to produce a positive response with 99% confidence from the DNA of five B. atrophaeus cells and less than one A. fumigatus spore. Overall MDL values that included sample processing efficiencies ranged from 2,000 to 3,000 B. atrophaeus cells per filter and 10 to 25 A. fumigatus spores per filter. Applying the concepts of accuracy, precision, and MDL to qPCR aerosol measurements demonstrates that sample processing efficiencies must be accounted for in order to accurately estimate bioaerosol exposure, provides guidance on the necessary statistical rigor required to understand significant differences among separate aerosol samples, and prevents undetected (i.e., nonquantifiable) values for true aerosol concentrations that may be significant.

  19. Use of quantitative PCR to evaluate methods of bacteria sampling in periodontal patients.

    PubMed

    Masunaga, Hiroshi; Tsutae, Wataru; Oh, Hyun; Shinozuka, Naoki; Kishimoto, Noriyoshi; Ogata, Yorimasa

    2010-12-01

    Periodontal disease is associated with specific periodontal pathogens and may persist as gingivitis or progress to more severe disease. The bacteria involved in disease initiation and progression have not been identified. We used quantitative polymerase chain reaction (PCR) to compare the levels of Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola, and total bacteria detected by different sampling methods. On the basis of the results of clinical examinations, 57 patients were divided into 3 groups: healthy group (group A), gingivitis group (group B), and periodontitis group (group C). Bacterial samples were collected from saliva, mouthwash, and by paper-point sampling of gingival crevicular fluid (GCF), and the samples were analyzed with quantitative PCR targeting 16S rRNA. The numbers of total bacteria in samples of GCF, saliva, and mouthwash were 10⁵ to 10⁶, 10⁸, and 10⁷, respectively, per milliliter. The number of P. gingivalis in GCF samples was lower than 10 in group A; however, in groups B and C, the values were 10³ and 10⁴, respectively, indicating that the number of P. gingivalis increased with worsening clinical status. Findings were similar in the samples of saliva and mouthwash. The numbers of T. forsythia showed a pattern similar to that of P. gingivalis in all 3 samples. These results suggest that saliva and mouthwash samples are clinically useful for bacterial testing of periodontal diseases by quantitative PCR. In addition, mouthwash sampling is more feasible and straightforward than saliva sampling.

  20. An ECL-PCR method for quantitative detection of point mutation

    NASA Astrophysics Data System (ADS)

    Zhu, Debin; Xing, Da; Shen, Xingyan; Chen, Qun; Liu, Jinfeng

    2005-04-01

    A new method for identification of point mutations was proposed. Polymerase chain reaction (PCR) amplification of a sequence from genomic DNA was followed by digestion with a kind of restriction enzyme, which only cut the wild-type amplicon containing its recognition site. Reaction products were detected by electrochemiluminescence (ECL) assay after adsorption of the resulting DNA duplexes to the solid phase. One strand of PCR products carries biotin to be bound on a streptavidin-coated microbead for sample selection. Another strand carries Ru(bpy)32+ (TBR) to react with tripropylamine (TPA) to emit light for ECL detection. The method was applied to detect a specific point mutation in H-ras oncogene in T24 cell line. The results show that the detection limit for H-ras amplicon is 100 fmol and the linear range is more than 3 orders of magnitude, thus, make quantitative analysis possible. The genotype can be clearly discriminated. Results of the study suggest that ECL-PCR is a feasible quantitative method for safe, sensitive and rapid detection of point mutation in human genes.

  1. Effect of platform, reference material, and quantification model on enumeration of Enterococcus by quantitative PCR methods.

    PubMed

    Cao, Yiping; Sivaganesan, Mano; Kinzelman, Julie; Blackwood, A Denene; Noble, Rachel T; Haugland, Richard A; Griffith, John F; Weisberg, Stephen B

    2013-01-01

    Quantitative polymerase chain reaction (qPCR) is increasingly being used for the quantitative detection of fecal indicator bacteria in beach water. QPCR allows for same-day health warnings, and its application is being considered as an option for recreational water quality testing in the United States (USEPA, 2011. EPA-OW-2011-0466, FRL-9609-3, Notice of Availability of Draft Recreational Water Quality Criteria and Request for Scientific Views). However, transition of qPCR from a research tool to routine water quality testing requires information on how various method variations affect target enumeration. Here we compared qPCR performance and enumeration of enterococci in spiked and environmental water samples using three qPCR platforms (Applied Biosystem StepOnePlus™, the BioRad iQ™5 and the Cepheid SmartCycler(®) II), two reference materials (lyophilized cells and frozen cells on filters) and two comparative CT quantification models (ΔCT and ΔΔCT). Reference materials exerted the biggest influence, consistently affecting results by approximately 0.5 log(10) unit. Platform had the smallest effect, generally exerting <0.1 log(10) unit difference in final results. Quantification model led to small differences (0.04-0.2 log(10) unit) in this study with relatively uninhibited samples, but has the potential to cause as much as 8-fold (0.9 log(10) unit) difference in potentially inhibitory samples. Our findings indicate the need for a certified and centralized source of reference materials and additional studies to assess applicability of the quantification models in analyses of PCR inhibitory samples.

  2. Detection of Legionella species in environmental water by the quantitative PCR method in combination with ethidium monoazide treatment.

    PubMed

    Inoue, Hiroaki; Takama, Tomoko; Yoshizaki, Miwa; Agata, Kunio

    2015-01-01

    We detected Legionella species in 111 bath water samples and 95 cooling tower water samples by using a combination of conventional plate culture, quantitative polymerase chain reaction (qPCR) and qPCR combined with ethidium monoazide treatment (EMA-qPCR) methods. In the case of bath water samples, Legionella spp. were detected in 30 samples by plate culture, in 85 samples by qPCR, and in 49 samples by EMA-qPCR. Of 81 samples determined to be Legionella-negative by plate culture, 56 and 23 samples were positive by qPCR and EMA-qPCR, respectively. Therefore, EMA treatment decreased the number of Legionella-positive bath water samples detected by qPCR. In contrast, EMA treatment had no effect on cooling tower water samples. We therefore expect that EMA-qPCR is a useful method for the rapid detection of viable Legionella spp. from bath water samples.

  3. Detection of Legionella species in environmental water by the quantitative PCR method in combination with ethidium monoazide treatment.

    PubMed

    Inoue, Hiroaki; Takama, Tomoko; Yoshizaki, Miwa; Agata, Kunio

    2015-01-01

    We detected Legionella species in 111 bath water samples and 95 cooling tower water samples by using a combination of conventional plate culture, quantitative polymerase chain reaction (qPCR) and qPCR combined with ethidium monoazide treatment (EMA-qPCR) methods. In the case of bath water samples, Legionella spp. were detected in 30 samples by plate culture, in 85 samples by qPCR, and in 49 samples by EMA-qPCR. Of 81 samples determined to be Legionella-negative by plate culture, 56 and 23 samples were positive by qPCR and EMA-qPCR, respectively. Therefore, EMA treatment decreased the number of Legionella-positive bath water samples detected by qPCR. In contrast, EMA treatment had no effect on cooling tower water samples. We therefore expect that EMA-qPCR is a useful method for the rapid detection of viable Legionella spp. from bath water samples. PMID:25817816

  4. Monochloramine disinfection kinetics of Nitrosomonas europaea by propidium monoazide quantitative PCR and Live/Dead BacLight Methods

    EPA Science Inventory

    Monochloramine disinfection kinetics were determined for the pure culture ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) by two culture independent methods: (1) LIVE/DEAD® BacLight™ (LD) and (2) propidium monoazide quantitative PCR (PMA-qPCR). Both methods were f...

  5. Effect of platform, reference material, and quantification model on enumeration of Enterococcus by quantitative PCR methods

    EPA Science Inventory

    Quantitative polymerase chain reaction (qPCR) is increasingly being used for the quantitative detection of fecal indicator bacteria in beach water. QPCR allows for same-day health warnings, and its application is being considered as an optionn for recreational water quality testi...

  6. Qualitative and quantitative event-specific PCR detection methods for oxy-235 canola based on the 3' integration flanking sequence.

    PubMed

    Yang, Litao; Guo, Jinchao; Zhang, Haibo; Liu, Jia; Zhang, Dabing

    2008-03-26

    As more genetically modified plant events are approved for commercialization worldwide, the event-specific PCR method has become the key method for genetically modified organism (GMO) identification and quantification. This study reveals the 3' flanking sequence of the exogenous integration of Oxy-235 canola employing thermal asymmetric interlaced PCR (TAIL-PCR). On the basis of the revealed 3' flanking sequence, PCR primers and TaqMan probe were designed and qualitative and quantitative PCR assays were established for Oxy-235 canola. The specificity and limits of detection (LOD) and quantification (LOQ) of these two PCR assays were validated to as low as 0.1% for the relative LOD of qualitative PCR assay; the absolute LOD and LOQ were low to 10 and 20 copies of canola genomic DNA in quantitative PCR assay, respectively. Furthermore, ideal quantified results were obtained in the practical canola sample detection. All of the results indicate that the developed qualitative and quantitative PCR methods based on the revealed 3' integration flanking sequence are suitable for GM canola Oxy-235 identification and quantification.

  7. Nanoliter high throughput quantitative PCR

    PubMed Central

    Morrison, Tom; Hurley, James; Garcia, Javier; Yoder, Karl; Katz, Arrin; Roberts, Douglas; Cho, Jamie; Kanigan, Tanya; Ilyin, Sergey E.; Horowitz, Daniel; Dixon, James M.; Brenan, Colin J.H.

    2006-01-01

    Understanding biological complexity arising from patterns of gene expression requires accurate and precise measurement of RNA levels across large numbers of genes simultaneously. Real time PCR (RT-PCR) in a microtiter plate is the preferred method for quantitative transcriptional analysis but scaling RT-PCR to higher throughputs in this fluidic format is intrinsically limited by cost and logistic considerations. Hybridization microarrays measure the transcription of many thousands of genes simultaneously yet are limited by low sensitivity, dynamic range, accuracy and sample throughput. The hybrid approach described here combines the superior accuracy, precision and dynamic range of RT-PCR with the parallelism of a microarray in an array of 3072 real time, 33 nl polymerase chain reactions (RT-PCRs) the size of a microscope slide. RT-PCR is demonstrated with an accuracy and precision equivalent to the same assay in a 384-well microplate but in a 64-fold smaller reaction volume, a 24-fold higher analytical throughput and a workflow compatible with standard microplate protocols. PMID:17000636

  8. PALATAL DYSMORPHOGENESIS: QUANTITATIVE RT-PCR

    EPA Science Inventory

    ABSTRACT

    Palatal Dysmorphogenesis : Quantitative RT-PCR

    Gary A. Held and Barbara D. Abbott

    Reverse transcription PCR (RT-PCR) is a very sensitive method for detecting mRNA in tissue samples. However, as it is usually performed it is does not yield quantitativ...

  9. Technical note: development of a quantitative PCR method for monitoring strain dynamics during yogurt manufacture.

    PubMed

    Miller, D M; Dudley, E G; Roberts, R F

    2012-09-01

    Yogurt starter cultures may consist of multiple strains of Lactobacillus delbrueckii ssp. bulgaricus (LB) and Streptococcus thermophilus (ST). Conventional plating methods for monitoring LB and ST levels during yogurt manufacture do not allow for quantification of individual strains. The objective of the present work was to develop a quantitative PCR method for quantification of individual strains in a commercial yogurt starter culture. Strain-specific primers were designed for 2 ST strains (ST DGCC7796 and ST DGCC7710), 1 LB strain (DGCC4078), and 1 Lactobacillus delbrueckii ssp. lactis strain (LL; DGCC4550). Primers for the individual ST and LB strains were designed to target unique DNA sequences in clustered regularly interspersed short palindromic repeats. Primers for LL were designed to target a putative mannitol-specific IIbC component of the phosphotransferase system. Following evaluation of primer specificity, standard curves relating cell number to cycle threshold were prepared for each strain individually and in combination in yogurt mix, and no significant differences in the slopes were observed. Strain balance data was collected for yogurt prepared at 41 and 43°C to demonstrate the potential application of this method.

  10. A simple, inexpensive method for preparing cell lysates suitable for downstream reverse transcription quantitative PCR

    PubMed Central

    Shatzkes, Kenneth; Teferedegne, Belete; Murata, Haruhiko

    2014-01-01

    Sample nucleic acid purification can often be rate-limiting for conventional quantitative PCR (qPCR) workflows. We recently developed high-throughput virus microneutralization assays using an endpoint assessment approach based on reverse transcription qPCR (RT-qPCR). The need for cumbersome RNA purification is circumvented in our assays by making use of a commercial reagent that can easily generate crude cell lysates amenable to direct analysis by one-step RT-qPCR. In the present study, we demonstrate that a simple buffer containing a non-ionic detergent can serve as an inexpensive alternative to commercially available reagents for the purpose of generating RT-qPCR-ready cell lysates from MDCK cells infected with influenza virus. We have found that addition of exogenous RNase inhibitor as a buffer component is not essential in order to maintain RNA integrity, even following stress at 37°C incubation for 1–2 hours, in cell-lysate samples either freshly prepared or previously stored frozen at −80°C. PMID:24722424

  11. Method Specific Calibration Corrects for DNA Extraction Method Effects on Relative Telomere Length Measurements by Quantitative PCR

    PubMed Central

    Holland, Rebecca; Underwood, Sarah; Fairlie, Jennifer; Psifidi, Androniki; Ilska, Joanna J.; Bagnall, Ainsley; Whitelaw, Bruce; Coffey, Mike; Banos, Georgios; Nussey, Daniel H.

    2016-01-01

    Telomere length (TL) is increasingly being used as a biomarker in epidemiological, biomedical and ecological studies. A wide range of DNA extraction techniques have been used in telomere experiments and recent quantitative PCR (qPCR) based studies suggest that the choice of DNA extraction method may influence average relative TL (RTL) measurements. Such extraction method effects may limit the use of historically collected DNA samples extracted with different methods. However, if extraction method effects are systematic an extraction method specific (MS) calibrator might be able to correct for them, because systematic effects would influence the calibrator sample in the same way as all other samples. In the present study we tested whether leukocyte RTL in blood samples from Holstein Friesian cattle and Soay sheep measured by qPCR was influenced by DNA extraction method and whether MS calibration could account for any observed differences. We compared two silica membrane-based DNA extraction kits and a salting out method. All extraction methods were optimized to yield enough high quality DNA for TL measurement. In both species we found that silica membrane-based DNA extraction methods produced shorter RTL measurements than the non-membrane-based method when calibrated against an identical calibrator. However, these differences were not statistically detectable when a MS calibrator was used to calculate RTL. This approach produced RTL measurements that were highly correlated across extraction methods (r > 0.76) and had coefficients of variation lower than 10% across plates of identical samples extracted by different methods. Our results are consistent with previous findings that popular membrane-based DNA extraction methods may lead to shorter RTL measurements than non-membrane-based methods. However, we also demonstrate that these differences can be accounted for by using an extraction method-specific calibrator, offering researchers a simple means of accounting for

  12. Laboratory Evaluations of the Enterococcus qPCR Method for Recreational Water Quality Testing: Method Performance and Sources of Uncertainty in Quantitative Measurements

    EPA Science Inventory

    The BEACH Act of 2000 directed the U.S. EPA to establish more expeditious methods for the detection of pathogen indicators in coastal waters, as well as new water quality criteria based on these methods. Progress has been made in developing a quantitative PCR (qPCR) method for en...

  13. Rapid method demonstration project at four New Jersey marine beaches using real time quantitative Polymerase Chain Reaction (qPCR).

    PubMed

    Ferretti, James A; Tran, Hiep V; Peterson, Sarah J; Loftin, Virginia

    2013-06-15

    Real time quantitative Polymerase Chain Reaction (qPCR) was used at four marine bathing beaches in New Jersey as part of a demonstration project to evaluate the potential for use of qPCR as part of a routine beach monitoring program. Split sample analyses for Enterococcus spp. using membrane filtration (MF) and qPCR were performed for 11weeks during the summer of 2011 using swimming advisories based on qPCR results. Comparison of qPCR and MF results from split samples indicated that there was an 82% overall agreement rate between the two methods. Results from the qPCR tests were available by noon the same day of sample collection and swimming advisories were posted on a dedicated website. The qPCR method can be more labor intensive and requires a higher level of training to perform, however, qPCR was able to assess beach water quality in a timelier manner compared to conventional MF techniques. PMID:23623653

  14. Inverse PCR and Quantitative PCR as Alternative Methods to Southern Blotting Analysis to Assess Transgene Copy Number and Characterize the Integration Site in Transgenic Woody Plants.

    PubMed

    Stefano, Biricolti; Patrizia, Bogani; Matteo, Cerboneschi; Massimo, Gori

    2016-06-01

    One of the major unanswered questions with respect to the commercial use of genetic transformation in woody plants is the stability of the transgene expression over several decades within the same individual. Gene expression is strongly affected by the copy number which has been integrated into the plant genome and by the local DNA features close to the integration sites. Because woody plants cannot be subjected to selfing or backcrossing to modify the transgenic allelic structure without affecting the valuable traits of the cultivar, molecular characterization of the transformation event is therefore crucial. After assessing the transgene copy number of a set of apple transgenic clones with Southern blotting, we describe two alternative methods: the first is based on inverse PCR (i-PCR) and the second on the quantitative PCR (q-PCR). The methods produced comparable results with the exception of the data regarding a high copy number clone, but while the q-PCR-based system is rapid and easily adaptable to high throughput systems, the i-PCR-based method can provide information regarding the transformation event and the characteristics of the sequences flanking the transgenic construct.

  15. Event-specific qualitative and quantitative PCR methods for the detection of genetically modified rapeseed Oxy-235.

    PubMed

    Wu, Gang; Wu, Yuhua; Xiao, Ling; Lu, Changming

    2008-10-01

    Oxy-235 is an oxynil-tolerant genetically modified rapeseed approved for commercialized planting in Canada. The aim of this study was to establish event-specific qualitative and quantitative detection methods for Oxy-235. Both the 5'- and 3'-junction sequences spanning the plant DNA and the integrated gene construct of the Oxy-235 event were isolated, sequenced and analyzed. A 1298-bp deletion of the rapeseed genomic DNA that showed a high similarity to the mRNA sequence of Arabidopsis thaliana was found in the integration site of the insert DNA. Event-specific qualitative PCR methods were established, with one method producing a 105-bp product specific for the 5'-integration junction and the other method producing a 124-bp product specific for the 3'-junction. The absolute detection limits for the qualitative PCR were determined to be 100 initial template copies for the 5'-junction and ten for the 3'-junction. Quantitative methods were also developed that targeted both of the junction fragments. The limit of detection of the quantitative PCR analysis was ten initial template copies for either the 5'- or 3'-junction, while the limit of quantification was determined to be approximately 50 initial template copies. The real-time PCR systems so established were examined with two mixed rapeseed samples with known Oxy-235 contents and found to obtain the expected results.

  16. Quantitation of DNA sequences in environmental PCR products by a multiplexed, bead-based method.

    PubMed

    Spiro, Alexander; Lowe, Mary

    2002-02-01

    A first application of a multiplexed, bead-based method is described for determining the abundances of target sequences in an environmental PCR product. Target sequences as little as 0.3% of the total amount of DNA can be quantified. Tests were conducted on 16S ribosomal DNA sequences from microorganisms collected from contaminated groundwater. PMID:11823255

  17. A new quantitative PCR method for the detection of Anaplasma platys in dogs based on the citrate synthase gene.

    PubMed

    da Silva, Claudia B; Pires, Marcus S; Vilela, Joice A R; Peckle, Maristela; da Costa, Renata L; Vitari, Gabriela L V; Santos, Leandro A; Santos, Huarrisson A; Massard, Carlos L

    2016-09-01

    Anaplasma platys is an obligate intracellular bacterium that primarily affects dogs, but it can also infect humans. Our study aimed to standardize a quantitative real-time (q)PCR method using the citrate synthase gene (gltA) as a specific target for A. platys detection in naturally infected dogs. Primers (gltA84F and gltA84R) and probe (PLATYSp) were designed to amplify an 84-bp fragment based on the gltA gene sequences of A. platys available in GenBank. A total of 186 dog blood samples originating from the Brazilian state of Rio de Janeiro were tested by qPCR. Additionally, the same samples were tested by cytology and a nested (n)PCR that targeted the 16S ribosomal DNA to determine the performance of our qPCR method compared to these existing techniques. Among the samples tested with qPCR, 17.2% were considered positive, significantly more than detected by nPCR (14.0%). Under optical microscopy, inclusions were observed in platelets of 25.3% of the samples, and among these samples, only 33.9% were identified as positive for A. platys using qPCR. The qPCR technique proved to be more specific than cytology and to have superior sensitivity to nPCR for detecting A. platys in dogs. The development of this new qPCR method contributes to the advancement of research involving A. platys Furthermore, it can be used to quantify the presence of this bacterium to evaluate the treatment of infected animals, or even as a more sensitive and specific tool for situations indicating possible clinical disease but with negative cytology. PMID:27423737

  18. Intra-laboratory validation of chronic bee paralysis virus quantitation using an accredited standardised real-time quantitative RT-PCR method.

    PubMed

    Blanchard, Philippe; Regnault, Julie; Schurr, Frank; Dubois, Eric; Ribière, Magali

    2012-03-01

    Chronic bee paralysis virus (CBPV) is responsible for chronic bee paralysis, an infectious and contagious disease in adult honey bees (Apis mellifera L.). A real-time RT-PCR assay to quantitate the CBPV load is now available. To propose this assay as a reference method, it was characterised further in an intra-laboratory study during which the reliability and the repeatability of results and the performance of the assay were confirmed. The qPCR assay alone and the whole quantitation method (from sample RNA extraction to analysis) were both assessed following the ISO/IEC 17025 standard and the recent XP U47-600 standard issued by the French Standards Institute. The performance of the qPCR assay and of the overall CBPV quantitation method were validated over a 6 log range from 10(2) to 10(8) with a detection limit of 50 and 100 CBPV RNA copies, respectively, and the protocol of the real-time RT-qPCR assay for CBPV quantitation was approved by the French Accreditation Committee. PMID:22207079

  19. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods.

    PubMed

    Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc

    2004-03-01

    Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.

  20. Development and evaluation of event-specific quantitative PCR method for genetically modified soybean A2704-12.

    PubMed

    Takabatake, Reona; Akiyama, Hiroshi; Sakata, Kozue; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Teshima, Reiko; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event; A2704-12. During the plant transformation, DNA fragments derived from pUC19 plasmid were integrated in A2704-12, and the region was found to be A2704-12 specific. The pUC19-derived DNA sequences were used as primers for the specific detection of A2704-12. We first tried to construct a standard plasmid for A2704-12 quantification using pUC19. However, non-specific signals appeared with both qualitative and quantitative PCR analyses using the specific primers with pUC19 as a template, and we then constructed a plasmid using pBR322. The conversion factor (C(f)), which is required to calculate the amount of the genetically modified organism (GMO), was experimentally determined with two real-time PCR instruments, the Applied Biosystems 7900HT and the Applied Biosystems 7500. The determined C(f) values were both 0.98. The quantitative method was evaluated by means of blind tests in multi-laboratory trials using the two real-time PCR instruments. The limit of quantitation for the method was estimated to be 0.1%. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSD(R)), and the determined bias and RSD(R) values for the method were each less than 20%. These results suggest that the developed method would be suitable for practical analyses for the detection and quantification of A2704-12.

  1. Development and evaluation of event-specific quantitative PCR method for genetically modified soybean A2704-12.

    PubMed

    Takabatake, Reona; Akiyama, Hiroshi; Sakata, Kozue; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Teshima, Reiko; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event; A2704-12. During the plant transformation, DNA fragments derived from pUC19 plasmid were integrated in A2704-12, and the region was found to be A2704-12 specific. The pUC19-derived DNA sequences were used as primers for the specific detection of A2704-12. We first tried to construct a standard plasmid for A2704-12 quantification using pUC19. However, non-specific signals appeared with both qualitative and quantitative PCR analyses using the specific primers with pUC19 as a template, and we then constructed a plasmid using pBR322. The conversion factor (C(f)), which is required to calculate the amount of the genetically modified organism (GMO), was experimentally determined with two real-time PCR instruments, the Applied Biosystems 7900HT and the Applied Biosystems 7500. The determined C(f) values were both 0.98. The quantitative method was evaluated by means of blind tests in multi-laboratory trials using the two real-time PCR instruments. The limit of quantitation for the method was estimated to be 0.1%. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSD(R)), and the determined bias and RSD(R) values for the method were each less than 20%. These results suggest that the developed method would be suitable for practical analyses for the detection and quantification of A2704-12. PMID:21515963

  2. Development of a method to detect and quantify Aspergillus fumigatus conidia by quantitative PCR for environmental air samples.

    PubMed

    McDevitt, James J; Lees, Peter S J; Merz, William G; Schwab, Kellogg J

    2004-10-01

    Exposure to Aspergillus fumigatus is linked with respiratory diseases such as asthma, invasive aspergillosis, hypersensitivity pneumonitis, and allergic bronchopulmonary aspergillosis. Molecular methods using quantitative PCR (qPCR) offer advantages over culture and optical methods for estimating human exposures to microbiological agents such as fungi. We describe an assay that uses lyticase to digest A. fumigatus conidia followed by TaqMan qPCR to quantify released DNA. This method will allow analysis of airborne A. fumigatus samples collected over extended time periods and provide a more representative assessment of chronic exposure. The method was optimized for environmental samples and incorporates: single tube sample preparation to reduce sample loss, maintain simplicity, and avoid contamination; hot start amplification to reduce non-specific primer/probe annealing; and uracil-N-glycosylase to prevent carryover contamination. An A. fumigatus internal standard was developed and used to detect PCR inhibitors potentially found in air samples. The assay detected fewer than 10 A. fumigatus conidia per qPCR reaction and quantified conidia over a 4-log10 range with high linearity (R2 >0.99) and low variability among replicate standards (CV=2.0%) in less than 4 h. The sensitivity and linearity of qPCR for conidia deposited on filters was equivalent to conidia calibration standards. A. fumigatus DNA from 8 isolates was consistently quantified using this method, while non-specific DNA from 14 common environmental fungi, including 6 other Aspergillus species, was not detected. This method provides a means of analyzing long term air samples collected on filters which may enable investigators to correlate airborne environmental A. fumigatus conidia concentrations with adverse health effects.

  3. Evaluation of a real-time quantitative PCR method with propidium monazide treatment for analyses of viable fecal indicator bacteria in wastewater samples

    EPA Science Inventory

    The U.S. EPA is currently evaluating rapid, real-time quantitative PCR (qPCR) methods for determining recreational water quality based on measurements of fecal indicator bacteria DNA sequences. In order to potentially use qPCR for other Clean Water Act needs, such as updating cri...

  4. Establishment of quantitative PCR methods for the quantification of geosmin-producing potential and Anabaena sp. in freshwater systems.

    PubMed

    Su, Ming; Gaget, Virginie; Giglio, Steven; Burch, Michael; An, Wei; Yang, Min

    2013-06-15

    Geosmin has often been associated with off-flavor problems in drinking water with Anabaena sp. as the major producer. Rapid on-site detection of geosmin-producers as well as geosmin is important for a timely management response to potential off-flavor events. In this study, quantitative polymerase chain reaction (qPCR) methods were developed to detect the levels of Anabaena sp. and geosmin, respectively, by designing two PCR primer sets to quantify the rpoC1 gene (ARG) and geosmin synthase one (GSG) in Anabaena sp. in freshwater systems. The ARG density determined by qPCR assay is highly related to microscopic cell count (r(2) = 0.726, p < 0.001), and the limit of detection (LOD) and limit of quantification (LOQ) of the qPCR method were 0.02 pg and 0.2 pg of DNA, respectively. At the same time, the relationship between geosmin concentrations measured by gas chromatography-mass spectrometry (GC-MS) and GSG copies was also established (r(2) = 0.742, p < 0.001) with similar LOD and LOQ values. Using the two qPCR protocols, we succeeded in measuring different levels of ARG and GSG copies in different freshwater systems with high incidence environmental substrata and diverse ecological conditions, showing that the methods developed could be applied for environmental monitoring. Moreover, comparing to the microscopic count and GC-MS analytical methods, the qPCR methods can reduce the time-to-results from several days to a few hours and require considerably less traditional algal identification and taxonomic expertise.

  5. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    PubMed

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  6. A reference-gene-based quantitative PCR method as a tool to determine Fusarium resistance in wheat.

    PubMed

    Brunner, Kurt; Kovalsky Paris, Maria P; Paolino, Guadalupe; Bürstmayr, Hermann; Lemmens, Marc; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Mach, Robert L

    2009-11-01

    In recent years, plant breeders made great progress in breeding Fusarium-tolerant wheat lines. However, total resistance to this genus of plant pathogenic fungi has not yet been achieved as the resistance genes are located on several distinct genetic regions. Visual scoring of disease symptoms in combination with the analysis of mycotoxins is commonly applied to assess the tolerance of new lines. Both approaches are indirect methods and do not mandatorily determine the accumulated fungal biomass. Quantitative PCR is a useful tool to assess fungal biomass based on the abundance of organism-specific DNA. The aim of this study was the development of a quantitative PCR assay for trichothecene-producing Fusarium species and to adapt this method for resistance assessment of wheat lines artificially infected with Fusarium graminearum and Fusarium culmorum. Several DNA-extraction methods for wheat samples were evaluated and optimized for downstream real-time PCR analysis and furthermore, a new reference-gene-based approach for more accurate quantification of Fusarium biomass in cereals is presented. The co-determination of a plant gene was used to compensate for unequal DNA-extraction efficiencies.

  7. Comparative Application of PLS and PCR Methods to Simultaneous Quantitative Estimation and Simultaneous Dissolution Test of Zidovudine - Lamivudine Tablets.

    PubMed

    Üstündağ, Özgür; Dinç, Erdal; Özdemir, Nurten; Tilkan, M Günseli

    2015-01-01

    In the development strategies of new drug products and generic drug products, the simultaneous in-vitro dissolution behavior of oral dosage formulations is the most important indication for the quantitative estimation of efficiency and biopharmaceutical characteristics of drug substances. This is to force the related field's scientists to improve very powerful analytical methods to get more reliable, precise and accurate results in the quantitative analysis and dissolution testing of drug formulations. In this context, two new chemometric tools, partial least squares (PLS) and principal component regression (PCR) were improved for the simultaneous quantitative estimation and dissolution testing of zidovudine (ZID) and lamivudine (LAM) in a tablet dosage form. The results obtained in this study strongly encourage us to use them for the quality control, the routine analysis and the dissolution test of the marketing tablets containing ZID and LAM drugs.

  8. Quantitative RT-PCR methods for evaluating toxicant-induced effects on steroidogenesis using the H295R cell line.

    PubMed

    Zhang, Xiaowei; Yu, Richard M K; Jones, Paul D; Lam, Gabriel K W; Newsted, John L; Gracia, Tannia; Hecker, Markus; Hilscherova, Klara; Sanderson, Thomas; Wu, Rudolf S S; Giesy, John P

    2005-04-15

    Gene expression profiles show considerable promise for the evaluation of the toxic potential of environmental contaminants. For example, any alterations in the pathways of steroid synthesis or breakdown have the potential to Cause endocrine disruption. Therefore monitoring these pathways can provide information relative to a chemical's ability to impact endocrine function. One approach to monitoring these pathways has been to use a human adrenocortical carcinoma cell line (H295R) that expresses all the key enzymes necessary for steroidogenesis. In this study we have further developed these methods using accurate and specific quantification methods utilizing molecular beacon-based quantitative RT-PCR (Q-RT-PCR). The assay system was used to analyze the expression patterns of 11 steroidogenic genes in H295R cells. The expression of gene transcripts was measured using a real-time PCR system and quantified based on both a standard curve method using a dilution series of RNA standards and a comparative Ct method. To validate the optimized method, cells were exposed to specific and nonspecific model compounds (inducers and inhibitors of various steroidogenic enzymes) for gene expression profiling. Similar gene expression profiles were exhibited by cells treated with chemicals acting through common mechanisms of action. Overall, our findings demonstrated that the present assay can facilitate the development of compound-specific response profiles, and will provide a sensitive and integrative screen for the effects of chemicals on steroidogenesis.

  9. Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources

    EPA Science Inventory

    The state of California has mandated the preparation of a guidance document on the application of fecal source identification methods for recreational water quality management. California contains the fifth highest population of cattle in the United States, making the inclusio...

  10. Quantitative real-time PCR method with internal amplification control to quantify cyclopiazonic acid producing molds in foods.

    PubMed

    Rodríguez, Alicia; Werning, María L; Rodríguez, Mar; Bermúdez, Elena; Córdoba, Juan J

    2012-12-01

    A quantitative TaqMan real-time PCR (qPCR) method that includes an internal amplification control (IAC) to quantify cyclopiazonic acid (CPA)-producing molds in foods has been developed. A specific primer pair (dmaTF/dmaTR) and a TaqMan probe (dmaTp) were designed on the basis of dmaT gene which encodes the enzyme dimethylallyl tryptophan synthase involved in the biosynthesis of CPA. The IAC consisted of a 105 bp chimeric DNA fragment containing a region of the hly gene of Listeria monocytogenes. Thirty-two mold reference strains representing CPA producers and non-producers of different mold species were used in this study. All strains were tested for CPA production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the designed qPCR method was demonstrated by the high linear relationship of the standard curves relating to the dmaT gene copy numbers and the Ct values obtained from the different CPA producers tested. The ability of the qPCR protocol to quantify CPA-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 1-4 log cfu/g in the different food matrices. The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g. This qPCR protocol including an IAC showed good efficiency to quantify CPA-producing molds in naturally contaminated foods avoiding false negative results. This method could be used to monitor the CPA producers in the HACCP programs to prevent the risk of CPA formation throughout the food chain. PMID:22986206

  11. Quantitative real-time PCR method with internal amplification control to quantify cyclopiazonic acid producing molds in foods.

    PubMed

    Rodríguez, Alicia; Werning, María L; Rodríguez, Mar; Bermúdez, Elena; Córdoba, Juan J

    2012-12-01

    A quantitative TaqMan real-time PCR (qPCR) method that includes an internal amplification control (IAC) to quantify cyclopiazonic acid (CPA)-producing molds in foods has been developed. A specific primer pair (dmaTF/dmaTR) and a TaqMan probe (dmaTp) were designed on the basis of dmaT gene which encodes the enzyme dimethylallyl tryptophan synthase involved in the biosynthesis of CPA. The IAC consisted of a 105 bp chimeric DNA fragment containing a region of the hly gene of Listeria monocytogenes. Thirty-two mold reference strains representing CPA producers and non-producers of different mold species were used in this study. All strains were tested for CPA production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the designed qPCR method was demonstrated by the high linear relationship of the standard curves relating to the dmaT gene copy numbers and the Ct values obtained from the different CPA producers tested. The ability of the qPCR protocol to quantify CPA-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 1-4 log cfu/g in the different food matrices. The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g. This qPCR protocol including an IAC showed good efficiency to quantify CPA-producing molds in naturally contaminated foods avoiding false negative results. This method could be used to monitor the CPA producers in the HACCP programs to prevent the risk of CPA formation throughout the food chain.

  12. LEMming: A Linear Error Model to Normalize Parallel Quantitative Real-Time PCR (qPCR) Data as an Alternative to Reference Gene Based Methods

    PubMed Central

    Feuer, Ronny; Vlaic, Sebastian; Arlt, Janine; Sawodny, Oliver; Dahmen, Uta; Zanger, Ulrich M.; Thomas, Maria

    2015-01-01

    Background Gene expression analysis is an essential part of biological and medical investigations. Quantitative real-time PCR (qPCR) is characterized with excellent sensitivity, dynamic range, reproducibility and is still regarded to be the gold standard for quantifying transcripts abundance. Parallelization of qPCR such as by microfluidic Taqman Fluidigm Biomark Platform enables evaluation of multiple transcripts in samples treated under various conditions. Despite advanced technologies, correct evaluation of the measurements remains challenging. Most widely used methods for evaluating or calculating gene expression data include geNorm and ΔΔCt, respectively. They rely on one or several stable reference genes (RGs) for normalization, thus potentially causing biased results. We therefore applied multivariable regression with a tailored error model to overcome the necessity of stable RGs. Results We developed a RG independent data normalization approach based on a tailored linear error model for parallel qPCR data, called LEMming. It uses the assumption that the mean Ct values within samples of similarly treated groups are equal. Performance of LEMming was evaluated in three data sets with different stability patterns of RGs and compared to the results of geNorm normalization. Data set 1 showed that both methods gave similar results if stable RGs are available. Data set 2 included RGs which are stable according to geNorm criteria, but became differentially expressed in normalized data evaluated by a t-test. geNorm-normalized data showed an effect of a shifted mean per gene per condition whereas LEMming-normalized data did not. Comparing the decrease of standard deviation from raw data to geNorm and to LEMming, the latter was superior. In data set 3 according to geNorm calculated average expression stability and pairwise variation, stable RGs were available, but t-tests of raw data contradicted this. Normalization with RGs resulted in distorted data contradicting

  13. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    PubMed

    Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.

  14. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    PubMed

    Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize. PMID:21873818

  15. Performance of two quantitative PCR methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters

    EPA Science Inventory

    Before new, rapid quantitative PCR (qPCR) methods for recreational water quality assessment and microbial source tracking (MST) can be useful in a regulatory context, an understanding of the ability of the method to detect a DNA target (marker) when the contaminant soure has been...

  16. EVALUATION OF A RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    EPA Science Inventory

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan?) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C....

  17. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods

    EPA Science Inventory

    There is a growing interest in the application of human-associated fecal sourceidentification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data q...

  18. A human fecal contamination index for ranking impaired recreational watersusing the HF183 quantitative real-time PCR method

    EPA Science Inventory

    Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk managem...

  19. Real-Time PCR-Based Quantitation Method for the Genetically Modified Soybean Line GTS 40-3-2.

    PubMed

    Kitta, Kazumi; Takabatake, Reona; Mano, Junichi

    2016-01-01

    This chapter describes a real-time PCR-based method for quantitation of the relative amount of genetically modified (GM) soybean line GTS 40-3-2 [Roundup Ready(®) soybean (RRS)] contained in a batch. The method targets a taxon-specific soybean gene (lectin gene, Le1) and the specific DNA construct junction region between the Petunia hybrida chloroplast transit peptide sequence and the Agrobacterium 5-enolpyruvylshikimate-3-phosphate synthase gene (epsps) sequence present in GTS 40-3-2. The method employs plasmid pMulSL2 as a reference material in order to quantify the relative amount of GTS 40-3-2 in soybean samples using a conversion factor (Cf) equal to the ratio of the RRS-specific DNA to the taxon-specific DNA in representative genuine GTS 40-3-2 seeds.

  20. Reference Genes Selection for Quantitative Real-Time PCR Using RankAggreg Method in Different Tissues of Capra hircus

    PubMed Central

    Najafpanah, Mohammad Javad; Sadeghi, Mostafa; Bakhtiarizadeh, Mohammad Reza

    2013-01-01

    Identification of reference genes with stable levels of gene expression is an important prerequisite for obtaining reliable results in analysis of gene expression data using quantitative real time PCR (RT-qPCR). Since the underlying assumption of reference genes is that expressed at the exact same level in all sample types, in this study, we evaluated the expression stability of nine most commonly used endogenous controls (GAPDH, ACTB, 18S rRNA, RPS18, HSP-90, ALAS, HMBS, ACAC, and B2M) in four different tissues of the domestic goat, Capra hircus, including liver, visceral, subcutaneous fat and longissimus muscles, across different experimental treatments (a standard diet prepared using the NRC computer software as control and the same diet plus one mg chromium/day). We used six different software programs for ranking of reference genes and found that individual rankings of the genes differed among them. Additionally, there was a significant difference in ranking patterns of the studied genes among different tissues. A rank aggregation method was applied to combine the ranking lists of the six programs to a consensus ranking. Our results revealed that HSP-90 was nearly always among the two most stable genes in all studied tissues. Therefore, it is recommended for accurate normalization of RT-qPCR data in goats, while GAPDH, ACTB, and RPS18 showed the most varied expressions and should be avoided as reference genes. PMID:24358246

  1. A competitive RT-PCR method for the quantitative analysis of cytokine mRNAs in mouse tissues.

    PubMed

    Zhou, N M; Matthys, P; Polacek, C; Fiten, P; Sato, A; Billiau, A; Froyen, G

    1997-03-01

    The authors describe the design and validation of a competitive RT-PCR method for the efficient and reproducible quantitation of mRNA molecules of IFN-gamma, TNF-alpha, IL-4 and IL-10 in mouse spleen RNA extracts. Before being subjected to RT-PCR, the RNA extracts were supplemented with internal control RNAs (IC-RNAs), which were constructed by inserting DNA fragments in the cDNA of the respective cytokines. The efficiency of amplification of the target and the IC-RNA was shown to remain equal over a wide range of cycle numbers. Reproducibility was such that differences in mRNA contents that were greater than 17% could be detected between two RNA samples run in parallel. Normal mouse spleen tissue was found to contain 10(7)-10(8) molecules of TNF-alpha, IFN-gamma, IL-4 and IL-10 mRNA per micrograms total RNA extracted. Injection of animals with anti-CD3 antibody, a well-known cytokine inducer, resulted in a moderate increase in TNF-alpha and IL-10 mRNA levels (14- and 24-fold, respectively), and in a substantially greater increase in the levels of mRNA for IL-4 and IFN-gamma (199- and 851-fold, respectively). These results demonstrate an accurate and reliable quantitation of cytokine mRNA levels in animal tissues.

  2. Evaluation of a rapid, quantitative real-time PCR method for enumeration of pathogenic Candida cells in water

    USGS Publications Warehouse

    Brinkman, Nichole E.; Haugland, Richard A.; Wymer, Larry J.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Vesper, Stephen J.

    2003-01-01

    Quantitative PCR (QPCR) technology, incorporating fluorigenic 5′ nuclease (TaqMan) chemistry, was utilized for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C. lusitaniae) in water. Known numbers of target cells were added to distilled and tap water samples, filtered, and disrupted directly on the membranes for recovery of DNA for QPCR analysis. The assay's sensitivities were between one and three cells per filter. The accuracy of the cell estimates was between 50 and 200% of their true value (95% confidence level). In similar tests with surface water samples, the presence of PCR inhibitory compounds necessitated further purification and/or dilution of the DNA extracts, with resultant reductions in sensitivity but generally not in quantitative accuracy. Analyses of a series of freshwater samples collected from a recreational beach showed positive correlations between the QPCR results and colony counts of the corresponding target species. Positive correlations were also seen between the cell quantities of the target Candida species detected in these analyses and colony counts of Enterococcus organisms. With a combined sample processing and analysis time of less than 4 h, this method shows great promise as a tool for rapidly assessing potential exposures to waterborne pathogenic Candida species from drinking and recreational waters and may have applications in the detection of fecal pollution.

  3. Optimization of methods for detecting Mycobacterium avium subsp. paratuberculosis in environmental samples using quantitative, real-time PCR.

    PubMed

    Cook, Kimberly L; Britt, Jenks S

    2007-04-01

    Detection of Johne's disease, an enteric infection of cattle caused by Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis), has been impeded by the lack of rapid, reliable detection methods. The goal of this study was to optimize methodologies for detecting M. paratuberculosis in manure from an infected dairy cow or in contaminated soil samples using a quantitative, real-time PCR (QRT-PCR) based analysis. Three different nucleic acid extraction techniques, the efficiency of direct versus indirect sample extraction, and sample pooling were assessed. The limit of detection was investigated by adding dilutions of M. paratuberculosis to soil. Results show that the highest yield (19.4+/-2.3 microg(-1) DNA extract) and the highest copy number of the targeted M. paratuberculosis IS900 sequence (1.3+/-0.2x10(8) copies g(-1) manure) were obtained with DNA extracted from manure using Qbiogene's Fast DNA Spin kit for soil. Pooling ten samples of M. paratuberculosis-contaminated soil improved the limit of detection ten fold (between 20 and 115 M. paratuberculosis cells g(-1) soil). Detection was between 65% and 95% higher when samples were extracted directly using bead-beating than when using pre-treatment with cell extraction buffers. The final soil-sampling and extraction regime was applied for detection of M. paratuberculosis in pasture soil after the removal of a M. paratuberculosis culture positive dairy cow. M. paratuberculosis remained in the pasture soil for more than 200 days. Results from these studies suggest that DNA extraction method, sampling protocol and PCR conditions each critically influence the outcome and validity of the QRT-PCR analysis of M. paratuberculosis concentrations in environmental samples.

  4. [A novel quantitative PCR with fluorogenic probe].

    PubMed

    Isono, K

    1997-03-01

    The polymerase chain reaction(PCR) is a powerful tool to amplify small amounts of DNA or RNA for various molecular analysis. However, in these analyses, PCR only provides qualitative results. The availability of quantitative PCR provides valuable additional information in various applications. It is difficult to establish absolute quantitation, because PCR amplification is a complicated reaction process of exponential growth. To trace the amplification process, the initial amount of template and the efficiency of amplification in each cycle, has to be determined. Conventional methods have not achieved absolute quantitative analysis. The ABI PRISM 7700 Sequence Detection System has solved these problems with real-time monitoring of the PCR process. The real-time detection system provides essential information to quantify the initial target copy number, because it can draw an amplification curve. Using the 5' nuclease assay, a specific fluorescent signal is generated and measured at every cycle during a run. This system can perform a variety of applications including, quantitation, allele discrimination, PCR optimization and viral screening. Using the ABI PRISM 7700 Sequence Detection System, the rice genome has been quantitatively analyzed. To monitor maturation of the chloroplast genome from proplastid during germ development, 5' nuclease assay set up for Cab and rbcL genes which are located in the nuclear genome and chloroplast genome, respectively. Cab was used as an internal standard for normalization of cell numbers. The maturation process of chloroplast was estimated using the ratio of gene dosage, [rbcL]/[Cab]. After development of cotyledon, a significant increase in copy numbers of the chloroplast was observed. These results indicate that a light-induced chloroplast maturation process is coupled with an increase in chloroplast genome copy numbers.

  5. Development and validation of an event-specific quantitative PCR method for genetically modified maize MIR162.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2014-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162.

  6. Development and validation of an event-specific quantitative PCR method for genetically modified maize MIR162.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2014-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162. PMID:25743383

  7. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods.

    PubMed

    Shanks, Orin C; Kelty, Catherine A; Oshiro, Robin; Haugland, Richard A; Madi, Tania; Brooks, Lauren; Field, Katharine G; Sivaganesan, Mano

    2016-05-01

    There is growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data quality across laboratories. Data quality is typically determined through a series of specifications that ensure good experimental practice and the absence of bias in the results due to DNA isolation and amplification interferences. However, there is currently a lack of consensus on how best to evaluate and interpret human fecal source identification qPCR experiments. This is, in part, due to the lack of standardized protocols and information on interlaboratory variability under conditions for data acceptance. The aim of this study is to provide users and reviewers with a complete series of conditions for data acceptance derived from a multiple laboratory data set using standardized procedures. To establish these benchmarks, data from HF183/BacR287 and HumM2 human-associated qPCR methods were generated across 14 laboratories. Each laboratory followed a standardized protocol utilizing the same lot of reference DNA materials, DNA isolation kits, amplification reagents, and test samples to generate comparable data. After removal of outliers, a nested analysis of variance (ANOVA) was used to establish proficiency metrics that include lab-to-lab, replicate testing within a lab, and random error for amplification inhibition and sample processing controls. Other data acceptance measurements included extraneous DNA contamination assessments (no-template and extraction blank controls) and calibration model performance (correlation coefficient, amplification efficiency, and lower limit of quantification). To demonstrate the implementation of the proposed standardized protocols and data acceptance criteria, comparable data from two additional laboratories were reviewed. The data acceptance criteria

  8. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods

    PubMed Central

    Kelty, Catherine A.; Oshiro, Robin; Haugland, Richard A.; Madi, Tania; Brooks, Lauren; Field, Katharine G.; Sivaganesan, Mano

    2016-01-01

    There is growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data quality across laboratories. Data quality is typically determined through a series of specifications that ensure good experimental practice and the absence of bias in the results due to DNA isolation and amplification interferences. However, there is currently a lack of consensus on how best to evaluate and interpret human fecal source identification qPCR experiments. This is, in part, due to the lack of standardized protocols and information on interlaboratory variability under conditions for data acceptance. The aim of this study is to provide users and reviewers with a complete series of conditions for data acceptance derived from a multiple laboratory data set using standardized procedures. To establish these benchmarks, data from HF183/BacR287 and HumM2 human-associated qPCR methods were generated across 14 laboratories. Each laboratory followed a standardized protocol utilizing the same lot of reference DNA materials, DNA isolation kits, amplification reagents, and test samples to generate comparable data. After removal of outliers, a nested analysis of variance (ANOVA) was used to establish proficiency metrics that include lab-to-lab, replicate testing within a lab, and random error for amplification inhibition and sample processing controls. Other data acceptance measurements included extraneous DNA contamination assessments (no-template and extraction blank controls) and calibration model performance (correlation coefficient, amplification efficiency, and lower limit of quantification). To demonstrate the implementation of the proposed standardized protocols and data acceptance criteria, comparable data from two additional laboratories were reviewed. The data acceptance criteria

  9. Comparison of concentration methods for rapid detection of hookworm ova in wastewater matrices using quantitative PCR.

    PubMed

    Gyawali, P; Ahmed, W; Jagals, P; Sidhu, J P S; Toze, S

    2015-12-01

    Hookworm infection contributes around 700 million infections worldwide especially in developing nations due to increased use of wastewater for crop production. The effective recovery of hookworm ova from wastewater matrices is difficult due to their low concentrations and heterogeneous distribution. In this study, we compared the recovery rates of (i) four rapid hookworm ova concentration methods from municipal wastewater, and (ii) two concentration methods from sludge samples. Ancylostoma caninum ova were used as surrogate for human hookworm (Ancylostoma duodenale and Necator americanus). Known concentration of A. caninum hookworm ova were seeded into wastewater (treated and raw) and sludge samples collected from two wastewater treatment plants (WWTPs) in Brisbane and Perth, Australia. The A. caninum ova were concentrated from treated and raw wastewater samples using centrifugation (Method A), hollow fiber ultrafiltration (HFUF) (Method B), filtration (Method C) and flotation (Method D) methods. For sludge samples, flotation (Method E) and direct DNA extraction (Method F) methods were used. Among the four methods tested, filtration (Method C) method was able to recover higher concentrations of A. caninum ova consistently from treated wastewater (39-50%) and raw wastewater (7.1-12%) samples collected from both WWTPs. The remaining methods (Methods A, B and D) yielded variable recovery rate ranging from 0.2 to 40% for treated and raw wastewater samples. The recovery rates for sludge samples were poor (0.02-4.7), although, Method F (direct DNA extraction) provided 1-2 orders of magnitude higher recovery rate than Method E (flotation). Based on our results it can be concluded that the recovery rates of hookworm ova from wastewater matrices, especially sludge samples, can be poor and highly variable. Therefore, choice of concentration method is vital for the sensitive detection of hookworm ova in wastewater matrices.

  10. HUMAN FECAL SOURCE IDENTIFICATION: REAL-TIME QUANTITATIVE PCR METHOD STANDARDIZATION - abstract

    EPA Science Inventory

    Method standardization or the formal development of a protocol that establishes uniform performance benchmarks and practices is necessary for widespread adoption of a fecal source identification approach. Standardization of a human-associated fecal identification method has been...

  11. Human Fecal Source Identification: Real-Time Quantitative PCR Method Standardization

    EPA Science Inventory

    Method standardization or the formal development of a protocol that establishes uniform performance benchmarks and practices is necessary for widespread adoption of a fecal source identification approach. Standardization of a human-associated fecal identification method has been...

  12. A BAYESIAN METHOD FOR CALCULATING REAL-TIME QUANTITATIVE PCR CALIBRATION CURVES USING ABSOLUTE PLASMID DNA STANDARDS

    EPA Science Inventory

    In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignore...

  13. EVALUATION OF DIFFERENT METHODS FOR THE EXTRACTION OF DNA FROM FUNGAL CONIDIA BY QUANTITATIVE COMPETITIVE PCR ANALYSIS

    EPA Science Inventory

    Five different DNA extraction methods were evaluated for their effectiveness in recovering PCR templates from the conidia of a series of fungal species often encountered in indoor air. The test organisms were Aspergillus versicolor, Penicillium chrysogenum, Stachybotrys chartaru...

  14. Real-time fluorescent quantitative immuno-PCR method for determination of fluoranthene in water samples with a molecular beacon.

    PubMed

    Ye, Qiyan; Zhuang, Huisheng; Zhou, Chun; Wang, Qiong'e

    2010-01-01

    A reliable and sensitive competitive real-time fluorescent quantitative immuno-PCR (RTFQ-IPCR) assay using a molecular beacon was developed for the determination of trace fluoranthene (FL) in the environment. Under optimized assay conditions, FL can be determined in the concentration range from 1 fg/mL to 100 ng/mL, withy = 0.194x + 7.859, and a correlation coefficient of 0.967 was identified, with a detection limit of 0.6 fg/mL. Environmental water samples were successfully analyzed, recovery was between 90% and 116%, with intra-day relative standard deviation (RSD) of 6.7%-12.8% and inter-day RSD of 8.4%-15.2%. The results obtained from RTFQ-IPCR were confirmed by ELISA, showing good accuracy and suitability to analyze FL in field samples. As a highly sensitive method, the molecular beacon-based RTFQ-IPCR is acceptable and promising for providing reliable test results to make environmental decisions.

  15. Selection of Suitable DNA Extraction Methods for Genetically Modified Maize 3272, and Development and Evaluation of an Event-Specific Quantitative PCR Method for 3272.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize, 3272. We first attempted to obtain genome DNA from this maize using a DNeasy Plant Maxi kit and a DNeasy Plant Mini kit, which have been widely utilized in our previous studies, but DNA extraction yields from 3272 were markedly lower than those from non-GM maize seeds. However, lowering of DNA extraction yields was not observed with GM quicker or Genomic-tip 20/G. We chose GM quicker for evaluation of the quantitative method. We prepared a standard plasmid for 3272 quantification. The conversion factor (Cf), which is required to calculate the amount of a genetically modified organism (GMO), was experimentally determined for two real-time PCR instruments, the Applied Biosystems 7900HT (the ABI 7900) and the Applied Biosystems 7500 (the ABI7500). The determined Cf values were 0.60 and 0.59 for the ABI 7900 and the ABI 7500, respectively. To evaluate the developed method, a blind test was conducted as part of an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSDr). The determined values were similar to those in our previous validation studies. The limit of quantitation for the method was estimated to be 0.5% or less, and we concluded that the developed method would be suitable and practical for detection and quantification of 3272.

  16. Selection of Suitable DNA Extraction Methods for Genetically Modified Maize 3272, and Development and Evaluation of an Event-Specific Quantitative PCR Method for 3272.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize, 3272. We first attempted to obtain genome DNA from this maize using a DNeasy Plant Maxi kit and a DNeasy Plant Mini kit, which have been widely utilized in our previous studies, but DNA extraction yields from 3272 were markedly lower than those from non-GM maize seeds. However, lowering of DNA extraction yields was not observed with GM quicker or Genomic-tip 20/G. We chose GM quicker for evaluation of the quantitative method. We prepared a standard plasmid for 3272 quantification. The conversion factor (Cf), which is required to calculate the amount of a genetically modified organism (GMO), was experimentally determined for two real-time PCR instruments, the Applied Biosystems 7900HT (the ABI 7900) and the Applied Biosystems 7500 (the ABI7500). The determined Cf values were 0.60 and 0.59 for the ABI 7900 and the ABI 7500, respectively. To evaluate the developed method, a blind test was conducted as part of an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSDr). The determined values were similar to those in our previous validation studies. The limit of quantitation for the method was estimated to be 0.5% or less, and we concluded that the developed method would be suitable and practical for detection and quantification of 3272. PMID:26936302

  17. Chimerism testing by quantitative PCR using Indel markers.

    PubMed

    Gendzekhadze, Ketevan; Gaidulis, Laima; Senitzer, David

    2013-01-01

    Engraftment monitoring is critical for patients after Hematopoietic Stem Cell Transplantation (HSCT). Complete donor chimerism is the goal; therefore, early detection of rejection and relapse is crucial for guiding the patient post HSCT treatment. Quantitative PCR for chimerism testing has been reported to be highly sensitive. In this chapter we discuss the quantitative PCR (qPCR) method using 34 Indel (Insertion and Deletion) genetic markers spread over 20 different chromosomes.

  18. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples.

    PubMed

    Yang, Rongchang; Paparini, Andrea; Monis, Paul; Ryan, Una

    2014-12-01

    Clinical microbiology laboratories rely on quantitative PCR for its speed, sensitivity, specificity and ease-of-use. However, quantitative PCR quantitation requires the use of a standard curve or normalisation to reference genes. Droplet digital PCR provides absolute quantitation without the need for calibration curves. A comparison between droplet digital PCR and quantitative PCR-based analyses was conducted for the enteric parasite Cryptosporidium, which is an important cause of gastritis in both humans and animals. Two loci were analysed (18S rRNA and actin) using a range of Cryptosporidium DNA templates, including recombinant plasmids, purified haemocytometer-counted oocysts, commercial flow cytometry-counted oocysts and faecal DNA samples from sheep, cattle and humans. Each method was evaluated for linearity, precision, limit of detection and cost. Across the same range of detection, both methods showed a high degree of linearity and positive correlation for standards (R(2)⩾0.999) and faecal samples (R(2)⩾0.9750). The precision of droplet digital PCR, as measured by mean Relative Standard Deviation (RSD;%), was consistently better compared with quantitative PCR, particularly for the 18S rRNA locus, but was poorer as DNA concentration decreased. The quantitative detection of quantitative PCR was unaffected by DNA concentration, but droplet digital PCR quantitative PCR was less affected by the presence of inhibitors, compared with quantitative PCR. For most templates analysed including Cryptosporidium-positive faecal DNA, the template copy numbers, as determined by droplet digital PCR, were consistently lower than by quantitative PCR. However, the quantitations obtained by quantitative PCR are dependent on the accuracy of the standard curve and when the quantitative PCR data were corrected for pipetting and DNA losses (as determined by droplet digital PCR), then the sensitivity of both methods was comparable. A cost analysis based on 96 samples revealed that

  19. Escherichia coli and Enterococcus spp. in rainwater tank samples: comparison of culture-based methods and 23S rRNA gene quantitative PCR assays.

    PubMed

    Ahmed, W; Richardson, K; Sidhu, J P S; Toze, S

    2012-10-16

    In this study, culture-based methods and quantitative PCR (qPCR) assays were compared with each other for the measurement of Escherichia coli and Enterococcus spp. in water samples collected from rainwater tanks in Southeast Queensland, Australia. Among the 50 rainwater tank samples tested, 26 (52%) and 46 (92%) samples yielded E. coli numbers as measured by EPA Method 1603 and E. coli 23S rRNA gene qPCR assay, respectively. Similarly, 49 (98%) and 47 (94%) samples yielded Enterococcus spp. numbers as measured by EPA Method 1600 and Enterococcus spp. 23S rRNA gene qPCR assay, respectively. The mean E. coli (2.49 ± 0.85) log(10) and Enterococcus spp. (2.72 ± 0.32) log(10) numbers as measured by qPCR assays were significantly (P < 0001) different than E. coli (0.91 ± 0.80) log(10) and Enterococcus spp. (1.86 ± 0.60) log(10) numbers as measured by culture-based method. Weak but significant correlations were observed between both EPA Method 1603 and the E. coli qPCR assay (r = 0.47, P = 0.0009), and EPA Method 1600 and the Enterococcus spp. qPCR assay (r = 0.42, P = 0.002). Good qualitative agreement was found between the culture-based method and the Enterococcus spp. qPCR assay in terms of detecting fecal pollution in water samples from the studied rainwater tanks. More research studies, however, are needed to shed some light on the discrepancies associated with the culture-based methods and qPCR assays for measuring fecal indicator bacteria.

  20. New in situ capture quantitative (real-time) reverse transcription-PCR method as an alternative approach for determining inactivation of Tulane virus.

    PubMed

    Wang, Dapeng; Xu, Shuxia; Yang, David; Young, Glenn M; Tian, Peng

    2014-04-01

    Human noroviruses (HuNoVs) are the major cause of epidemic nonbacterial gastroenteritis. Although quantitative (real-time) reverse transcription-PCR (qRT-PCR) is widely used for detecting HuNoVs, it only detects the presence of viral RNA and does not indicate viral infectivity. Human blood group antigens (HBGAs) have been identified as receptors/co-receptors for both HuNoVs and Tulane virus (TV) and are crucial for viral infection. We propose that viral infectivity can be evaluated with a molecular assay based on receptor-captured viruses. In this study, we employed TV as an HuNoV surrogate to validate the HBGA-based capture qRT-PCR method against the 50% tissue culture infectious dose (TCID50) method. We employed type B HBGA on an immuno-well module to concentrate TV, followed by amplification of the captured viral genome by in situ qRT-PCR. We first demonstrated that this in situ capture qRT-PCR (ISC-qRT-PCR) method could effectively concentrate and detect TV. We then treated TV under either partial or full inactivation conditions and measured the remaining infectivity by ISC-qRT-PCR and a tissue culture-based amplification method (TCID50). We found that the ISC-qRT-PCR method could be used to evaluate virus inactivation deriving from damage to the capsid and study interactions between the capsid and viral receptor. Heat, chlorine, and ethanol treatment primarily affect the capsid structure, which in turns affects the ability of the capsid to bind to viral receptors. Inactivation of the virus by these methods could be reflected by the ISC-qRT-PCR method and confirmed by TCID50 assay. However, the loss of the infectivity caused by damage to the viral genome (such as that from UV irradiation) could not be effectively reflected by this method. Despite this limitation, the ISC-qRT-PCR provides an alternative approach to determine inactivation of Tulane virus. A particular advantage of the ISC-qRT-PCR method is that it is also a faster and easier method to effectively

  1. Quantification of transcript levels with quantitative RT-PCR.

    PubMed

    Carleton, Karen L

    2011-01-01

    Differential gene expression is a key factor driving phenotypic divergence. Determining when and where gene expression has diverged between organisms requires a quantitative method. While large-scale approaches such as microarrays or high-throughput mRNA sequencing can identify candidates, quantitative RT-PCR is the definitive method for confirming gene expression differences. Here, we describe the steps for performing qRT-PCR including extracting total RNA, reverse-transcribing it to make a pool of cDNA, and then quantifying relative expression of a few candidate genes using real-time or quantitative PCR.

  2. Mycobacterium avium subsp. paratuberculosis survival during fermentation of soured milk products detected by culture and quantitative real time PCR methods.

    PubMed

    Klanicova, B; Slana, I; Roubal, P; Pavlik, I; Kralik, P

    2012-07-01

    Mycobacterium avium paratuberculosis (MAP), etiological agent of paratuberculosis in ruminants, is able to survive extreme conditions like very low pH (stomach), high temperature (pasteurization) or low temperature (refrigerated storage). Cheese, infant powder milk, cream and other milk and dairy products might thus be considered as possible sources of MAP for humans. The aim of this study was to investigate the survival of two MAP field isolates during fermentation of three different types of soured milk products (SMP; yogurt, acidophilus milk and kefir) under laboratory conditions. Pasteurized MAP-free milk was artificially contaminated with 10(6)MAPcells/mL and survival and absolute numbers of MAP were monitored during fermentation (4 or 16 h) and after six weeks of storage at 4°C by culture and quantitative real time PCR (qPCR). Viability of MAP was determined by culture using Herrold's egg yolk medium and Middlebrook 7H10 with antibiotics, supplemented with Mycobactin J and incubated at 37°C for up to 12 weeks. The absolute numbers of MAP were quantified by previously published qPCR assays targeting F57 and IS900 loci in MAP genome. We herein confirm that MAP can survive pH reduction, however, longer exposure to pH below 4 in SMP seems to be critical because it inhibits growth. Therefore, it is suggested that probiotic cultures that can decrease pH below 4 during fermentation could provide better inactivation of MAP in SMP.

  3. A DNA real-time quantitative PCR method suitable for routine monitoring of low levels of minimal residual disease in chronic myeloid leukemia.

    PubMed

    Bartley, Paul A; Latham, Susan; Budgen, Bradley; Ross, David M; Hughes, Elizabeth; Branford, Susan; White, Deborah; Hughes, Timothy P; Morley, Alexander A

    2015-03-01

    The BCR-ABL1 sequence has advantages over the BCR-ABL1 transcript as a molecular marker in chronic myeloid leukemia and has been used in research studies. We developed a DNA real-time quantitative PCR (qPCR) method for quantification of BCR-ABL1 sequences, which is also potentially suitable for routine use. The BCR-ABL1 breakpoint was sequenced after isolation by nested short-range PCR of DNA from blood, marrow, and cells on slides, obtained either at diagnosis or during treatment, or from artificial mixtures. PCR primers were chosen from a library of presynthesized and pretested BCR (n = 19) and ABL1 (n = 568) primers. BCR-ABL1 sequences were quantified relative to BCR sequences in 521 assays on 266 samples from 92 patients. For minimal residual disease detectable by DNA qPCR and RT-qPCR, DNA qPCR gave similar minimal residual disease results as RT-qPCR but had better precision at low minimal residual disease levels. The limit of detection of DNA qPCR depended on the amount of DNA assayed, being 10(-5.8) when 5 μg was assayed and 10(-7.0) when 80 μg was assayed. DNA qPCR may be useful and practical for monitoring the increasing number of patients with minimal residual disease around or below the limit of detection of RT-qPCR as the assay itself is simple and the up-front costs will be amortized if sequential assays are performed.

  4. Comparative Evaluation of Four Real-Time PCR Methods for the Quantitative Detection of Epstein-Barr Virus from Whole Blood Specimens.

    PubMed

    Buelow, Daelynn; Sun, Yilun; Tang, Li; Gu, Zhengming; Pounds, Stanley; Hayden, Randall

    2016-07-01

    Monitoring of Epstein-Barr virus (EBV) load in immunocompromised patients has become integral to their care. An increasing number of reagents are available for quantitative detection of EBV; however, there are little published comparative data. Four real-time PCR systems (one using laboratory-developed reagents and three using analyte-specific reagents) were compared with one another for detection of EBV from whole blood. Whole blood specimens seeded with EBV were used to determine quantitative linearity, analytical measurement range, lower limit of detection, and CV for each assay. Retrospective testing of 198 clinical samples was performed in parallel with all methods; results were compared to determine relative quantitative and qualitative performance. All assays showed similar performance. No significant difference was found in limit of detection (3.12-3.49 log10 copies/mL; P = 0.37). A strong qualitative correlation was seen with all assays that used clinical samples (positive detection rates of 89.5%-95.8%). Quantitative correlation of clinical samples across assays was also seen in pairwise regression analysis, with R(2) ranging from 0.83 to 0.95. Normalizing clinical sample results to IU/mL did not alter the quantitative correlation between assays. Quantitative EBV detection by real-time PCR can be performed over a wide linear dynamic range, using three different commercially available reagents and laboratory-developed methods. EBV was detected with comparable sensitivity and quantitative correlation for all assays.

  5. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri

    PubMed Central

    Yin, Youping; Wang, Zhongkang

    2016-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a novel molecular biology technique providing absolute quantification of target nucleic acids without the need for an external calibrator. Despite its emerging applications in medical diagnosis, there are few reports of its use for the detection of plant pathogens. This work was designed to assess the diagnosis potential of the ddPCR for absolute quantitative detection of Xanthomonas citri subsp. citri, a quarantine plant pathogenic bacterium that causes citrus bacterial canker in susceptible Citrus species. We transferred an established quantitative PCR (qPCR) assay for citrus bacterial canker diagnosis directly to the ddPCR format and compared the performance of the two methods. The qPCR assay has a broader dynamic range compared to the ddPCR assay and the ddPCR assay has a significantly higher degree of sensitivity compared to the qPCR assay. The influence of PCR inhibitors can be reduced considerably in the ddPCR assay because the collection of end-point fluorescent signals and the counting of binomial events (positive or negative droplets) are associated with a Poisson algorithm. The ddPCR assay also shows lower coefficient of variation compared to the qPCR assay especially in low target concentration. The linear association of the measurements by ddPCR and qPCR assays is strong (Pearson correlation = 0.8633; P<0.001). Receiver operating characteristic analysis indicates the ddPCR methodology is a more robust approach for diagnosis of citrus bacterial canker. In summary, the results demonstrated that the ddPCR assay has the potential for the quantitative detection of X. citri subsp. citri with high precision and accuracy as compared with the results from qPCR assay. Further studies are required to evaluate and validate the value of ddPCR technology in the diagnosis of plant disease and quarantine applications. PMID:27427975

  6. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri.

    PubMed

    Zhao, Yun; Xia, Qingyan; Yin, Youping; Wang, Zhongkang

    2016-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a novel molecular biology technique providing absolute quantification of target nucleic acids without the need for an external calibrator. Despite its emerging applications in medical diagnosis, there are few reports of its use for the detection of plant pathogens. This work was designed to assess the diagnosis potential of the ddPCR for absolute quantitative detection of Xanthomonas citri subsp. citri, a quarantine plant pathogenic bacterium that causes citrus bacterial canker in susceptible Citrus species. We transferred an established quantitative PCR (qPCR) assay for citrus bacterial canker diagnosis directly to the ddPCR format and compared the performance of the two methods. The qPCR assay has a broader dynamic range compared to the ddPCR assay and the ddPCR assay has a significantly higher degree of sensitivity compared to the qPCR assay. The influence of PCR inhibitors can be reduced considerably in the ddPCR assay because the collection of end-point fluorescent signals and the counting of binomial events (positive or negative droplets) are associated with a Poisson algorithm. The ddPCR assay also shows lower coefficient of variation compared to the qPCR assay especially in low target concentration. The linear association of the measurements by ddPCR and qPCR assays is strong (Pearson correlation = 0.8633; P<0.001). Receiver operating characteristic analysis indicates the ddPCR methodology is a more robust approach for diagnosis of citrus bacterial canker. In summary, the results demonstrated that the ddPCR assay has the potential for the quantitative detection of X. citri subsp. citri with high precision and accuracy as compared with the results from qPCR assay. Further studies are required to evaluate and validate the value of ddPCR technology in the diagnosis of plant disease and quarantine applications. PMID:27427975

  7. Quantitative PCR for Genetic Markers of Human Fecal Pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantificationapproach. We report the development of quantitative PCR assays for quantification of two recently described human-...

  8. Quantitative PCR for genetic markers of human fecal pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantification approach. We report the development of quantitative PCR assays for enumeration of two recently described hum...

  9. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients

    PubMed Central

    Ramírez, Juan Carlos; Cura, Carolina Inés; Moreira, Otacilio da Cruz; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Guedes, Paulo Marcos da Matta; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Galvão, Lúcia Maria da Cunha; da Câmara, Antonia Cláudia Jácome; Espinoza, Bertha; de Noya, Belkisyole Alarcón; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G.

    2015-01-01

    An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease. PMID:26320872

  10. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients.

    PubMed

    Ramírez, Juan Carlos; Cura, Carolina Inés; da Cruz Moreira, Otacilio; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Marcos da Matta Guedes, Paulo; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Maria da Cunha Galvão, Lúcia; Jácome da Câmara, Antonia Cláudia; Espinoza, Bertha; Alarcón de Noya, Belkisyole; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G

    2015-09-01

    An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease. PMID:26320872

  11. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients.

    PubMed

    Ramírez, Juan Carlos; Cura, Carolina Inés; da Cruz Moreira, Otacilio; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Marcos da Matta Guedes, Paulo; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Maria da Cunha Galvão, Lúcia; Jácome da Câmara, Antonia Cláudia; Espinoza, Bertha; Alarcón de Noya, Belkisyole; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G

    2015-09-01

    An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease.

  12. Interlaboratory Comparison of Quantitative PCR Test Results for Dehalococcoides

    EPA Science Inventory

    Quantitative PCR (qPCR) techniques have been widely used to measure Dehalococcoides (Dhc) DNA in the groundwater at field sites for several years. Interpretation of these data may be complicated when different laboratories using alternate methods conduct the analysis. An...

  13. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods.

    PubMed

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-10-01

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples. PMID:26492259

  14. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods.

    PubMed

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-10-19

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  15. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods

    PubMed Central

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-01-01

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples. PMID:26492259

  16. Establishment and Validation of a Non-Radioactive Method for In Vitro Transcription Assay Using Primer Extension and Quantitative Real Time PCR.

    PubMed

    Wang, Juan; Zhao, Shasha; Zhou, Ying; Wei, Yun; Deng, Wensheng

    2015-01-01

    Primer extension-dependent in vitro transcription assay is one of the most important approaches in the research field of gene transcription. However, conventional in vitro transcription assays incorporates radioactive isotopes that cause environmental and health concerns and restricts its scope of application. Here we report a novel non-radioactive method for in vitro transcription analysis by combining primer extension with quantitative real time PCR (qPCR). We show that the DNA template within the transcription system can be effectively eliminated to a very low level by our specially designed approach, and that the primers uniquely designed for primer extension and qPCR can specifically recognize the RNA transcripts. Quantitative PCR data demonstrate that the novel method has successfully been applied to in vitro transcription analyses using the adenovirus E4 and major late promoters. Furthermore, we show that the TFIIB recognition element inhibits transcription of TATA-less promoters using both conventional and nonradioactive in vitro transcription assays. Our method will benefit the laboratories that need to perform in vitro transcription but either lack of or choose to avoid radioactive facilities.

  17. A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity.

    PubMed

    Adamski, Mateusz G; Gumann, Patryk; Baird, Alison E

    2014-01-01

    Over the past decade rapid advances have occurred in the understanding of RNA expression and its regulation. Quantitative polymerase chain reactions (qPCR) have become the gold standard for quantifying gene expression. Microfluidic next generation, high throughput qPCR now permits the detection of transcript copy number in thousands of reactions simultaneously, dramatically increasing the sensitivity over standard qPCR. Here we present a gene expression analysis method applicable to both standard polymerase chain reactions (qPCR) and high throughput qPCR. This technique is adjusted to the input sample quantity (e.g., the number of cells) and is independent of control gene expression. It is efficiency-corrected and with the use of a universal reference sample (commercial complementary DNA (cDNA)) permits the normalization of results between different batches and between different instruments--regardless of potential differences in transcript amplification efficiency. Modifications of the input quantity method include (1) the achievement of absolute quantification and (2) a non-efficiency corrected analysis. When compared to other commonly used algorithms the input quantity method proved to be valid. This method is of particular value for clinical studies of whole blood and circulating leukocytes where cell counts are readily available.

  18. An event-specific method for the detection and quantification of ML01, a genetically modified Saccharomyces cerevisiae wine strain, using quantitative PCR.

    PubMed

    Vaudano, Enrico; Costantini, Antonella; Garcia-Moruno, Emilia

    2016-10-01

    The availability of genetically modified (GM) yeasts for winemaking and, in particular, transgenic strains based on the integration of genetic constructs deriving from other organisms into the genome of Saccharomyces cerevisiae, has been a reality for several years. Despite this, their use is only authorized in a few countries and limited to two strains: ML01, able to convert malic acid into lactic acid during alcoholic fermentation, and ECMo01 suitable for reducing the risk of carbamate production. In this work we propose a quali-quantitative culture-independent method for the detection of GM yeast ML01 in commercial preparations of ADY (Active Dry Yeast) consisting of efficient extraction of DNA and qPCR (quantitative PCR) analysis based on event-specific assay targeting MLC (malolactic cassette), and a taxon-specific S. cerevisiae assay detecting the MRP2 gene. The ADY DNA extraction methodology has been shown to provide good purity DNA suitable for subsequent qPCR. The MLC and MRP2 qPCR assay showed characteristics of specificity, dynamic range, limit of quantification (LOQ) limit of detection (LOD), precision and trueness, which were fully compliant with international reference guidelines. The method has been shown to reliably detect 0.005% (mass/mass) of GM ML01 S. cerevisiae in commercial preparations of ADY.

  19. An event-specific method for the detection and quantification of ML01, a genetically modified Saccharomyces cerevisiae wine strain, using quantitative PCR.

    PubMed

    Vaudano, Enrico; Costantini, Antonella; Garcia-Moruno, Emilia

    2016-10-01

    The availability of genetically modified (GM) yeasts for winemaking and, in particular, transgenic strains based on the integration of genetic constructs deriving from other organisms into the genome of Saccharomyces cerevisiae, has been a reality for several years. Despite this, their use is only authorized in a few countries and limited to two strains: ML01, able to convert malic acid into lactic acid during alcoholic fermentation, and ECMo01 suitable for reducing the risk of carbamate production. In this work we propose a quali-quantitative culture-independent method for the detection of GM yeast ML01 in commercial preparations of ADY (Active Dry Yeast) consisting of efficient extraction of DNA and qPCR (quantitative PCR) analysis based on event-specific assay targeting MLC (malolactic cassette), and a taxon-specific S. cerevisiae assay detecting the MRP2 gene. The ADY DNA extraction methodology has been shown to provide good purity DNA suitable for subsequent qPCR. The MLC and MRP2 qPCR assay showed characteristics of specificity, dynamic range, limit of quantification (LOQ) limit of detection (LOD), precision and trueness, which were fully compliant with international reference guidelines. The method has been shown to reliably detect 0.005% (mass/mass) of GM ML01 S. cerevisiae in commercial preparations of ADY. PMID:27367966

  20. Development of a combined air sampling and quantitative real-time PCR method for detection of Legionella spp.

    PubMed

    Sirigul, Chomrach; Wongwit, Waranya; Phanprasit, Wantanee; Paveenkittiporn, Wantana; Blacksell, Stuart D; Ramasoota, Pongrama

    2006-05-01

    The objective of this study was to develop and optimize the combined methods of air sampling and real time polymerase chain reaction (real-time PCR) for quantifying aerosol Legionella spp. Primers and TaqMan hydrolysis probe based on 5S rRNA gene specific for Legionella spp were used to amplify a specific DNA product of 84 bp. The impinger air sampler plus T-100 sampling pump was used to collect aerosol Legionella and as low as 10 fg of Legionella DNA per reaction could detected. Preliminary studies demonstrated that the developed method could detect aerosol Legionella spp 1.5-185 organisms /500 l of air within 5 hours, in contrast to culture method, that required a minimum of 7-10 days. PMID:17120970

  1. Comparison of Enterococcus quantitative polymerase chain reaction analysis results from midwest U.S. river samples using EPA Method 1611 and Method 1609 PCR reagents

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has provided recommended beach advisory values in its 2012 recreational water quality criteria (RWQC) for states wishing to use quantitative polymerase chain reaction (qPCR) for the monitoring of Enterococcus fecal indicator bacteria...

  2. A real-time quantitative PCR detection method specific to widestrike transgenic cotton (event 281-24-236/3006-210-23).

    PubMed

    Baeumler, Stefan; Wulff, Dörte; Tagliani, Laura; Song, Ping

    2006-09-01

    In compliance with global regulations on transgenic crops, a real-time quantitative PCR method specific to Widestrike transgenic cotton (event 281-24-236/3006-210-23, OECD Unique Identifier DAS-24236-5/DAS-21023-5) was established on the basis of the DNA sequences in the junction between the transgene insert and cotton genome. The optimized method consists of a DNA extraction method for cotton seeds and three PCR systems corresponding to a cotton-specific endogenous reference DNA sequence SAH7 (Sinapis Arabidopsis Homolog 7) and specific detection of event 281-24-236 and event 3006-210-23. The method performance including specificity, sensitivity, accuracy, and precision was determined at a dynamic range of Widestrike DNA levels from 0.04% to 5.0%. The limits of detection (LOD) and quantification (LOQ) were < or =0.04% and < or =0.09%, respectively, at 100 ng of DNA sample per reaction. The quantification results using either the event 281-24-236 or 3006-210-23 system were consistent, and the relative deviation from the expected (true) value was in the range of +/-25%. The robustness of the method was demonstrated by a series of tests with deviations from the optimized assay parameters such as annealing temperature, extension time, PCR instrument, interlaboratory transferability, etc. All the measurements from these tests met the criteria set by EU JRC-CRL (European Commission Joint Research Centre-Community Reference Lab). This real-time quantitative PCR method is accurate and robust, and is recommended as a global benchmark method for the detection and quantification of Widestrike cotton. The method including description, protocol, and performance results is available on the JRC-CRL website (http://gmo-crl.jrc.it/statusofdoss.htm). PMID:16939306

  3. A real-time quantitative PCR detection method specific to widestrike transgenic cotton (event 281-24-236/3006-210-23).

    PubMed

    Baeumler, Stefan; Wulff, Dörte; Tagliani, Laura; Song, Ping

    2006-09-01

    In compliance with global regulations on transgenic crops, a real-time quantitative PCR method specific to Widestrike transgenic cotton (event 281-24-236/3006-210-23, OECD Unique Identifier DAS-24236-5/DAS-21023-5) was established on the basis of the DNA sequences in the junction between the transgene insert and cotton genome. The optimized method consists of a DNA extraction method for cotton seeds and three PCR systems corresponding to a cotton-specific endogenous reference DNA sequence SAH7 (Sinapis Arabidopsis Homolog 7) and specific detection of event 281-24-236 and event 3006-210-23. The method performance including specificity, sensitivity, accuracy, and precision was determined at a dynamic range of Widestrike DNA levels from 0.04% to 5.0%. The limits of detection (LOD) and quantification (LOQ) were < or =0.04% and < or =0.09%, respectively, at 100 ng of DNA sample per reaction. The quantification results using either the event 281-24-236 or 3006-210-23 system were consistent, and the relative deviation from the expected (true) value was in the range of +/-25%. The robustness of the method was demonstrated by a series of tests with deviations from the optimized assay parameters such as annealing temperature, extension time, PCR instrument, interlaboratory transferability, etc. All the measurements from these tests met the criteria set by EU JRC-CRL (European Commission Joint Research Centre-Community Reference Lab). This real-time quantitative PCR method is accurate and robust, and is recommended as a global benchmark method for the detection and quantification of Widestrike cotton. The method including description, protocol, and performance results is available on the JRC-CRL website (http://gmo-crl.jrc.it/statusofdoss.htm).

  4. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods.

    PubMed

    Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung

    2014-03-01

    The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.

  5. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods.

    PubMed

    Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung

    2014-03-01

    The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality. PMID:24642428

  6. Screening Brucella spp. in bovine raw milk by real-time quantitative PCR and conventional methods in a pilot region of vaccination, Edirne, Turkey.

    PubMed

    Kaynak-Onurdag, F; Okten, S; Sen, B

    2016-05-01

    Brucellosis is a worldwide zoonotic disease transmitted to humans by consumption of contaminated milk and milk products. Brucellosis is endemic in Turkey, and Edirne has a high Brucella prevalence. Brucellosis is prevented by live-attenuated vaccines for animals and the vaccination program has been in place since 1984 in Turkey. Thrace is the pilot region for this vaccination program. The gold standard diagnostic technique for brucellosis is still the isolation of suspicious bacterial colonies followed by bacteriological identification, but it is very time consuming and laborious. In many studies, Brucella has been investigated by PCR techniques. However, PCR-based methods cannot differentiate between the vaccine strain and the virulent strain; thus, the vaccine strain may interfere with the virulent strain and causes false-positive reactions. To monitor brucellosis control programs effectively, it is important to distinguish vaccine and field strains of Brucella spp. In this study, raw milk samples were collected from 99 cows at 12 different barns in 5 villages of Edirne (Turkey). Bacteriological analyses and real-time quantitative (q)PCR experiments were applied to all samples. The DNA was isolated using Biospeedy DNA-Tricky Purification Kit (Bioeksen, Istanbul, Turkey). For all reactions, Roche Light Cycler Nano (Roche Diagnostics, Mannheim, Germany) instrument and Biospeedy EvaGreen qPCR Pre-Mix (Bioeksen) were used. The data were analyzed using Roche LightCycler NanoSoftware 1.0. For samples that were negative by bacteriological analyses and positive by qPCR, we developed a novel qPCR-based method to differentiate the virulent B. abortus strains and B. abortus S19 vaccine strain. We designed qPCR primers targeting the outer membrane protein of B. abortus. The qPCR products were sequenced using the ABI Prism Big Dye Terminator Cycle Sequencing Ready Reaction Kit on an ABI Prism 377 DNA sequencer (Applied Biosystems, Foster City, CA). In total, 2.02% of the

  7. A propidium monoazide-quantitative PCR method for the detection and quantification of viable Enterococcus faecalis in large-volume samples of marine waters.

    PubMed

    Salam, Khaled W; El-Fadel, Mutasem; Barbour, Elie K; Saikaly, Pascal E

    2014-10-01

    The development of rapid detection assays of cell viability is essential for monitoring the microbiological quality of water systems. Coupling propidium monoazide with quantitative PCR (PMA-qPCR) has been successfully applied in different studies for the detection and quantification of viable cells in small-volume samples (0.25-1.00 mL), but it has not been evaluated sufficiently in marine environments or in large-volume samples. In this study, we successfully integrated blue light-emitting diodes for photoactivating PMA and membrane filtration into the PMA-qPCR assay for the rapid detection and quantification of viable Enterococcus faecalis cells in 10-mL samples of marine waters. The assay was optimized in phosphate-buffered saline and seawater, reducing the qPCR signal of heat-killed E. faecalis cells by 4 log10 and 3 log10 units, respectively. Results suggest that high total dissolved solid concentration (32 g/L) in seawater can reduce PMA activity. Optimal PMA-qPCR standard curves with a 6-log dynamic range and detection limit of 10(2) cells/mL were generated for quantifying viable E. faecalis cells in marine waters. The developed assay was compared with the standard membrane filter (MF) method by quantifying viable E. faecalis cells in seawater samples exposed to solar radiation. The results of the developed PMA-qPCR assay did not match that of the standard MF method. This difference in the results reflects the different physiological states of E. faecalis cells in seawater. In conclusion, the developed assay is a rapid (∼5 h) method for the quantification of viable E. faecalis cells in marine recreational waters, which should be further improved and tested in different seawater settings.

  8. Comparative quantitative analysis of BCR-ABL transcripts with the T315I mutant clone by polymerase chain reaction (PCR)-Invader method.

    PubMed

    Tadokoro, Kenichi; Ishikawa, Maho; Suzuki, Makoto; Saito, Tomoyoshi; Suzuki, Yoshie; Yamaguchi, Toshikazu; Yagasaki, Fumiharu

    2011-09-01

    Drug resistance is a serious complication in the treatment of chronic myeloid leukemia (CML). The most common and best-characterized mechanism of secondary imatinib resistance in CML is the development of kinase domain mutations in the BCR-ABL gene. Second-generation tyrosine kinase inhibitors, such as dasatinib or nilotinib, overcome most of these mutations, but they are not effective against the T315I mutant. To determine whether these mutations contribute to clinical resistance, it is necessary to monitor the ratio of the mutant and wild-type forms. Here, we developed a polymerase chain reaction (PCR)-Invader assay for comparative quantitative analysis (qPI assay) of BCR-ABL transcripts with the T315I mutant clone. T315I ratios were calculated for the wild-type and mutant fold-over-zero (FOZ) values. In examination with 2 kinds of plasmids containing wild-type or T315I mutant PCR amplicons, mutant FOZ values were detected down to 1% of the total. The results of 12 serial samples from 2 patients (case A: Philadelphia-positive acute lymphoblastic leukemia and case B: CML) with the T315I mutant clone were compared with those of direct sequencing or 2 kinds of allele-specific oligonucleotide (ASO)-PCR. All samples showed the T315I mutation by qPI assay and ASO-PCR, and 10 samples showed it by direct sequencing. Significant correlation (correlation coefficient; r2 = 0.951) was noted between the qPI assay and quantitative ASO-PCR to analyze T315I mutant ratios. Thus, the qPI assay is a useful method for evaluating the T315I mutant clone in BCR-ABL transcripts.

  9. Comparative quantitative analysis of BCR-ABL transcripts with the T315I mutant clone by polymerase chain reaction (PCR)-Invader method.

    PubMed

    Tadokoro, Kenichi; Ishikawa, Maho; Suzuki, Makoto; Saito, Tomoyoshi; Suzuki, Yoshie; Yamaguchi, Toshikazu; Yagasaki, Fumiharu

    2011-09-01

    Drug resistance is a serious complication in the treatment of chronic myeloid leukemia (CML). The most common and best-characterized mechanism of secondary imatinib resistance in CML is the development of kinase domain mutations in the BCR-ABL gene. Second-generation tyrosine kinase inhibitors, such as dasatinib or nilotinib, overcome most of these mutations, but they are not effective against the T315I mutant. To determine whether these mutations contribute to clinical resistance, it is necessary to monitor the ratio of the mutant and wild-type forms. Here, we developed a polymerase chain reaction (PCR)-Invader assay for comparative quantitative analysis (qPI assay) of BCR-ABL transcripts with the T315I mutant clone. T315I ratios were calculated for the wild-type and mutant fold-over-zero (FOZ) values. In examination with 2 kinds of plasmids containing wild-type or T315I mutant PCR amplicons, mutant FOZ values were detected down to 1% of the total. The results of 12 serial samples from 2 patients (case A: Philadelphia-positive acute lymphoblastic leukemia and case B: CML) with the T315I mutant clone were compared with those of direct sequencing or 2 kinds of allele-specific oligonucleotide (ASO)-PCR. All samples showed the T315I mutation by qPI assay and ASO-PCR, and 10 samples showed it by direct sequencing. Significant correlation (correlation coefficient; r2 = 0.951) was noted between the qPI assay and quantitative ASO-PCR to analyze T315I mutant ratios. Thus, the qPI assay is a useful method for evaluating the T315I mutant clone in BCR-ABL transcripts. PMID:21867983

  10. Detection of a frequent duplicated CYP21A2 gene carrying a Q318X mutation in a general population with quantitative PCR methods.

    PubMed

    Kharrat, Maher; Riahi, Awatef; Maazoul, Faouzi; M'rad, Ridha; Chaabouni, Habiba

    2011-06-01

    Earlier we had reported a large prevalence of the Q318X mutation in the CYP21A2 gene with 35.3% in Tunisian patients with a classical form of 21-hydroxylase deficiency, in contrast with 0.5% to 13.8% as described in other populations. Here we present the analysis of the Q318X mutation in a healthy Tunisian population. We screened 136 individuals by the polymerase chain reaction (PCR)/random fragment length polymorphism method, which was confirmed by direct sequencing. Surprisingly, 17 Q318X carriers were identified, for a carrier frequency of 12.5% (95% confidence interval: 7.86-19.20). To explain this unexpectedly high rate we suggest that the haplotype with Q318X mutation and duplicated CYP21A2 gene could be very frequent in the Tunisian population. To test our hypothesis, we used 2 different quantitative PCR methods, that is, multiplex ligation-dependent probe amplification and real-time PCR. The molecular studies showed the presence of a duplicated CYP21A2 gene in all 17 heterozygous Q318X mutation carriers. In addition, both quantitative PCR methods used in this study represent a sensitive and useful approach to detecting copy number variations of the CYP21A2 gene. We have identified a very high frequency of carriers with duplicated CYP21A2 gene haplotype in a healthy Tunisian population. This finding complicates the molecular diagnosis of 21-hydroxylase deficiency and we recommend that, whenever a Q318X is identified, the structure of the CYP21A2 region should be determined to discriminate between the severe Q318X mutation and the normal Q318X variant.

  11. Sensitive quantitative detection of Ralstonia solanacearum in soil by the most probable number-polymerase chain reaction (MPN-PCR) method.

    PubMed

    Inoue, Yasuhiro; Nakaho, Kazuhiro

    2014-05-01

    We developed a sensitive quantitative assay for detecting Ralstonia solanacearum in soil by most probable number (MPN) analysis based on bio-PCR results. For development of the detection method, we optimized an elution buffer containing 5 g/L skim milk for extracting bacteria from soil and reducing contamination of polymerase inhibitors in soil extracts. Because R. solanacearum can grow in water without any added nutrients, we used a cultivation buffer in the culture step of the bio-PCR that contained only the buffer and antibiotics to suppress the growth of other soil microorganisms. To quantify the bacterial population in soil, the elution buffer was added to 10 g soil on a dry weight basis so that the combined weight of buffer, soil, and soil-water was 50 g; 5 mL of soil extract was assumed to originate from 1 g of soil. The soil extract was divided into triplicate aliquots each of 5 mL and 500, 50, and 5 μL. Each aliquot was diluted with the cultivation buffer and incubated at 35 °C for about 24 h. After incubation, 5 μL of culture was directly used for nested PCR. The number of aliquots showing positive results was collectively checked against the MPN table. The method could quantify bacterial populations in soil down to 3 cfu/10 g dried soil and was successfully applied to several types of soil. We applied the method for the quantitative detection of R. solanacearum in horticultural soils, which could quantitatively detect small populations (9.3 cfu/g), but the semiselective media were not able to detect the bacteria.

  12. Performance of two quantitative PCR methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters.

    PubMed

    Staley, Christopher; Gordon, Katrina V; Schoen, Mary E; Harwood, Valerie J

    2012-10-01

    Before new, rapid quantitative PCR (qPCR) methods for assessment of recreational water quality and microbial source tracking (MST) can be useful in a regulatory context, an understanding of the ability of the method to detect a DNA target (marker) when the contaminant source has been diluted in environmental waters is needed. This study determined the limits of detection and quantification of the human-associated Bacteroides sp. (HF183) and human polyomavirus (HPyV) qPCR methods for sewage diluted in buffer and in five ambient, Florida water types (estuarine, marine, tannic, lake, and river). HF183 was quantifiable in sewage diluted up to 10(-6) in 500-ml ambient-water samples, but HPyVs were not quantifiable in dilutions of >10(-4). Specificity, which was assessed using fecal composites from dogs, birds, and cattle, was 100% for HPyVs and 81% for HF183. Quantitative microbial risk assessment (QMRA) estimated the possible norovirus levels in sewage and the human health risk at various sewage dilutions. When juxtaposed with the MST marker detection limits, the QMRA analysis revealed that HF183 was detectable when the modeled risk of gastrointestinal (GI) illness was at or below the benchmark of 10 illnesses per 1,000 exposures, but the HPyV method was generally not sensitive enough to detect potential health risks at the 0.01 threshold for frequency of illness. The tradeoff between sensitivity and specificity in the MST methods indicates that HF183 data should be interpreted judiciously, preferably in conjunction with a more host-specific marker, and that better methods of concentrating HPyVs from environmental waters are needed if this method is to be useful in a watershed management or monitoring context. PMID:22885746

  13. Quantitative detection of viable helminth ova from raw wastewater, human feces, and environmental soil samples using novel PMA-qPCR methods.

    PubMed

    Gyawali, P; Ahmed, W; Sidhu, J P S; Nery, S V; Clements, A C; Traub, R; McCarthy, J S; Llewellyn, S; Jagals, P; Toze, S

    2016-09-01

    In this study, we have evaluated the efficacy of propidium monoazide quantitative polymerase chain reaction (PMA-qPCR) to differentiate between viable and non-viable Ancylostoma caninum ova. The newly developed method was validated using raw wastewater seeded with known numbers of A. caninum ova. Results of this study confirmed that PMA-qPCR has resulted in average of 88 % reduction (P < 0.05) in gene copy numbers for 50 % viable +50 % non-viable when compared with 100 % viable ova. A reduction of 100 % in gene copies was observed for 100 % non-viable ova when compared with 100 % viable ova. Similar reductions (79-80 %) in gene copies were observed for A. caninum ova-seeded raw wastewater samples (n = 18) collected from wastewater treatment plants (WWTPs) A and B. The newly developed PMA-qPCR method was applied to determine the viable ova of different helminths (A. caninum, A. duodenale, Necator americanus and Ascaris lumbricoides) in raw wastewater, human fecal and soil samples. None of the unseeded wastewater samples were positive for the above-mentioned helminths. N. americanus and A. lumbricoides ova were found in unseeded human fecal and soil samples. For the unseeded human fecal samples (1 g), an average gene copy concentration obtained from qPCR and PMA-qPCR was found to be similar (6.8 × 10(5) ± 6.4 × 10(5) and 6.3 × 10(5) ± 4.7 × 10(5)) indicating the presence of viable N. americanus ova. Among the 24 unseeded soil samples tested, only one was positive for A. lumbricoides. The mean gene copy concentration in the positively identified soil sample was 1.0 × 10(5) ± 1.5 × 10(4) (determined by qPCR) compared to 4.9 × 10(4) ± 3.7 × 10(3) (determined by PMA-qPCR). The newly developed PMA-qPCR methods were able to detect viable helminth ova from wastewater and soil samples and could be adapted for health risk assessment. PMID:27306209

  14. Quantitative detection of viable helminth ova from raw wastewater, human feces, and environmental soil samples using novel PMA-qPCR methods.

    PubMed

    Gyawali, P; Ahmed, W; Sidhu, J P S; Nery, S V; Clements, A C; Traub, R; McCarthy, J S; Llewellyn, S; Jagals, P; Toze, S

    2016-09-01

    In this study, we have evaluated the efficacy of propidium monoazide quantitative polymerase chain reaction (PMA-qPCR) to differentiate between viable and non-viable Ancylostoma caninum ova. The newly developed method was validated using raw wastewater seeded with known numbers of A. caninum ova. Results of this study confirmed that PMA-qPCR has resulted in average of 88 % reduction (P < 0.05) in gene copy numbers for 50 % viable +50 % non-viable when compared with 100 % viable ova. A reduction of 100 % in gene copies was observed for 100 % non-viable ova when compared with 100 % viable ova. Similar reductions (79-80 %) in gene copies were observed for A. caninum ova-seeded raw wastewater samples (n = 18) collected from wastewater treatment plants (WWTPs) A and B. The newly developed PMA-qPCR method was applied to determine the viable ova of different helminths (A. caninum, A. duodenale, Necator americanus and Ascaris lumbricoides) in raw wastewater, human fecal and soil samples. None of the unseeded wastewater samples were positive for the above-mentioned helminths. N. americanus and A. lumbricoides ova were found in unseeded human fecal and soil samples. For the unseeded human fecal samples (1 g), an average gene copy concentration obtained from qPCR and PMA-qPCR was found to be similar (6.8 × 10(5) ± 6.4 × 10(5) and 6.3 × 10(5) ± 4.7 × 10(5)) indicating the presence of viable N. americanus ova. Among the 24 unseeded soil samples tested, only one was positive for A. lumbricoides. The mean gene copy concentration in the positively identified soil sample was 1.0 × 10(5) ± 1.5 × 10(4) (determined by qPCR) compared to 4.9 × 10(4) ± 3.7 × 10(3) (determined by PMA-qPCR). The newly developed PMA-qPCR methods were able to detect viable helminth ova from wastewater and soil samples and could be adapted for health risk assessment.

  15. Comparison of quantitative PCR and culture-based methods for evaluating dispersal of Bacillus thuringiensis endospores at a bioterrorism hoax crime scene.

    PubMed

    Crighton, Taryn; Hoile, Rebecca; Coleman, Nicholas V

    2012-06-10

    Since the anthrax mail attacks of 2001, law enforcement agencies have processed thousands of suspicious mail incidents globally, many of which are hoax bioterrorism threats. Bio-insecticide preparations containing Bacillus thuringiensis (Bt) spores have been involved in several such threats in Australia, leading to the requirement for rapid and sensitive detection techniques for this organism, a close relative of Bacillus anthracis. Here we describe the development of a quantitative PCR (qPCR) method for the detection of Bt crystal toxin gene cry1, and evaluation of the method's effectiveness during a hoax bioterrorism event in 2009. When combined with moist wipe sampling, the cry1 qPCR was a rapid, reliable, and sensitive diagnostic tool for detecting and quantifying Bt contamination, and mapping endospore dispersal within a mail sorting facility. Results from the cry1 qPCR were validated by viable counts of the same samples on Bacillus-selective agar (PEMBA), which revealed a similar pattern of contamination. Extensive and persistent contamination of the facility was detected, both within the affected mailroom, and extending into office areas up to 30m distant from the source event, emphasising the need for improved containment procedures for suspicious mail items, both during and post-event. The cry1 qPCR enables detection of both viable and non-viable Bt spores and cells, which is important for historical crime scenes or scenes subjected to decontamination. This work provides a new rapid method to add to the forensics toolbox for crime scenes suspected to be contaminated with biological agents.

  16. The life cycles of the temperate lactococcal bacteriophage phiLC3 monitored by a quantitative PCR method.

    PubMed

    Lunde, M; Blatny, J M; Kaper, F; Nes, I F; Lillehaug, D

    2000-11-01

    We present here a new and general approach for monitoring the life cycles of temperate bacteriophages which establish lysogeny by inserting their genomes site-specifically into the bacterial host chromosome. The method is based on quantitative amplification of specific DNA sites involved in various cut-and-join events during the life cycles of the phages (i.e. the cos, attP, attB, attL and attR sites) with the use of sequence-specific primers. By comparing the amounts of these specific DNA sites at different intervals, we were able to follow the development of the lytic and lysogenic life cycles of the temperate lactococcal bacteriophage phiLC3 after infection of its bacterial host Lactococcus lactis ssp. cremoris IMN-C18. PMID:11040439

  17. The life cycles of the temperate lactococcal bacteriophage phiLC3 monitored by a quantitative PCR method.

    PubMed

    Lunde, M; Blatny, J M; Kaper, F; Nes, I F; Lillehaug, D

    2000-11-01

    We present here a new and general approach for monitoring the life cycles of temperate bacteriophages which establish lysogeny by inserting their genomes site-specifically into the bacterial host chromosome. The method is based on quantitative amplification of specific DNA sites involved in various cut-and-join events during the life cycles of the phages (i.e. the cos, attP, attB, attL and attR sites) with the use of sequence-specific primers. By comparing the amounts of these specific DNA sites at different intervals, we were able to follow the development of the lytic and lysogenic life cycles of the temperate lactococcal bacteriophage phiLC3 after infection of its bacterial host Lactococcus lactis ssp. cremoris IMN-C18.

  18. Recent advances in quantitative PCR (qPCR) applications in food microbiology.

    PubMed

    Postollec, Florence; Falentin, Hélène; Pavan, Sonia; Combrisson, Jérôme; Sohier, Danièle

    2011-08-01

    Molecular methods are being increasingly applied to detect, quantify and study microbial populations in food or during food processes. Among these methods, PCR-based techniques have been the subject of considerable focus and ISO guidelines have been established for the detection of food-borne pathogens. More particularly, real-time quantitative PCR (qPCR) is considered as a method of choice for the detection and quantification of microorganisms. One of its major advantages is to be faster than conventional culture-based methods. It is also highly sensitive, specific and enables simultaneous detection of different microorganisms. Application of reverse-transcription-qPCR (RT-qPCR) to study population dynamics and activities through quantification of gene expression in food, by contrast with the use of qPCR, is just beginning. Provided that appropriate controls are included in the analyses, qPCR and RT-qPCR appear to be highly accurate and reliable for quantification of genes and gene expression. This review addresses some important technical aspects to be considered when using these techniques. Recent applications of qPCR and RT-qPCR in food microbiology are given. Some interesting applications such as risk analysis or studying the influence of industrial processes on gene expression and microbial activity are reported.

  19. Use of tuf gene-based primers for the PCR detection of probiotic Bifidobacterium species and enumeration of bifidobacteria in fermented milk by cultural and quantitative real-time PCR methods.

    PubMed

    Sheu, Sen-Je; Hwang, Wen-Zhe; Chiang, Yu-Cheng; Lin, Wen-Hsin; Chen, Hsin-Chih; Tsen, Hau-Yang

    2010-10-01

    Due to the increasing use of bifidobacteria in probiotic products, it is essential to establish a rapid method for the qualitative and quantitative assay of the bifidobacteria in commercial products. In this study, partial sequences of the tuf gene for 18 Bifidobacterium strains belonging to 14 species were determined. Alignment of these sequences showed that the similarities among these Bifidobacterium species were 82.24% to 99.72%. Based on these tuf gene sequences, 6 primer sets were designed for the polymerase chain reaction (PCR) assay of B. animalis subsp. animalis, B. animalis subsp. lactis, B. bifidum, B. breve, B. longum subsp. infantis, B. longum subsp. longum, and the genus of Bifidobacterium, respectively. These Bifidobacterium species are common probiotic species present in dairy and probiotic products. When each target Bifidobacterium spp. was assayed with the designed primers, PCR product with expected size was generated. In addition, for each target species, more than 70 bacterial strains other than the target species, including strains of other Bifidobacterium species, strains of Lactobacillus spp., Enterococcus spp., and other bacterial species, all generated negative results. PCR assay with primers specific to B. animalis subsp. lactis and B. longum subsp. longum confirmed the presence of these Bifidobacterium species in commercial yogurt products. In addition, for each product, enumeration of the bifidobacteria cells by culture method with BIM-25 agar and the quantitative real-time PCR showed similar cell counts. Such results indicated that within 15-d storage (4 °C) after manufacture, all the bifidobacteria cells originally present in yogurt products were viable and culturable during the storage.

  20. Monitoring gene expression: quantitative real-time rt-PCR.

    PubMed

    Wagner, Elke M

    2013-01-01

    Two-step quantitative real-time RT-PCR (RT-qPCR), also known as real-time RT-PCR, kinetic RT-PCR, or quantitative fluorescent RT-PCR, has become the method of choice for gene expression analysis during the last few years. It is a fast and convenient PCR method that combines traditional RT-PCR with the phenomenon of fluorescence resonance energy transfer (FRET) using fluorogenic primers. The detection of changes in fluorescence intensity during the reaction enables the user to follow the PCR reaction in real time.RT-qPCR comprises several steps: (1) RNA is isolated from target tissue/cells; (2) mRNA is reverse-transcribed to cDNA; (3) modified gene-specific PCR primers are used to amplify a segment of the cDNA of interest, following the reaction in real time; and (4) the initial concentration of the selected transcript in a specific tissue or cell type is calculated from the exponential phase of the reaction. Relative quantification or absolute quantification compared to standards that are run in parallel can be performed.This chapter describes the entire procedure from isolation of total RNA from liver and fatty tissues/cells to the use of RT-qPCR to study gene expression in these tissues. We perform relative quantification of transcripts to calculate the fold-difference of a certain mRNA level between different samples. In addition, tips for choosing primers and performing analyses are provided to help the beginner in understanding the technique.

  1. Event-specific qualitative and quantitative PCR detection methods for transgenic rapeseed hybrids MS1xRF1 and MS1xRF2.

    PubMed

    Wu, Yuhua; Wu, Gang; Xiao, Ling; Lu, Changming

    2007-10-17

    Except for the events RT73, MS8, RF3, and T45, event-specific detection methods for most commercialized genetically modified (GM) rapeseed varieties have not been established, and as a result, the enforcement of genetically modified organism labeling policies has been hindered. The genetically modified rapeseeds, MS1xRF1 and MS1xRF2, are 2 of 11 approved GM-rapeseed varieties for commercialization. In this study, the right border junction fragments between the gene construct and the rapeseed genome of events RF1, RF2, and MS1 were isolated using the commercially available GenomeWalker technology. Homology analysis indicated that the gene construct of RF1 integrated upstream of the nuclease gene, and that of the RF2 and MS1 inserted into the exon region of a gene encoding for an unknown protein. The event-specific primer pairs and corresponding probes were designed on the basis of the revealed right border junction fragments. Then, we successfully developed the identification and quantification methods for the gene-stacked hybrids MS1xRF1 and MS1xRF2 using those primers and probes. The relative limit of detection in the qualitative polymerase chain reaction (PCR) was 0.013% for the RF2 and MS1 assays using 100 ng of rapeseed DNA per reaction and 0.13% for the RF1 assay. The absolute limit of detection in the quantitative PCR was approximately one to two initial copies for each of the three event-specific assays. The evaluation of the real-time PCR assays revealed that the qualitative and quantitative methods developed by focusing on the gene-stacked hybrids MS1xRF1 and MS1xRF2 were highly specific, sensitive, and suitable for samples with a low quantity of DNA.

  2. Specific PCR and real-time PCR assays for detection and quantitation of 'Candidatus Phytoplasma phoenicium'.

    PubMed

    Jawhari, Maan; Abrahamian, Peter; Sater, Ali Abdel; Sobh, Hana; Tawidian, Patil; Abou-Jawdah, Yusuf

    2015-02-01

    Almond witches' broom (AlmWB) is a fast-spreading lethal disease of almond, peach and nectarine associated with 'Candidatus Phytoplasma phoenicium'. The development of PCR and quantitative real-time PCR (qPCR) assays for the sensitive and specific detection of the phytoplasma is of prime importance for early detection of 'Ca. P. phoenicium' and for epidemiological studies. The developed qPCR assay herein uses a TaqMan(®) probe labeled with Black Hole Quencher Plus. The specificity of the PCR and that of the qPCR detection protocols were tested on 17 phytoplasma isolates belonging to 11 phytoplasma 16S rRNA groups, on samples of almond, peach, nectarine, native plants and insects infected or uninfected with the phytoplasma. The developed assays showed high specificity against 'Ca. P. phoenicium' and no cross-reactivity against any other phytoplasma, plant or insect tested. The sensitivity of the developed PCR and qPCR assays was similar to the conventional nested PCR protocol using universal primers. The qPCR assay was further validated by quantitating AlmWB phytoplasma in different hosts, plant parts and potential insect vectors. The highest titers of 'Ca. P. phoenicium' were detected in the phloem tissues of stems and roots of almond and nectarine trees, where they averaged from 10(5) to 10(6) genomic units per nanogram of host DNA (GU/ng of DNA). The newly developed PCR and qPCR protocols are reliable, specific and sensitive methods that are easily applicable to high-throughput diagnosis of AlmWB in plants and insects and can be used for surveys of potential vectors and alternative hosts.

  3. Quantitative real-time polymerase chain reaction (qRT-PCR) restriction fragment length polymorphism (RFLP) method for monitoring highly conserved transgene expression during gene therapy.

    PubMed

    Bruzzone, Carol M; Belcher, John D; Schuld, Nathan J; Newman, Kristal A; Vineyard, Julie; Nguyen, Julia; Chen, Chunsheng; Beckman, Joan D; Steer, Clifford J; Vercellotti, Gregory M

    2008-12-01

    Evaluation of the transfer efficiency of a rat heme oxygenase-1 (HO-1) transgene into mice requires differentiation of rat and mouse HO-1. However, rat and mouse HO-1 have 94% homology; antibodies and enzyme activity cannot adequately distinguish HO-1. We designed a quantitative real-time polymerase chain reaction (qRT-PCR) method to monitor HO-1 transcription relative to a housekeeping gene, GAPDH. The ratio of rat and mouse HO-1 mRNA could be estimated through restriction fragment length polymorphism (RFLP) analysis of the PCR products. In vitro, murine AML12 hepatocytes were transfected with rat HO-1. After 40 h, the total HO-1 mRNA was enriched 2-fold relative to control cells, and rat HO-1 comprised 84% of HO-1 cDNA. In vivo, the rat HO-1 transgene was cloned into a Sleeping Beauty transposase (SB-Tn) construct and was injected hydrodynamically into a mouse model of sickle cell disease (SCD). After 21 days, there was a 32% enrichment of HO-1 mRNA relative to control mice and the rat transgene comprised 88% of HO-1 cDNA. After 21 days, HO-1 protein expression in liver was increased 2.5-fold. In summary, qRT-PCR RFLP is a useful and reliable method to differentiate the transgene from host gene transcription, especially when the host and transgene protein are identical or highly homologous. This method has translational applications to the design, delivery, and monitoring of gene-therapy vectors. PMID:19059164

  4. Development and optimization of a real-time quantitative PCR-based method for the titration of AAV-2 vector stocks.

    PubMed

    Veldwijk, Marlon R; Topaly, Julian; Laufs, Stephanie; Hengge, Ulrich R; Wenz, Frederik; Zeller, W Jens; Fruehauf, Stefan

    2002-08-01

    Despite the clinical application of adeno-associated virus (AAV) gene therapy, the titration of viral stocks has not yet been standardized. This complicates the comparison of viral stocks between laboratories. Functional titering of AAV is time-consuming, requires the manipulation of hazardous material, and often has a high degree of variability. We established an optimized real-time quantitative polymerase chain reaction (RQ-PCR) titration assay to determine viral titers and compared it with a functional green fluorescent protein (GFP)-based titration method. With a combination of improved lysis procedures and RQ-PCR protocols we could decrease the intraexperimental coefficient of variation (CV) from 0.24 +/- 0.03 to 0.042 +/- 0.004 and the interexperimental CV from 0.34 +/- 0.06 to 0.093 +/- 0.028 following functional and RQPCR-based titration, respectively. This low variability conforms to even the strictest quality standards required, for example, in clinical laboratories. The highly standardized titration by RQPCR described here will be especially advantageous for groups working on AAV-based gene therapy in a good manufacturing practice setting.

  5. Characterization of fecal concentrations in human and other animal sources by physical, culture-based, and quantitative real-time PCR methods.

    PubMed

    Ervin, Jared S; Russell, Todd L; Layton, Blythe A; Yamahara, Kevan M; Wang, Dan; Sassoubre, Lauren M; Cao, Yiping; Kelty, Catherine A; Sivaganesan, Mano; Boehm, Alexandria B; Holden, Patricia A; Weisberg, Stephen B; Shanks, Orin C

    2013-11-15

    The characteristics of fecal sources, and the ways in which they are measured, can profoundly influence the interpretation of which sources are contaminating a body of water. Although feces from various hosts are known to differ in mass and composition, it is not well understood how those differences compare across fecal sources and how differences depend on characterization methods. This study investigated how nine different fecal characterization methods provide different measures of fecal concentration in water, and how results varied across twelve different fecal pollution sources. Sources investigated included chicken, cow, deer, dog, goose, gull, horse, human, pig, pigeon, septage and sewage. A composite fecal slurry was prepared for each source by mixing feces from 6 to 22 individual samples with artificial freshwater. Fecal concentrations were estimated by physical (wet fecal mass added and total DNA mass extracted), culture-based (Escherichia coli and enterococci by membrane filtration and defined substrate), and quantitative real-time PCR (Bacteroidales, E. coli, and enterococci) characterization methods. The characteristics of each composite fecal slurry and the relationships between physical, culture-based and qPCR-based characteristics varied within and among different fecal sources. An in silico exercise was performed to assess how different characterization methods can impact identification of the dominant fecal pollution source in a mixed source sample. A comparison of simulated 10:90 mixtures based on enterococci by defined substrate predicted a source reversal in 27% of all possible combinations, while mixtures based on E. coli membrane filtration resulted in a reversal 29% of the time. This potential for disagreement in minor or dominant source identification based on different methods of measurement represents an important challenge for water quality managers and researchers.

  6. Efficient, validated method for detection of mycobacterial growth in liquid culture media by use of bead beating, magnetic-particle-based nucleic acid isolation, and quantitative PCR.

    PubMed

    Plain, Karren M; Waldron, Anna M; Begg, Douglas J; de Silva, Kumudika; Purdie, Auriol C; Whittington, Richard J

    2015-04-01

    Pathogenic mycobacteria are difficult to culture, requiring specialized media and a long incubation time, and have complex and exceedingly robust cell walls. Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease, a chronic wasting disease of ruminants, is a typical example. Culture of MAP from the feces and intestinal tissues is a commonly used test for confirmation of infection. Liquid medium offers greater sensitivity than solid medium for detection of MAP; however, support for the BD Bactec 460 system commonly used for this purpose has been discontinued. We previously developed a new liquid culture medium, M7H9C, to replace it, with confirmation of growth reliant on PCR. Here, we report an efficient DNA isolation and quantitative PCR methodology for the specific detection and confirmation of MAP growth in liquid culture media containing egg yolk. The analytical sensitivity was at least 10(4)-fold higher than a commonly used method involving ethanol precipitation of DNA and conventional PCR; this may be partly due to the addition of a bead-beating step to manually disrupt the cell wall of the mycobacteria. The limit of detection, determined using pure cultures of two different MAP strains, was 100 to 1,000 MAP organisms/ml. The diagnostic accuracy was confirmed using a panel of cattle fecal (n=54) and sheep fecal and tissue (n=90) culture samples. This technique is directly relevant for diagnostic laboratories that perform MAP cultures but may also be applicable to the detection of other species, including M. avium and M. tuberculosis.

  7. Real-Time Quantitative PCR for Human Herpesvirus 6 DNA

    PubMed Central

    Locatelli, Giuseppe; Santoro, Fabio; Veglia, Fabrizio; Gobbi, Alberto; Lusso, Paolo; Malnati, Mauro S.

    2000-01-01

    The diagnosis of human herpesvirus 6 (HHV-6) infection represents a complex issue because the most widely used diagnostic tools, such as immunoglobulin G antibody titer determination and qualitative DNA PCR with blood cells, are unable to distinguish between latent (clinically silent) and active (often clinically relevant) infection. We have developed a new, highly sensitive, quantitative PCR assay for the accurate measurement of HHV-6 DNA in tissue-derived cell suspensions and body fluids. The test uses a 5′ nuclease, fluorogenic assay combined with real-time detection of PCR amplification products with the ABI PRISM 7700 sequence detector system. The sensitivity of this method is equal to the sensitivity of a nested PCR protocol (lower detection limit, 1 viral genome equivalent/test) for both the A and the B HHV-6 subgroups and shows a wider dynamic range of detection (from 1 to 106 viral genome equivalents/test) and a higher degree of accuracy, repeatability, and reproducibility compared to those of a standard quantitative-competitive PCR assay developed with the same reference DNA molecule. The novel technique is versatile, showing the same sensitivity and dynamic range with viral DNA extracted from different fluids (i.e., culture medium or plasma) or from tissue-derived cell suspensions. Furthermore, by virtue of its high-throughput format, this method is well suited for large epidemiological surveys. PMID:11060066

  8. B1 Sequence-Based Real-Time Quantitative PCR: A Sensitive Method for Direct Measurement of Mouse Plasma DNA Levels After Gamma Irradiation

    SciTech Connect

    Zhang Hengshan; Zhang, Steven B.; Sun Weimin; Yang Shanmin; Zhang Mei; Wang Wei; Liu Chaomei; Zhang Kunzhong; Swarts, Steven; Fenton, Bruce M.; Keng, Peter; Maguire, David; Okunieff, Paul Zhang Lurong

    2009-08-01

    Purpose: Current biodosimetric techniques for determining radiation exposure have inherent delays, as well as quantitation and interpretation limitations. We have identified a new technique with the advantage of directly measuring circulating DNA by amplifying inter-B1 regions in the mouse genome, providing a sensitive method for quantitating plasma DNA. Methods and Materials: Real-time quantitative polymerase chain reaction (PCR) was used to detect levels of DNA by amplifying inter-B1 genomic DNA in plasma samples collected at 0-48 h from mice receiving 0-10 Gy total- or partial-body irradiation ({sup 137}Cs {gamma}-ray source at {approx}1.86 Gy/min; homogeneity: {+-} 6.5%). Results: The correlation coefficient between DNA levels and the threshold cycle value (C{sub T}) was 0.996, and the average recoveries of DNA in the assay were 87%. This assay revealed that when BALB/c mice were exposed to 10 Gy total-body irradiation (TBI), plasma DNA levels gradually increased beginning at 3 h after irradiation, peaked at 9 h, and returned to baseline within 48 h. Increased plasma DNA levels were also detected following upper-torso or lower-torso partial-body irradiation; however, TBI approximately doubled those plasma DNA levels at the same radiation dose. This technique therefore reflects total body cell damage. The advantages of this assay are that DNA extraction is not required, the assay is highly sensitive (0.002 ng), and results can be obtained within 2.5 h after collection of plasma samples. Conclusions: A radiation dose-dependent increase of plasma DNA was observed in the dose range from 2 to 10 Gy, suggesting that plasma DNA may be a useful radiation biomarker and adjunct to existing cell-based assays.

  9. Comparison of quantitative PCR and flow cytometry as cellular viability methods to study bacterial membrane permeabilization following supercritical CO2 treatment.

    PubMed

    Tamburini, Sabrina; Ballarini, Annalisa; Ferrentino, Giovanna; Moro, Albertomaria; Foladori, Paola; Spilimbergo, Sara; Jousson, Olivier

    2013-06-01

    Foodborne illness due to bacterial pathogens is increasing worldwide as a consequence of the higher consumption of fresh and minimally processed food products, which are more easily cross-contaminated. The efficiency of food pasteurization methods is usually measured by c.f.u. plate counts, a method discriminating viable from dead cells on the basis of the ability of cells to replicate and form colonies on standard growth media, thus ignoring viable but not cultivable cells. Supercritical CO2 (SC-CO2) has recently emerged as one of the most promising fresh food pasteurization techniques, as an alternative to traditional, heat-based methods. In the present work, using three SC-CO2-treated foodborne bacteria (Listeria monocytogenes, Salmonella enterica and Escherichia coli) we tested and compared the performance of alternative viability test methods based on membrane permeability: propidium monoazide quantitative PCR (PMA-qPCR) and flow cytometry (FCM). Results were compared based on plate counts and fluorescent microscopy measurements, which showed that the former dramatically reduced the number of cultivable cells by more than 5 log units. Conversely, FCM provided a much more detailed picture of the process, as it directly quantifies the number of total cells and distinguishes among three categories, including intact, partially permeabilized and permeabilized cells. A comparison of both PMA-qPCR and FCM with plate count data indicated that only a fraction of intact cells maintained the ability to replicate in vitro. Following SC-CO2 treatment, FCM analysis revealed a markedly higher level of bacterial membrane permeabilization of L. monocytogenes with respect to E. coli and S. enterica. Furthermore, an intermediate permeabilization state in which the cellular surface was altered and biovolume increased up to 1.5-fold was observed in L. monocytogenes, but not in E. coli or S. enterica. FCM thus compared favourably with other methods and should be considered as an

  10. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR.

    PubMed

    Zhong, Qun; Bhattacharya, Smiti; Kotsopoulos, Steven; Olson, Jeff; Taly, Valérie; Griffiths, Andrew D; Link, Darren R; Larson, Jonathan W

    2011-07-01

    Quantitative polymerase chain reactions (qPCR) based on real-time PCR constitute a powerful and sensitive method for the analysis of nucleic acids. However, in qPCR, the ability to multiplex targets using differently colored fluorescent probes is typically limited to 4-fold by the spectral overlap of the fluorophores. Furthermore, multiplexing qPCR assays requires expensive instrumentation and most often lengthy assay development cycles. Digital PCR (dPCR), which is based on the amplification of single target DNA molecules in many separate reactions, is an attractive alternative to qPCR. Here we report a novel and easy method for multiplexing dPCR in picolitre droplets within emulsions-generated and read out in microfluidic devices-that takes advantage of both the very high numbers of reactions possible within emulsions (>10(6)) as well as the high likelihood that the amplification of only a single target DNA molecule will initiate within each droplet. By varying the concentration of different fluorogenic probes of the same color, it is possible to identify the different probes on the basis of fluorescence intensity. Adding multiple colors increases the number of possible reactions geometrically, rather than linearly as with qPCR. Accurate and precise copy numbers of up to sixteen per cell were measured using a model system. A 5-plex assay for spinal muscular atrophy was demonstrated with just two fluorophores to simultaneously measure the copy number of two genes (SMN1 and SMN2) and to genotype a single nucleotide polymorphism (c.815A>G, SMN1). Results of a pilot study with SMA patients are presented.

  11. Expression of bax and bcl2 Genes in MDMA-induced Hepatotoxicity on Rat Liver Using Quantitative Real-Time PCR Method through Triggering Programmed Cell Death

    PubMed Central

    Behroozaghdam, Mitra; Hashemi, Mehrdad; Javadi, Gholamreza; Mahdian, Reza; Soleimani, Mansoureh

    2015-01-01

    Background: 3-4methylenedioxymethamphetamine (MDMA) is a synthetic and psychoactive drug, which is known popularly as Ecstasy and has toxic effects on human organs. Objectives: Considering the potential toxic interaction, this study was performed to quantify the expression of bax and bcl2 genes in MDMA-induced hepatotoxicity on rat liver. Subsequently, we evaluated pentoxifylline as a possible protective drug on hepatotoxicity. Materials and Methods: Adult male Wistar rats weighting 250 - 300 grams were used in the study. The rats were equally distributed into four experimental groups (5 rat/group). MDMA was dissolved in PBS and injected intraperitoneally (IP) including untreated control, MDMA (MDMA dissolved in PBS), treated-1 (MDMA followed by PTX) and treated-2 (PTX followed by MDMA). All animals given MDMA received 3 doses of 7.5mg/kg with two hours gap between doses. Liver tissue was removed after anaesthetizing. Subsequently, RNA isolation, cDNA synthesis and Real-Time PCR were performed. Finally, data analyzed statistically to determine significantly differences between the groups (P value < 0.05). Results: Using Real-Time quantitative PCR results, the gene expression ratio of bcl2 were calculated 93.80±20.64, 340.45 ± 36.60 and 47.13 ± 5.84 fold in MDMA, treated-1 and treated-2 groups, respectively. Furthermore, this ratio for bax gene obtained 2.13±0.33 fold in MDMA, 1.55 ± 0.26 fold in treated-1 and 10.44 ± 1.56 fold in treated-2 groups. Conclusions: The present study focused on molecular mechanism of MDMA in programmed cell death using gene expression quantification of a pro-apoptotic and anti-apoptoic gene in MDMA-induced hepatotoxocity. The results showed that MDMA prompted apoptosis in liver and pentoxifylline protected against hepatotoxicity before and after taking MDMA. PMID:26732379

  12. Short communication: Improved method for centrifugal recovery of bacteria from raw milk applied to sensitive real-time quantitative PCR detection of Salmonella spp.

    PubMed

    Brewster, Jeffrey D; Paul, Moushumi

    2016-05-01

    Centrifugation is widely used to isolate and concentrate bacteria from dairy products before assay. We found that more than 98% of common pathogenic bacteria added to pasteurized, homogenized, or pasteurized homogenized milk were recovered in the pellet after centrifugation, whereas less than 7% were recovered from raw milk. The remaining bacteria partitioned into the cream layer of raw milk within 5 min, and half-saturation of the cream layer required a bacterial load of approximately 5×10(8) cfu/mL. Known treatments (e.g., heat, enzymes or solvents) can disrupt cream layer binding and improve recovery from raw milk, but can also damage bacteria and compromise detection. We developed a simple, rapid agitation treatment that disrupted bacteria binding to the cream layer and provided more than 95% recovery without affecting bacteria viability. Combining this simple agitation treatment with a previously developed real-time quantitative PCR assay allowed the detection of Salmonella spp. in raw milk at 4 cfu/mL within 3 h. To our knowledge, this is the first report of an effective method for achieving high centrifugal recovery of bacteria from raw milk without impairing bacterial viability.

  13. Evaluation of two surface sampling methods for detection of Erwinia herbicola on a variety of materials by culture and quantitative PCR.

    PubMed

    Buttner, Mark P; Cruz, Patricia; Stetzenbach, Linda D; Cronin, Tracy

    2007-06-01

    This research was designed to evaluate surface sampling protocols for use with culture and quantitative PCR (QPCR) amplification assay for detection of the gram-negative bacterial biothreat simulant Erwinia herbicola on a variety of surface materials. Surfaces selected for evaluation were wood laminate, glass and computer monitor screens, metal file cabinets, plastic arena seats, nylon seat cushions, finished concrete flooring, and vinyl tile flooring. Laboratory and test chamber studies were performed to evaluate two sampling methods, a sponge and a macrofoam swab, for detection of E. herbicola on surface materials. In laboratory trials, seven materials were inoculated with a known concentration of E. herbicola cells and samples were collected from the surfaces of the materials to determine sampling efficiencies. Culture analysis was ineffective for assessing E. herbicola collection efficiency because very few culturable cells were obtained from surface samples. QPCR demonstrated that E. herbicola DNA was present in high concentrations on all of the surface samples, and sampling efficiencies ranged from 0.7 to 52.2%, depending on the sampling method and the surface material. The swab was generally more efficient than the sponge for collection of E. herbicola from surfaces. Test chamber trials were also performed in which E. herbicola was aerosolized into the chamber and allowed to settle onto test materials. Surface sampling results supported those obtained in laboratory trials. The results of this study demonstrate the capabilities of QPCR to enhance the detection and enumeration of biocontaminants on surface materials and provide information on the comparability of sampling methods. PMID:17416685

  14. Molecular diagnosis of sex chromosome aneuploidy using quantitative PCR.

    PubMed

    Mutter, G L; Pomponio, R J

    1991-08-11

    Numeric sex chromosome imbalances, or aneuploidies, are present in several pathological conditions including tumors, abnormal gestations, and clinical syndromes. Here we report a method to identify karyotypic imbalances of the X and Y chromosomes using the polymerase chain reaction (PCR). The polymerase chain reaction was used to quantitatively coamplify the sex chromosome linked genes ZFX and ZFY. Quantitation was facilitated by 1) use of a single primer set which recognizes both templates, 2) incorporation of radiolabelled nucleotides during amplification, and 3) use of amplification conditions which minimize heteroduplex formation. High accuracy of the method was confirmed by concordance with values expected from titrated male and female DNAs and cells from patients with sex chromosome aneuploidy. This approach provides a rapid and reproducible method of evaluating relative abundance of allelic genes, and might be applied to detection of autosomal aneuploidy.

  15. Monitoring of geosmin producing Anabaena circinalis using quantitative PCR.

    PubMed

    Tsao, Hsiang-Wei; Michinaka, Atsuko; Yen, Hung-Kai; Giglio, Steven; Hobson, Peter; Monis, Paul; Lin, Tsair-Fuh

    2014-02-01

    Geosmin is one of the most commonly detected off-flavor chemicals present in reservoirs and drinking water systems. Quantitative real-time PCR (qPCR) is useful for quantifying geosmin-producers by focusing on the gene encoding geosmin synthase, which is responsible for geosmin synthesis. In this study, several primers and probes were designed and evaluated to detect the geosmin synthase gene in cyanobacteria. The specificity of primer and probe sets was tested using 21 strains of laboratory cultured cyanobacteria isolated from surface waters in Australia (18) and Taiwan (2), including 6 strains with geosmin producing ability. The results showed that the primers designed in this study could successfully detect all geosmin producing strains tested. The selected primers were used in a qPCR assay, and the calibration curves were linear from 5 × 10(1) to 5 × 10(5) copies mL(-1), with a high correlation coefficient (R(2) = 0.999). This method was then applied to analyze samples taken from Myponga Reservoir, South Australia, during a cyanobacterial bloom event. The results showed good correlations between qPCR techniques and traditional methods, including cell counts determined by microscopy and geosmin concentration measured using gas chromatography (GC) coupled with a mass selective detector (MSD). Results demonstrate that qPCR could be used for tracking geosmin-producing cyanobacteria in drinking water reservoirs. The qPCR assay may provide water utilities with the ability to properly characterize a taste and odor episode and choose appropriate management and treatment options.

  16. Archaeal Diversity of Upland Rice Field Soils Assessed by the Terminal Restriction Fragment Length Polymorphism Method Combined with Real Time Quantitative-PCR and a Clone Library Analysis.

    PubMed

    Nishizawa, Tomoyasu; Komatsuzaki, Masakazu; Kaneko, Nobuhiro; Ohta, Hiroyuki

    2008-01-01

    The PCR amplification-based analysis of microbial diversity is subject to potential problems. In this study, to minimize the bias toward a 1:1 ratio in multitemplate PCR, a real-time PCR assay was carried out using a quenching fluorescence dye primer and amplification efficiency was monitored. Then terminal-restriction fragment length polymorphism (T-RFLP) profiling was performed using the PCR product with minimized PCR bias. This method was applied to an analysis of the diversity of the archaeal community in an upland rice field under different tillage systems and winter cover cropping. Terminal restriction fragments (T-RFs) of PCR-amplified archaeal 16S rRNA genes were assigned to the gene sequences recovered from the same soil by using an archaeal 16S rRNA gene clone library. Our results indicated that soil archaeal members were not influenced but the relative abundance of archaeal species particularly those belonging to Crenarchaeota which changed between the tillage and non-tillage treatments.

  17. A RAPID METHOD FOR THE EXTRACTION OF FUNGAL DNA FROM ENVIRONMENTAL SAMPLES: EVALUATION IN THE QUANTITATIVE ANALYSIS OF MEMNONIELLA ECHINATA CONIDIA USING REAL TIME DETECTION OF PCR PRODUCTS

    EPA Science Inventory

    New technologies are creating the potential for using nucleic acid sequence detection to perform routine microbiological analyses of environmental samples. Our laboratory has recently reported on the development of a method for the quantitative detection of Stachybotrys chartarum...

  18. A quantitative PCR method for assessing the presence of Pasteurella testudinis DNA in nasal lavage samples from the desert tortoise (Gopherus agassizii).

    PubMed

    duPre', S A; Tracy, C R; Sandmeier, F C; Hunter, K W

    2012-12-01

    Pasteurella testudinis has been associated with upper respiratory tract disease (URTD) in the threatened desert tortoise (Gopherus agassizii). Our goal was to develop a sensitive and specific qPCR method for detecting DNA from P. testudinis in nasal lavage fluid collected from desert tortoises in the field. Probes for 16S ribosomal RNA and RNA polymerase β-subunit (rpoB) genes were designed. A standard curve generated with DNA extracted from known numbers of bacterial cells determined by flow cytometry revealed a lower detection limit of 50 fg/ml (10 bacteria/ml). The nasal lavage fluid contained no interfering substances, and the qPCR method did not recognize normal flora DNA. The nasal lavage samples from 20 desert tortoises captured in Clark County, Nevada, USA in 2007 and housed at the Desert Tortoise Conservation Center, were all positive for P. testudinis DNA by qPCR. Another set of 19 lavage samples collected in 2010 from wild desert tortoises in the Mojave Desert were tested and 84% were positive for P. testudinis DNA. Fully validated, this qPCR method will provide a means of determining colonization rate. When used in conjunction with serological methods and clinical evaluations, both infection rate and disease rate can be determined for this potential URTD pathogen. This new assay provides an important tool for managing the threatened populations of the Mojave Desert tortoise.

  19. Comparison of standard, quantitative and digital PCR in the detection of enterotoxigenic Bacteroides fragilis

    PubMed Central

    Purcell, Rachel V.; Pearson, John; Frizelle, Frank A.; Keenan, Jacqueline I.

    2016-01-01

    Gut colonization with enterotoxigenic Bacteroides fragilis (ETBF) appears to be associated with the development of colorectal cancer. However, differences in carriage rates are seen with various testing methods and sampling sites. We compared standard PCR, SYBR green and TaqMan quantitative PCR (qPCR) and digital PCR (dPCR) in detecting the B. fragilis toxin (bft) gene from cultured ETBF, and from matched luminal and faecal stool samples from 19 colorectal cancer patients. Bland-Altman analysis found that all three quantitative methods performed comparably in detecting bft from purified bacterial DNA, with the same limits of detection (<1 copy/μl). However, SYBR qPCR under-performed compared to TaqMan qPCR and dPCR in detecting bft in clinical stool samples; 13/38 samples were reported positive by SYBR, compared to 35 and 36 samples by TaqMan and dPCR, respectively. TaqMan qPCR and dPCR gave bft copy numbers that were 48-fold and 75-fold higher for the same samples than SYBR qPCR, respectively (p < 0.001). For samples that were bft-positive in both fecal and luminal stools, there was no difference in relative abundance between the sites, by any method tested. From our findings, we recommend the use of TaqMan qPCR as the preferred method to detect ETBF from clinical stool samples. PMID:27686415

  20. Quantitative Real-Time PCR Analysis of Total Propidium Monazide -Resistant Fecal Indicator Bacteria in Wastewater

    EPA Science Inventory

    A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. Thes...

  1. OPPORTUNISTIC ASPERGILLUS PATHOGENS MEASURED IN HOME AND HOSPITAL TAP WATER BY MOLD SPECIFIC QUANTITATIVE PCR (MSQPCR)

    EPA Science Inventory

    Opportunistic fungal pathogens are a concern because of the increasing number of immunocompromised patients. The goal of this research was to test a simple extraction method and rapid quantitative PCR (QPCR) measurement of the occurrence of potential pathogens, Aspergillus fumiga...

  2. Quantitative Real-Time PCR: Recent Advances.

    PubMed

    Singh, Charanjeet; Roy-Chowdhuri, Sinchita

    2016-01-01

    Quantitative real-time polymerase chain reaction is a technique for simultaneous amplification and product quantification of a target DNA as the process takes place in real time in a "closed-tube" system. Although this technique can provide an absolute quantification of the initial template copy number, quantification relative to a control sample or second sequence is typically adequate. The quantification process employs melting curve analysis and/or fluorescent detection systems and can provide amplification and genotyping in a relatively short time. Here we describe the properties and uses of various fluorescent detection systems used for quantification. PMID:26843055

  3. Quantitative Real-Time PCR: Recent Advances.

    PubMed

    Singh, Charanjeet; Roy-Chowdhuri, Sinchita

    2016-01-01

    Quantitative real-time polymerase chain reaction is a technique for simultaneous amplification and product quantification of a target DNA as the process takes place in real time in a "closed-tube" system. Although this technique can provide an absolute quantification of the initial template copy number, quantification relative to a control sample or second sequence is typically adequate. The quantification process employs melting curve analysis and/or fluorescent detection systems and can provide amplification and genotyping in a relatively short time. Here we describe the properties and uses of various fluorescent detection systems used for quantification.

  4. Correlation between quantitative PCR and Culture-Based methods for measuring Enterococcus spp. over various temporal scales at three California marine beaches

    EPA Science Inventory

    Several studies have examined how fecal indicator bacteria (FIB) measurements compare between quantitative polymerase chain reaction (QPCR) and the culture methods it is intended to replace. Here we extend those studies by examining the stability of that relationship within a be...

  5. Comparison of Enterococcus quantitative polymerase chain reaction analysis results from Midwest U.S. river samples using EPA Method 1611 and Method 1609 PCR reagents.

    PubMed

    Sivaganesan, Mano; Sivaganensan, Mano; Siefring, Shawn; Varma, Manju; Haugland, Richard A

    2014-06-01

    Enterococci target sequence density estimates from analyses of diluted river water DNA extracts by EPA Methods 1611 and 1609 and estimates with lower detection limits from undiluted DNA extracts by Method 1609 were indistinguishable. These methods should be equally suitable for comparison with U.S. EPA 2012 Recreational Water Quality Criteria values.

  6. Fast detection of deletion breakpoints using quantitative PCR

    PubMed Central

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-01-01

    Abstract The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27560363

  7. Fast detection of deletion breakpoints using quantitative PCR.

    PubMed

    Abildinova, Gulshara; Abdrakhmanova, Zhanara; Tuchinsky, Helena; Nesher, Elimelech; Pinhasov, Albert; Raskin, Leon

    2016-01-01

    The routine detection of large and medium copy number variants (CNVs) is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories. PMID:27560363

  8. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes

    EPA Science Inventory

    Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...

  9. Quantitative detection of Listeria monocytogenes in biofilms by real-time PCR.

    PubMed

    Guilbaud, Morgan; de Coppet, Pierre; Bourion, Fabrice; Rachman, Cinta; Prévost, Hervé; Dousset, Xavier

    2005-04-01

    A quantitative method based on a real-time PCR assay to enumerate Listeria monocytogenes in biofilms was developed. The specificity for L. monocytogenes of primers targeting the listeriolysin gene was demonstrated using a SYBR Green I real-time PCR assay. The number of L. monocytogenes detected growing in biofilms was 6 x 10(2) CFU/cm2.

  10. PCR-based quantitation of Cryptosporidium parvum in municipal water samples.

    PubMed

    Chung, E; Aldom, J E; Carreno, R A; Chagla, A H; Kostrzynska, M; Lee, H; Palmateer, G; Trevors, J T; Unger, S; Xu, R; De Grandis, S A

    1999-10-01

    A PCR method for the quantitation of Cryptosporidium parvum oocysts in municipal drinking water samples was investigated. Quantitative PCR uses an internal standard (IS) template with unknown target numbers to compare to standards of known concentrations in a standard curve. The IS template was amplified using the same primers used to amplify a portion of a 358 bp gene fragment that encodes a repetitive oocyst wall protein in C. parvum. Municipal water samples spiked with known numbers of C. parvum oocysts were tested by quantitative PCR using the IS and the Digene SHARP Signal System Assay for PCR product detection. The absorbance readings for target DNA and IS templates versus the number of molecules of the target DNA were plotted to generate standard curves for estimating oocyst numbers. The method allowed the quantitation of oocysts from log 3 to log 5 spiked into municipal water samples.

  11. Determination of low bacterial concentrations in hyperarid Atacama soils: comparison of biochemical and microscopy methods with real-time quantitative PCR.

    PubMed

    Fletcher, Lauren E; Conley, Catharine A; Valdivia-Silva, Julio E; Perez-Montaño, Saul; Condori-Apaza, Renee; Kovacs, Gregory T A; Glavin, Daniel P; McKay, Christopher P

    2011-11-01

    Hyperarid Atacama soils are reported to contain significantly reduced numbers of microbes per gram of soil relative to soils from other environments. Molecular methods have been used to evaluate microbial populations in hyperarid Atacama soils; however, conflicting results across the various studies, possibly caused by this low number of microorganisms and consequent biomass, suggest that knowledge of expected DNA concentrations in these soils becomes important to interpreting data from any method regarding microbial concentrations and diversity. In this paper we compare the number of bacteria per gram of Atacama Desert soils determined by real-time quantitative polymerase chain reaction with the number of bacteria estimated by the standard methods of phospholipids fatty acid analysis, adenine composition (determined by liquid chromatography - time-of-flight mass spectrometry), and SYBR-green microscopy. The number determined by real-time quantitative polymerase chain reaction as implemented in this study was several orders of magnitude lower than that determined by the other three methods and probably underestimates the concentrations of soil bacteria, most likely because of soil binding during the DNA extraction methods. However, the other methods very possibly overestimate the bacteria concentrations owing to desiccated, intact organisms, which would stain positive in microscopy and preserve both adenine and phospholipid fatty acid for the other methods.

  12. An Improved Quantitative Real-Time PCR Assay for the Enumeration of Heterosigma akashiwo (Raphidophyceae) Cysts Using a DNA Debris Removal Method and a Cyst-Based Standard Curve.

    PubMed

    Kim, Joo-Hwan; Kim, Jin Ho; Wang, Pengbin; Park, Bum Soo; Han, Myung-Soo

    2016-01-01

    The identification and quantification of Heterosigma akashiwo cysts in sediments by light microscopy can be difficult due to the small size and morphology of the cysts, which are often indistinguishable from those of other types of algae. Quantitative real-time PCR (qPCR) based assays represent a potentially efficient method for quantifying the abundance of H. akashiwo cysts, although standard curves must be based on cyst DNA rather than on vegetative cell DNA due to differences in gene copy number and DNA extraction yield between these two cell types. Furthermore, qPCR on sediment samples can be complicated by the presence of extracellular DNA debris. To solve these problems, we constructed a cyst-based standard curve and developed a simple method for removing DNA debris from sediment samples. This cyst-based standard curve was compared with a standard curve based on vegetative cells, as vegetative cells may have twice the gene copy number of cysts. To remove DNA debris from the sediment, we developed a simple method involving dilution with distilled water and heating at 75°C. A total of 18 sediment samples were used to evaluate this method. Cyst abundance determined using the qPCR assay without DNA debris removal yielded results up to 51-fold greater than with direct counting. By contrast, a highly significant correlation was observed between cyst abundance determined by direct counting and the qPCR assay in conjunction with DNA debris removal (r2 = 0.72, slope = 1.07, p < 0.001). Therefore, this improved qPCR method should be a powerful tool for the accurate quantification of H. akashiwo cysts in sediment samples.

  13. An Improved Quantitative Real-Time PCR Assay for the Enumeration of Heterosigma akashiwo (Raphidophyceae) Cysts Using a DNA Debris Removal Method and a Cyst-Based Standard Curve

    PubMed Central

    Park, Bum Soo; Han, Myung-Soo

    2016-01-01

    The identification and quantification of Heterosigma akashiwo cysts in sediments by light microscopy can be difficult due to the small size and morphology of the cysts, which are often indistinguishable from those of other types of algae. Quantitative real-time PCR (qPCR) based assays represent a potentially efficient method for quantifying the abundance of H. akashiwo cysts, although standard curves must be based on cyst DNA rather than on vegetative cell DNA due to differences in gene copy number and DNA extraction yield between these two cell types. Furthermore, qPCR on sediment samples can be complicated by the presence of extracellular DNA debris. To solve these problems, we constructed a cyst-based standard curve and developed a simple method for removing DNA debris from sediment samples. This cyst-based standard curve was compared with a standard curve based on vegetative cells, as vegetative cells may have twice the gene copy number of cysts. To remove DNA debris from the sediment, we developed a simple method involving dilution with distilled water and heating at 75°C. A total of 18 sediment samples were used to evaluate this method. Cyst abundance determined using the qPCR assay without DNA debris removal yielded results up to 51-fold greater than with direct counting. By contrast, a highly significant correlation was observed between cyst abundance determined by direct counting and the qPCR assay in conjunction with DNA debris removal (r2 = 0.72, slope = 1.07, p < 0.001). Therefore, this improved qPCR method should be a powerful tool for the accurate quantification of H. akashiwo cysts in sediment samples. PMID:26741648

  14. Species identification of Cannabis sativa using real-time quantitative PCR (qPCR).

    PubMed

    Johnson, Christopher E; Premasuthan, Amritha; Satkoski Trask, Jessica; Kanthaswamy, Sree

    2013-03-01

    Most narcotics-related cases in the United States involve Cannabis sativa. Material is typically identified based on the cystolithic hairs on the leaves and with chemical tests to identify of the presence of cannabinoids. Suspect seeds are germinated into a viable plant so that morphological and chemical tests can be conducted. Seed germination, however, causes undue analytical delays. DNA analyses that involve the chloroplast and nuclear genomes have been developed for identification of C. sativa materials, but they require several nanograms of template DNA. Using the trnL 3' exon-trnF intragenic spacer regions within the C. sativa chloroplast, we have developed a real-time quantitative PCR assay that is capable of identifying picogram amounts of chloroplast DNA for species determination of suspected C. sativa material. This assay provides forensic science laboratories with a quick and reliable method to identify an unknown sample as C. sativa.

  15. Application of quantitative PCR for the detection of microorganisms in water.

    PubMed

    Botes, Marelize; de Kwaadsteniet, Michéle; Cloete, Thomas Eugene

    2013-01-01

    The occurrence of microorganisms in water due to contamination is a health risk and control thereof is a necessity. Conventional detection methods may be misleading and do not provide rapid results allowing for immediate action. The quantitative polymerase chain reaction (qPCR) method has proven to be an effective tool to detect and quantify microorganisms in water within a few hours. Quantitative PCR assays have recently been developed for the detection of specific adeno- and polyomaviruses, bacteria and protozoa in different water sources. The technique is highly sensitive and able to detect low numbers of microorganisms. Quantitative PCR can be applied for microbial source tracking in water sources, to determine the efficiency of water and wastewater treatment plants and act as a tool for risk assessment. Different qPCR assays exist depending on whether an internal control is used or whether measurements are taken at the end of the PCR reaction (end-point qPCR) or in the exponential phase (real-time qPCR). Fluorescent probes are used in the PCR reaction to hybridise within the target sequence to generate a signal and, together with specialised systems, quantify the amount of PCR product. Quantitative reverse transcription polymerase chain reaction (q-RT-PCR) is a more sensitive technique that detects low copy number RNA and can be applied to detect, e.g. enteric viruses and viable microorganisms in water, and measure specific gene expression. There is, however, a need to standardise qPCR protocols if this technique is to be used as an analytical diagnostic tool for routine monitoring. This review focuses on the application of qPCR in the detection of microorganisms in water.

  16. MOLD SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS

    EPA Science Inventory

    Today I will talk about the use of quantitative or Real time PCR for the standardized identification and quantification of molds. There are probably at least 100,000 species of molds or fungi. But there are actually about 100 typically found indoors. Some pose a threat to human...

  17. QUANTITATIVE PCR OF SELECTED ASPERGILLUS, PENICILLIUM AND PAECILOMYCES SPECIES

    EPA Science Inventory

    A total of 65 quantitative PCR (QPCR) assays, incorporating fluorigenic 5' nuclease (TaqMan®) chemistry and directed at the nuclear ribosomal RNA operon, internal transcribed spacer regions (ITS1 or ITS2) was developed and tested for the detection of Aspergillus, Penicillium and ...

  18. How Many Microorganisms Are Present? Quantitative Reverse Transcription PCR (qRT-PCR)

    NASA Astrophysics Data System (ADS)

    Price, Andy; Álvarez, Laura Acuña; Whitby, Corinne; Larsen, Jan

    Quantitative reverse transcription PCR (qRT-PCR) is a variation of conventional quantitative or real-time PCR, whereby mRNA is first converted into the complementary DNA (cDNA) by reverse transcription, the cDNA is then subsequently quantified by qPCR. The use of mRNA as the initial template allows the quantification of gene transcripts, rather than gene copy numbers. mRNA is only produced by actively metabolising cells and is produced by its corresponding gene to provide a 'blueprint' in order for a cell to manufacture a specific protein. Conventional qPCR detects not only DNA present in actively metabolising cells but also inactive and dead cells. qRT-PCR has the advantage that only actively metabolising cells are detected, hence provides a more reliable measure of microbial activity in oilfield samples. When qRT-PCR is combined with primers and probes for specific genes, the activity of microbial processes important in the oilfield, such as sulphate reduction, methanogenesis and nitrate reduction can be monitored.

  19. Interaction of quantitative PCR components with polymeric surfaces.

    PubMed

    Gonzalez, Asensio; Grimes, Ronan; Walsh, Edmond J; Dalton, Tara; Davies, Mark

    2007-04-01

    This study investigated the effect of exposing a polymerase chain reaction (PCR) mixture to capillary tubing of different materials and lengths, at different contact times and flow rates and the adsorption of major reaction components into the tubing wall. Using 0.5 mm ID tubing, lengths of 40 cm and residence times up to 45 min, none of the tested polymeric materials was found to affect subsequent PCR amplification. However, after exposure of the mixture to tubing lengths of 3 m or reduction of sample volume, PCR inhibition occurred, increasing with the volume to length ratio. Different flow velocities did not affect PCR yield. When the adsorption of individual PCR components was studied, significant DNA adsorption and even more significant adsorption of the fluorescent dye Sybr Green I was found. The results indicate that PCR inhibition in polymeric tubing results from adsorption of reaction components to wall surfaces, increasing substantially with tubing length or sample volume reduction, but not with contact time or flow velocities typical in dynamic PCR amplification. The data also highlight that chemical compatibility of polymeric capillaries with DNA dyes should be carefully considered for the design of quantitative microfluidic devices. PMID:17180709

  20. An investigation of PCR inhibition using Plexor(®) -based quantitative PCR and short tandem repeat amplification.

    PubMed

    Thompson, Robyn E; Duncan, George; McCord, Bruce R

    2014-11-01

    A common problem in forensic DNA typing is PCR inhibition resulting in allele dropout and peak imbalance. In this paper, we have utilized the Plexor(®) real-time PCR quantification kit to evaluate PCR inhibition. This is performed by adding increasing concentrations of various inhibitors and evaluating changes in melt curves and PCR amplification efficiencies. Inhibitors examined included calcium, humic acid, collagen, phenol, tannic acid, hematin, melanin, urea, bile salts, EDTA, and guanidinium thiocyanate. Results were plotted and modeled using mathematical simulations. In general, we found that PCR inhibitors that bind DNA affect melt curves and CT takeoff points while those that affect the Taq polymerase tend to affect the slope of the amplification curve. Mixed mode effects were also visible. Quantitative PCR results were then compared with subsequent STR amplification using the PowerPlex(®) 16 HS System. The overall results demonstrate that real-time PCR can be an effective method to evaluate PCR inhibition and predict its effects on subsequent STR amplifications.

  1. EVALUATION OF QUANTITATIVE REAL TIME PCR FOR THE MEASUREMENT OF HELICOBATER PYLORI AT LOW CONCENTRATIONS IN DRINKING WATER

    EPA Science Inventory

    Aims: To determine the performance of a rapid, real time polymerase chain reaction (PCR) method for the detection and quantitative analysis Helicobacter pylori at low concentrations in drinking water.

    Methods and Results: A rapid DNA extraction and quantitative PCR (QPCR)...

  2. Quantitative assay of photoinduced DNA strand breaks by real-time PCR.

    PubMed

    Wiczk, Justyna; Westphal, Kinga; Rak, Janusz

    2016-09-01

    Real-time PCR (qPCR) - a modern methodology primarily used for studying gene expression has been employed for the quantitative assay of an important class of DNA damage - single strand breaks. These DNA lesions which may lead to highly cytotoxic double strand breaks were quantified in a model system where double stranded DNA was sensitized to UV photons by labeling with 5-bromo-2'-deoxyuridine. The amount of breaks formed due to irradiation with several doses of 320nm photons was assayed by two independent methods: LC-MS and qPCR. A very good agreement between the relative damage measured by the two completely different analytical tools proves the applicability of qPCR for the quantitative analysis of SSBs. Our results suggest that the popularity of the hitherto underestimated though accurate and site-specific technique of real-time PCR may increase in future DNA damage studies.

  3. Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples

    EPA Science Inventory

    Purified oocysts of Cryptosporidium parvum were used to evaluate applicability of two quantitative PCR (qPCR) viability detection methods in raw surface water and disinfection treated water. Propidium monoazide-qPCR targeting hsp70 gene was compared to reverse transcription (RT)-...

  4. Quantitative study of viable Vibrio parahaemolyticus cells in raw seafood using propidium monoazide in combination with quantitative PCR.

    PubMed

    Zhu, Ru-Gang; Li, Tuo-Ping; Jia, You-Feng; Song, Li-Feng

    2012-09-01

    In this study we developed a specific and sensitive quantitative PCR (qPCR) method combined with a propidium monoazide (PMA) sample treatment to quantify tdh-positive viable cells of V. parahaemolyticus in raw seafood (PMA-qPCR). The high selectivity of primers and probes were demonstrated by using purified DNA from 57 strains belonging to 18 species. Using these primers and probes for qPCR and in artificial contamination samples, a good correlation was obtained between Ct values and log CFU/reaction in the range of 12-1.2×10(6)CFU/reaction both from qPCR and PMA-qPCR with R(2) values of 0.9973 and 0.9919, respectively. The optimization of PMA concentration showed that 8 μg/mL was considered optimal to achieve a compromise between minimal impact on intact cells and maximal signal reduction in compromised cells. However, turbidity and cell concentration experiments showed that PMA treatment was not effective in samples where turbidities were ≥10 NTU and OD(600 nm) values were ≥0.8. PMA-qPCR was compared with culture isolation and traditional qPCR in environmental samples (including oyster, scallop, shrimp, and crab). The PMA-qPCR resulted in lower numbers of log CFUg(-1) than qPCR, with values having better agreement with numbers determined by culture isolation. In conclusion, this method is an effective tool for producing reliable quantitative data on viable V. parahaemolyticus in raw seafood. PMID:22677606

  5. Comparison of the multiple-sample means with composite sample results for fecal indicator bacteria by quantitative PCR and culture.

    PubMed

    Converse, Reagan R; Wymer, Larry J; Dufour, Alfred P; Wade, Timothy J

    2012-10-01

    Few studies have addressed the efficacy of composite sampling for measuring indicator bacteria by quantitative PCR (qPCR). We compared results from composited samples with multiple-sample means for culture- and qPCR-based water quality monitoring. Results from composited samples for both methods were similarly correlated to multiple-sample means and predicted criteria exceedances equally.

  6. Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay

    PubMed Central

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997

  7. End-Point Titration-PCR for Quantitation of Cytomegalovirus DNA.

    PubMed

    Kulski, J K

    1999-01-01

    Polymerase chain reaction (PCR) is an important qualitative procedure in the routine microbiology laboratory for detecting the presence or absence of potentially harmful microorganisms in clinical specimens (1,2). The use of PCR to quantify an infectious agent in a clinical specimen (e.g., viral or bacterial load) is advantageous for monitoring disease progression and efficacy of treatment, for differentiating between asymptomatic and symptomatic infection, or for quality control of false positive samples. End-point titration-PCR (ET-PCR) is a simple method for differentiating between the presence of low, medium, or high amounts of viral, fungal, or bacterial DNA in a test sample. Basically, the qualitative PCR method (3) is used in an ET-PCR to amplify a specific target sequence in serial dilutions of a DNA sample (4). The limit of detection of the amplified product, which is the end-point dilution or titer, is the quantitative index for the DNA target in the sample. End-point titers obtained by ET-PCR have been shown to increase proportionally with increasing amounts of standard DNA (4). The result of an ET-PCR can be presented as a titer, dilution, DNA copy number, or amount of a specific DNA sequence relative to an external standard or as relative differences between samples. On this basis, ET-PCR has been used to quantitate the presence of viral and bacterial DNA in clinical specimens (4-10). The ET-PCR method described here is for the quantitation of cytomegalovirus (CMV) DNA in leukocytes (4).

  8. [Selective detection of viable pathogenic bacteria in water using reverse transcription quantitative PCR].

    PubMed

    Lin, Yi-Wen; Li, Dan; Wu, Shu-Xu; He, Miao; Yang, Tian

    2012-11-01

    A reverse transcription q quantitative PCR (RT-qPCR) assay method was established, which can quantify the copy numbers of RNA in pathogenic bacteria of E. coli and Enterococcus faecium. The results showed that cDNA was generated with the RT-PCR reagents, target gene was quantified with the qPCR, the copy numbers of RNA were stable at about 1 copies x CFU(-1) for E. coli and 7.98 x 10(2) copies x CFU(-1) for Enterococcus faecium respectively during the stationary grow phase for the both indicator bacteria [E. coli (6-18 h) and Enterococcus faecium (10-38 h)]. The established RT-qPCR method can quantify the numbers of viable bacteria through detecting bacterial RNA targets. Through detecting the heat-treated E. coli and Enterococcus faecium by three methods (culture method, qPCR, RT-qPCR), we found that the qPCR and RT-qPCR can distinguish 1.43 lg copy non-viable E. coli and 2.5 lg copy non-viable Enterococcus faecium. These results indicated that the established methods could effectively distinguish viable bacteria from non-viable bacteria. Finally we used this method to evaluate the real effluents of the secondary sedimentation of wastewater treatment plant (WWTP), the results showed that the correlation coefficients (R2) between RT-qPCR and culture method were 0.930 (E. coli) and 0.948 (Enterococcus faecium), and this established RT-PCR method can rapidly detect viable pathogenic bacteria in genuine waters.

  9. [Comparison of conventional culture methods and quantitative real-time PCR methods for the detection of Legionella pneumophila in water samples in a large University teaching hospital in Rome, Italy].

    PubMed

    Boccia, Stefania; Laurenti, Patrizia; Leoncini, Emanuele; Amore, Rosarita; Vincenti, Sara; Arzani, Dario; Berloco, Filippo; Boninti, Federica; Bruno, Stefania; Celani, Fabrizio; Damiani, Gianfranco; Di Giannantonio, Paolo; Moscato, Umberto; Posteraro, Brunella; Sezzatini, Romina; Vecchioni, Alessia; Wachocka, Malgorzata; Ricciardi, Walter; Quaranta, Gianluigi; Ficarra, Maria Giovanna

    2015-01-01

    The aims of this study were to identify the best threshold value for the real-time PCR method in detecting the presence of Legionella pneumophila in water samples, and to evaluate the prognostic significance of negative results obtained with the molecular method. From 2011 to 2014, 77 water samples were collected from hospital wards of a large University teaching hospital in Rome (Italy) and screened for L.pneumophila by the standard culture method and by real-time PCR. The high sensitivity and negative predictive value of real-time PCR make this method suitable as a quick screening tool to exclude the presence of L. pneumophila in water samples in the hospital setting.

  10. Reliability of quantitative real-time PCR for bacterial detection in cystic fibrosis airway specimens.

    PubMed

    Zemanick, Edith T; Wagner, Brandie D; Sagel, Scott D; Stevens, Mark J; Accurso, Frank J; Harris, J Kirk

    2010-11-30

    The cystic fibrosis (CF) airway microbiome is complex; polymicrobial infections are common, and the presence of fastidious bacteria including anaerobes make culture-based diagnosis challenging. Quantitative real-time PCR (qPCR) offers a culture-independent method for bacterial quantification that may improve diagnosis of CF airway infections; however, the reliability of qPCR applied to CF airway specimens is unknown. We sought to determine the reliability of nine specific bacterial qPCR assays (total bacteria, three typical CF pathogens, and five anaerobes) applied to CF airway specimens. Airway and salivary specimens from clinically stable pediatric CF subjects were collected. Quantitative PCR assay repeatability was determined using triplicate reactions. Split-sample measurements were performed to measure variability introduced by DNA extraction. Results from qPCR were compared to standard microbial culture for Pseudomonas aeruginosa, Staphylococcus aureus, and Haemophilus influenzae, common pathogens in CF. We obtained 84 sputa, 47 oropharyngeal and 27 salivary specimens from 16 pediatric subjects with CF. Quantitative PCR detected bacterial DNA in over 97% of specimens. All qPCR assays were highly reproducible at quantities≥10(2) rRNA gene copies/reaction with coefficient of variation less than 20% for over 99% of samples. There was also excellent agreement between samples processed in duplicate. Anaerobic bacteria were highly prevalent and were detected in mean quantities similar to that of typical CF pathogens. Compared to a composite gold standard, qPCR and culture had variable sensitivities for detection of P. aeruginosa, S. aureus and H. influenzae from CF airway samples. By reliably quantifying fastidious airway bacteria, qPCR may improve our understanding of polymicrobial CF lung infections, progression of lung disease and ultimately improve antimicrobial treatments.

  11. Reliability of Quantitative Real-Time PCR for Bacterial Detection in Cystic Fibrosis Airway Specimens

    PubMed Central

    Zemanick, Edith T.; Wagner, Brandie D.; Sagel, Scott D.; Stevens, Mark J.; Accurso, Frank J.; Harris, J. Kirk

    2010-01-01

    The cystic fibrosis (CF) airway microbiome is complex; polymicrobial infections are common, and the presence of fastidious bacteria including anaerobes make culture-based diagnosis challenging. Quantitative real-time PCR (qPCR) offers a culture-independent method for bacterial quantification that may improve diagnosis of CF airway infections; however, the reliability of qPCR applied to CF airway specimens is unknown. We sought to determine the reliability of nine specific bacterial qPCR assays (total bacteria, three typical CF pathogens, and five anaerobes) applied to CF airway specimens. Airway and salivary specimens from clinically stable pediatric CF subjects were collected. Quantitative PCR assay repeatability was determined using triplicate reactions. Split-sample measurements were performed to measure variability introduced by DNA extraction. Results from qPCR were compared to standard microbial culture for Pseudomonas aeruginosa, Staphylococcus aureus, and Haemophilus influenzae, common pathogens in CF. We obtained 84 sputa, 47 oropharyngeal and 27 salivary specimens from 16 pediatric subjects with CF. Quantitative PCR detected bacterial DNA in over 97% of specimens. All qPCR assays were highly reproducible at quantities ≥102 rRNA gene copies/reaction with coefficient of variation less than 20% for over 99% of samples. There was also excellent agreement between samples processed in duplicate. Anaerobic bacteria were highly prevalent and were detected in mean quantities similar to that of typical CF pathogens. Compared to a composite gold standard, qPCR and culture had variable sensitivities for detection of P. aeruginosa, S. aureus and H. influenzae from CF airway samples. By reliably quantifying fastidious airway bacteria, qPCR may improve our understanding of polymicrobial CF lung infections, progression of lung disease and ultimately improve antimicrobial treatments. PMID:21152087

  12. Zip nucleic acids are potent hydrolysis probes for quantitative PCR

    PubMed Central

    Paris, Clément; Moreau, Valérie; Deglane, Gaëlle; Voirin, Emilie; Erbacher, Patrick; Lenne-Samuel, Nathalie

    2010-01-01

    Zip nucleic acids (ZNAs) are oligonucleotides conjugated with cationic spermine units that increase affinity for their target. ZNAs were recently shown to enable specific and sensitive reactions when used as primers for polymerase chain reaction (PCR) and reverse-transcription. Here, we report their use as quantitative PCR hydrolysis probes. Ultraviolet duplex melting data demonstrate that attachment of cationic residues to the 3′ end of an oligonucleotide does not alter its ability to discriminate nucleotides nor the destabilization pattern relative to mismatch location in the oligonucleotide sequence. The stability increase provided by the cationic charges allows the use of short dual-labeled probes that significantly improve single-nucleotide polymorphism genotyping. Longer ZNA probes were shown to display reduced background fluorescence, therefore, generating greater sensitivity and signal level as compared to standard probes. ZNA probes thus provide broad flexibility in assay design and also represent an effective alternative to minor groove binder- and locked nucleic-acid-containing probes. PMID:20071749

  13. Low-level detection and quantitation of cellular HIV-1 DNA and 2-LTR circles using droplet digital PCR.

    PubMed

    Henrich, Timothy J; Gallien, Sebastien; Li, Jonathan Z; Pereyra, Florencia; Kuritzkes, Daniel R

    2012-12-01

    Droplet digital PCR (ddPCR) is an emerging nucleic acid detection method that provides absolute quantitations of target sequences without relying on the use of standard curves. The ability of ddPCR to detect and quantitate total HIV-1 DNA and 2-LTR circles from a panel of patients on and off antiviral therapy was evaluated compared to established real-time (RT)-PCR methods. To calculate the dynamic range of ddPCR for HIV-1 DNA and 2-LTR circles, serial dilutions of DNA amplicons or episomes were determined by ddPCR as well as with RT-PCR. HIV-1 DNA from 3 viremic patients and 4 patients on suppressive antiretroviral therapy, and 2-LTR circles from 3 patients with low-level viremia were also quantitated. Copy numbers determined by ddPCR of serial dilutions of HIV-1 or human CCR5 DNA amplicon standards were comparable to nominal input copy number. The sensitivity of ddPCR to detect HIV-1 or CCR5 DNA was similar to that of RT-PCR. Low levels of 2-LTR circles were detected in samples from all 3 patients by both ddPCR and RT-PCR. ddPCR is a promising novel technology for the study of HIV-1 reservoirs and persistence, but further optimization of this novel technology would enhance the detection of very low-level viral genetic targets. PMID:22974526

  14. Nested-PCR and TaqMan real-time quantitative PCR assays for human adenoviruses in environmental waters.

    PubMed

    Huang, Wen-Chien; Chou, Yi-Pen; Kao, Po-Min; Hsu, Tsui-Kang; Su, Hung-Chang; Ho, Ying-Ning; Yang, Yi-Chun; Hsu, Bing-Mu

    2016-01-01

    Human adenovirus (HAdV) infections can occur throughout the year. Cases of HAdV-associated respiratory disease have been more common in the late winter, spring, and early summer. In this study, to provide viral pollution data for further epidemiological studies and governmental actions, the presence of HAdV in the aquatic environment was quantitatively surveyed in the summer. This study was conducted to compare the efficiencies of nested-PCR (polymerase chain reaction) and qPCR (quantitative PCR) for detecting HAdV in environmental waters. A total of 73 water samples were collected from Puzi River in Taiwan and subjected to virus concentration methods. In the results, qPCR had much better efficiency for specifying the pathogen in river sample. HAdV41 was detected most frequently in the river water sample (10.9%). The estimated HAdV concentrations ranged between 6.75 × 10(2) and 2.04 × 10(9) genome copies/L. Significant difference was also found in heterotrophic plate counts, conductivity, water temperature, and water turbidity between presence/absence of HAdV. HAdV in the Puzi River may pose a significant health risk. PMID:27120637

  15. Quantitative PCR for Detection and Enumeration of Genetic Markers of Bovine Fecal Pollution

    EPA Science Inventory

    Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described cow feces-spec...

  16. Quantitation of HIV-1 by real-time PCR with a unique fluorogenic probe.

    PubMed

    Saha, B K; Tian, B; Bucy, R P

    2001-04-01

    Quantitation of HIV-1 specific RNA and DNA is pivotal to understanding the pathophysiology of HIV-1 diseases. A method has been developed for quantitation of HIV-1 DNA/RNA by real-time PCR using a unique fluorogenic primer-probe adduct known as scorpion. The probe hybridises to the extension of the adjoining primer intramolecularly, a process kinetically and thermodynamically more favourable than the conventional bimolecular probe-target hybridisation. Data presented in this paper indicate that the scorpion assay is extremely robust and is quite comparable to beacon-based assays. The scorpion assay is also comparable to quantitative competitive PCR (QC--PCR) assays but requires only a fraction of time and effort. Additionally, the dynamic range of the scorpion assay is several log-fold higher than the conventional end point PCR assays. As few as ten copies of vDNA can be detected in the presence of a large excess of exogenously added genomic DNA. Limiting dilution analysis indicates that the assay is capable of detecting a single copy of the viral template. Thus, the scorpion assay presents a specific and sensitive approach for quantitation of DNA/RNA templates by real-time PCR.

  17. Revealing the Diversity and Quantity of Peritrich Ciliates in Environmental Samples Using Specific Primer-based PCR and Quantitative PCR

    PubMed Central

    Liu, Xihan; Gong, Jun

    2012-01-01

    Peritrichs are a diverse, ecologically important ciliate group usually with a complex life cycle. To date, the community of the peritrichs has been investigated by using morphology-based methods such as living observation and silver staining. Here we show a molecular approach for characterizing the diversity and quantity of free-living peritrichs in environmental samples. We newly designed four peritrich-specific primers targeting 18S rRNA genes that allow clone library construction, screening and analysis. A quantitative real-time PCR (qPCR) assay was developed to quantify peritrichs in environmental samples by using rDNA copy number as an indicator. DNA extracted from four water samples of contrasting environmental gradients was analysed. The results showed that the peritrich community was differentiated among these samples, and that the diversity decreased with the increase of water salinity. The qPCR results are consistent with the library sequence analysis in terms of quantity variations from sample to sample. The development of peritrich-specific primers, for the first time, for conventional PCR and qPCR assays, provides useful molecular tools for revealing the diversity and quantity of peritrich ciliates in environmental samples. Also, our study illustrates the potential of these molecular tools to ecological studies of other ciliate groups in diverse environments. PMID:23100023

  18. Quantitative Analysis of Pork and Chicken Products by Droplet Digital PCR

    PubMed Central

    Cai, Yicun; Li, Xiang; Lv, Rong; Yang, Jielin; Li, Jian; He, Yuping; Pan, Liangwen

    2014-01-01

    In this project, a highly precise quantitative method based on the digital polymerase chain reaction (dPCR) technique was developed to determine the weight of pork and chicken in meat products. Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of species-specific DNAs in meat products. However, it is limited in amplification efficiency and relies on standard curves based Ct values, detecting and quantifying low copy number target DNA, as in some complex mixture meat products. By using the dPCR method, we find the relationships between the raw meat weight and DNA weight and between the DNA weight and DNA copy number were both close to linear. This enabled us to establish formulae to calculate the raw meat weight based on the DNA copy number. The accuracy and applicability of this method were tested and verified using samples of pork and chicken powder mixed in known proportions. Quantitative analysis indicated that dPCR is highly precise in quantifying pork and chicken in meat products and therefore has the potential to be used in routine analysis by government regulators and quality control departments of commercial food and feed enterprises. PMID:25243184

  19. Qualitative PCR method for Roundup Ready soybean: interlaboratory study.

    PubMed

    Kodama, Takashi; Kasahara, Masaki; Minegishi, Yasutaka; Futo, Satoshi; Sawada, Chihiro; Watai, Masatoshi; Akiyama, Hiroshi; Teshima, Reiko; Kurosawa, Yasunori; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2011-01-01

    Quantitative and qualitative methods based on PCR have been developed for genetically modified organisms (GMO). Interlaboratory studies were previously conducted for GMO quantitative methods; in this study, an interlaboratory study was conducted for a qualitative method for a GM soybean, Roundup Ready soy (RR soy), with primer pairs designed for the quantitative method of RR soy studied previously. Fourteen laboratories in Japan participated. Each participant extracted DNA from 1.0 g each of the soy samples containing 0, 0.05, and 0.10% of RR soy, and performed PCR with primer pairs for an internal control gene (Le1) and RR soy followed by agarose gel electrophoresis. The PCR product amplified in this PCR system for Le1 was detected from all samples. The sensitivity, specificity, and false-negative and false-positive rates of the method were obtained from the results of RR soy detection. False-negative rates at the level of 0.05 and 0.10% of the RR soy samples were 6.0 and 2.3%, respectively, revealing that the LOD of the method was somewhat below 0.10%. The current study demonstrated that the qualitative method would be practical for monitoring the labeling system of GM soy in kernel lots.

  20. Qualitative PCR method for Roundup Ready soybean: interlaboratory study.

    PubMed

    Kodama, Takashi; Kasahara, Masaki; Minegishi, Yasutaka; Futo, Satoshi; Sawada, Chihiro; Watai, Masatoshi; Akiyama, Hiroshi; Teshima, Reiko; Kurosawa, Yasunori; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2011-01-01

    Quantitative and qualitative methods based on PCR have been developed for genetically modified organisms (GMO). Interlaboratory studies were previously conducted for GMO quantitative methods; in this study, an interlaboratory study was conducted for a qualitative method for a GM soybean, Roundup Ready soy (RR soy), with primer pairs designed for the quantitative method of RR soy studied previously. Fourteen laboratories in Japan participated. Each participant extracted DNA from 1.0 g each of the soy samples containing 0, 0.05, and 0.10% of RR soy, and performed PCR with primer pairs for an internal control gene (Le1) and RR soy followed by agarose gel electrophoresis. The PCR product amplified in this PCR system for Le1 was detected from all samples. The sensitivity, specificity, and false-negative and false-positive rates of the method were obtained from the results of RR soy detection. False-negative rates at the level of 0.05 and 0.10% of the RR soy samples were 6.0 and 2.3%, respectively, revealing that the LOD of the method was somewhat below 0.10%. The current study demonstrated that the qualitative method would be practical for monitoring the labeling system of GM soy in kernel lots. PMID:21391499

  1. Expression profiling by real-time quantitative polymerase chain reaction (RT-qPCR).

    PubMed

    Lech, Maciej; Anders, Hans-Joachim

    2014-01-01

    Real-time quantitative PCR is a variation of the standard PCR technique that is commonly used to quantify nucleic acid. However, in this technique the amount of amplified specific sequence can be quantified at each stage of the PCR cycle. If investigated sequence is present in large number of copies in particular sample, amplification product is detected already in earlier cycles; if the sequence is rare, amplification is observed in later cycles. Quantification of amplified product is acquired using fluorescent probes or fluorescent DNA-binding dyes. Accumulation of fluorescent signal can be measured by real-time PCR instruments during each of 35-45 cycwwles of the PCR reaction, which simplify the procedure by eliminating the visualization of the amplified products using gel electrophoresis. Real-time-PCR allows quantifying the amount of product already during the PCR reaction as soon as it is detectable. Correctly performed, this method may be used for precise gene expression analysis in life science, medicine, and diagnostics and has become the standard method of choice for the quantification of mRNA. However in the past few years it became obvious that real-time PCR is complex and variability of RNA templates, assay designs, inappropriate data normalization, and data interpretation may cause diverse analytical problems.

  2. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis

    PubMed Central

    Te, Shu Harn; Chen, Enid Yingru

    2015-01-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. PMID:26025892

  3. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis.

    PubMed

    Te, Shu Harn; Chen, Enid Yingru; Gin, Karina Yew-Hoong

    2015-08-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples.

  4. Single Laboratory Comparison of Quantitative Real-Time PCR Assays for the Detection of Human Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method ...

  5. Single Laboratory Comparison of Quantitative Real-Time PCR Assays for the Detection of Human Fecal Pollution - Poster

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method p...

  6. Quantitation of viral load by real-time PCR-monitoring Invader reaction.

    PubMed

    Tadokoro, Kenichi; Yamaguchi, Toshikazu; Egashira, Toru; Hara, Takashi

    2009-02-01

    With its broad effective range for fluorescence detection, real-time PCR is one of the most valuable techniques for quantitation in molecular biology. A modified real-time PCR assay is described for determining viral load. The assay uses fluorescence to measure the number of PCR amplicons by monitoring the Invader reaction in four steps in the thermal cycle. The Invader reaction with its cleavase was performed at moderate temperature after the amplicon was denatured at a high temperature. The method was as effective as real-time PCR with a TaqMan probe in determining the quantity of virus in samples of human papillomavirus type 16. Importantly, the assay allows the use of a common probe for multiple reactions. Thus, this method is a rapid inexpensive assay with a common fluorescence probe that does not depend on the conformation of the target DNAs. PMID:19014973

  7. Quantitative real-time PCR (qPCR) for Eimeria tenella replication — Implications for experimental refinement and animal welfare

    PubMed Central

    Nolan, Matthew J.; Tomley, Fiona M.; Kaiser, Pete; Blake, Damer P.

    2015-01-01

    The Eimeria species are highly pathogenic parasites of chickens. Research aimed at reducing their impact is hindered by a lack of non-subjective, quantitative, tools to measure parasite replication in the host. The time-consuming, and often time-sensitive, nature of existing approaches precludes their use in large-scale genetic, epidemiological, and evolutionary analyses. We have used quantitative real-time PCR (qPCR) to accurately quantify Eimeria tenella in chicken tissue and shown this to be more efficient and sensitive than traditional methodologies. We tested four chicken-specific reference qPCR assays and found beta-actin (actb) to be optimal for sample normalisation. In an experimental setting, chickens were inoculated with 500, 1500, or 4500 E. tenella oocysts and parasite replication and the impact of infection measured by i) qPCR analysis of DNA extracted from caecal tissues collected at five and eight days post-infection (dpi), ii) faecal oocyst counts (FOCs) on samples taken from six to eight dpi, and iii) lesion scoring on caeca collected post-mortem at five and eight dpi. Quantitative real-time PCR test results indicated a significant dose-dependent increase in parasite numbers among study groups for samples collected five dpi (i.e., prior to gametogony) (R2 = 0.994) (p < 0.002) but not in those from day eight (after most oocyst shedding) (R2 = 0.006) (p > 0.379). A strong dose-dependent increase in parasite replication and severity of infection was also revealed by FOC (R2 = 0.997) and lesion scoring. Importantly, qPCR offers substantial improvements for animal welfare via improved statistical power and reduced group sizes in experimental studies. The described qPCR method overcomes subjective limitations of coproscopic quantification, allows reproducible medium- to high-throughput examination of tissues, faeces, and oocysts, and is a valuable tool for determining the impact of Eimeria infections in both experimental and field settings

  8. Sensitive quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR.

    PubMed

    Matsuda, Kazunori; Tsuji, Hirokazu; Asahara, Takashi; Kado, Yukiko; Nomoto, Koji

    2007-01-01

    A sensitive rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) method was developed for exact and sensitive enumeration of subdominant bacterial populations. Using group- or species-specific primers for 16S or 23S rRNA, analytical curves were constructed for Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Clostridium perfringens, and Pseudomonas aeruginosa, and the threshold cycle value was found to be linear up to an RNA amount of 10(-3) cell per RT-PCR. The number of bacteria in culture was determined by RT-qPCR, and the results correlated well with the CFU count over the range from 10(0) to 10(5) CFU. The bacterial counts obtained by RT-qPCR were the same as the CFU counts irrespective of the growth phase in vitro, except for C. perfringens during starvation periods; the viable cell counts obtained by using a combination of 4',6-diamidino-2-phenylindole (DAPI) staining and SYTO9-propidium iodide double staining were in good agreement with the RT-qPCR counts rather than with the CFU counts. The RT-qPCR method could detect endogenous Enterobacteriaceae and P. aeruginosa in feces of hospitalized patients (n = 38) at a level of 10(3) cells per g of feces, and for enumeration of S. aureus or P. aeruginosa spiked into human peripheral blood, the lower detection limit for RT-qPCR quantification of the bacteria was 2 cells per ml of blood, suggesting that this method was equivalent to the conventional culture method. As only 5 h was needed for RT-qPCR quantification, we suggest that rRNA-targeted RT-qPCR assays provide a sensitive and convenient system for quantification of commensal bacteria and for examining their possible invasion of a host.

  9. Evaluation of fecal indicator and pathogenic bacteria originating from swine manure applied to agricultural lands using culture-based and quantitative real-time PCR methods.

    EPA Science Inventory

    Fecal bacteria, including those originating from concentrated animal feeding operations, are a leading contributor to water quality impairments in agricultural areas. Rapid and reliable methods are needed that can accurately characterize fecal pollution in agricultural settings....

  10. Evaluation of Fecal Indicator and Pathogenic Bacteria Originating from Swine Manure Applied to Agricultural Lands Using Culture-Based and Quantitative Real-Time PCR Methods

    EPA Science Inventory

    Fecal bacteria, including those originating from concentrated animal feeding operations, are a leading contributor to water quality impairments in agricultural areas. Rapid and reliable methods are needed that can accurately characterize fecal pollution in agricultural settings....

  11. Quantitative Evaluation and Selection of Reference Genes for Quantitative RT-PCR in Mouse Acute Pancreatitis

    PubMed Central

    Yan, Zhaoping; Gao, Jinhang; Lv, Xiuhe; Yang, Wenjuan; Wen, Shilei; Tong, Huan; Tang, Chengwei

    2016-01-01

    The analysis of differences in gene expression is dependent on normalization using reference genes. However, the expression of many of these reference genes, as evaluated by quantitative RT-PCR, is upregulated in acute pancreatitis, so they cannot be used as the standard for gene expression in this condition. For this reason, we sought to identify a stable reference gene, or a suitable combination, for expression analysis in acute pancreatitis. The expression stability of 10 reference genes (ACTB, GAPDH, 18sRNA, TUBB, B2M, HPRT1, UBC, YWHAZ, EF-1α, and RPL-13A) was analyzed using geNorm, NormFinder, and BestKeeper software and evaluated according to variations in the raw Ct values. These reference genes were evaluated using a comprehensive method, which ranked the expression stability of these genes as follows (from most stable to least stable): RPL-13A, YWHAZ > HPRT1 > GAPDH > UBC > EF-1α > 18sRNA > B2M > TUBB > ACTB. RPL-13A was the most suitable reference gene, and the combination of RPL-13A and YWHAZ was the most stable group of reference genes in our experiments. The expression levels of ACTB, TUBB, and B2M were found to be significantly upregulated during acute pancreatitis, whereas the expression level of 18sRNA was downregulated. Thus, we recommend the use of RPL-13A or a combination of RPL-13A and YWHAZ for normalization in qRT-PCR analyses of gene expression in mouse models of acute pancreatitis. PMID:27069927

  12. Detection of Saccharopolyspora rectivirgula by quantitative real-time PCR.

    PubMed

    Schäfer, Jenny; Kämpfer, Peter; Jäckel, Udo

    2011-07-01

    The thermophilic actinomycete species Saccharopolyspora rectivirgula has been associated with the exogen allergic alveolitis (EAA). EAA is caused by the inhalation of high amounts of airborne spores that can be found for example in environments of agricultural production, compost facilities, mushroom cultivation rooms, or rooms with technical air moistening. Because of the medical relevance of S. rectivirgula, a reliable detection system is needed. Therefore, a quantitative real-time polymerase chain reaction (qPCR) primer system was designed, targeting the 16S rRNA gene of the type strain S. rectivirgula DSM 43747(T) and six other S. rectivirgula reference strains. Our investigation showed that S. rectivirgula presumably own four operons of the 16S rRNA gene, which has to be considered for estimation of cell equivalents. Furthermore, the DNA recovery efficiency from these strains was tested in combination with bioaerosol or material sample as well as the influence of non-target DNA to the recovery rate. Results showed a recovery DNA efficiency of 7-55%. The recovery rate of DNA in a mixture with non-target DNA resulted in ∼87%. In summary, a high amplification efficiency using real-time PCR was found, for which estimated concentrations revealed cell numbers of 2.7 × 10(5) cells m(-3) in bioaerosol and 2.8 × 10(6) cells g(-1) fw(-1) in material samples from a duck house. The specificity of the new developed quantification system was shown by generation of two clone libraries from bioarosol samples, from a duck house, and from a composting plant. Totally, the results clearly show the specificity and practicability of the established qPCR assay for detection of S. rectivirgula.

  13. Quantitative polymerase chain reaction (PCR) for detection of aquatic animal pathogens in a diagnostic laboratory setting

    USGS Publications Warehouse

    Purcell, Maureen K.; Getchell, Rodman G.; McClure, Carol A.; Weber, S.E.; Garver, Kyle A.

    2011-01-01

    Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.

  14. Quantitative real-time PCR (qPCR)--based tool for detection and quantification of Cordyceps militaris in soil.

    PubMed

    Saragih, Syaiful Amri; Takemoto, S; Hisamoto, Y; Fujii, M; Sato, H; Kamata, N

    2015-01-01

    A quantitative real-time PCR using a primer pair CM2946F/CM3160R was developed for specific detection and quantification of Cordyceps militaris from soil. Standard curves were obtained for genomic DNA and DNA extracts from autoclaved soil with a certain dose of C. militaris suspension. C. militaris was detected from two forest soil samples out of ten that were collected when fruit bodies of C. militaris were found. This method seemed effective in detection of C. militaris in the soil and useful for rapid and reliable quantification of C. militaris in different ecosystems. PMID:25446034

  15. Quantitative real-time PCR (qPCR)--based tool for detection and quantification of Cordyceps militaris in soil.

    PubMed

    Saragih, Syaiful Amri; Takemoto, S; Hisamoto, Y; Fujii, M; Sato, H; Kamata, N

    2015-01-01

    A quantitative real-time PCR using a primer pair CM2946F/CM3160R was developed for specific detection and quantification of Cordyceps militaris from soil. Standard curves were obtained for genomic DNA and DNA extracts from autoclaved soil with a certain dose of C. militaris suspension. C. militaris was detected from two forest soil samples out of ten that were collected when fruit bodies of C. militaris were found. This method seemed effective in detection of C. militaris in the soil and useful for rapid and reliable quantification of C. militaris in different ecosystems.

  16. The Next-Generation PCR-Based Quantification Method for Ambient Waters: Digital PCR.

    PubMed

    Cao, Yiping; Griffith, John F; Weisberg, Stephen B

    2016-01-01

    Real-time quantitative PCR (qPCR) is increasingly being used for ambient water monitoring, but development of digital polymerase chain reaction (digital PCR) has the potential to further advance the use of molecular techniques in such applications. Digital PCR refines qPCR by partitioning the sample into thousands to millions of miniature reactions that are examined individually for binary endpoint results, with DNA density calculated from the fraction of positives using Poisson statistics. This direct quantification removes the need for standard curves, eliminating the labor and materials associated with creating and running standards with each batch, and removing biases associated with standard variability and mismatching amplification efficiency between standards and samples. Confining reactions and binary endpoint measurements to small partitions also leads to other performance advantages, including reduced susceptibility to inhibition, increased repeatability and reproducibility, and increased capacity to measure multiple targets in one analysis. As such, digital PCR is well suited for ambient water monitoring applications and is particularly advantageous as molecular methods move toward autonomous field application. PMID:27460373

  17. Quantitative PCR for Tracking the Megaplasmid-Borne Biodegradation Potential of a Model Sphingomonad

    PubMed Central

    Hartmann, Erica M.; Badalamenti, Jonathan P.; Krajmalnik-Brown, Rosa

    2012-01-01

    We developed a quantitative PCR method for tracking the dxnA1 gene, the initial, megaplasmid-borne gene in Sphingomonas wittichii RW1's dibenzo-p-dioxin degradation pathway. We used this method on complex environmental samples and report on growth of S. wittichii RW1 in landfill leachate, thus furnishing a novel tool for monitoring megaplasmid-borne, dioxygenase-encoding genes. PMID:22492441

  18. Evaluation of quantitative PCR combined with PMA treatment for molecular assessment of microbial water quality.

    PubMed

    Gensberger, Eva Theres; Polt, Marlies; Konrad-Köszler, Marianne; Kinner, Paul; Sessitsch, Angela; Kostić, Tanja

    2014-12-15

    Microbial water quality assessment currently relies on cultivation-based methods. Nucleic acid-based techniques such as quantitative PCR (qPCR) enable more rapid and specific detection of target organisms and propidium monoazide (PMA) treatment facilitates the exclusion of false positive results caused by DNA from dead cells. Established molecular assays (qPCR and PMA-qPCR) for legally defined microbial quality parameters (Escherichia coli, Enterococcus spp. and Pseudomonas aeruginosa) and indicator organism group of coliforms (implemented on the molecular detection of Enterobacteriaceae) were comparatively evaluated to conventional microbiological methods. The evaluation of an extended set of drinking and process water samples showed that PMA-qPCR for E. coli, Enterococcus spp. and P. aeruginosa resulted in higher specificity because substantial or complete reduction of false positive signals in comparison to qPCR were obtained. Complete compliance to reference method was achieved for E. coli PMA-qPCR and 100% specificity for Enterococcus spp. and P. aeruginosa in the evaluation of process water samples. A major challenge remained in sensitivity of the assays, exhibited through false negative results (7-23%), which is presumably due to insufficient sample preparation (i.e. concentration of bacteria and DNA extraction), rather than the qPCR limit of detection. For the detection of the indicator group of coliforms, the evaluation study revealed that the utilization of alternative molecular assays based on the taxonomic group of Enterobacteriaceae was not adequate. Given the careful optimization of the sensitivity, the highly specific PMA-qPCR could be a valuable tool for rapid detection of hygienic parameters such as E. coli, Enterococcus spp. and P. aeruginosa.

  19. Single Fluorescence Channel-based Multiplex Detection of Avian Influenza Virus by Quantitative PCR with Intercalating Dye.

    PubMed

    Ahberg, Christian D; Manz, Andreas; Neuzil, Pavel

    2015-01-01

    Since its invention in 1985 the polymerase chain reaction (PCR) has become a well-established method for amplification and detection of segments of double-stranded DNA. Incorporation of fluorogenic probe or DNA intercalating dyes (such as SYBR Green) into the PCR mixture allowed real-time reaction monitoring and extraction of quantitative information (qPCR). Probes with different excitation spectra enable multiplex qPCR of several DNA segments using multi-channel optical detection systems. Here we show multiplex qPCR using an economical EvaGreen-based system with single optical channel detection. Previously reported non quantitative multiplex real-time PCR techniques based on intercalating dyes were conducted once the PCR is completed by performing melting curve analysis (MCA). The technique presented in this paper is both qualitative and quantitative as it provides information about the presence of multiple DNA strands as well as the number of starting copies in the tested sample. Besides important internal control, multiplex qPCR also allows detecting concentrations of more than one DNA strand within the same sample. Detection of the avian influenza virus H7N9 by PCR is a well established method. Multiplex qPCR greatly enhances its specificity as it is capable of distinguishing both haemagglutinin (HA) and neuraminidase (NA) genes as well as their ratio.

  20. Real-time quantitative PCR for the design of lentiviral vector analytical assays.

    PubMed

    Delenda, C; Gaillard, C

    2005-10-01

    From the recent and emerging concerns for approving lentiviral vector-mediated gene transfer in human clinical applications, several analytical methods have been applied in preclinical models to address the lentiviral vector load in batches, cells or tissues. This review points out the oldest generation methods (blots, RT activity, standard PCR) as well as a full description of the newest real-time quantitative PCR (qPCR) applications. Combinations of primer and probe sequences, which have worked in the lentiviral amplification context, have been included in the effort to dress an exhaustive list. Also, great variations have been observed from interlaboratory results, we have tempted to compare between them the different analytical methods that have been used to consider (i) the titration of lentiviral vector batches, (ii) the absence of the susceptible emerging replicative lentiviruses or (iii) the lentiviral vector biodistribution in the organism.

  1. Development of qualitative and quantitative PCR analysis for meat adulteration from RNA samples.

    PubMed

    Cheng, Jai-Hong; Chou, Hsiao-Ting; Lee, Meng-Shiou; Sheu, Shyang-Chwen

    2016-02-01

    Total RNA samples were used to establish qualitative and quantitative PCR-based methods for assessing meat adulteration. The primers were designed based on the mRNA sequences of troponin I (TnI), mitochondrial ribosomal protein (MRP) and tropomodulin genes to distinguish chicken, pork, goat, beef and ostrich. There was no cross reaction between the primers, and the detection limit of the cDNA template was 0.01 and 20 ng in simplex PCR and multiplex PCR, respectively. In the low temperature storage test, the detection limits of cDNA template with 10 and 1 ng were determined at 4 °C and -80 °C. In quantitative assay, the precision of real-time PCR analysis expressed as a coefficient of variation (CV) ranged from 0.25% to 5.24% and the trueness, expressed as an error, ranged from 0.28% to 6.98% for adulteration. Thus, herein, we provided alternative tools for the assessment of meat adulteration using mRNA-based PCR methods.

  2. Development of qualitative and quantitative PCR analysis for meat adulteration from RNA samples.

    PubMed

    Cheng, Jai-Hong; Chou, Hsiao-Ting; Lee, Meng-Shiou; Sheu, Shyang-Chwen

    2016-02-01

    Total RNA samples were used to establish qualitative and quantitative PCR-based methods for assessing meat adulteration. The primers were designed based on the mRNA sequences of troponin I (TnI), mitochondrial ribosomal protein (MRP) and tropomodulin genes to distinguish chicken, pork, goat, beef and ostrich. There was no cross reaction between the primers, and the detection limit of the cDNA template was 0.01 and 20 ng in simplex PCR and multiplex PCR, respectively. In the low temperature storage test, the detection limits of cDNA template with 10 and 1 ng were determined at 4 °C and -80 °C. In quantitative assay, the precision of real-time PCR analysis expressed as a coefficient of variation (CV) ranged from 0.25% to 5.24% and the trueness, expressed as an error, ranged from 0.28% to 6.98% for adulteration. Thus, herein, we provided alternative tools for the assessment of meat adulteration using mRNA-based PCR methods. PMID:26304356

  3. Development and evaluation of quantitative-competitive PCR for quantitation of coxsackievirus B3 RNA in experimentally infected murine tissues.

    PubMed

    Reetoo, K N; Osman, S A; Illavia, S J; Banatvala, J E; Muir, P

    1999-10-01

    A method is described for quantitation of enterovirus RNA in experimentally infected murine tissues. Viral RNA was extracted from tissue samples and amplified by reverse transcriptase PCR in the presence of an internal standard RNA. The ratio of PCR product derived from viral RNA and internal standard RNA was then determined using specific probes in a post-PCR electrochemiluminescent hybridization assay. This provided an estimate of the viral RNA copy number in the original sample, and detection of PCR product derived from internal standard RNA validated sample processing and amplification procedures. RNA copy number correlated with viral infectivity of cell culture-derived virus, and one tissue culture infective dose was found to contain approximately 10(3) genome equivalents. The ratio of RNA copy number to infectivity in myocardial tissue taken from mice during the acute phase of coxsackievirus B3 myocarditis was more variable ranging from 10(4)-10(7), and was dependent on the stage of infection, reflecting differential rates of clearance for viral RNA and viral infectivity. The assay is rapid, and could facilitate investigations which currently rely upon enterovirus quantitation by titration in cell culture. This would be useful for experimental studies of viral pathogenesis, prophylaxis and antiviral therapy.

  4. Rapid and simple method of qPCR primer design.

    PubMed

    Thornton, Brenda; Basu, Chhandak

    2015-01-01

    Quantitative real-time polymerase chain reaction (qPCR) is a powerful tool for analysis and quantification of gene expression. It is advantageous compared to traditional gel-based method of PCR, as gene expression can be visualized "real-time" using a computer. In qPCR, a reporter dye system is used which intercalates with DNA's region of interest and detects DNA amplification. Some of the popular reporter systems used in qPCR are the following: Molecular Beacon(®), SYBR Green(®), and Taqman(®). However, success of qPCR depends on the optimal primers used. Some of the considerations for primer design are the following: GC content, primer self-dimer, or secondary structure formation. Freely available software could be used for ideal qPCR primer design. Here we have shown how to use some freely available web-based software programs (such as Primerquest(®), Unafold(®), and Beacon designer(®)) to design qPCR primers.

  5. Quantitative RT-PCR for titration of replication-defective recombinant Semliki Forest virus.

    PubMed

    Puglia, Ana L P; Rezende, Alexandre G; Jorge, Soraia A C; Wagner, Renaud; Pereira, Carlos A; Astray, Renato M

    2013-11-01

    Virus titration may constitute a drawback in the development and use of replication-defective viral vectors like Semliki Forest virus (SFV). The standardization and validation of a reverse transcription quantitative PCR (qRT-PCR) method for SFV titration is presented here. The qRT-PCR target is located within the nsp1 gene of the non-structural polyprotein SFV region (SFV RNA), which allows the strategy to be used for several different recombinant SFV constructs. Titer determinations were carried out by performing virus titration and infection assays with SFVs containing an RNA coding region for the rabies virus glycoprotein (RVGP) or green fluorescent protein (GFP). Results showed that the standardized qRT-PCR is applicable for different SFV constructs, and showed good reproducibility. To evaluate the correlation between the amount of functional SFV RNA in a virus lot and its infectivity in BHK-21 cell cultures, a temperature mediated titer decrease was performed and successfully quantitated by qRT-PCR. When used for cell infection at the same multiplicity of infection (MOI), the temperature treated SFV-RVGP samples induced the same levels of RVGP expression. Similarly, when different SFV-GFP lots with different virus titers, as accessed by qRT-PCR, were used for cell infection at the same MOI, the cultures showed comparable amounts of fluorescent cells. The data demonstrate a good correlation between the amount of virus used for infection, as measured by its SFV RNA, and the protein synthesis in the cells. In conclusion, the qRT-PCR method developed here is accurate and enables the titration of replication-defective SFV vectors, an essential aid for viral vector development as well as for establishment of production bioprocesses.

  6. Validation of a quantitative PCR assay for detection and quantification of 'Candidatus Xenohaliotis californiensis'.

    PubMed

    Friedman, Carolyn S; Wight, Nate; Crosson, Lisa M; White, Samuel J; Strenge, Robyn M

    2014-04-01

    Withering syndrome (WS), a serious disease affecting abalone Haliotis spp., is caused by infection from an intracellular Rickettsia-like organism (WS-RLO). Diagnosis of the disease currently relies on a combination of histological examination and molecular methods (in situ hybridization, standard PCR, and sequence analysis). However, these techniques only provide a semi-quantitative assessment of bacterial load. We created a real-time quantitative PCR (qPCR) assay to specifically identify and enumerate bacterial loads of WS-RLO in abalone tissue, fecal, and seawater samples based on 16S rDNA gene copy numbers. The qPCR assay designed to detect DNA of the WS-RLO was validated according to standards set by the World Organisation for Animal Health. Standard curves derived from purified plasmid dilutions were linear across 7 logs of concentration, and efficiencies ranged from 90.2 to 97.4%. The limit of detection was 3 gene copies per reaction. Diagnostic sensitivity was 100% and specificity was 99.8%. The qPCR assay was robust, as evidenced by its high level of repeatability and reproducibility. This study has shown for the first time that WS-RLO DNA can be detected and quantified in abalone tissue, fecal, and seawater samples. The ability to detect and quantify RLO gene copies in a variety of materials will enable us to better understand transmission dynamics in both farmed and natural environments. PMID:24695238

  7. Evaluation of absolute quantitation by nonlinear regression in probe-based real-time PCR

    PubMed Central

    Goll, Rasmus; Olsen, Trine; Cui, Guanglin; Florholmen, Jon

    2006-01-01

    Background In real-time PCR data analysis, the cycle threshold (CT) method is currently the gold standard. This method is based on an assumption of equal PCR efficiency in all reactions, and precision may suffer if this condition is not met. Nonlinear regression analysis (NLR) or curve fitting has therefore been suggested as an alternative to the cycle threshold method for absolute quantitation. The advantages of NLR are that the individual sample efficiency is simulated by the model and that absolute quantitation is possible without a standard curve, releasing reaction wells for unknown samples. However, the calculation method has not been evaluated systematically and has not previously been applied to a TaqMan platform. Aim: To develop and evaluate an automated NLR algorithm capable of generating batch production regression analysis. Results Total RNA samples extracted from human gastric mucosa were reverse transcribed and analysed for TNFA, IL18 and ACTB by TaqMan real-time PCR. Fluorescence data were analysed by the regular CT method with a standard curve, and by NLR with a positive control for conversion of fluorescence intensity to copy number, and for this purpose an automated algorithm was written in SPSS syntax. Eleven separate regression models were tested, and the output data was subjected to Altman-Bland analysis. The Altman-Bland analysis showed that the best regression model yielded quantitative data with an intra-assay variation of 58% vs. 24% for the CT derived copy numbers, and with a mean inter-method deviation of × 0.8. Conclusion NLR can be automated for batch production analysis, but the CT method is more precise for absolute quantitation in the present setting. The observed inter-method deviation is an indication that assessment of the fluorescence conversion factor used in the regression method can be improved. However, the versatility depends on the level of precision required, and in some settings the increased cost effectiveness of NLR

  8. Quantitative vs qualitative research methods.

    PubMed

    Lakshman, M; Sinha, L; Biswas, M; Charles, M; Arora, N K

    2000-05-01

    Quantitative methods have been widely used because of the fact that things that can be measured or counted gain scientific credibility over the unmeasurable. But the extent of biological abnormality, severity, consequences and the impact of illness cannot be satisfactorily captured and answered by the quantitative research alone. In such situations qualitative methods take a holistic perspective preserving the complexities of human behavior by addressing the "why" and "how" questions. In this paper an attempt has been made to highlight the strengths and weaknesses of both the methods and also that a balanced mix of both qualitative as well as quantitative methods yield the most valid and reliable results.

  9. Development of Quantitative Real-time PCR Assays for Different Clades of “Candidatus Accumulibacter”

    NASA Astrophysics Data System (ADS)

    Zhang, An Ni; Mao, Yanping; Zhang, Tong

    2016-05-01

    We designed novel quantitative real-time polymerase chain reaction (qPCR) primers for the polyphosphate kinase 1 (ppk1) gene, targeting eight individual “Candidatus Accumulibacter” (referred to as Accumulibacter) clades. An evaluation of primer sets was conducted regarding the coverage, specificity, and PCR efficiency. (i) All primer sets were designed to cover all available sequences of the target clade. (ii) The phylogenetic analysis of the sequences retrieved from the qPCR products by each primer set demonstrated a high level of specificity. (iii) All calibration curves presented high PCR efficiencies in the range of 85–112% (R2 = 0.962–0.998). In addition, the possible interference of non-target amplicons was individually examined using the qPCR assay for 13 Accumulibacter clades, which were either undetected or showed negligible detection. With the primers designed by other research groups, a highly selective and sensitive qPCR-based method was developed to quantify all Accumulibacter clades, with the exception of Clade IE, in one assay, which enables more comprehensive insights into the community dynamics. The applicability to environmental samples was demonstrated by profiling the Accumulibacter clades in activated sludge samples of nine full-scale wastewater treatment plants.

  10. Development of Quantitative Real-time PCR Assays for Different Clades of “Candidatus Accumulibacter”

    PubMed Central

    Zhang, An Ni; Mao, Yanping; Zhang, Tong

    2016-01-01

    We designed novel quantitative real-time polymerase chain reaction (qPCR) primers for the polyphosphate kinase 1 (ppk1) gene, targeting eight individual “Candidatus Accumulibacter” (referred to as Accumulibacter) clades. An evaluation of primer sets was conducted regarding the coverage, specificity, and PCR efficiency. (i) All primer sets were designed to cover all available sequences of the target clade. (ii) The phylogenetic analysis of the sequences retrieved from the qPCR products by each primer set demonstrated a high level of specificity. (iii) All calibration curves presented high PCR efficiencies in the range of 85–112% (R2 = 0.962–0.998). In addition, the possible interference of non-target amplicons was individually examined using the qPCR assay for 13 Accumulibacter clades, which were either undetected or showed negligible detection. With the primers designed by other research groups, a highly selective and sensitive qPCR-based method was developed to quantify all Accumulibacter clades, with the exception of Clade IE, in one assay, which enables more comprehensive insights into the community dynamics. The applicability to environmental samples was demonstrated by profiling the Accumulibacter clades in activated sludge samples of nine full-scale wastewater treatment plants. PMID:27142574

  11. Detection of Thielaviopsis basicola in soil with real-time quantitative PCR assays.

    PubMed

    Huang, Junli; Kang, Zhenhui

    2010-07-20

    Thielaviopsis basicola is a soil-borne fungus with a wide host range and a cosmopolitan distribution. It causes disease on many agricultural crops and in China it is the causal agent of black root rot on tobacco plant. Early diagnosis and detection of the pathogen in soil are critical to control this disease in field. The objective of this study was to develop sensitive and effective methods suitable for large-scale detection and quantification of T. basicola. Based on the nucleotide sequences of the internal transcribed spacer (ITS) regions of rDNA genes of Thielaviopsis spp, primers and TaqMan probe were designed specifically to amplify DNA from T. basicola and real-time, quantitative PCR (qPCR) assays were developed for rapid, specific and sensitive detection and quantification of T. basicola. It was sensitive with the detection limit of 100 fg microl(-1) genomic DNA of T. basicola in qPCR assays. By combining the qPCR assays with the efficient protocol to extract DNA from soil, it was possible to achieve real-time detection of T. basicola in soil in 4-5 h and the detection limit of 3 conidia per reaction in qPCR was recorded. The assays were applied to survey soils from tobacco fields in China for the presence of T. basicola and the analyses of naturally infested soil showed the reliability of the qPCR assays.

  12. Quantitative PCR analysis of salivary pathogen burden in periodontitis.

    PubMed

    Salminen, Aino; Kopra, K A Elisa; Hyvärinen, Kati; Paju, Susanna; Mäntylä, Päivi; Buhlin, Kåre; Nieminen, Markku S; Sinisalo, Juha; Pussinen, Pirkko J

    2015-01-01

    Our aim was to investigate the value of salivary concentrations of four major periodontal pathogens and their combination in diagnostics of periodontitis. The Parogene study included 462 dentate subjects (mean age 62.9 ± 9.2 years) with coronary artery disease (CAD) diagnosis who underwent an extensive clinical and radiographic oral examination. Salivary levels of four major periodontal bacteria were measured by quantitative real-time PCR (qPCR). Median salivary concentrations of Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia, as well as the sum of the concentrations of the four bacteria, were higher in subjects with moderate to severe periodontitis compared to subjects with no to mild periodontitis. Median salivary Aggregatibacter actinomycetemcomitans concentrations did not differ significantly between the subjects with no to mild periodontitis and subjects with moderate to severe periodontitis. In logistic regression analysis adjusted for age, gender, diabetes, and the number of teeth and implants, high salivary concentrations of P. gingivalis, T. forsythia, and P. intermedia were significantly associated with moderate to severe periodontitis. When looking at different clinical and radiographic parameters of periodontitis, high concentrations of P. gingivalis and T. forsythia were significantly associated with the number of 4-5 mm periodontal pockets, ≥6 mm pockets, and alveolar bone loss (ABL). High level of T. forsythia was associated also with bleeding on probing (BOP). The combination of the four bacteria, i.e., the bacterial burden index, was associated with moderate to severe periodontitis with an odds ratio (OR) of 2.40 (95% CI 1.39-4.13). When A. actinomycetemcomitans was excluded from the combination of the bacteria, the OR was improved to 2.61 (95% CI 1.51-4.52). The highest OR 3.59 (95% CI 1.94-6.63) was achieved when P. intermedia was further excluded from the combination and only the levels of P. gingivalis and T

  13. BactQuant: An enhanced broad-coverage bacterial quantitative real-time PCR assay

    PubMed Central

    2012-01-01

    Background Bacterial load quantification is a critical component of bacterial community analysis, but a culture-independent method capable of detecting and quantifying diverse bacteria is needed. Based on our analysis of a diverse collection of 16 S rRNA gene sequences, we designed a broad-coverage quantitative real-time PCR (qPCR) assay—BactQuant—for quantifying 16 S rRNA gene copy number and estimating bacterial load. We further utilized in silico evaluation to complement laboratory-based qPCR characterization to validate BactQuant. Methods The aligned core set of 4,938 16 S rRNA gene sequences in the Greengenes database were analyzed for assay design. Cloned plasmid standards were generated and quantified using a qPCR-based approach. Coverage analysis was performed computationally using >670,000 sequences and further evaluated following the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines. Results A bacterial TaqMan® qPCR assay targeting a 466 bp region in V3-V4 was designed. Coverage analysis showed that 91% of the phyla, 96% of the genera, and >80% of the 89,537 species analyzed contained at least one perfect sequence match to the BactQuant assay. Of the 106 bacterial species evaluated, amplification efficiencies ranged from 81 to 120%, with r2-value of >0.99, including species with sequence mismatches. Inter- and intra-run coefficient of variance was <3% and <16% for Ct and copy number, respectively. Conclusions The BactQuant assay offers significantly broader coverage than a previously reported universal bacterial quantification assay BactQuant in vitro performance was better than the in silico predictions. PMID:22510143

  14. [Evaluation of pathogen disinfection efficacy by chlorine and monochloramine disinfection based on quantitative PCR combined with propidium monoazide (PMA-qPCR)].

    PubMed

    Tong, Tie-Zheng; Wu, Shu-Xu; Li, Dan; He, Miao; Yang, Tian; Shi, Han-Chang

    2011-04-01

    A novel detection method of quantitative PCR combined with a DNA intercalating dye propidium monoazide (PMA-qPCR) was developed and then applied to analyze inactivation efficacy of chlorine and monochloramine on E. coli as a representative organism. The results shows that PMA removed 99.94% and 99.99% DNA from non-viable E. coli and Salmonella cells respectively and PMA-qPCR could effectively differentiate viable bacteria from non-viable bacteria; According to the first-order kinetic model, the inactivation coefficients on E. coli obtained by PMA-qPCR were 2.24 L x (mg x min)-1 and 0.0175 L x (mg x min)-1 for chlorine and monochloramine respectively, both of which were lower than those obtained by traditional plating counting method. In order to inactivate 99% of E. coli, the ct values by PMA-qPCR were 0.9 mg L(-1) min and more than 100 mg x L(-1) x min for chlorine and monochloramine while those by plating counting method were only 0.6 mg x L(-1) x min and 20 mg x L(-1) min, respectively; E. coli concentration detected by conventional qPCR kept almost the same when ct value increased, indicating that conventional qPCR was unable to evaluate inactivation efficacy of both chlorine and monochloramine disinfection. In summary, PMA-qPCR shows to be a promising method for evaluating disinfection efficacy by chlorine and monochloramine more accurately.

  15. Evaluation of Lung Metastasis in Mouse Mammary Tumor Models by Quantitative Real-time PCR

    PubMed Central

    Abt, Melissa A.; Grek, Christina L.; Ghatnekar, Gautam S.; Yeh, Elizabeth S.

    2016-01-01

    Metastatic disease is the spread of malignant tumor cells from the primary cancer site to a distant organ and is the primary cause of cancer associated death 1. Common sites of metastatic spread include lung, lymph node, brain, and bone 2. Mechanisms that drive metastasis are intense areas of cancer research. Consequently, effective assays to measure metastatic burden in distant sites of metastasis are instrumental for cancer research. Evaluation of lung metastases in mammary tumor models is generally performed by gross qualitative observation of lung tissue following dissection. Quantitative methods of evaluating metastasis are currently limited to ex vivo and in vivo imaging based techniques that require user defined parameters. Many of these techniques are at the whole organism level rather than the cellular level 3–6. Although newer imaging methods utilizing multi-photon microscopy are able to evaluate metastasis at the cellular level 7, these highly elegant procedures are more suited to evaluating mechanisms of dissemination rather than quantitative assessment of metastatic burden. Here, a simple in vitro method to quantitatively assess metastasis is presented. Using quantitative Real-time PCR (QRT-PCR), tumor cell specific mRNA can be detected within the mouse lung tissue. PMID:26862835

  16. Serial Quantitative PCR Assay for Detection, Species Discrimination, and Quantification of Leishmania spp. in Human Samples▿

    PubMed Central

    Weirather, Jason L.; Jeronimo, Selma M. B.; Gautam, Shalini; Sundar, Shyam; Kang, Mitchell; Kurtz, Melissa A.; Haque, Rashidul; Schriefer, Albert; Talhari, Sinésio; Carvalho, Edgar M.; Donelson, John E.; Wilson, Mary E.

    2011-01-01

    The Leishmania species cause a variety of human disease syndromes. Methods for diagnosis and species differentiation are insensitive and many require invasive sampling. Although quantitative PCR (qPCR) methods are reported for leishmania detection, no systematic method to quantify parasites and determine the species in clinical specimens is established. We developed a serial qPCR strategy to identify and rapidly differentiate Leishmania species and quantify parasites in clinical or environmental specimens. SYBR green qPCR is mainly employed, with corresponding TaqMan assays for validation. The screening primers recognize kinetoplast minicircle DNA of all Leishmania species. Species identification employs further qPCR set(s) individualized for geographic regions, combining species-discriminating probes with melt curve analysis. The assay was sufficient to detect Leishmania parasites, make species determinations, and quantify Leishmania spp. in sera, cutaneous biopsy specimens, or cultured isolates from subjects from Bangladesh or Brazil with different forms of leishmaniasis. The multicopy kinetoplast DNA (kDNA) probes were the most sensitive and useful for quantification based on promastigote standard curves. To test their validity for quantification, kDNA copy numbers were compared between Leishmania species, isolates, and life stages using qPCR. Maxicircle and minicircle copy numbers differed up to 6-fold between Leishmania species, but the differences were smaller between strains of the same species. Amastigote and promastigote leishmania life stages retained similar numbers of kDNA maxi- or minicircles. Thus, serial qPCR is useful for leishmania detection and species determination and for absolute quantification when compared to a standard curve from the same Leishmania species. PMID:22042830

  17. Normalization of Reverse Transcription Quantitative PCR Data During Ageing in Distinct Cerebral Structures.

    PubMed

    Bruckert, G; Vivien, D; Docagne, F; Roussel, B D

    2016-04-01

    Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) has become a routine method in many laboratories. Normalization of data from experimental conditions is critical for data processing and is usually achieved by the use of a single reference gene. Nevertheless, as pointed by the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, several reference genes should be used for reliable normalization. Ageing is a physiological process that results in a decline of many expressed genes. Reliable normalization of RT-qPCR data becomes crucial when studying ageing. Here, we propose a RT-qPCR study from four mouse brain regions (cortex, hippocampus, striatum and cerebellum) at different ages (from 8 weeks to 22 months) in which we studied the expression of nine commonly used reference genes. With the use of two different algorithms, we found that all brain structures need at least two genes for a good normalization step. We propose specific pairs of gene for efficient data normalization in the four brain regions studied. These results underline the importance of reliable reference genes for specific brain regions in ageing.

  18. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil.

    PubMed

    Kim, Tae Gwan; Jeong, So-Yeon; Cho, Kyung-Suk

    2014-07-01

    The newly developed droplet digital PCR (DD-PCR) has shown promise as a DNA quantification technology in medical diagnostic fields. This study evaluated the applicability of DD-PCR as a quantitative tool for soil DNA using quantitative real-time PCR (qRT-PCR) as a reference technology. Cupriavidus sp. MBT14 and Sphingopyxis sp. MD2 were used, and a primer/TaqMan probe set was designed for each (CupMBT and SphMD2, respectively). Standard curve analyses on tenfold dilution series showed that both qRT-PCR and DD-PCR exhibited excellent linearity (R (2) = 1.00) and PCR efficiency (≥92 %) across their detectable ranges. However, DD-PCR showed a tenfold greater sensitivity than qRT-PCR. MBT14 and MD2 were added to non-sterile soil at 0 ~ 5 × 10(8) and 0 ~ 5 × 10(7) cells per gram of soil, respectively (n = 5). This bacterial load test indicated that DD-PCR was more sensitive and discriminating than qRT-PCR. For instance, DD-PCR showed a gradual DNA increase from 14 to 141,160 MBT14 rDNA copies μL DNA extract(-1) as the bacterial load increased, while qRT-PCR could quantify the DNA (6,432 copies μL DNA(-1)) at ≥5 × 10(5) MBT14 per gram of soil. When temporal DNA changes were monitored for 3 weeks in the amended soils, the two technologies exhibited nearly identical changes over time. Linearity tests (y = a · x) revealed excellent quantitative agreement between the two technologies (a = 0.98, R (2) = 0.97 in the CupMBT set and a = 0.90, R (2) = 0.94 in the SphMD2 set). These results suggest that DD-PCR is a promising tool to examine temporal dynamics of microorganisms in complex environments.

  19. Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping.

    PubMed

    Lee, Han B; Schwab, Tanya L; Koleilat, Alaa; Ata, Hirotaka; Daby, Camden L; Cervera, Roberto Lopez; McNulty, Melissa S; Bostwick, Hannah S; Clark, Karl J

    2016-06-01

    Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98-100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score

  20. Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping.

    PubMed

    Lee, Han B; Schwab, Tanya L; Koleilat, Alaa; Ata, Hirotaka; Daby, Camden L; Cervera, Roberto Lopez; McNulty, Melissa S; Bostwick, Hannah S; Clark, Karl J

    2016-06-01

    Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98-100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score

  1. Allele-Specific Quantitative PCR for Accurate, Rapid, and Cost-Effective Genotyping

    PubMed Central

    Lee, Han B.; Schwab, Tanya L.; Koleilat, Alaa; Ata, Hirotaka; Daby, Camden L.; Cervera, Roberto Lopez; McNulty, Melissa S.; Bostwick, Hannah S.; Clark, Karl J.

    2016-01-01

    Customizable endonucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) enable rapid generation of mutant strains at genomic loci of interest in animal models and cell lines. With the accelerated pace of generating mutant alleles, genotyping has become a rate-limiting step to understanding the effects of genetic perturbation. Unless mutated alleles result in distinct morphological phenotypes, mutant strains need to be genotyped using standard methods in molecular biology. Classic restriction fragment length polymorphism (RFLP) or sequencing is labor-intensive and expensive. Although simpler than RFLP, current versions of allele-specific PCR may still require post-polymerase chain reaction (PCR) handling such as sequencing, or they are more expensive if allele-specific fluorescent probes are used. Commercial genotyping solutions can take weeks from assay design to result, and are often more expensive than assembling reactions in-house. Key components of commercial assay systems are often proprietary, which limits further customization. Therefore, we developed a one-step open-source genotyping method based on quantitative PCR. The allele-specific qPCR (ASQ) does not require post-PCR processing and can genotype germline mutants through either threshold cycle (Ct) or end-point fluorescence reading. ASQ utilizes allele-specific primers, a locus-specific reverse primer, universal fluorescent probes and quenchers, and hot start DNA polymerase. Individual laboratories can further optimize this open-source system as we completely disclose the sequences, reagents, and thermal cycling protocol. We have tested the ASQ protocol to genotype alleles in five different genes. ASQ showed a 98–100% concordance in genotype scoring with RFLP or Sanger sequencing outcomes. ASQ is time-saving because a single qPCR without post-PCR handling suffices to score

  2. Variation in copy number of the 28S rDNA of Aspergillus fumigatus measured by droplet digital PCR and analog quantitative real-time PCR.

    PubMed

    Alanio, Alexandre; Sturny-Leclère, Aude; Benabou, Marion; Guigue, Nicolas; Bretagne, Stéphane

    2016-08-01

    Droplet digital PCR (ddPCR) after DNA digestion yielded a 28S rDNA copy number of 61 to 86 copies/genome when testing 10 unrelated Aspergillus fumigatus isolates, higher than with quantitative PCR. Unfortunately, ddPCR after DNA digestion did not improve the sensitivity of our PCR assay when testing serum patients with invasive aspergillosis. PMID:27316653

  3. Quantitative methods for food allergens: a review.

    PubMed

    Kirsch, Stéphanie; Fourdrilis, Séverine; Dobson, Rowan; Scippo, Marie-Louise; Maghuin-Rogister, Guy; De Pauw, Edwin

    2009-09-01

    The quantitative detection of allergens in the food chain is a strategic health objective as the prevalence of allergy continues to rise. Food allergenicity is caused by proteins either in their native form or in forms resulting from food processing. Progress in mass spectrometry greatly opened up the field of proteomics. These advances are now available for the detection and the quantification of traces of allergenic proteins in complex mixtures, and complete the set of biological tests used until now, such as ELISA or PCR. We review methods classified according to their ability to simultaneously quantify and identify allergenic proteins and underline major advances in the mass-spectrometric methods.

  4. A PCR amplification method without DNA extraction.

    PubMed

    Li, Hongwei; Xu, Haiyue; Zhao, Chunjiang; Sulaiman, Yiming; Wu, Changxin

    2011-02-01

    To develop a simple and inexpensive method for direct PCR amplification of animal DNA from tissues, we optimized different components and their concentration in lysis buffer systems. Finally, we acquired the optimized buffer system composed of 10 mmol tris(hydroxymethyl)aminomethane (Tris)-Cl (pH 8.0), 2 mmol ethylene diamine tetraacetic (EDTA) (pH 8.0), 0.2 mol NaCl and 200 μg/mL Proteinase K. Interestingly, the optimized buffer is also very effective when working with common human sample types, including blood, buccal cells and hair. The direct PCR method requires fewer reagents (Tris-Cl, EDTA, Protease K and NaCl) and less incubation time (only 35 min). The cost of treating every sample is less than $0.02, and all steps can be completed on a thermal cycler in a 96-well format. So, the proposed method will significantly improve high-throughput PCR-based molecular assays in animal systems and in common human sample types.

  5. Enumeration of verocytotoxigenic Escherichia coli (VTEC) O157 and O26 in milk by quantitative PCR.

    PubMed

    Mancusi, Rocco; Trevisani, Marcello

    2014-08-01

    Quantitative real-time polymerase chain reaction (qPCR) can be a convenient alternative to the Most Probable Number (MPN) methods to count VTEC in milk. The number of VTEC is normally very low in milk; therefore with the aim of increasing the method sensitivity a qPCR protocol that relies on preliminary enrichment was developed. The growth pattern of six VTEC strains (serogroups O157 and O26) was studied using enrichment in Buffered Peptone Water (BPW) with or without acriflavine for 4-24h. Milk samples were inoculated with these strains over a five Log concentration range between 0.24-0.50 and 4.24-4.50 Log CFU/ml. DNA was extracted from the enriched samples in duplicate and each extract was analysed in duplicate by qPCR using pairs of primers specific for the serogroups O157 and O26. When samples were pre-enriched in BPW at 37°C for 8h, the relationship between threshold cycles (CT values) and VTEC Log numbers was linear over a five Log concentration range. The regression of PCR threshold cycle numbers on VTEC Log CFU/ml had a slope coefficient equal to -3.10 (R(2)=0.96) which is indicative of a 10-fold difference of the gene copy numbers between samples (with a 100 ± 10% PCR efficiency). The same 10-fold proportion used for inoculating the milk samples with VTEC was observed, therefore, also in the enriched samples at 8h. A comparison of the CT values of milk samples and controls revealed that the strains inoculated in milk grew with 3 Log increments in the 8h enrichment period. Regression lines that fitted the qPCR and MPN data revealed that the error of the qPCR estimates is lower than the error of the estimated MPN (r=0.982, R(2)=0.965 vs. r=0.967, R(2)=0.935). The growth rates of VTEC strains isolated from milk should be comparatively assessed before qPCR estimates based on the regression model are considered valid. Comparative assessment of the growth rates can be done using spectrophotometric measurements of standardized cultures of isolates and

  6. Performance of two real-time PCR assays for hepatitis B virus DNA detection and quantitation.

    PubMed

    Kania, Dramane; Ottomani, Laure; Meda, Nicolas; Peries, Marianne; Dujols, Pierre; Bolloré, Karine; Rénier, Wendy; Viljoen, Johannes; Ducos, Jacques; Van de Perre, Philippe; Tuaillon, Edouard

    2014-06-01

    In-house developed real-time PCR (qPCR) techniques could be useful conjunctives to the management of hepatitis B virus (HBV) infection in resource-limited settings with high prevalence. Two qPCR assays (qPCR1 and qPCR2), based on primers/probes targeting conserved regions of the X and S genes of HBV respectively, were evaluated using clinical samples of varying HBV genotypes, and compared to the commercial Roche Cobas AmpliPrep/Cobas TaqMan HBV Test v2.0. The lower detection limit (LDL) was established at 104 IU/ml for qPCR1, and 91 IU/ml for qPCR2. Good agreement and correlation were obtained between the Roche assay and both qPCR assays (r = 0.834 for qPCR1; and r = 0.870 for qPCR2). Differences in HBV DNA load of > 0.5 Log10 IU/ml between the Roche and the qPCR assays were found in 49/122 samples of qPCR1, and 35/122 samples of qPCR2. qPCR1 tended to underestimate HBV DNA quantity in samples with a low viral load and overestimate HBV DNA concentration in samples with a high viral load when compared to the Roche test. Both molecular tools that were developed, used on an open real-time PCR system, were reliable for HBV DNA detection and quantitation. The qPCR2 performed better than the qPCR1 and had the additional advantage of various HBV genotype detection and quantitation. This low cost quantitative HBV DNA PCR assay may be an alternative solution when implementing national programmes to diagnose, monitor and treat HBV infection in low- to middle-income countries where testing for HBV DNA is not available in governmental health programmes.

  7. Development of a Rapid and Sensitive Method Combining a Cellulose Ester Microfilter and a Real-Time Quantitative PCR Assay To Detect Campylobacter jejuni and Campylobacter coli in 20 Liters of Drinking Water or Low-Turbidity Waters

    PubMed Central

    Tissier, Adeline; Denis, Martine; Hartemann, Philippe

    2012-01-01

    Investigations of Campylobacter jejuni and Campylobacter coli in samples of drinking water suspected of being at the origin of an outbreak very often lead to negative results. One of the reasons for this failure is the small volume of water typically used for detecting these pathogens (10 to 1,000 ml). The efficiencies of three microfilters and different elution procedures were determined using real-time quantitative PCR to propose a procedure allowing detection of Campylobacter in 20 liters of drinking water or low-turbidity water samples. The results showed that more than 80% of the bacteria inoculated in 1 liter of drinking water were retained on each microfilter. An elution with a solution containing 3% beef extract, 0.05 M glycine at pH 9, combined with direct extraction of the bacterial genomes retained on the cellulose ester microfilter, allowed recovery of 87.3% (±22% [standard deviation]) of Campylobacter per 1 liter of tap water. Recoveries obtained from 20-liter volumes of tap water spiked with a C. coli strain were 69.5% (±10.3%) and 78.5% (±15.1%) for 91 CFU and 36 CFU, respectively. Finally, tests performed on eight samples of 20 liters of groundwater collected from an alluvial well used for the production of drinking water revealed the presence of C. jejuni and C. coli genomes, whereas no bacteria were detected with the normative culture method in volumes ranging from 10 to 1,000 ml. In the absence of available epidemiological data and information on bacterial viability, these last results indicate only that the water resource is not protected from contamination by Campylobacter. PMID:22138985

  8. Development of a rapid and sensitive method combining a cellulose ester microfilter and a real-time quantitative PCR assay to detect Campylobacter jejuni and Campylobacter coli in 20 liters of drinking water or low-turbidity waters.

    PubMed

    Tissier, Adeline; Denis, Martine; Hartemann, Philippe; Gassilloud, Benoît

    2012-02-01

    Investigations of Campylobacter jejuni and Campylobacter coli in samples of drinking water suspected of being at the origin of an outbreak very often lead to negative results. One of the reasons for this failure is the small volume of water typically used for detecting these pathogens (10 to 1,000 ml). The efficiencies of three microfilters and different elution procedures were determined using real-time quantitative PCR to propose a procedure allowing detection of Campylobacter in 20 liters of drinking water or low-turbidity water samples. The results showed that more than 80% of the bacteria inoculated in 1 liter of drinking water were retained on each microfilter. An elution with a solution containing 3% beef extract, 0.05 M glycine at pH 9, combined with direct extraction of the bacterial genomes retained on the cellulose ester microfilter, allowed recovery of 87.3% (±22% [standard deviation]) of Campylobacter per 1 liter of tap water. Recoveries obtained from 20-liter volumes of tap water spiked with a C. coli strain were 69.5% (±10.3%) and 78.5% (±15.1%) for 91 CFU and 36 CFU, respectively. Finally, tests performed on eight samples of 20 liters of groundwater collected from an alluvial well used for the production of drinking water revealed the presence of C. jejuni and C. coli genomes, whereas no bacteria were detected with the normative culture method in volumes ranging from 10 to 1,000 ml. In the absence of available epidemiological data and information on bacterial viability, these last results indicate only that the water resource is not protected from contamination by Campylobacter.

  9. Quantitative Real-Time PCR Analysis of Gene Transcripts of Mosquito Follicles.

    PubMed

    Telang, Aparna

    2016-01-01

    Real-time (quantitative) PCR, or QPCR, has become an indispensible tool for characterizing gene expression. Depending on the experimental design, researchers can use either the relative or absolute (standard curve) method to quantify transcript abundance. Characterizing the expression of genes in mosquito ovaries will require use of the standard curve method of quantification. Here, I describe reagents and equipment necessary to run standard curve QPCR. I also provide details on the construction of the standard linear curve and calculations required to determine transcript abundance. PMID:27557577

  10. Quantitative real-time PCR (qPCR) assay for human-dog-cat species identification and nuclear DNA quantification.

    PubMed

    Kanthaswamy, S; Premasuthan, A; Ng, J; Satkoski, J; Goyal, V

    2012-03-01

    In the United States, human forensic evidence collected from crime scenes is usually comingled with biomaterial of canine and feline origins. Knowledge of the concentration of nuclear DNA extracted from a crime scene biological sample and the species from which the sample originated is essential for DNA profiling. The ability to accurately detect and quantify target DNA in mixed-species samples is crucial when target DNA may be overwhelmed by non-target DNA. We have designed and evaluated a species-specific (human, dog and cat) nuclear DNA identification assay based on the TaqMan(®) quantitative real-time PCR (qPCR) technology that can simultaneously detect and measure minute quantities of DNA specific to either humans, dogs and/or cats. The fluorogenic triplex assay employs primers and hydrolysis probes that target the human TH01 locus as well as the dog and cat Melanocortin 1 Receptor (MC1R) sequences in a species-specific manner. We also demonstrate that the assay is a highly sensitive, reliable and robust method for identifying and quantifying mixed-species templates of human-dog-cat origin with as little as 0.4 pg of human and cat nuclear DNA, respectively, and 4.0 pg of dog nuclear DNA.

  11. Allele Specific Locked Nucleic Acid Quantitative PCR (ASLNAqPCR): An Accurate and Cost-Effective Assay to Diagnose and Quantify KRAS and BRAF Mutation

    PubMed Central

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes. PMID:22558339

  12. Allele specific locked nucleic acid quantitative PCR (ASLNAqPCR): an accurate and cost-effective assay to diagnose and quantify KRAS and BRAF mutation.

    PubMed

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes.

  13. TaqMan real-time PCR for detection and quantitation of squash leaf curl virus in cucurbits.

    PubMed

    Kuan, Cheng-Ping; Huang, Hung-Chang; Chang, Chia-Che; Lu, Yi-Lin

    2012-02-01

    A real-time PCR assay based on the TaqMan chemistry was developed for reliable detection and quantitation of the squash leaf curl virus (SLCV) in melon and squash plants. This method was highly specific to SLCV and it was about one thousand times more sensitive than the conventional PCR method. The protocol of the real-time PCR established in this study enabled detection of as little as 10(2) copies of SLCV DNA with CP gene as the target. This TaqMan real-time PCR assay for detection and quantitation of SLCV would be a useful tool for application in quarantine and certification of SLCV in cucurbits as well as in the research of disease resistance and epidemiology.

  14. Quantitative real-time PCR assay for detection of Paenibacillus polymyxa using membrane-fusion protein-based primers.

    PubMed

    Cho, Min Seok; Park, Dong Suk; Lee, Jung Won; Chi, Hee Youn; Sohn, Soo-In; Jeon, Bong-Kyun; Ma, Jong-Beom

    2012-11-01

    Paenibacillus polymyxa is known to be a plant-growthpromoting rhizobacterium. The present study describes a quantitative polymerase chain reaction (qPCR) assay for the specific detection and quantitation of P. polymyxa using a primer pair based on the sequence of a membranefusion protein for the amplification of a 268 bp DNA fragment. This study reports that the qPCR-based method is applicable for the rapid and sensitive detection of P. polymyxa and can be used as an alternative method for agricultural soil monitoring.

  15. Development and validation of a quantitative real time PCR assay for BK virus.

    PubMed

    Mitui, Midori; Leos, N Kristine; Lacey, Damon; Doern, Christopher; Rogers, Beverly B; Park, Jason Y

    2013-01-01

    Several studies have shown that BK viral load in plasma and urine are reliable markers for the detection of BK virus associated nephropathy (BKVAN) in renal transplant patients. We developed a quantitative real time PCR assay based on TaqMan technology for the measurement of BK viral load in plasma and urine. Considering the high similarity of the nucleotide sequence of the BK virus (BKV) with the JC virus (JCV), we designed this assay to specifically amplify BKV. We determined the viral DNA recovery rate on manual (QIAGEN's QIAamp DNA Blood Mini Kit) and automated (BioMerieux's NucliSENS EasyMAG) extraction methods. The comparison showed a higher viral DNA recovery rate on the automated extraction (61-76% in plasma and 52-65% in urine) as compared to the manual method (49-52% in plasma and 33-56% in urine). Quantitation of the viral load was performed using an external standard curve that was constructed with serial dilution of a plasmid containing the full length of the BKV genome. Commercially available quantitative BKV standards showed good correlation with the plasmid standard. The reproducibility of the assay was determined based on the Ct values of the amplified products as well as in BK copies per milliliter of sample. This assay is linear over a 7 log range (10 to 1 × 10(7) copies per reaction), no cross-reactivity was detected with the closest-related polyomavirus JCV, as well as other viruses that may be found in immunocompromised patients, and human genomic DNA. The limit of detection of the assay is 300 copies per milliliter in both plasma and urine and the limit of quantitation is 1000 copies per milliliter using the NATtrol BK Virus Linearity Panel (ZeptoMetrix). This real time PCR assay provides a reliable and sensitive method for the quantitation of BKV in plasma and urine samples.

  16. Quantitative real-time PCR for titration of infectious recombinant AAV-2 particles.

    PubMed

    Rohr, Ulrich-Peter; Heyd, Florian; Neukirchen, Judith; Wulf, Marc-Andre; Queitsch, Iris; Kroener-Lux, Gabriele; Steidl, Ulrich; Fenk, Roland; Haas, Rainer; Kronenwett, Ralf

    2005-07-01

    In this report, we present a fast, reliable and easy to perform method to quantify infectious titers of recombinant AAV-2 (rAAV-2) particles using the LightCycler technology, which is independent from the therapeutic transgene and without the presence of a marker gene. The method is based on the life cycle of AAV-2: after infection of the host cell, the single stranded (ss) AAV-2 genome is converted into a double stranded (ds) form. Following infection with rAAV-2, HeLa cells were lysed and ssDNA of transcriptionally inactive particles were efficiently removed by ssDNA-specific S1 nuclease digestion. The remaining viral dsDNA can be quantified by quantitative real-time PCR (qPCR). For validation of the new method, rAAV-2 preparations were analyzed by two other standard methods for titration of infectious particles in parallel, i.e. the infectious center assay (ICA) as well as flow cytometry using GFP as a marker. Comparing the infectious titers of 40 different AAV-2 fractions assessed by qPCR with the titers determined by FACS analysis a significant correlation (r=0.87, p<0.001) with a mean ratio of the titers assessed by qPCR and FACS of 1.92 (S.D.+/-1.59) was found. Further, the titers of seven rAAV-2 fractions using qPCR and ICA covering 5 log ranges were compared and a significant correlation was found between the results (r=0.80, p<0.001) with a mean ratio of 3.38 (S.D.+/-1.79), respectively.

  17. Quantitative study of Helicobacter pylori in gastric mucus by competitive PCR using synthetic DNA fragments.

    PubMed

    Furuta, T; Kaneko, E; Suzuki, M; Arai, H; Futami, H

    1996-10-01

    Helicobacter pylori is closely related to upper gastrointestinal diseases, and the precise evaluation of H. pylori infection is necessary for the treatment of these diseases. The aim of the present study was to establish a method for the quantitative detection of H. pylori. We applied a competitive PCR method using various amounts of synthetic DNA fragments containing the same primer-binding and a subset of the same template sequences as the target competing for primer binding and amplification in order to quantify H. pylori in gastric mucus. The results obtained by this method were compared with the results of histological examination, the rapid urease test, bacterial culture, the [13C]urea breath test, and urea and ammonia measurements in gastric juice. As the quantity of H. pylori in gastric mucus increased, the rates of positivity of histological examination, the rapid urease test, and bacterial culture increased. The quantity of H. pylori in gastric mucus was also significantly correlated with the results of the [13C]urea breath test and was negatively correlated with the urea/ammonia ratio in gastric juice. The competitive PCR method provides an objective measure of the quantity of H. pylori and makes it possible to distinguish true negatives from false negatives due to incomplete PCR and true positives from false positives due to contamination. This method is very useful for the precise evaluation of gastric H. pylori infection. PMID:8880492

  18. Development and application of absolute quantitative detection by duplex chamber-based digital PCR of genetically modified maize events without pretreatment steps.

    PubMed

    Zhu, Pengyu; Fu, Wei; Wang, Chenguang; Du, Zhixin; Huang, Kunlun; Zhu, Shuifang; Xu, Wentao

    2016-04-15

    The possibility of the absolute quantitation of GMO events by digital PCR was recently reported. However, most absolute quantitation methods based on the digital PCR required pretreatment steps. Meanwhile, singleplex detection could not meet the demand of the absolute quantitation of GMO events that is based on the ratio of foreign fragments and reference genes. Thus, to promote the absolute quantitative detection of different GMO events by digital PCR, we developed a quantitative detection method based on duplex digital PCR without pretreatment. Moreover, we tested 7 GMO events in our study to evaluate the fitness of our method. The optimized combination of foreign and reference primers, limit of quantitation (LOQ), limit of detection (LOD) and specificity were validated. The results showed that the LOQ of our method for different GMO events was 0.5%, while the LOD is 0.1%. Additionally, we found that duplex digital PCR could achieve the detection results with lower RSD compared with singleplex digital PCR. In summary, the duplex digital PCR detection system is a simple and stable way to achieve the absolute quantitation of different GMO events. Moreover, the LOQ and LOD indicated that this method is suitable for the daily detection and quantitation of GMO events. PMID:27016439

  19. Development and application of absolute quantitative detection by duplex chamber-based digital PCR of genetically modified maize events without pretreatment steps.

    PubMed

    Zhu, Pengyu; Fu, Wei; Wang, Chenguang; Du, Zhixin; Huang, Kunlun; Zhu, Shuifang; Xu, Wentao

    2016-04-15

    The possibility of the absolute quantitation of GMO events by digital PCR was recently reported. However, most absolute quantitation methods based on the digital PCR required pretreatment steps. Meanwhile, singleplex detection could not meet the demand of the absolute quantitation of GMO events that is based on the ratio of foreign fragments and reference genes. Thus, to promote the absolute quantitative detection of different GMO events by digital PCR, we developed a quantitative detection method based on duplex digital PCR without pretreatment. Moreover, we tested 7 GMO events in our study to evaluate the fitness of our method. The optimized combination of foreign and reference primers, limit of quantitation (LOQ), limit of detection (LOD) and specificity were validated. The results showed that the LOQ of our method for different GMO events was 0.5%, while the LOD is 0.1%. Additionally, we found that duplex digital PCR could achieve the detection results with lower RSD compared with singleplex digital PCR. In summary, the duplex digital PCR detection system is a simple and stable way to achieve the absolute quantitation of different GMO events. Moreover, the LOQ and LOD indicated that this method is suitable for the daily detection and quantitation of GMO events.

  20. Detection of the oyster herpesvirus in commercial bivalve in northern California, USA: conventional and quantitative PCR.

    PubMed

    Burge, Colleen A; Strenge, Robyn E; Friedman, Carolyn S

    2011-04-01

    The ostreid herpesvirus (OsHV-1) and related oyster herpesviruses (OsHV) are associated with world-wide mortalities of larval and juvenile bivalves. To quantify OsHV viral loads in mollusc tissues, we developed a SYBR Green quantitative PCR (qPCR) based on the A-region of the OsHV-1 genome. Reaction efficiency and precision were demonstrated using a plasmid standard curve. The analytical sensitivity is 1 copy per reaction. We collected Crassostrea gigas, C. sikamea, C. virginica, Ostrea edulis, O. lurida, Mytilus galloprovincialis, and Venerupis phillipinarum from Tomales Bay (TB), and C. gigas from Drakes Estero (DE), California, U.S.A., and initially used conventional PCR (cPCR) to test for presence of OsHV DNA. Subsequently, viral loads were quantified in selected samples of all tested bivalves except O. lurida. Copy numbers were low in each species tested but were significantly greater in C. gigas (p < 0.0001) compared to all other species, suggesting a higher level of infection. OsHV DNA was detected with cPCR and/or qPCR and confirmed by sequencing in C. gigas, C. sikamea, C. virginica, O. edulis, M. galloprovincialis, and V phillipinarum from TB and C. gigas from DE. These data indicate that multiple bivalve species may act as reservoirs for OsHV in TB. A lack of histological abnormalities in potential reservoirs requires alternative methods for their identification. Further investigation is needed to determine the host-parasite relationship for each potential reservoir, including characterization of viral loads and their relationship with infection (via in situ hybridization), assessments of mortality, and host responses. PMID:21648239

  1. Assessment of mold concentrations in Singapore shopping centers using mold-specific quantitative PCR (MSQPCR) analysis.

    PubMed

    Yap, Jennifer; Toh, Zhen Ann; Goh, Vivien; Ng, Lee Chen; Vesper, Stephen

    2009-09-01

    Molds can pose a human health threat and may amplify in buildings in humid climates. The objective of this study was to evaluate the mold growth in Singapore shopping centers based on the collection of 40 dust samples from 15 shopping centers, including one with a history of water damage. The dust was analyzed by a DNA-based technology called mold-specific quantitative PCR (MSQPCR). In a water-damaged shopping center, most of the 26 water-damage indicator species were detected at some concentration and many were much more abundant than the average in the shopping centers. MSQPCR is a useful method for quantifying indoor molds in tropical climates.

  2. Quantitative real-time PCR for rapid and accurate titration of recombinant baculovirus particles.

    PubMed

    Hitchman, Richard B; Siaterli, Evangelia A; Nixon, Clare P; King, Linda A

    2007-03-01

    We describe the use of quantitative PCR (QPCR) to titer recombinant baculoviruses. Custom primers and probe were designed to gp64 and used to calculate a standard curve of QPCR derived titers from dilutions of a previously titrated baculovirus stock. Each dilution was titrated by both plaque assay and QPCR, producing a consistent and reproducible inverse relationship between C(T) and plaque forming units per milliliter. No significant difference was observed between titers produced by QPCR and plaque assay for 12 recombinant viruses, confirming the validity of this technique as a rapid and accurate method of baculovirus titration.

  3. Quantitative analysis of food and feed samples with droplet digital PCR.

    PubMed

    Morisset, Dany; Štebih, Dejan; Milavec, Mojca; Gruden, Kristina; Žel, Jana

    2013-01-01

    In this study, the applicability of droplet digital PCR (ddPCR) for routine analysis in food and feed samples was demonstrated with the quantification of genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of GMOs in products. However, its use is limited for detecting and quantifying very small numbers of DNA targets, as in some complex food and feed matrices. Using ddPCR duplex assay, we have measured the absolute numbers of MON810 transgene and hmg maize reference gene copies in DNA samples. Key performance parameters of the assay were determined. The ddPCR system is shown to offer precise absolute and relative quantification of targets, without the need for calibration curves. The sensitivity (five target DNA copies) of the ddPCR assay compares well with those of individual qPCR assays and of the chamber digital PCR (cdPCR) approach. It offers a dynamic range over four orders of magnitude, greater than that of cdPCR. Moreover, when compared to qPCR, the ddPCR assay showed better repeatability at low target concentrations and a greater tolerance to inhibitors. Finally, ddPCR throughput and cost are advantageous relative to those of qPCR for routine GMO quantification. It is thus concluded that ddPCR technology can be applied for routine quantification of GMOs, or any other domain where quantitative analysis of food and feed samples is needed. PMID:23658750

  4. Quantitative analysis of food and feed samples with droplet digital PCR.

    PubMed

    Morisset, Dany; Štebih, Dejan; Milavec, Mojca; Gruden, Kristina; Žel, Jana

    2013-01-01

    In this study, the applicability of droplet digital PCR (ddPCR) for routine analysis in food and feed samples was demonstrated with the quantification of genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of GMOs in products. However, its use is limited for detecting and quantifying very small numbers of DNA targets, as in some complex food and feed matrices. Using ddPCR duplex assay, we have measured the absolute numbers of MON810 transgene and hmg maize reference gene copies in DNA samples. Key performance parameters of the assay were determined. The ddPCR system is shown to offer precise absolute and relative quantification of targets, without the need for calibration curves. The sensitivity (five target DNA copies) of the ddPCR assay compares well with those of individual qPCR assays and of the chamber digital PCR (cdPCR) approach. It offers a dynamic range over four orders of magnitude, greater than that of cdPCR. Moreover, when compared to qPCR, the ddPCR assay showed better repeatability at low target concentrations and a greater tolerance to inhibitors. Finally, ddPCR throughput and cost are advantageous relative to those of qPCR for routine GMO quantification. It is thus concluded that ddPCR technology can be applied for routine quantification of GMOs, or any other domain where quantitative analysis of food and feed samples is needed.

  5. A real-time, quantitative PCR protocol for assessing the relative parasitemia of Leucocytozoon in waterfowl

    USGS Publications Warehouse

    Smith, Matthew M.; Schmutz, Joel A.; Apelgren, Chloe; Ramey, Andy M.

    2015-01-01

    Microscopic examination of blood smears can be effective at diagnosing and quantifying hematozoa infections. However, this method requires highly trained observers, is time consuming, and may be inaccurate for detection of infections at low levels of parasitemia. To develop a molecular methodology for identifying and quantifying Leucocytozoon parasite infection in wild waterfowl (Anseriformes), we designed a real-time, quantitative PCR protocol to amplify Leucocytozoon mitochondrial DNA using TaqMan fluorogenic probes and validated our methodology using blood samples collected from waterfowl in interior Alaska during late summer and autumn (n = 105). By comparing our qPCR results to those derived from a widely used nested PCR protocol, we determined that our assay showed high levels of sensitivity (91%) and specificity (100%) in detecting Leucocytozoon DNA from host blood samples. Additionally, results of a linear regression revealed significant correlation between the raw measure of parasitemia produced by our qPCR assay (Ct values) and numbers of parasites observed on blood smears (R2 = 0.694, P = 0.003), indicating that our assay can reliably determine the relative parasitemia levels among samples. This methodology provides a powerful new tool for studies assessing effects of haemosporidian infection in wild avian species.

  6. Real-time quantitative PCR detection of Mycobacterium avium subspecies in meat products.

    PubMed

    Klanicova, B; Slana, I; Vondruskova, H; Kaevska, M; Pavlik, I

    2011-04-01

    The aim of this work was to examine various purchased meat products and to find out if any traces of Mycobacterium avium subsp. avium, M. avium subsp. hominissuis, and M. avium subsp. paratuberculosis could be detected in these samples. Analysis of the meat products (raw, cooked, and fermented) was performed using a real-time quantitative PCR (qPCR) method for the detection of specific insertion sequences: duplex qPCR for the detection of IS900 specific for M. avium subsp. paratuberculosis, and triplex qPCR for the detection of IS901 specific for Mycobacterium avium subsp. avium and IS 1245 specific for M. avium subsp. hominissuis. Of the 77 analyzed meat samples, 17 (22%) were found to contain M. avium subsp. paratuberculosis DNA, 4 (5%) samples contained Mycobacterium avium subsp. avium DNA, and in 12 (16%) samples M. avium subsp. hominissuis DNA was detected. The concentration of M. avium subsp. paratuberculosis and M. avium subsp. hominissuis DNA in some meat products exceeded 10(4) genomes per g. Culture examination of these mycobacterial subspecies was negative. By analyzing a range of meat products, we have provided evidence to support the hypothesis that M. avium is present in everyday commodities sold to the general public.

  7. [Digital droplet PCR - a prospective technological approach to quantitative profiling of microRNA].

    PubMed

    Kiseleva, Y Y; Ptitsyn, K G; Radko, S P; Zgoda, V G; Archakov, A I

    2016-05-01

    MicroRNA is a special type of regulatory molecules governing gene expression. Circulating microRNAs found in blood and other biological fluids are considered today as potential biomarkers of human pathology. Presently, quantitative alterations of particular microRNAs are revealed for a large number of oncological diseases and other disorders. The recently emerged method of digital droplet PCR (ddPCR) possesses a number of advantages making this method the most suitable for verification and validation of perspective microRNA markers of human pathologies. Among these advantages are the high accuracy and reproducibility of microRNA quantification as well as the capability to directly measure the absolute number of microRNA copies with the large dynamic range and a high throughput. The paper reviews microRNA biogenesis, the origin of circulating microRNAs, and methods used for their quantification. The special technical features of ddPCR, which make it an attractive method both for studying microRNAs as biomarkers of human pathologies and for basic research devoted to aspects of gene regulation by microRNA molecules, are also discussed. PMID:27562993

  8. Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR.

    PubMed

    Martín, Belén; Jofré, Anna; Garriga, Margarita; Pla, Maria; Aymerich, Teresa

    2006-09-01

    A quick and simple method for quantitative detection of Lactobacillus sakei in fermented sausages was successfully developed. It is based on Chelex-100-based DNA purification and real-time PCR enumeration using a TaqMan fluorescence probe. Primers and probes were designed in the L. sakei 16S-23S rRNA intergenic transcribed spacer region, and the assay was evaluated using L. sakei genomic DNA and an artificially inoculated sausage model. The detection limit of this technique was approximately 3 cells per reaction mixture using both purified DNA and the inoculated sausage model. The quantification limit was established at 30 cells per reaction mixture in both models. The assay was then applied to enumerate L. sakei in real samples, and the results were compared to the MRS agar count method followed by confirmation of the percentage of L. sakei colonies. The results obtained by real-time PCR were not statistically significantly different than those obtained by plate count on MRS agar (P > 0.05), showing a satisfactory agreement between both methods. Therefore, the real-time PCR assay developed can be considered a promising rapid alternative method for the quantification of L. sakei and evaluation of the implantation of starter strains of L. sakei in fermented sausages.

  9. [Digital droplet PCR - a prospective technological approach to quantitative profiling of microRNA].

    PubMed

    Kiseleva, Y Y; Ptitsyn, K G; Radko, S P; Zgoda, V G; Archakov, A I

    2016-05-01

    MicroRNA is a special type of regulatory molecules governing gene expression. Circulating microRNAs found in blood and other biological fluids are considered today as potential biomarkers of human pathology. Presently, quantitative alterations of particular microRNAs are revealed for a large number of oncological diseases and other disorders. The recently emerged method of digital droplet PCR (ddPCR) possesses a number of advantages making this method the most suitable for verification and validation of perspective microRNA markers of human pathologies. Among these advantages are the high accuracy and reproducibility of microRNA quantification as well as the capability to directly measure the absolute number of microRNA copies with the large dynamic range and a high throughput. The paper reviews microRNA biogenesis, the origin of circulating microRNAs, and methods used for their quantification. The special technical features of ddPCR, which make it an attractive method both for studying microRNAs as biomarkers of human pathologies and for basic research devoted to aspects of gene regulation by microRNA molecules, are also discussed.

  10. Molecular detection of Mikrocytos mackini in Pacific oysters using quantitative PCR.

    PubMed

    Polinski, Mark; Lowe, Geoff; Meyer, Gary; Corbeil, Serge; Colling, Axel; Caraguel, Charles; Abbott, Cathryn L

    2015-01-01

    Mikrocytos mackini is an internationally regulated pathogen and causative agent of Denman Island disease in Pacific oysters Crassostrea gigas. Recent phylogenetic breakthroughs have placed this parasite within a highly divergent and globally distributed eukaryotic lineage that has been designated a new taxonomic order, Mikrocytida. The discovery of this new radiation of parasites is accompanied by a heightened awareness of the many knowledge gaps that exist with respect to the general biology, epizootiology, and potential impact of mikrocytid parasites on hosts, ecosystems, and commercial fisheries. It has also highlighted current shortcomings regarding our ability to detect these organisms. In this study, we developed a species-specific, sensitive, and quantitative method for detecting M. mackini DNA from host tissues using probe-based real-time qPCR technology. A limit of sensitivity between 2 and 5 genome copy equivalents was achieved in a reaction matrix containing ≥ 40 ng/μL host gDNA without inhibition. This detection proved superior to existing methods based on conventional PCR, histology or gross pathology and is the first species-specific diagnostic test for M. mackini. Quantitative assessment of parasite DNA using this assay remained accurate to between 10 and 50 copies identifying that during infection, M. mackini DNA was significantly more prevalent in hemolymph, labial palp, and mid-body cross-sections compared to mantle or adductor muscle. DNA extracted from a mid-body cross-section also provided the highest likelihood for detection during diagnostic screening of infected oysters. Taken together, these findings provide strong analytical evidence for the adoption of qPCR as the new reference standard for detecting M. mackini and give preliminary insight into the distribution of the parasite within host tissues. Standardised operating methodologies for sample collection and qPCR testing are provided to aid in the international regulatory diagnosis of

  11. Evaluation of modified PCR quantitation of genetically modified maize and soybean using reference molecules: interlaboratory study.

    PubMed

    Kodama, Takashi; Kuribara, Hideo; Minegishi, Yasutaka; Futo, Satoshi; Watai, Masatoshi; Sawada, Chihiro; Watanabe, Takahiro; Akiyama, Hiroshi; Maitani, Tamio; Teshima, Reiko; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2009-01-01

    Real-time polymerase chain reaction (PCR)-based quantitative methods were previously developed and validated for genetically modified (GM) maize or soy. In this study, the quantification step of the validated methods was modified, and an interlaboratory study was conducted. The modification included the introduction of the PCR system SSIIb 3 instead of SSIIb 1 for the detection of the taxon-specific sequence of maize, as well as the adoption of colE1 as a carrier included in a reference plasmid solution as a replacement for salmon testis. The interlaboratory study was conducted with the ABI PRISM 7700 and consisted of 2 separate stages: (1) the measurement of conversion factor (Cf) value, which is the ratio of recombinant DNA (r-DNA) sequence to taxon-specific sequence in each genuine GM seed, and (2) the quantification of blind samples. Additionally, Cf values of other instruments, such as the ABI PRISM 7900 and the ABI PRISM 7000, were measured in a multilaboratory trial. After outlier laboratories were eliminated, the repeatability and reproducibility for 5.0% samples were <15.8 and 20.6%, respectively. The quantitation limits of these methods were 0.5% for Bt11, T25, and MON810, and 0.1% for GA21, Event176, and RR soy. The quantitation limits, trueness, and precision of the current modified methods were equivalent to those of the previous methods. Therefore, it was concluded that the modified methods would be a suitable replacement for the validated methods. PMID:19382580

  12. Reference gene selection for quantitative real-time PCR normalization in Quercus suber.

    PubMed

    Marum, Liliana; Miguel, Andreia; Ricardo, Cândido P; Miguel, Célia

    2012-01-01

    The use of reverse transcription quantitative PCR technology to assess gene expression levels requires an accurate normalization of data in order to avoid misinterpretation of experimental results and erroneous analyses. Despite being the focus of several transcriptomics projects, oaks, and particularly cork oak (Quercus suber), have not been investigated regarding the identification of reference genes suitable for the normalization of real-time quantitative PCR data. In this study, ten candidate reference genes (Act, CACs, EF-1α, GAPDH, His3, PsaH, Sand, PP2A, ß-Tub and Ubq) were evaluated to determine the most stable internal reference for quantitative PCR normalization in cork oak. The transcript abundance of these genes was analysed in several tissues of cork oak, including leaves, reproduction cork, and periderm from branches at different developmental stages (1-, 2-, and 3-year old) or collected in different dates (active growth period versus dormancy). The three statistical methods (geNorm, NormFinder, and CV method) used in the evaluation of the most suitable combination of reference genes identified Act and CACs as the most stable candidates when all the samples were analysed together, while ß-Tub and PsaH showed the lowest expression stability. However, when different tissues, developmental stages, and collection dates were analysed separately, the reference genes exhibited some variation in their expression levels. In this study, and for the first time, we have identified and validated reference genes in cork oak that can be used for quantification of target gene expression in different tissues and experimental conditions and will be useful as a starting point for gene expression studies in other oaks.

  13. Evaluation of four genes in rice for their suitability as endogenous reference standards in quantitative PCR.

    PubMed

    Wang, Chong; Jiang, Lingxi; Rao, Jun; Liu, Yinan; Yang, Litao; Zhang, Dabing

    2010-11-24

    The genetically modified (GM) food/feed quantification depends on the reliable detection systems of endogenous reference genes. Currently, four endogenous reference genes including sucrose phosphate synthase (SPS), GOS9, phospholipase D (PLD), and ppi phosphofructokinase (ppi-PPF) of rice have been used in GM rice detection. To compare the applicability of these four rice reference genes in quantitative PCR systems, we analyzed the target nucleotide sequence variation in 58 conventional rice varieties from various geographic and phylogenic origins, also their quantification performances were evaluated using quantitative real-time PCR and GeNorm analysis via a series of statistical calculation to get a "M value" which is negative correlation with the stability of genes. The sequencing analysis results showed that the reported GOS9 and PLD taqman probe regions had detectable single nucleotide polymorphisms (SNPs) among the tested rice cultivars, while no SNPs were observed for SPS and ppi-PPF amplicons. Also, poor quantitative performance was detectable in these cultivars with SNPs using GOS9 and PLD quantitative PCR systems. Even though the PCR efficiency of ppi-PPF system was slightly lower, the SPS and ppi-PPF quantitative PCR systems were shown to be applicable for rice endogenous reference assay with less variation among the C(t) values, good reproducibility in quantitative assays, and the low M values by the comprehensive quantitative PCR comparison and GeNorm analysis.

  14. Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water

    USGS Publications Warehouse

    Kirshtein, J.D.; Anderson, C.W.; Wood, J.S.; Longcore, J.E.; Voytek, M.A.

    2007-01-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease implicated in amphibian declines on 5 continents. Polymerase chain reaction (PCR) primer sets exist with which amphibians can be tested for this disease, and advances in sampling techniques allow non-invasive testing of animals. We developed filtering and PCR based quantitative methods by modifying existing PCR assays to detect Bd DNA in water and sediments, without the need for testing amphibians; we tested the methods at 4 field sites. The SYBR based assay using Boyle primers (SYBR/Boyle assay) and the Taqman based assay using Wood primers performed similarly with samples generated in the laboratory (Bd spiked filters), but the SYBR/Boyle assay detected Bd DNA in more field samples. We detected Bd DNA in water from 3 of 4 sites tested, including one pond historically negative for chytridiomycosis. Zoospore equivalents in sampled water ranged from 19 to 454 l-1 (nominal detection limit is 10 DNA copies, or about 0.06 zoospore). We did not detect DNA of Bd from sediments collected at any sites. Our filtering and amplification methods provide a new tool to investigate critical aspects of Bd in the environment. ?? Inter-Research 2007.

  15. QUANTITATIVE VS. CONVENTIONAL PCR FOR DETECTION OF HUMAN ADENOVIRUSES IN WATER AND SEDIMENT SAMPLES

    PubMed Central

    STAGGEMEIER, Rodrigo; BORTOLUZZI, Marina; HECK, Tatiana Moraes da Silva; SPILKI, Fernando Rosado; ALMEIDA, Sabrina Esteves de Matos

    2015-01-01

    SUMMARY Human Adenoviruses (HAdV) are notably resistant in the environment. These agents may serve as effective indicators of fecal contamination, and may act as causative agents of a number of different diseases in human beings. Conventional polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) are widely used for detection of viral agents in environmental matrices. In the present study PCR and SYBR(r)Green qPCR assays were compared for detection of HAdV in water (55) and sediments (20) samples of spring and artesian wells, ponds and streams, collected from dairy farms. By the quantitative methodology HAdV were detected in 87.3% of the water samples and 80% of the sediments, while by the conventional PCR 47.3% and 35% were detected in water samples and sediments, respectively. PMID:26422153

  16. QUANTITATIVE VS. CONVENTIONAL PCR FOR DETECTION OF HUMAN ADENOVIRUSES IN WATER AND SEDIMENT SAMPLES.

    PubMed

    Staggemeier, Rodrigo; Bortoluzzi, Marina; Heck, Tatiana Moraes da Silva; Spilki, Fernando Rosado; Almeida, Sabrina Esteves de Matos

    2015-01-01

    Human Adenoviruses (HAdV) are notably resistant in the environment. These agents may serve as effective indicators of fecal contamination, and may act as causative agents of a number of different diseases in human beings. Conventional polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) are widely used for detection of viral agents in environmental matrices. In the present study PCR and SYBR(r)Green qPCR assays were compared for detection of HAdV in water (55) and sediments (20) samples of spring and artesian wells, ponds and streams, collected from dairy farms. By the quantitative methodology HAdV were detected in 87.3% of the water samples and 80% of the sediments, while by the conventional PCR 47.3% and 35% were detected in water samples and sediments, respectively.

  17. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters.

    PubMed

    Riedel, Timothy E; Zimmer-Faust, Amity G; Thulsiraj, Vanessa; Madi, Tania; Hanley, Kaitlyn T; Ebentier, Darcy L; Byappanahalli, Muruleedhara; Layton, Blythe; Raith, Meredith; Boehm, Alexandria B; Griffith, John F; Holden, Patricia A; Shanks, Orin C; Weisberg, Stephen B; Jay, Jennifer A

    2014-04-01

    Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample.

  18. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters

    USGS Publications Warehouse

    Riedel, Timothy E.; Zimmer-Faust, Amity G.; Thulsiraj, Vanessa; Madi, Tania; Hanley, Kaitlyn T.; Ebentier, Darcy L.; Byappanahalli, Muruleedhara N.; Layton, Blythe; Raith, Meredith; Boehm, Alexandria B.; Griffith, John F.; Holden, Patricia A.; Shanks, Orin C.; Weisberg, Stephen B.; Jay, Jennifer A.

    2014-01-01

    Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample.

  19. Selection of Valid Reference Genes for Reverse Transcription Quantitative PCR Analysis in Heliconius numata (Lepidoptera: Nymphalidae)

    PubMed Central

    Chouteau, Mathieu; Whibley, Annabel; Joron, Mathieu; Llaurens, Violaine

    2016-01-01

    Identifying the genetic basis of adaptive variation is challenging in non-model organisms and quantitative real time PCR. is a useful tool for validating predictions regarding the expression of candidate genes. However, comparing expression levels in different conditions requires rigorous experimental design and statistical analyses. Here, we focused on the neotropical passion-vine butterflies Heliconius, non-model species studied in evolutionary biology for their adaptive variation in wing color patterns involved in mimicry and in the signaling of their toxicity to predators. We aimed at selecting stable reference genes to be used for normalization of gene expression data in RT-qPCR analyses from developing wing discs according to the minimal guidelines described in Minimum Information for publication of Quantitative Real-Time PCR Experiments (MIQE). To design internal RT-qPCR controls, we studied the stability of expression of nine candidate reference genes (actin, annexin, eF1α, FK506BP, PolyABP, PolyUBQ, RpL3, RPS3A, and tubulin) at two developmental stages (prepupal and pupal) using three widely used programs (GeNorm, NormFinder and BestKeeper). Results showed that, despite differences in statistical methods, genes RpL3, eF1α, polyABP, and annexin were stably expressed in wing discs in late larval and pupal stages of Heliconius numata. This combination of genes may be used as a reference for a reliable study of differential expression in wings for instance for genes involved in important phenotypic variation, such as wing color pattern variation. Through this example, we provide general useful technical recommendations as well as relevant statistical strategies for evolutionary biologists aiming to identify candidate-genes involved adaptive variation in non-model organisms. PMID:27271971

  20. Selection of Valid Reference Genes for Reverse Transcription Quantitative PCR Analysis in Heliconius numata (Lepidoptera: Nymphalidae).

    PubMed

    Piron Prunier, Florence; Chouteau, Mathieu; Whibley, Annabel; Joron, Mathieu; Llaurens, Violaine

    2016-01-01

    Identifying the genetic basis of adaptive variation is challenging in non-model organisms and quantitative real time PCR. is a useful tool for validating predictions regarding the expression of candidate genes. However, comparing expression levels in different conditions requires rigorous experimental design and statistical analyses. Here, we focused on the neotropical passion-vine butterflies Heliconius, non-model species studied in evolutionary biology for their adaptive variation in wing color patterns involved in mimicry and in the signaling of their toxicity to predators. We aimed at selecting stable reference genes to be used for normalization of gene expression data in RT-qPCR analyses from developing wing discs according to the minimal guidelines described in Minimum Information for publication of Quantitative Real-Time PCR Experiments (MIQE). To design internal RT-qPCR controls, we studied the stability of expression of nine candidate reference genes (actin, annexin, eF1α, FK506BP, PolyABP, PolyUBQ, RpL3, RPS3A, and tubulin) at two developmental stages (prepupal and pupal) using three widely used programs (GeNorm, NormFinder and BestKeeper). Results showed that, despite differences in statistical methods, genes RpL3, eF1α, polyABP, and annexin were stably expressed in wing discs in late larval and pupal stages of Heliconius numata This combination of genes may be used as a reference for a reliable study of differential expression in wings for instance for genes involved in important phenotypic variation, such as wing color pattern variation. Through this example, we provide general useful technical recommendations as well as relevant statistical strategies for evolutionary biologists aiming to identify candidate-genes involved adaptive variation in non-model organisms.

  1. Selection of Valid Reference Genes for Reverse Transcription Quantitative PCR Analysis in Heliconius numata (Lepidoptera: Nymphalidae).

    PubMed

    Piron Prunier, Florence; Chouteau, Mathieu; Whibley, Annabel; Joron, Mathieu; Llaurens, Violaine

    2016-01-01

    Identifying the genetic basis of adaptive variation is challenging in non-model organisms and quantitative real time PCR. is a useful tool for validating predictions regarding the expression of candidate genes. However, comparing expression levels in different conditions requires rigorous experimental design and statistical analyses. Here, we focused on the neotropical passion-vine butterflies Heliconius, non-model species studied in evolutionary biology for their adaptive variation in wing color patterns involved in mimicry and in the signaling of their toxicity to predators. We aimed at selecting stable reference genes to be used for normalization of gene expression data in RT-qPCR analyses from developing wing discs according to the minimal guidelines described in Minimum Information for publication of Quantitative Real-Time PCR Experiments (MIQE). To design internal RT-qPCR controls, we studied the stability of expression of nine candidate reference genes (actin, annexin, eF1α, FK506BP, PolyABP, PolyUBQ, RpL3, RPS3A, and tubulin) at two developmental stages (prepupal and pupal) using three widely used programs (GeNorm, NormFinder and BestKeeper). Results showed that, despite differences in statistical methods, genes RpL3, eF1α, polyABP, and annexin were stably expressed in wing discs in late larval and pupal stages of Heliconius numata This combination of genes may be used as a reference for a reliable study of differential expression in wings for instance for genes involved in important phenotypic variation, such as wing color pattern variation. Through this example, we provide general useful technical recommendations as well as relevant statistical strategies for evolutionary biologists aiming to identify candidate-genes involved adaptive variation in non-model organisms. PMID:27271971

  2. Assessing the Validity of Diagnostic Quantitative PCR Assays for Phakopsora pachyrhizi and P. meibomiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are 123 confirmed species in the genus Phakopsora worldwide, with 19 species reported in the continental United States. In 2002, a quantitative PCR (qPCR) diagnostic assay was developed by Frederick et al. that has been used for detecting Phakopsora pachyrhizi in spore trapping studies. Based ...

  3. Evaluation of reference genes in Vibrio parahaemolyticus for gene expression analysis using quantitative RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize the viru...

  4. Single Laboratory Comparison of Quantitative Real-time PCR Assays for the Detection of Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) assays available to detect and enumerate fecal pollution in ambient waters. Each assay employs distinct primers and probes that target different rRNA genes and microorganisms leading to potential variations in concentration es...

  5. Investigating reference genes for quantitative real-time PCR analysis across four chicken tissues.

    PubMed

    Bagés, S; Estany, J; Tor, M; Pena, R N

    2015-04-25

    Accurate normalization of data is required to correct for different efficiencies and errors during the processing of samples in reverse transcription PCR analysis. The chicken is one of the main livestock species and its genome was one of the first reported and used in large scale transcriptomic analysis. Despite this, the chicken has not been investigated regarding the identification of reference genes suitable for the quantitative PCR analysis of growth and fattening genes. In this study, five candidate reference genes (B2M, RPL32, SDHA, TBP and YWHAZ) were evaluated to determine the most stable internal reference for quantitative PCR normalization in the two main commercial muscles (pectoralis major (breast) and biceps femoris (thigh)), liver and abdominal fat. Four statistical methods (geNorm, NormFinder, CV and BestKeeper) were used in the evaluation of the most suitable combination of reference genes. Additionally, a comprehensive ranking was established with the RefFinder tool. This analysis identified YWHAZ and TBP as the recommended combination for the analysis of biceps femoris and liver, YWHAZ and RPL32 for pectoralis major and RPL32 and B2M for abdominal fat and across-tissue studies. The final ranking for each tool changed slightly but overall the results, and most particularly the ability to discard the least robust candidates, were consistent between tools. The selection and number of reference genes were validated using SCD, a target gene related to fat metabolism. Overall, the results can be directly used to quantitate target gene expression in different tissues or in validation studies from larger transcriptomic experiments.

  6. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples

    EPA Science Inventory

    Real-time quantitative PCR assays that target the human-associated HF183 bacterial cluster are considered to be some of the top performing methods for the characterization of human fecal pollution in ambient surface waters. In response, the United States Environmental Protectio...

  7. Evaluation of propidium monoazide-quantitative PCR to detect viable Mycobacterium fortuitum after chlorine, ozone, and ultraviolet disinfection.

    PubMed

    Lee, Eun-Sook; Lee, Man-Ho; Kim, Bog-Soon

    2015-10-01

    We evaluated whether propidium monoazide (PMA) combined with real-time quantitative PCR (qPCR) is suitable for detecting viable Mycobacterium fortuitum after chlorine, ozone, and ultraviolet (UV) disinfection. PMA-qPCR was effective in determining the viability of M. fortuitum compared with qPCR based on the membrane integrity. However, with a mild chlorine concentration, PMA-qPCR as an alternative method was not applicable due to a large gap between loss of culturability and membrane integrity damage. In ozonation, PMA-qPCR was able to differentiate between viable and injured mycobacteria, and the results were similar to those obtained by the culture method. Interestingly, PMA-qPCR was successful in monitoring the viability after UV disinfection due to the long UV exposure needed to effectively inactivate M. fortuitum. The findings of the present study suggested that the characteristics of disinfectants and the M. fortuitum resistance to disinfectants play critical roles in determining the suitability of PMA-qPCR for evaluating the efficacy of disinfection methods. PMID:26143168

  8. Evaluation of propidium monoazide-quantitative PCR to detect viable Mycobacterium fortuitum after chlorine, ozone, and ultraviolet disinfection.

    PubMed

    Lee, Eun-Sook; Lee, Man-Ho; Kim, Bog-Soon

    2015-10-01

    We evaluated whether propidium monoazide (PMA) combined with real-time quantitative PCR (qPCR) is suitable for detecting viable Mycobacterium fortuitum after chlorine, ozone, and ultraviolet (UV) disinfection. PMA-qPCR was effective in determining the viability of M. fortuitum compared with qPCR based on the membrane integrity. However, with a mild chlorine concentration, PMA-qPCR as an alternative method was not applicable due to a large gap between loss of culturability and membrane integrity damage. In ozonation, PMA-qPCR was able to differentiate between viable and injured mycobacteria, and the results were similar to those obtained by the culture method. Interestingly, PMA-qPCR was successful in monitoring the viability after UV disinfection due to the long UV exposure needed to effectively inactivate M. fortuitum. The findings of the present study suggested that the characteristics of disinfectants and the M. fortuitum resistance to disinfectants play critical roles in determining the suitability of PMA-qPCR for evaluating the efficacy of disinfection methods.

  9. Integrating quantitative PCR and Bayesian statistics in quantifying human adenoviruses in small volumes of source water.

    PubMed

    Wu, Jianyong; Gronewold, Andrew D; Rodriguez, Roberto A; Stewart, Jill R; Sobsey, Mark D

    2014-02-01

    Rapid quantification of viral pathogens in drinking and recreational water can help reduce waterborne disease risks. For this purpose, samples in small volume (e.g. 1L) are favored because of the convenience of collection, transportation and processing. However, the results of viral analysis are often subject to uncertainty. To overcome this limitation, we propose an approach that integrates Bayesian statistics, efficient concentration methods, and quantitative PCR (qPCR) to quantify viral pathogens in water. Using this approach, we quantified human adenoviruses (HAdVs) in eighteen samples of source water collected from six drinking water treatment plants. HAdVs were found in seven samples. In the other eleven samples, HAdVs were not detected by qPCR, but might have existed based on Bayesian inference. Our integrated approach that quantifies uncertainty provides a better understanding than conventional assessments of potential risks to public health, particularly in cases when pathogens may present a threat but cannot be detected by traditional methods. PMID:24140696

  10. Integrating quantitative PCR and Bayesian statistics in quantifying human adenoviruses in small volumes of source water.

    PubMed

    Wu, Jianyong; Gronewold, Andrew D; Rodriguez, Roberto A; Stewart, Jill R; Sobsey, Mark D

    2014-02-01

    Rapid quantification of viral pathogens in drinking and recreational water can help reduce waterborne disease risks. For this purpose, samples in small volume (e.g. 1L) are favored because of the convenience of collection, transportation and processing. However, the results of viral analysis are often subject to uncertainty. To overcome this limitation, we propose an approach that integrates Bayesian statistics, efficient concentration methods, and quantitative PCR (qPCR) to quantify viral pathogens in water. Using this approach, we quantified human adenoviruses (HAdVs) in eighteen samples of source water collected from six drinking water treatment plants. HAdVs were found in seven samples. In the other eleven samples, HAdVs were not detected by qPCR, but might have existed based on Bayesian inference. Our integrated approach that quantifies uncertainty provides a better understanding than conventional assessments of potential risks to public health, particularly in cases when pathogens may present a threat but cannot be detected by traditional methods.

  11. Enumeration of viable non-culturable Vibrio cholerae using propidium monoazide combined with quantitative PCR.

    PubMed

    Wu, Bin; Liang, Weili; Kan, Biao

    2015-08-01

    The well-known human pathogenic bacterium, Vibrio cholerae, can enter a physiologically viable but non-culturable (VBNC) state under stress conditions. The differentiation of VBNC cells and nonviable cells is essential for both disease prevention and basic research. Among all the methods for detecting viability, propidium monoazide (PMA) combined with real-time PCR is popular because of its specificity, sensitivity, and speed. However, the effect of PMA treatment is not consistent and varies among different species and conditions. In this study, with an initial cell concentration of 1×10(8) CFU/ml, time and dose-effect relationships of different PMA treatments were evaluated via quantitative real-time PCR using live cell suspensions, dead cell suspensions and VBNC cell suspensions of V. cholerae O1 El Tor strain C6706. The results suggested that a PMA treatment of 20 μM PMA for 20 min was optimal under our conditions. This treatment maximized the suppression of the PCR signal from membrane-compromised dead cells but had little effect on the signal from membrane-intact live cells. In addition to the characteristics of PMA treatment itself, the initial concentration of the targeted bacteria showed a significant negative influence on the stability of PMA-PCR assay in this study. We developed a strategy that mimicked a 1×10(8) CFU/ml cell concentration with dead bacteria of a different bacterial species, the DNA of which cannot be amplified using the real time PCR primers. With this strategy, our optimal approach successfully overcame the impact of low cell density and generated stable and reliable results for counting viable cells of V. cholerae in the VBNC state.

  12. [Detection of hematopoietic chimera by real-time fluorescent quantitative PCR with erythrocyte Kidd blood group gene].

    PubMed

    Chen, Shu; Xu, Xian-Guo; Liu, Ying; Hong, Xiao-Zhen; Zhu, Fa-Ming; Lü, Hang-Jun; Yan, Li-Xing

    2012-06-01

    This study was aimed to establish the real-time fluorescent quantitative PCR (RT-qPCR) with erythrocyte Kidd blood group gene for detecting the hematopoietic chimera and to investigate the feasibility of this method. The TaqMan MGB probes and special primers were designed on basis of difference of erythrocyte Kidd blood group alleles, the hematopoietic chimerism was detected by RT-qPCR, the DNA chimerism was simulated by means of dilution of multiple proportions, and the sensitivity analysis was performed. The results showed that the RT-qPCR with erythrocyte Kidd blood group gene could effectively distinguish JK*A and JK*B alleles. There was no significant difference between the theoretic value and the practical measured value by this method (P > 0.05). As 156 donor's cells could be discriminated from 10(4) chimeric cells, this method may effectively detect donor's cells with correlation coefficient 0.998. It is concluded that the established RT-qPCR with erythrocyte Kidd blood group gene shows the feasibility for quantitative detection of hematopoietic chimera, and may be used to quantitatively detect chimera in a certain range.

  13. [Detection of hematopoietic chimera by real-time fluorescent quantitative PCR with erythrocyte Kidd blood group gene].

    PubMed

    Chen, Shu; Xu, Xian-Guo; Liu, Ying; Hong, Xiao-Zhen; Zhu, Fa-Ming; Lü, Hang-Jun; Yan, Li-Xing

    2012-06-01

    This study was aimed to establish the real-time fluorescent quantitative PCR (RT-qPCR) with erythrocyte Kidd blood group gene for detecting the hematopoietic chimera and to investigate the feasibility of this method. The TaqMan MGB probes and special primers were designed on basis of difference of erythrocyte Kidd blood group alleles, the hematopoietic chimerism was detected by RT-qPCR, the DNA chimerism was simulated by means of dilution of multiple proportions, and the sensitivity analysis was performed. The results showed that the RT-qPCR with erythrocyte Kidd blood group gene could effectively distinguish JK*A and JK*B alleles. There was no significant difference between the theoretic value and the practical measured value by this method (P > 0.05). As 156 donor's cells could be discriminated from 10(4) chimeric cells, this method may effectively detect donor's cells with correlation coefficient 0.998. It is concluded that the established RT-qPCR with erythrocyte Kidd blood group gene shows the feasibility for quantitative detection of hematopoietic chimera, and may be used to quantitatively detect chimera in a certain range. PMID:22739181

  14. A new PCR method: one primer amplification of PCR-CTPP products.

    PubMed

    Yin, Guang; Mitsuda, Yoko; Ezaki, Takayuki; Hamajima, Nobuyuki

    2012-10-01

    Polymerase chain reaction with confronting two-pair primers (PCR-CTPP) is a convenient method for genotyping single nucleotide polymorphisms, saving time, and costs. It uses four primers for PCR; F1 and R1 for one allele, and F2 and R2 for the other allele, by which three different sizes of DNA are amplified; between F1 and R1, between F2 and R2, and between F1 and R2. To date, we have applied PCR-CTPP successfully for genotyping more than 60 polymorphisms. However, it is not rare that PCR does not produce balanced amplification of allele specific bands. Accordingly, the method was modified by attaching a common sequence at the 5' end of two-pair primers and adding another primer with the common sequence in PCR, in total five different primers in a tube for PCR. The modification allowed one primer amplification for the products of initial PCR with confronting two-pair primers, named as one primer amplification of PCR-CTPP products (OPA-CTPP). This article demonstrates an example for an A/G polymorphism of paraoxonase 1 (PON1) Gln192Arg (rs662). PCR-CTPP failed clear genotyping for the polymorphism, while OPA-CTPP successfully produced PCR products corresponding to the allele. The present example indicated that the OPA-CTPP would be useful in the case that PCR-CTPP failed to produce balanced PCR products specific to each allele.

  15. On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform.

    PubMed

    Tachibana, Hiroaki; Saito, Masato; Shibuya, Shogo; Tsuji, Koji; Miyagawa, Nobuyuki; Yamanaka, Keiichiro; Tamiya, Eiichi

    2015-12-15

    Polymerase chain reaction (PCR)-based genetic testing has become a routine part of clinical diagnoses and food testing. In these fields, rapid, easy-to-use, and cost-efficient PCR chips are expected to be appeared for providing such testing on-site. In this study, a new autonomous disposable plastic microfluidic PCR chip was created, and was utilized for quantitative detection of pathogenic microorganisms. To control the capillary flow of the following solution in the PCR microchannel, a driving microchannel was newly designed behind the PCR microchannel. This allowed the effective PCR by simply dropping the PCR solution onto the inlet without any external pumps. In order to achieve disposability, injection-molded cyclo-olefin polymer (COP) of a cost-competitive plastic was used for the PCR chip. We discovered that coating the microchannel walls with non-ionic surfactant produced a suitable hydrophilic surface for driving the capillary flow through the 1250-mm long microchannel. As a result, quantitative real-time PCR with the lowest initial concentration of human, Escherichia coli (E. coli), and pathogenic E. coli O157 genomic DNA of 4, 0.0019, 0.031 pg/μl, respectively, was successfully achieved in less than 18 min. Our results indicate that the platform presented in this study provided a rapid, easy-to-use, and low-cost real-time PCR system that could be potentially used for on-site gene testing.

  16. On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform.

    PubMed

    Tachibana, Hiroaki; Saito, Masato; Shibuya, Shogo; Tsuji, Koji; Miyagawa, Nobuyuki; Yamanaka, Keiichiro; Tamiya, Eiichi

    2015-12-15

    Polymerase chain reaction (PCR)-based genetic testing has become a routine part of clinical diagnoses and food testing. In these fields, rapid, easy-to-use, and cost-efficient PCR chips are expected to be appeared for providing such testing on-site. In this study, a new autonomous disposable plastic microfluidic PCR chip was created, and was utilized for quantitative detection of pathogenic microorganisms. To control the capillary flow of the following solution in the PCR microchannel, a driving microchannel was newly designed behind the PCR microchannel. This allowed the effective PCR by simply dropping the PCR solution onto the inlet without any external pumps. In order to achieve disposability, injection-molded cyclo-olefin polymer (COP) of a cost-competitive plastic was used for the PCR chip. We discovered that coating the microchannel walls with non-ionic surfactant produced a suitable hydrophilic surface for driving the capillary flow through the 1250-mm long microchannel. As a result, quantitative real-time PCR with the lowest initial concentration of human, Escherichia coli (E. coli), and pathogenic E. coli O157 genomic DNA of 4, 0.0019, 0.031 pg/μl, respectively, was successfully achieved in less than 18 min. Our results indicate that the platform presented in this study provided a rapid, easy-to-use, and low-cost real-time PCR system that could be potentially used for on-site gene testing. PMID:26210470

  17. The polymerase chain reaction (PCR): general methods.

    PubMed

    Waters, Daniel L E; Shapter, Frances M

    2014-01-01

    The polymerase chain reaction (PCR) converts very low quantities of DNA into very high quantities and is the foundation of many specialized techniques of molecular biology. PCR utilizes components of the cellular machinery of mitotic cell division in vitro which respond predictably to user inputs. This chapter introduces the principles of PCR and discusses practical considerations from target sequence definition through to optimization and application.

  18. Development of a real-time quantitative RT-PCR to detect REV contamination in live vaccine.

    PubMed

    Luan, Huaibiao; Wang, Yixin; Li, Yang; Cui, Zhizhong; Chang, Shuang; Zhao, Peng

    2016-09-01

    Based on the published Avian reticuloendotheliosis virus (REV) whole genome sequence, primers and TaqMan probes were designed and synthesized, and the TaqMan probe fluorescence real-time quantitative RT-PCR (qRT-PCR) method for detecting the REV pol gene was established by optimizing the reaction conditions. Sensitivity analysis showed that the qRT-PCR method had a sensitivity that was 1,000-fold higher than conventional PCR. Additionally, no amplification signals were obtained when we attempted to detect DNA or cDNA of ALV-A/B/J, MDV, CIAV, IBDV, ARV, NDV, AIV, or other viruses, suggesting a high specificity for our method. Various titers of REV were artificially "spiked" into the FPV and MDV vaccines to simulate REV contamination in attenuated vaccines to validate this qRT-PCR method. Our findings indicated that this qRT-PCR method could detect REV contamination at a dose of 1 TCID50/1,000 feathers, which was 10,000-fold more sensitive than the regular RT-PCR detection (10(4) TCID50/1000 feathers).

  19. Using multiple PCR and CE with chemiluminescence detection for simultaneous qualitative and quantitative analysis of genetically modified organism.

    PubMed

    Guo, Longhua; Qiu, Bin; Chi, Yuwu; Chen, Guonan

    2008-09-01

    In this paper, an ultrasensitive CE-CL detection system coupled with a novel double-on-column coaxial flow detection interface was developed for the detection of PCR products. A reliable procedure based on this system had been demonstrated for qualitative and quantitative analysis of genetically modified organism-the detection of Roundup Ready Soy (RRS) samples was presented as an example. The promoter, terminator, function and two reference genes of RRS were amplified with multiplex PCR simultaneously. After that, the multiplex PCR products were labeled with acridinium ester at the 5'-terminal through an amino modification and then analyzed by the proposed CE-CL system. Reproducibility of analysis times and peak heights for the CE-CL analysis were determined to be better than 0.91 and 3.07% (RSD, n=15), respectively, for three consecutive days. It was shown that this method could accurately and qualitatively detect RRS standards and the simulative samples. The evaluation in terms of quantitative analysis of RRS provided by this new method was confirmed by comparing our assay results with those of the standard real-time quantitative PCR (RT-QPCR) using SYBR Green I dyes. The results showed a good coherence between the two methods. This approach demonstrated the possibility for accurate qualitative and quantitative detection of GM plants in a single run.

  20. Improved HF183 Quantitative Real-Time PCR Assay for Characterization of Human Fecal Pollution in Ambient Surface Water Samples

    PubMed Central

    Green, Hyatt C.; Haugland, Richard A.; Varma, Manju; Millen, Hana T.; Borchardt, Mark A.; Field, Katharine G.; Walters, William A.; Knight, R.; Sivaganesan, Mano; Kelty, Catherine A.

    2014-01-01

    Quantitative real-time PCR (qPCR) assays that target the human-associated HF183 bacterial cluster within members of the genus Bacteroides are among the most widely used methods for the characterization of human fecal pollution in ambient surface waters. In this study, we show that a current TaqMan HF183 qPCR assay (HF183/BFDrev) routinely forms nonspecific amplification products and introduce a modified TaqMan assay (HF183/BacR287) that alleviates this problem. The performance of each qPCR assay was compared in head-to-head experiments investigating limits of detection, analytical precision, predicted hybridization to 16S rRNA gene sequences from a reference database, and relative marker concentrations in fecal and sewage samples. The performance of the modified HF183/BacR287 assay is equal to or improves upon that of the original HF183/BFDrev assay. In addition, a qPCR chemistry designed to combat amplification inhibition and a multiplexed internal amplification control are included. In light of the expanding use of PCR-based methods that rely on the detection of extremely low concentrations of DNA template, such as qPCR and digital PCR, the new TaqMan HF183/BacR287 assay should provide more accurate estimations of human-derived fecal contaminants in ambient surface waters. PMID:24610857

  1. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples.

    PubMed

    Green, Hyatt C; Haugland, Richard A; Varma, Manju; Millen, Hana T; Borchardt, Mark A; Field, Katharine G; Walters, William A; Knight, R; Sivaganesan, Mano; Kelty, Catherine A; Shanks, Orin C

    2014-05-01

    Quantitative real-time PCR (qPCR) assays that target the human-associated HF183 bacterial cluster within members of the genus Bacteroides are among the most widely used methods for the characterization of human fecal pollution in ambient surface waters. In this study, we show that a current TaqMan HF183 qPCR assay (HF183/BFDrev) routinely forms nonspecific amplification products and introduce a modified TaqMan assay (HF183/BacR287) that alleviates this problem. The performance of each qPCR assay was compared in head-to-head experiments investigating limits of detection, analytical precision, predicted hybridization to 16S rRNA gene sequences from a reference database, and relative marker concentrations in fecal and sewage samples. The performance of the modified HF183/BacR287 assay is equal to or improves upon that of the original HF183/BFDrev assay. In addition, a qPCR chemistry designed to combat amplification inhibition and a multiplexed internal amplification control are included. In light of the expanding use of PCR-based methods that rely on the detection of extremely low concentrations of DNA template, such as qPCR and digital PCR, the new TaqMan HF183/BacR287 assay should provide more accurate estimations of human-derived fecal contaminants in ambient surface waters.

  2. Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies.

    PubMed

    Ryu, Hodon; Cashdollar, Jennifer L; Fout, G Shay; Schrantz, Karen A; Hayes, Samuel

    2015-01-01

    Practical difficulties of the traditional adenovirus infectivity assay such as intensive labor requirements and longer turnaround period limit the direct use of adenovirus as a testing microorganism for systematic, comprehensive disinfection studies. In this study, we attempted to validate the applicability of integrated cell culture quantitative PCR (ICC-qPCR) as an alternative to the traditional cell culture method with human adenovirus type 2 (HAdV2) in a low-pressure UV disinfection study and to further optimize the procedures of ICC-qPCR for 24-well plate format. The relatively high stability of the hexon gene of HAdV2 was observed after exposure to UV radiation, resulting in a maximum gene copy reduction of 0.5 log10 at 280 mJ cm(-2). Two-day post-inoculation incubation period and a maximum spiking level of 10(5) MPN mL(-1) were selected as optimum conditions of ICC-qPCR with the tested HAdV2. An approximate 1:1 correlation of virus quantities by the traditional and ICC-qPCR cell culture based methods suggested that ICC-qPCR is a satisfactory alternative for practical application in HAdV2 disinfection studies. ICC-qPCR results, coupled with a first-order kinetic model (i.e., the inactivation rate constant of 0.0232 cm(2) mJ(-1)), showed that an UV dose of 172 mJ cm(-2) achieved a 4-log inactivation credit for HAdV2. This estimate is comparable to other studies with HAdV2 and other adenovirus respiratory types. The newly optimized ICC-qPCR shows much promise for further study on its applicability of other slow replicating viruses in disinfection studies.

  3. Selection of Reference Genes for Real-Time Quantitative PCR in Pinus massoniana Post Nematode Inoculation.

    PubMed

    Wei, Yongcheng; Liu, Qinghua; Dong, Hongyu; Zhou, Zhichun; Hao, Yanping; Chen, Xuelian; Xu, Liuyi

    2016-01-01

    Pinus massoniaia Lamb has gained more and more attention as the most important tree species for timber and forestation in South China. Gene expression studies are of great importance to identify new and elite cultivars. Real-time quantitative PCR, a highly sensitive and specific method, is commonly used in the analysis of gene expression. The appropriate reference genes must be employed to normalize the calculation program for ascertaining repeatable and significant results. Herein, eleven housekeeping genes were evaluated during different stages of P. massoniana post nematode inoculation in this study. Three statistical approaches such as geNorm, NormFinder and BestKeeper were selected to analyze the stability of candidate genes. The results indicated that U2af and β-TUB were the most stable reference genes. These two genes could be used for the normalization in most of the experiments of P. massoniana, while Histone and AK were the least stable ones. In addition, EF expressed at the lowest average Ct value was the most abundant candidate gene. As an important gene associated with defense mechanisms, ABC transporter was analyzed by qRT-PCR, and the results were used to confirm the reliability of two genes. The selected reference genes in the present study will be conducive to future gene expression normalized by qRT-PCR in P. massoniana. PMID:26800152

  4. Selection of Reference Genes for Real-Time Quantitative PCR in Pinus massoniana Post Nematode Inoculation

    PubMed Central

    Wei, Yongcheng; Liu, Qinghua; Dong, Hongyu; Zhou, Zhichun; Hao, Yanping; Chen, Xuelian; Xu, Liuyi

    2016-01-01

    Pinus massoniaia Lamb has gained more and more attention as the most important tree species for timber and forestation in South China. Gene expression studies are of great importance to identify new and elite cultivars. Real-time quantitative PCR, a highly sensitive and specific method, is commonly used in the analysis of gene expression. The appropriate reference genes must be employed to normalize the calculation program for ascertaining repeatable and significant results. Herein, eleven housekeeping genes were evaluated during different stages of P. massoniana post nematode inoculation in this study. Three statistical approaches such as geNorm, NormFinder and BestKeeper were selected to analyze the stability of candidate genes. The results indicated that U2af and β-TUB were the most stable reference genes. These two genes could be used for the normalization in most of the experiments of P. massoniana, while Histone and AK were the least stable ones. In addition, EF expressed at the lowest average Ct value was the most abundant candidate gene. As an important gene associated with defense mechanisms, ABC transporter was analyzed by qRT-PCR, and the results were used to confirm the reliability of two genes. The selected reference genes in the present study will be conducive to future gene expression normalized by qRT-PCR in P. massoniana. PMID:26800152

  5. Quantitative PCR as a predictor of aligned ancient DNA read counts following targeted enrichment.

    PubMed

    Enk, Jacob; Rouillard, Jean-Marie; Poinar, Hendrik

    2013-12-01

    Targeted DNA enrichment through hybridization capture (EHC) is rapidly replacing PCR as the method of choice for enrichment prior to genomic resequencing. This is especially true in the case of ancient DNA (aDNA) from long-dead organisms, where targets tend to be highly fragmented and outnumbered by contaminant DNA. However, the behavior of EHC using aDNA has been quite variable, making success difficult to predict and preventing efficient sample equilibration during multiplexed sequencing runs. Here, we evaluate whether quantitative PCR (qPCR) measurements of aDNA samples correlate with on-target read counts before and after EHC. Our data indicate that not only do simple target qPCRs correlate strongly with high-throughput sequencing (HTS) data but that certain sample characteristics, such as overall target abundance as well as experimental parameters (e.g., bait concentration and secondary structure propensity), consistently influenced enrichment of our diverse set of aDNA samples. Taken together, our results should help guide experimental design, screening strategies, and multiplexed sample equilibration, increasing yield and reducing the expected and actual cost of aDNA EHC high-throughput sequencing projects in the future.

  6. Quantitative PCR as a predictor of aligned ancient DNA read counts following targeted enrichment.

    PubMed

    Enk, Jacob; Rouillard, Jean-Marie; Poinar, Hendrik

    2013-12-01

    Targeted DNA enrichment through hybridization capture (EHC) is rapidly replacing PCR as the method of choice for enrichment prior to genomic resequencing. This is especially true in the case of ancient DNA (aDNA) from long-dead organisms, where targets tend to be highly fragmented and outnumbered by contaminant DNA. However, the behavior of EHC using aDNA has been quite variable, making success difficult to predict and preventing efficient sample equilibration during multiplexed sequencing runs. Here, we evaluate whether quantitative PCR (qPCR) measurements of aDNA samples correlate with on-target read counts before and after EHC. Our data indicate that not only do simple target qPCRs correlate strongly with high-throughput sequencing (HTS) data but that certain sample characteristics, such as overall target abundance as well as experimental parameters (e.g., bait concentration and secondary structure propensity), consistently influenced enrichment of our diverse set of aDNA samples. Taken together, our results should help guide experimental design, screening strategies, and multiplexed sample equilibration, increasing yield and reducing the expected and actual cost of aDNA EHC high-throughput sequencing projects in the future. PMID:24344679

  7. Identification of reference genes for real-time quantitative PCR experiments in the liverwort Marchantia polymorpha.

    PubMed

    Saint-Marcoux, Denis; Proust, Hélène; Dolan, Liam; Langdale, Jane A

    2015-01-01

    Real-time quantitative polymerase chain reaction (qPCR) has become widely used as a method to compare gene transcript levels across different conditions. However, selection of suitable reference genes to normalize qPCR data is required for accurate transcript level analysis. Recently, Marchantia polymorpha has been adopted as a model for the study of liverwort development and land plant evolution. Identification of appropriate reference genes has therefore become a necessity for gene expression studies. In this study, transcript levels of eleven candidate reference genes have been analyzed across a range of biological contexts that encompass abiotic stress, hormone treatment and different developmental stages. The consistency of transcript levels was assessed using both geNorm and NormFinder algorithms, and a consensus ranking of the different candidate genes was then obtained. MpAPT and MpACT showed relatively constant transcript levels across all conditions tested whereas the transcript levels of other candidate genes were clearly influenced by experimental conditions. By analyzing transcript levels of phosphate and nitrate starvation reporter genes, we confirmed that MpAPT and MpACT are suitable reference genes in M. polymorpha and also demonstrated that normalization with an inappropriate gene can lead to erroneous analysis of qPCR data. PMID:25798897

  8. Opportunistic pathogens in roof-captured rainwater samples, determined using quantitative PCR.

    PubMed

    Ahmed, W; Brandes, H; Gyawali, P; Sidhu, J P S; Toze, S

    2014-04-15

    In this study, quantitative PCR (qPCR) was used for the detection of four opportunistic bacterial pathogens in water samples collected from 72 rainwater tanks in Southeast Queensland, Australia. Tank water samples were also tested for fecal indicator bacteria (Escherichia coli and Enterococcus spp.) using culture-based methods. Among the 72 tank water samples tested, 74% and 94% samples contained E. coli and Enterococcus spp., respectively, and the numbers of E. coli and Enterococcus spp. in tank water samples ranged from 0.3 to 3.7 log₁₀ colony forming units (CFU) per 100 mL of water. In all, 29%, 15%, 13%, and 6% of tank water samples contained Aeromonas hydrophila, Staphylococcus aureus, Pseudomonas aeruginosa and Legionella pneumophila, respectively. The genomic units (GU) of opportunistic pathogens in tank water samples ranged from 1.5 to 4.6 log₁₀ GU per 100 mL of water. A significant correlation was found between E. coli and Enterococcus spp. numbers in pooled tank water samples data (Spearman's rs = 0.50; P < 0.001). In contrast, fecal indicator bacteria numbers did not correlate with the presence/absence of opportunistic pathogens tested in this study. Based on the results of this study, it would be prudent, to undertake a Quantitative Microbial Risk Assessment (QMRA) analysis of opportunistic pathogens to determine associated health risks for potable and nonpotable uses of tank water.

  9. EPA Method 1615. Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. Part III. Virus Detection by RT-qPCR

    EPA Science Inventory

    EPA Method 1615 measures enteroviruses and noroviruses present in environmental and drinking waters. The viral ribonucleic acid (RNA) from water sample concentrates is extracted and tested for enterovirus and norovirus RNA using reverse transcription-quantitative PCR (RT-qPCR). V...

  10. Culture-independent identification and quantification of Gallibacterium anatis (G. anatis) by real-time quantitative PCR.

    PubMed

    Wang, Chong; Robles, Francisco; Ramirez, Saul; Riber, Anja Brinch; Bojesen, Anders Miki

    2016-10-01

    Gallibacterium is a genus within the family Pasteurellaceae characterized by a high level of phenotypic and genetic diversity. No diagnostic method has yet been described, which allows species-specific identification of Gallibacterium anatis. The aim of this study was to develop a real-time quantitative PCR (qPCR) method allowing species-specific identification and quantification of G. anatis. A G. anatis specific DNA sequence was identified in the gyrase subunit B gene (gyrB) and used to design a TaqMan probe and corresponding primers. The specificity of the assay was tested on 52 bacterial strains. Twenty-two of the strains represented all of the presently available 13 phenotypic variants of G. anatis originating from different geographical locations. Nine strains represented each of the additional six Gallibacterium species and 21 strains represented other poultry associated bacterial species of the families Pasteurellaceae, Enterobacteriaceae and Flavobacteriaceae. Regarding specificity none of non-G. anatis strains tested positive with the proposed assay. To test and compare the qPCR method's ability to detect G. anatis from field samples, the sensitivity was compared to a previously published conventional PCR method and culture-based identification, respectively. The detection rates were 97%, 78% and 34% for the current qPCR, the conventional PCR and the culture-based identification method, respectively. The qPCR assay was able to detect the gene gyrB in serial dilutions of 10(8) colony forming units (CFU)/ml to as low as 10(0) CFU/ml copies. The proposed qPCR method is thus highly specific, sensitive and reproducible. In conclusion, we have developed a qPCR method that allows species-specific identification of G. anatis.

  11. A novel approach to quantitating leukemia fusion transcripts by qRT-PCR without the need for standard curves.

    PubMed

    Schumacher, Jonathan A; Scott Reading, N; Szankasi, Philippe; Matynia, Anna P; Kelley, Todd W

    2015-08-01

    Acute myeloid leukemia patients with recurrent cytogenetic abnormalities including inv(16);CBFB-MYH11 and t(15;17);PML-RARA may be assessed by monitoring the levels of the corresponding abnormal fusion transcripts by quantitative reverse transcription-PCR (qRT-PCR). Such testing is important for evaluating the response to therapy and for the detection of early relapse. Existing qRT-PCR methods are well established and in widespread use in clinical laboratories but they are laborious and require the generation of standard curves. Here, we describe a new method to quantitate fusion transcripts in acute myeloid leukemia by qRT-PCR without the need for standard curves. Our approach uses a plasmid calibrator containing both a fusion transcript sequence and a reference gene sequence, representing a perfect normalized copy number (fusion transcript copy number/reference gene transcript copy number; NCN) of 1.0. The NCN of patient specimens can be calculated relative to that of the single plasmid calibrator using experimentally derived PCR efficiency values. We compared the data obtained using the plasmid calibrator method to commercially available assays using standard curves and found that the results obtained by both methods are comparable over a broad range of values with similar sensitivities. Our method has the advantage of simplicity and is therefore lower in cost and may be less subject to errors that may be introduced during the generation of standard curves.

  12. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA

    USGS Publications Warehouse

    Hunter, Margaret; Dorazio, Robert M.; Butterfield, John S.; Meigs-Friend, Gaia; Nico, Leo; Ferrante, Jason

    2016-01-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species’ presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty – indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis, and forensic and clinical diagnostics.

  13. Fast and reliable titration of recombinant adeno-associated virus type-2 using quantitative real-time PCR.

    PubMed

    Rohr, Ulrich-Peter; Wulf, Marc-Andre; Stahn, Susanne; Steidl, Ulrich; Haas, Rainer; Kronenwett, Ralf

    2002-10-01

    In this study, a quantitative real-time PCR (qPCR) was developed to determine genomic rAAV-2 titers using the Light-Cycler technology. Since the CMV promoter is the most commonly used promoter in gene therapeutic approaches, primers were designed which hybridize with the human CMV promoter sequence. PCR products were detected by the addition of SYBR green. qPCR of a 5 log spanning serial dilution of the vector plasmid containing one CMV promoter per plasmid molecule yielded a high amplification efficiency of 1.99 per cycle. To quantify the copy number of viral genomes, the qPCR curves of adeno-associated virus type 2 (AAV-2) samples were related to a standard curve assessed by the 5 log spanning serial vector plasmid dilution (0.01-100 pg DNA). For validation of the method, rAAV-2 preparations were analyzed by a standard method and qPCR in parallel. As standard method, flow cytometry was used for titration of infectious viral particles on HeLa cells using the Enhanced Green Fluorescent Protein as a marker. A significant correlation was found between the results obtained by flow cytometry and the results from the qPCR over a 5 log range (r=0.85, P<0.0001). The mean ratio between infectious rAAV-2 particles titrated via flow cytometry and genomic copies of rAAV-2 measured by qPCR of the same sample was 1:253. The higher titers found by qPCR might be due to multiple transduction of a single cell or to non-infectious particles generated during rAAV-2 preparation. In conclusion, qPCR is a fast and reliable method for determination of rAAV-2 titers and might be a powerful tool for standardization of rAAV-2 preparations particularly in the context of clinical studies.

  14. Comparison of a quantitative Real-Time PCR assay and droplet digital PCR for copy number analysis of the CCL4L genes.

    PubMed

    Bharuthram, Avani; Paximadis, Maria; Picton, Anabela C P; Tiemessen, Caroline T

    2014-07-01

    The controversy surrounding the findings that copy number variation, of the CCL3 encoding genes, influences HIV-1 infection and disease progression has been in part attributed to the variable results obtained from methods used for copy number evaluation. Like CCL3, the genes encoding the CC chemokine CCL4, also a natural ligand of the CCR5 receptor, are found to occur in population-specific multiple copy number and have been shown to play a protective role against HIV-1. This study evaluated the standard method of quantitative Real-Time PCR (qPCR) and droplet digital PCR (ddPCR) for CCL4L gene copy number determination. The CCL4 encoding genes are CCL4, occurring in two copies per diploid genome (pdg), and the non-allelic CCL4L genes, comprised of CCL4L1 and CCL4L2, which are both found in multiple copies pdg. Copy number of CCL4L, CCL4L1 and CCL4L2 was determined in a cohort of HIV-1-uninfected individuals from the South African Black (n=23) and Caucasian (n=32) population groups using qPCR and ddPCR. A stronger correlation between the number of CCL4L copies and the sum of CCL4L1 and CCL4L2 copies generated by ddPCR (r=0.99, p<0.0001) compared to qPCR (r=0.87, p<0.0001) was observed. Real-Time qPCR exhibited greater inaccuracy at higher copy numbers which is particularly relevant to our cohort of Black individuals who have a higher range of CCL4L copies (3-6) compared to Caucasians (0-4) and a higher population median (4 and 2, respectively). Medians and ranges of CCL4L1 (Black: 2, 0-4, Caucasian: 0, 0-2) and CCL4L2 (Black: 2, 1-5, Caucasian: 2, 0-3) were also higher in the Black population. Droplet digital PCR was shown to be a far superior method to qPCR for assessment of CCL4 gene copy number variation, the accuracy of which is essential for studies of the contribution of variable gene copy number to phenotypic outcomes of host infection and disease course.

  15. Real-Time PCR Quantitation of Clostridia in Feces of Autistic Children

    PubMed Central

    Song, Yuli; Liu, Chengxu; Finegold, Sydney M.

    2004-01-01

    Based on the hypothesis that intestinal clostridia play a role in late-onset autism, we have been characterizing clostridia from stools of autistic and control children. We applied the TaqMan real-time PCR procedure to detect and quantitate three Clostridium clusters and one Clostridium species, C. bolteae, in stool specimens. Group- and species-specific primers targeting the 16S rRNA genes were designed, and specificity of the primers was confirmed with DNA from related bacterial strains. In this procedure, a linear relationship exists between the threshold cycle (CT) fluorescence value and the number of bacterial cells (CFU). The assay showed high sensitivity: as few as 2 cells of members of cluster I, 6 cells of cluster XI, 4 cells of cluster XIVab, and 0.6 cell of C. bolteae could be detected per PCR. Analysis of the real-time PCR data indicated that the cell count differences between autistic and control children for C. bolteae and the following Clostridium groups were statistically significant: mean counts of C. bolteae and clusters I and XI in autistic children were 46-fold (P = 0.01), 9.0-fold (P = 0.014), and 3.5-fold (P = 0.004) greater than those in control children, respectively, but not for cluster XIVab (2.6 × 108 CFU/g in autistic children and 4.8 × 108 CFU/g in controls; respectively). More subjects need to be studied. The assay is a rapid and reliable method, and it should have great potential for quantitation of other bacteria in the intestinal tract. PMID:15528506

  16. A method for amplification of unknown flanking sequences based on touchdown PCR and suppression-PCR.

    PubMed

    Gao, Song; He, Dan; Li, Guangquan; Zhang, Yanhua; Lv, Huiying; Wang, Li

    2016-09-15

    Thermal asymmetric staggered PCR is the most widely used technique to obtain the flanking sequences. However, it has some limitations, including a low rate of positivity, and complex operation. In this study, a improved method of it was made based on suppression-PCR and touchdown PCR. The PCR fragment obtained by the amplification was used directly for sequencing after gel purification. Using this improved method, the positive rate of amplified flanking sequences of the ATMT mutants reached 99%. In addition, the time from DNA extraction to flanking sequence analysis was shortened to 2 days with about 6 dollars each sample. PMID:27393656

  17. A method for amplification of unknown flanking sequences based on touchdown PCR and suppression-PCR.

    PubMed

    Gao, Song; He, Dan; Li, Guangquan; Zhang, Yanhua; Lv, Huiying; Wang, Li

    2016-09-15

    Thermal asymmetric staggered PCR is the most widely used technique to obtain the flanking sequences. However, it has some limitations, including a low rate of positivity, and complex operation. In this study, a improved method of it was made based on suppression-PCR and touchdown PCR. The PCR fragment obtained by the amplification was used directly for sequencing after gel purification. Using this improved method, the positive rate of amplified flanking sequences of the ATMT mutants reached 99%. In addition, the time from DNA extraction to flanking sequence analysis was shortened to 2 days with about 6 dollars each sample.

  18. A Novel Triplex Quantitative PCR Strategy for Quantification of Toxigenic and Nontoxigenic Vibrio cholerae in Aquatic Environments

    PubMed Central

    Bliem, Rupert; Schauer, Sonja; Plicka, Helga; Obwaller, Adelheid; Sommer, Regina; Steinrigl, Adolf; Alam, Munirul; Reischer, Georg H.; Farnleitner, Andreas H.

    2015-01-01

    Vibrio cholerae is a severe human pathogen and a frequent member of aquatic ecosystems. Quantification of V. cholerae in environmental water samples is therefore fundamental for ecological studies and health risk assessment. Beside time-consuming cultivation techniques, quantitative PCR (qPCR) has the potential to provide reliable quantitative data and offers the opportunity to quantify multiple targets simultaneously. A novel triplex qPCR strategy was developed in order to simultaneously quantify toxigenic and nontoxigenic V. cholerae in environmental water samples. To obtain quality-controlled PCR results, an internal amplification control was included. The qPCR assay was specific, highly sensitive, and quantitative across the tested 5-log dynamic range down to a method detection limit of 5 copies per reaction. Repeatability and reproducibility were high for all three tested target genes. For environmental application, global DNA recovery (GR) rates were assessed for drinking water, river water, and water from different lakes. GR rates ranged from 1.6% to 76.4% and were dependent on the environmental background. Uncorrected and GR-corrected V. cholerae abundances were determined in two lakes with extremely high turbidity. Uncorrected abundances ranged from 4.6 × 102 to 2.3 × 104 cell equivalents liter−1, whereas GR-corrected abundances ranged from 4.7 × 103 to 1.6 × 106 cell equivalents liter−1. GR-corrected qPCR results were in good agreement with an independent cell-based direct detection method but were up to 1.6 log higher than cultivation-based abundances. We recommend the newly developed triplex qPCR strategy as a powerful tool to simultaneously quantify toxigenic and nontoxigenic V. cholerae in various aquatic environments for ecological studies as well as for risk assessment programs. PMID:25724966

  19. Low-cost monitoring of Campylobacter in poultry houses by air sampling and quantitative PCR.

    PubMed

    Søndergaard, M S R; Josefsen, M H; Löfström, C; Christensen, L S; Wieczorek, K; Osek, J; Hoorfar, J

    2014-02-01

    The present study describes the evaluation of a method for the quantification of Campylobacter by air sampling in poultry houses. Sampling was carried out in conventional chicken houses in Poland, in addition to a preliminary sampling in Denmark. Each measurement consisted of three air samples, two standard boot swab fecal samples, and one airborne particle count. Sampling was conducted over an 8-week period in three flocks, assessing the presence and levels of Campylobacter in boot swabs and air samples using quantitative real-time PCR. The detection limit for air sampling was approximately 100 Campylobacter cell equivalents (CCE)/m3. Airborne particle counts were used to analyze the size distribution of airborne particles (0.3 to 10 μm) in the chicken houses in relation to the level of airborne Campylobacter. No correlation was found. Using air sampling, Campylobacter was detected in the flocks right away, while boot swab samples were positive after 2 weeks. All samples collected were positive for Campylobacter from week 2 through the rest of the rearing period for both sampling techniques, although levels 1- to 2-log CCE higher were found with air sampling. At week 8, the levels were approximately 10(4) and 10(5) CCE per sample for boot swabs and air, respectively. In conclusion, using air samples combined with quantitative real-time PCR, Campylobacter contamination could be detected earlier than by boot swabs and was found to be a more convenient technique for monitoring and/or to obtain enumeration data useful for quantitative risk assessment of Campylobacter.

  20. Development of SYBR Green real-time RT-PCR for rapid detection, quantitation and diagnosis of unclassified bovine enteric calicivirus.

    PubMed

    Park, Sang-Ik; Park, Da-Hae; Saif, Linda J; Jeong, Young-Ju; Shin, Dong-Jun; Chun, Young-Hyun; Park, Su-Jin; Kim, Hyun-Jeong; Hosmillo, Myra; Kwon, Hyung-Jun; Kang, Mun-Il; Cho, Kyoung-Oh

    2009-07-01

    Unclassified bovine enteric calicivirus (BECV) is a newly recognized bovine enteric calicivirus that differs from bovine norovirus, and which causes diarrhea in the small intestines of calves. To date, methods such as real-time reverse transcription-polymerase chain reaction (RT-PCR) have not been developed for the rapid detection, quantitation and diagnosis of BECV. Presently, a BECV-specific SYBR Green real-time RT-PCR assay was evaluated and optimized. Diarrheic specimens (n=118) collected from 2004 to 2005 were subjected to RT-PCR, nested PCR and SYBR Green real-time RT-PCR. By conventional RT-PCR and nested PCR, 9 (7.6%) and 59 (50%) samples tested positive, respectively, whereas the SYBR Green assay detected BECV in 91 (77.1%) samples. Using BECV RNA standards generated by in vitro transcription, the SYBR Green real-time RT-PCR assay sensitively detected BECV RNA to 1.1 x 10(0)copies/microl (correlation coefficiency=0.98). The detection limits of the RT-PCR and nested PCR were 1.1 x 10(5) and 1.1 x 10(2)copies/microl, respectively. These results indicate that the SYBR Green real-time RT-PCR assay is more sensitive than conventional RT-PCR and nested PCR assays, and has potential as a reliable, reproducible, specific, sensitive and rapid tool for the detection, quantitation and diagnosis of unclassified BECV.

  1. Critical appraisal of quantitative PCR results in colorectal cancer research: can we rely on published qPCR results?

    PubMed

    Dijkstra, J R; van Kempen, L C; Nagtegaal, I D; Bustin, S A

    2014-06-01

    The use of real-time quantitative polymerase chain reaction (qPCR) in cancer research has become ubiquitous. The relative simplicity of qPCR experiments, which deliver fast and cost-effective results, means that each year an increasing number of papers utilizing this technique are being published. But how reliable are the published results? Since the validity of gene expression data is greatly dependent on appropriate normalisation to compensate for sample-to-sample and run-to-run variation, we have evaluated the adequacy of normalisation procedures in qPCR-based experiments. Consequently, we assessed all colorectal cancer publications that made use of qPCR from 2006 until August 2013 for the number of reference genes used and whether they had been validated. Using even these minimal evaluation criteria, the validity of only three percent (6/179) of the publications can be adequately assessed. We describe common errors, and conclude that the current state of reporting on qPCR in colorectal cancer research is disquieting. Extrapolated to the study of cancer in general, it is clear that the majority of studies using qPCR cannot be reliably assessed and that at best, the results of these studies may or may not be valid and at worst, pervasive incorrect normalisation is resulting in the wholesale publication of incorrect conclusions. This survey demonstrates that the existence of guidelines, such as MIQE, is necessary but not sufficient to address this problem and suggests that the scientific community should examine its responsibility and be aware of the implications of these findings for current and future research.

  2. A duplex real-time PCR assay for the quantitative detection of Naegleria fowleri in water samples.

    PubMed

    Behets, Jonas; Declerck, Priscilla; Delaedt, Yasmine; Verelst, Lieve; Ollevier, Frans

    2007-01-01

    A fast and accurate duplex real-time PCR (qPCR) was developed to detect and quantify the human pathogenic amoeba Naegleria fowleri in water samples. In this study, primers and probe based on the Mp2Cl5 gene were designed to amplify and quantify N. fowleri DNA in a single duplex reaction. The qPCR detection limit (DL) corresponds to the minimum DNA quantity showing significant fluorescence with at least 90% of the positive controls in a duplex reaction. Using fluorescent Taqman technology the qPCR was found to be 100% specific for N. fowleri with a DL of 3 N. fowleri cell equivalents and a PCR efficiency of 99%. The quantification limit (QL) was 16 N. fowleri cell equivalents (corresponded with 320 N. fowleri cell equivalents l(-1) water sample) in a duplex qPCR reaction and corresponds to the lowest DNA quantity amplifiable with a coefficient of variation less than 25%. To detect inhibition an exogenous internal positive control (IPC) was included in each PCR reaction preventing false negative results. Comparison of qPCR and most probable number (MPN) culture results confirms that the developed qPCR is well suited for rapid and quantitative detection of this human pathogen in real water samples. Nevertheless 'low contamination levels' of water samples (<200 N. fowleri cells l(-1)) still require culture method analyses. When other thermophilic Naegleria are very dominant, the MPN culture method could result in an underestimation in the real number of N. fowleri and some caution is necessary to interpret the data. The N. fowleri qPCR could be a useful tool to study further competitive phenomena between thermophilic Naegleria strains.

  3. Quantitative PCR detection for abalone shriveling syndrome-associated virus.

    PubMed

    Jiang, Jing-Zhe; Zhu, Zhen-Ni; Zhang, Han; Liang, Ya-Yu; Guo, Zhi-Xun; Liu, Guang-Feng; Su, You-Lu; Wang, Jiang-Yong

    2012-09-01

    Haliotis diversicolor (small abalone) is an important seafood found along the southern coast of China. Since 1999, the yields of cultured abalone in China have been severely affected by an epidemic of continuous outbreaks of a fatal disease. A novel double-stranded DNA virus, abalone shriveling syndrome-associated virus (AbSV), was proven to be one of the main causative agent. Although the pathogenicity and genome of AbSV has been ascertained, the epidemiology of AbSV remains to be investigated. In this study, four pairs of AbSV-specific primers were designed on the basis of the AbSV genome, and were tested for their specificities and sensitivities in quantitative real-time PCRs (qPCRs) after optimization of the annealing temperature. The 3F3/3B3 primer pair was finally chosen with a good specificity and high efficiency of amplification, with a detection limit of about 10 copies of recombinant plasmid containing AbSV genes in a 20-μL reaction mixture. In the detection of AbSV in abalone samples along the southern coast of China, most of the diseased samples had more than 80 virus copies in 1ng host genome DNA. AbSV was also demonstrated in mature hybrid (LY) and juvenile (JH) abalones from assays of healthy animals collected in recent years.

  4. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  5. Quantitative one-step RT-PCR assay for rapid and sensitive identification and titration of polioviruses in clinical specimens.

    PubMed

    Laassri, Majid; Dipiazza, Anthony; Bidzhieva, Bella; Zagorodnyaya, Tatiana; Chumakov, Konstantin

    2013-04-01

    Rapid identification and quantitation of polioviruses in clinical specimens is important for surveillance and analysis of virus shedding by vaccine recipients, which could be used to assess the level of mucosal immunity. A quantitative one step RT-PCR was developed for identification and titration of all three poliovirus serotypes. The assay could be an alternative to the traditional procedure based on cell culture isolation and subsequent determination of poliovirus serotype and virus titration. The method is based on quantitative PCR performed with reverse transcription reaction in the same tube. The multiplex assay that quantifies all three serotypes of poliovirus was found to be highly specific, sensitive, and takes only one day to complete.

  6. The applicability of TaqMan-based quantitative real-time PCR assays for detecting and enumeratIng Cryptosporidium spp. oocysts in the environment

    EPA Science Inventory

    Molecular detection methods such as PCR have been extensively used to type Cryptosporidium oocysts detected in the environment. More recently, studies have developed quantitative real-time PCR assays for detection and quantification of microbial contaminants in water as well as ...

  7. Detection and quantification of viable Bacillus cereus group species in milk by propidium monoazide quantitative real-time PCR.

    PubMed

    Cattani, Fernanda; Barth, Valdir C; Nasário, Jéssica S R; Ferreira, Carlos A S; Oliveira, Sílvia D

    2016-04-01

    The Bacillus cereus group includes important spore-forming bacteria that present spoilage capability and may cause foodborne diseases. These microorganisms are traditionally evaluated in food using culturing methods, which can be laborious and time-consuming, and may also fail to detect bacteria in a viable but nonculturable state. The purpose of this study was to develop a quantitative real-time PCR (qPCR) combined with a propidium monoazide (PMA) treatment to analyze the contamination of UHT milk by B. cereus group species viable cells. Thirty micrograms per milliliter of PMA was shown to be the most effective concentration for reducing the PCR amplification of extracellular DNA and DNA from dead cells. The quantification limit of the PMA-qPCR assay was 7.5 × 10(2) cfu/mL of milk. One hundred thirty-five UHT milk samples were analyzed to evaluate the association of PMA to qPCR to selectively detect viable cells. The PMA-qPCR was able to detect B. cereus group species in 44 samples (32.6%), whereas qPCR without PMA detected 78 positive samples (57.8%). Therefore, the PMA probably inhibited the amplification of DNA from cells that were killed during UHT processing, which avoided an overestimation of bacterial cells when using qPCR and, thus, did not overvalue potential health risks. A culture-based method was also used to detect and quantify B. cereus sensu stricto in the same samples and showed positive results in 15 (11.1%) samples. The culture method and PMA-qPCR allowed the detection of B. cereus sensu stricto in quantities compatible with the infective dose required to cause foodborne disease in 3 samples, indicating that, depending on the storage conditions, even after UHT treatment, infective doses may be reached in ready-to-consume products. PMID:26830746

  8. Printing 2-dimentional droplet array for single-cell reverse transcription quantitative PCR assay with a microfluidic robot.

    PubMed

    Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo

    2015-01-01

    This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis. PMID:25828383

  9. Quantitative analysis of diet structure by real-time PCR, reveals different feeding patterns by two dominant grasshopper species.

    PubMed

    Huang, Xunbing; Wu, Huihui; McNeill, Mark Richard; Qin, Xinghu; Ma, Jingchuan; Tu, Xiongbing; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2016-01-01

    Studies on grasshopper diets have historically employed a range of methodologies, each with certain advantages and disadvantages. For example, some methodologies are qualitative instead of quantitative. Others require long experimental periods or examine population-level effects, only. In this study, we used real-time PCR to examine diets of individual grasshoppers. The method has the advantage of being both fast and quantitative. Using two grasshopper species, Oedaleus asiaticus and Dasyhippus barbipes, we designed ITS primer sequences for their three main host plants, Stipa krylovii, Leymus chinensis and Cleistogenes squarrosa and used real-time PCR method to test diet structure both qualitatively and quantitatively. The lowest detection efficiency of the three grass species was ~80% with a strong correlation between actual and PCR-measured food intake. We found that Oedaleus asiaticus maintained an unchanged diet structure across grasslands with different grass communities. By comparison, Dasyhippus barbipes changed its diet structure. These results revealed why O. asiaticus distribution is mainly confined to Stipa-dominated grassland, and D. barbipes is more widely distributed across Inner Mongolia. Overall, real-time PCR was shown to be a useful tool for investigating grasshopper diets, which in turn offers some insight into grasshopper distributions and improved pest management. PMID:27562455

  10. Quantitative analysis of diet structure by real-time PCR, reveals different feeding patterns by two dominant grasshopper species

    PubMed Central

    Huang, Xunbing; Wu, Huihui; McNeill, Mark Richard; Qin, Xinghu; Ma, Jingchuan; Tu, Xiongbing; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2016-01-01

    Studies on grasshopper diets have historically employed a range of methodologies, each with certain advantages and disadvantages. For example, some methodologies are qualitative instead of quantitative. Others require long experimental periods or examine population-level effects, only. In this study, we used real-time PCR to examine diets of individual grasshoppers. The method has the advantage of being both fast and quantitative. Using two grasshopper species, Oedaleus asiaticus and Dasyhippus barbipes, we designed ITS primer sequences for their three main host plants, Stipa krylovii, Leymus chinensis and Cleistogenes squarrosa and used real-time PCR method to test diet structure both qualitatively and quantitatively. The lowest detection efficiency of the three grass species was ~80% with a strong correlation between actual and PCR-measured food intake. We found that Oedaleus asiaticus maintained an unchanged diet structure across grasslands with different grass communities. By comparison, Dasyhippus barbipes changed its diet structure. These results revealed why O. asiaticus distribution is mainly confined to Stipa-dominated grassland, and D. barbipes is more widely distributed across Inner Mongolia. Overall, real-time PCR was shown to be a useful tool for investigating grasshopper diets, which in turn offers some insight into grasshopper distributions and improved pest management. PMID:27562455

  11. Semi-quantitative detection of cytomegalovirus DNA from native serum and plasma by nested PCR: influence of DNA extraction procedures.

    PubMed

    Hamprecht, K; Mikeler, E; Jahn, G

    1997-12-01

    The diagnostic implications of different procedures of DNA extraction were examined for the detection of HCMV DNA from sera and plasma of immunosuppressed patients. The detection limit of HCMV plasmid DNA from cell free seronegative plasma and serum by limiting dilution nested PCR decreased in the following sequence: phenol/chloroform > NaI-single tube method > proteinase K digestion equal to amplification of native sera and plasma. Nested PCR from native sera and plasma performed well and surpassed the proteinase K method in sensitivity for detection of serum DNAemia. Semi-quantitative determination of HCMV DNA titer present in native sera of immunosuppressed patients did not seem to be correlated to HCMV disease. When compared to the persistence of leukoDNAemia, the viral DNA titer in native plasma could only be observed in the acute phase of HCMV infection, an important phenomenon for diagnostic purposes. Correlation of serum DNAemia to virus culture revealed low positive and high negative predictive values. Predictive values of nested PCR from native sera for HCMV infection were not lower than those following organic DNA extraction. Despite its low correlation to viremia and virus isolation from any site, nested PCR from organic DNA extracts of serum or plasma is the most sensitive diagnostic tool of an ongoing HCMV infection. Additionally, semi-quantitative end point dilution nested PCR from native serum or plasma promises to be a rapid and easy tool for the monitoring of antiviral therapy.

  12. Quantitative detection of perchlorate-reducing bacteria by real-time PCR targeting the perchlorate reductase gene.

    PubMed

    Nozawa-Inoue, Mamie; Jien, Mercy; Hamilton, Nicholas S; Stewart, Valley; Scow, Kate M; Hristova, Krassimira R

    2008-03-01

    A quantitative real-time PCR assay targeting the pcrA gene, encoding the catalytic subunit of perchlorate reductase, detected pcrA genes from perchlorate-reducing bacteria in three different genera and from soil microbial communities. Partial pcrA sequences indicated differences in the composition of perchlorate-reducing bacterial communities following exposure to different electron donors.

  13. Modeling real-time PCR kinetics: Richards reparametrized equation for quantitative estimation of European hake (Merluccius merluccius).

    PubMed

    Sánchez, Ana; Vázquez, José A; Quinteiro, Javier; Sotelo, Carmen G

    2013-04-10

    Real-time PCR is the most sensitive method for detection and precise quantification of specific DNA sequences, but it is not usually applied as a quantitative method in seafood. In general, benchmark techniques, mainly cycle threshold (Ct), are the routine method for quantitative estimations, but they are not the most precise approaches for a standard assay. In the present work, amplification data from European hake (Merluccius merluccius) DNA samples were accurately modeled by three sigmoid reparametrized equations, where the lag phase parameter (λc) from the Richards equation with four parameters was demonstrated to be the perfect substitute for Ct for PCR quantification. The concentrations of primers and probes were subsequently optimized by means of that selected kinetic parameter. Finally, the linear correlation among DNA concentration and λc was also confirmed.

  14. Application of Long-Range and Binding Reverse Transcription-Quantitative PCR To Indicate the Viral Integrities of Noroviruses

    PubMed Central

    De Keuckelaere, Ann; Uyttendaele, Mieke

    2014-01-01

    This study intends to establish and apply methods evaluating both viral capsid and genome integrities of human noroviruses (NoVs), which thus far remain nonculturable. Murine norovirus 1 (MNV-1) and human NoV GII.4 in phosphate-buffered saline suspensions were treated with heat, UV light, or ethanol and detected by reverse transcription-quantitative PCR (RT-qPCR), long-range RT-qPCR, binding RT-qPCR, and binding long-range RT-qPCR. For MNV-1 heated at 60°C for 2 and 30 min, limited reductions of genomic copies (<0.3-log) were obtained by RT-qPCR and long-range RT-qPCR, while the cell-binding pretreatments obtained higher reductions (>1.89-log reduction after 60°C for 30 min by binding long-range RT-qPCR). The human NoV GII.4 was found to be more heat resistant than MNV-1. For both MNV-1 and human NoV GII.4 after UV treatments of 20 and 200 mJ/cm2, no significant difference (P > 0.05) was observed between the dose-dependent reductions obtained by the four detection methodologies. Treatment of 70% ethanol for 1 min was shown to be more effective for inactivation of both MNV-1 and human NoV GII.4 than the heat and UV treatments used in this study. Subsequently, eight raspberry and four shellfish samples previously shown to be naturally contaminated with human NoVs by RT-qPCR (GI and GII; thus, 24 RT-qPCR signals) were subjected to comparison by this method. RT-qPCR, long-range RT-qPCR, binding RT-qPCR, and binding long-range RT-qPCR detected 20/24, 14/24, 24/24, and 23/24 positive signals, respectively, indicating the abundant presence of intact NoV particles. PMID:25107982

  15. Comparison of array comparative genomic hybridization and quantitative real-time PCR-based aneuploidy screening of blastocyst biopsies

    PubMed Central

    Capalbo, Antonio; Treff, Nathan R; Cimadomo, Danilo; Tao, Xin; Upham, Kathleen; Ubaldi, Filippo Maria; Rienzi, Laura; Scott, Richard T

    2015-01-01

    Comprehensive chromosome screening (CCS) methods are being extensively used to select chromosomally normal embryos in human assisted reproduction. Some concerns related to the stage of analysis and which aneuploidy screening method to use still remain. In this study, the reliability of blastocyst-stage aneuploidy screening and the diagnostic performance of the two mostly used CCS methods (quantitative real-time PCR (qPCR) and array comparative genome hybridization (aCGH)) has been assessed. aCGH aneuploid blastocysts were rebiopsied, blinded, and evaluated by qPCR. Discordant cases were subsequently rebiopsied, blinded, and evaluated by single-nucleotide polymorphism (SNP) array-based CCS. Although 81.7% of embryos showed the same diagnosis when comparing aCGH and qPCR-based CCS, 18.3% (22/120) of embryos gave a discordant result for at least one chromosome. SNP array reanalysis showed that a discordance was reported in ten blastocysts for aCGH, mostly due to false positives, and in four cases for qPCR. The discordant aneuploidy call rate per chromosome was significantly higher for aCGH (5.7%) compared with qPCR (0.6% P<0.01). To corroborate these findings, 39 embryos were simultaneously biopsied for aCGH and qPCR during blastocyst-stage aneuploidy screening cycles. 35 matched including all 21 euploid embryos. Blinded SNP analysis on rebiopsies of the four embryos matched qPCR. These findings demonstrate the high reliability of diagnosis performed at the blastocyst stage with the use of different CCS methods. However, the application of aCGH can be expected to result in a higher aneuploidy rate than other contemporary methods of CCS. PMID:25351780

  16. Competitive PCR-ELISA protocols for the quantitative and the standardized detection of viral genomes.

    PubMed

    Musiani, Monica; Gallinella, Giorgio; Venturoli, Simona; Zerbini, Marialuisa

    2007-01-01

    Competitive PCR-ELISA combines competitive PCR with an ELISA to allow quantitative detection of PCR products. It is based on the inclusion of an internal standard competitor molecule that is designed to differ from the target by a short sequence of nucleotides. Once such a competitor molecule has been designed and constructed, target and competitor sequences are concurrently PCR-amplified, before hybridization to two different specific probes and determination of their respective OD values by ELISA. The target can be quantified in relation to a titration curve of different dilutions of the competitor. The competitor can alternatively be used at a unique optimal concentration to allow for standardized detection of the target sequence. PCR-ELISA can be performed in 1 d in laboratories without access to a real-time PCR thermocycler. This technique is applied in diagnostics to monitor the course of infections and drug efficacy. Competitive PCR-ELISA protocols for the quantitative and for the standardized detection of parvovirus B19 are detailed here as an example of the technique.

  17. Novel wide-range quantitative nested real-time PCR assay for Mycobacterium tuberculosis DNA: development and methodology.

    PubMed

    Takahashi, Teruyuki; Tamura, Masato; Asami, Yukihiro; Kitamura, Eiko; Saito, Kosuke; Suzuki, Tsukasa; Takahashi, Sachiko Nonaka; Matsumoto, Koichi; Sawada, Shigemasa; Yokoyama, Eise; Takasu, Toshiaki

    2008-05-01

    Previously, we designed an internally controlled quantitative nested real-time (QNRT) PCR assay for Mycobacterium tuberculosis DNA in order to rapidly diagnose tuberculous meningitis. This technique combined the high sensitivity of nested PCR with the accurate quantification of real-time PCR. In this study, we attempted to improve the original QNRT-PCR assay and newly developed the wide-range QNRT-PCR (WR-QNRT-PCR) assay, which is more accurate and has a wider detection range. For use as an internal-control "calibrator" to measure the copy number of M. tuberculosis DNA, an original new-mutation plasmid (NM-plasmid) was developed. It had artificial random nucleotides in five regions annealing specific primers and probes. The NM-plasmid demonstrated statistically uniform amplifications (F = 1.086, P = 0.774) against a range (1 to 10(5)) of copy numbers of mimic M. tuberculosis DNA and was regarded as appropriate for use as a new internal control in the WR-QNRT-PSR assay. In addition, by the optimization of assay conditions in WR-QNRT-PCR, two-step amplification of target DNA was completely consistent with the standard curve of this assay. Due to the development of the NM-plasmid as the new internal control, significantly improved quantitative accuracy and a wider detection range were realized with the WR-QNRT-PCR assay. In the next study, we will try to use this novel assay method with actual clinical samples and examine its clinical usefulness.

  18. A quantitative TaqMan PCR assay for the detection of Ureaplasma diversum.

    PubMed

    Marques, Lucas M; Amorim, Aline T; Martins, Hellen Braga; Rezende, Izadora Souza; Barbosa, Maysa Santos; Lobão, Tassia Neves; Campos, Guilherme B; Timenetsky, Jorge

    2013-12-27

    Ureaplasma diversum in veterinary studies is an undesirable microbe, which may cause infection in bulls and may result in seminal vesiculitis, balanopostitis, and alterations in spermatozoids, whereas in cows, it may cause placentitis, fetal alveolitis, abortion, and birth of weak calves. U. diversum is released through organic secretions, especially semen, preputial and vaginal mucus, conjunctival secretion, and milk. The aim of the present study was to develop a TaqMan probe, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of U. diversum from genital swabs of bovines. Primers and probes specific to U. diversum 16S rRNA gene were designed. The specificity, detection limit, intra- and inter-assay variability of qPCR to detect this ureaplasma was compared with the results of the conventional PCR assay (cPCR). Swabs of vaginal mucus from 169 cows were tested. The qPCR assay detected as few as 10 copies of U. diversum and was 100-fold more sensitive than the cPCR. No cross-reactivity with other Mollicutes or eubacteria was observed. U. diversum was detected in 79 swabs (46.42%) by qPCR, while using cPCR it was detected in 42 (25%) samples. The difference in cPCR and qPCR ureaplasma detection between healthy and sick animals was not statistically significant. But the U. diversum load in samples from animals with genital disorders was higher than in healthy animals. The qPCR assay developed herein is highly sensitive and specific for the detection and quantification of U. diversum in vaginal bovine samples.

  19. Enhanced detection of surface-associated bacteria in indoor environments by quantitative PCR.

    PubMed

    Buttner, M P; Cruz-Perez, P; Stetzenbach, L D

    2001-06-01

    Methods for detecting microorganisms on surfaces are needed to locate biocontamination sources and to relate surface and airborne concentrations. Research was conducted in an experimental room to evaluate surface sampling methods and quantitative PCR (QPCR) for enhanced detection of a target biocontaminant present on flooring materials. QPCR and culture analyses were used to quantitate Bacillus subtilis (Bacillus globigii) endospores on vinyl tile, commercial carpet, and new and soiled residential carpet with samples obtained by four surface sampling methods: a swab kit, a sponge swipe, a cotton swab, and a bulk method. The initial data showed that greater overall sensitivity was obtained with the QPCR than with culture analysis; however, the QPCR results for bulk samples from residential carpet were negative. The swab kit and the sponge swipe methods were then tested with two levels of background biological contamination consisting of Penicillium chrysogenum spores. The B. subtilis values obtained by the QPCR method were greater than those obtained by culture analysis. The differences between the QPCR and culture data were significant for the samples obtained with the swab kit for all flooring materials except soiled residential carpet and with the sponge swipe for commercial carpet. The QPCR data showed that there were no significant differences between the swab kit and sponge swipe sampling methods for any of the flooring materials. Inhibition of QPCR due solely to biological contamination of flooring materials was not evident. However, some degree of inhibition was observed with the soiled residential carpet, which may have been caused by the presence of abiotic contaminants, alone or in combination with biological contaminants. The results of this research demonstrate the ability of QPCR to enhance detection and enumeration of biocontaminants on surface materials and provide information concerning the comparability of currently available surface sampling

  20. Collaborative trial for the validation of event-specific PCR detection methods of genetically modified papaya Huanong No.1.

    PubMed

    Wei, Jiaojun; Le, Huangying; Pan, Aihu; Xu, Junfeng; Li, Feiwu; Li, Xiang; Quan, Sheng; Guo, Jinchao; Yang, Litao

    2016-03-01

    For transferring the event-specific PCR methods of genetically modified papaya Huanong No.1 to other laboratories, we validated the previous developed PCR assays of Huanong No.1 according to the international standard organization (ISO) guidelines. A total of 11 laboratories participated and returned their test results in this trial. In qualitative PCR assay, the high specificity and limit of detection as low as 0.1% was confirmed. For the quantitative PCR assay, the limit of quantification was as low as 25 copies. The quantitative biases among ten blind samples were within the range between 0.21% and 10.04%. Furthermore, the measurement uncertainty of the quantitative PCR results was calculated within the range between 0.28% and 2.92% for these ten samples. All results demonstrated that the Huanong No.1 qualitative and quantitative PCR assays were creditable and applicable for identification and quantification of GM papaya Huanong No.1 in further routine lab analysis.

  1. Proposal of a quantitative PCR-based protocol for an optimal Pseudomonas aeruginosa detection in patients with cystic fibrosis

    PubMed Central

    2013-01-01

    Background The lung of patients with cystic fibrosis (CF) is particularly sensitive to Pseudomonas aeruginosa. This bacterium plays an important role in the poor outcome of CF patients. During the disease progress, first acquisition of P. aeruginosa is the key-step in the management of CF patients. Quantitative PCR (qPCR) offers an opportunity to detect earlier the first acquisition of P. aeruginosa by CF patients. Given the lack of a validated protocol, our goal was to find an optimal molecular protocol for detection of P. aeruginosa in CF patients. Methods We compared two formerly described qPCR formats in early detection of P. aeruginosa in CF sputum samples: a qPCR targeting oprL gene, and a multiplex PCR targeting gyrB and ecfX genes. Results Tested in vitro on a large panel of P. aeruginosa isolates and others gram-negative bacilli, oprL qPCR exhibited a better sensitivity (threshold of 10 CFU/mL versus 730 CFU/mL), whereas the gyrB/ecfX qPCR exhibited a better specificity (90% versus 73%). These results were validated ex vivo on 46 CF sputum samples positive for P. aeruginosa in culture. Ex vivo assays revealed that qPCR detected 100 times more bacterial cells than culture-based method did. Conclusion Based on these results, we proposed a reference molecular protocol combining the two qPCRs, which offers a sensitivity of 100% with a threshold of 10 CFU/mL and a specificity of 100%. This combined qPCR-based protocol can be adapted and used for other future prospective studies. PMID:24088260

  2. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR.

    PubMed

    Chemidlin Prévost-Bouré, Nicolas; Christen, Richard; Dequiedt, Samuel; Mougel, Christophe; Lelièvre, Mélanie; Jolivet, Claudy; Shahbazkia, Hamid Reza; Guillou, Laure; Arrouays, Dominique; Ranjard, Lionel

    2011-01-01

    Fungi constitute an important group in soil biological diversity and functioning. However, characterization and knowledge of fungal communities is hampered because few primer sets are available to quantify fungal abundance by real-time quantitative PCR (real-time Q-PCR). The aim in this study was to quantify fungal abundance in soils by incorporating, into a real-time Q-PCR using the SYBRGreen® method, a primer set already used to study the genetic structure of soil fungal communities. To satisfy the real-time Q-PCR requirements to enhance the accuracy and reproducibility of the detection technique, this study focused on the 18S rRNA gene conserved regions. These regions are little affected by length polymorphism and may provide sufficiently small targets, a crucial criterion for enhancing accuracy and reproducibility of the detection technique. An in silico analysis of 33 primer sets targeting the 18S rRNA gene was performed to select the primer set with the best potential for real-time Q-PCR: short amplicon length; good fungal specificity and coverage. The best consensus between specificity, coverage and amplicon length among the 33 sets tested was the primer set FR1/FF390. This in silico analysis of the specificity of FR1/FF390 also provided additional information to the previously published analysis on this primer set. The specificity of the primer set FR1/FF390 for Fungi was validated in vitro by cloning--sequencing the amplicons obtained from a real time Q-PCR assay performed on five independent soil samples. This assay was also used to evaluate the sensitivity and reproducibility of the method. Finally, fungal abundance in samples from 24 soils with contrasting physico-chemical and environmental characteristics was examined and ranked to determine the importance of soil texture, organic carbon content, C∶N ratio and land use in determining fungal abundance in soils.

  3. Application of Self-Quenched JH Consensus Primers for Real-Time Quantitative PCR of IGH Gene to Minimal Residual Disease Evaluation in Multiple Myeloma

    PubMed Central

    Martinez-Lopez, Joaquin; Martinez-Sanchez, Pilar; Garcia-Sanz, Ramon; Sarasquete, Maria Eugenia; Ayala, Rosa; Gonzalez, Marcos; Bautista, Jose Manuel; Gonzalez, David; Miguel, Jesus San; Garcia-Effron, Guillermo; Lahuerta, Juan Jose

    2006-01-01

    Monitoring multiple myeloma patients for relapse requires sensitive methods to measure minimal residual disease and to establish a more precise prognosis. The present study aimed to standardize a real-time quantitative polymerase chain reaction (PCR) test for the IgH gene with a JH consensus self-quenched fluorescence reverse primer and a VDJH or DJH allele-specific sense primer (self-quenched PCR). This method was compared with allele-specific real-time quantitative PCR test for the IgH gene using a TaqMan probe and a JH consensus primer (TaqMan PCR). We studied nine multiple myeloma patients from the Spanish group treated with the MM2000 therapeutic protocol. Self-quenched PCR demonstrated sensitivity of ≥10−4 or 16 genomes in most cases, efficiency was 1.71 to 2.14, and intra-assay and interassay reproducibilities were 1.18 and 0.75%, respectively. Sensitivity, efficiency, and residual disease detection were similar with both PCR methods. TaqMan PCR failed in one case because of a mutation in the JH primer binding site, and self-quenched PCR worked well in this case. In conclusion, self-quenched PCR is a sensitive and reproducible method for quantifying residual disease in multiple myeloma patients; it yields similar results to TaqMan PCR and may be more effective than the latter when somatic mutations are present in the JH intronic primer binding site. PMID:16825510

  4. Leptin in Whales: Validation and Measurement of mRNA Expression by Absolute Quantitative Real-Time PCR

    PubMed Central

    Ball, Hope C.; Holmes, Robert K.; Londraville, Richard L.; Thewissen, Johannes G. M.; Duff, Robert Joel

    2013-01-01

    Leptin is the primary hormone in mammals that regulates adipose stores. Arctic adapted cetaceans maintain enormous adipose depots, suggesting possible modifications of leptin or receptor function. Determining expression of these genes is the first step to understanding the extreme physiology of these animals, and the uniqueness of these animals presents special challenges in estimating and comparing expression levels of mRNA transcripts. Here, we compare expression of two model genes, leptin and leptin-receptor gene-related product (OB-RGRP), using two quantitative real-time PCR (qPCR) methods: “relative” and “absolute”. To assess the expression of leptin and OB-RGRP in cetacean tissues, we first examined how relative expression of those genes might differ when normalized to four common endogenous control genes. We performed relative expression qPCR assays measuring the amplification of these two model target genes relative to amplification of 18S ribosomal RNA (18S), ubiquitously expressed transcript (Uxt), ribosomal protein 9 (Rs9) and ribosomal protein 15 (Rs15) endogenous controls. Results demonstrated significant differences in the expression of both genes when different control genes were employed; emphasizing a limitation of relative qPCR assays, especially in studies where differences in physiology and/or a lack of knowledge regarding levels and patterns of expression of common control genes may possibly affect data interpretation. To validate the absolute quantitative qPCR methods, we evaluated the effects of plasmid structure, the purity of the plasmid standard preparation and the influence of type of qPCR “background” material on qPCR amplification efficiencies and copy number determination of both model genes, in multiple tissues from one male bowhead whale. Results indicate that linear plasmids are more reliable than circular plasmid standards, no significant differences in copy number estimation based upon background material used, and

  5. Leptin in whales: validation and measurement of mRNA expression by absolute quantitative real-time PCR.

    PubMed

    Ball, Hope C; Holmes, Robert K; Londraville, Richard L; Thewissen, Johannes G M; Duff, Robert Joel

    2013-01-01

    Leptin is the primary hormone in mammals that regulates adipose stores. Arctic adapted cetaceans maintain enormous adipose depots, suggesting possible modifications of leptin or receptor function. Determining expression of these genes is the first step to understanding the extreme physiology of these animals, and the uniqueness of these animals presents special challenges in estimating and comparing expression levels of mRNA transcripts. Here, we compare expression of two model genes, leptin and leptin-receptor gene-related product (OB-RGRP), using two quantitative real-time PCR (qPCR) methods: "relative" and "absolute". To assess the expression of leptin and OB-RGRP in cetacean tissues, we first examined how relative expression of those genes might differ when normalized to four common endogenous control genes. We performed relative expression qPCR assays measuring the amplification of these two model target genes relative to amplification of 18S ribosomal RNA (18S), ubiquitously expressed transcript (Uxt), ribosomal protein 9 (Rs9) and ribosomal protein 15 (Rs15) endogenous controls. Results demonstrated significant differences in the expression of both genes when different control genes were employed; emphasizing a limitation of relative qPCR assays, especially in studies where differences in physiology and/or a lack of knowledge regarding levels and patterns of expression of common control genes may possibly affect data interpretation. To validate the absolute quantitative qPCR methods, we evaluated the effects of plasmid structure, the purity of the plasmid standard preparation and the influence of type of qPCR "background" material on qPCR amplification efficiencies and copy number determination of both model genes, in multiple tissues from one male bowhead whale. Results indicate that linear plasmids are more reliable than circular plasmid standards, no significant differences in copy number estimation based upon background material used, and that the use of

  6. Selective Quantification of Viable Escherichia coli Bacteria in Biosolids by Quantitative PCR with Propidium Monoazide Modification ▿

    PubMed Central

    Taskin, Bilgin; Gozen, Ayse Gul; Duran, Metin

    2011-01-01

    Quantitative differentiation of live cells in biosolids samples, without the use of culturing-based approaches, is highly critical from a public health risk perspective, as recent studies have shown significant regrowth and reactivation of indicator organisms. Persistence of DNA in the environment after cell death in the range of days to weeks limits the application of DNA-based approaches as a measure of live cell density. Using selective nucleic acid intercalating dyes like ethidium monoazide (EMA) and propidium monoazide (PMA) is one of the alternative approaches to detecting and quantifying viable cells by quantitative PCR. These compounds have the ability to penetrate only into dead cells with compromised membrane integrity and intercalate with DNA via their photoinducible azide groups and in turn inhibit DNA amplification during PCRs. PMA has been successfully used in different studies and microorganisms, but it has not been evaluated sufficiently for complex environmental samples such as biosolids. In this study, experiments were performed with Escherichia coli ATCC 25922 as the model organism and the uidA gene as the target sequence using real-time PCR via the absolute quantification method. Experiments with the known quantities of live and dead cell mixtures showed that PMA treatment inhibits PCR amplification from dead cells with over 99% efficiency. The results also indicated that PMA-modified quantitative PCR could be successfully applied to biosolids when the total suspended solids (TSS) concentration is at or below 2,000 mg·liter−1. PMID:21602375

  7. Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae).

    PubMed

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.

  8. Rapid Detection of Ceratocystis platani Inoculum by Quantitative Real-Time PCR Assay

    PubMed Central

    Ghelardini, Luisa; Belbahri, Lassaâd; Quartier, Marion; Santini, Alberto

    2013-01-01

    Ceratocystis platani is the causal agent of canker stain of plane trees, a lethal disease able to kill mature trees in one or two successive growing seasons. The pathogen is a quarantine organism and has a negative impact on anthropogenic and natural populations of plane trees. Contaminated sawdust produced during pruning and sanitation fellings can contribute to disease spread. The goal of this study was to design a rapid, real-time quantitative PCR assay to detect a C. platani airborne inoculum. Airborne inoculum traps (AITs) were placed in an urban setting in the city of Florence, Italy, where the disease was present. Primers and TaqMan minor groove binder (MGB) probes were designed to target cerato-platanin (CP) and internal transcribed spacer 2 (ITS2) genes. The detection limits of the assay were 0.05 pg/μl and 2 fg/μl of fungal DNA for CP and ITS, respectively. Pathogen detection directly from AITs demonstrated specificity and high sensitivity for C. platani, detecting DNA concentrations as low as 1.2 × 10−2 to 1.4 × 10−2 pg/μl, corresponding to ∼10 conidia per ml. Airborne inoculum traps were able to detect the C. platani inoculum within 200 m of the closest symptomatic infected plane tree. The combination of airborne trapping and real-time quantitative PCR assay provides a rapid and sensitive method for the specific detection of a C. platani inoculum. This technique may be used to identify the period of highest risk of pathogen spread in a site, thus helping disease management. PMID:23811499

  9. Real-time fluorescent quantitative RT-PCR assay for the expression of metallothioneins in rat hippocampal neurons

    NASA Astrophysics Data System (ADS)

    Qin, Hai-Hong; Wang, Fu-Di; Guo, Jun-Sheng; Shen, Hui; Li, Run-Ping

    2004-07-01

    Metallothioneins (MTs) are short, cysteine-rich proteins for heavy metal homeostasis and detoxification; they can bind a variety of heavy metals and also act as radical scavengers. In brain cells, they play a neuroprotective role in many aspects. However, because the previous methods can't quantify their gene expression at the mRNA level, their regulation in brain, especially in neurons, is not well known by now. In this study, we use a more accurate method, the real-time fluorescent quantitative RT-PCR technique, to determine the expression of three MT isomers on 100 μM zinc exposure after 0, 2, 4, 6 and 8 hours in primary culture rat hippocampal neurons. The result shows that the expression of all three MT isomers was higher compared with the values determined by other methods. This means that the roles played by neuron MTs in protecting neurons injury on zinc fluctuation was even stronger than what has been suspected before. In conclusion, our study proved that the real-time fluorescent quantitative RT-PCR technique is a simple, rapid and more precise method than previous techniques in the detection of gene expression, especially for those genes with low abundant mRNA. Our study also suggest that may of the past studies about gene expression should be verified by real-time Fluorescent quantitative RT-PCR once more in order to reach a more scientific explanation on certain problem.

  10. Use of propidium monoazide for the enumeration of viable Oenococcus oeni in must and wine by quantitative PCR.

    PubMed

    Vendrame, Marco; Iacumin, Lucilla; Manzano, Marisa; Comi, Giuseppe

    2013-08-01

    Malolactic fermentation is an important step in winemaking, but it has to be avoided in some cases. It's carried out by lactic acid bacteria belonging mainly to the genus Oenococcus, which is known to be a slow growing bacterium. Classical microbiological methods to enumerate viable cells of Oenococcus oeni in must and wine take 7-9 days to give results. Moreover, RT-qPCR technique gives accurate quantitative results, but it requires time consuming steps of RNA extraction and reverse transcription. In the present work we developed a fast and reliable quantitative PCR (qPCR) method to enumerate cells of Oenococcus oeni, directly, in must and wine. For the first time we used a propidium monoazide treatment of samples to enumerate only Oenococcus oeni viable cells. The detection limit of the developed method is 0.33 log CFU/mL (2.14 CFU/mL) in must, and 0.69 log CFU/mL (4.90 CFU/mL) in wine, lower than that of the previously developed qPCR protocols.

  11. Detection and quantification limits of the EPA Enterococcus qPCR method

    EPA Science Inventory

    The U.S. EPA will be recommending a quantitative polymerase chain reaction (qPCR) method targeting Enterococcus spp. as an option for monitoring recreational beach water quality in 2013 and has published preliminary proposed water quality criteria guidelines for the method. An im...

  12. QUANTITATIVE PCR ANALYSIS OF MOLDS IN THE DUST FROM HOMES OF ASTHMATIC CHILDREN IN NORTH CAROLINA

    EPA Science Inventory

    The vacuum bag (VB) dust was analyzed by mold specific quantitative PCR. These results were compared to the analysis survey calculated for each of the homes. The mean and standard deviation (SD) of the ERMI values in the homes of the NC asthmatic children was 16.4 (6.77), compa...

  13. QUANTITATIVE PCR ANALYSIS OF HOUSE DUST CAN REVEAL ABNORMAL MOLD CONDITIONS

    EPA Science Inventory

    Indoor mold populations were measured in the dust of homes in Cleveland and Cincinnati, OH, by quantitative PCR (QPCR) and, in Cincinnati, also by culturing. QPCR assays for 82 species (or groups of species) were used to identify and quantify indoor mold populations in moldy home...

  14. Detection and absolute quantitation of Tomato torrado virus (ToTV) by real time RT-PCR.

    PubMed

    Herrera-Vásquez, José Angel; Rubio, Luis; Alfaro-Fernández, Ana; Debreczeni, Diana Elvira; Font-San-Ambrosio, Isabel; Falk, Bryce W; Ferriol, Inmaculada

    2015-09-01

    Tomato torrado virus (ToTV) causes serious damage to the tomato industry and significant economic losses. A quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR) method using primers and a specific TaqMan(®) MGB probe for ToTV was developed for sensitive detection and quantitation of different ToTV isolates. A standard curve using RNA transcripts enabled absolute quantitation, with a dynamic range from 10(4) to 10(10) ToTV RNA copies/ng of total RNA. The specificity of the RT-qPCR was tested with twenty-three ToTV isolates from tomato (Solanum lycopersicum L.), and black nightshade (Solanum nigrum L.) collected in Spain, Australia, Hungary and France, which covered the genetic variation range of this virus. This new RT-qPCR assay enables a reproducible, sensitive and specific detection and quantitation of ToTV, which can be a valuable tool in disease management programs and epidemiological studies.

  15. Selection of Reference Genes for Quantitative Real Time PCR (qPCR) Assays in Tissue from Human Ascending Aorta

    PubMed Central

    Rueda-Martínez, Carmen; Lamas, Oscar; Mataró, María José; Robledo-Carmona, Juan; Sánchez-Espín, Gemma; Jiménez-Navarro, Manuel; Such-Martínez, Miguel; Fernández, Borja

    2014-01-01

    Dilatation of the ascending aorta (AAD) is a prevalent aortopathy that occurs frequently associated with bicuspid aortic valve (BAV), the most common human congenital cardiac malformation. The molecular mechanisms leading to AAD associated with BAV are still poorly understood. The search for differentially expressed genes in diseased tissue by quantitative real-time PCR (qPCR) is an invaluable tool to fill this gap. However, studies dedicated to identify reference genes necessary for normalization of mRNA expression in aortic tissue are scarce. In this report, we evaluate the qPCR expression of six candidate reference genes in tissue from the ascending aorta of 52 patients with a variety of clinical and demographic characteristics, normal and dilated aortas, and different morphologies of the aortic valve (normal aorta and normal valve n = 30; dilated aorta and normal valve n = 10; normal aorta and BAV n = 4; dilated aorta and BAV n = 8). The expression stability of the candidate reference genes was determined with three statistical algorithms, GeNorm, NormFinder and Bestkeeper. The expression analyses showed that the most stable genes for the three algorithms employed were CDKN1β, POLR2A and CASC3, independently of the structure of the aorta and the valve morphology. In conclusion, we propose the use of these three genes as reference genes for mRNA expression analysis in human ascending aorta. However, we suggest searching for specific reference genes when conducting qPCR experiments with new cohort of samples. PMID:24841551

  16. [Development, optimization and application of the expression analysis platform based on multiplex quantitative RT-PCR using fluorescent universal primers].

    PubMed

    Wang, Qin-Xi; Li, Kai; Zhou, Yu-Xun; Xiao, Jun-Hua

    2009-05-01

    A multiplex quantitative RT-PCR technology with a universal fluorescent primer was established. This technology employs a chimeric-primer-induced-universal-primer amplification method that ensures target genes amplified in a constant ratio. This technique was cost-effective, moderate-throughput, and reliable in quantification of gene expression. It is complementary to cDNA chip, which has low quantitative accuracy , and Real-time quantitative PCR with low throughput, through improving the entire process of expression profiling analysis. Eleven genes within a QTL segment regulating mouse puberty onset on chromosome X were investigated to construct and optimize the method. The sensitivity of detection (102 copies) was determined, the concentration ratio of universal primer and chimeric forward primers (1:1) was optimized, and the accuracy and repeatability were validated. The method of Touchdown PCR with addition of universal primers significantly improved amplification of genes expressed in low abundance. After testing the expression profile of 11 genes in hypothalamus and testis in two mouse strains C3H/HeJ and C57BL/6J at the age of 15 d, one gene named PHF6 was found differentially expressed for further function analysis.

  17. Development of TaqMan-Based Quantitative PCR for Sensitive and Selective Detection of Toxigenic Clostridium difficile in Human Stools

    PubMed Central

    Kubota, Hiroyuki; Sakai, Takafumi; Gawad, Agata; Makino, Hiroshi; Akiyama, Takuya; Ishikawa, Eiji; Oishi, Kenji

    2014-01-01

    Background Clostridium difficile is the main cause of nosocomial diarrhea, but is also found in asymptomatic subjects that are potentially involved in transmission of C. difficile infection. A sensitive and accurate detection method of C. difficile, especially toxigenic strains is indispensable for the epidemiological investigation. Methods TaqMan-based quantitative-PCR (qPCR) method for targeting 16S rRNA, tcdB, and tcdA genes of C. difficile was developed. The detection limit and accuracy of qPCR were evaluated by analyzing stool samples spiked with known amounts of C. difficile. A total of 235 stool specimens collected from 82 elderly nursing home residents were examined by qPCR, and the validity was evaluated by comparing the detection result with that by C. difficile selective culture (CDSC). Results The analysis of C. difficile-spiked stools confirmed that qPCR quantified whole C. difficile (TcdA+TcdB+, TcdA−TcdB+, and TcdA−TcdB− types), TcdB-producing strains (TcdA+TcdB+ and TcdA−TcdB+ types), and TcdA-producing strains (TcdA+TcdB+ type), respectively, with a lower detection limit of 103 cells/g of stool. Of the 235 specimens examined, 12 specimens (5.1%) were C. difficile-positive by qPCR: TcdA+TcdB+ strain in six specimens and TcdA−TcdB− strain in the other six. CDSC detected C. difficile in 9 of the 12 specimens, and toxigenic types of the isolates from the 9 specimens were consistent with those identified by qPCR, supporting the validity of our qPCR method. Moreover, the qPCR examination revealed that the carriage rate of whole C. difficile and that of toxigenic strains in the 82 subjects over a 6-month period ranged from 2.4 to 6.8% and 1.2 to 3.8%, respectively. An average qPCR count of C. difficile detected was 104.5 cells/g of stool, suggesting that C. difficile constituted a very small fraction of intestinal microbiota. Conclusion Our qPCR method should be an effective tool for both clinical diagnosis and epidemiological investigation of

  18. Sensitive and rapid quantitative detection of anthrax spores isolated from soil samples by real-time PCR.

    PubMed

    Ryu, Chunsun; Lee, Kyunghee; Yoo, Cheonkwon; Seong, Won Keun; Oh, Hee-Bok

    2003-01-01

    Quantitative analysis of anthrax spores from environmental samples is essential for accurate detection and risk assessment since Bacillus anthracis spores have been shown to be one of the most effective biological weapons. Using TaqMan real-time PCR, specific primers and probes were designed for the identification of pathogenic B. anthracis strains from pag gene and cap gene on two plasmids, pXO1 and pXO2, as well as a sap gene encoded on the S-layer. To select the appropriate lysis method of anthrax spore from environmental samples, several heat treatments and germination methods were evaluated with multiplex-PCR. Among them, heat treatment of samples suspended with sucrose plus non-ionic detergent was considered an effective spore disruption method because it detected up to 10(5) spores/g soil by multiplex-PCR. Serial dilutions of B. anthracis DNA and spore were detected up to a level of 0.1 ng/ microliters and 10 spores/ml, respectively, at the correlation coefficient of 0.99 by real-time PCR. Quantitative analysis of anthrax spore could be obtained from the comparison between C(T) value and serial dilutions of soil sample at the correlation coefficient of 0.99. Additionally, spores added to soil samples were detected up to 10(4) spores/g soil within 3 hr by real-time PCR. As a consequence, we established a rapid and accurate detection system for environmental anthrax spores using real-time PCR, avoiding time and labor-consuming preparation steps such as enrichment culturing and DNA preparation.

  19. Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples.

    PubMed

    Pawluczyk, Marta; Weiss, Julia; Links, Matthew G; Egaña Aranguren, Mikel; Wilkinson, Mark D; Egea-Cortines, Marcos

    2015-03-01

    Unbiased identification of organisms by PCR reactions using universal primers followed by DNA sequencing assumes positive amplification. We used six universal loci spanning 48 plant species and quantified the bias at each step of the identification process from end point PCR to next-generation sequencing. End point amplification was significantly different for single loci and between species. Quantitative PCR revealed that Cq threshold for various loci, even within a single DNA extraction, showed 2,000-fold differences in DNA quantity after amplification. Next-generation sequencing (NGS) experiments in nine species showed significant biases towards species and specific loci using adaptor-specific primers. NGS sequencing bias may be predicted to some extent by the Cq values of qPCR amplification.

  20. Comparative evaluation of three commercial quantitative cytomegalovirus standards by use of digital and real-time PCR.

    PubMed

    Hayden, R T; Gu, Z; Sam, S S; Sun, Y; Tang, L; Pounds, S; Caliendo, A M

    2015-05-01

    The recent development of the 1st WHO International Standard for human cytomegalovirus (CMV) and the introduction of commercially produced secondary standards have raised hopes of improved agreement among laboratories performing quantitative PCR for CMV. However, data to evaluate the trueness and uniformity of secondary standards and the consistency of results achieved when these materials are run on various assays are lacking. Three concentrations of each of the three commercially prepared secondary CMV standards were tested in quadruplicate by three real-time and two digital PCR methods. The mean results were compared in a pairwise fashion with nominal values provided by each manufacturer. The agreement of results among all methods for each sample and for like concentrations of each standard was also assessed. The relationship between the nominal values of standards and the measured values varied, depending upon the assay used and the manufacturer of the standards, with the degree of bias ranging from +0.6 to -1.0 log10 IU/ml. The mean digital PCR result differed significantly among the secondary standards, as did the results of the real-time PCRs, particularly when plotted against nominal log10 IU values. Commercially available quantitative secondary CMV standards produce variable results when tested by different real-time and digital PCR assays, with various magnitudes of bias compared to nominal values. These findings suggest that the use of such materials may not achieve the intended uniformity among laboratories measuring CMV viral load, as envisioned by adaptation of the WHO standard.

  1. Comparison of culture and qPCR methods in detection of mycobacteria from drinking waters.

    PubMed

    Räsänen, Noora H J; Rintala, Helena; Miettinen, Ilkka T; Torvinen, Eila

    2013-04-01

    Environmental mycobacteria are common bacteria in man-made water systems and may cause infections and hypersensitivity pneumonitis via exposure to water. We compared a generally used cultivation method and a quantitative polymerase chain reaction (qPCR) method to detect mycobacteria in 3 types of drinking waters: surface water, ozone-treated surface water, and groundwater. There was a correlation between the numbers of mycobacteria obtained by cultivation and qPCR methods, but the ratio of the counts obtained by the 2 methods varied among the types of water. The qPCR counts in the drinking waters produced from surface or groundwater were 5 to 34 times higher than culturable counts. In ozone-treated surface waters, both methods gave similar counts. The ozone-treated drinking waters had the highest concentration of assimilable organic carbon, which may explain the good culturability. In warm tap waters, qPCR gave 43 times higher counts than cultivation, but both qPCR counts and culturable counts were lower than those in the drinking waters collected from the same sites. The TaqMan qPCR method is a rapid and sensitive tool for total quantitation of mycobacteria in different types of clean waters. The raw water source and treatments affect both culturability and total numbers of mycobacteria in drinking waters.

  2. Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.

    PubMed

    Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D

    2002-12-20

    A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR. PMID:12470637

  3. Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.

    PubMed

    Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D

    2002-12-20

    A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR.

  4. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    PubMed

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio. PMID:20480922

  5. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    PubMed

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  6. Validation of reference genes for real-time quantitative PCR studies in gene expression levels of Lactobacillus casei Zhang.

    PubMed

    Zhao, Wenjing; Li, Yan; Gao, Pengfei; Sun, Zhihong; Sun, Tiansong; Zhang, Heping

    2011-09-01

    Lactobacillus casei Zhang, a potential probiotic strain isolated from homemade koumiss in Inner Mongolia of China, has been sequenced and deposited in GenBank. Real-time quantitative PCR is one of the most widely used methods to study related gene expression levels of Lactobacillus casei Zhang. For accurate and reliable gene expression analysis, normalization of gene expression data using one or more appropriate reference genes is essential. We used three statistical methods (geNorm, NormFinder, and BestKeeper) to evaluate the expression levels of five candidate reference genes (GAPD, gyrB, LDH, 16s rRNA, and recA) under different culture conditions and different growth phases to find a suitable housekeeping gene which can be used as internal standard. The results showed that the best reference gene was GAPD, and a set of two genes, GAPD and gyrB (which were the most stable reference genes), is recommended for normalization of real-time quantitative PCR experiments under all the different experimental conditions tested. The systematic validation of candidate reference genes is important for obtaining reliable analysis results of real-time quantitative PCR studies in gene expression levels of Lactobacillus casei Zhang. PMID:21104423

  7. Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR.

    PubMed

    Hu, Meizhen; Hu, Wenbin; Xia, Zhiqiang; Zhou, Xincheng; Wang, Wenquan

    2016-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (real-time PCR, also referred to as quantitative RT-PCR or RT-qPCR) is a highly sensitive and high-throughput method used to study gene expression. Despite the numerous advantages of RT-qPCR, its accuracy is strongly influenced by the stability of internal reference genes used for normalizations. To date, few studies on the identification of reference genes have been performed on cassava (Manihot esculenta Crantz). Therefore, we selected 26 candidate reference genes mainly via the three following channels: reference genes used in previous studies on cassava, the orthologs of the most stable Arabidopsis genes, and the sequences obtained from 32 cassava transcriptome sequence data. Then, we employed ABI 7900 HT and SYBR Green PCR mix to assess the expression of these genes in 21 materials obtained from various cassava samples under different developmental and environmental conditions. The stability of gene expression was analyzed using two statistical algorithms, namely geNorm and NormFinder. geNorm software suggests the combination of cassava4.1_017977 and cassava4.1_006391 as sufficient reference genes for major cassava samples, the union of cassava4.1_014335 and cassava4.1_006884 as best choice for drought stressed samples, and the association of cassava4.1_012496 and cassava4.1_006391 as optimal choice for normally grown samples. NormFinder software recommends cassava4.1_006884 or cassava4.1_006776 as superior reference for qPCR analysis of different materials and organs of drought stressed or normally grown cassava, respectively. Results provide an important resource for cassava reference genes under specific conditions. The limitations of these findings were also discussed. Furthermore, we suggested some strategies that may be used to select candidate reference genes. PMID:27242878

  8. Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR

    PubMed Central

    Hu, Meizhen; Hu, Wenbin; Xia, Zhiqiang; Zhou, Xincheng; Wang, Wenquan

    2016-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (real-time PCR, also referred to as quantitative RT-PCR or RT-qPCR) is a highly sensitive and high-throughput method used to study gene expression. Despite the numerous advantages of RT-qPCR, its accuracy is strongly influenced by the stability of internal reference genes used for normalizations. To date, few studies on the identification of reference genes have been performed on cassava (Manihot esculenta Crantz). Therefore, we selected 26 candidate reference genes mainly via the three following channels: reference genes used in previous studies on cassava, the orthologs of the most stable Arabidopsis genes, and the sequences obtained from 32 cassava transcriptome sequence data. Then, we employed ABI 7900 HT and SYBR Green PCR mix to assess the expression of these genes in 21 materials obtained from various cassava samples under different developmental and environmental conditions. The stability of gene expression was analyzed using two statistical algorithms, namely geNorm and NormFinder. geNorm software suggests the combination of cassava4.1_017977 and cassava4.1_006391 as sufficient reference genes for major cassava samples, the union of cassava4.1_014335 and cassava4.1_006884 as best choice for drought stressed samples, and the association of cassava4.1_012496 and cassava4.1_006391 as optimal choice for normally grown samples. NormFinder software recommends cassava4.1_006884 or cassava4.1_006776 as superior reference for qPCR analysis of different materials and organs of drought stressed or normally grown cassava, respectively. Results provide an important resource for cassava reference genes under specific conditions. The limitations of these findings were also discussed. Furthermore, we suggested some strategies that may be used to select candidate reference genes. PMID:27242878

  9. Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR.

    PubMed

    Hu, Meizhen; Hu, Wenbin; Xia, Zhiqiang; Zhou, Xincheng; Wang, Wenquan

    2016-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (real-time PCR, also referred to as quantitative RT-PCR or RT-qPCR) is a highly sensitive and high-throughput method used to study gene expression. Despite the numerous advantages of RT-qPCR, its accuracy is strongly influenced by the stability of internal reference genes used for normalizations. To date, few studies on the identification of reference genes have been performed on cassava (Manihot esculenta Crantz). Therefore, we selected 26 candidate reference genes mainly via the three following channels: reference genes used in previous studies on cassava, the orthologs of the most stable Arabidopsis genes, and the sequences obtained from 32 cassava transcriptome sequence data. Then, we employed ABI 7900 HT and SYBR Green PCR mix to assess the expression of these genes in 21 materials obtained from various cassava samples under different developmental and environmental conditions. The stability of gene expression was analyzed using two statistical algorithms, namely geNorm and NormFinder. geNorm software suggests the combination of cassava4.1_017977 and cassava4.1_006391 as sufficient reference genes for major cassava samples, the union of cassava4.1_014335 and cassava4.1_006884 as best choice for drought stressed samples, and the association of cassava4.1_012496 and cassava4.1_006391 as optimal choice for normally grown samples. NormFinder software recommends cassava4.1_006884 or cassava4.1_006776 as superior reference for qPCR analysis of different materials and organs of drought stressed or normally grown cassava, respectively. Results provide an important resource for cassava reference genes under specific conditions. The limitations of these findings were also discussed. Furthermore, we suggested some strategies that may be used to select candidate reference genes.

  10. A novel quantitative reverse-transcription PCR (qRT-PCR) for the enumeration of total bacteria, using meat micro-flora as a model.

    PubMed

    Dolan, Anthony; Burgess, Catherine M; Barry, Thomas B; Fanning, Seamus; Duffy, Geraldine

    2009-04-01

    A sensitive quantitative reverse-transcription PCR (qRT-PCR) method was developed for enumeration of total bacteria. Using two sets of primers separately to target the ribonuclease-P (RNase P) RNA transcripts of gram positive and gram negative bacteria. Standard curves were generated using SYBR Green I kits for the LightCycler 2.0 instrument (Roche Diagnostics) to allow quantification of mixed microflora in liquid media. RNA standards were used and extracted from known cell equivalents and subsequently converted to cDNA for the construction of standard curves. The number of mixed bacteria in culture was determined by qRT-PCR, and the results correlated (r(2)=0.88, rsd=0.466) with the total viable count over the range from approx. Log(10) 3 to approx. Log(10) 7 CFU ml(-1). The rapid nature of this assay (8 h) and its potential as an alternative method to the standard plate count method to predict total viable counts and shelf life are discussed.

  11. [Development of PCR methods for detection of EAV infection].

    PubMed

    Brunner; Santschi; Gerber; Burger; Zanoni

    2014-11-01

    The goal of this work was the development of suitable (real-time) RT-PCR techniques for fast and sensitive diagnosis of EAV and for molecular-epidemiological characterisation of viral strains, as an alternative to virus isolation. To this purpose two conventional RT-PCR methods and one real-time RT-PCR were adapted to detect the broadest possible spectrum of viral strains. Several dilutions with Bucyrus strain showed a 100-fold higher sensitivity of real-time RT-PCR and heminested RT-PCR compared to simple RT-PCR. Making use of 11 cell culture supernatants of different EAV isolates and 7 semen samples of positive stallions, the suitability of the techniques could be shown. Phylogenetic analysis of sequences of the newly analysed samples compared with known sequences indicated that more EAV-lineages exist than presently described.

  12. Using quantitative PCR with retrotransposon-based insertion polymorphisms as markers in sugarcane

    PubMed Central

    Metcalfe, Cushla J.; Oliveira, Sarah G.; Gaiarsa, Jonas W.; Aitken, Karen S.; Carneiro, Monalisa S.; Zatti, Fernanda; Van Sluys, Marie-Anne

    2015-01-01

    Sugarcane is the main source of the world’s sugar and is becoming increasingly important as a source of biofuel. The highly polyploid and heterozygous nature of the sugarcane genome has meant that characterization of the genome has lagged behind that of other important crops. Here we developed a method using a combination of quantitative PCR with a transposable marker system to score the relative number of alleles with a transposable element (TE) present at a particular locus. We screened two genera closely related to Saccharum (Miscanthus and Erianthus), wild Saccharum, traditional cultivars, and 127 modern cultivars from Brazilian and Australian breeding programmes. We showed how this method could be used in various ways. First, we showed that the method could be extended to be used as part of a genotyping system. Secondly, the history of insertion and timing of the three TEs examined supports our current understanding of the evolution of the Saccharum complex. Thirdly, all three TEs were found in only one of the two main lineages leading to the modern sugarcane cultivars and are therefore the first TEs identified that could potentially be used as markers for Saccharum spontaneum. PMID:26093024

  13. Using quantitative PCR with retrotransposon-based insertion polymorphisms as markers in sugarcane.

    PubMed

    Metcalfe, Cushla J; Oliveira, Sarah G; Gaiarsa, Jonas W; Aitken, Karen S; Carneiro, Monalisa S; Zatti, Fernanda; Van Sluys, Marie-Anne

    2015-07-01

    Sugarcane is the main source of the world's sugar and is becoming increasingly important as a source of biofuel. The highly polyploid and heterozygous nature of the sugarcane genome has meant that characterization of the genome has lagged behind that of other important crops. Here we developed a method using a combination of quantitative PCR with a transposable marker system to score the relative number of alleles with a transposable element (TE) present at a particular locus. We screened two genera closely related to Saccharum (Miscanthus and Erianthus), wild Saccharum, traditional cultivars, and 127 modern cultivars from Brazilian and Australian breeding programmes. We showed how this method could be used in various ways. First, we showed that the method could be extended to be used as part of a genotyping system. Secondly, the history of insertion and timing of the three TEs examined supports our current understanding of the evolution of the Saccharum complex. Thirdly, all three TEs were found in only one of the two main lineages leading to the modern sugarcane cultivars and are therefore the first TEs identified that could potentially be used as markers for Saccharum spontaneum.

  14. Measurement of lentiviral vector titre and copy number by cross-species duplex quantitative PCR.

    PubMed

    Christodoulou, I; Patsali, P; Stephanou, C; Antoniou, M; Kleanthous, M; Lederer, C W

    2016-01-01

    Lentiviruses are the vectors of choice for many preclinical studies and clinical applications of gene therapy. Accurate measurement of biological vector titre before treatment is a prerequisite for vector dosing, and the calculation of vector integration sites per cell after treatment is as critical to the characterisation of modified cell products as it is to long-term follow-up and the assessment of risk and therapeutic efficiency in patients. These analyses are typically based on quantitative real-time PCR (qPCR), but as yet compromise accuracy and comparability between laboratories and experimental systems, the former by using separate simplex reactions for the detection of endogene and lentiviral sequences and the latter by designing different PCR assays for analyses in human cells and animal disease models. In this study, we validate in human and murine cells a qPCR system for the single-tube assessment of lentiviral vector copy numbers that is suitable for analyses in at least 33 different mammalian species, including human and other primates, mouse, pig, cat and domestic ruminants. The established assay combines the accuracy of single-tube quantitation by duplex qPCR with the convenience of one-off assay optimisation for cross-species analyses and with the direct comparability of lentiviral transduction efficiencies in different species. PMID:26202078

  15. Highly sensitive and quantitative evaluation of the EGFR T790M mutation by nanofluidic digital PCR.

    PubMed

    Iwama, Eiji; Takayama, Koichi; Harada, Taishi; Okamoto, Isamu; Ookubo, Fumihiko; Kishimoto, Junji; Baba, Eishi; Oda, Yoshinao; Nakanishi, Yoichi

    2015-08-21

    The mutation of T790M in EGFR is a major mechanism of resistance to treatment with EGFR-TKIs. Only qualitative detection (presence or absence) of T790M has been described to date, however. Digital PCR (dPCR) analysis has recently been applied to the quantitative detection of target molecules in cancer with high sensitivity. In the present study, 25 tumor samples (13 obtained before and 12 after EGFR-TKI treatment) from 18 NSCLC patients with activating EGFR mutations were evaluated for T790M with dPCR. The ratio of the number of T790M alleles to that of activating mutation alleles (T/A) was determined. dPCR detected T790M in all 25 samples. Although T790M was present in all pre-TKI samples from 13 patients, 10 of these patients had a low T/A ratio and manifested substantial tumor shrinkage during treatment with EGFR-TKIs. In six of seven patients for whom both pre- and post-TKI samples were available, the T/A ratio increased markedly during EGFR-TKI treatment. Highly sensitive dPCR thus detected T790M in all NSCLC patients harboring activating EGFR mutations whether or not they had received EGFR-TKI treatment. Not only highly sensitive but also quantitative detection of T790M is important for evaluation of the contribution of T790M to EGFR-TKI resistance.

  16. Use of propidium monoazide for the enumeration of viable Brettanomyces bruxellensis in wine and beer by quantitative PCR.

    PubMed

    Vendrame, Marco; Manzano, Marisa; Comi, Giuseppe; Bertrand, Julien; Iacumin, Lucilla

    2014-09-01

    Brettanomyces bruxellensis is a current problem in winemaking all over the world, and the question if B. bruxellensis has a positive or negative impact on wine is one of the most controversial discussions in the world. The presence of live B. bruxellensis cells represents the risk of growth and an increase in cell numbers, which is related to the potential production of volatile phenols. In this work, the optimisation of a PMA-quantitative PCR (qPCR) method to enumerate only viable cells was carried out using the standard strain B. bruxellensis DSMZ 70726. The obtained detection limits were 0.83 log CFU/mL in red wine, 0.63 log CFU/mL in white wine and 0.23 log CFU/mL in beer. Moreover, the quantification was also performed by Reverse Transcription quantitative PCR (RT-qPCR), and the results showed a higher detection limit for all of the trials.

  17. Use of propidium monoazide for the enumeration of viable Brettanomyces bruxellensis in wine and beer by quantitative PCR.

    PubMed

    Vendrame, Marco; Manzano, Marisa; Comi, Giuseppe; Bertrand, Julien; Iacumin, Lucilla

    2014-09-01

    Brettanomyces bruxellensis is a current problem in winemaking all over the world, and the question if B. bruxellensis has a positive or negative impact on wine is one of the most controversial discussions in the world. The presence of live B. bruxellensis cells represents the risk of growth and an increase in cell numbers, which is related to the potential production of volatile phenols. In this work, the optimisation of a PMA-quantitative PCR (qPCR) method to enumerate only viable cells was carried out using the standard strain B. bruxellensis DSMZ 70726. The obtained detection limits were 0.83 log CFU/mL in red wine, 0.63 log CFU/mL in white wine and 0.23 log CFU/mL in beer. Moreover, the quantification was also performed by Reverse Transcription quantitative PCR (RT-qPCR), and the results showed a higher detection limit for all of the trials. PMID:24929737

  18. Quantitative real-time PCR (qPCR) detection chemistries affect enumeration of the Dehalococcoides 16S rRNA gene in groundwater.

    PubMed

    Hatt, Janet K; Löffler, Frank E

    2012-02-01

    Quantitative real-time PCR (qPCR) commonly uses the fluorogenic 5' nuclease (TaqMan) and SYBR Green I (SG) detection chemistries to enumerate biomarker genes. Dehalococcoides (Dhc) are keystone bacteria for the detoxification of chlorinated ethenes, and the Dhc 16S ribosomal RNA (rRNA) gene serves as a biomarker for monitoring reductive dechlorination in contaminated aquifers. qPCR enumeration of Dhc biomarker genes using the TaqMan or SG approach with the same primer set yielded linear calibration curves over a seven orders of magnitude range with similar amplification efficiencies. The TaqMan assay discriminates specific from nonspecific amplification observed at low template concentrations with the SG assay, and had a 10-fold lower limit of detection of ~3 copies per assay. When applied to Dhc pure cultures and Dhc-containing consortia, both detection methods enumerated Dhc biomarker genes with differences not exceeding 3-fold. Greater variability was observed with groundwater samples, and the SG chemistry produced false-positive results or yielded up to 6-fold higher biomarker gene abundances compared to the TaqMan method. In most cases, the apparent error associated with SG detection resulted from quantification of nonspecific amplification products and was more pronounced with groundwater samples that had low biomarker concentrations or contained PCR inhibitors. Correction of the apparent error using post-amplification melting curve analysis produced 2 to 21-fold lower abundance estimates; however, gel electrophoretic analysis of amplicons demonstrated that melting curve analysis was insufficient to recognize all nonspecific amplification. Upon exclusion of nonspecific amplification products identified by combined melting curve and electrophoretic amplicon analyses, the SG method produced false-negative results compared to the TaqMan method. To achieve sensitive and accurate quantification of Dhc biomarker genes in environmental samples (e.g., groundwater

  19. Quantitative Expression Analysis in Brassica napus by Northern Blot Analysis and Reverse Transcription-Quantitative PCR in a Complex Experimental Setting

    PubMed Central

    Rumlow, Annekathrin; Keunen, Els; Klein, Jan; Pallmann, Philip; Riemenschneider, Anja; Cuypers, Ann

    2016-01-01

    Analysis of gene expression is one of the major ways to better understand plant reactions to changes in environmental conditions. The comparison of many different factors influencing plant growth challenges the gene expression analysis for specific gene-targeted experiments, especially with regard to the choice of suitable reference genes. The aim of this study is to compare expression results obtained by Northern blot, semi-quantitative PCR and RT-qPCR, and to identify a reliable set of reference genes for oilseed rape (Brassica napus L.) suitable for comparing gene expression under complex experimental conditions. We investigated the influence of several factors such as sulfur deficiency, different time points during the day, varying light conditions, and their interaction on gene expression in oilseed rape plants. The expression of selected reference genes was indeed influenced under these conditions in different ways. Therefore, a recently developed algorithm, called GrayNorm, was applied to validate a set of reference genes for normalizing results obtained by Northern blot analysis. After careful comparison of the three methods mentioned above, Northern blot analysis seems to be a reliable and cost-effective alternative for gene expression analysis under a complex growth regime. For using this method in a quantitative way a number of references was validated revealing that for our experiment a set of three references provides an appropriate normalization. Semi-quantitative PCR was prone to many handling errors and difficult to control while RT-qPCR was very sensitive to expression fluctuations of the reference genes. PMID:27685087

  20. Rapid, Quantitative PCR Monitoring of Growth of Clostridium botulinum Type E in Modified-Atmosphere-Packaged Fish

    PubMed Central

    Kimura, B.; Kawasaki, S.; Nakano, H.; Fujii, T.

    2001-01-01

    A rapid, quantitative PCR assay (TaqMan assay) which quantifies Clostridium botulinum type E by amplifying a 280-bp sequence from the botulinum neurotoxin type E (BoNT/E) gene is described. With this method, which uses the hydrolysis of an internal fluoregenic probe and monitors in real time the increase in the intensity of fluorescence during PCR by using the ABI Prism 7700 sequence detection system, it was possible to perform accurate and reproducible quantification of the C. botulinum type E toxin gene. The sensitivity and specificity of the assay were verified by using 6 strains of C. botulinum type E and 18 genera of 42 non-C. botulinum type E strains, including strains of C. botulinum types A, B, C, D, F, and G. In both pure cultures and modified-atmosphere-packaged fish samples (jack mackerel), the increase in amounts of C. botulinum DNA could be monitored (the quantifiable range was 102 to 108 CFU/ml or g) much earlier than toxin could be detected by mouse assay. The method was applied to a variety of seafood samples with a DNA extraction protocol using guanidine isothiocyanate. Overall, an efficient recovery of C. botulinum cells was obtained from all of the samples tested. These results suggested that quantification of BoNT/E DNA by the rapid, quantitative PCR method was a good method for the sensitive assessment of botulinal risk in the seafood samples tested. PMID:11133447

  1. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    PubMed

    Xie, Xingmei; Liang, Qiaoyi

    2014-01-01

    Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR). Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY), five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377), one X/Y-common STR (X22), and two autosomal STRs (D13S305 and D21S11). Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  2. Highly sensitive quantitative PCR for the detection and differentiation of Pseudogymnoascus destructans and other Pseudogymnoascus species.

    PubMed

    Shuey, Megan M; Drees, Kevin P; Lindner, Daniel L; Keim, Paul; Foster, Jeffrey T

    2014-03-01

    White-nose syndrome is a fungal disease that has decimated bat populations across eastern North America. Identification of the etiologic agent, Pseudogymnoascus destructans (formerly Geomyces destructans), in environmental samples is essential to proposed management plans. A major challenge is the presence of closely related species, which are ubiquitous in many soils and cave sediments and often present in high abundance. We present a dual-probe real-time quantitative PCR assay capable of detecting and differentiating P. destructans from closely related fungi in environmental samples from North America. The assay, based on a single nucleotide polymorphism (SNP) specific to P. destructans, is capable of rapid low-level detection from various sampling media, including sediment, fecal samples, wing biopsy specimens, and skin swabs. This method is a highly sensitive, high-throughput method for identifying P. destructans, other Pseudogymnoascus spp., and Geomyces spp. in the environment, providing a fundamental component of research and risk assessment for addressing this disease, as well as other ecological and mycological work on related fungi. PMID:24375140

  3. Detection of Ophiocordyceps sinensis in soil by quantitative real-time PCR.

    PubMed

    Peng, Qingyun; Zhong, Xin; Lei, Wei; Zhang, Guren; Liu, Xin

    2013-03-01

    Ophiocordyceps sinensis, one of the best known entomopathogenic fungi in traditional Chinese medicine, parasitizes larvae of the moth genus Thitarodes, which lives in soil tunnels. However, little is known about the spatial distribution of O. sinensis in the soil. We established a protocol for DNA extraction, purification, and quantification of O. sinensis in soil with quantitative real-time PCR targeting the internal transcribed spacer region. The method was assessed using 34 soil samples from Tibet. No inhibitory effects in purified soil DNA extracts were detected. The standard curve method for absolute DNA quantification generated crossing point values that were strongly and linearly correlated to the log10 of the initial amount of O. sinensis genomic DNA (r(2) = 0.999) over 7 orders of magnitude (4 × 10(1) to 4 × 10(7) fg). The amplification efficiency and y-intercept value of the standard curve were 1.953 and 37.70, respectively. The amount of O. sinensis genomic DNA decreased with increasing soil depth and horizontal distance from a sclerotium (P < 0.05). Our protocol is rapid, specific, sensitive, and provides a powerful tool for quantification of O. sinensis from soil.

  4. Detection of Ophiocordyceps sinensis in soil by quantitative real-time PCR.

    PubMed

    Peng, Qingyun; Zhong, Xin; Lei, Wei; Zhang, Guren; Liu, Xin

    2013-03-01

    Ophiocordyceps sinensis, one of the best known entomopathogenic fungi in traditional Chinese medicine, parasitizes larvae of the moth genus Thitarodes, which lives in soil tunnels. However, little is known about the spatial distribution of O. sinensis in the soil. We established a protocol for DNA extraction, purification, and quantification of O. sinensis in soil with quantitative real-time PCR targeting the internal transcribed spacer region. The method was assessed using 34 soil samples from Tibet. No inhibitory effects in purified soil DNA extracts were detected. The standard curve method for absolute DNA quantification generated crossing point values that were strongly and linearly correlated to the log10 of the initial amount of O. sinensis genomic DNA (r(2) = 0.999) over 7 orders of magnitude (4 × 10(1) to 4 × 10(7) fg). The amplification efficiency and y-intercept value of the standard curve were 1.953 and 37.70, respectively. The amount of O. sinensis genomic DNA decreased with increasing soil depth and horizontal distance from a sclerotium (P < 0.05). Our protocol is rapid, specific, sensitive, and provides a powerful tool for quantification of O. sinensis from soil. PMID:23540339

  5. Evaluation of PCR-based beef sexing methods.

    PubMed

    Zeleny, Reinhard; Bernreuther, Alexander; Schimmel, Heinz; Pauwels, Jean

    2002-07-17

    Analysis of the sex of beef meat by fast and reliable molecular methods is an important measure to ensure correct allocation of export refunds, which are considerably higher for male beef meat. Two PCR-based beef sexing methods have been optimized and evaluated. The amelogenin-type method revealed excellent accuracy and robustness, whereas the bovine satellite/Y-chromosome duplex PCR procedure showed more ambiguous results. In addition, an interlaboratory comparison was organized to evaluate currently applied PCR-based sexing methods in European customs laboratories. From a total of 375 samples sent out, only 1 false result was reported (female identified as male). However, differences in the performances of the applied methods became apparent. The collected data contribute to specify technical requirements for a common European beef sexing methodology based on PCR. PMID:12105941

  6. Quantitative PCR Profiling of Escherichia coli in Livestock Feces Reveals Increased Population Resilience Relative to Culturable Counts under Temperature Extremes.

    PubMed

    Oliver, David M; Bird, Clare; Burd, Emmy; Wyman, Michael

    2016-09-01

    The relationship between culturable counts (CFU) and quantitative PCR (qPCR) cell equivalent counts of Escherichia coli in dairy feces exposed to different environmental conditions and temperature extremes was investigated. Fecal samples were collected in summer and winter from dairy cowpats held under two treatments: field-exposed versus polytunnel-protected. A significant correlation in quantified E. coli was recorded between the qPCR and culture-based methods (r = 0.82). Evaluation of the persistence profiles of E. coli over time revealed no significant difference in the E. coli numbers determined as either CFU or gene copies during the summer for the field-exposed cowpats, whereas significantly higher counts were observed by qPCR for the polytunnel-protected cowpats, which were exposed to higher ambient temperatures. In winter, the qPCR returned significantly higher counts of E. coli for the field-exposed cowpats, thus representing a reversal of the findings from the summer sampling campaign. Results from this study suggest that with increasing time post-defecation and with the onset of challenging environmental conditions, such as extremes in temperature, culture-based counts begin to underestimate the true resilience of viable E. coli populations in livestock feces. This is important not only in the long term as the Earth changes in response to climate-change drivers but also in the short term during spells of extremely cold or hot weather. PMID:27454176

  7. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits.

    PubMed

    Demeke, Tigst; Jenkins, G Ronald

    2010-03-01

    Biotechnology-derived varieties of canola, cotton, corn and soybean are being grown in the USA, Canada and other predominantly grain exporting countries. Although the amount of farmland devoted to production of biotechnology-derived crops continues to increase, lingering concerns that unintended consequences may occur provide the EU and most grain-importing countries with justification to regulate these crops. Legislation in the EU requires traceability of grains/oilseeds, food and feed products, and labelling, when a threshold level of 0.9% w/w of genetically engineered trait is demonstrated to be present in an analytical sample. The GE content is routinely determined by quantitative PCR (qPCR) and plant genomic DNA provides the template for the initial steps in this process. A plethora of DNA extraction methods exist for qPCR applications. Implementing standardized methods for detection of genetically engineered traits is necessary to facilitate grain marketing. The International Organization for Standardization draft standard 21571 identifies detergent-based methods and commercially available kits that are widely used for DNA extraction, but also indicates that adaptations may be necessary depending upon the sample matrix. This review assesses advantages and disadvantages of various commercially available DNA extraction kits, as well as modifications to published cetyltrimethylammonium bromide methods. Inhibitors are a major obstacle for efficient amplification in qPCR. The types of PCR inhibitors and techniques to minimize inhibition are discussed. Finally, accurate quantification of DNA for applications in qPCR is not trivial. Many confounders contribute to differences in analytical measurements when a particular DNA quantification method is applied and different methods do not always provide concordant results on the same DNA sample. How these differences impact measurement uncertainty in qPCR is considered.

  8. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits.

    PubMed

    Demeke, Tigst; Jenkins, G Ronald

    2010-03-01

    Biotechnology-derived varieties of canola, cotton, corn and soybean are being grown in the USA, Canada and other predominantly grain exporting countries. Although the amount of farmland devoted to production of biotechnology-derived crops continues to increase, lingering concerns that unintended consequences may occur provide the EU and most grain-importing countries with justification to regulate these crops. Legislation in the EU requires traceability of grains/oilseeds, food and feed products, and labelling, when a threshold level of 0.9% w/w of genetically engineered trait is demonstrated to be present in an analytical sample. The GE content is routinely determined by quantitative PCR (qPCR) and plant genomic DNA provides the template for the initial steps in this process. A plethora of DNA extraction methods exist for qPCR applications. Implementing standardized methods for detection of genetically engineered traits is necessary to facilitate grain marketing. The International Organization for Standardization draft standard 21571 identifies detergent-based methods and commercially available kits that are widely used for DNA extraction, but also indicates that adaptations may be necessary depending upon the sample matrix. This review assesses advantages and disadvantages of various commercially available DNA extraction kits, as well as modifications to published cetyltrimethylammonium bromide methods. Inhibitors are a major obstacle for efficient amplification in qPCR. The types of PCR inhibitors and techniques to minimize inhibition are discussed. Finally, accurate quantification of DNA for applications in qPCR is not trivial. Many confounders contribute to differences in analytical measurements when a particular DNA quantification method is applied and different methods do not always provide concordant results on the same DNA sample. How these differences impact measurement uncertainty in qPCR is considered. PMID:19789856

  9. Rapid and direct quantitative detection of viable bifidobacteria in probiotic yogurt by combination of ethidium monoazide and real-time PCR using a molecular beacon approach.

    PubMed

    Meng, X C; Pang, R; Wang, C; Wang, L Q

    2010-11-01

    The potential of ethidium monoazide (EMA) real-time PCR method based on molecular beacon probe for rapid detection of viable bifidobacteria present in probiotic yogurt was evaluated in this work. A real-time PCR with molecular beacon assay was developed to determine genus Bifidobacterium quantitatively in order to increase the sensitivity and specificity of assay. EMA was used to treat probiotic yogurt prior to DNA extraction and real-time PCR detection to allow detection of only viable bacteria. The primer set of Bif-F/Bif-R which is genus-specific for Bifid. was designed. The specificity of the probes ensures that no signal is generated by non-target amplicons. Linear regression analysis demonstrated a good correlation (R² = 0·9948) between the EMA real-time PCR results and the plate counting, and real-time quantitative PCR results correlated adequately with enumeration of bifidobacteria by culture for commercial probiotic yogurt. This culture-independent approach is promising for the direct and rapid detection of viable bifidobacteria in commercial probiotic yogurt, and the detection can be carried out within 4 h. The detection limit for this method is about 10⁴ cell/ml. In conclusion, the direct quantitative EMA real-time PCR assay based on molecular beacon described in this research is a rapid and quantitative method.

  10. Quantification of female and male Plasmodium falciparum gametocytes by reverse transcriptase quantitative PCR.

    PubMed

    Schneider, Petra; Reece, Sarah E; van Schaijk, Ben C L; Bousema, Teun; Lanke, Kjerstin H W; Meaden, Cora S J; Gadalla, Amal; Ranford-Cartwright, Lisa C; Babiker, Hamza A

    2015-01-01

    The transmission of malaria parasites depends on the presence of sexual stages (gametocytes) in the blood, making the ratio and densities of female and male gametocytes important determinants of parasite fitness. This manuscript describes the development of reverse transcriptase quantitative PCR (RT-qPCR) assays to separately quantify mature female and male gametocytes of the human malaria parasite Plasmodium falciparum, and reveals that Pfs25 mRNA is expressed only in female gametocytes. The female (Pfs25) and male (Pfs230p) gametocyte specific RT-qPCR assays have lower detection limits of 0.3 female and 1.8 male gametocytes per microlitre of blood, respectively, making them more sensitive than microscopy. Accurate quantification of the ratio and densities of female and male gametocytes will increase understanding of P. falciparum transmission and improve the evaluation of transmission blocking interventions.

  11. Detecting Polychlorinated Biphenyls by Ah Receptor and Fluorescence Quantitative PCR with Exonuclease

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoxiang; Zhuang, Huisheng

    2010-11-01

    Tetrachlorobiphenyls as ligands were cultivated with goldfish, Ah receptors were extracted from the liver of goldfish and purified by hydroxyapatite. The complex of TCB ligands-receptors were analyzed by Surface Plasmon Resonance. DNA probes were amplified by PCR using Primers F1 and F2 with the DNA recognition site of responsive enhancer. DNA probes bound to the complex were not digested by exonuclease. The DNA that bound to the complex was quantified by real time PCR. A standard curve with TCB concentration to Ct values was obtained in the range of 10-12mol/L to 10-8 mol/L, according to TCB concentration in samples. The detection limit of the assay was below 10-12mol/L of TCB. Compared with HPLC, this assay is much more sensitive. These results suggest that fluorescence quantitative PCR with exonuclease by Ah receptors fits for detection of trace PCB.

  12. The workflow of single-cell expression profiling using quantitative real-time PCR

    PubMed Central

    Ståhlberg, Anders; Kubista, Mikael

    2014-01-01

    Biological material is heterogeneous and when exposed to stimuli the various cells present respond differently. Much of the complexity can be eliminated by disintegrating the sample, studying the cells one by one. Single-cell profiling reveals responses that go unnoticed when classical samples are studied. New cell types and cell subtypes may be found and relevant pathways and expression networks can be identified. The most powerful technique for single-cell expression profiling is currently quantitative reverse transcription real-time PCR (RT-qPCR). A robust RT-qPCR workflow for highly sensitive and specific measurements in high-throughput and a reasonable degree of multiplexing has been developed for targeting mRNAs, but also microRNAs, non-coding RNAs and most recently also proteins. We review the current state of the art of single-cell expression profiling and present also the improvements and developments expected in the next 5 years. PMID:24649819

  13. Critical methodological factors in diagnosing minimal residual disease in hematological malignancies using quantitative PCR.

    PubMed

    Nyvold, Charlotte Guldborg

    2015-05-01

    Hematological malignancies are a heterogeneous group of cancers with respect to both presentation and prognosis, and many subtypes are nowadays associated with aberrations that make up excellent molecular targets for the quantification of minimal residual disease. The quantitative PCR methodology is outstanding in terms of sensitivity, specificity and reproducibility and thus an excellent choice for minimal residual disease assessment. However, the methodology still has pitfalls that should be carefully considered when the technique is integrated in a clinical setting.

  14. Quantitation of HIV-1 RNA in breast milk by real time PCR.

    PubMed

    Becquart, Pierre; Foulongne, Vincent; Willumsen, Juana; Rouzioux, Christine; Segondy, Michel; Van de Perre, Philippe

    2006-04-01

    HIV-1 RNA in breast milk is a strong predictor of HIV-1 transmission through breastfeeding. In the present report, breast milk samples from HIV-1 uninfected donors were spiked with dilution of quantified culture supernatant from HIV-1(NDK) infected PBMC. Two RNA extraction techniques based on silica extraction, Nuclisens (BioMerieux) and Triazol (Qiagen), two techniques based on guanidine thiocynanate/chloroforme extraction, TRIzol (Life Technologie) and Amplicor HIV-1 Monitor (Roche Diagnostic Systems), and one technique based on electrostatic adsorption on iron oxide micro beads (Promega) were compared. HIV-1 RNA was quantitated by real time PCR (LTR gene) and Amplicor HIV-1 Monitor. Combining magnetic micro beads extraction and real time PCR quantitation allowed to correctly quantify breast milk HIV-1 RNA, with a difference between the expected and measured HIV-1 RNA levels always lower than 0.3 log copies/ml. The same combination was confirmed on 25 breast milk samples from HIV-1 infected women collected in Kwazulu-Natal, South Africa, by comparing measurements with those obtained by the Amplicor HIV-1 Monitor (r(2)=0.88). Nucleic acid extraction by magnetic micro beads followed by real time PCR is a reliable, sensitive, rapid and simple procedure to quantify HIV-1 RNA in breast milk and allows for PCR inhibitors found frequently in these samples.

  15. Evaluation of Various Campylobacter-Specific Quantitative PCR (qPCR) Assays for Detection and Enumeration of Campylobacteraceae in Irrigation Water and Wastewater via a Miniaturized Most-Probable-Number–qPCR Assay

    PubMed Central

    Banting, Graham S.; Braithwaite, Shannon; Scott, Candis; Kim, Jinyong; Jeon, Byeonghwa; Ashbolt, Nicholas; Ruecker, Norma; Tymensen, Lisa; Charest, Jollin; Pintar, Katarina; Checkley, Sylvia

    2016-01-01

    ABSTRACT Campylobacter spp. are the leading cause of bacterial gastroenteritis worldwide, and water is increasingly seen as a risk factor in transmission. Here we describe a most-probable-number (MPN)–quantitative PCR (qPCR) assay in which water samples are centrifuged and aliquoted into microtiter plates and the bacteria are enumerated by qPCR. We observed that commonly used Campylobacter molecular assays produced vastly different detection rates. In irrigation water samples, detection rates varied depending upon the PCR assay and culture method used, as follows: 0% by the de Boer Lv1-16S qPCR assay, 2.5% by the Van Dyke 16S and Jensen glyA qPCR assays, and 75% by the Linton 16S endpoint PCR when cultured at 37°C. Primer/probe specificity was the major confounder, with Arcobacter spp. routinely yielding false-positive results. The primers and PCR conditions described by Van Dyke et al. (M. I. Van Dyke, V. K. Morton, N. L. McLellan, and P. M. Huck, J Appl Microbiol 109:1053–1066, 2010, http://dx.doi.org/10.1111/j.1365-2672.2010.04730.x) proved to be the most sensitive and specific for Campylobacter detection in water. Campylobacter occurrence in irrigation water was found to be very low (<2 MPN/300 ml) when this Campylobacter-specific qPCR was used, with the most commonly detected species being C. jejuni, C. coli, and C. lari. Campylobacters in raw sewage were present at ∼102/100 ml, with incubation at 42°C required for reducing microbial growth competition from arcobacters. Overall, when Campylobacter prevalence and/or concentration in water is reported using molecular methods, considerable validation is recommended when adapting methods largely developed for clinical applications. Furthermore, combining MPN methods with molecular biology-based detection algorithms allows for the detection and quantification of Campylobacter spp. in environmental samples and is potentially suited to quantitative microbial risk assessment for improved public health disease

  16. Determination of HCV RNA concentration by direct quantitation of the products from a single RT-PCR.

    PubMed

    Pérez-Ruiz, M; Torres, C; García-López, P A; Ruiz-Extremera, A; Salmerón, J; Berzal-Herranz, A

    1997-12-01

    A novel method for the estimation of HCV RNA levels in vivo was developed, based on competitive RT-PCR. The use of the Tth DNA polymerase and 5' 32P-labeled antisense primer respectively reduced cross-contamination and permitted the direct quantification of viral loads by the analysis of the radioactivity of PCR products derived from a clinical sample and a competitive deleted template, separated previously on a polyacrilamide gel. A HCV fragment (H) and a competitive (deltaH) RNA templates were synthesized for optimizing the method. The minimal starting RNA detectable by RT-PCR was 40 copies. RT-PCR performed with ratios deltaH/H ranging from 1/1 to 1/20 revealed different relative percentages of both H and deltaH products, changing from 90% of deltaH product when the ratio was 1/1 to 5%, when it was 1/20. Regression analysis was adjusted to a linear model and served to further estimate HCV RNA loads from clinical samples. HCV RNA quantitation was carried out in 19 patients. Higher viral loads were related to type 1b infection and persistence of HCV RNA after interferon therapy. This method is simple, reproducible and useful for rapid estimation of HCV RNA load in vivo.

  17. Usefulness of in-house PCR methods for hepatitis B virus DNA detection.

    PubMed

    Portilho, Moyra Machado; Baptista, Marcia Leite; da Silva, Messias; de Sousa, Paulo Sérgio Fonseca; Lewis-Ximenez, Lia Laura; Lampe, Elisabeth; Villar, Livia Melo

    2015-10-01

    The aim of the present study was to evaluate the performance of three in-house PCR techniques for HBV DNA detection and compare it with commercial quantitative methods to evaluate the usefulness of in-house methods for HBV diagnosis. Three panels of HBsAg reactive sera samples were evaluated: (i) 50 samples were examined using three methods for in-house qualitative PCR and the Cobas Amplicor HBV Monitor Assay; (ii) 87 samples were assayed using in-house semi-nested PCR and the Cobas TaqMan HBV test; (iii) 11 serial samples obtained from 2 HBV-infected individuals were assayed using the Cobas Amplicor HBV test and semi-nested PCR. In panel I, HBV DNA was detected in 44 samples using the Cobas Amplicor HBV test, 42 samples using semi-nested PCR (90% concordance with Cobas Amplicor), 22 samples using PCR for the core gene (63.6% concordance) and 29 samples using single-round PCR for the pre-S/S gene (75% concordance). In panel II, HBV DNA was quantified in 78 of the 87 HBsAg reactive samples using Cobas TaqMan but 52 samples using semi-nested PCR (67.8% concordance). HBV DNA was detected in serial samples until the 17th and 26th week after first donation using in-house semi-nested PCR and the Cobas Amplicor HBV test, respectively. In-house semi-nested PCR presented adequate concordance with commercial methods as an alternative method for HBV molecular diagnosis in low-resource settings.

  18. Quantitative PCR Analysis of Molds in the Dust from Homes of Asthmatic Children in North Carolina

    SciTech Connect

    Vesper, Stephen J.; McKinstry, Craig A.; Ashley, Peter; Haugland, Richard A.; Yeatts, Karin; Bradham, Karen; Svendsen, Eric

    2007-07-10

    The vacuum cleaner bag (VCB) dust from the homes of 19 asthmatic children in North Carolina (NC) was analyzed by mold specific quantitative PCR. These results were compared to the analysis of the VCB dust from 157 homes in the HUD “American Healthy Home Survey” of homes in the US. The American Relative Moldiness Index (ARMI) was calculated for each of the homes. The mean and standard deviation (SD) of the ARMI values in the homes of the NC asthmatic children was 11.0 (5.3), compared to the HUD survey VCB ARMI value mean and SD of 6.6 (4.4). The median ARMI value was significantly higher(p < 0.001) in the asthmatic childrens’s homes. The molds Chaetomium globosum and Eurotium amsterdameli were the primary species in the NC homes making the ARMI values higher. Vacuum cleaner bag dust samples may be a less expensive but still useful method of home mold analysis.

  19. Quantitative PCR analysis of molds in the dust from homes of asthmatic children in North Carolina.

    PubMed

    Vesper, Stephen; McKinstry, Craig; Ashley, Peter; Haugland, Richard; Yeatts, Karin; Bradham, Karen; Svendsen, Erik

    2007-08-01

    The vacuum bag (VB) dust from the homes of 19 asthmatic children in North Carolina (NC) was analyzed by mold specific quantitative PCR. These results were compared to the analysis of the VB dust from 176 homes in the HUD, American Healthy Home Survey of homes in the US. The Environmental Relative Moldiness Index (ERMI) was calculated for each of the homes. The mean and standard deviation (SD) of the ERMI values in the homes of the NC asthmatic children was 16.4 (6.77), compared to the HUD survey VB ERMI value mean and SD of 11.2 (6.72), and was significantly greater (t-test, p = 0.003) in the NC asthmatic children's homes. The molds Chaetomium globosum, Aspergillus fumigatus, and the Eurotium Group were the primary species in the NC homes of asthmatics, making the ERMI values significantly higher (p < 0.02 for each). Vacuum bag dust analysis may be a useful method for estimating the mold burden in a home.

  20. A two-step real-time PCR assay for quantitation and genotyping of human parvovirus 4.

    PubMed

    Väisänen, E; Lahtinen, A; Eis-Hübinger, A M; Lappalainen, M; Hedman, K; Söderlund-Venermo, M

    2014-01-01

    Human parvovirus 4 (PARV4) of the family Parvoviridae was discovered in a plasma sample of a patient with an undiagnosed acute infection in 2005. Currently, three PARV4 genotypes have been identified, however, with an unknown clinical significance. Interestingly, these genotypes seem to differ in epidemiology. In Northern Europe, USA and Asia, genotypes 1 and 2 have been found to occur mainly in persons with a history of injecting drug use or other parenteral exposure. In contrast, genotype 3 appears to be endemic in sub-Saharan Africa, where it infects children and adults without such risk behaviour. In this study, a novel straightforward and cost-efficient molecular assay for both quantitation and genotyping of PARV4 DNA was developed. The two-step method first applies a single-probe pan-PARV4 qPCR for screening and quantitation of this relatively rare virus, and subsequently, only the positive samples undergo a real-time PCR-based multi-probe genotyping. The new qPCR-GT method is highly sensitive and specific regardless of the genotype, and thus being suitable for studying the clinical impact and occurrence of the different PARV4 genotypes.

  1. Development of quantitative RT-PCR assays for detection of three classes of HHV-6B gene transcripts.

    PubMed

    Ihira, Masaru; Enomoto, Yoshihiko; Kawamura, Yoshiki; Nakai, Hidetaka; Sugata, Ken; Asano, Yoshizo; Tsuzuki, Motohiro; Emi, Nobuhiko; Goto, Tatsunori; Miyamura, Koichi; Matsumoto, Kimikazu; Kato, Koji; Takahashi, Yoshiyuki; Kojima, Seiji; Yoshikawa, Tetsushi

    2012-09-01

    The monitoring of active human herpesvirus 6 (HHV-6) B infection is important for distinguishing between the reactivation and latent state of the virus. The aim of this present study is to develop a quantitative reverse transcription polymerase chain reaction (RT-PCR) assay for diagnosis of active viral infection. Primers and probes for in house quantitative RT-PCR methods were designed to detect the three kinetic classes of HHV-6B mRNAs (U90, U12, U100). Stored PBMCs samples collected from 10 patients with exanthem subitum (primary HHV-6B infection) and 15 hematopoietic stem cell transplant recipients with HHV-6B reactivation were used to evaluate reliability for testing clinical samples. Excellent linearity was obtained with high correlation efficiency between the diluted RNA (1-100 ng/reaction) and C(t) value of each gene transcript. The U90 and U12 gene transcripts were detected in all of the peripheral blood mononuclear cells (PBMCs) samples collected in acute period of primary HHV-6B infection. Only one convalescent PBMCs sample was positive for the U90 gene transcript. Additionally, the reliability of HHV-6B quantitative RT-PCRs for diagnosis of viral reactivation in hematopoietic transplant recipients was evaluated. Relative to virus culture, U90 quantitative RT-PCR demonstrated the highest assay sensitivity, specificity, positive predictive value, and negative predictive value. Thus, this method could be a rapid and lower cost alternative to virus culture, which is difficult to perform generally, for identifying active HHV-6B infection. PMID:22825817

  2. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays

    PubMed Central

    Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J. L.; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias

    2016-01-01

    Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download. PMID:26863543

  3. Propidium monoazide combined with real-time quantitative PCR to quantify viable Alternaria spp. contamination in tomato products.

    PubMed

    Crespo-Sempere, Ana; Estiarte, Núria; Marín, Sonia; Sanchis, Vicente; Ramos, Antonio J

    2013-08-01

    Alternaria is a common contaminating genus of fungi in fruits, grains, and vegetables that causes severe economic losses to farmers and the food industry. Furthermore, it is claimed that Alternaria spp. are able to produce phytotoxic metabolites, and mycotoxins that are unsafe for human and animal health. DNA amplification techniques are being increasingly applied to detect, identify, and quantify mycotoxigenic fungi in foodstuffs, but the inability of these methods to distinguish between viable and nonviable cells might lead to an overestimation of mycotoxin-producing living cells. A promising technique to overcome this problem is the pre-treatment of samples with nucleic acid intercalating dyes, such as propidium monoazide (PMA), prior to quantitative PCR (qPCR). PMA selectively penetrates cells with a damaged membrane inhibiting DNA amplification during qPCRs. In our study, a primer pair (Alt4-Alt5) to specifically amplify and quantify Alternaria spp. by qPCR was designed. Quantification data of qPCR achieved a detection limit of 10(2)conidia/g of tomato. Here, we have optimized for the first time a DNA amplification-based PMA sample pre-treatment protocol for detecting viable Alternaria spp. cells. Artificially inoculated tomato samples treated with 65μM of PMA, showed a reduction in the signal by almost 7cycles in qPCR between live and heat-killed Alternaria spp. conidia. The tomato matrix had a protective effect on the cells against PMA toxicity, reducing the efficiency to distinguish between viable and nonviable cells. The results reported here indicate that the PMA-qPCR method is a suitable tool for quantifying viable Alternaria cells, which could be useful for estimating potential risks of mycotoxin contamination.

  4. Application of real-time RT-PCR for the quantitation and competitive replication study of H5 and H7 subtype avian influenza virus.

    PubMed

    Lee, Chang-Won; Suarez, David L

    2004-08-01

    Avian influenza (AI) viruses are endemic in wild birds and if transmitted to poultry can cause serious economic losses. In the study of AI, the quantitation of virus shed from infected birds is valuable in pathogenesis studies and to determine the effectiveness of vaccines, and is performed routinely by cultivation of virus containing samples using embryonating chicken eggs (ECE) and expressed by 50% egg infectious dose (EID(50)). Although, this assay is accurate and is the standard test for infectious virus titration, the method is laborious, requires a large number of ECE, and takes at least 7 days to determine results. In this study, a one-tube hydrolysis fluorescent probe based real-time RT-PCR (RRT-PCR) was applied for the quantitation of AI virus and compared with conventional virus titration method. A strong positive correlation was observed between the amount of RNA determined by quantitative RRT-PCR and the EID(50)s determined by conventional methods. This RRT-PCR test was further applied in the study of competitive replication of co-infected H5 and H7 subtype viruses in chickens. Using hemagglutinin subtype specific probes, we were able to determine the amount of individual subtype virus, which could not have easily been done with conventional methods. This RRT-PCR based quantitation of AI virus, which is specific, sensitive, easy to perform, and rapid, will be useful for virological, pathogenesis, and protection studies.

  5. Enumeration of viable and non-viable larvated Ascaris eggs with quantitative PCR

    EPA Science Inventory

    Aims: The goal of the study was to further develop an incubation-qPCR method for quantifying viable Ascaris eggs. The specific objectives were to characterize the detection limit and number of template copies per egg, determine the specificity of the method, and test the method w...

  6. Comparative Evaluation of Real-Time PCR Methods for Human Noroviruses in Wastewater and Human Stool.

    PubMed

    Masago, Yoshifumi; Konta, Yoshimitsu; Kazama, Shinobu; Inaba, Manami; Imagawa, Toshifumi; Tohma, Kentaro; Saito, Mayuko; Suzuki, Akira; Oshitani, Hitoshi; Omura, Tatsuo

    2016-01-01

    Selecting the best quantitative PCR assay is essential to detect human norovirus genome effectively from clinical and environmental samples because no cell lines have been developed to propagate this virus. The real-time PCR methods for noroviruses GI (4 assays) and GII (3 assays) were evaluated using wastewater (n = 70) and norovirus-positive stool (n = 77) samples collected in Japan between 2012 and 2013. Standard quantitative PCR assays recommended by the U.S. Environmental Protection Agency, International Organization for Standardization, and Ministry of Health, Labour and Welfare, Japan, together with recently reported assays were included. Significant differences in positive rates and quantification cycles were observed by non-parametric analysis. The present study identifies the best assay for norovirus GI and GII to amplify norovirus genomes efficiently. PMID:27525654

  7. Comparative Evaluation of Real-Time PCR Methods for Human Noroviruses in Wastewater and Human Stool

    PubMed Central

    Konta, Yoshimitsu; Kazama, Shinobu; Inaba, Manami; Imagawa, Toshifumi; Tohma, Kentaro; Saito, Mayuko; Suzuki, Akira; Oshitani, Hitoshi; Omura, Tatsuo

    2016-01-01

    Selecting the best quantitative PCR assay is essential to detect human norovirus genome effectively from clinical and environmental samples because no cell lines have been developed to propagate this virus. The real-time PCR methods for noroviruses GI (4 assays) and GII (3 assays) were evaluated using wastewater (n = 70) and norovirus-positive stool (n = 77) samples collected in Japan between 2012 and 2013. Standard quantitative PCR assays recommended by the U.S. Environmental Protection Agency, International Organization for Standardization, and Ministry of Health, Labour and Welfare, Japan, together with recently reported assays were included. Significant differences in positive rates and quantification cycles were observed by non-parametric analysis. The present study identifies the best assay for norovirus GI and GII to amplify norovirus genomes efficiently. PMID:27525654

  8. Selection and Validation of Reference Genes for Quantitative Real-time PCR in Gentiana macrophylla

    PubMed Central

    He, Yihan; Yan, Hailing; Hua, Wenping; Huang, Yaya; Wang, Zhezhi

    2016-01-01

    Real time quantitative PCR (RT-qPCR or qPCR) has been extensively applied for analyzing gene expression because of its accuracy, sensitivity, and high throughput. However, the unsuitable choice of reference gene(s) can lead to a misinterpretation of results. We evaluated the stability of 10 candidates – five traditional housekeeping genes (UBC21, GAPC2, EF-1α4, UBQ10, and UBC10) and five novel genes (SAND1, FBOX, PTB1, ARP, and Expressed1) – using the transcriptome data of Gentiana macrophylla. Common statistical algorithms ΔCt, GeNorm, NormFinder, and BestKeeper were run with samples collected from plants under various experimental conditions. For normalizing expression levels from tissues at different developmental stages, GAPC2 and UBC21 had the highest rankings. Both SAND1 and GAPC2 proved to be the optimal reference genes for roots from plants exposed to abiotic stresses while EF-1α4 and SAND1 were optimal when examining expression data from the leaves of stressed plants. Based on a comprehensive ranking of stability under different experimental conditions, we recommend that SAND1 and EF-1α4 are the most suitable overall. In this study, to find a suitable reference gene and its real-time PCR assay for G. macrophylla DNA content quantification, we evaluated three target genes including WRKY30, G10H, and SLS, through qualitative and absolute quantitative PCR with leaves under elicitors stressed experimental conditions. Arbitrary use of reference genes without previous evaluation can lead to a misinterpretation of the data. Our results will benefit future research on the expression of genes related to secoiridoid biosynthesis in this species under different experimental conditions. PMID:27446172

  9. Selection and Validation of Reference Genes for Quantitative Real-time PCR in Gentiana macrophylla.

    PubMed

    He, Yihan; Yan, Hailing; Hua, Wenping; Huang, Yaya; Wang, Zhezhi

    2016-01-01

    Real time quantitative PCR (RT-qPCR or qPCR) has been extensively applied for analyzing gene expression because of its accuracy, sensitivity, and high throughput. However, the unsuitable choice of reference gene(s) can lead to a misinterpretation of results. We evaluated the stability of 10 candidates - five traditional housekeeping genes (UBC21, GAPC2, EF-1α4, UBQ10, and UBC10) and five novel genes (SAND1, FBOX, PTB1, ARP, and Expressed1) - using the transcriptome data of Gentiana macrophylla. Common statistical algorithms ΔC t, GeNorm, NormFinder, and BestKeeper were run with samples collected from plants under various experimental conditions. For normalizing expression levels from tissues at different developmental stages, GAPC2 and UBC21 had the highest rankings. Both SAND1 and GAPC2 proved to be the optimal reference genes for roots from plants exposed to abiotic stresses while EF-1α4 and SAND1 were optimal when examining expression data from the leaves of stressed plants. Based on a comprehensive ranking of stability under different experimental conditions, we recommend that SAND1 and EF-1α4 are the most suitable overall. In this study, to find a suitable reference gene and its real-time PCR assay for G. macrophylla DNA content quantification, we evaluated three target genes including WRKY30, G10H, and SLS, through qualitative and absolute quantitative PCR with leaves under elicitors stressed experimental conditions. Arbitrary use of reference genes without previous evaluation can lead to a misinterpretation of the data. Our results will benefit future research on the expression of genes related to secoiridoid biosynthesis in this species under different experimental conditions. PMID:27446172

  10. A quantitative real-time PCR assay for the identification and enumeration of Alexandrium cysts in marine sediments

    PubMed Central

    Erdner, D.L.; Percy, L.; Keafer, B.; Lewis, J.; Anderson, D.M.

    2009-01-01

    Harmful algal blooms (HABs) are a global problem that affects both human and ecosystem health. One of the most serious and widespread HAB poisoning syndromes is paralytic shellfish poisoning, commonly caused by Alexandrium spp. dinoflagellates. Like many toxic dinoflagellates, Alexandrium produces resistant resting cysts as part of its life cycle. These cysts play a key role in bloom initiation and decline, as well as dispersal and colonization of new areas. Information on cyst numbers and identity is essential for understanding and predicting blooms, yet comprehensive cyst surveys are extremely time- and labor-intensive. Here we describe the development and validation of a quantitative real-time PCR (qPCR) technique for the enumeration of cysts of A. tamarense of the toxic North American/Group I ribotype. The method uses a cloned fragment of the large subunit ribosomal RNA gene as a standard for cyst quantification, with an experimentally determined conversion factor of 28,402±6152 LSU ribosomal gene copies per cyst. Tests of DNA extraction and PCR efficiency show that mechanical breakage is required for adequate cyst lysis, and that it was necessary to dilute our DNA extracts 50-fold in order to abolish PCR inhibition from compounds co-extracted from the sediment. The resulting assay shows a linear response over 6 orders of magnitude and can reliably quantify ≥10cysts/cc sediment. For method validation, 129 natural sediment samples were split and analyzed in parallel, using both the qPCR and primulin-staining techniques. Overall, there is a significant correlation (p<0.001) between the cyst abundances determined by the two methods, although the qPCR counts tend to be lower than the primulin values. This underestimation is less pronounced in those samples collected from the top 1 cm of sediment, and more pronounced in those derived from the next 1–3 cm of the core. These differences may be due to the condition of the cysts in the different layers, as the top

  11. A quantitative real-time PCR assay for the identification and enumeration of Alexandrium cysts in marine sediments

    NASA Astrophysics Data System (ADS)

    Erdner, D. L.; Percy, L.; Keafer, B.; Lewis, J.; Anderson, D. M.

    2010-02-01

    Harmful algal blooms (HABs) are a global problem that affects both human and ecosystem health. One of the most serious and widespread HAB poisoning syndromes is paralytic shellfish poisoning, commonly caused by Alexandrium spp. dinoflagellates. Like many toxic dinoflagellates, Alexandrium produces resistant resting cysts as part of its life cycle. These cysts play a key role in bloom initiation and decline, as well as dispersal and colonization of new areas. Information on cyst numbers and identity is essential for understanding and predicting blooms, yet comprehensive cyst surveys are extremely time- and labor-intensive. Here we describe the development and validation of a quantitative real-time PCR (qPCR) technique for the enumeration of cysts of A. tamarense of the toxic North American/Group I ribotype. The method uses a cloned fragment of the large subunit ribosomal RNA gene as a standard for cyst quantification, with an experimentally determined conversion factor of 28,402±6152 LSU ribosomal gene copies per cyst. Tests of DNA extraction and PCR efficiency show that mechanical breakage is required for adequate cyst lysis, and that it was necessary to dilute our DNA extracts 50-fold in order to abolish PCR inhibition from compounds co-extracted from the sediment. The resulting assay shows a linear response over 6 orders of magnitude and can reliably quantify ≥10 cysts/cm 3 sediment. For method validation, 129 natural sediment samples were split and analyzed in parallel, using both the qPCR and primulin-staining techniques. Overall, there is a significant correlation ( p<0.001) between the cyst abundances determined by the two methods, although the qPCR counts tend to be lower than the primulin values. This underestimation is less pronounced in those samples collected from the top 1 cm of sediment, and more pronounced in those derived from the next 1-3 cm of the core. These differences may be due to the condition of the cysts in the different layers, as the

  12. Detection and identification of Rift Valley fever virus in mosquito vectors by quantitative real-time PCR.

    PubMed

    Mwaengo, D; Lorenzo, G; Iglesias, J; Warigia, M; Sang, R; Bishop, R P; Brun, A

    2012-10-01

    Diagnostic methods allowing for rapid identification of pathogens are crucial for controlling and preventing dissemination after disease outbreaks as well as for use in surveillance programs. For arboviruses, detection of the presence of virus in their arthropod hosts is important for monitoring of viral activity and quantitative information is useful for modeling of transmission dynamics. In this study, molecular detection of Rift Valley fever virus (RVFV) in mosquito samples from the 2006 to 2007 East African outbreaks was performed using quantitative real-time PCR assay (qRT-PCR). Specific RVFV sequence-based primer/fluorogenic (TaqMan) probe sets were derived from the L and S RNA segments of the virus. Both primer-probe L and S segment-based combinations detected genomic RVFV sequences, with generally comparable levels of sensitivity. Viral loads from three mosquito species, Aedes mcintoshi, Aedes ochraceus and Mansonia uniformis were estimated and significant differences of between 5- and 1000-fold were detected between Ae. mcintoshi and M. uniformis using both the L and S primer-probe-based assays. The genetic relationships of the viral sequences in mosquito samples were established by partial M segment sequencing and assigned to the two previously described viral lineages defined by analysis of livestock isolates obtained during the 2006-2007 outbreak, confirming that similar viruses were present in both the vector and mammalian host. The data confirms the utility of qRT-PCR for identification and initial quantification of virus in mosquito samples during RVFV outbreaks.

  13. Application of real-time PCR for quantitative detection of Campylobacter jejuni in poultry, milk and environmental water.

    PubMed

    Yang, Chengbo; Jiang, Yuan; Huang, Kehe; Zhu, Changqing; Yin, Yulong

    2003-10-15

    Campylobacter jejuni is a leading human food-borne pathogen. The rapid and sensitive detection of C. jejuni is necessary for the maintenance of a safe food/water supply. In this article, we present a real-time polymerase chain reaction (PCR) assay for quantitative detection of C. jejuni in naturally contaminated poultry, milk and environmental samples without an enrichment step. The whole assay can be completed in 60 min with a detection limit of approximately 1 CFU. The standard curve correlation coefficient for the threshold cycle versus the copy number of initial C. jejuni cells was 0.988. To test the PCR system, a set of 300 frozen chicken meat samples, 300 milk samples and 300 water samples were screened for the presence of C. jejuni. 30.6% (92/300) of chicken meat samples, 27.3% (82/300) of milk samples, and 13.6% (41/300) of water samples tested positive for C. jejuni. This result indicated that the real-time PCR assay provides a specific, sensitive and rapid method for quantitative detection of C. jejuni. Moreover, it is concluded that retail chicken meat, raw milk and environmental water are commonly contaminated with C. jejuni and could serve as a potential risk for consumers in eastern China, especially if proper hygienic and cooking conditions are not maintained.

  14. MicroRNA expression in formalin-fixed paraffin embedded tissue using real time quantitative PCR: the strengths and pitfalls

    PubMed Central

    Dijkstra, J R; Mekenkamp, L J M; Teerenstra, S; De Krijger, I; Nagtegaal, I D

    2012-01-01

    MicroRNAs (miRNAs) are a group of small non-coding RNAs with a huge impact in a wide range of biological processes, including cancer. The evidence collected to date demonstrates that miRNAs represent valid diagnostic, prognostic and predictive markers in cancer. The identification of these miRNA biomarkers in archived tissues has been facilitated by novel development and refinement of detection methodologies. Quantitative real-time reverse-transcription PCR (qRT-PCR) is one of the most common methods used to detect low levels of miRNAs with high sensitivity and specificity. However, several technical parameters should be identified and optimized in order to obtain meaningful and reproducible results. The purpose of this review is to describe some of these technical parameters and improve the validity and reliability of miRNA expression studies. PMID:22003827

  15. Development of Conventional and Real-Time Quantitative PCR Assays for Diagnosis and Monitoring of Scabies

    PubMed Central

    Wong, Samson S. Y.; Poon, Rosana W. S.; Chau, Sandy; Wong, Sally C. Y.; To, Kelvin K. W.; Cheng, Vincent C. C.; Fung, Kitty S. C.

    2015-01-01

    Scabies remains the most prevalent, endemic, and neglected ectoparasitic infestation globally and can cause institutional outbreaks. The sensitivity of routine microscopy for demonstration of Sarcoptes scabiei mites or eggs in skin scrapings is only about 50%. Except for three studies using conventional or two-tube nested PCR on a small number of cases, no systematic study has been performed to improve the laboratory diagnosis of this important infection. We developed a conventional and a real-time quantitative PCR (qPCR) assay based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of S. scabiei. The cox1 gene is relatively well conserved, with its sequence having no high levels of similarity to the sequences of other human skin mites, pathogenic zoonotic mites, or common house dust mite species. This mitochondrial gene is also present in large quantities in arthropod cells, potentially improving the sensitivity of a PCR-based assay. In our study, both assays were specific and were more sensitive than microscopy in diagnosing scabies, with positive and negative predictive values of 100%. The S. scabiei DNA copy number in the microscopy-positive specimens was significantly higher than that in the microscopy-negative specimens (median S. scabiei DNA copy number, 3.604 versus 2.457 log10 copies per reaction; P = 0.0213). In the patient with crusted scabies, the qPCR assay performed on lesional skin swabs instead of scrapings revealed that the parasite DNA load took about 2 weeks to become negative after treatment. The utility of using lesional skin swabs as an alternative sample for diagnosis of scabies by PCR should be further evaluated. PMID:25903566

  16. Development of Conventional and Real-Time Quantitative PCR Assays for Diagnosis and Monitoring of Scabies.

    PubMed

    Wong, Samson S Y; Poon, Rosana W S; Chau, Sandy; Wong, Sally C Y; To, Kelvin K W; Cheng, Vincent C C; Fung, Kitty S C; Yuen, K Y

    2015-07-01

    Scabies remains the most prevalent, endemic, and neglected ectoparasitic infestation globally and can cause institutional outbreaks. The sensitivity of routine microscopy for demonstration of Sarcoptes scabiei mites or eggs in skin scrapings is only about 50%. Except for three studies using conventional or two-tube nested PCR on a small number of cases, no systematic study has been performed to improve the laboratory diagnosis of this important infection. We developed a conventional and a real-time quantitative PCR (qPCR) assay based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of S. scabiei. The cox1 gene is relatively well conserved, with its sequence having no high levels of similarity to the sequences of other human skin mites, pathogenic zoonotic mites, or common house dust mite species. This mitochondrial gene is also present in large quantities in arthropod cells, potentially improving the sensitivity of a PCR-based assay. In our study, both assays were specific and were more sensitive than microscopy in diagnosing scabies, with positive and negative predictive values of 100%. The S. scabiei DNA copy number in the microscopy-positive specimens was significantly higher than that in the microscopy-negative specimens (median S. scabiei DNA copy number, 3.604 versus 2.457 log10 copies per reaction; P = 0.0213). In the patient with crusted scabies, the qPCR assay performed on lesional skin swabs instead of scrapings revealed that the parasite DNA load took about 2 weeks to become negative after treatment. The utility of using lesional skin swabs as an alternative sample for diagnosis of scabies by PCR should be further evaluated. PMID:25903566

  17. Genome-Wide Identification and Validation of Reference Genes in Infected Tomato Leaves for Quantitative RT-PCR Analyses

    PubMed Central

    Müller, Oliver A.; Grau, Jan; Thieme, Sabine; Prochaska, Heike; Adlung, Norman; Sorgatz, Anika; Bonas, Ulla

    2015-01-01

    The Gram-negative bacterium Xanthomonas campestris pv. vesicatoria (Xcv) causes bacterial spot disease of pepper and tomato by direct translocation of type III effector proteins into the plant cell cytosol. Once in the plant cell the effectors interfere with host cell processes and manipulate the plant transcriptome. Quantitative RT-PCR (qRT-PCR) is usually the method of choice to analyze transcriptional changes of selected plant genes. Reliable results depend, however, on measuring stably expressed reference genes that serve as internal normalization controls. We identified the most stably expressed tomato genes based on microarray analyses of Xcv-infected tomato leaves and evaluated the reliability of 11 genes for qRT-PCR studies in comparison to four traditionally employed reference genes. Three different statistical algorithms, geNorm, NormFinder and BestKeeper, concordantly determined the superiority of the newly identified reference genes. The most suitable reference genes encode proteins with homology to PHD finger family proteins and the U6 snRNA-associated protein LSm7. In addition, we identified pepper orthologs and validated several genes as reliable normalization controls for qRT-PCR analysis of Xcv-infected pepper plants. The newly identified reference genes will be beneficial for future qRT-PCR studies of the Xcv-tomato and Xcv-pepper pathosystems, as well as for the identification of suitable normalization controls for qRT-PCR studies of other plant-pathogen interactions, especially, if related plant species are used in combination with bacterial pathogens. PMID:26313760

  18. Selection of reference genes for reverse transcription quantitative real-time PCR normalization in black rockfish (Sebastes schlegeli).

    PubMed

    Liman, Ma; Wenji, Wang; Conghui, Liu; Haiyang, Yu; Zhigang, Wang; Xubo, Wang; Jie, Qi; Quanqi, Zhang

    2013-09-01

    Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a technique widely used for quantification of mRNA transcription. Data normalization is an indispensable process for RT-qPCR and reference genes are most commonly used to normalize RT-qPCR and to reduce possible errors generated in the quantification of genes among several proposed methods. To date, RT-qPCR has been used in terms of gene expression studies in black rockfish (Sebastes schlegeli) but the majority of published RT-qPCR studies still lack proper validation of the reference genes. In the present study, mRNA transcription profiles of eight putative reference genes (18S rRNA, ACTB, GAPDH, TUBA, RPL17, EF1A, HPRT, and B2M) were examined using RT-qPCR in different tissues and larvae developmental stages of black rockfish. Three common statistical algorithms (geNorm, NormFinder, and BestKeeper) were used to assess expression stability and select the most stable genes for gene normalization. Two reference genes, RPL17 and EF1A showed high stability in black rockfish tissue analysis, while GAPDH was the least stable gene. During larvae developmental stages, EF1A, RPL17 and ACTB were identified as the optimal reference genes for data normalization, whereas B2M appeared unsuitable as the reference gene. In summary, our results could provide a useful guideline for reference gene selection and enable more accurate normalization of gene expression data in gene expression studies of black rockfish.

  19. Real-time PCR-based assay for quantitative detection of Hematodinium sp. in the blue crab Callinectes sapidus.

    PubMed

    Nagle, L; Place, A R; Schott, E J; Jagus, R; Messick, G; Pitula, J S

    2009-03-01

    Hematodinium sp. is a parasitic dinoflagellate infecting the blue crab Callinectes sapidus and other crustaceans. PCR-based assays are currently being used to identify infections in crabs that would have been undetectable by traditional microscopic examination. We therefore sought to define the limits of quantitative PCR (qPCR) detection within the context of field collection protocols. We present a qPCR assay based on the Hematodinium sp. 18S rRNA gene that can detect 10 copies of the gene per reaction. Analysis of a cell dilution series vs. defined numbers of a cloned Hematodinium sp. 18S rRNA gene suggests a copy number of 10,000 per parasite and predicts a sensitivity of 0.001 cell equivalents. In practice, the assays are based on analysis of 1% of the DNA extracted from 200 microl of serum, yielding a theoretical detection limit of 5 cells ml(-1) hemolymph, assuming that 1 cell is present per sample. When applied to a limited field survey of blue crabs collected in Maryland coastal bays from May to August 2005, 24 of 128 crabs (18.8%) were identified as positive for Hematodinium sp. infection using qPCR. In comparison, only 6 of 128 crabs (4.7%) were identified as positive using traditional hemolymph microscopic examination. The qPCR method also detected the parasite in gill, muscle, heart and hepatopancreas tissues, with 17.2% of the crabs showing infection in at least one of these tissues. Importantly, it is now possible to enumerate parasites within defined quantities of crab tissue, which permits collection of more detailed information on the epizootiology of the pathogen.

  20. Ambient Stable Quantitative PCR Reagents for the Detection of Yersinia pestis

    PubMed Central

    Zhou, Lei; Guo, Zhaobiao; Zhou, Dongsheng; Zhai, Junhui; Yang, Ruifu

    2010-01-01

    Background Although assays for detecting Yersinia pestis using TaqMan probe-based real-time PCR have been developed for years, little is reported on room-temperature-stable PCR reagents, which will be invaluable for field epidemic surveillance, immediate response to public health emergencies, counter-bioterrorism investigation, etc. In this work, a set of real-time PCR reagents for rapid detection of Y. pestis was developed with extraordinary stability at 37°C. Methods/Principal Findings TaqMan-based real-time PCR assays were developed using the primers and probes targeting the 3a sequence in the chromosome and the F1 antigen gene caf1 in the plasmid pMT1of Y. pestis, respectively. Then, carbohydrate mixtures were added to the PCR reagents, which were later vacuum-dried for stability evaluation. The vacuum-dried reagents were stable at 37°C for at least 49 days for a lower concentration of template DNA (10 copies/µl), and up to 79 days for higher concentrations (≥102 copies/µl). The reagents were used subsequently to detect soil samples spiked with Y. pestis vaccine strain EV76, and 5×104 CFU per gram of soil could be detected by both 3a- and caf1-based PCR reagents. In addition, a simple and efficient method for soil sample processing is presented here. Conclusions/Significance The vacuum-dried reagents for real-time PCR maintain accuracy and reproducibility for at least 49 days at 37°C, indicating that they can be easily transported at room temperature for field application if the machine for performing real-time PCR is available. This dry reagent is of great significance for routine plague surveillance. PMID:20231881

  1. Quantitative PCR Assays for Detecting Loach Minnow (Rhinichthys cobitis) and Spikedace (Meda fulgida) in the Southwestern United States.

    PubMed

    Dysthe, Joseph C; Carim, Kellie J; Paroz, Yvette M; McKelvey, Kevin S; Young, Michael K; Schwartz, Michael K

    2016-01-01

    Loach minnow (Rhinichthys cobitis) and spikedace (Meda fulgida) are legally protected with the status of Endangered under the U.S. Endangered Species Act and are endemic to the Gila River basin of Arizona and New Mexico. Efficient and sensitive methods for monitoring these species' distributions are critical for prioritizing conservation efforts. We developed quantitative PCR assays for detecting loach minnow and spikedace DNA in environmental samples. Each assay reliably detected low concentrations of target DNA without detection of non-target species, including other cyprinid fishes with which they co-occur.

  2. Quantitative PCR Assays for Detecting Loach Minnow (Rhinichthys cobitis) and Spikedace (Meda fulgida) in the Southwestern United States.

    PubMed

    Dysthe, Joseph C; Carim, Kellie J; Paroz, Yvette M; McKelvey, Kevin S; Young, Michael K; Schwartz, Michael K

    2016-01-01

    Loach minnow (Rhinichthys cobitis) and spikedace (Meda fulgida) are legally protected with the status of Endangered under the U.S. Endangered Species Act and are endemic to the Gila River basin of Arizona and New Mexico. Efficient and sensitive methods for monitoring these species' distributions are critical for prioritizing conservation efforts. We developed quantitative PCR assays for detecting loach minnow and spikedace DNA in environmental samples. Each assay reliably detected low concentrations of target DNA without detection of non-target species, including other cyprinid fishes with which they co-occur. PMID:27583576

  3. Mold Species in Dust from the International Space Station Identified and Quantified by Mold Specific Quantitative PCR

    NASA Technical Reports Server (NTRS)

    Vesper, Stephen J.; Wong, Wing; Kuo, C. Mike; Pierson, Duane L.

    2008-01-01

    Dust was collected over a period of several weeks in 2007 from various HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA-based method called mold specific quantitative PCR (MSQPCR), 39 molds were measured in the dust. Opportunistic pathogens Aspergillus flavus and A. niger and toxin producers Penicillium chrysogenum and P. brevicompactum were found at relatively high concentrations (compared to U.S. homes). No cells of the opportunistic pathogens A. fumigatus, A. terreus, Fusarium solani or Candida albicans were detected.

  4. Quantitative PCR Assays for Detecting Loach Minnow (Rhinichthys cobitis) and Spikedace (Meda fulgida) in the Southwestern United States

    PubMed Central

    Carim, Kellie J.; Paroz, Yvette M.; McKelvey, Kevin S.; Young, Michael K.; Schwartz, Michael K.

    2016-01-01

    Loach minnow (Rhinichthys cobitis) and spikedace (Meda fulgida) are legally protected with the status of Endangered under the U.S. Endangered Species Act and are endemic to the Gila River basin of Arizona and New Mexico. Efficient and sensitive methods for monitoring these species’ distributions are critical for prioritizing conservation efforts. We developed quantitative PCR assays for detecting loach minnow and spikedace DNA in environmental samples. Each assay reliably detected low concentrations of target DNA without detection of non-target species, including other cyprinid fishes with which they co-occur. PMID:27583576

  5. Mold species in dust from the International Space Station identified and quantified by mold-specific quantitative PCR.

    PubMed

    Vesper, Stephen J; Wong, Wing; Kuo, C Mike; Pierson, Duane L

    2008-01-01

    Dust was collected over a period of several weeks in 2007 from HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved and the DNA was extracted. Using a DNA-based method called mold-specific quantitative PCR (MSQPCR), 39 molds were measured in the dust. Potential opportunistic pathogens Aspergillus flavus and Aspergillus niger and potential moderate toxin producers Penicillium chrysogenum and Penicillium brevicompactum were noteworthy. No cells of the potential opportunistic pathogens Aspergillus fumigatus, Aspergillus terreus, Fusarium solani or Candida albicans were detected.

  6. Taqman real-time quantitative PCR for identification of western flower thrip (Frankliniella occidentalis) for plant quarantine

    PubMed Central

    Huang, K. S.; Lee, S. E.; Yeh, Y.; Shen, G. S.; Mei, E.; Chang, C. M.

    2010-01-01

    Western flower thrip (Frankliniella occidentalis) is a major global pest of agricultural products. It directly damages crops through feeding, oviposition activity or transmission of several plant viruses. We describe a Taqman real-time quantitative PCR detection system, which can rapidly identify F. occidentalis from thrips larvae to complement the traditional morphological identification. The data showed that our detection system targeted on the ribosomal RNA gene regions of F. occidentalis has high sensitivity and specificity. The rapid method can be used for on-site testing of samples at ports-of-entry in the future. PMID:20129946

  7. Reference Gene Validation for Quantitative RT-PCR during Biotic and Abiotic Stresses in Vitis vinifera

    PubMed Central

    Borges, Alexandre Filipe; Fonseca, Catarina; Ferreira, Ricardo Boavida; Lourenço, Ana Maria; Monteiro, Sara

    2014-01-01

    Grapevine is one of the most cultivated fruit crop worldwide with Vitis vinifera being the species with the highest economical importance. Being highly susceptible to fungal pathogens and increasingly affected by environmental factors, it has become an important agricultural research area, where gene expression analysis plays a fundamental role. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is currently amongst the most powerful techniques to perform gene expression studies. Nevertheless, accurate gene expression quantification strongly relies on appropriate reference gene selection for sample normalization. Concerning V. vinifera, limited information still exists as for which genes are the most suitable to be used as reference under particular experimental conditions. In this work, seven candidate genes were investigated for their stability in grapevine samples referring to four distinct stresses (Erysiphe necator, wounding and UV-C irradiation in leaves and Phaeomoniella chlamydospora colonization in wood). The expression stability was evaluated using geNorm, NormFinder and BestKeeper. In all cases, full agreement was not observed for the three methods. To provide comprehensive rankings integrating the three different programs, for each treatment, a consensus ranking was created using a non-weighted unsupervised rank aggregation method. According to the last, the three most suitable reference genes to be used in grapevine leaves, regardless of the stress, are UBC, VAG and PEP. For the P. chlamydospora treatment, EF1, CYP and UBC were the best scoring genes. Acquaintance of the most suitable reference genes to be used in grapevine samples can contribute for accurate gene expression quantification in forthcoming studies. PMID:25340748

  8. Development of one-step quantitative reverse transcription PCR for the rapid detection of flaviviruses

    PubMed Central

    2013-01-01

    Background The genus Flavivirus includes several pathogenic agents that cause severe illness in humans. Re-emergence of West Nile virus in Europe and continuous spread of certain flaviviruses such as dengue, yellow fever and Japanese encephalitis viruses represent a global danger to public health. Therefore, a rapid and accurate molecular method is required for diagnostics and epidemiological surveillance of flaviviruses. Methods A Pan-Flavi quantitative RT-PCR assay using a Locked-Nucleic Acid probe targeting the flavivirus NS5 gene was developed and optimized to detect a wide range of flaviviruses simultaneously. The specificity and sensitivity of the Pan-Flavi assay were tested using RNA of different flaviviruses and non-flaviviruses. Furthermore, the assay was compared directly to flavivirus species-specific assays for the ability to detect flaviviruses sensitively. Results Two degenerate primers and one Locked-Nucleic Acids probe were designed to amplify most of the flaviviruses. To increase the specificity and fluorescence signal of the Pan-Flavi assay for detection of yellow fever virus and dengue virus 4, additional primers and probes were included. Viral RNA of thirty different flaviviruses was detected, verifying the broad range specificity. The testing of this assay was successful, using standard plasmid and RNA dilutions of yellow fever virus vaccine strain, dengue virus 1 and tick-borne encephalitis virus, with a sensitivity limit of 10–100 genome copies/reaction. Also comparatively good results were achieved for detecting different flaviviruses by the Pan-Flavi assay when compared to the flavivirus species-specific assays. Conclusion The assay is rapid, broad-range flavivirus-specific and highly sensitive making it a valuable tool for rapid detection of flaviviruses in livestock samples, epidemiological studies or as useful complement to single flavivirus-specific assays for clinical diagnosis. PMID:23410000

  9. Identification of appropriate reference genes for human mesenchymal stem cell analysis by quantitative real-time PCR.

    PubMed

    Li, Xiuying; Yang, Qiwei; Bai, Jinping; Xuan, Yali; Wang, Yimin

    2015-01-01

    Normalization to a reference gene is the method of choice for quantitative reverse transcription-PCR (RT-qPCR) analysis. The stability of reference genes is critical for accurate experimental results and conclusions. We have evaluated the expression stability of eight commonly used reference genes found in four different human mesenchymal stem cells (MSC). Using geNorm, NormFinder and BestKeeper algorithms, we show that beta-2-microglobulin and peptidyl-prolylisomerase A were the optimal reference genes for normalizing RT-qPCR data obtained from MSC, whereas the TATA box binding protein was not suitable due to its extensive variability in expression. Our findings emphasize the significance of validating reference genes for qPCR analyses. We offer a short list of reference genes to use for normalization and recommend some commercially-available software programs as a rapid approach to validate reference genes. We also demonstrate that the two reference genes, β-actin and glyceraldehyde-3-phosphate dehydrogenase, are frequently used are not always successful in many cases.

  10. Accurate, fast and cost-effective diagnostic test for monosomy 1p36 using real-time quantitative PCR.

    PubMed

    Cunha, Pricila da Silva; Pena, Heloisa B; D'Angelo, Carla Sustek; Koiffmann, Celia P; Rosenfeld, Jill A; Shaffer, Lisa G; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5-0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.

  11. DEVELOPMENT OF SEMI-QUANTITATIVE PCR ASSAYS FOR THE DETECTION AND ENUMERATION OF GAMBIERDISCUS SPECIES (GONYAULACALES, DINOPHYCEAE)(1).

    PubMed

    Vandersea, Mark W; Kibler, Steven R; Holland, William C; Tester, Patricia A; Schultz, Thomas F; Faust, Maria A; Holmes, Michael J; Chinain, Mirelle; Wayne Litaker, R

    2012-08-01

    Ciguatera fish poisoning (CFP) is a serious health problem in tropical regions and is caused by the bioaccumulation of lipophilic toxins produced by dinoflagellates in the genus Gambierdiscus. Gambierdiscus species are morphologically similar and are difficult to distinguish from one another even when using scanning electron microscopy. Improved identification and detection methods that are sensitive and rapid are needed to identify toxic species and investigate potential distribution and abundance patterns in relation to incidences of CFP. This study presents the first species-specific, semi-quantitative polymerase chain reaction (qPCR) assays that can be used to address these questions. These assays are specific for five Gambierdiscus species and one undescribed ribotype. The assays utilized a SYBR green format and targeted unique sequences found within the SSU, ITS, and the D1/D3 LSU ribosomal domains. Standard curves were constructed using known concentrations of cultured cells and 10-fold serial dilutions of rDNA PCR amplicons containing the target sequence for each specific assay. Assay sensitivity and accuracy were tested using DNA extracts purified from known concentrations of multiple Gambierdiscus species. The qPCR assays were used to assess Gambierdiscus species diversity and abundance in samples collected from nearshore areas adjacent to Ft. Pierce and Jupiter, Florida USA. The results indicated that the practical limit of detection for each assay was 10 cells per sample. Most interestingly, the qPCR analysis revealed that as many as four species of Gambierdiscus were present in a single macrophyte sample.

  12. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    PubMed Central

    Cunha, Pricila da Silva; Pena, Heloisa B.; D'Angelo, Carla Sustek; Koiffmann, Celia P.; Rosenfeld, Jill A.; Shaffer, Lisa G.; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs. PMID:24839341

  13. Comparative Evaluation of Three Commercial Quantitative Cytomegalovirus Standards by Use of Digital and Real-Time PCR

    PubMed Central

    Gu, Z.; Sam, S. S.; Sun, Y.; Tang, L.; Pounds, S.; Caliendo, A. M.

    2015-01-01

    The recent development of the 1st WHO International Standard for human cytomegalovirus (CMV) and the introduction of commercially produced secondary standards have raised hopes of improved agreement among laboratories performing quantitative PCR for CMV. However, data to evaluate the trueness and uniformity of secondary standards and the consistency of results achieved when these materials are run on various assays are lacking. Three concentrations of each of the three commercially prepared secondary CMV standards were tested in quadruplicate by three real-time and two digital PCR methods. The mean results were compared in a pairwise fashion with nominal values provided by each manufacturer. The agreement of results among all methods for each sample and for like concentrations of each standard was also assessed. The relationship between the nominal values of standards and the measured values varied, depending upon the assay used and the manufacturer of the standards, with the degree of bias ranging from +0.6 to −1.0 log10 IU/ml. The mean digital PCR result differed significantly among the secondary standards, as did the results of the real-time PCRs, particularly when plotted against nominal log10 IU values. Commercially available quantitative secondary CMV standards produce variable results when tested by different real-time and digital PCR assays, with various magnitudes of bias compared to nominal values. These findings suggest that the use of such materials may not achieve the intended uniformity among laboratories measuring CMV viral load, as envisioned by adaptation of the WHO standard. PMID:25694529

  14. Analysis of Fungal Flora in Indoor Dust by Ribosomal DNA Sequence Analysis, Quantitative PCR, and Culture▿ †

    PubMed Central

    Pitkäranta, M.; Meklin, T.; Hyvärinen, A.; Paulin, L.; Auvinen, P.; Nevalainen, A.; Rintala, H.

    2008-01-01

    In recent years increasing attention has been given to the potential health effects of fungal exposure in indoor environments. We used large-scale sequencing of the fungal internal transcribed spacer region (ITS) of nuclear ribosomal DNA to describe the mycoflora of two office buildings over the four seasons. DNA sequencing was complemented by cultivation, ergosterol determination, and quantitative PCR analyses. Sequences of 1,339 clones were clustered into 394 nonredundant fungal operational taxonomical units containing sequences from 18 fungal subclasses. The observed flora differed markedly from that recovered by cultivation, the major differences being the near absence of several typical indoor mold genera such as Penicillium and Aspergillus spp. and a high prevalence of basidiomycetes in clone libraries. A total of 55% of the total diversity constituted of unidentifiable ITS sequences, some of which may represent novel fungal species. Dominant species were Cladosporium cladosporioides and C. herbarum, Cryptococcus victoriae, Leptosphaerulina americana and L. chartarum, Aureobasidium pullulans, Thekopsora areolata, Phaeococcomyces nigricans, Macrophoma sp., and several Malassezia species. Seasonal differences were observed for community composition, with ascomycetous molds and basidiomycetous yeasts predominating in the winter and spring and Agaricomycetidae basidiomycetes predominating in the fall. The comparison of methods suggested that the cloning, cultivation, and quantitative PCR methods complemented each other, generating a more comprehensive picture of fungal flora than any of the methods would give alone. The current restrictions of the methods are discussed. PMID:17981947

  15. Real-time PCR assay for rapid qualitative and quantitative detection of Entamoeba histolytica.

    PubMed

    Orosz, Erika; Perkátai, Katalin; Kapusinszky, Beatrix; Farkas, Agnes; Kucsera, István

    2012-12-01

    Simple real-time PCR assay with one set of primer and probe for rapid, sensitive qualitative and quantitative detection of Entamoeba histolytica has been used. Consensus sequences were used to amplify a species-specific region of the 16S rRNA gene, and fluorescence resonance energy transfer hybridization probes were used for detection in a LightCycler platform (Roche). The anchor probe sequence was designed to be a perfect match for the 16S rRNA gene of Entamoeba species, while the acceptor probe sequence was designed for Entamoeba histolytica, which allowed differentiation. The performed characteristics of the real-time PCR assay were compared with ELISA antigen and microscopical detection from 77 samples of individuals with suspected clinical diagnosis of imported E. histolytica infection. Stool and liver abscess pus samples were examined with analytical sensitivity of 5 parasites per PCR reaction. The melting curve means Tms (standard deviation) in clinical isolates were 54°C. The real-time assay was 100% sensitive and specific for differentiation of Entamoeba histolytica, compared with conventional ELISA or microscopy. This real-time PCR assay with melting curve analysis is rapid, and specific for the detection and differentiation of Entamoeba histolytica. The suitability for routine use of this assay in clinical diagnostic laboratories is discussed.

  16. Qualitative versus quantitative methods in psychiatric research.

    PubMed

    Razafsha, Mahdi; Behforuzi, Hura; Azari, Hassan; Zhang, Zhiqun; Wang, Kevin K; Kobeissy, Firas H; Gold, Mark S

    2012-01-01

    Qualitative studies are gaining their credibility after a period of being misinterpreted as "not being quantitative." Qualitative method is a broad umbrella term for research methodologies that describe and explain individuals' experiences, behaviors, interactions, and social contexts. In-depth interview, focus groups, and participant observation are among the qualitative methods of inquiry commonly used in psychiatry. Researchers measure the frequency of occurring events using quantitative methods; however, qualitative methods provide a broader understanding and a more thorough reasoning behind the event. Hence, it is considered to be of special importance in psychiatry. Besides hypothesis generation in earlier phases of the research, qualitative methods can be employed in questionnaire design, diagnostic criteria establishment, feasibility studies, as well as studies of attitude and beliefs. Animal models are another area that qualitative methods can be employed, especially when naturalistic observation of animal behavior is important. However, since qualitative results can be researcher's own view, they need to be statistically confirmed, quantitative methods. The tendency to combine both qualitative and quantitative methods as complementary methods has emerged over recent years. By applying both methods of research, scientists can take advantage of interpretative characteristics of qualitative methods as well as experimental dimensions of quantitative methods.

  17. A simple, universal, efficient PCR-based gene synthesis method: sequential OE-PCR gene synthesis.

    PubMed

    Zhang, Pingping; Ding, Yingying; Liao, Wenting; Chen, Qiuli; Zhang, Huaqun; Qi, Peipei; He, Ting; Wang, Jinhong; Deng, Songhua; Pan, Tianyue; Ren, Hao; Pan, Wei

    2013-07-25

    Herein we present a simple, universal, efficient gene synthesis method based on sequential overlap extension polymerase chain reactions (OE-PCRs). This method involves four key steps: (i) the design of paired complementary 54-mer oligonucleotides with 18 bp overlaps, (ii) the utilisation of sequential OE-PCR to synthesise full-length genes, (iii) the cloning and sequencing of four positive T-clones of the synthesised genes and (iv) the resynthesis of target genes by OE-PCR with correct templates. Mispriming and secondary structure were found to be the principal obstacles preventing successful gene synthesis and were easily identified and solved in this method. Compensating for the disadvantages of being laborious and time-consuming, this method has many attractive advantages, such as the ability to guarantee successful gene synthesis in most cases and good allowance for Taq polymerase, oligonucleotides, PCR conditions and a high error rate. Thus, this method provides an alternative tool for individual gene synthesis without strict needs of the high-specialised experience. PMID:23597923

  18. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    NASA Astrophysics Data System (ADS)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  19. Development of a Quantitative PCR Assay for Thermophilic Spore-Forming Geobacillus stearothermophilus in Canned Food.

    PubMed

    Nakano, Miyo

    2015-01-01

    The thermophilic spore forming bacteria Geobacillus stearothermophilus is recognized as a major cause of spoilage in canned food. A quantitative real-time PCR assay was developed to specifically detect and quantify the species G. stearothermophilus in samples from canned food. The selected primer pairs amplified a 163-bp fragment of the 16S rRNA gene in a specific PCR assay with a detection limit of 12.5 fg of pure culture DNA, corresponding to DNA extracted from approximately 0.7 CFU/mL of G. stearothermophilus. Analysis showed that the bacterial species G. stearothermophilus was not detected in any canned food sample. Our approach presented here will be useful for tracking or quantifying species G. stearotethermophilus in canned food and ingredients. PMID:26412704

  20. Threshold microsclerotial inoculum for cotton verticillium wilt determined through wet-sieving and real-time quantitative PCR.

    PubMed

    Wei, Feng; Fan, Rong; Dong, Haitao; Shang, Wenjing; Xu, Xiangming; Zhu, Heqin; Yang, Jiarong; Hu, Xiaoping

    2015-02-01

    Quantification of Verticillium dahliae microsclerotia is an important component of wilt management on a range of crops. Estimation of microsclerotia by dry or wet sieving and plating of soil samples on semiselective medium is a commonly used technique but this method is resource-intensive. We developed a new molecular quantification method based on Synergy Brands (SYBR) Green real-time quantitative polymerase chain reaction of wet-sieving samples (wet-sieving qPCR). This method can detect V. dahliae microsclerotia as low as 0.5 CFU g(-1) of soil. There was a high correlation (r=0.98) between the estimates of conventional plating analysis and the new wet-sieving qPCR method for 40 soil samples. To estimate the inoculum threshold for cotton wilt, >400 soil samples were taken from the rhizosphere of individual plants with or without visual wilt symptoms in experimental and commercial cotton fields at the boll-forming stage. Wilt inoculum was estimated using the wet-sieving qPCR method and related to wilt development. The estimated inoculum threshold varied with cultivar, ranging from 4.0 and 7.0 CFU g(-1) of soil for susceptible and resistant cultivars, respectively. In addition, there was an overall relationship of wilt incidence with inoculum density across 31 commercial fields where a single composite soil sample was taken at each field, with an estimated inoculum threshold of 11 CFU g(-1) of soil. These results suggest that wilt risk can be predicted from the estimated soil inoculum density using the new wet-sieving qPCR method. We recommend the use of 4.0 and 7.0 CFU g(-1) as an inoculum threshold on susceptible and resistant cultivars, respectively, in practical risk prediction schemes.

  1. Quantitative detection of hazelnut (Corylus avellana) in cookies: ELISA versus real-time PCR.

    PubMed

    Platteau, Céline; De Loose, Marc; De Meulenaer, Bruno; Taverniers, Isabel

    2011-11-01

    Hazelnuts (Corylus avellana) are used widely in the food industry, especially in confectionery, where they are used raw, roasted, or in a processed formulation (e.g., praline paste and hazelnut oil). Hazelnuts contain multiple allergenic proteins, which can induce an allergic reaction associated with symptoms ranging from mild irritation to life-threatening anaphylactic shock. To date, immunochemical (e.g., ELISA or dipstick) and PCR-based analyses are the only methods available that can be applied as routine tests. The aim of this study is to make a comparative evaluation of the effectiveness of ELISA and real-time PCR in detecting and correctly quantifying hazelnut in food model systems. To this end, the performances of two commercial ELISAs were compared to those of two commercial and one in-house-developed real-time PCR assays. The results showed that although ELISA seemed to be more sensitive compared to real-time PCR, both detection techniques suffered from matrix effects and lacked robustness with regard to food processing. As these impacts were highly variable among the different evaluated assays (both ELISA and real-time PCR), no firm conclusion can be made as to which technique is suited best to detect hazelnut in (processed) food products. In this regard, the current lack of appropriate DNA calibrators to quantify an allergenic ingredient by means of real-time PCR is highlighted.

  2. Quantitative methods for the analysis of zoosporic fungi.

    PubMed

    Marano, Agostina V; Gleason, Frank H; Bärlocher, Felix; Pires-Zottarelli, Carmen L A; Lilje, Osu; Schmidt, Steve K; Rasconi, Serena; Kagami, Maiko; Barrera, Marcelo D; Sime-Ngando, Télesphore; Boussiba, Sammy; de Souza, José I; Edwards, Joan E

    2012-04-01

    Quantitative estimations of zoosporic fungi in the environment have historically received little attention, primarily due to methodological challenges and their complex life cycles. Conventional methods for quantitative analysis of zoosporic fungi to date have mainly relied on direct observation and baiting techniques, with subsequent fungal identification in the laboratory using morphological characteristics. Although these methods are still fundamentally useful, there has been an increasing preference for quantitative microscopic methods based on staining with fluorescent dyes, as well as the use of hybridization probes. More recently however PCR based methods for profiling and quantification (semi- and absolute) have proven to be rapid and accurate diagnostic tools for assessing zoosporic fungal assemblages in environmental samples. Further application of next generation sequencing technologies will however not only advance our quantitative understanding of zoosporic fungal ecology, but also their function through the analysis of their genomes and gene expression as resources and databases expand in the future. Nevertheless, it is still necessary to complement these molecular-based approaches with cultivation-based methods in order to gain a fuller quantitative understanding of the ecological and physiological roles of zoosporic fungi.

  3. Direct quantification of Campylobacter jejuni and Campylobacter lanienae in feces of cattle by real-time quantitative PCR.

    PubMed

    Inglis, G Douglas; Kalischuk, Lisa D

    2004-04-01

    Campylobacter species are fastidious to culture, and the ability to directly quantify biomass in microbiologically complex substrates using real-time quantitative (RTQ) PCR may enhance our understanding of their biology and facilitate the development of efficacious mitigation strategies. This study reports the use of nested RTQ-PCR to directly quantify Campylobacter jejuni and Campylobacter lanienae in cattle feces. For C. jejuni, the single-copy mapA gene was selected. For C. lanienae, the three-copy 16S rRNA gene was targeted. RTQ-PCR primers were tested alone or they were nested with species-specific primers, and amplification products were detected using the intercalating dye SYBR Green. Nesting did not increase the specificity or sensitivity of C. jejuni quantification, and the limit of quantification was 19 to 25 genome copies ( approximately 3 x 10(3) CFU/g of feces). In contrast, nested RTQ-PCR was necessary to confer specificity on C. lanienae by targeting the 16S rRNA gene. The limit of quantification was 1.8 genome copies ( approximately 250 CFU/g of feces), and there was no discernible difference between the two C. lanienae secondary primer sets evaluated. Detection and quantification of C. jejuni in naturally infested cattle feces by RTQ-PCR were comparable to the results of culture-based methods. In contrast, culturing did not detect C. lanienae in 6 of 10 fecal samples positive for the bacterium and substantially underestimated cell densities relative to nested RTQ-PCR. The results of this study illustrate that RTQ-PCR can be used to directly quantify campylobacters, including very fastidious species, in a microbiologically and chemically complex substrate. Furthermore, targeting of a multicopy universal gene provided highly sensitive quantification of C. lanienae, but nested RTQ-PCR was necessary to confer specificity. This method will facilitate subsequent studies to elucidate the impact of this group of bacteria within the gastrointestinal tracts

  4. Development and evaluation of a quantitative PCR assay targeting sandhill crane (Grus canadensis) fecal pollution.

    PubMed

    Ryu, Hodon; Lu, Jingrang; Vogel, Jason; Elk, Michael; Chávez-Ramírez, Felipe; Ashbolt, Nicholas; Santo Domingo, Jorge

    2012-06-01

    While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics.

  5. Quantification of Yeast and Bacterial Gene Transcripts in Retail Cheeses by Reverse Transcription-Quantitative PCR

    PubMed Central

    Straub, Cécile; Castellote, Jessie; Onesime, Djamila; Bonnarme, Pascal; Irlinger, Françoise

    2013-01-01

    The cheese microbiota contributes to a large extent to the development of the typical color, flavor, and texture of the final product. Its composition is not well defined in most cases and varies from one cheese to another. The aim of the present study was to establish procedures for gene transcript quantification in cheeses by reverse transcription-quantitative PCR. Total RNA was extracted from five smear-ripened cheeses purchased on the retail market, using a method that does not involve prior separation of microbial cells. 16S rRNA and malate:quinone oxidoreductase gene transcripts of Corynebacterium casei, Brevibacterium aurantiacum, and Arthrobacter arilaitensis and 26S rRNA and beta tubulin gene transcripts of Geotrichum candidum and Debaryomyces hansenii could be detected and quantified in most of the samples. Three types of normalization were applied: against total RNA, against the amount of cheese, and against a reference gene. For the first two types of normalization, differences of reverse transcription efficiencies from one sample to another were taken into account by analysis of exogenous control mRNA. No good correlation was found between the abundances of target mRNA or rRNA transcripts and the viable cell concentration of the corresponding species. However, in most cases, no mRNA transcripts were detected for species that did not belong to the dominant species. The applications of gene expression measurement in cheeses containing an undefined microbiota, as well as issues concerning the strategy of normalization and the assessment of amplification specificity, are discussed. PMID:23124230

  6. Development and evaluation of a quantitative PCR assay targeting sandhill crane (Grus canadensis) fecal pollution.

    PubMed

    Ryu, Hodon; Lu, Jingrang; Vogel, Jason; Elk, Michael; Chávez-Ramírez, Felipe; Ashbolt, Nicholas; Santo Domingo, Jorge

    2012-06-01

    While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics. PMID:22492437

  7. Development and Evaluation of a Quantitative PCR Assay Targeting Sandhill Crane (Grus canadensis) Fecal Pollution

    PubMed Central

    Ryu, Hodon; Lu, Jingrang; Vogel, Jason; Elk, Michael; Chávez-Ramírez, Felipe; Ashbolt, Nicholas

    2012-01-01

    While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics. PMID:22492437

  8. Detection of acute toxoplasmosis in pigs using loop-mediated isothermal amplification and quantitative PCR.

    PubMed

    Wang, Yanhua; Wang, Guangxiang; Zhang, Delin; Yin, Hong; Wang, Meng

    2013-10-01

    A loop-mediated isothermal amplification (LAMP) assay allows rapid diagnosis of Toxoplasma gondii infection. In the present study, the LAMP assay was evaluated using blood from both naturally and experimentally infected pigs. The sensitivity of the LAMP assay was compared with that of Q-PCR. Both assays detected T. gondii in the blood of experimentally infected pigs, with 100% agreement. In infected blood samples, the parasite was detected as early as 2 days post-infection and reached a peak in 3-5 days. In 216 field serum samples, the detection rates of LAMP and Q-PCR assays were 6.9% and 7.8%, respectively. This result indicates that the sensitivity of the LAMP assay was slightly lower than that of the Q-PCR assay. However, the LAMP may be an attractive diagnostic method in conditions where sophisticated and expensive equipment is unavailable. This assay could be a powerful supplement to current diagnostic methods.

  9. Optimizing methods for PCR-based analysis of predation

    PubMed Central

    Sint, Daniela; Raso, Lorna; Kaufmann, Rüdiger; Traugott, Michael

    2011-01-01

    Molecular methods have become an important tool for studying feeding interactions under natural conditions. Despite their growing importance, many methodological aspects have not yet been evaluated but need to be considered to fully exploit the potential of this approach. Using feeding experiments with high alpine carabid beetles and lycosid spiders, we investigated how PCR annealing temperature affects prey DNA detection success and how post-PCR visualization methods differ in their sensitivity. Moreover, the replicability of prey DNA detection among individual PCR assays was tested using beetles and spiders that had digested their prey for extended times postfeeding. By screening all predators for three differently sized prey DNA fragments (range 116–612 bp), we found that only in the longest PCR product, a marked decrease in prey detection success occurred. Lowering maximum annealing temperatures by 4 °C resulted in significantly increased prey DNA detection rates in both predator taxa. Among the three post-PCR visualization methods, an eightfold difference in sensitivity was observed. Repeated screening of predators increased the total number of samples scoring positive, although the proportion of samples testing positive did not vary significantly between different PCRs. The present findings demonstrate that assay sensitivity, in combination with other methodological factors, plays a crucial role to obtain robust trophic interaction data. Future work employing molecular prey detection should thus consider and minimize the methodologically induced variation that would also allow for better cross-study comparisons. PMID:21507208

  10. Duplex Quantitative PCR Assay for Detection of Haemophilus influenzae That Distinguishes Fucose- and Protein D-Negative Strains.

    PubMed

    de Gier, Camilla; Pickering, Janessa L; Richmond, Peter C; Thornton, Ruth B; Kirkham, Lea-Ann S

    2016-09-01

    We have developed a specific Haemophilus influenzae quantitative PCR (qPCR) that also identifies fucose-negative and protein D-negative strains. Analysis of 100 H. influenzae isolates, 28 Haemophilus haemolyticus isolates, and 14 other bacterial species revealed 100% sensitivity (95% confidence interval [CI], 96% to 100%) and 100% specificity (95% CI, 92% to 100%) for this assay. The evaluation of 80 clinical specimens demonstrated a strong correlation between semiquantitative culture and the qPCR (P < 0.001).

  11. Decay Of Bacterial Pathogen, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...

  12. Decay Of Bacterial Pathogens, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure-Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...

  13. Multi-laboratory comparison of quantitative PCR assays for detection and quantification of Fusarium virguliforme from soybean roots and soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate identification and quantification of Fusarium virguliforme, the cause of sudden death syndrome (SDS) in soybean, within root tissue and soil are important tasks. Several quantitative PCR (qPCR) assays have been developed but there are no reports comparing their use in sensitive and specific...

  14. Analysis of Enterococci and Bacteriodales Fecal Indicator Bacteria in a Lake Michigan Tributary by Real-Time Quantitative PCR

    EPA Science Inventory

    The Salt Creek watershed in northwest Indiana drains into Lake Michigan near several heavily used recreational beaches. This study aimed to investigate the levels of fecal indicator bacteria, enterococci and Bacteroidales, in Salt Creek using real-time quantitative PCR (qPCR) an...

  15. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters

    EPA Science Inventory

    Modern techniques for tracking fecal pollution in environmental waters require investing in DNA-based methods to determine the presence of specific fecal sources. To help water quality managers decide whether to employ routine polymerase chain reaction (PCR) or quantitative PC...

  16. Exploring the Bacterial Diversity of Belgian Steak Tartare Using Metagenetics and Quantitative Real-Time PCR Analysis.

    PubMed

    Delhalle, L; Korsak, N; Taminiau, B; Nezer, C; Burteau, S; Delcenserie, V; Poullet, J B; Daube, G

    2016-02-01

    Steak tartare is a popular meat dish in Belgium. It is prepared with raw minced beef and is eaten with sauce, vegetables, and spices. Because it contains raw meat, steak tartare is highly prone to bacterial spoilage. The objective of this study was to explore the diversity of bacterial flora in steak tartare in Belgium according to the source and to determine which bacteria are able to grow during shelf life. A total of 58 samples from butchers' shops, restaurants, sandwich shops, and supermarkets were collected. These samples were analyzed using 16S rDNA metagenetics, a classical microbiological technique, and quantitative real-time PCR (qPCR) targeting the Lactobacillus genus. Samples were analyzed at the beginning and at the end of their shelf life, except for those from restaurants and sandwich shops, which were analyzed only on the purchase date. Metagenetic analysis identified up to 180 bacterial species and 90 genera in some samples. But only seven bacterial species were predominant in the samples, depending on the source: Brochothrix thermosphacta, Lactobacillus algidus, Lactococcus piscium, Leuconostoc gelidum, Photobacterium kishitani, Pseudomonas spp., and Xanthomonas oryzae. With this work, an alternative method is proposed to evaluate the total flora in food samples based on the number of reads from metagenetic analysis and the results of qPCR. The degree of underestimation of aerobic plate counts at 30°C estimated with the classical microbiology method was demonstrated in comparison with the proposed culture-independent method. Compared with culture-based methods, metagenetic analysis combined with qPCR targeting Lactobacillus provides valuable information for characterizing the bacterial flora of raw meat.

  17. Exploring the Bacterial Diversity of Belgian Steak Tartare Using Metagenetics and Quantitative Real-Time PCR Analysis.

    PubMed

    Delhalle, L; Korsak, N; Taminiau, B; Nezer, C; Burteau, S; Delcenserie, V; Poullet, J B; Daube, G

    2016-02-01

    Steak tartare is a popular meat dish in Belgium. It is prepared with raw minced beef and is eaten with sauce, vegetables, and spices. Because it contains raw meat, steak tartare is highly prone to bacterial spoilage. The objective of this study was to explore the diversity of bacterial flora in steak tartare in Belgium according to the source and to determine which bacteria are able to grow during shelf life. A total of 58 samples from butchers' shops, restaurants, sandwich shops, and supermarkets were collected. These samples were analyzed using 16S rDNA metagenetics, a classical microbiological technique, and quantitative real-time PCR (qPCR) targeting the Lactobacillus genus. Samples were analyzed at the beginning and at the end of their shelf life, except for those from restaurants and sandwich shops, which were analyzed only on the purchase date. Metagenetic analysis identified up to 180 bacterial species and 90 genera in some samples. But only seven bacterial species were predominant in the samples, depending on the source: Brochothrix thermosphacta, Lactobacillus algidus, Lactococcus piscium, Leuconostoc gelidum, Photobacterium kishitani, Pseudomonas spp., and Xanthomonas oryzae. With this work, an alternative method is proposed to evaluate the total flora in food samples based on the number of reads from metagenetic analysis and the results of qPCR. The degree of underestimation of aerobic plate counts at 30°C estimated with the classical microbiology method was demonstrated in comparison with the proposed culture-independent method. Compared with culture-based methods, metagenetic analysis combined with qPCR targeting Lactobacillus provides valuable information for characterizing the bacterial flora of raw meat. PMID:26818982

  18. Development of a quantitative real-time PCR assay for detection of Vibrio tubiashii targeting the metalloprotease gene.

    PubMed

    Gharaibeh, Dima N; Hasegawa, Hiroaki; Häse, Claudia C

    2009-03-01

    Vibrio tubiashii has recently re-emerged as a pathogen of bivalve larvae, causing a marked increase in the mortality of these species within shellfish rearing facilities. This has resulted in substantial losses of seed production and thus created the need for specific as well as sensitive detection methods for this pathogen. In this project, quantitative PCR (qPCR) primers were developed and optimized based upon analysis of the V. tubiashii vtpA gene sequence, encoding a metalloprotease known to cause larval mortality. Standard curves were developed utilizing dilutions of known quantities of V. tubiashii cells that were compared to colony forming unit (CFU) plate counts. The assay was optimized for detection of vtpA with both lab-grown V. tubiashii samples and filter-captured environmental seawater samples seeded with V. tubiashii. In addition, the primers were confirmed to specifically detect only V. tubiashii when tested against a variety of non-target Vibrio species. Validation of the assay was completed by analyzing samples obtained from a shellfish hatchery. The development of this rapid and sensitive assay for quantitative detection of V. tubiashii will accurately determine levels of this bacterium in a variety of seawater samples, providing a useful tool for oyster hatcheries and a method to assess the presence of this bacterium in the current turbulent ocean environment.

  19. A Quantitative Real-Time PCR-Based Strategy for Molecular Evaluation of Nicotine Conversion in Burley Tobacco.

    PubMed

    Sun, Bo; Xue, Sheng-Ling; Zhang, Fen; Luo, Zhao-Peng; Wu, Ming-Zhu; Chen, Qing; Tang, Hao-Ru; Lin, Fu-Cheng; Yang, Jun

    2015-11-17

    Nornicotine production in Nicotiana tabacum is undesirable because it is the precursor of the carcinogen N'-nitrosonornicotine. In some individual burley tobacco plants, a large proportion of the nicotine can be converted to nornicotine, and this process of nicotine conversion is mediated primarily by enzymatic N-demethylation of nicotine which is controlled mainly by CYP82E4. Here we report a novel strategy based on quantitative real-time polymerase chain reaction (qPCR) method, which analyzed the ratio of nicotine conversion through examining the transcript level of CYP82E4 in burley leaves and do not need ethylene induction before detected. The assay was linear in a range from 1 × 10¹ to 1 × 10⁵ copies/mL of serially diluted standards, and also showed high specificity and reproducibility (93%-99%). To assess its applicability, 55 plants of burley cultivar Ky8959 at leaf maturing stage were analyzed, and the results were in accordance with those from gas chromatograph-mass spectrometry (GC-MS) method. Moreover, a linear correlation existed between conversion level and CYP82E4 transcript abundance. Taken together, the quantitative real-time PCR assay is standardized, rapid and reproducible for estimation of nicotine conversion level in vivo, which is expected to shed new light on monitoring of burley tobacco converter.

  20. Actuation method and apparatus, micropump, and PCR enhancement method

    SciTech Connect

    Ullakko, Kari; Mullner, Peter; Hampikian, Greg; Smith, Aaron

    2015-07-28

    An actuation apparatus includes at least one magnetic shape memory (MSM) element containing a material configured to expand and/or contract in response to exposure to a magnetic field. Among other things, the MSM element may be configured to pump fluid through a micropump by expanding and/or contracting in response to the magnetic field. The magnetic field may rotate about an axis of rotation and exhibit a distribution having a component substantially perpendicular to the axis of rotation. Further, the magnetic field distribution may include at least two components substantially orthogonal to one another lying in one or more planes perpendicular to the axis of rotation. The at least one MSM element may contain nickel, manganese, and gallium. A polymerase chain reaction (PCR) may be enhanced by contacting a PCR reagent and DNA material with the MSM element.

  1. Looking for reference genes for real-time quantitative PCR experiments in Rhodnius prolixus (Hemiptera: Reduviidae).

    PubMed

    Majerowicz, D; Alves-Bezerra, M; Logullo, R; Fonseca-de-Souza, A L; Meyer-Fernandes, J R; Braz, G R C; Gondim, K C

    2011-12-01

    Quantitative real-time PCR (qPCR) has become one of the most used techniques to measure gene expression. However, normalization of gene expression data against reference genes is essential, although these are usually used without any kind of validation. The expression of seven genes was compared in organs of Rhodnius prolixus under diverse conditions, using published software to test gene expression stability. Rp18S and elongation factor 1 (RpEF -1) were the most reliable genes for normalization in qPCR when gene expression in different organs was compared. Moreover, both genes were found to be the best references when transcript levels were compared in the posterior midgut of insects infected with Trypanosoma cruzi. Rp18S was also the best reference gene in the fat bodies of unfed and fed insects. By contrast, RpEF-1 was found to be the best reference gene for comparison between posterior midguts, and RpMIP or RpActin should be used to compare gene expression in the ovaries. Although Rp18S is indicated here as the best reference in most cases, reports from the literature show that it is difficult to find an optimum reference gene. Nevertheless, validation of candidate genes to be taken as references is important when new experimental conditions are tested to avoid incorrect data interpretation. PMID:21929722

  2. Cancer-germline gene expression in pediatric solid tumors using quantitative real-time PCR.

    PubMed

    Jacobs, Joannes F M; Brasseur, Francis; Hulsbergen-van de Kaa, Christina A; van de Rakt, Mandy W M M; Figdor, Carl G; Adema, Gosse J; Hoogerbrugge, Peter M; Coulie, Pierre G; de Vries, I Jolanda M

    2007-01-01

    Cancer-germline genes (CGGs) code for immunogenic antigens that are present on various human tumors but not on normal tissues. The importance of CGGs in cancer immunotherapy has led to detailed studies of their expression in a range of human tumors. We measured the levels of expression of 12 CGGs in various pediatric solid tumors to identify targets for therapeutic cancer vaccines. Quantitative real-time PCR (qPCR) was used to measure the expression of 8 MAGE genes and of genes LAGE-2/NY-ESO-1 and GAGE-1, 2, 8 in 9 osteosarcomas, 10 neuroblastomas, 12 rhabdomyosarcomas and 18 Ewing's sarcomas. Nine tumors were also examined by immunohistochemistry with monoclonal antibodies specific for the MAGE-A1, MAGE-A4 and NY-ESO-1 proteins. All osteosarcoma and 80% of neuroblastoma samples expressed several CGGs at high levels. Six of 12 rhabdomyosarcomas and 11 of 18 Ewing's sarcomas expressed at least one CGG. Immunohistochemistry data correlated well with qPCR results and showed a homogeneous protein distribution pattern in most positive tumors. No correlation was found between the levels of CGG expression in the tumors and clinicopathological parameters of the patients. Pediatric solid tumors express several CGGs, which encode antigens that could be targeted in therapeutic vaccination trials. Several CGGs of the MAGE, GAGE and LAGE families are coexpressed in a large proportion of osteosarcoma and neuroblastoma samples. Some rhabdomyosarcomas express several of these genes at high levels. Ewing's sarcomas have an overall low CGG expression.

  3. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense.

    PubMed

    McMillan, Mary; Pereg, Lily

    2014-01-01

    Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA) in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA) is sufficient for effective normalisation of qRT-PCR data.

  4. Investigation of Reference Genes in Vibrio parahaemolyticus for Gene Expression Analysis Using Quantitative RT-PCR

    PubMed Central

    Ma, Yue-jiao; Sun, Xiao-hong; Xu, Xiao-yan; Zhao, Yong; Pan, Ying-jie; Hwang, Cheng-An; Wu, Vivian C. H.

    2015-01-01

    Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize its virulence factors and understand the effect of environmental conditions on its pathogenicity. However, there is not a stable gene in V. parahaemolyticus that has been identified for use as a reference gene for qRT-PCR. This study evaluated the stability of 6 reference genes (16S rRNA, recA, rpoS, pvsA, pvuA, and gapdh) in 5 V. parahaemolyticus strains (O3:K6-clinical strain-tdh+, ATCC33846-tdh+, ATCC33847-tdh+, ATCC17802-trh+, and F13-environmental strain-tdh+) cultured at 4 different temperatures (15, 25, 37 and 42°C). Stability values were calculated using GeNorm, NormFinder, BestKeeper, and Delta CT algorithms. The results indicated that recA was the most stably expressed gene in the V. parahaemolyticus strains cultured at different temperatures. This study examined multiple V. parahaemolyticus strains and growth temperatures, hence the finding provided stronger evidence that recA can be used as a reference gene for gene expression studies in V. parahaemolyticus. PMID:26659406

  5. Validation of reference genes for real-time quantitative RT-PCR studies in Talaromyces marneffei.

    PubMed

    Dankai, Wiyada; Pongpom, Monsicha; Vanittanakom, Nongnuch

    2015-11-01

    Talaromyces marneffei (or Penicillium marneffei) is an opportunistic pathogen that can cause disseminated disease in human immunodeficiency virus (HIV)-infected patients, especially in Southeast Asia. T. marneffei is a thermally dimorphic fungus. Typically, T. marneffei has an adaptive morphology. It grows in a filamentous form (mould) at 25°C and can differentiate to produce asexual spores (conidia). In contrast, at 37°C, it grows as yeast cells that divide by fission. This study aimed to validate a quantitative reverse-transcription polymerase chain reaction (qRT-PCR) for gene expression analysis in T. marneffei. Analysis of relative gene expression by qRT-PCR requires normalization of data using a proper reference gene. However, suitable reference genes have not been identified in gene expression studies across different cell types or under different experimental conditions in T. marneffei. In this study, four housekeeping genes were selected for analysis: β-actin (act); glyceraldehyde-3-phosphate dehydrogenase (gapdh); β-tubulin (benA) and 18S rRNA. Two analysis programs; BestKeeper and geNorm software tools were used to validate the expression of the candidate normalized genes. The results indicated that the actin gene was the one which was most stably expressed and was recommended for use as the endogenous control for gene expression analysis of all growth forms in T. marneffei by qRT-PCR under normal and stress conditions.

  6. Evaluation of Housekeeping Genes for Quantitative Real-Time PCR Analysis of Bradysia odoriphaga (Diptera: Sciaridae)

    PubMed Central

    Shi, Caihua; Yang, Fengshan; Zhu, Xun; Du, Erxia; Yang, Yuting; Wang, Shaoli; Wu, Qingjun; Zhang, Youjun

    2016-01-01

    The soil insect Bradysia odoriphaga (Diptera: Sciaridae) causes substantial damage to Chinese chive. Suitable reference genes in B. odoriphaga (Bradysia odoriphaga) have yet to be identified for normalizing target gene expression among samples by quantitative real-time PCR (qRT-PCR). This study was focused on identifying the expression stability of 12 candidate housekeeping genes in B. odoriphaga under various experiment conditions. The final stability ranking of 12 housekeeping genes was obtained with RefFinder, and the most suitable number of reference genes was analyzed by GeNorm. The results revealed that the most appropriate sets of internal controls were RPS15, RPL18, and RPS18 across developmental phases; RPS15, RPL28, and GAPDH across temperatures; RPS15 and RPL18 across pesticide treatments; RSP5, RPS18, and SDHA across photoperiods; ACTb, RPS18, and RPS15 across diets; RPS13 and RPL28 across populations; and RPS15, ACTb, and RPS18 across all samples. The use of the most suitable reference genes versus an arbitrarily selected reference gene resulted in significant differences in the analysis of a target gene expression. HSP23 in B. odoriphaga was found to be up-regulated under low temperatures. These results will contribute to the standardization of qRT-PCR and will also be valuable for further research on gene function in B. odoriphaga. PMID:27399679

  7. Development and validation of a quantitative PCR assay using multiplexed hydrolysis probes for detection and quantification of Theileria orientalis isolates and differentiation of clinically relevant subtypes.

    PubMed

    Bogema, D R; Deutscher, A T; Fell, S; Collins, D; Eamens, G J; Jenkins, C

    2015-03-01

    Theileria orientalis is an emerging pathogen of cattle in Asia, Australia, and New Zealand. This organism is a vector-borne hemoprotozoan that causes clinical disease characterized by anemia, abortion, and death, as well as persistent subclinical infections. Molecular methods of diagnosis are preferred due to their sensitivity and utility in differentiating between pathogenic and apathogenic genotypes. Conventional PCR (cPCR) assays for T. orientalis detection and typing are laborious and do not provide an estimate of parasite load. Current real-time PCR assays cannot differentiate between clinically relevant and benign genotypes or are only semiquantitative without a defined clinical threshold. Here, we developed and validated a hydrolysis probe quantitative PCR (qPCR) assay which universally detects and quantifies T. orientalis and identifies the clinically associated Ikeda and Chitose genotypes (UIC assay). Comparison of the UIC assay results with previously validated universal and genotype-specific cPCR results demonstrated that qPCR detects and differentiates T. orientalis with high sensitivity and specificiy. Comparison of quantitative results based on percent parasitemia, determined via blood film analysis and packed cell volume (PCV) revealed significant positive and negative correlations, respectively. One-way analysis of variance (ANOVA) indicated that blood samples from animals with clinical signs of disease contained statistically higher concentrations of T. orientalis DNA than animals with subclinical infections. We propose clinical thresholds to assist in classifying high-, moderate-, and low-level infections and describe how parasite load and the presence of the Ikeda and Chitose genotypes relate to disease.

  8. Quantitative real-time PCR detection of Zika virus and evaluation with field-caught Mosquitoes

    PubMed Central

    2013-01-01

    Background Zika virus (ZIKV), a mosquito borne flavivirus is a pathogen affecting humans in Asia and Africa. ZIKV infection diagnosis relies on serology–which is challenging due to cross-reactions with other flaviviruses and/or absence or low titer of IgM and IgG antibodies at early phase of infection- virus isolation, which is labor intensive, time consuming and requires appropriate containment. Therefore, real-time RT-PCR (rRT-PCR) is an appealing option as a rapid, sensitive and specific method for detection of ZIKV in the early stage of infection. So far, only one rRT-PCR assay has been described in the context of the outbreak in Micronesia in 2007. In this study, we described a one step rRT-PCR for ZIKV which can detect a wider genetic diversity of ZIKV isolates from Asia and Africa. Results The NS5 protein coding regions of African ZIKV isolates were sequenced and aligned with representative flaviviruses sequences from GenBank to design primers and probe from conserved regions. The analytical sensitivity of the assay was evaluated to be 32 genome-equivalents and 0.05 plaque forming unit (pfu). The assay was shown to detect 37 ZIKV isolates covering a wide geographic in Africa and Asia over 36 years but none of the 31 other flaviviruses tested showing high analytical specificity. The rRT-PCR could be performed in less than 3 hours. This method was used successfully to detect ZIKV strains from field-caught mosquitoes. Conclusion We have developed a rapid, sensitive and specific rRT – PCR for detection of ZIKV. This assay is a useful tool for detection of ZIKV infection in regions where a number of other clinically indistinguishable arboviruses like dengue or chikungunya co-circulate. Further studies are needed to validate this assay in clinical positive samples collected during acute ZIKV infection. PMID:24148652

  9. Quantitation of viable Coxiella burnetii in milk using an integrated cell culture-polymerase chain reaction (ICC-PCR) assay.

    PubMed

    Stewart, Diana; Shieh, Y-Carol; Tortorello, Mary; Kukreja, Ankush; Shazer, Arlette; Schlesser, Joseph

    2015-11-01

    The obligate intracellular pathogen Coxiella burnetii has long been considered the most heat resistant pathogen in raw milk, making it the reference pathogen for determining pasteurisation conditions for milk products. New milk formulations and novel non-thermal processes require validation of effectiveness which requires a more practical method for analysis than using the currently used animal model for assessing Coxiella survival. Also, there is an interest in better characterising thermal inactivation of Coxiella in various milk formulations. To avoid the use of the guinea pig model for evaluating Coxiella survival, an Integrated Cell Culture-PCR (ICC-PCR) method was developed for determining Coxiella viability in milk. Vero cell cultures were directly infected from Coxiella-contaminated milk in duplicate 24-well plates. Viability of the Coxiella in milk was shown by a ≥ 0.5 log genome equivalent (ge)/ml increase in the quantity of IS111a gene from the baseline post-infection (day 0) level after 9-11 d propagation. Coxiella in skim, 2%, and whole milk, and half and half successfully infected Vero cells and increased in number by at least 2 logs using a 48-h infection period followed by 9-d propagation time. As few as 125 Coxiella ge/ml in whole milk was shown to infect and propagate at least 2 logs in the optimised ICC-PCR assay, though variable confirmation of propagation was shown for as low as 25 Coxiella ge/ml. Applicability of the ICC-PCR method was further proven in an MPN format to quantitate the number of viable Coxiella remaining in whole milk after 60 °C thermal treatment at 0, 20, 40, 60 and 90 min.

  10. Development of a combined immunomagnetic separation and quantitative reverse transcription-PCR assay for sensitive detection of infectious rotavirus in water samples.

    PubMed

    Yang, Wan; Gu, April Z; Zeng, Si-yu; Li, Dan; He, Miao; Shi, Han-chang

    2011-03-01

    A quantitative and rapid detection method for rotavirus in water samples was developed using immunomagnetic separation combined with quantitative reverse transcription-polymerase chain reaction (IMS-RT-qPCR). Magnetic beads coated with antibodies against representative group A rotavirus were used to capture and purify intact rotavirus particles in both artificial and real environmental water sample matrix. Compared to extracting RNA using commercial kits and RT-qPCR assay, the developed IMS-RT-qPCR method increased the detection sensitivity by about one order of magnitude when applied in clean water, with a detection limit of 3.16 50% tissue culture infectious dose (TCID(50))/mL within 5h. This method was compatible with various commonly used virus eluants, including beef extract (BE), beef extract with 0.05M glycine (BEG) and urea arginine phosphate buffer (UAPB). The recovery efficiencies from various eluants using IMS-RT-qPCR are higher than that using direct RT-qPCR method, demonstrating the effectiveness of the IMS step for eliminating inhibitors in the eluant matrix. This method was also successfully applied to purify and detect rotavirus particles seeded in 10(3)-fold concentrated wastewater influent samples. It seemed to reduce the interference from complex sample background and increase the qPCR product reliability comparing to RT-qPCR method without the IMS step. The results indicated that IMS-RT-qPCR is a rapid, sensitive and reliable tool for detecting rotaviruses in complex water environments. PMID:21256895

  11. Quantitative real-time PCR as a sensitive protein-protein interaction quantification method and a partial solution for non-accessible autoactivator and false-negative molecule analysis in the yeast two-hybrid system.

    PubMed

    Maier, Richard H; Maier, Christina J; Hintner, Helmut; Bauer, Johann W; Onder, Kamil

    2012-12-01

    Many functional proteomic experiments make use of high-throughput technologies such as mass spectrometry combined with two-dimensional polyacrylamide gel electrophoresis and the yeast two-hybrid (Y2H) system. Currently there are even automated versions of the Y2H system available that can be used for proteome-wide research. The Y2H system has the capacity to deliver a profusion of Y2H positive colonies from a single library screen. However, subsequent analysis of these numerous primary candidates with complementary methods can be overwhelming. Therefore, a method to select the most promising candidates with strong interaction properties might be useful to reduce the number of candidates requiring further analysis. The method described here offers a new way of quantifying and rating the performance of positive Y2H candidates. The novelty lies in the detection and measurement of mRNA expression instead of proteins or conventional Y2H genetic reporters. This method correlates well with the direct genetic reporter readouts usually used in the Y2H system, and has greater sensitivity for detecting and quantifying protein-protein interactions (PPIs) than the conventional Y2H system, as demonstrated by detection of the Y2H false-negative PPI of RXR/PPARG. Approximately 20% of all proteins are not suitable for the Y2H system, the so-called autoactivators. A further advantage of this method is the possibility to evaluate molecules that usually cannot be analyzed in the Y2H system, exemplified by a VDR-LXXLL motif peptide interaction. PMID:22982175

  12. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  13. Quantitative Methods in Psychology: Inevitable and Useless

    PubMed Central

    Toomela, Aaro

    2010-01-01

    Science begins with the question, what do I want to know? Science becomes science, however, only when this question is justified and the appropriate methodology is chosen for answering the research question. Research question should precede the other questions; methods should be chosen according to the research question and not vice versa. Modern quantitative psychology has accepted method as primary; research questions are adjusted to the methods. For understanding thinking in modern quantitative psychology, two epistemologies should be distinguished: structural-systemic that is based on Aristotelian thinking, and associative-quantitative that is based on Cartesian–Humean thinking. The first aims at understanding the structure that underlies the studied processes; the second looks for identification of cause–effect relationships between the events with no possible access to the understanding of the structures that underlie the processes. Quantitative methodology in particular as well as mathematical psychology in general, is useless for answering questions about structures and processes that underlie observed behaviors. Nevertheless, quantitative science is almost inevitable in a situation where the systemic-structural basis of behavior is not well understood; all sorts of applied decisions can be made on the basis of quantitative studies. In order to proceed, psychology should study structures; methodologically, constructive experiments should be added to observations and analytic experiments. PMID:21833199

  14. Interlaboratory Validation for a Real-Time PCR Salmonella Detection Method Using the ABI 7500 FAST Real-Time PCR System.

    PubMed

    Cheng, Chorng-Ming; Doran, Tara; Lin, Wen; Chen, Kai-Shun; Williams-Hill, Donna; Pamboukian, Ruiqing

    2015-06-01

    Sixteen FERN (Food Emergency Response Network) member laboratories collaborated in this study to verify extension of the real-time PCR Salmonella detection method originally designed for the single-tube Cepheid SmartCycler II and validated against the Salmonella method of the U. S. Food and Drug Administration Bacteriological Analytical Manual to the Applied Biosystems (ABI) 7500 FAST Real-Time PCR system multiwell plate platform. Four foods were selected for this study: chili powder, soft cheese, fish, and tomatoes; these foods represent products that are commonly analyzed for the presence of Salmonella for regulatory purposes. Each food consisted of six uninoculated control samples, six samples inoculated with low Salmonella levels (target 1 to 5 CFU/25 g), and six samples inoculated with high levels (target 10 to 50 CFU/25 g). All samples were tes