Science.gov

Sample records for quantitative pcr methods

  1. Quantitative PCR Method for Diagnosis of Citrus Bacterial Canker†

    PubMed Central

    Cubero, J.; Graham, J. H.; Gottwald, T. R.

    2001-01-01

    For diagnosis of citrus bacterial canker by PCR, an internal standard is employed to ensure the quality of the DNA extraction and that proper requisites exist for the amplification reaction. The ratio of PCR products from the internal standard and bacterial target is used to estimate the initial bacterial concentration in citrus tissues with lesions. PMID:11375206

  2. Validation of PCR methods for quantitation of genetically modified plants in food.

    PubMed

    Hübner, P; Waiblinger, H U; Pietsch, K; Brodmann, P

    2001-01-01

    For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.

  3. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for

  4. Quantitative Analysis of Intra-chromosomal Contacts: The 3C-qPCR Method.

    PubMed

    Ea, Vuthy; Court, Franck; Forné, Thierry

    2017-01-01

    The chromosome conformation capture (3C) technique is fundamental to many population-based methods investigating chromatin dynamics and organization in eukaryotes. Here, we provide a modified quantitative 3C (3C-qPCR) protocol for improved quantitative analyses of intra-chromosomal contacts. We also describe an algorithm for data normalization which allows more accurate comparisons between contact profiles.

  5. Optimization of Quantitative PCR Methods for Enteropathogen Detection.

    PubMed

    Liu, Jie; Gratz, Jean; Amour, Caroline; Nshama, Rosemary; Walongo, Thomas; Maro, Athanasia; Mduma, Esto; Platts-Mills, James; Boisen, Nadia; Nataro, James; Haverstick, Doris M; Kabir, Furqan; Lertsethtakarn, Paphavee; Silapong, Sasikorn; Jeamwattanalert, Pimmada; Bodhidatta, Ladaporn; Mason, Carl; Begum, Sharmin; Haque, Rashidul; Praharaj, Ira; Kang, Gagandeep; Houpt, Eric R

    2016-01-01

    Detection and quantification of enteropathogens in stool specimens is useful for diagnosing the cause of diarrhea but is technically challenging. Here we evaluate several important determinants of quantification: specimen collection, nucleic acid extraction, and extraction and amplification efficiency. First, we evaluate the molecular detection and quantification of pathogens in rectal swabs versus stool, using paired flocked rectal swabs and whole stool collected from 129 children hospitalized with diarrhea in Tanzania. Swabs generally yielded a higher quantification cycle (Cq) (average 29.7, standard deviation 3.5 vs. 25.3 ± 2.9 from stool, P<0.001) but were still able to detect 80% of pathogens with a Cq < 30 in stool. Second, a simplified total nucleic acid (TNA) extraction procedure was compared to separate DNA and RNA extractions and showed 92% (318/344) sensitivity and 98% (951/968) specificity, with no difference in Cq value for the positive results (ΔCq(DNA+RNA-TNA) = -0.01 ± 1.17, P = 0.972, N = 318). Third, we devised a quantification scheme that adjusts pathogen quantity to the specimen's extraction and amplification efficiency, and show that this better estimates the quantity of spiked specimens than the raw target Cq. In sum, these methods for enteropathogen quantification, stool sample collection, and nucleic acid extraction will be useful for laboratories studying enteric disease.

  6. Optimization of Quantitative PCR Methods for Enteropathogen Detection

    PubMed Central

    Liu, Jie; Gratz, Jean; Amour, Caroline; Nshama, Rosemary; Walongo, Thomas; Maro, Athanasia; Mduma, Esto; Platts-Mills, James; Boisen, Nadia; Nataro, James; Haverstick, Doris M.; Kabir, Furqan; Lertsethtakarn, Paphavee; Silapong, Sasikorn; Jeamwattanalert, Pimmada; Bodhidatta, Ladaporn; Mason, Carl; Begum, Sharmin; Haque, Rashidul; Praharaj, Ira; Kang, Gagandeep; Houpt, Eric R.

    2016-01-01

    Detection and quantification of enteropathogens in stool specimens is useful for diagnosing the cause of diarrhea but is technically challenging. Here we evaluate several important determinants of quantification: specimen collection, nucleic acid extraction, and extraction and amplification efficiency. First, we evaluate the molecular detection and quantification of pathogens in rectal swabs versus stool, using paired flocked rectal swabs and whole stool collected from 129 children hospitalized with diarrhea in Tanzania. Swabs generally yielded a higher quantification cycle (Cq) (average 29.7, standard deviation 3.5 vs. 25.3 ± 2.9 from stool, P<0.001) but were still able to detect 80% of pathogens with a Cq < 30 in stool. Second, a simplified total nucleic acid (TNA) extraction procedure was compared to separate DNA and RNA extractions and showed 92% (318/344) sensitivity and 98% (951/968) specificity, with no difference in Cq value for the positive results (ΔCq(DNA+RNA-TNA) = -0.01 ± 1.17, P = 0.972, N = 318). Third, we devised a quantification scheme that adjusts pathogen quantity to the specimen’s extraction and amplification efficiency, and show that this better estimates the quantity of spiked specimens than the raw target Cq. In sum, these methods for enteropathogen quantification, stool sample collection, and nucleic acid extraction will be useful for laboratories studying enteric disease. PMID:27336160

  7. Rapid and Inexpensive Screening of Genomic Copy Number Variations Using a Novel Quantitative Fluorescent PCR Method

    PubMed Central

    Han, Joan C.; Elsea, Sarah H.; Pena, Heloísa B.; Pena, Sérgio Danilo Junho

    2013-01-01

    Detection of human microdeletion and microduplication syndromes poses significant burden on public healthcare systems in developing countries. With genome-wide diagnostic assays frequently inaccessible, targeted low-cost PCR-based approaches are preferred. However, their reproducibility depends on equally efficient amplification using a number of target and control primers. To address this, the recently described technique called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR) was shown to reliably detect four human syndromes by quantifying DNA amplification in an internally controlled PCR reaction. Here, we confirm its utility in the detection of eight human microdeletion syndromes, including the more common WAGR, Smith-Magenis, and Potocki-Lupski syndromes with 100% sensitivity and 100% specificity. We present selection, design, and performance evaluation of detection primers using variety of approaches. We conclude that MQF-PCR is an easily adaptable method for detection of human pathological chromosomal aberrations. PMID:24288428

  8. Using the Taguchi method for rapid quantitative PCR optimization with SYBR Green I.

    PubMed

    Thanakiatkrai, Phuvadol; Welch, Lindsey

    2012-01-01

    Here, we applied the Taguchi method, an engineering optimization process, to successfully determine the optimal conditions for three SYBR Green I-based quantitative PCR assays. This method balanced the effects of all factors and their associated levels by using an orthogonal array rather than a factorial array. Instead of running 27 experiments with the conventional factorial method, the Taguchi method achieved the same optimal conditions using only nine experiments, saving valuable resources.

  9. Qualitative and quantitative PCR methods for detection of three lines of genetically modified potatoes.

    PubMed

    Rho, Jae Kyun; Lee, Theresa; Jung, Soon-Il; Kim, Tae-San; Park, Yong-Hwan; Kim, Young-Mi

    2004-06-02

    Qualitative and quantitative polymerase chain reaction (PCR) methods have been developed for the detection of genetically modified (GM) potatoes. The combination of specific primers for amplification of the promoter region of Cry3A gene, potato leafroll virus replicase gene, and potato virus Y coat protein gene allows to identify each line of NewLeaf, NewLeaf Y, and NewLeaf Plus GM potatoes. Multiplex PCR method was also established for the simple and rapid detection of the three lines of GM potato in a mixture sample. For further quantitative detection, the realtime PCR method has been developed. This method features the use of a standard plasmid as a reference molecule. Standard plasmid contains both a specific region of the transgene Cry3A and an endogenous UDP-glucose pyrophosphorylase gene of the potato. The test samples containing 0.5, 1, 3, and 5% GM potatoes were quantified by this method. At the 3.0% level of each line of GM potato, the relative standard deviations ranged from 6.0 to 19.6%. This result shows that the above PCR methods are applicable to detect GM potatoes quantitatively as well as qualitatively.

  10. Development and Evaluation of Event-Specific Quantitative PCR Method for Genetically Modified Soybean MON87701.

    PubMed

    Tsukahara, Keita; Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Nishimaki-Mogami, Tomoko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event, MON87701. First, a standard plasmid for MON87701 quantification was constructed. The conversion factor (Cf) required to calculate the amount of genetically modified organism (GMO) was experimentally determined for a real-time PCR instrument. The determined Cf for the real-time PCR instrument was 1.24. For the evaluation of the developed method, a blind test was carried out in an inter-laboratory trial. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr), respectively. The determined biases and the RSDr values were less than 30 and 13%, respectively, at all evaluated concentrations. The limit of quantitation of the method was 0.5%, and the developed method would thus be applicable for practical analyses for the detection and quantification of MON87701.

  11. [Development and validation of event-specific quantitative PCR method for genetically modified maize LY038].

    PubMed

    Mano, Junichi; Masubuchi, Tomoko; Hatano, Shuko; Futo, Satoshi; Koiwa, Tomohiro; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Takabatake, Reona; Kitta, Kazumi

    2013-01-01

    In this article, we report a novel real-time PCR-based analytical method for quantitation of the GM maize event LY038. We designed LY038-specific and maize endogenous reference DNA-specific PCR amplifications. After confirming the specificity and linearity of the LY038-specific PCR amplification, we determined the conversion factor required to calculate the weight-based content of GM organism (GMO) in a multilaboratory evaluation. Finally, in order to validate the developed method, an interlaboratory collaborative trial according to the internationally harmonized guidelines was performed with blind DNA samples containing LY038 at the mixing levels of 0, 0.5, 1.0, 5.0 and 10.0%. The precision of the method was evaluated as the RSD of reproducibility (RSDR), and the values obtained were all less than 25%. The limit of quantitation of the method was judged to be 0.5% based on the definition of ISO 24276 guideline. The results from the collaborative trial suggested that the developed quantitative method would be suitable for practical testing of LY038 maize.

  12. Comparison of QIAGEN automated nucleic acid extraction methods for CMV quantitative PCR testing.

    PubMed

    Miller, Steve; Seet, Henrietta; Khan, Yasmeen; Wright, Carolyn; Nadarajah, Rohan

    2010-04-01

    We examined the effect of nucleic acid extraction methods on the analytic characteristics of a quantitative polymerase chain reaction (PCR) assay for cytomegalovirus (CMV). Human serum samples were extracted with 2 automated instruments (BioRobot EZ1 and QIAsymphony SP, QIAGEN, Valencia, CA) and CMV PCR results compared with those of pp65 antigenemia testing. Both extraction methods yielded results that were comparably linear and precise, whereas the QIAsymphony SP had a slightly lower limit of detection (1.92 log(10) copies/mL vs 2.26 log(10) copies/mL). In both cases, PCR was more sensitive than CMV antigen detection, detecting CMV viremia in 12% (EZ1) and 21% (QIAsymphony) of antigen-negative specimens. This study demonstrates the feasibility of using 2 different extraction techniques to yield results within 0.5 log(10) copies/mL of the mean value, a level that would allow for clinical comparison between different laboratory assays.

  13. Development and validation of event-specific quantitative PCR method for genetically modified maize MIR604.

    PubMed

    Mano, Junichi; Furui, Satoshi; Takashima, Kaori; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Takabatake, Reona; Kitta, Kazumi

    2012-01-01

    A GM maize event, MIR604, has been widely distributed and an analytical method to quantify its content is required to monitor the validity of food labeling. Here we report a novel real-time PCR-based quantitation method for MIR604 maize. We developed real-time PCR assays specific for MIR604 using event-specific primers designed by the trait developer, and for maize endogenous starch synthase IIb gene (SSIIb). Then, we determined the conversion factor, which is required to calculate the weight-based GM maize content from the copy number ratio of MIR604-specific DNA to the endogenous reference DNA. Finally, to validate the developed method, an interlaboratory collaborative trial according to the internationally harmonized guidelines was performed with blind samples containing MIR604 at the mixing levels of 0, 0.5, 1.0, 5.0 and 10.0%. The reproducibility (RSDr) of the developed method was evaluated to be less than 25%. The limit of quantitation of the method was estimated to be 0.5% based on the ISO 24276 guideline. These results suggested that the developed method would be suitable for practical quantitative analyses of MIR604 maize.

  14. Comparison of TaqMan and SYBR Green qPCR methods for quantitative gene expression in tung tree tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative real-time-PCR (qPCR) is widely used for gene expression analysis due to its large dynamic range, tremendous sensitivity, high sequence-specificity, little to no post-amplification processing, and sample throughput. TaqMan and SYBR Green qPCR are two frequently used methods. However, dir...

  15. An ECL-PCR method for quantitative detection of point mutation

    NASA Astrophysics Data System (ADS)

    Zhu, Debin; Xing, Da; Shen, Xingyan; Chen, Qun; Liu, Jinfeng

    2005-04-01

    A new method for identification of point mutations was proposed. Polymerase chain reaction (PCR) amplification of a sequence from genomic DNA was followed by digestion with a kind of restriction enzyme, which only cut the wild-type amplicon containing its recognition site. Reaction products were detected by electrochemiluminescence (ECL) assay after adsorption of the resulting DNA duplexes to the solid phase. One strand of PCR products carries biotin to be bound on a streptavidin-coated microbead for sample selection. Another strand carries Ru(bpy)32+ (TBR) to react with tripropylamine (TPA) to emit light for ECL detection. The method was applied to detect a specific point mutation in H-ras oncogene in T24 cell line. The results show that the detection limit for H-ras amplicon is 100 fmol and the linear range is more than 3 orders of magnitude, thus, make quantitative analysis possible. The genotype can be clearly discriminated. Results of the study suggest that ECL-PCR is a feasible quantitative method for safe, sensitive and rapid detection of point mutation in human genes.

  16. Detection of Legionella species in environmental water by the quantitative PCR method in combination with ethidium monoazide treatment.

    PubMed

    Inoue, Hiroaki; Takama, Tomoko; Yoshizaki, Miwa; Agata, Kunio

    2015-01-01

    We detected Legionella species in 111 bath water samples and 95 cooling tower water samples by using a combination of conventional plate culture, quantitative polymerase chain reaction (qPCR) and qPCR combined with ethidium monoazide treatment (EMA-qPCR) methods. In the case of bath water samples, Legionella spp. were detected in 30 samples by plate culture, in 85 samples by qPCR, and in 49 samples by EMA-qPCR. Of 81 samples determined to be Legionella-negative by plate culture, 56 and 23 samples were positive by qPCR and EMA-qPCR, respectively. Therefore, EMA treatment decreased the number of Legionella-positive bath water samples detected by qPCR. In contrast, EMA treatment had no effect on cooling tower water samples. We therefore expect that EMA-qPCR is a useful method for the rapid detection of viable Legionella spp. from bath water samples.

  17. Monochloramine disinfection kinetics of Nitrosomonas europaea by propidium monoazide quantitative PCR and Live/Dead BacLight Methods

    EPA Science Inventory

    Monochloramine disinfection kinetics were determined for the pure culture ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) by two culture independent methods: (1) LIVE/DEAD® BacLight™ (LD) and (2) propidium monoazide quantitative PCR (PMA-qPCR). Both methods were f...

  18. Simple absolute quantification method correcting for quantitative PCR efficiency variations for microbial community samples.

    PubMed

    Brankatschk, Robert; Bodenhausen, Natacha; Zeyer, Josef; Bürgmann, Helmut

    2012-06-01

    Real-time quantitative PCR (qPCR) is a widely used technique in microbial community analysis, allowing the quantification of the number of target genes in a community sample. Currently, the standard-curve (SC) method of absolute quantification is widely employed for these kinds of analysis. However, the SC method assumes that the amplification efficiency (E) is the same for both the standard and the sample target template. We analyzed 19 bacterial strains and nine environmental samples in qPCR assays, targeting the nifH and 16S rRNA genes. The E values of the qPCRs differed significantly, depending on the template. This has major implications for the quantification. If the sample and standard differ in their E values, quantification errors of up to orders of magnitude are possible. To address this problem, we propose and test the one-point calibration (OPC) method for absolute quantification. The OPC method corrects for differences in E and was derived from the ΔΔC(T) method with correction for E, which is commonly used for relative quantification in gene expression studies. The SC and OPC methods were compared by quantifying artificial template mixtures from Geobacter sulfurreducens (DSM 12127) and Nostoc commune (Culture Collection of Algae and Protozoa [CCAP] 1453/33), which differ in their E values. While the SC method deviated from the expected nifH gene copy number by 3- to 5-fold, the OPC method quantified the template mixtures with high accuracy. Moreover, analyzing environmental samples, we show that even small differences in E between the standard and the sample can cause significant differences between the copy numbers calculated by the SC and the OPC methods.

  19. Effect of platform, reference material, and quantification model on enumeration of Enterococcus by quantitative PCR methods

    EPA Science Inventory

    Quantitative polymerase chain reaction (qPCR) is increasingly being used for the quantitative detection of fecal indicator bacteria in beach water. QPCR allows for same-day health warnings, and its application is being considered as an optionn for recreational water quality testi...

  20. Design of primers and probes for quantitative real-time PCR methods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Córdoba, Juan J; Andrade, María J

    2015-01-01

    Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.

  1. A quantitative real-time PCR method for monitoring Clostridium botulinum type A in rice samples.

    PubMed

    Takahashi, Hajime; Takakura, Chikako; Kimura, Bon

    2010-04-01

    A quantitative real-time PCR using SYBR Green dye was developed to target the neurotoxin type A (boNT/A) gene of Clostridium botulinum type A. Primer specificity was confirmed by analyzing 63 strains including 5 strains of C. botulinum type A and 11 of non-type A C. botulinum. The highly similar amplification efficiencies of the real-time PCR assay were observed for 5 strains of C. botulinum type A. The DNA extraction with NucliSENS miniMAG provided sufficient performance to obtain the purified DNA from steamed rice samples and to develop the standard curve for the enumeration of C. botulinum in steamed rice samples. The real-time PCR assay could detect 10 cells per milliliter of 10 x rice homogenate, thus indicating that more than 100 C. botulinum cells per g of rice sample was quantifiable by the real-time PCR assay. The inoculation of aseptic rice samples with low numbers of C. botulinum type A cells revealed that the fate of inoculated C. botulinum type A cells in rice samples could be monitored accurately by the real-time PCR assay. These results indicate that the real-time PCR assay developed in this study provides rapid, effective, and quantitative monitoring of C. botulinum in steamed rice samples.

  2. Effects of DNA extraction and purification methods on real-time quantitative PCR analysis of Roundup Ready soybean.

    PubMed

    Demeke, Tigst; Ratnayaka, Indira; Phan, Anh

    2009-01-01

    The quality of DNA affects the accuracy and repeatability of quantitative PCR results. Different DNA extraction and purification methods were compared for quantification of Roundup Ready (RR) soybean (event 40-3-2) by real-time PCR. DNA was extracted using cetylmethylammonium bromide (CTAB), DNeasy Plant Mini Kit, and Wizard Magnetic DNA purification system for food. CTAB-extracted DNA was also purified using the Zymo (DNA Clean & Concentrator 25 kit), Qtip 100 (Qiagen Genomic-Tip 100/G), and QIAEX II Gel Extraction Kit. The CTAB extraction method provided the largest amount of DNA, and the Zymo purification kit resulted in the highest percentage of DNA recovery. The Abs260/280 and Abs260/230 ratios were less than the expected values for some of the DNA extraction and purification methods used, indicating the presence of substances that could inhibit PCR reactions. Real-time quantitative PCR results were affected by the DNA extraction and purification methods used. Further purification or dilution of the CTAB DNA was required for successful quantification of RR soybean. Less variability of quantitative PCR results was observed among experiments and replications for DNA extracted and/or purified by CTAB, CTAB+Zymo, CTAB+Qtip 100, and DNeasy methods. Correct and repeatable results for real-time PCR quantification of RR soybean were achieved using CTAB DNA purified with Zymo and Qtip 100 methods.

  3. Technical note: development of a quantitative PCR method for monitoring strain dynamics during yogurt manufacture.

    PubMed

    Miller, D M; Dudley, E G; Roberts, R F

    2012-09-01

    Yogurt starter cultures may consist of multiple strains of Lactobacillus delbrueckii ssp. bulgaricus (LB) and Streptococcus thermophilus (ST). Conventional plating methods for monitoring LB and ST levels during yogurt manufacture do not allow for quantification of individual strains. The objective of the present work was to develop a quantitative PCR method for quantification of individual strains in a commercial yogurt starter culture. Strain-specific primers were designed for 2 ST strains (ST DGCC7796 and ST DGCC7710), 1 LB strain (DGCC4078), and 1 Lactobacillus delbrueckii ssp. lactis strain (LL; DGCC4550). Primers for the individual ST and LB strains were designed to target unique DNA sequences in clustered regularly interspersed short palindromic repeats. Primers for LL were designed to target a putative mannitol-specific IIbC component of the phosphotransferase system. Following evaluation of primer specificity, standard curves relating cell number to cycle threshold were prepared for each strain individually and in combination in yogurt mix, and no significant differences in the slopes were observed. Strain balance data was collected for yogurt prepared at 41 and 43°C to demonstrate the potential application of this method.

  4. PALATAL DYSMORPHOGENESIS: QUANTITATIVE RT-PCR

    EPA Science Inventory

    ABSTRACT

    Palatal Dysmorphogenesis : Quantitative RT-PCR

    Gary A. Held and Barbara D. Abbott

    Reverse transcription PCR (RT-PCR) is a very sensitive method for detecting mRNA in tissue samples. However, as it is usually performed it is does not yield quantitativ...

  5. Method Specific Calibration Corrects for DNA Extraction Method Effects on Relative Telomere Length Measurements by Quantitative PCR.

    PubMed

    Seeker, Luise A; Holland, Rebecca; Underwood, Sarah; Fairlie, Jennifer; Psifidi, Androniki; Ilska, Joanna J; Bagnall, Ainsley; Whitelaw, Bruce; Coffey, Mike; Banos, Georgios; Nussey, Daniel H

    2016-01-01

    Telomere length (TL) is increasingly being used as a biomarker in epidemiological, biomedical and ecological studies. A wide range of DNA extraction techniques have been used in telomere experiments and recent quantitative PCR (qPCR) based studies suggest that the choice of DNA extraction method may influence average relative TL (RTL) measurements. Such extraction method effects may limit the use of historically collected DNA samples extracted with different methods. However, if extraction method effects are systematic an extraction method specific (MS) calibrator might be able to correct for them, because systematic effects would influence the calibrator sample in the same way as all other samples. In the present study we tested whether leukocyte RTL in blood samples from Holstein Friesian cattle and Soay sheep measured by qPCR was influenced by DNA extraction method and whether MS calibration could account for any observed differences. We compared two silica membrane-based DNA extraction kits and a salting out method. All extraction methods were optimized to yield enough high quality DNA for TL measurement. In both species we found that silica membrane-based DNA extraction methods produced shorter RTL measurements than the non-membrane-based method when calibrated against an identical calibrator. However, these differences were not statistically detectable when a MS calibrator was used to calculate RTL. This approach produced RTL measurements that were highly correlated across extraction methods (r > 0.76) and had coefficients of variation lower than 10% across plates of identical samples extracted by different methods. Our results are consistent with previous findings that popular membrane-based DNA extraction methods may lead to shorter RTL measurements than non-membrane-based methods. However, we also demonstrate that these differences can be accounted for by using an extraction method-specific calibrator, offering researchers a simple means of accounting for

  6. Method Specific Calibration Corrects for DNA Extraction Method Effects on Relative Telomere Length Measurements by Quantitative PCR

    PubMed Central

    Holland, Rebecca; Underwood, Sarah; Fairlie, Jennifer; Psifidi, Androniki; Ilska, Joanna J.; Bagnall, Ainsley; Whitelaw, Bruce; Coffey, Mike; Banos, Georgios; Nussey, Daniel H.

    2016-01-01

    Telomere length (TL) is increasingly being used as a biomarker in epidemiological, biomedical and ecological studies. A wide range of DNA extraction techniques have been used in telomere experiments and recent quantitative PCR (qPCR) based studies suggest that the choice of DNA extraction method may influence average relative TL (RTL) measurements. Such extraction method effects may limit the use of historically collected DNA samples extracted with different methods. However, if extraction method effects are systematic an extraction method specific (MS) calibrator might be able to correct for them, because systematic effects would influence the calibrator sample in the same way as all other samples. In the present study we tested whether leukocyte RTL in blood samples from Holstein Friesian cattle and Soay sheep measured by qPCR was influenced by DNA extraction method and whether MS calibration could account for any observed differences. We compared two silica membrane-based DNA extraction kits and a salting out method. All extraction methods were optimized to yield enough high quality DNA for TL measurement. In both species we found that silica membrane-based DNA extraction methods produced shorter RTL measurements than the non-membrane-based method when calibrated against an identical calibrator. However, these differences were not statistically detectable when a MS calibrator was used to calculate RTL. This approach produced RTL measurements that were highly correlated across extraction methods (r > 0.76) and had coefficients of variation lower than 10% across plates of identical samples extracted by different methods. Our results are consistent with previous findings that popular membrane-based DNA extraction methods may lead to shorter RTL measurements than non-membrane-based methods. However, we also demonstrate that these differences can be accounted for by using an extraction method-specific calibrator, offering researchers a simple means of accounting for

  7. Laboratory Evaluations of the Enterococcus qPCR Method for Recreational Water Quality Testing: Method Performance and Sources of Uncertainty in Quantitative Measurements

    EPA Science Inventory

    The BEACH Act of 2000 directed the U.S. EPA to establish more expeditious methods for the detection of pathogen indicators in coastal waters, as well as new water quality criteria based on these methods. Progress has been made in developing a quantitative PCR (qPCR) method for en...

  8. Comparison of TaqMan and SYBR Green qPCR methods for quantitative gene expression in tung tree tissues.

    PubMed

    Cao, Heping; Shockey, Jay M

    2012-12-19

    Quantitative real-time-PCR (qPCR) is widely used for gene expression analysis due to its large dynamic range, tremendous sensitivity, high sequence specificity, little to no postamplification processing, and sample throughput. TaqMan and SYBR Green qPCR are two frequently used methods. However, direct comparison of both methods using the same primers and biological samples is still limited. We compared both assays using seven RNAs from the seeds, leaves, and flowers of tung tree (Vernicia fordii), which produces high-value industrial oil. High-quality RNA were isolated from tung tissues, as indicated by a high rRNA ratio and RNA integrity number. qPCR primers and TaqMan probes were optimized. Under optimized conditions, both qPCR gave high correlation coefficiency and similar amplification efficiency, but TaqMan qPCR generated higher y-intercepts than SYBR Green qPCR, which overestimated the expression levels regardless of the genes and tissues tested. This is validated using well-known Dgat2 and Fadx gene expression in tung tissues. The results demonstrate that both assays are reliable for determining gene expression in tung tissues and that the TaqMan assay is more sensitive but generates lower calculated expression levels than the SYBR Green assay. This study suggests that any discussion of gene expression levels needs to be linked to which qPCR method is used in the analysis.

  9. Inverse PCR and Quantitative PCR as Alternative Methods to Southern Blotting Analysis to Assess Transgene Copy Number and Characterize the Integration Site in Transgenic Woody Plants.

    PubMed

    Stefano, Biricolti; Patrizia, Bogani; Matteo, Cerboneschi; Massimo, Gori

    2016-06-01

    One of the major unanswered questions with respect to the commercial use of genetic transformation in woody plants is the stability of the transgene expression over several decades within the same individual. Gene expression is strongly affected by the copy number which has been integrated into the plant genome and by the local DNA features close to the integration sites. Because woody plants cannot be subjected to selfing or backcrossing to modify the transgenic allelic structure without affecting the valuable traits of the cultivar, molecular characterization of the transformation event is therefore crucial. After assessing the transgene copy number of a set of apple transgenic clones with Southern blotting, we describe two alternative methods: the first is based on inverse PCR (i-PCR) and the second on the quantitative PCR (q-PCR). The methods produced comparable results with the exception of the data regarding a high copy number clone, but while the q-PCR-based system is rapid and easily adaptable to high throughput systems, the i-PCR-based method can provide information regarding the transformation event and the characteristics of the sequences flanking the transgenic construct.

  10. SNPs and real-time quantitative PCR method for constitutional allelic copy number determination, the VPREB1 marker case

    PubMed Central

    2011-01-01

    Background 22q11.2 microdeletion is responsible for the DiGeorge Syndrome, characterized by heart defects, psychiatric disorders, endocrine and immune alterations and a 1 in 4000 live birth prevalence. Real-time quantitative PCR (qPCR) approaches for allelic copy number determination have recently been investigated in 22q11.2 microdeletions detection. The qPCR method was performed for 22q11.2 microdeletions detection as a first-level screening approach in a genetically unknown series of patients with congenital heart defects. A technical issue related to the VPREB1 qPCR marker was pointed out. Methods A set of 100 unrelated Italian patients with congenital heart defects were tested for 22q11.2 microdeletions by a qPCR method using six different markers. Fluorescence In Situ Hybridization technique (FISH) was used for confirmation. Results qPCR identified six patients harbouring the 22q11.2 microdeletion, confirmed by FISH. The VPREB1 gene marker presented with a pattern consistent with hemideletion in one 3 Mb deleted patient, suggestive for a long distal deletion, and in additional five non-deleted patients. The long distal 22q11.2 deletion was not confirmed by Comparative Genomic Hybridization. Indeed, the VPREB1 gene marker generated false positive results in association with the rs1320 G/A SNP, a polymorphism localized within the VPREB1 marker reverse primer sequence. Patients heterozygous for rs1320 SNP, showed a qPCR profile consistent with the presence of a hemideletion. Conclusions Though the qPCR technique showed advantages as a screening approach in terms of cost and time, the VPREB1 marker case revealed that single nucleotide polymorphisms can interfere with qPCR data generating erroneous allelic copy number interpretations. PMID:21545739

  11. DNA extraction and quantitation of forensic samples using the phenol-chloroform method and real-time PCR.

    PubMed

    Köchl, Silvano; Niederstätter, Harald; Parson, Walther

    2005-01-01

    Forensic laboratories are increasingly confronted with problematic samples from the scene of crime, containing only minute amounts of deoxyribonucleic acid (DNA), which may include polymerase chain reaction (PCR)-inhibiting substances. Efficient DNA extraction procedures, as well as accurate DNA quantification methods, are critical steps involved in the process of successful DNA analysis of such samples. The phenol-chloroform method is a sensitive method for the extraction of DNA from a wide variety of forensic samples, although it is known to be laborious compared with single-tube extraction methods. The relatively high DNA recovery and the quality of the extracted DNA speak for itself. For reliable and sensitive DNA quantitation, the application of real-time PCR is described. We modified a published real-time PCR assay, which allows for the combined analysis of nuclear and mitochondrial DNA, by introducing 1) improved hybridization probes with the use of minor groove binders; 2) an internal positive control (for both nuclear and mitochondrial DNA) for the detection of PCR inhibitors; and 3) different amplicon lengths for the determination of the degradation state of the DNA. The internal positive controls were constructed by site directed mutagenesis by overlap extension of the wild-type mitochondrial and nuclear DNA target with the advantage that no additional probes, which are cost-intensive, are required. The quantitation system is accomplished as a modular concept, which allows for the combined determination of the above-mentioned features (quantity/inhibition or quantity/degradation) depending on the situation.

  12. Monochloramine disinfection kinetics of Nitrosomonas europaea by propidium monoazide quantitative PCR and Live/dead BacLight methods.

    PubMed

    Wahman, David G; Wulfeck-Kleier, Karen A; Pressman, Jonathan G

    2009-09-01

    Monochloramine disinfection kinetics were determined for the pure-culture ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) by two culture-independent methods, namely, Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR). Both methods were first verified with mixtures of heat-killed (nonviable) and non-heat-killed (viable) cells before a series of batch disinfection experiments with stationary-phase cultures (batch grown for 7 days) at pH 8.0, 25 degrees C, and 5, 10, and 20 mg Cl(2)/liter monochloramine. Two data sets were generated based on the viability method used, either (i) LD or (ii) PMA-qPCR. These two data sets were used to estimate kinetic parameters for the delayed Chick-Watson disinfection model through a Bayesian analysis implemented in WinBUGS. This analysis provided parameter estimates of 490 mg Cl(2)-min/liter for the lag coefficient (b) and 1.6 x 10(-3) to 4.0 x 10(-3) liter/mg Cl(2)-min for the Chick-Watson disinfection rate constant (k). While estimates of b were similar for both data sets, the LD data set resulted in a greater k estimate than that obtained with the PMA-qPCR data set, implying that the PMA-qPCR viability measure was more conservative than LD. For N. europaea, the lag phase was not previously reported for culture-independent methods and may have implications for nitrification in drinking water distribution systems. This is the first published application of a PMA-qPCR method for disinfection kinetic model parameter estimation as well as its application to N. europaea or monochloramine. Ultimately, this PMA-qPCR method will allow evaluation of monochloramine disinfection kinetics for mixed-culture bacteria in drinking water distribution systems.

  13. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods.

    PubMed

    Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc

    2004-03-01

    Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.

  14. An Alu-based, MGB Eclipse real-time PCR method for quantitation of human DNA in forensic samples.

    PubMed

    Nicklas, Janice A; Buel, Eric

    2005-09-01

    The forensic community needs quick, reliable methods to quantitate human DNA in crime scene samples to replace the laborious and imprecise slot blot method. A real-time PCR based method has the possibility of allowing development of a faster and more quantitative assay. Alu sequences are primate-specific and are found in many copies in the human genome, making these sequences an excellent target or marker for human DNA. This paper describes the development of a real-time Alu sequence-based assay using MGB Eclipse primers and probes. The advantages of this assay are simplicity, speed, less hands-on-time and automated quantitation, as well as a large dynamic range (128 ng/microL to 0.5 pg/microL).

  15. Development and evaluation of event-specific quantitative PCR method for genetically modified soybean A2704-12.

    PubMed

    Takabatake, Reona; Akiyama, Hiroshi; Sakata, Kozue; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Teshima, Reiko; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event; A2704-12. During the plant transformation, DNA fragments derived from pUC19 plasmid were integrated in A2704-12, and the region was found to be A2704-12 specific. The pUC19-derived DNA sequences were used as primers for the specific detection of A2704-12. We first tried to construct a standard plasmid for A2704-12 quantification using pUC19. However, non-specific signals appeared with both qualitative and quantitative PCR analyses using the specific primers with pUC19 as a template, and we then constructed a plasmid using pBR322. The conversion factor (C(f)), which is required to calculate the amount of the genetically modified organism (GMO), was experimentally determined with two real-time PCR instruments, the Applied Biosystems 7900HT and the Applied Biosystems 7500. The determined C(f) values were both 0.98. The quantitative method was evaluated by means of blind tests in multi-laboratory trials using the two real-time PCR instruments. The limit of quantitation for the method was estimated to be 0.1%. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSD(R)), and the determined bias and RSD(R) values for the method were each less than 20%. These results suggest that the developed method would be suitable for practical analyses for the detection and quantification of A2704-12.

  16. Quantitation of mRNA levels of steroid 5alpha-reductase isozymes: a novel method that combines quantitative RT-PCR and capillary electrophoresis.

    PubMed

    Torres, Jesús M; Ortega, Esperanza

    2004-01-01

    A novel, accurate, rapid and modestly labor-intensive method has been developed to quantitate specific mRNA species by reverse transcription-polymerase chain reaction (RT-PCR). This strategy combines the high degree of specificity of competitive PCR with the sensitivity of laser-induced fluorescence capillary electrophoresis (LIF-CE). The specific target mRNA and a mimic DNA fragment, used as an internal standard (IS), were co-amplified in a single reaction in which the same primers are used. The amount of mRNA was then quantitated by extrapolation from the standard curve generated with the internal standard. PCR primers were designed to amplify both a 185 bp fragment of the target cDNA for steroid 5alpha-reductase 1 (5alpha-R1) and a 192 bp fragment of the target cDNA for steroid 5alpha-reductase type 2 (5alpha-R2). The 5' forward primers were end-labeled with 6-carboxy-fluorescein (6-FAM). Two synthetic internal standard DNAs of 300 bp were synthesized from the sequence of plasmid pEGFP-C1. The ratio of fluorescence intensity between amplified products of the target cDNA (185 or 192 bp fragments) and the competitive DNA (300 bp fragment) was determined quantitatively after separation by capillary electrophoresis and fluorescence analysis. The accurate quantitation of low-abundance mRNAs by the present method allows low-level gene expression to be characterized.

  17. A Colony Multiplex Quantitative PCR-Based 3S3DBC Method and Variations of It for Screening DNA Libraries

    PubMed Central

    An, Yang; Toyoda, Atsushi; Zhao, Chen; Fujiyama, Asao; Agata, Kiyokazu

    2015-01-01

    A DNA library is a collection of DNA fragments cloned into vectors and stored individually in host cells, and is a valuable resource for molecular cloning, gene physical mapping, and genome sequencing projects. To take the best advantage of a DNA library, a good screening method is needed. After describing pooling strategies and issues that should be considered in DNA library screening, here we report an efficient colony multiplex quantitative PCR-based 3-step, 3-dimension, and binary-code (3S3DBC) method we used to screen genes from a planarian genomic DNA fosmid library. This method requires only 3 rounds of PCR reactions and only around 6 hours to distinguish one or more desired clones from a large DNA library. According to the particular situations in different research labs, this method can be further modified and simplified to suit their requirements. PMID:25646755

  18. Evaluation of a real-time quantitative PCR method with propidium monazide treatment for analyses of viable fecal indicator bacteria in wastewater samples

    EPA Science Inventory

    The U.S. EPA is currently evaluating rapid, real-time quantitative PCR (qPCR) methods for determining recreational water quality based on measurements of fecal indicator bacteria DNA sequences. In order to potentially use qPCR for other Clean Water Act needs, such as updating cri...

  19. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    PubMed

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  20. Establishment of quantitative PCR methods for the quantification of geosmin-producing potential and Anabaena sp. in freshwater systems.

    PubMed

    Su, Ming; Gaget, Virginie; Giglio, Steven; Burch, Michael; An, Wei; Yang, Min

    2013-06-15

    Geosmin has often been associated with off-flavor problems in drinking water with Anabaena sp. as the major producer. Rapid on-site detection of geosmin-producers as well as geosmin is important for a timely management response to potential off-flavor events. In this study, quantitative polymerase chain reaction (qPCR) methods were developed to detect the levels of Anabaena sp. and geosmin, respectively, by designing two PCR primer sets to quantify the rpoC1 gene (ARG) and geosmin synthase one (GSG) in Anabaena sp. in freshwater systems. The ARG density determined by qPCR assay is highly related to microscopic cell count (r(2) = 0.726, p < 0.001), and the limit of detection (LOD) and limit of quantification (LOQ) of the qPCR method were 0.02 pg and 0.2 pg of DNA, respectively. At the same time, the relationship between geosmin concentrations measured by gas chromatography-mass spectrometry (GC-MS) and GSG copies was also established (r(2) = 0.742, p < 0.001) with similar LOD and LOQ values. Using the two qPCR protocols, we succeeded in measuring different levels of ARG and GSG copies in different freshwater systems with high incidence environmental substrata and diverse ecological conditions, showing that the methods developed could be applied for environmental monitoring. Moreover, comparing to the microscopic count and GC-MS analytical methods, the qPCR methods can reduce the time-to-results from several days to a few hours and require considerably less traditional algal identification and taxonomic expertise.

  1. Comparative Application of PLS and PCR Methods to Simultaneous Quantitative Estimation and Simultaneous Dissolution Test of Zidovudine - Lamivudine Tablets.

    PubMed

    Üstündağ, Özgür; Dinç, Erdal; Özdemir, Nurten; Tilkan, M Günseli

    2015-01-01

    In the development strategies of new drug products and generic drug products, the simultaneous in-vitro dissolution behavior of oral dosage formulations is the most important indication for the quantitative estimation of efficiency and biopharmaceutical characteristics of drug substances. This is to force the related field's scientists to improve very powerful analytical methods to get more reliable, precise and accurate results in the quantitative analysis and dissolution testing of drug formulations. In this context, two new chemometric tools, partial least squares (PLS) and principal component regression (PCR) were improved for the simultaneous quantitative estimation and dissolution testing of zidovudine (ZID) and lamivudine (LAM) in a tablet dosage form. The results obtained in this study strongly encourage us to use them for the quality control, the routine analysis and the dissolution test of the marketing tablets containing ZID and LAM drugs.

  2. Development of an Alu-based, real-time PCR method for quantitation of human DNA in forensic samples.

    PubMed

    Nicklas, Janice A; Buel, Eric

    2003-09-01

    Determining the amount of human DNA extracted from a crime scene sample is an important step in DNA profiling. The forensic community relies almost entirely upon a technique (slot blot) to quantitate human DNA that is imprecise, time consuming, and labor intensive. We have previously described a method for quantitation of human DNA based on PCR amplification of a repetitive Alu sequence that uses a fluorescence plate reader. This manuscript describes and validates a variation of this assay using real-time PCR and SYBR Green I for quantitation. The advantages of the real-time assay over the plate reader assay are: reduced hands-on time, lower assay cost, and a greater dynamic range. The main disadvantage is the cost of the real-time instrument. However, for those forensic laboratories with access to a real-time instrument, this Alu-based assay has a dynamic range of 16 ng to 1 pg, is sensitive, specific, fast, quantitative, and uses only 2 microL of sample.

  3. Simulation of collaborative studies for real-time PCR-based quantitation methods for genetically modified crops.

    PubMed

    Watanabe, Satoshi; Sawada, Hiroshi; Naito, Shigehiro; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Kitta, Kazumi; Hino, Akihiro

    2013-01-01

    To study impacts of various random effects and parameters of collaborative studies on the precision of quantitation methods of genetically modified (GM) crops, we developed a set of random effects models for cycle time values of a standard curve-based relative real-time PCR that makes use of an endogenous gene sequence as the internal standard. The models and data from a published collaborative study for six GM lines at four concentration levels were used to simulate collaborative studies under various conditions. Results suggested that by reducing the numbers of well replications from three to two, and standard levels of endogenous sequence from five to three, the number of unknown samples analyzable on a 96-well PCR plate in routine analyses could be almost doubled, and still the acceptable repeatability RSD (RSDr < or = 25%) and the reproducibility RSD (RSDR < 35%) of the collaborative study could be met. Further, RSDr and RSD(R) were found most sensitive to random effects attributable to inhomogeneity among blind replicates, but they were little influenced by those attributable to DNA extractions. The proposed models are expected to be useful for optimizing standard curve-based relative quantitation methods for GM crops by real-time PCR and their collaborative studies.

  4. A quantitative real-time PCR method using an X-linked gene for sex typing in pigs.

    PubMed

    Ballester, Maria; Castelló, Anna; Ramayo-Caldas, Yuliaxis; Folch, Josep M

    2013-06-01

    At present, a wide range of molecular sex-typing protocols in wild and domestic animals are available. In pigs, most of these methods are based on PCR amplification of X-Y homologous genes followed by gel electrophoresis which is time-consuming and in some cases expensive. In this paper, we describe, for the first time, a SYBR green-based quantitative real-time PCR (qPCR) assay using an X-linked gene, the glycoprotein M6B, for genetic sexing of pigs. Taking into account the differences in the glycoprotein M6B gene copy number between genders, we determine the correct sex of 54 pig samples from either diaphragm or hair follicle from different breeds using the 2(-ΔΔCT) method for relative quantification. Our qPCR assay represents a quick, inexpensive, and reliable tool for sex determination in pigs. This new protocol could be easily adapted to other species in which the sex determination was required.

  5. Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources

    EPA Science Inventory

    The state of California has mandated the preparation of a guidance document on the application of fecal source identification methods for recreational water quality management. California contains the fifth highest population of cattle in the United States, making the inclusio...

  6. Quantitative PCR method for detection of mycoplasma spp. DNA in nasal lavage samples from the desert tortoise (Gopherus agassizii).

    PubMed

    duPre', S A; Tracy, C R; Hunter, K W

    2011-08-01

    Mycoplasma agassizii and M. testudineum have been associated with upper respiratory tract disease (URTD) in the threatened desert tortoise (Gopherus agassizii). Because microbiological culture methods have proven difficult to employ in wild desert tortoises, our goal was to develop a sensitive and specific qPCR method for detecting and quantifying mycoplasma DNA in nasal lavage fluid collected in the field. Primers for 16S ribosomal RNA gene sequences specific for M. agassizii and M. testudineum were designed, together with primers that recognize conserved sequences of both microorganisms. Standard curves generated with DNA extracted from known numbers of mycoplasma cells revealed a lower detection limit of approximately 5fg. The qPCR method did not recognize normal flora DNA, and nasal lavage fluid contained no interfering substances. Nasal lavage samples collected from 20 captive desert tortoises housed at the Desert Tortoise Conservation Center (Clark County, Nevada, USA) revealed the presence of M. agassizii DNA in 100% of the tortoises. Concentrations ranged from a low of 6pg ml(-1) to a high of 72,962pg ml(-1). Only one of the tortoises was positive for M. testudineum. Interestingly, not all of the qPCR positive tortoises showed evidence of seroconversion, suggesting that they were colonized but not infected. This new quantitative method will provide a critical tool for managing threatened populations of the desert tortoise.

  7. Quantitative real-time PCR method with internal amplification control to quantify cyclopiazonic acid producing molds in foods.

    PubMed

    Rodríguez, Alicia; Werning, María L; Rodríguez, Mar; Bermúdez, Elena; Córdoba, Juan J

    2012-12-01

    A quantitative TaqMan real-time PCR (qPCR) method that includes an internal amplification control (IAC) to quantify cyclopiazonic acid (CPA)-producing molds in foods has been developed. A specific primer pair (dmaTF/dmaTR) and a TaqMan probe (dmaTp) were designed on the basis of dmaT gene which encodes the enzyme dimethylallyl tryptophan synthase involved in the biosynthesis of CPA. The IAC consisted of a 105 bp chimeric DNA fragment containing a region of the hly gene of Listeria monocytogenes. Thirty-two mold reference strains representing CPA producers and non-producers of different mold species were used in this study. All strains were tested for CPA production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the designed qPCR method was demonstrated by the high linear relationship of the standard curves relating to the dmaT gene copy numbers and the Ct values obtained from the different CPA producers tested. The ability of the qPCR protocol to quantify CPA-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 1-4 log cfu/g in the different food matrices. The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g. This qPCR protocol including an IAC showed good efficiency to quantify CPA-producing molds in naturally contaminated foods avoiding false negative results. This method could be used to monitor the CPA producers in the HACCP programs to prevent the risk of CPA formation throughout the food chain.

  8. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    PubMed

    Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.

  9. LEMming: A Linear Error Model to Normalize Parallel Quantitative Real-Time PCR (qPCR) Data as an Alternative to Reference Gene Based Methods

    PubMed Central

    Feuer, Ronny; Vlaic, Sebastian; Arlt, Janine; Sawodny, Oliver; Dahmen, Uta; Zanger, Ulrich M.; Thomas, Maria

    2015-01-01

    Background Gene expression analysis is an essential part of biological and medical investigations. Quantitative real-time PCR (qPCR) is characterized with excellent sensitivity, dynamic range, reproducibility and is still regarded to be the gold standard for quantifying transcripts abundance. Parallelization of qPCR such as by microfluidic Taqman Fluidigm Biomark Platform enables evaluation of multiple transcripts in samples treated under various conditions. Despite advanced technologies, correct evaluation of the measurements remains challenging. Most widely used methods for evaluating or calculating gene expression data include geNorm and ΔΔCt, respectively. They rely on one or several stable reference genes (RGs) for normalization, thus potentially causing biased results. We therefore applied multivariable regression with a tailored error model to overcome the necessity of stable RGs. Results We developed a RG independent data normalization approach based on a tailored linear error model for parallel qPCR data, called LEMming. It uses the assumption that the mean Ct values within samples of similarly treated groups are equal. Performance of LEMming was evaluated in three data sets with different stability patterns of RGs and compared to the results of geNorm normalization. Data set 1 showed that both methods gave similar results if stable RGs are available. Data set 2 included RGs which are stable according to geNorm criteria, but became differentially expressed in normalized data evaluated by a t-test. geNorm-normalized data showed an effect of a shifted mean per gene per condition whereas LEMming-normalized data did not. Comparing the decrease of standard deviation from raw data to geNorm and to LEMming, the latter was superior. In data set 3 according to geNorm calculated average expression stability and pairwise variation, stable RGs were available, but t-tests of raw data contradicted this. Normalization with RGs resulted in distorted data contradicting

  10. Performance of two quantitative PCR methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters

    EPA Science Inventory

    Before new, rapid quantitative PCR (qPCR) methods for recreational water quality assessment and microbial source tracking (MST) can be useful in a regulatory context, an understanding of the ability of the method to detect a DNA target (marker) when the contaminant soure has been...

  11. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods

    EPA Science Inventory

    There is a growing interest in the application of human-associated fecal sourceidentification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data q...

  12. A human fecal contamination index for ranking impaired recreational watersusing the HF183 quantitative real-time PCR method

    EPA Science Inventory

    Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk managem...

  13. EVALUATION OF A RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    EPA Science Inventory

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan?) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C....

  14. Novel micelle PCR-based method for accurate, sensitive and quantitative microbiota profiling.

    PubMed

    Boers, Stefan A; Hays, John P; Jansen, Ruud

    2017-04-05

    In the last decade, many researchers have embraced 16S rRNA gene sequencing techniques, which has led to a wealth of publications and documented differences in the composition of microbial communities derived from many different ecosystems. However, comparison between different microbiota studies is currently very difficult due to the lack of a standardized 16S rRNA gene sequencing protocol. Here we report on a novel approach employing micelle PCR (micPCR) in combination with an internal calibrator that allows for standardization of microbiota profiles via their absolute abundances. The addition of an internal calibrator allows the researcher to express the resulting operational taxonomic units (OTUs) as a measure of 16S rRNA gene copies by correcting the number of sequences of each individual OTU in a sample for efficiency differences in the NGS process. Additionally, accurate quantification of OTUs obtained from negative extraction control samples allows for the subtraction of contaminating bacterial DNA derived from the laboratory environment or chemicals/reagents used. Using equimolar synthetic microbial community samples and low biomass clinical samples, we demonstrate that the calibrated micPCR/NGS methodology possess a much higher precision and a lower limit of detection compared with traditional PCR/NGS, resulting in more accurate microbiota profiles suitable for multi-study comparison.

  15. Novel micelle PCR-based method for accurate, sensitive and quantitative microbiota profiling

    PubMed Central

    Boers, Stefan A.; Hays, John P.; Jansen, Ruud

    2017-01-01

    In the last decade, many researchers have embraced 16S rRNA gene sequencing techniques, which has led to a wealth of publications and documented differences in the composition of microbial communities derived from many different ecosystems. However, comparison between different microbiota studies is currently very difficult due to the lack of a standardized 16S rRNA gene sequencing protocol. Here we report on a novel approach employing micelle PCR (micPCR) in combination with an internal calibrator that allows for standardization of microbiota profiles via their absolute abundances. The addition of an internal calibrator allows the researcher to express the resulting operational taxonomic units (OTUs) as a measure of 16S rRNA gene copies by correcting the number of sequences of each individual OTU in a sample for efficiency differences in the NGS process. Additionally, accurate quantification of OTUs obtained from negative extraction control samples allows for the subtraction of contaminating bacterial DNA derived from the laboratory environment or chemicals/reagents used. Using equimolar synthetic microbial community samples and low biomass clinical samples, we demonstrate that the calibrated micPCR/NGS methodology possess a much higher precision and a lower limit of detection compared with traditional PCR/NGS, resulting in more accurate microbiota profiles suitable for multi-study comparison. PMID:28378789

  16. Real-Time PCR-Based Quantitation Method for the Genetically Modified Soybean Line GTS 40-3-2.

    PubMed

    Kitta, Kazumi; Takabatake, Reona; Mano, Junichi

    2016-01-01

    This chapter describes a real-time PCR-based method for quantitation of the relative amount of genetically modified (GM) soybean line GTS 40-3-2 [Roundup Ready(®) soybean (RRS)] contained in a batch. The method targets a taxon-specific soybean gene (lectin gene, Le1) and the specific DNA construct junction region between the Petunia hybrida chloroplast transit peptide sequence and the Agrobacterium 5-enolpyruvylshikimate-3-phosphate synthase gene (epsps) sequence present in GTS 40-3-2. The method employs plasmid pMulSL2 as a reference material in order to quantify the relative amount of GTS 40-3-2 in soybean samples using a conversion factor (Cf) equal to the ratio of the RRS-specific DNA to the taxon-specific DNA in representative genuine GTS 40-3-2 seeds.

  17. Evaluation of a rapid, quantitative real-time PCR method for enumeration of pathogenic Candida cells in water

    USGS Publications Warehouse

    Brinkman, Nichole E.; Haugland, Richard A.; Wymer, Larry J.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Vesper, Stephen J.

    2003-01-01

    Quantitative PCR (QPCR) technology, incorporating fluorigenic 5′ nuclease (TaqMan) chemistry, was utilized for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C. lusitaniae) in water. Known numbers of target cells were added to distilled and tap water samples, filtered, and disrupted directly on the membranes for recovery of DNA for QPCR analysis. The assay's sensitivities were between one and three cells per filter. The accuracy of the cell estimates was between 50 and 200% of their true value (95% confidence level). In similar tests with surface water samples, the presence of PCR inhibitory compounds necessitated further purification and/or dilution of the DNA extracts, with resultant reductions in sensitivity but generally not in quantitative accuracy. Analyses of a series of freshwater samples collected from a recreational beach showed positive correlations between the QPCR results and colony counts of the corresponding target species. Positive correlations were also seen between the cell quantities of the target Candida species detected in these analyses and colony counts of Enterococcus organisms. With a combined sample processing and analysis time of less than 4 h, this method shows great promise as a tool for rapidly assessing potential exposures to waterborne pathogenic Candida species from drinking and recreational waters and may have applications in the detection of fecal pollution.

  18. Linear-After-The-Exponential (LATE)–PCR: An advanced method of asymmetric PCR and its uses in quantitative real-time analysis

    PubMed Central

    Sanchez, J. Aquiles; Pierce, Kenneth E.; Rice, John E.; Wangh, Lawrence J.

    2004-01-01

    Conventional asymmetric PCR is inefficient and difficult to optimize because limiting the concentration of one primer lowers its melting temperature below the reaction annealing temperature. Linear-After-The-Exponential (LATE)–PCR describes a new paradigm for primer design that renders assays as efficient as symmetric PCR assays, regardless of primer ratio. LATE-PCR generates single-stranded products with predictable kinetics for many cycles beyond the exponential phase. LATE-PCR also introduces new probe design criteria that uncouple hybridization probe detection from primer annealing and extension, increase probe reliability, improve allele discrimination, and increase signal strength by 80–250% relative to symmetric PCR. These improvements in PCR are particularly useful for real-time quantitative analysis of target numbers in small samples. LATE-PCR is adaptable to high throughput applications in fields such as clinical diagnostics, biodefense, forensics, and DNA sequencing. We showcase LATE-PCR via amplification of the cystic fibrosis CFΔ508 allele and the Tay-Sachs disease TSD 1278 allele from single heterozygous cells. PMID:14769930

  19. Development and validation of an event-specific quantitative PCR method for genetically modified maize MIR162.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2014-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162.

  20. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods

    PubMed Central

    Kelty, Catherine A.; Oshiro, Robin; Haugland, Richard A.; Madi, Tania; Brooks, Lauren; Field, Katharine G.; Sivaganesan, Mano

    2016-01-01

    There is growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data quality across laboratories. Data quality is typically determined through a series of specifications that ensure good experimental practice and the absence of bias in the results due to DNA isolation and amplification interferences. However, there is currently a lack of consensus on how best to evaluate and interpret human fecal source identification qPCR experiments. This is, in part, due to the lack of standardized protocols and information on interlaboratory variability under conditions for data acceptance. The aim of this study is to provide users and reviewers with a complete series of conditions for data acceptance derived from a multiple laboratory data set using standardized procedures. To establish these benchmarks, data from HF183/BacR287 and HumM2 human-associated qPCR methods were generated across 14 laboratories. Each laboratory followed a standardized protocol utilizing the same lot of reference DNA materials, DNA isolation kits, amplification reagents, and test samples to generate comparable data. After removal of outliers, a nested analysis of variance (ANOVA) was used to establish proficiency metrics that include lab-to-lab, replicate testing within a lab, and random error for amplification inhibition and sample processing controls. Other data acceptance measurements included extraneous DNA contamination assessments (no-template and extraction blank controls) and calibration model performance (correlation coefficient, amplification efficiency, and lower limit of quantification). To demonstrate the implementation of the proposed standardized protocols and data acceptance criteria, comparable data from two additional laboratories were reviewed. The data acceptance criteria

  1. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods.

    PubMed

    Shanks, Orin C; Kelty, Catherine A; Oshiro, Robin; Haugland, Richard A; Madi, Tania; Brooks, Lauren; Field, Katharine G; Sivaganesan, Mano

    2016-05-01

    There is growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data quality across laboratories. Data quality is typically determined through a series of specifications that ensure good experimental practice and the absence of bias in the results due to DNA isolation and amplification interferences. However, there is currently a lack of consensus on how best to evaluate and interpret human fecal source identification qPCR experiments. This is, in part, due to the lack of standardized protocols and information on interlaboratory variability under conditions for data acceptance. The aim of this study is to provide users and reviewers with a complete series of conditions for data acceptance derived from a multiple laboratory data set using standardized procedures. To establish these benchmarks, data from HF183/BacR287 and HumM2 human-associated qPCR methods were generated across 14 laboratories. Each laboratory followed a standardized protocol utilizing the same lot of reference DNA materials, DNA isolation kits, amplification reagents, and test samples to generate comparable data. After removal of outliers, a nested analysis of variance (ANOVA) was used to establish proficiency metrics that include lab-to-lab, replicate testing within a lab, and random error for amplification inhibition and sample processing controls. Other data acceptance measurements included extraneous DNA contamination assessments (no-template and extraction blank controls) and calibration model performance (correlation coefficient, amplification efficiency, and lower limit of quantification). To demonstrate the implementation of the proposed standardized protocols and data acceptance criteria, comparable data from two additional laboratories were reviewed. The data acceptance criteria

  2. Comparison of concentration methods for rapid detection of hookworm ova in wastewater matrices using quantitative PCR.

    PubMed

    Gyawali, P; Ahmed, W; Jagals, P; Sidhu, J P S; Toze, S

    2015-12-01

    Hookworm infection contributes around 700 million infections worldwide especially in developing nations due to increased use of wastewater for crop production. The effective recovery of hookworm ova from wastewater matrices is difficult due to their low concentrations and heterogeneous distribution. In this study, we compared the recovery rates of (i) four rapid hookworm ova concentration methods from municipal wastewater, and (ii) two concentration methods from sludge samples. Ancylostoma caninum ova were used as surrogate for human hookworm (Ancylostoma duodenale and Necator americanus). Known concentration of A. caninum hookworm ova were seeded into wastewater (treated and raw) and sludge samples collected from two wastewater treatment plants (WWTPs) in Brisbane and Perth, Australia. The A. caninum ova were concentrated from treated and raw wastewater samples using centrifugation (Method A), hollow fiber ultrafiltration (HFUF) (Method B), filtration (Method C) and flotation (Method D) methods. For sludge samples, flotation (Method E) and direct DNA extraction (Method F) methods were used. Among the four methods tested, filtration (Method C) method was able to recover higher concentrations of A. caninum ova consistently from treated wastewater (39-50%) and raw wastewater (7.1-12%) samples collected from both WWTPs. The remaining methods (Methods A, B and D) yielded variable recovery rate ranging from 0.2 to 40% for treated and raw wastewater samples. The recovery rates for sludge samples were poor (0.02-4.7), although, Method F (direct DNA extraction) provided 1-2 orders of magnitude higher recovery rate than Method E (flotation). Based on our results it can be concluded that the recovery rates of hookworm ova from wastewater matrices, especially sludge samples, can be poor and highly variable. Therefore, choice of concentration method is vital for the sensitive detection of hookworm ova in wastewater matrices.

  3. HUMAN FECAL SOURCE IDENTIFICATION: REAL-TIME QUANTITATIVE PCR METHOD STANDARDIZATION - abstract

    EPA Science Inventory

    Method standardization or the formal development of a protocol that establishes uniform performance benchmarks and practices is necessary for widespread adoption of a fecal source identification approach. Standardization of a human-associated fecal identification method has been...

  4. Human Fecal Source Identification: Real-Time Quantitative PCR Method Standardization

    EPA Science Inventory

    Method standardization or the formal development of a protocol that establishes uniform performance benchmarks and practices is necessary for widespread adoption of a fecal source identification approach. Standardization of a human-associated fecal identification method has been...

  5. A BAYESIAN METHOD FOR CALCULATING REAL-TIME QUANTITATIVE PCR CALIBRATION CURVES USING ABSOLUTE PLASMID DNA STANDARDS

    EPA Science Inventory

    In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignore...

  6. A Robust Plant RNA Isolation Method for Affymetrix Genechip® Analysis and Quantitative Real-Time RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microarray analysis and quantitative real-time RT-PCR are the major high-throughput techniques that are used to study transcript profiles. One of the major limitations in these technologies is the isolation maximum yield of highly-pure RNA from plant tissues rich in complex polysaccharides, polyphen...

  7. EVALUATION OF DIFFERENT METHODS FOR THE EXTRACTION OF DNA FROM FUNGAL CONIDIA BY QUANTITATIVE COMPETITIVE PCR ANALYSIS

    EPA Science Inventory

    Five different DNA extraction methods were evaluated for their effectiveness in recovering PCR templates from the conidia of a series of fungal species often encountered in indoor air. The test organisms were Aspergillus versicolor, Penicillium chrysogenum, Stachybotrys chartaru...

  8. Differences in AMY1 Gene Copy Numbers Derived from Blood, Buccal Cells and Saliva Using Quantitative and Droplet Digital PCR Methods: Flagging the Pitfall

    PubMed Central

    Ong, Siong Gim; Chan, Yiong Huak; Heng, Chew Kiat

    2017-01-01

    Introduction The human salivary (AMY1) gene, encoding salivary α-amylase, has variable copy number variants (CNVs) in the human genome. We aimed to determine if real-time quantitative polymerase chain reaction (qPCR) and the more recently available Droplet Digital PCR (ddPCR) can provide a precise quantification of the AMY1 gene copy number in blood, buccal cells and saliva samples derived from the same individual. Methods Seven participants were recruited and DNA was extracted from the blood, buccal cells and saliva samples provided by each participant. Taqman assay real-time qPCR and ddPCR were conducted to quantify AMY1 gene copy numbers. Statistical analysis was carried out to determine the difference in AMY1 gene copy number between the different biological specimens and different assay methods. Results We found significant within-individual difference (p<0.01) in AMY1 gene copy number between different biological samples as determined by qPCR. However, there was no significant within-individual difference in AMY1 gene copy number between different biological samples as determined by ddPCR. We also found that AMY1 gene copy number of blood samples were comparable between qPCR and ddPCR, while there is a significant difference (p<0.01) between AMY1 gene copy numbers measured by qPCR and ddPCR for both buccal swab and saliva samples. Conclusions Despite buccal cells and saliva samples being possible sources of DNA, it is pertinent that ddPCR or a single biological sample, preferably blood sample, be used for determining highly polymorphic gene copy numbers like AMY1, due to the large within-individual variability between different biological samples if real time qPCR is employed. PMID:28125683

  9. Selection of Suitable DNA Extraction Methods for Genetically Modified Maize 3272, and Development and Evaluation of an Event-Specific Quantitative PCR Method for 3272.

    PubMed

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize, 3272. We first attempted to obtain genome DNA from this maize using a DNeasy Plant Maxi kit and a DNeasy Plant Mini kit, which have been widely utilized in our previous studies, but DNA extraction yields from 3272 were markedly lower than those from non-GM maize seeds. However, lowering of DNA extraction yields was not observed with GM quicker or Genomic-tip 20/G. We chose GM quicker for evaluation of the quantitative method. We prepared a standard plasmid for 3272 quantification. The conversion factor (Cf), which is required to calculate the amount of a genetically modified organism (GMO), was experimentally determined for two real-time PCR instruments, the Applied Biosystems 7900HT (the ABI 7900) and the Applied Biosystems 7500 (the ABI7500). The determined Cf values were 0.60 and 0.59 for the ABI 7900 and the ABI 7500, respectively. To evaluate the developed method, a blind test was conducted as part of an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSDr). The determined values were similar to those in our previous validation studies. The limit of quantitation for the method was estimated to be 0.5% or less, and we concluded that the developed method would be suitable and practical for detection and quantification of 3272.

  10. Human genome-specific real-time PCR method for sensitive detection and reproducible quantitation of human cells in mice.

    PubMed

    Song, Pengyue; Xie, Zhenhua; Guo, Ling; Wang, Chengmei; Xie, Weidong; Wu, Yaojiong

    2012-12-01

    Xenotransplantation of human cells into immunodeficiency mice has been frequently used to study stem cells in tissue repair and regeneration and cancer cell metastasis. However, a sensitive and reproducible method to quantify cell engraftment lacks. Here, we developed a Real-Time PCR-based method which facilitated consistent detection and quantification of small amounts of human cells distributed in mouse organs after infusion. The principle of the method was to directly detect a humans-specific sequence in the human-murine genomic DNA mixture. In a mouse myocardial infarction model, the Real-Time PCR-based method consistently determined the amounts of human mesenchymal stem cells (hMSCs) engrafted into the heart and other organs 7 days after infusion of as little as 2.5 × 10(5) cells, indicating a high sensitivity, and the amounts of hMSCs detected in mice highly correlated to the numbers of hMSCs transplanted. Importantly, different from previous PCR-based methods, our method produced highly consistent and reproducible results. The reliability of the method was further proven by parallel analyses of DiI-labeled hMSCs in tissue sections and in single cell suspensions of mice. Our data show that the present human genomic DNA-specific primers-based Real-Time PCR method is sensitive and highly reproducible in determining the amount of xenotransplanted human cells in murine tissues.

  11. Escherichia coli and Enterococcus spp. in rainwater tank samples: comparison of culture-based methods and 23S rRNA gene quantitative PCR assays.

    PubMed

    Ahmed, W; Richardson, K; Sidhu, J P S; Toze, S

    2012-10-16

    In this study, culture-based methods and quantitative PCR (qPCR) assays were compared with each other for the measurement of Escherichia coli and Enterococcus spp. in water samples collected from rainwater tanks in Southeast Queensland, Australia. Among the 50 rainwater tank samples tested, 26 (52%) and 46 (92%) samples yielded E. coli numbers as measured by EPA Method 1603 and E. coli 23S rRNA gene qPCR assay, respectively. Similarly, 49 (98%) and 47 (94%) samples yielded Enterococcus spp. numbers as measured by EPA Method 1600 and Enterococcus spp. 23S rRNA gene qPCR assay, respectively. The mean E. coli (2.49 ± 0.85) log(10) and Enterococcus spp. (2.72 ± 0.32) log(10) numbers as measured by qPCR assays were significantly (P < 0001) different than E. coli (0.91 ± 0.80) log(10) and Enterococcus spp. (1.86 ± 0.60) log(10) numbers as measured by culture-based method. Weak but significant correlations were observed between both EPA Method 1603 and the E. coli qPCR assay (r = 0.47, P = 0.0009), and EPA Method 1600 and the Enterococcus spp. qPCR assay (r = 0.42, P = 0.002). Good qualitative agreement was found between the culture-based method and the Enterococcus spp. qPCR assay in terms of detecting fecal pollution in water samples from the studied rainwater tanks. More research studies, however, are needed to shed some light on the discrepancies associated with the culture-based methods and qPCR assays for measuring fecal indicator bacteria.

  12. Development of an Alu-based, QSY 7-labeled primer PCR method for quantitation of human DNA in forensic samples.

    PubMed

    Nicklas, Janice A; Buel, Eric

    2003-03-01

    Determining the amount of human DNA extracted from a crime scene sample is an important step in DNA profiling. The forensic community relies almost entirely upon a technique (slot blot) to quantitate human DNA that is imprecise, time consuming, and labor intensive. This paper describes the development of a new technique based on PCR amplification of a repetitive Alu sequence. Specific primers were used to amplify a 124-bp fragment of Alu sequence; amplification was detected by SYBR Green I staining in a fluorescent plate reader. To reduce background in the plate reader assay, QSY-7 labeled primers were utilized. The assay was tested on animal DNAs, human blood spots, mock crime samples, and degraded DNA in comparison with the slot blot technique. The QSY Alu assay has a dynamic range of 10 ng to 10 pg, and is sensitive, specific, fast, quantitative, and comparable in cost to the slot blot assay.

  13. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples.

    PubMed

    Yang, Rongchang; Paparini, Andrea; Monis, Paul; Ryan, Una

    2014-12-01

    Clinical microbiology laboratories rely on quantitative PCR for its speed, sensitivity, specificity and ease-of-use. However, quantitative PCR quantitation requires the use of a standard curve or normalisation to reference genes. Droplet digital PCR provides absolute quantitation without the need for calibration curves. A comparison between droplet digital PCR and quantitative PCR-based analyses was conducted for the enteric parasite Cryptosporidium, which is an important cause of gastritis in both humans and animals. Two loci were analysed (18S rRNA and actin) using a range of Cryptosporidium DNA templates, including recombinant plasmids, purified haemocytometer-counted oocysts, commercial flow cytometry-counted oocysts and faecal DNA samples from sheep, cattle and humans. Each method was evaluated for linearity, precision, limit of detection and cost. Across the same range of detection, both methods showed a high degree of linearity and positive correlation for standards (R(2)⩾0.999) and faecal samples (R(2)⩾0.9750). The precision of droplet digital PCR, as measured by mean Relative Standard Deviation (RSD;%), was consistently better compared with quantitative PCR, particularly for the 18S rRNA locus, but was poorer as DNA concentration decreased. The quantitative detection of quantitative PCR was unaffected by DNA concentration, but droplet digital PCR quantitative PCR was less affected by the presence of inhibitors, compared with quantitative PCR. For most templates analysed including Cryptosporidium-positive faecal DNA, the template copy numbers, as determined by droplet digital PCR, were consistently lower than by quantitative PCR. However, the quantitations obtained by quantitative PCR are dependent on the accuracy of the standard curve and when the quantitative PCR data were corrected for pipetting and DNA losses (as determined by droplet digital PCR), then the sensitivity of both methods was comparable. A cost analysis based on 96 samples revealed that

  14. Mycobacterium avium subsp. paratuberculosis survival during fermentation of soured milk products detected by culture and quantitative real time PCR methods.

    PubMed

    Klanicova, B; Slana, I; Roubal, P; Pavlik, I; Kralik, P

    2012-07-02

    Mycobacterium avium paratuberculosis (MAP), etiological agent of paratuberculosis in ruminants, is able to survive extreme conditions like very low pH (stomach), high temperature (pasteurization) or low temperature (refrigerated storage). Cheese, infant powder milk, cream and other milk and dairy products might thus be considered as possible sources of MAP for humans. The aim of this study was to investigate the survival of two MAP field isolates during fermentation of three different types of soured milk products (SMP; yogurt, acidophilus milk and kefir) under laboratory conditions. Pasteurized MAP-free milk was artificially contaminated with 10(6)MAPcells/mL and survival and absolute numbers of MAP were monitored during fermentation (4 or 16 h) and after six weeks of storage at 4°C by culture and quantitative real time PCR (qPCR). Viability of MAP was determined by culture using Herrold's egg yolk medium and Middlebrook 7H10 with antibiotics, supplemented with Mycobactin J and incubated at 37°C for up to 12 weeks. The absolute numbers of MAP were quantified by previously published qPCR assays targeting F57 and IS900 loci in MAP genome. We herein confirm that MAP can survive pH reduction, however, longer exposure to pH below 4 in SMP seems to be critical because it inhibits growth. Therefore, it is suggested that probiotic cultures that can decrease pH below 4 during fermentation could provide better inactivation of MAP in SMP.

  15. Comparative Evaluation of Four Real-Time PCR Methods for the Quantitative Detection of Epstein-Barr Virus from Whole Blood Specimens.

    PubMed

    Buelow, Daelynn; Sun, Yilun; Tang, Li; Gu, Zhengming; Pounds, Stanley; Hayden, Randall

    2016-07-01

    Monitoring of Epstein-Barr virus (EBV) load in immunocompromised patients has become integral to their care. An increasing number of reagents are available for quantitative detection of EBV; however, there are little published comparative data. Four real-time PCR systems (one using laboratory-developed reagents and three using analyte-specific reagents) were compared with one another for detection of EBV from whole blood. Whole blood specimens seeded with EBV were used to determine quantitative linearity, analytical measurement range, lower limit of detection, and CV for each assay. Retrospective testing of 198 clinical samples was performed in parallel with all methods; results were compared to determine relative quantitative and qualitative performance. All assays showed similar performance. No significant difference was found in limit of detection (3.12-3.49 log10 copies/mL; P = 0.37). A strong qualitative correlation was seen with all assays that used clinical samples (positive detection rates of 89.5%-95.8%). Quantitative correlation of clinical samples across assays was also seen in pairwise regression analysis, with R(2) ranging from 0.83 to 0.95. Normalizing clinical sample results to IU/mL did not alter the quantitative correlation between assays. Quantitative EBV detection by real-time PCR can be performed over a wide linear dynamic range, using three different commercially available reagents and laboratory-developed methods. EBV was detected with comparable sensitivity and quantitative correlation for all assays.

  16. Quantitative PCR for genetic markers of human fecal pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantification approach. We report the development of quantitative PCR assays for enumeration of two recently described hum...

  17. Quantitative PCR for Genetic Markers of Human Fecal Pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantificationapproach. We report the development of quantitative PCR assays for quantification of two recently described human-...

  18. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri

    PubMed Central

    Yin, Youping; Wang, Zhongkang

    2016-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a novel molecular biology technique providing absolute quantification of target nucleic acids without the need for an external calibrator. Despite its emerging applications in medical diagnosis, there are few reports of its use for the detection of plant pathogens. This work was designed to assess the diagnosis potential of the ddPCR for absolute quantitative detection of Xanthomonas citri subsp. citri, a quarantine plant pathogenic bacterium that causes citrus bacterial canker in susceptible Citrus species. We transferred an established quantitative PCR (qPCR) assay for citrus bacterial canker diagnosis directly to the ddPCR format and compared the performance of the two methods. The qPCR assay has a broader dynamic range compared to the ddPCR assay and the ddPCR assay has a significantly higher degree of sensitivity compared to the qPCR assay. The influence of PCR inhibitors can be reduced considerably in the ddPCR assay because the collection of end-point fluorescent signals and the counting of binomial events (positive or negative droplets) are associated with a Poisson algorithm. The ddPCR assay also shows lower coefficient of variation compared to the qPCR assay especially in low target concentration. The linear association of the measurements by ddPCR and qPCR assays is strong (Pearson correlation = 0.8633; P<0.001). Receiver operating characteristic analysis indicates the ddPCR methodology is a more robust approach for diagnosis of citrus bacterial canker. In summary, the results demonstrated that the ddPCR assay has the potential for the quantitative detection of X. citri subsp. citri with high precision and accuracy as compared with the results from qPCR assay. Further studies are required to evaluate and validate the value of ddPCR technology in the diagnosis of plant disease and quarantine applications. PMID:27427975

  19. Transcript quantitation in total yeast cellular RNA using kinetic PCR

    PubMed Central

    Kang, John J.; Watson, Robert M.; Fisher, Mary E.; Higuchi, Russell; Gelfand, David H.; Holland, Michael J.

    2000-01-01

    Kinetically monitored, reverse transcriptase-initiated PCR (kinetic RT–PCR, kRT–PCR) is a novel application of kinetic PCR for high throughput transcript quantitation in total cellular RNA. The assay offers the simplicity and flexibility of an enzyme assay with distinct advantages over DNA microarray hybridization and SAGE technologies for certain applications. The reproducibility, sensitivity and accuracy of the kRT–PCR were assessed for yeast transcripts previously quantitated by a variety of methods including SAGE analysis. Changes in transcript levels between different genetic or physiological cell states were reproducibly quantitated with an accuracy of ±20%. The assay was sufficiently sensitive to quantitate yeast transcripts over a range of more than five orders of magnitude, including low abundance transcripts encoding cell cycle and transcriptional regulators. PMID:10606670

  20. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients

    PubMed Central

    Ramírez, Juan Carlos; Cura, Carolina Inés; Moreira, Otacilio da Cruz; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Guedes, Paulo Marcos da Matta; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Galvão, Lúcia Maria da Cunha; da Câmara, Antonia Cláudia Jácome; Espinoza, Bertha; de Noya, Belkisyole Alarcón; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G.

    2015-01-01

    An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease. PMID:26320872

  1. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients.

    PubMed

    Ramírez, Juan Carlos; Cura, Carolina Inés; da Cruz Moreira, Otacilio; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Marcos da Matta Guedes, Paulo; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Maria da Cunha Galvão, Lúcia; Jácome da Câmara, Antonia Cláudia; Espinoza, Bertha; Alarcón de Noya, Belkisyole; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G

    2015-09-01

    An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease.

  2. Interlaboratory Comparison of Quantitative PCR Test Results for Dehalococcoides

    EPA Science Inventory

    Quantitative PCR (qPCR) techniques have been widely used to measure Dehalococcoides (Dhc) DNA in the groundwater at field sites for several years. Interpretation of these data may be complicated when different laboratories using alternate methods conduct the analysis. An...

  3. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods

    PubMed Central

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-01-01

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples. PMID:26492259

  4. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods.

    PubMed

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-10-19

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  5. Determining liver stage parasite burden by real time quantitative PCR as a method for evaluating pre-erythrocytic malaria vaccine efficacy.

    PubMed

    Witney, A A; Doolan, D L; Anthony, R M; Weiss, W R; Hoffman, S L; Carucci, D J

    2001-12-01

    The detection and quantitation of blood stage parasitaemia is typically used as a surrogate endpoint for estimating the efficacy of vaccines targeted against the hepatic stage, as well as the erythrocytic stage, of the parasite. However, this does not provide an adequate means of evaluating the efficacy of vaccines, which may be only partially effective at the liver-stage. This is a particular concern for effective evaluation of immune enhancement strategies for candidate pre-erythrocytic stage vaccines. Here, we have developed and validated a method for detecting and quantitating liver stage parasites, using the TaqMan fluorescent real-time quantitative PCR system (PE Applied Biosystems). This method uses TaqMan primers designed to the Plasmodium yoelii 18S rRNA gene and rodent GAPDH to amplify products from infected mouse liver cDNA. The technique is highly reproducible as demonstrated with plasmid controls and capable of efficiently quantitating liver-stage parasite burden following a range of sporozoite challenge doses in strains of mice, which differ in their susceptibility to sporozoite infection. We have further demonstrated the capacity of this technique to evaluate the efficacy of a range of pre-erythrocytic stage vaccines. Our data establish this quantitative real-time PCR assay to be a fast and reproducible way of accurately assessing liver stage parasite burden and vaccine efficacy in rodent malaria models.

  6. An event-specific method for the detection and quantification of ML01, a genetically modified Saccharomyces cerevisiae wine strain, using quantitative PCR.

    PubMed

    Vaudano, Enrico; Costantini, Antonella; Garcia-Moruno, Emilia

    2016-10-03

    The availability of genetically modified (GM) yeasts for winemaking and, in particular, transgenic strains based on the integration of genetic constructs deriving from other organisms into the genome of Saccharomyces cerevisiae, has been a reality for several years. Despite this, their use is only authorized in a few countries and limited to two strains: ML01, able to convert malic acid into lactic acid during alcoholic fermentation, and ECMo01 suitable for reducing the risk of carbamate production. In this work we propose a quali-quantitative culture-independent method for the detection of GM yeast ML01 in commercial preparations of ADY (Active Dry Yeast) consisting of efficient extraction of DNA and qPCR (quantitative PCR) analysis based on event-specific assay targeting MLC (malolactic cassette), and a taxon-specific S. cerevisiae assay detecting the MRP2 gene. The ADY DNA extraction methodology has been shown to provide good purity DNA suitable for subsequent qPCR. The MLC and MRP2 qPCR assay showed characteristics of specificity, dynamic range, limit of quantification (LOQ) limit of detection (LOD), precision and trueness, which were fully compliant with international reference guidelines. The method has been shown to reliably detect 0.005% (mass/mass) of GM ML01 S. cerevisiae in commercial preparations of ADY.

  7. Comparison of Enterococcus quantitative polymerase chain reaction analysis results from midwest U.S. river samples using EPA Method 1611 and Method 1609 PCR reagents

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has provided recommended beach advisory values in its 2012 recreational water quality criteria (RWQC) for states wishing to use quantitative polymerase chain reaction (qPCR) for the monitoring of Enterococcus fecal indicator bacteria...

  8. A real-time quantitative PCR detection method specific to widestrike transgenic cotton (event 281-24-236/3006-210-23).

    PubMed

    Baeumler, Stefan; Wulff, Dörte; Tagliani, Laura; Song, Ping

    2006-09-06

    In compliance with global regulations on transgenic crops, a real-time quantitative PCR method specific to Widestrike transgenic cotton (event 281-24-236/3006-210-23, OECD Unique Identifier DAS-24236-5/DAS-21023-5) was established on the basis of the DNA sequences in the junction between the transgene insert and cotton genome. The optimized method consists of a DNA extraction method for cotton seeds and three PCR systems corresponding to a cotton-specific endogenous reference DNA sequence SAH7 (Sinapis Arabidopsis Homolog 7) and specific detection of event 281-24-236 and event 3006-210-23. The method performance including specificity, sensitivity, accuracy, and precision was determined at a dynamic range of Widestrike DNA levels from 0.04% to 5.0%. The limits of detection (LOD) and quantification (LOQ) were < or =0.04% and < or =0.09%, respectively, at 100 ng of DNA sample per reaction. The quantification results using either the event 281-24-236 or 3006-210-23 system were consistent, and the relative deviation from the expected (true) value was in the range of +/-25%. The robustness of the method was demonstrated by a series of tests with deviations from the optimized assay parameters such as annealing temperature, extension time, PCR instrument, interlaboratory transferability, etc. All the measurements from these tests met the criteria set by EU JRC-CRL (European Commission Joint Research Centre-Community Reference Lab). This real-time quantitative PCR method is accurate and robust, and is recommended as a global benchmark method for the detection and quantification of Widestrike cotton. The method including description, protocol, and performance results is available on the JRC-CRL website (http://gmo-crl.jrc.it/statusofdoss.htm).

  9. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods.

    PubMed

    Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung

    2014-03-01

    The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.

  10. Sensitive quantitative detection of Ralstonia solanacearum in soil by the most probable number-polymerase chain reaction (MPN-PCR) method.

    PubMed

    Inoue, Yasuhiro; Nakaho, Kazuhiro

    2014-05-01

    We developed a sensitive quantitative assay for detecting Ralstonia solanacearum in soil by most probable number (MPN) analysis based on bio-PCR results. For development of the detection method, we optimized an elution buffer containing 5 g/L skim milk for extracting bacteria from soil and reducing contamination of polymerase inhibitors in soil extracts. Because R. solanacearum can grow in water without any added nutrients, we used a cultivation buffer in the culture step of the bio-PCR that contained only the buffer and antibiotics to suppress the growth of other soil microorganisms. To quantify the bacterial population in soil, the elution buffer was added to 10 g soil on a dry weight basis so that the combined weight of buffer, soil, and soil-water was 50 g; 5 mL of soil extract was assumed to originate from 1 g of soil. The soil extract was divided into triplicate aliquots each of 5 mL and 500, 50, and 5 μL. Each aliquot was diluted with the cultivation buffer and incubated at 35 °C for about 24 h. After incubation, 5 μL of culture was directly used for nested PCR. The number of aliquots showing positive results was collectively checked against the MPN table. The method could quantify bacterial populations in soil down to 3 cfu/10 g dried soil and was successfully applied to several types of soil. We applied the method for the quantitative detection of R. solanacearum in horticultural soils, which could quantitatively detect small populations (9.3 cfu/g), but the semiselective media were not able to detect the bacteria.

  11. The life cycles of the temperate lactococcal bacteriophage phiLC3 monitored by a quantitative PCR method.

    PubMed

    Lunde, M; Blatny, J M; Kaper, F; Nes, I F; Lillehaug, D

    2000-11-01

    We present here a new and general approach for monitoring the life cycles of temperate bacteriophages which establish lysogeny by inserting their genomes site-specifically into the bacterial host chromosome. The method is based on quantitative amplification of specific DNA sites involved in various cut-and-join events during the life cycles of the phages (i.e. the cos, attP, attB, attL and attR sites) with the use of sequence-specific primers. By comparing the amounts of these specific DNA sites at different intervals, we were able to follow the development of the lytic and lysogenic life cycles of the temperate lactococcal bacteriophage phiLC3 after infection of its bacterial host Lactococcus lactis ssp. cremoris IMN-C18.

  12. Comparison of quantitative PCR and culture-based methods for evaluating dispersal of Bacillus thuringiensis endospores at a bioterrorism hoax crime scene.

    PubMed

    Crighton, Taryn; Hoile, Rebecca; Coleman, Nicholas V

    2012-06-10

    Since the anthrax mail attacks of 2001, law enforcement agencies have processed thousands of suspicious mail incidents globally, many of which are hoax bioterrorism threats. Bio-insecticide preparations containing Bacillus thuringiensis (Bt) spores have been involved in several such threats in Australia, leading to the requirement for rapid and sensitive detection techniques for this organism, a close relative of Bacillus anthracis. Here we describe the development of a quantitative PCR (qPCR) method for the detection of Bt crystal toxin gene cry1, and evaluation of the method's effectiveness during a hoax bioterrorism event in 2009. When combined with moist wipe sampling, the cry1 qPCR was a rapid, reliable, and sensitive diagnostic tool for detecting and quantifying Bt contamination, and mapping endospore dispersal within a mail sorting facility. Results from the cry1 qPCR were validated by viable counts of the same samples on Bacillus-selective agar (PEMBA), which revealed a similar pattern of contamination. Extensive and persistent contamination of the facility was detected, both within the affected mailroom, and extending into office areas up to 30m distant from the source event, emphasising the need for improved containment procedures for suspicious mail items, both during and post-event. The cry1 qPCR enables detection of both viable and non-viable Bt spores and cells, which is important for historical crime scenes or scenes subjected to decontamination. This work provides a new rapid method to add to the forensics toolbox for crime scenes suspected to be contaminated with biological agents.

  13. Recent advances in quantitative PCR (qPCR) applications in food microbiology.

    PubMed

    Postollec, Florence; Falentin, Hélène; Pavan, Sonia; Combrisson, Jérôme; Sohier, Danièle

    2011-08-01

    Molecular methods are being increasingly applied to detect, quantify and study microbial populations in food or during food processes. Among these methods, PCR-based techniques have been the subject of considerable focus and ISO guidelines have been established for the detection of food-borne pathogens. More particularly, real-time quantitative PCR (qPCR) is considered as a method of choice for the detection and quantification of microorganisms. One of its major advantages is to be faster than conventional culture-based methods. It is also highly sensitive, specific and enables simultaneous detection of different microorganisms. Application of reverse-transcription-qPCR (RT-qPCR) to study population dynamics and activities through quantification of gene expression in food, by contrast with the use of qPCR, is just beginning. Provided that appropriate controls are included in the analyses, qPCR and RT-qPCR appear to be highly accurate and reliable for quantification of genes and gene expression. This review addresses some important technical aspects to be considered when using these techniques. Recent applications of qPCR and RT-qPCR in food microbiology are given. Some interesting applications such as risk analysis or studying the influence of industrial processes on gene expression and microbial activity are reported.

  14. Use of tuf gene-based primers for the PCR detection of probiotic Bifidobacterium species and enumeration of bifidobacteria in fermented milk by cultural and quantitative real-time PCR methods.

    PubMed

    Sheu, Sen-Je; Hwang, Wen-Zhe; Chiang, Yu-Cheng; Lin, Wen-Hsin; Chen, Hsin-Chih; Tsen, Hau-Yang

    2010-10-01

    Due to the increasing use of bifidobacteria in probiotic products, it is essential to establish a rapid method for the qualitative and quantitative assay of the bifidobacteria in commercial products. In this study, partial sequences of the tuf gene for 18 Bifidobacterium strains belonging to 14 species were determined. Alignment of these sequences showed that the similarities among these Bifidobacterium species were 82.24% to 99.72%. Based on these tuf gene sequences, 6 primer sets were designed for the polymerase chain reaction (PCR) assay of B. animalis subsp. animalis, B. animalis subsp. lactis, B. bifidum, B. breve, B. longum subsp. infantis, B. longum subsp. longum, and the genus of Bifidobacterium, respectively. These Bifidobacterium species are common probiotic species present in dairy and probiotic products. When each target Bifidobacterium spp. was assayed with the designed primers, PCR product with expected size was generated. In addition, for each target species, more than 70 bacterial strains other than the target species, including strains of other Bifidobacterium species, strains of Lactobacillus spp., Enterococcus spp., and other bacterial species, all generated negative results. PCR assay with primers specific to B. animalis subsp. lactis and B. longum subsp. longum confirmed the presence of these Bifidobacterium species in commercial yogurt products. In addition, for each product, enumeration of the bifidobacteria cells by culture method with BIM-25 agar and the quantitative real-time PCR showed similar cell counts. Such results indicated that within 15-d storage (4 °C) after manufacture, all the bifidobacteria cells originally present in yogurt products were viable and culturable during the storage.

  15. Event-specific qualitative and quantitative PCR detection methods for transgenic rapeseed hybrids MS1xRF1 and MS1xRF2.

    PubMed

    Wu, Yuhua; Wu, Gang; Xiao, Ling; Lu, Changming

    2007-10-17

    Except for the events RT73, MS8, RF3, and T45, event-specific detection methods for most commercialized genetically modified (GM) rapeseed varieties have not been established, and as a result, the enforcement of genetically modified organism labeling policies has been hindered. The genetically modified rapeseeds, MS1xRF1 and MS1xRF2, are 2 of 11 approved GM-rapeseed varieties for commercialization. In this study, the right border junction fragments between the gene construct and the rapeseed genome of events RF1, RF2, and MS1 were isolated using the commercially available GenomeWalker technology. Homology analysis indicated that the gene construct of RF1 integrated upstream of the nuclease gene, and that of the RF2 and MS1 inserted into the exon region of a gene encoding for an unknown protein. The event-specific primer pairs and corresponding probes were designed on the basis of the revealed right border junction fragments. Then, we successfully developed the identification and quantification methods for the gene-stacked hybrids MS1xRF1 and MS1xRF2 using those primers and probes. The relative limit of detection in the qualitative polymerase chain reaction (PCR) was 0.013% for the RF2 and MS1 assays using 100 ng of rapeseed DNA per reaction and 0.13% for the RF1 assay. The absolute limit of detection in the quantitative PCR was approximately one to two initial copies for each of the three event-specific assays. The evaluation of the real-time PCR assays revealed that the qualitative and quantitative methods developed by focusing on the gene-stacked hybrids MS1xRF1 and MS1xRF2 were highly specific, sensitive, and suitable for samples with a low quantity of DNA.

  16. Determination of the Effects of Medium Composition on the Monochloramine Disinfection Kinetics of Nitrosomonas europaea by the Propidium Monoazide Quantitative PCR and Live/Dead BacLight Methods

    EPA Science Inventory

    Various media compositions (phosphate 1-50 mM; ionic strength 2.8-150 meq/L) significantly affected Nitrosomonas europaea monochloramine disinfection kinetics determined by Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR) methods (lag coefficient 37-490...

  17. An aptamer-based effective method for highly sensitive detection of chloramphenicol residues in animal-sourced food using real-time fluorescent quantitative PCR.

    PubMed

    Duan, Ye; Wang, Lihui; Gao, Zhiqiang; Wang, Huishan; Zhang, Hexiao; Li, Hao

    2017-04-01

    Chloramphenicol (CAP) residues can not only harm human health through entering food chain, but also cause the spreading of drug-resistant bacteria, thereby leading to secondary environmental pollution. Therefore, it is in urgent need of establishing an efficient technology to detect CAP residues in animal-sourced food. In this study, a novel sensitive approach for detection of CAP was designed based on a CAP specific aptamer and real-time fluorescent quantitative PCR (qRT-PCR). The CAP specific aptamer was firstly hybridized with a biotin modified complementary probe, and then was immobilized on streptavidin conjugated magnetic beads through biotin. When CAP was added, the aptamer would specifically bind with CAP by forming a hairpin structure and be released from the magnetic beads for CAP detection by qRT-PCR. Factors (i.e., probe strand length, aptamer concentration, NaCl concentration and incubation time) that would influence the determination accuracy of this aptamer-based detection system were optimized. Under the optimized conditions, the present detection system exhibited a high sensitivity toward CAP with a limit of detection of 0.1ng/mL (linear range from 0.1 to 20ng/mL). Moreover, this detection system also showed high selectivity against thiamphenicol (TAP) and florfenicol (FF), which are CAP's structure analogs. Eventually, this detection system was applied for detecting CAP in real spiked milk. The recovery rate of CAP from spiked milk samples ranged from 94.0-102.0%. These results indicated this developed detection system a promising high sensitive and specific method of CAP residues detection in animal-sourced food.

  18. Efficient, validated method for detection of mycobacterial growth in liquid culture media by use of bead beating, magnetic-particle-based nucleic acid isolation, and quantitative PCR.

    PubMed

    Plain, Karren M; Waldron, Anna M; Begg, Douglas J; de Silva, Kumudika; Purdie, Auriol C; Whittington, Richard J

    2015-04-01

    Pathogenic mycobacteria are difficult to culture, requiring specialized media and a long incubation time, and have complex and exceedingly robust cell walls. Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease, a chronic wasting disease of ruminants, is a typical example. Culture of MAP from the feces and intestinal tissues is a commonly used test for confirmation of infection. Liquid medium offers greater sensitivity than solid medium for detection of MAP; however, support for the BD Bactec 460 system commonly used for this purpose has been discontinued. We previously developed a new liquid culture medium, M7H9C, to replace it, with confirmation of growth reliant on PCR. Here, we report an efficient DNA isolation and quantitative PCR methodology for the specific detection and confirmation of MAP growth in liquid culture media containing egg yolk. The analytical sensitivity was at least 10(4)-fold higher than a commonly used method involving ethanol precipitation of DNA and conventional PCR; this may be partly due to the addition of a bead-beating step to manually disrupt the cell wall of the mycobacteria. The limit of detection, determined using pure cultures of two different MAP strains, was 100 to 1,000 MAP organisms/ml. The diagnostic accuracy was confirmed using a panel of cattle fecal (n=54) and sheep fecal and tissue (n=90) culture samples. This technique is directly relevant for diagnostic laboratories that perform MAP cultures but may also be applicable to the detection of other species, including M. avium and M. tuberculosis.

  19. Efficient, Validated Method for Detection of Mycobacterial Growth in Liquid Culture Media by Use of Bead Beating, Magnetic-Particle-Based Nucleic Acid Isolation, and Quantitative PCR

    PubMed Central

    Waldron, Anna M.; Begg, Douglas J.; de Silva, Kumudika; Purdie, Auriol C.; Whittington, Richard J.

    2015-01-01

    Pathogenic mycobacteria are difficult to culture, requiring specialized media and a long incubation time, and have complex and exceedingly robust cell walls. Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease, a chronic wasting disease of ruminants, is a typical example. Culture of MAP from the feces and intestinal tissues is a commonly used test for confirmation of infection. Liquid medium offers greater sensitivity than solid medium for detection of MAP; however, support for the BD Bactec 460 system commonly used for this purpose has been discontinued. We previously developed a new liquid culture medium, M7H9C, to replace it, with confirmation of growth reliant on PCR. Here, we report an efficient DNA isolation and quantitative PCR methodology for the specific detection and confirmation of MAP growth in liquid culture media containing egg yolk. The analytical sensitivity was at least 104-fold higher than a commonly used method involving ethanol precipitation of DNA and conventional PCR; this may be partly due to the addition of a bead-beating step to manually disrupt the cell wall of the mycobacteria. The limit of detection, determined using pure cultures of two different MAP strains, was 100 to 1,000 MAP organisms/ml. The diagnostic accuracy was confirmed using a panel of cattle fecal (n = 54) and sheep fecal and tissue (n = 90) culture samples. This technique is directly relevant for diagnostic laboratories that perform MAP cultures but may also be applicable to the detection of other species, including M. avium and M. tuberculosis. PMID:25609725

  20. B1 Sequence-Based Real-Time Quantitative PCR: A Sensitive Method for Direct Measurement of Mouse Plasma DNA Levels After Gamma Irradiation

    SciTech Connect

    Zhang Hengshan; Zhang, Steven B.; Sun Weimin; Yang Shanmin; Zhang Mei; Wang Wei; Liu Chaomei; Zhang Kunzhong; Swarts, Steven; Fenton, Bruce M.; Keng, Peter; Maguire, David; Okunieff, Paul Zhang Lurong

    2009-08-01

    Purpose: Current biodosimetric techniques for determining radiation exposure have inherent delays, as well as quantitation and interpretation limitations. We have identified a new technique with the advantage of directly measuring circulating DNA by amplifying inter-B1 regions in the mouse genome, providing a sensitive method for quantitating plasma DNA. Methods and Materials: Real-time quantitative polymerase chain reaction (PCR) was used to detect levels of DNA by amplifying inter-B1 genomic DNA in plasma samples collected at 0-48 h from mice receiving 0-10 Gy total- or partial-body irradiation ({sup 137}Cs {gamma}-ray source at {approx}1.86 Gy/min; homogeneity: {+-} 6.5%). Results: The correlation coefficient between DNA levels and the threshold cycle value (C{sub T}) was 0.996, and the average recoveries of DNA in the assay were 87%. This assay revealed that when BALB/c mice were exposed to 10 Gy total-body irradiation (TBI), plasma DNA levels gradually increased beginning at 3 h after irradiation, peaked at 9 h, and returned to baseline within 48 h. Increased plasma DNA levels were also detected following upper-torso or lower-torso partial-body irradiation; however, TBI approximately doubled those plasma DNA levels at the same radiation dose. This technique therefore reflects total body cell damage. The advantages of this assay are that DNA extraction is not required, the assay is highly sensitive (0.002 ng), and results can be obtained within 2.5 h after collection of plasma samples. Conclusions: A radiation dose-dependent increase of plasma DNA was observed in the dose range from 2 to 10 Gy, suggesting that plasma DNA may be a useful radiation biomarker and adjunct to existing cell-based assays.

  1. A survey of tools for the analysis of quantitative PCR (qPCR) data.

    PubMed

    Pabinger, Stephan; Rödiger, Stefan; Kriegner, Albert; Vierlinger, Klemens; Weinhäusel, Andreas

    2014-09-01

    Real-time quantitative polymerase-chain-reaction (qPCR) is a standard technique in most laboratories used for various applications in basic research. Analysis of qPCR data is a crucial part of the entire experiment, which has led to the development of a plethora of methods. The released tools either cover specific parts of the workflow or provide complete analysis solutions. Here, we surveyed 27 open-access software packages and tools for the analysis of qPCR data. The survey includes 8 Microsoft Windows, 5 web-based, 9 R-based and 5 tools from other platforms. Reviewed packages and tools support the analysis of different qPCR applications, such as RNA quantification, DNA methylation, genotyping, identification of copy number variations, and digital PCR. We report an overview of the functionality, features and specific requirements of the individual software tools, such as data exchange formats, availability of a graphical user interface, included procedures for graphical data presentation, and offered statistical methods. In addition, we provide an overview about quantification strategies, and report various applications of qPCR. Our comprehensive survey showed that most tools use their own file format and only a fraction of the currently existing tools support the standardized data exchange format RDML. To allow a more streamlined and comparable analysis of qPCR data, more vendors and tools need to adapt the standardized format to encourage the exchange of data between instrument software, analysis tools, and researchers.

  2. Evaluation of two surface sampling methods for detection of Erwinia herbicola on a variety of materials by culture and quantitative PCR.

    PubMed

    Buttner, Mark P; Cruz, Patricia; Stetzenbach, Linda D; Cronin, Tracy

    2007-06-01

    This research was designed to evaluate surface sampling protocols for use with culture and quantitative PCR (QPCR) amplification assay for detection of the gram-negative bacterial biothreat simulant Erwinia herbicola on a variety of surface materials. Surfaces selected for evaluation were wood laminate, glass and computer monitor screens, metal file cabinets, plastic arena seats, nylon seat cushions, finished concrete flooring, and vinyl tile flooring. Laboratory and test chamber studies were performed to evaluate two sampling methods, a sponge and a macrofoam swab, for detection of E. herbicola on surface materials. In laboratory trials, seven materials were inoculated with a known concentration of E. herbicola cells and samples were collected from the surfaces of the materials to determine sampling efficiencies. Culture analysis was ineffective for assessing E. herbicola collection efficiency because very few culturable cells were obtained from surface samples. QPCR demonstrated that E. herbicola DNA was present in high concentrations on all of the surface samples, and sampling efficiencies ranged from 0.7 to 52.2%, depending on the sampling method and the surface material. The swab was generally more efficient than the sponge for collection of E. herbicola from surfaces. Test chamber trials were also performed in which E. herbicola was aerosolized into the chamber and allowed to settle onto test materials. Surface sampling results supported those obtained in laboratory trials. The results of this study demonstrate the capabilities of QPCR to enhance the detection and enumeration of biocontaminants on surface materials and provide information on the comparability of sampling methods.

  3. A simple and rapid DNA extraction method from whole blood for highly sensitive detection and quantitation of HIV-1 proviral DNA by real-time PCR.

    PubMed

    McFall, Sally M; Wagner, Robin L; Jangam, Sujit R; Yamada, Douglas H; Hardie, Diana; Kelso, David M

    2015-03-01

    Early diagnosis and access to treatment for infants with human immunodeficiency virus-1 (HIV-1) is critical to reduce infant mortality. The lack of simple point-of-care tests impedes the timely initiation of antiretroviral therapy. The development of FINA, filtration isolation of nucleic acids, a novel DNA extraction method that can be performed by clinic personnel in less than 2 min has been reported previously. In this report, significant improvements in the DNA extraction and amplification methods are detailed that allow sensitive quantitation of as little as 10 copies of HIV-1 proviral DNA and detection of 3 copies extracted from 100 μl of whole blood. An internal control to detect PCR inhibition was also incorporated. In a preliminary field evaluation of 61 South African infants, the FINA test demonstrated 100% sensitivity and specificity. The proviral copy number of the infant specimens was quantified, and it was established that 100 microliters of whole blood is required for sensitive diagnosis of infants.

  4. Expression of bax and bcl2 Genes in MDMA-induced Hepatotoxicity on Rat Liver Using Quantitative Real-Time PCR Method through Triggering Programmed Cell Death

    PubMed Central

    Behroozaghdam, Mitra; Hashemi, Mehrdad; Javadi, Gholamreza; Mahdian, Reza; Soleimani, Mansoureh

    2015-01-01

    Background: 3-4methylenedioxymethamphetamine (MDMA) is a synthetic and psychoactive drug, which is known popularly as Ecstasy and has toxic effects on human organs. Objectives: Considering the potential toxic interaction, this study was performed to quantify the expression of bax and bcl2 genes in MDMA-induced hepatotoxicity on rat liver. Subsequently, we evaluated pentoxifylline as a possible protective drug on hepatotoxicity. Materials and Methods: Adult male Wistar rats weighting 250 - 300 grams were used in the study. The rats were equally distributed into four experimental groups (5 rat/group). MDMA was dissolved in PBS and injected intraperitoneally (IP) including untreated control, MDMA (MDMA dissolved in PBS), treated-1 (MDMA followed by PTX) and treated-2 (PTX followed by MDMA). All animals given MDMA received 3 doses of 7.5mg/kg with two hours gap between doses. Liver tissue was removed after anaesthetizing. Subsequently, RNA isolation, cDNA synthesis and Real-Time PCR were performed. Finally, data analyzed statistically to determine significantly differences between the groups (P value < 0.05). Results: Using Real-Time quantitative PCR results, the gene expression ratio of bcl2 were calculated 93.80±20.64, 340.45 ± 36.60 and 47.13 ± 5.84 fold in MDMA, treated-1 and treated-2 groups, respectively. Furthermore, this ratio for bax gene obtained 2.13±0.33 fold in MDMA, 1.55 ± 0.26 fold in treated-1 and 10.44 ± 1.56 fold in treated-2 groups. Conclusions: The present study focused on molecular mechanism of MDMA in programmed cell death using gene expression quantification of a pro-apoptotic and anti-apoptoic gene in MDMA-induced hepatotoxocity. The results showed that MDMA prompted apoptosis in liver and pentoxifylline protected against hepatotoxicity before and after taking MDMA. PMID:26732379

  5. Quantitative PCR Method for Enumeration of Cells of Cryptic Species of the Toxic Marine Dinoflagellate Ostreopsis spp. in Coastal Waters of Japan

    PubMed Central

    Hariganeya, Naohito; Tanimoto, Yuko; Yamaguchi, Haruo; Nishimura, Tomohiro; Tawong, Wittaya; Sakanari, Hiroshi; Yoshimatsu, Takamichi; Sato, Shinya; Preston, Christina M.; Adachi, Masao

    2013-01-01

    Monitoring of harmful algal bloom (HAB) species in coastal waters is important for assessment of environmental impacts associated with HABs. Co-occurrence of multiple cryptic species such as toxic dinoflagellate Ostreopsis species make reliable microscopic identification difficult, so the employment of molecular tools is often necessary. Here we developed new qPCR method by which cells of cryptic species can be enumerated based on actual gene number of target species. The qPCR assay targets the LSU rDNA of Ostreopsis spp. from Japan. First, we constructed standard curves with a linearized plasmid containing the target rDNA. We then determined the number of rDNA copies per cell of target species from a single cell isolated from environmental samples using the qPCR assay. Differences in the DNA recovery efficiency was calculated by adding exogenous plasmid to a portion of the sample lysate before and after DNA extraction followed by qPCR. Then, the number of cells of each species was calculated by division of the total number of rDNA copies of each species in the samples by the number of rDNA copies per cell. To test our procedure, we determined the total number of rDNA copies using environmental samples containing no target cells but spiked with cultured cells of several species of Ostreopsis. The numbers estimated by the qPCR method closely approximated total numbers of cells added. Finally, the numbers of cells of target species in environmental samples containing cryptic species were enumerated by the qPCR method and the total numbers also closely approximated the microscopy cell counts. We developed a qPCR method that provides accurate enumeration of each cryptic species in environments. This method is expected to be a powerful tool for monitoring the various HAB species that occur as cryptic species in coastal waters. PMID:23593102

  6. Quantitative DNA Analysis Using Droplet Digital PCR.

    PubMed

    Vossen, Rolf H A M; White, Stefan J

    2017-01-01

    Droplet digital PCR (ddPCR) is based on the isolated amplification of thousands of individual DNA molecules simultaneously, with each molecule compartmentalized in a droplet. The presence of amplified product in each droplet is indicated by a fluorescent signal, and the proportion of positive droplets allows the precise quantification of a given sequence. In this chapter we briefly outline the basis of ddPCR, and describe two different applications using the Bio-Rad QX200 system: genotyping copy number variation and quantification of Illumina sequencing libraries.

  7. Monitoring of geosmin producing Anabaena circinalis using quantitative PCR.

    PubMed

    Tsao, Hsiang-Wei; Michinaka, Atsuko; Yen, Hung-Kai; Giglio, Steven; Hobson, Peter; Monis, Paul; Lin, Tsair-Fuh

    2014-02-01

    Geosmin is one of the most commonly detected off-flavor chemicals present in reservoirs and drinking water systems. Quantitative real-time PCR (qPCR) is useful for quantifying geosmin-producers by focusing on the gene encoding geosmin synthase, which is responsible for geosmin synthesis. In this study, several primers and probes were designed and evaluated to detect the geosmin synthase gene in cyanobacteria. The specificity of primer and probe sets was tested using 21 strains of laboratory cultured cyanobacteria isolated from surface waters in Australia (18) and Taiwan (2), including 6 strains with geosmin producing ability. The results showed that the primers designed in this study could successfully detect all geosmin producing strains tested. The selected primers were used in a qPCR assay, and the calibration curves were linear from 5 × 10(1) to 5 × 10(5) copies mL(-1), with a high correlation coefficient (R(2) = 0.999). This method was then applied to analyze samples taken from Myponga Reservoir, South Australia, during a cyanobacterial bloom event. The results showed good correlations between qPCR techniques and traditional methods, including cell counts determined by microscopy and geosmin concentration measured using gas chromatography (GC) coupled with a mass selective detector (MSD). Results demonstrate that qPCR could be used for tracking geosmin-producing cyanobacteria in drinking water reservoirs. The qPCR assay may provide water utilities with the ability to properly characterize a taste and odor episode and choose appropriate management and treatment options.

  8. Single-tube nested competitive PCR with homologous competitor for quantitation of DNA target sequences: theoretical description of heteroduplex formation, evaluation of sensitivity, precision and linear range of the method.

    PubMed

    Serth, J; Panitz, F; Herrmann, H; Alves, J

    1998-10-01

    Competitive PCR is a frequently used technique for quantitation of DNA and mRNA. However, the application of the most favourable homologous mutated competitors is impeded by the formation of heteroduplex molecules which complicates the data evaluation and may lead to quantitation errors. Moreover, in most cases a single quantitation of an unknown sample requires multiple competitive reactions for identification of the equivalence point. In the present study, a highly efficient and reliable method as well as the underlying theoretical model is described. The mathematical solutions of this model provide the basis for single-tube quantitation using a homologous mutated competitor. For quantitation of Human Papilloma Virus 16-DNA, it is shown that single tube quantitations using simple PAGE separation and video evaluation for signal analysis permit linear detection within more than two orders of magnitude. In addition, repeated single-tube competitive PCRs exhibited good precision (average standard deviation 5%), even if carried out as nested high cycle PCR for quantitation of low abundant sequences (intraassay sensitivity <2 x 10(2) copies). This evaluation method can be applied to any DNA separation and detection method which is capable of resolving the heteroduplex fraction from both homoduplex molecules.

  9. A RAPID METHOD FOR THE EXTRACTION OF FUNGAL DNA FROM ENVIRONMENTAL SAMPLES: EVALUATION IN THE QUANTITATIVE ANALYSIS OF MEMNONIELLA ECHINATA CONIDIA USING REAL TIME DETECTION OF PCR PRODUCTS

    EPA Science Inventory

    New technologies are creating the potential for using nucleic acid sequence detection to perform routine microbiological analyses of environmental samples. Our laboratory has recently reported on the development of a method for the quantitative detection of Stachybotrys chartarum...

  10. A quantitative PCR method for assessing the presence of Pasteurella testudinis DNA in nasal lavage samples from the desert tortoise (Gopherus agassizii).

    PubMed

    duPre', S A; Tracy, C R; Sandmeier, F C; Hunter, K W

    2012-12-01

    Pasteurella testudinis has been associated with upper respiratory tract disease (URTD) in the threatened desert tortoise (Gopherus agassizii). Our goal was to develop a sensitive and specific qPCR method for detecting DNA from P. testudinis in nasal lavage fluid collected from desert tortoises in the field. Probes for 16S ribosomal RNA and RNA polymerase β-subunit (rpoB) genes were designed. A standard curve generated with DNA extracted from known numbers of bacterial cells determined by flow cytometry revealed a lower detection limit of 50 fg/ml (10 bacteria/ml). The nasal lavage fluid contained no interfering substances, and the qPCR method did not recognize normal flora DNA. The nasal lavage samples from 20 desert tortoises captured in Clark County, Nevada, USA in 2007 and housed at the Desert Tortoise Conservation Center, were all positive for P. testudinis DNA by qPCR. Another set of 19 lavage samples collected in 2010 from wild desert tortoises in the Mojave Desert were tested and 84% were positive for P. testudinis DNA. Fully validated, this qPCR method will provide a means of determining colonization rate. When used in conjunction with serological methods and clinical evaluations, both infection rate and disease rate can be determined for this potential URTD pathogen. This new assay provides an important tool for managing the threatened populations of the Mojave Desert tortoise.

  11. A quantitative Real Time PCR based method for the detection of Phytophthora infestans causing Late blight of potato, in infested soil.

    PubMed

    Hussain, Touseef; Singh, Bir Pal; Anwar, Firoz

    2014-09-01

    A fast and simple polymerase chain reaction method has been developed for detection of Phytophthora infestans oospores, the causal agent of Late blight of Potato in soil. The method involves the disruption of oospores by grinding dry soil, using abrasive properties, in the presence of glass powder and skimmed milk powder within a short time. The latter prevents loss of DNA by adsorption to soil particles or by degradation and reduces the co-extraction of PCR inhibitors with the DNA. After phenol/chloroform extraction; the DNA is suitable for direct PCR amplification without a precipitation step. This amplification leads to detection of pathogen in infested soils before planting of crop. The real-time PCR assay we describe is highly sensitive and specific, and has several advantages over conventional PCR assays used for P. infestans detection to confirm positive inoculum level in potato seeds and elsewhere. With increasing amounts of standard DNA templates, the respective threshold cycle (Ct) values were determined and a linear relationship was established between these Ct values and the logarithm of initial template amounts. The method is rapid, cost efficient, and when combined with suitable internal controls can be applied to the detection and quantification of P. infestans oospores on a large-scale basis.

  12. Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize.

    PubMed

    Xu, Xiaoli; Peng, Cheng; Wang, Xiaofu; Chen, Xiaoyun; Wang, Qiang; Xu, Junfeng

    2016-12-01

    This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.

  13. Comparison of standard, quantitative and digital PCR in the detection of enterotoxigenic Bacteroides fragilis.

    PubMed

    Purcell, Rachel V; Pearson, John; Frizelle, Frank A; Keenan, Jacqueline I

    2016-09-30

    Gut colonization with enterotoxigenic Bacteroides fragilis (ETBF) appears to be associated with the development of colorectal cancer. However, differences in carriage rates are seen with various testing methods and sampling sites. We compared standard PCR, SYBR green and TaqMan quantitative PCR (qPCR) and digital PCR (dPCR) in detecting the B. fragilis toxin (bft) gene from cultured ETBF, and from matched luminal and faecal stool samples from 19 colorectal cancer patients. Bland-Altman analysis found that all three quantitative methods performed comparably in detecting bft from purified bacterial DNA, with the same limits of detection (<1 copy/μl). However, SYBR qPCR under-performed compared to TaqMan qPCR and dPCR in detecting bft in clinical stool samples; 13/38 samples were reported positive by SYBR, compared to 35 and 36 samples by TaqMan and dPCR, respectively. TaqMan qPCR and dPCR gave bft copy numbers that were 48-fold and 75-fold higher for the same samples than SYBR qPCR, respectively (p < 0.001). For samples that were bft-positive in both fecal and luminal stools, there was no difference in relative abundance between the sites, by any method tested. From our findings, we recommend the use of TaqMan qPCR as the preferred method to detect ETBF from clinical stool samples.

  14. A method for correcting standard-based real-time PCR DNA quantitation when the standard's polymerase reaction efficiency is significantly different from that of the unknown's.

    PubMed

    Irwin, Peter L; Nguyen, Ly-Huong T; Chen, Chin-Yi; Uhlich, Gaylen A; Paoli, George C

    2012-03-01

    Standard-based real-time or quantitative polymerase chain reaction quantitation of an unknown sample's DNA concentration (i.e., [DNA](unk)) assumes that the concentration dependence of the standard and unknown reactions (related to reaction efficiency, E) are equivalent. In our work with background food-borne organisms which can interfere with pathogen detection, we have found that it is generally possible to achieve an acceptable E (1 ± 0.05) for standard solutions by optimizing the PCR conditions, template purity, primer sequence, and amplicon lengths. However, this is frequently not true for the solutions containing unknown amounts of target DNA inasmuch as cell extracts are more chemically complex than the standards which have been amplified (2(30)-fold) as well as undergone a purification process. When significant differences in E occur, it is not possible to accurately estimate unknown target DNA concentration from the standard solution's slope and intercept (from threshold cycle number, or C(T), versus Log[DNA] data). What is needed is a standard-mediated intercept which can be specifically coupled with an unknown solution's PCR concentration dependence. In this work, we develop a simple mathematical procedure to generate a new standard curve with a slope (∂C(T)/∂Log[Dilution](unk)) derived from at least three dilutions of the unknown target DNA solution ([DNA](unk)) and an intercept calculated from the unknown's C(T)s, DNA concentrations interpolated from the standard curve (i.e., the traditional estimate of [DNA](unk)), and ∂C(T)/∂Log[Dilution](unk). We were able to achieve this due to our discovery of the predictable way in which the observed and ideal C(T) versus Log[DNA] slopes and intercepts deviate from one another. This "correction" in the standard-based [DNA](unk) determination is typically 20-60% when the difference in the standard and unknown E is >0.1.

  15. Quantitative Real-Time PCR Analysis of Total Propidium Monazide -Resistant Fecal Indicator Bacteria in Wastewater

    EPA Science Inventory

    A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. Thes...

  16. Comparative analysis of techniques for detection of quiescent Botrytis cinerea in grapes by quantitative PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative PCR (qPCR) can be used to detect and monitor pathogen colonization, but early attempts to apply the technology to quiescent Botrytis cinerea infections of grape berries identified some specific limitations. In this study, four DNA extraction methods, two tissue-grinding methods, two gra...

  17. OPPORTUNISTIC ASPERGILLUS PATHOGENS MEASURED IN HOME AND HOSPITAL TAP WATER BY MOLD SPECIFIC QUANTITATIVE PCR (MSQPCR)

    EPA Science Inventory

    Opportunistic fungal pathogens are a concern because of the increasing number of immunocompromised patients. The goal of this research was to test a simple extraction method and rapid quantitative PCR (QPCR) measurement of the occurrence of potential pathogens, Aspergillus fumiga...

  18. Correlation between quantitative PCR and Culture-Based methods for measuring Enterococcus spp. over various temporal scales at three California marine beaches

    EPA Science Inventory

    Several studies have examined how fecal indicator bacteria (FIB) measurements compare between quantitative polymerase chain reaction (QPCR) and the culture methods it is intended to replace. Here we extend those studies by examining the stability of that relationship within a be...

  19. Quantitative analysis of somatic mitochondrial DNA mutations by single-cell single-molecule PCR.

    PubMed

    Kraytsberg, Yevgenya; Bodyak, Natalya; Myerow, Susan; Nicholas, Alexander; Ebralidze, Konstantin; Khrapko, Konstantin

    2009-01-01

    Mitochondrial genome integrity is an important issue in somatic mitochondrial genetics. Development of quantitative methods is indispensable to somatic mitochondrial genetics as quantitative studies are required to characterize heteroplasmy and mutation processes, as well as their effects on phenotypic developments. Quantitative studies include the identification and measurement of the load of pathogenic and non-pathogenic clonal mutations, screening mitochondrial genomes for mutations in order to determine the mutation spectra and characterize an ongoing mutation process. Single-molecule PCR (smPCR) has been shown to be an effective method that can be applied to all areas of quantitative studies. It has distinct advantages over conventional vector-based cloning techniques avoiding the well-known PCR-related artifacts such as the introduction of artificial mutations, preferential allelic amplifications, and "jumping" PCR. smPCR is a straightforward and robust method, which can be effectively used for molecule-by-molecule mutational analysis, even when mitochondrial whole genome (mtWG) analysis is involved. This chapter describes the key features of the smPCR method and provides three examples of its applications in single-cell analysis: di-plex smPCR for deletion quantification, smPCR cloning for clonal point mutation quantification, and smPCR cloning for whole genome sequencing (mtWGS).

  20. Comparison of Enterococcus quantitative polymerase chain reaction analysis results from Midwest U.S. river samples using EPA Method 1611 and Method 1609 PCR reagents.

    PubMed

    Sivaganesan, Mano; Sivaganensan, Mano; Siefring, Shawn; Varma, Manju; Haugland, Richard A

    2014-06-01

    Enterococci target sequence density estimates from analyses of diluted river water DNA extracts by EPA Methods 1611 and 1609 and estimates with lower detection limits from undiluted DNA extracts by Method 1609 were indistinguishable. These methods should be equally suitable for comparison with U.S. EPA 2012 Recreational Water Quality Criteria values.

  1. Comparison of SYBR Green and TaqMan real-time PCR methods for quantitative detection of residual CHO host-cell DNA in biopharmaceuticals.

    PubMed

    Soltany-Rezaee-Rad, Mohammad; Sepehrizadeh, Zargham; Mottaghi-Dastjerdi, Negar; Yazdi, Mojtaba Tabatabaei; Seyatesh, Neda

    2015-03-01

    The Chinese hamster ovary (CHO) cell line is one of the predominant hosts used in the bioproduction of pharmaceutical proteins. There have been many concerns about the use of animal cell lines in biopharm industries, and one of the most important concerns has been residual host-cell DNA. Improper integration of residual DNA into the recipient genomes could activate oncogenes or deactivate tumor suppressor genes. Real-time polymerase chain reaction (PCR) is a routine assay method used in the quantification of DNA. In this study, genomic CHO DNA was purified and subjected to real-time PCR. The efficiency of the reaction was calculated, and the limit of detection (LOD) was determined. The calculated efficiency for the primers using the SYBR Green method was 94.3% (r(2) = 0.998). A melting curve analysis showed neither unspecific products nor primer dimers. The calculated efficiency for the TaqMan assay was 96.6% (r(2) = 1). The results showed that the LOD of the SYBR Green and TaqMan assays were 100 fg and 10 fg, respectively. Since the LOD of the TaqMan assay showed a better sensitivity than the SYBR Green, this method could be used directly on the final products for the quantification of residual DNA, without prior DNA extraction.

  2. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes

    EPA Science Inventory

    Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...

  3. High-throughput quantitative real-time PCR.

    PubMed

    Arany, Zoltan P

    2008-07-01

    Recent technical advances in quantitative real-time PCR (qRT-PCR) have allowed for extensive miniaturization, thereby rendering the technique amenable to high-throughput assays. Large numbers of different nucleic acids can now rapidly be measured quantitatively. Many investigations can benefit from this approach, including determination of gene expression in hundreds of samples, determination of hundreds of genes in a few samples, or even quantification of nucleic acids other than mRNA. A simple technique is described here to quantify 1880 transcripts of choice from any number of starting RNA samples.

  4. An Improved Quantitative Real-Time PCR Assay for the Enumeration of Heterosigma akashiwo (Raphidophyceae) Cysts Using a DNA Debris Removal Method and a Cyst-Based Standard Curve

    PubMed Central

    Park, Bum Soo; Han, Myung-Soo

    2016-01-01

    The identification and quantification of Heterosigma akashiwo cysts in sediments by light microscopy can be difficult due to the small size and morphology of the cysts, which are often indistinguishable from those of other types of algae. Quantitative real-time PCR (qPCR) based assays represent a potentially efficient method for quantifying the abundance of H. akashiwo cysts, although standard curves must be based on cyst DNA rather than on vegetative cell DNA due to differences in gene copy number and DNA extraction yield between these two cell types. Furthermore, qPCR on sediment samples can be complicated by the presence of extracellular DNA debris. To solve these problems, we constructed a cyst-based standard curve and developed a simple method for removing DNA debris from sediment samples. This cyst-based standard curve was compared with a standard curve based on vegetative cells, as vegetative cells may have twice the gene copy number of cysts. To remove DNA debris from the sediment, we developed a simple method involving dilution with distilled water and heating at 75°C. A total of 18 sediment samples were used to evaluate this method. Cyst abundance determined using the qPCR assay without DNA debris removal yielded results up to 51-fold greater than with direct counting. By contrast, a highly significant correlation was observed between cyst abundance determined by direct counting and the qPCR assay in conjunction with DNA debris removal (r2 = 0.72, slope = 1.07, p < 0.001). Therefore, this improved qPCR method should be a powerful tool for the accurate quantification of H. akashiwo cysts in sediment samples. PMID:26741648

  5. An Improved Quantitative Real-Time PCR Assay for the Enumeration of Heterosigma akashiwo (Raphidophyceae) Cysts Using a DNA Debris Removal Method and a Cyst-Based Standard Curve.

    PubMed

    Kim, Joo-Hwan; Kim, Jin Ho; Wang, Pengbin; Park, Bum Soo; Han, Myung-Soo

    2016-01-01

    The identification and quantification of Heterosigma akashiwo cysts in sediments by light microscopy can be difficult due to the small size and morphology of the cysts, which are often indistinguishable from those of other types of algae. Quantitative real-time PCR (qPCR) based assays represent a potentially efficient method for quantifying the abundance of H. akashiwo cysts, although standard curves must be based on cyst DNA rather than on vegetative cell DNA due to differences in gene copy number and DNA extraction yield between these two cell types. Furthermore, qPCR on sediment samples can be complicated by the presence of extracellular DNA debris. To solve these problems, we constructed a cyst-based standard curve and developed a simple method for removing DNA debris from sediment samples. This cyst-based standard curve was compared with a standard curve based on vegetative cells, as vegetative cells may have twice the gene copy number of cysts. To remove DNA debris from the sediment, we developed a simple method involving dilution with distilled water and heating at 75°C. A total of 18 sediment samples were used to evaluate this method. Cyst abundance determined using the qPCR assay without DNA debris removal yielded results up to 51-fold greater than with direct counting. By contrast, a highly significant correlation was observed between cyst abundance determined by direct counting and the qPCR assay in conjunction with DNA debris removal (r2 = 0.72, slope = 1.07, p < 0.001). Therefore, this improved qPCR method should be a powerful tool for the accurate quantification of H. akashiwo cysts in sediment samples.

  6. Citrus stubborn disease incidence determined by quantitative real time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative real-time (q) PCR was developed for detection of Spiroplasma citri, the causal agent of citrus stubborn disease (CSD), using the DNA binding fluorophore SYBR Green I. The primer pair, P58-3f/4r, developed based on sequences from the P58 putative adhesin multigene of the pathogen result...

  7. QUANTITATIVE PCR OF SELECTED ASPERGILLUS, PENICILLIUM AND PAECILOMYCES SPECIES

    EPA Science Inventory

    A total of 65 quantitative PCR (QPCR) assays, incorporating fluorigenic 5' nuclease (TaqMan®) chemistry and directed at the nuclear ribosomal RNA operon, internal transcribed spacer regions (ITS1 or ITS2) was developed and tested for the detection of Aspergillus, Penicillium and ...

  8. MOLD SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS

    EPA Science Inventory

    Today I will talk about the use of quantitative or Real time PCR for the standardized identification and quantification of molds. There are probably at least 100,000 species of molds or fungi. But there are actually about 100 typically found indoors. Some pose a threat to human...

  9. How Many Microorganisms Are Present? Quantitative Reverse Transcription PCR (qRT-PCR)

    NASA Astrophysics Data System (ADS)

    Price, Andy; Álvarez, Laura Acuña; Whitby, Corinne; Larsen, Jan

    Quantitative reverse transcription PCR (qRT-PCR) is a variation of conventional quantitative or real-time PCR, whereby mRNA is first converted into the complementary DNA (cDNA) by reverse transcription, the cDNA is then subsequently quantified by qPCR. The use of mRNA as the initial template allows the quantification of gene transcripts, rather than gene copy numbers. mRNA is only produced by actively metabolising cells and is produced by its corresponding gene to provide a 'blueprint' in order for a cell to manufacture a specific protein. Conventional qPCR detects not only DNA present in actively metabolising cells but also inactive and dead cells. qRT-PCR has the advantage that only actively metabolising cells are detected, hence provides a more reliable measure of microbial activity in oilfield samples. When qRT-PCR is combined with primers and probes for specific genes, the activity of microbial processes important in the oilfield, such as sulphate reduction, methanogenesis and nitrate reduction can be monitored.

  10. EVALUATION OF QUANTITATIVE REAL TIME PCR FOR THE MEASUREMENT OF HELICOBATER PYLORI AT LOW CONCENTRATIONS IN DRINKING WATER

    EPA Science Inventory

    Aims: To determine the performance of a rapid, real time polymerase chain reaction (PCR) method for the detection and quantitative analysis Helicobacter pylori at low concentrations in drinking water.

    Methods and Results: A rapid DNA extraction and quantitative PCR (QPCR)...

  11. An investigation of PCR inhibition using Plexor(®) -based quantitative PCR and short tandem repeat amplification.

    PubMed

    Thompson, Robyn E; Duncan, George; McCord, Bruce R

    2014-11-01

    A common problem in forensic DNA typing is PCR inhibition resulting in allele dropout and peak imbalance. In this paper, we have utilized the Plexor(®) real-time PCR quantification kit to evaluate PCR inhibition. This is performed by adding increasing concentrations of various inhibitors and evaluating changes in melt curves and PCR amplification efficiencies. Inhibitors examined included calcium, humic acid, collagen, phenol, tannic acid, hematin, melanin, urea, bile salts, EDTA, and guanidinium thiocyanate. Results were plotted and modeled using mathematical simulations. In general, we found that PCR inhibitors that bind DNA affect melt curves and CT takeoff points while those that affect the Taq polymerase tend to affect the slope of the amplification curve. Mixed mode effects were also visible. Quantitative PCR results were then compared with subsequent STR amplification using the PowerPlex(®) 16 HS System. The overall results demonstrate that real-time PCR can be an effective method to evaluate PCR inhibition and predict its effects on subsequent STR amplifications.

  12. Determination of the effects of medium composition on the monochloramine disinfection kinetics of Nitrosomonas europaea by the propidium monoazide quantitative PCR and Live/Dead BacLight methods.

    PubMed

    Wahman, David G; Schrantz, Karen A; Pressman, Jonathan G

    2010-12-01

    Various medium compositions (phosphate, 1 to 50 mM; ionic strength, 2.8 to 150 meq/liter) significantly affected Nitrosomonas europaea monochloramine disinfection kinetics, as determined by the Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR) methods (lag coefficient, 37 to 490 [LD] and 91 to 490 [PMA-qPCR] mg·min/liter; Chick-Watson rate constant, 4.0 × 10(-3) to 9.3 × 10(-3) [LD] and 1.6 × 10(-3) to 9.6 × 10(-3) [PMA-qPCR] liter/mg·min). Two competing effects may account for the variation in disinfection kinetic parameters: (i) increasing kinetics (disinfection rate constant [k] increased, lag coefficient [b] decreased) with increasing phosphate concentration and (ii) decreasing kinetics (k decreased, b increased) with increasing ionic strength. The results support development of a standard medium for evaluating disinfection kinetics in drinking water.

  13. Quantitative assay of photoinduced DNA strand breaks by real-time PCR.

    PubMed

    Wiczk, Justyna; Westphal, Kinga; Rak, Janusz

    2016-09-05

    Real-time PCR (qPCR) - a modern methodology primarily used for studying gene expression has been employed for the quantitative assay of an important class of DNA damage - single strand breaks. These DNA lesions which may lead to highly cytotoxic double strand breaks were quantified in a model system where double stranded DNA was sensitized to UV photons by labeling with 5-bromo-2'-deoxyuridine. The amount of breaks formed due to irradiation with several doses of 320nm photons was assayed by two independent methods: LC-MS and qPCR. A very good agreement between the relative damage measured by the two completely different analytical tools proves the applicability of qPCR for the quantitative analysis of SSBs. Our results suggest that the popularity of the hitherto underestimated though accurate and site-specific technique of real-time PCR may increase in future DNA damage studies.

  14. Evaluation of a quantitative plasma PCR plate assay for detecting cytomegalovirus infection in marrow transplant recipients.

    PubMed Central

    Gallez-Hawkins, G M; Tegtmeier, B R; ter Veer, A; Niland, J C; Forman, S J; Zaia, J A

    1997-01-01

    A plasma PCR test, using a nonradioactive PCR plate assay, was evaluated for detection of human cytomegalovirus reactivation. This assay was compared to Southern blotting and found to perform well. As a noncompetitive method of quantitation, it was similar to a competitive method for detecting the number of genome copies per milliliter of plasma in marrow transplant recipients. This is a technically simplified assay with potential for adaptation to automation. PMID:9041438

  15. Quantitative PCR and Digital PCR for Detection of Ascaris lumbricoides Eggs in Reclaimed Water

    PubMed Central

    Santísima-Trinidad, Ana Belén; Bornay-Llinares, Fernando Jorge; Martín González, Marcos; Pascual Valero, José Antonio; Ros Muñoz, Margarita

    2017-01-01

    The reuse of reclaimed water from wastewater depuration is a widespread and necessary practice in many areas around the world and must be accompanied by adequate and continuous quality control. Ascaris lumbricoides is one of the soil-transmitted helminths (STH) with risk for humans due to its high infectivity and an important determinant of transmission is the inadequacy of water supplies and sanitation. The World Health Organization (WHO) recommends a limit equal to or lower than one parasitic helminth egg per liter, to reuse reclaimed water for unrestricted irrigation. We present two new protocols of DNA extraction from large volumes of reclaimed water. Quantitative PCR (qPCR) and digital PCR (dPCR) were able to detect low amounts of A. lumbricoides eggs. By using the first extraction protocol, which processes 500 mL of reclaimed water, qPCR can detect DNA concentrations as low as one A. lumbricoides egg equivalent, while dPCR can detect DNA concentrations as low as five A. lumbricoides egg equivalents. By using the second protocol, which processes 10 L of reclaimed water, qPCR was able to detect DNA concentrations equivalent to 20 A. lumbricoides eggs. This fact indicated the importance of developing new methodologies to detect helminth eggs with higher sensitivity and precision avoiding possible human infection risks. PMID:28377928

  16. Quantitative PCR and Digital PCR for Detection of Ascaris lumbricoides Eggs in Reclaimed Water.

    PubMed

    Acosta Soto, Lucrecia; Santísima-Trinidad, Ana Belén; Bornay-Llinares, Fernando Jorge; Martín González, Marcos; Pascual Valero, José Antonio; Ros Muñoz, Margarita

    2017-01-01

    The reuse of reclaimed water from wastewater depuration is a widespread and necessary practice in many areas around the world and must be accompanied by adequate and continuous quality control. Ascaris lumbricoides is one of the soil-transmitted helminths (STH) with risk for humans due to its high infectivity and an important determinant of transmission is the inadequacy of water supplies and sanitation. The World Health Organization (WHO) recommends a limit equal to or lower than one parasitic helminth egg per liter, to reuse reclaimed water for unrestricted irrigation. We present two new protocols of DNA extraction from large volumes of reclaimed water. Quantitative PCR (qPCR) and digital PCR (dPCR) were able to detect low amounts of A. lumbricoides eggs. By using the first extraction protocol, which processes 500 mL of reclaimed water, qPCR can detect DNA concentrations as low as one A. lumbricoides egg equivalent, while dPCR can detect DNA concentrations as low as five A. lumbricoides egg equivalents. By using the second protocol, which processes 10 L of reclaimed water, qPCR was able to detect DNA concentrations equivalent to 20 A. lumbricoides eggs. This fact indicated the importance of developing new methodologies to detect helminth eggs with higher sensitivity and precision avoiding possible human infection risks.

  17. Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples

    EPA Science Inventory

    Purified oocysts of Cryptosporidium parvum were used to evaluate applicability of two quantitative PCR (qPCR) viability detection methods in raw surface water and disinfection treated water. Propidium monoazide-qPCR targeting hsp70 gene was compared to reverse transcription (RT)-...

  18. Generation of competitor DNA fragments for quantitative PCR.

    PubMed

    Uberla, K; Platzer, C; Diamantstein, T; Blankenstein, T

    1991-11-01

    A convenient and generally applicable method for the generation of competitor DNA fragments for quantitative PCR is described. Using mouse-specific primers, fragments are amplified from DNA of an evolutionarily distantly related species under low-stringency annealing conditions. Because these artificially created fragments contain the mouse primer specific ends, they can be used for the quantification of the mouse DNA amplified by these primers. Competitor DNA fragments that differ in size from the corresponding mouse DNA are selected to distinguish both fragments visually by gel electrophoresis. Competitor DNA fragments were generated for mouse beta-actin, interleukin-1, and tumor necrosis factor (TNF). Co-amplification of beta-actin cDNA for adjustment of equal amounts of input cDNA and subsequently TNF cDNA from lipopolysaccharide (LPS)-activated and nonactivated spleen cells with serial dilutions of the respective competitor DNA fragments allowed a semiquantitative comparison of the ratio of TNF mRNA present in both cDNA samples. Under certain conditions, the competitor DNA fragments can be used to determine the approximate molar concentration of a mRNA.

  19. Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay

    PubMed Central

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997

  20. A novel multiplex quantitative DNA array based PCR (MQDA-PCR) for quantification of transgenic maize in food and feed.

    PubMed

    Rudi, Knut; Rud, Ida; Holck, Askild

    2003-06-01

    We have developed a novel multiplex quantitative DNA array based PCR method (MQDA-PCR). The MQDA-PCR is general and may be used in all areas of biological science where simultaneous quantification of multiple gene targets is desired. We used quantification of transgenic maize in food and feed as a model system to show the applicability of the method. The method is based on a two-step PCR. In the first few cycles bipartite primers containing a universal 5' 'HEAD' region and a 3' region specific to each genetically modified (GM) construct are employed. The unused primers are then degraded with a single-strand DNA-specific exonuclease. The second step of the PCR is run containing only primers consisting of the universal HEAD region. The removal of the primers is essential to create a competitive, and thus quantitative PCR. Oligo nucleotides hybridising to internal segments of the PCR products are then sequence specifically labelled in a cyclic linear signal amplification reaction. This is done both to increase the sensitivity and the specificity of the assay. Hybridisation of the labelled oligonucleotides to their complementary sequences in a DNA array enables multiplex detection. Quantitative information was obtained in the range 0.1-2% for the different GM constructs tested. Seventeen different food and feed samples were screened using a twelve-plex system for simultaneous detection of seven different GM maize events (Bt176, Bt11, Mon810, T25, GA21, CBH351 and DBT418). Ten samples were GM positive containing mainly mixtures of Mon810, Bt11 and Bt176 DNA. One sample contained appreciable amounts of GA21. An eight-plex MQDA-PCR system for detection of Mon810, Bt11 and Bt176 was evaluated by comparison with simplex 5' nuclease PCRs. There were no significant differences in the quantifications using the two approaches. The samples could, by both methods, be quantified as containing >2%, between 1 and 2%, between 0.1 and 1%, or <0.1% in 43 out of 47 determinations. The

  1. Quantification of viable bacteria in wastewater treatment plants by using propidium monoazide combined with quantitative PCR (PMA-qPCR).

    PubMed

    Li, Dan; Tong, Tiezheng; Zeng, Siyu; Lin, Yiwen; Wu, Shuxu; He, Miao

    2014-02-01

    The detection of viable bacteria in wastewater treatment plants (WWTPs) is very important for public health, as WWTPs are a medium with a high potential for waterborne disease transmission. The aim of this study was to use propidium monoazide (PMA) combined with the quantitative polymerase chain reaction (PMA-qPCR) to selectively detect and quantify viable bacteria cells in full-scale WWTPs in China. PMA was added to the concentrated WWTP samples at a final concentration of 100 micromol/L and the samples were incubated in the dark for 5 min, and then lighted for 4 min prior to DNA extraction and qPCR with specific primers for Escherichia coli and Enterococci, respectively. The results showed that PMA treatment removed more than 99% of DNA from non-viable cells in all the WWTP samples, while matrices in sludge samples markedly reduced the effectiveness of PMA treatment. Compared to qPCR, PMA-qPCR results were similar and highly linearly correlated to those obtained by culture assay, indicating that DNA from non-viable cells present in WWTP samples can be eliminated by PMA treatment, and that PMA-qPCR is a reliable method for detection of viable bacteria in environmental samples. This study demonstrated that PMA-qPCR is a rapid and selective detection method for viable bacteria in WWTP samples, and that WWTPs have an obvious function in removing both viable and non-viable bacteria. The results proved that PMA-qPCR is a promising detection method that has a high potential for application as a complementary method to the standard culture-based method in the future.

  2. Zip nucleic acids are potent hydrolysis probes for quantitative PCR

    PubMed Central

    Paris, Clément; Moreau, Valérie; Deglane, Gaëlle; Voirin, Emilie; Erbacher, Patrick; Lenne-Samuel, Nathalie

    2010-01-01

    Zip nucleic acids (ZNAs) are oligonucleotides conjugated with cationic spermine units that increase affinity for their target. ZNAs were recently shown to enable specific and sensitive reactions when used as primers for polymerase chain reaction (PCR) and reverse-transcription. Here, we report their use as quantitative PCR hydrolysis probes. Ultraviolet duplex melting data demonstrate that attachment of cationic residues to the 3′ end of an oligonucleotide does not alter its ability to discriminate nucleotides nor the destabilization pattern relative to mismatch location in the oligonucleotide sequence. The stability increase provided by the cationic charges allows the use of short dual-labeled probes that significantly improve single-nucleotide polymorphism genotyping. Longer ZNA probes were shown to display reduced background fluorescence, therefore, generating greater sensitivity and signal level as compared to standard probes. ZNA probes thus provide broad flexibility in assay design and also represent an effective alternative to minor groove binder- and locked nucleic-acid-containing probes. PMID:20071749

  3. Nested-PCR and TaqMan real-time quantitative PCR assays for human adenoviruses in environmental waters.

    PubMed

    Huang, Wen-Chien; Chou, Yi-Pen; Kao, Po-Min; Hsu, Tsui-Kang; Su, Hung-Chang; Ho, Ying-Ning; Yang, Yi-Chun; Hsu, Bing-Mu

    2016-01-01

    Human adenovirus (HAdV) infections can occur throughout the year. Cases of HAdV-associated respiratory disease have been more common in the late winter, spring, and early summer. In this study, to provide viral pollution data for further epidemiological studies and governmental actions, the presence of HAdV in the aquatic environment was quantitatively surveyed in the summer. This study was conducted to compare the efficiencies of nested-PCR (polymerase chain reaction) and qPCR (quantitative PCR) for detecting HAdV in environmental waters. A total of 73 water samples were collected from Puzi River in Taiwan and subjected to virus concentration methods. In the results, qPCR had much better efficiency for specifying the pathogen in river sample. HAdV41 was detected most frequently in the river water sample (10.9%). The estimated HAdV concentrations ranged between 6.75 × 10(2) and 2.04 × 10(9) genome copies/L. Significant difference was also found in heterotrophic plate counts, conductivity, water temperature, and water turbidity between presence/absence of HAdV. HAdV in the Puzi River may pose a significant health risk.

  4. Automated PCR setup for forensic casework samples using the Normalization Wizard and PCR Setup robotic methods.

    PubMed

    Greenspoon, S A; Sykes, K L V; Ban, J D; Pollard, A; Baisden, M; Farr, M; Graham, N; Collins, B L; Green, M M; Christenson, C C

    2006-12-20

    Human genome, pharmaceutical and research laboratories have long enjoyed the application of robotics to performing repetitive laboratory tasks. However, the utilization of robotics in forensic laboratories for processing casework samples is relatively new and poses particular challenges. Since the quantity and quality (a mixture versus a single source sample, the level of degradation, the presence of PCR inhibitors) of the DNA contained within a casework sample is unknown, particular attention must be paid to procedural susceptibility to contamination, as well as DNA yield, especially as it pertains to samples with little biological material. The Virginia Department of Forensic Science (VDFS) has successfully automated forensic casework DNA extraction utilizing the DNA IQ(trade mark) System in conjunction with the Biomek 2000 Automation Workstation. Human DNA quantitation is also performed in a near complete automated fashion utilizing the AluQuant Human DNA Quantitation System and the Biomek 2000 Automation Workstation. Recently, the PCR setup for casework samples has been automated, employing the Biomek 2000 Automation Workstation and Normalization Wizard, Genetic Identity version, which utilizes the quantitation data, imported into the software, to create a customized automated method for DNA dilution, unique to that plate of DNA samples. The PCR Setup software method, used in conjunction with the Normalization Wizard method and written for the Biomek 2000, functions to mix the diluted DNA samples, transfer the PCR master mix, and transfer the diluted DNA samples to PCR amplification tubes. Once the process is complete, the DNA extracts, still on the deck of the robot in PCR amplification strip tubes, are transferred to pre-labeled 1.5 mL tubes for long-term storage using an automated method. The automation of these steps in the process of forensic DNA casework analysis has been accomplished by performing extensive optimization, validation and testing of the

  5. Quantitative PCR for Detection and Enumeration of Genetic Markers of Bovine Fecal Pollution

    EPA Science Inventory

    Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described cow feces-spec...

  6. Quantitative Analysis of Pork and Chicken Products by Droplet Digital PCR

    PubMed Central

    Cai, Yicun; Li, Xiang; Lv, Rong; Yang, Jielin; Li, Jian; He, Yuping; Pan, Liangwen

    2014-01-01

    In this project, a highly precise quantitative method based on the digital polymerase chain reaction (dPCR) technique was developed to determine the weight of pork and chicken in meat products. Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of species-specific DNAs in meat products. However, it is limited in amplification efficiency and relies on standard curves based Ct values, detecting and quantifying low copy number target DNA, as in some complex mixture meat products. By using the dPCR method, we find the relationships between the raw meat weight and DNA weight and between the DNA weight and DNA copy number were both close to linear. This enabled us to establish formulae to calculate the raw meat weight based on the DNA copy number. The accuracy and applicability of this method were tested and verified using samples of pork and chicken powder mixed in known proportions. Quantitative analysis indicated that dPCR is highly precise in quantifying pork and chicken in meat products and therefore has the potential to be used in routine analysis by government regulators and quality control departments of commercial food and feed enterprises. PMID:25243184

  7. Revealing the Diversity and Quantity of Peritrich Ciliates in Environmental Samples Using Specific Primer-based PCR and Quantitative PCR

    PubMed Central

    Liu, Xihan; Gong, Jun

    2012-01-01

    Peritrichs are a diverse, ecologically important ciliate group usually with a complex life cycle. To date, the community of the peritrichs has been investigated by using morphology-based methods such as living observation and silver staining. Here we show a molecular approach for characterizing the diversity and quantity of free-living peritrichs in environmental samples. We newly designed four peritrich-specific primers targeting 18S rRNA genes that allow clone library construction, screening and analysis. A quantitative real-time PCR (qPCR) assay was developed to quantify peritrichs in environmental samples by using rDNA copy number as an indicator. DNA extracted from four water samples of contrasting environmental gradients was analysed. The results showed that the peritrich community was differentiated among these samples, and that the diversity decreased with the increase of water salinity. The qPCR results are consistent with the library sequence analysis in terms of quantity variations from sample to sample. The development of peritrich-specific primers, for the first time, for conventional PCR and qPCR assays, provides useful molecular tools for revealing the diversity and quantity of peritrich ciliates in environmental samples. Also, our study illustrates the potential of these molecular tools to ecological studies of other ciliate groups in diverse environments. PMID:23100023

  8. Qualitative PCR method for Roundup Ready soybean: interlaboratory study.

    PubMed

    Kodama, Takashi; Kasahara, Masaki; Minegishi, Yasutaka; Futo, Satoshi; Sawada, Chihiro; Watai, Masatoshi; Akiyama, Hiroshi; Teshima, Reiko; Kurosawa, Yasunori; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2011-01-01

    Quantitative and qualitative methods based on PCR have been developed for genetically modified organisms (GMO). Interlaboratory studies were previously conducted for GMO quantitative methods; in this study, an interlaboratory study was conducted for a qualitative method for a GM soybean, Roundup Ready soy (RR soy), with primer pairs designed for the quantitative method of RR soy studied previously. Fourteen laboratories in Japan participated. Each participant extracted DNA from 1.0 g each of the soy samples containing 0, 0.05, and 0.10% of RR soy, and performed PCR with primer pairs for an internal control gene (Le1) and RR soy followed by agarose gel electrophoresis. The PCR product amplified in this PCR system for Le1 was detected from all samples. The sensitivity, specificity, and false-negative and false-positive rates of the method were obtained from the results of RR soy detection. False-negative rates at the level of 0.05 and 0.10% of the RR soy samples were 6.0 and 2.3%, respectively, revealing that the LOD of the method was somewhat below 0.10%. The current study demonstrated that the qualitative method would be practical for monitoring the labeling system of GM soy in kernel lots.

  9. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis

    PubMed Central

    Te, Shu Harn; Chen, Enid Yingru

    2015-01-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. PMID:26025892

  10. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis.

    PubMed

    Te, Shu Harn; Chen, Enid Yingru; Gin, Karina Yew-Hoong

    2015-08-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples.

  11. Evaluation of Fecal Indicator and Pathogenic Bacteria Originating from Swine Manure Applied to Agricultural Lands Using Culture-Based and Quantitative Real-Time PCR Methods

    EPA Science Inventory

    Fecal bacteria, including those originating from concentrated animal feeding operations, are a leading contributor to water quality impairments in agricultural areas. Rapid and reliable methods are needed that can accurately characterize fecal pollution in agricultural settings....

  12. Evaluation of fecal indicator and pathogenic bacteria originating from swine manure applied to agricultural lands using culture-based and quantitative real-time PCR methods.

    EPA Science Inventory

    Fecal bacteria, including those originating from concentrated animal feeding operations, are a leading contributor to water quality impairments in agricultural areas. Rapid and reliable methods are needed that can accurately characterize fecal pollution in agricultural settings....

  13. Quantitative real-time PCR (qPCR) for Eimeria tenella replication--Implications for experimental refinement and animal welfare.

    PubMed

    Nolan, Matthew J; Tomley, Fiona M; Kaiser, Pete; Blake, Damer P

    2015-10-01

    The Eimeria species are highly pathogenic parasites of chickens. Research aimed at reducing their impact is hindered by a lack of non-subjective, quantitative, tools to measure parasite replication in the host. The time-consuming, and often time-sensitive, nature of existing approaches precludes their use in large-scale genetic, epidemiological, and evolutionary analyses. We have used quantitative real-time PCR (qPCR) to accurately quantify Eimeria tenella in chicken tissue and shown this to be more efficient and sensitive than traditional methodologies. We tested four chicken-specific reference qPCR assays and found beta-actin (actb) to be optimal for sample normalisation. In an experimental setting, chickens were inoculated with 500, 1500, or 4500 E. tenella oocysts and parasite replication and the impact of infection measured by i) qPCR analysis of DNA extracted from caecal tissues collected at five and eight days post-infection (dpi), ii) faecal oocyst counts (FOCs) on samples taken from six to eight dpi, and iii) lesion scoring on caeca collected post-mortem at five and eight dpi. Quantitative real-time PCR test results indicated a significant dose-dependent increase in parasite numbers among study groups for samples collected five dpi (i.e., prior to gametogony) (R(2)=0.994) (p<0.002) but not in those from day eight (after most oocyst shedding) (R(2)=0.006) (p>0.379). A strong dose-dependent increase in parasite replication and severity of infection was also revealed by FOC (R(2)=0.997) and lesion scoring. Importantly, qPCR offers substantial improvements for animal welfare via improved statistical power and reduced group sizes in experimental studies. The described qPCR method overcomes subjective limitations of coproscopic quantification, allows reproducible medium- to high-throughput examination of tissues, faeces, and oocysts, and is a valuable tool for determining the impact of Eimeria infections in both experimental and field settings.

  14. Quantitative real-time PCR (qPCR) for Eimeria tenella replication — Implications for experimental refinement and animal welfare

    PubMed Central

    Nolan, Matthew J.; Tomley, Fiona M.; Kaiser, Pete; Blake, Damer P.

    2015-01-01

    The Eimeria species are highly pathogenic parasites of chickens. Research aimed at reducing their impact is hindered by a lack of non-subjective, quantitative, tools to measure parasite replication in the host. The time-consuming, and often time-sensitive, nature of existing approaches precludes their use in large-scale genetic, epidemiological, and evolutionary analyses. We have used quantitative real-time PCR (qPCR) to accurately quantify Eimeria tenella in chicken tissue and shown this to be more efficient and sensitive than traditional methodologies. We tested four chicken-specific reference qPCR assays and found beta-actin (actb) to be optimal for sample normalisation. In an experimental setting, chickens were inoculated with 500, 1500, or 4500 E. tenella oocysts and parasite replication and the impact of infection measured by i) qPCR analysis of DNA extracted from caecal tissues collected at five and eight days post-infection (dpi), ii) faecal oocyst counts (FOCs) on samples taken from six to eight dpi, and iii) lesion scoring on caeca collected post-mortem at five and eight dpi. Quantitative real-time PCR test results indicated a significant dose-dependent increase in parasite numbers among study groups for samples collected five dpi (i.e., prior to gametogony) (R2 = 0.994) (p < 0.002) but not in those from day eight (after most oocyst shedding) (R2 = 0.006) (p > 0.379). A strong dose-dependent increase in parasite replication and severity of infection was also revealed by FOC (R2 = 0.997) and lesion scoring. Importantly, qPCR offers substantial improvements for animal welfare via improved statistical power and reduced group sizes in experimental studies. The described qPCR method overcomes subjective limitations of coproscopic quantification, allows reproducible medium- to high-throughput examination of tissues, faeces, and oocysts, and is a valuable tool for determining the impact of Eimeria infections in both experimental and field settings

  15. Quantitative Evaluation and Selection of Reference Genes for Quantitative RT-PCR in Mouse Acute Pancreatitis

    PubMed Central

    Yan, Zhaoping; Gao, Jinhang; Lv, Xiuhe; Yang, Wenjuan; Wen, Shilei; Tong, Huan; Tang, Chengwei

    2016-01-01

    The analysis of differences in gene expression is dependent on normalization using reference genes. However, the expression of many of these reference genes, as evaluated by quantitative RT-PCR, is upregulated in acute pancreatitis, so they cannot be used as the standard for gene expression in this condition. For this reason, we sought to identify a stable reference gene, or a suitable combination, for expression analysis in acute pancreatitis. The expression stability of 10 reference genes (ACTB, GAPDH, 18sRNA, TUBB, B2M, HPRT1, UBC, YWHAZ, EF-1α, and RPL-13A) was analyzed using geNorm, NormFinder, and BestKeeper software and evaluated according to variations in the raw Ct values. These reference genes were evaluated using a comprehensive method, which ranked the expression stability of these genes as follows (from most stable to least stable): RPL-13A, YWHAZ > HPRT1 > GAPDH > UBC > EF-1α > 18sRNA > B2M > TUBB > ACTB. RPL-13A was the most suitable reference gene, and the combination of RPL-13A and YWHAZ was the most stable group of reference genes in our experiments. The expression levels of ACTB, TUBB, and B2M were found to be significantly upregulated during acute pancreatitis, whereas the expression level of 18sRNA was downregulated. Thus, we recommend the use of RPL-13A or a combination of RPL-13A and YWHAZ for normalization in qRT-PCR analyses of gene expression in mouse models of acute pancreatitis. PMID:27069927

  16. Effect of tissue fixatives on telomere length determination by quantitative PCR.

    PubMed

    Koppelstaetter, Christian; Jennings, Paul; Hochegger, Kathrin; Perco, Paul; Ischia, Rudolf; Karkoszka, Henryk; Mayer, Gert

    2005-12-01

    Telomere length is a well established marker of cellular senescence and thus biological age. Quantitative PCR allows the determination even from very low amounts of tissue by using telomere specific and single copy gene primers. Comparing a directly processed tissue sample to a 4% formaldehyde fixed one showed a significantly reduced efficiency of PCR reactions (mainly in single copy gene experiments) in a storage time-dependent manner resulting in an artificial increase in reported relative telomere length. This effect was not seen when the tissue was stored in RNA later solution. In summary, telomere length determination from formaldehyde fixed material by quantitative PCR is not a reliable method. Unfortunately therefore, many easily accessible tissue samples from pathology laboratories are unsuitable for this technique.

  17. Evaluation of various real-time reverse transcription quantitative PCR assays for norovirus detection.

    PubMed

    Yoo, Ju Eun; Lee, Cheonghoon; Park, SungJun; Ko, GwangPyo

    2017-02-01

    Human noroviruses are widespread and contagious viruses causing nonbacterial gastroenteritis. Real-time reverse transcription quantitative PCR (real-time RT-qPCR) is currently the gold standard for sensitive and accurate detection for these pathogens and serves as a critical tool in outbreak prevention and control. Different surveillance teams, however, may use different assays and variability in specimen conditions may lead to disagreement in results. Furthermore, the norovirus genome is highly variable and continuously evolving. These issues necessitate the re-examination of the real-time RT-qPCR's robustness in the context of accurate detection as well as the investigation of practical strategies to enhance assay performance. Four widely referenced real-time RT-qPCR assays (Assay A-D) were simultaneously performed to evaluate characteristics such as PCR efficiency, detection limit, as well as sensitivity and specificity with RT-PCR, and to assess the most accurate method for detecting norovirus genogroups I and II. Overall, Assay D was evaluated to be the most precise and accurate assay in this study. A Zen internal quencher, which decreases nonspecific fluorescence during the PCR reaction, was added to Assay D's probe which further improved assay performance. This study compared several detection assays for noroviruses and an improvement strategy based on such comparisons provided useful characterizations of a highly optimized real-time RT-qPCR assay for norovirus detection.

  18. Murine model of disseminated fusariosis: evaluation of the fungal burden by traditional CFU and quantitative PCR.

    PubMed

    González, Gloria M; Márquez, Jazmín; Treviño-Rangel, Rogelio de J; Palma-Nicolás, José P; Garza-González, Elvira; Ceceñas, Luis A; Gerardo González, J

    2013-10-01

    Systemic disease is the most severe clinical form of fusariosis, and the treatment involves a challenge due to the refractory response to antifungals. Treatment for murine Fusarium solani infection has been described in models that employ CFU quantitation in organs as a parameter of therapeutic efficacy. However, CFU counts do not precisely reproduce the amount of cells for filamentous fungi such as F. solani. In this study, we developed a murine model of disseminated fusariosis and compared the fungal burden with two methods: CFU and quantitative PCR. ICR and BALB/c mice received an intravenous injection of 1 × 10(7) conidia of F. solani per mouse. On days 2, 5, 7, and 9, mice from each mice strain were killed. The spleen and kidneys of each animal were removed and evaluated by qPCR and CFU determinations. Results from CFU assay indicated that the spleen and kidneys had almost the same fungal burden in both BALB/c and ICR mice during the days of the evaluation. In the qPCR assay, the spleen and kidney of each mouse strain had increased fungal burden in each determination throughout the entire experiment. The fungal load determined by the qPCR assay was significantly greater than that determined from CFU measurements of tissue. qPCR could be considered as a tool for quantitative evaluation of fungal burden in experimental disseminated F. solani infection.

  19. Quantitative polymerase chain reaction (PCR) for detection of aquatic animal pathogens in a diagnostic laboratory setting

    USGS Publications Warehouse

    Purcell, Maureen K.; Getchell, Rodman G.; McClure, Carol A.; Weber, S.E.; Garver, Kyle A.

    2011-01-01

    Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.

  20. Quantitative polymerase chain reaction (PCR) for detection of aquatic animal pathogens in a diagnostic laboratory setting.

    PubMed

    Purcell, Maureen K; Getchell, Rodman G; McClure, Carol A; Garver, Kyle A

    2011-09-01

    Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.

  1. Development of qualitative and quantitative PCR analysis for meat adulteration from RNA samples.

    PubMed

    Cheng, Jai-Hong; Chou, Hsiao-Ting; Lee, Meng-Shiou; Sheu, Shyang-Chwen

    2016-02-01

    Total RNA samples were used to establish qualitative and quantitative PCR-based methods for assessing meat adulteration. The primers were designed based on the mRNA sequences of troponin I (TnI), mitochondrial ribosomal protein (MRP) and tropomodulin genes to distinguish chicken, pork, goat, beef and ostrich. There was no cross reaction between the primers, and the detection limit of the cDNA template was 0.01 and 20 ng in simplex PCR and multiplex PCR, respectively. In the low temperature storage test, the detection limits of cDNA template with 10 and 1 ng were determined at 4 °C and -80 °C. In quantitative assay, the precision of real-time PCR analysis expressed as a coefficient of variation (CV) ranged from 0.25% to 5.24% and the trueness, expressed as an error, ranged from 0.28% to 6.98% for adulteration. Thus, herein, we provided alternative tools for the assessment of meat adulteration using mRNA-based PCR methods.

  2. Evaluation of quantitative PCR combined with PMA treatment for molecular assessment of microbial water quality.

    PubMed

    Gensberger, Eva Theres; Polt, Marlies; Konrad-Köszler, Marianne; Kinner, Paul; Sessitsch, Angela; Kostić, Tanja

    2014-12-15

    Microbial water quality assessment currently relies on cultivation-based methods. Nucleic acid-based techniques such as quantitative PCR (qPCR) enable more rapid and specific detection of target organisms and propidium monoazide (PMA) treatment facilitates the exclusion of false positive results caused by DNA from dead cells. Established molecular assays (qPCR and PMA-qPCR) for legally defined microbial quality parameters (Escherichia coli, Enterococcus spp. and Pseudomonas aeruginosa) and indicator organism group of coliforms (implemented on the molecular detection of Enterobacteriaceae) were comparatively evaluated to conventional microbiological methods. The evaluation of an extended set of drinking and process water samples showed that PMA-qPCR for E. coli, Enterococcus spp. and P. aeruginosa resulted in higher specificity because substantial or complete reduction of false positive signals in comparison to qPCR were obtained. Complete compliance to reference method was achieved for E. coli PMA-qPCR and 100% specificity for Enterococcus spp. and P. aeruginosa in the evaluation of process water samples. A major challenge remained in sensitivity of the assays, exhibited through false negative results (7-23%), which is presumably due to insufficient sample preparation (i.e. concentration of bacteria and DNA extraction), rather than the qPCR limit of detection. For the detection of the indicator group of coliforms, the evaluation study revealed that the utilization of alternative molecular assays based on the taxonomic group of Enterobacteriaceae was not adequate. Given the careful optimization of the sensitivity, the highly specific PMA-qPCR could be a valuable tool for rapid detection of hygienic parameters such as E. coli, Enterococcus spp. and P. aeruginosa.

  3. Quantitative detection of residual porcine host cell DNA by real-time PCR.

    PubMed

    Chang, Jen-Ting; Chen, Yu-Chen; Chou, Yu-Chi; Wang, Shih-Rong

    2014-03-01

    All biological products are derived from complex living systems and are often mixed with large numbers of impurities. For reasons of safety, residual host-cell DNA must be eliminated during processing. To assay host-cell DNA content in biopharmaceutical products derived from porcine sources, this study applies the quantitative real-time polymerase chain reaction (Q-PCR) method. The optimized assay in this study is based on the pol region of the porcine endogenous retrovirus (PERV). Assay validation results demonstrate that the proposed assay has appropriate accuracy, preciseness, reproducibility, and sensitivity. Primer and probe specificity are evaluated in real-time Q-PCR reactions using genomic DNA from rabbit, mouse, cat, hamster, monkey, human cell, yeast, and Escherichia coli as templates. The sensitivity of real-time Q-PCR is determined using genomic DNA from the porcine kidney cell line. The reliable detection range is within 0.5-10(5) pg/reaction. The limit of quantitation is 500 fg. The sensitivity of the assay meets the authority criterion. Moreover, the assay is applied to determine the level of host-cell DNA in recombinant human coagulation factor IX (rhFIX) from transgenic pigs. The real-time Q-PCR assay is thus a promising new tool for quantitative detection and clearance validation of residual porcine DNA when manufacturing recombinant therapeutics.

  4. Real-time duplex PCR for simultaneous HPV 16 and HPV 18 DNA quantitation.

    PubMed

    Jacquin, Elise; Saunier, Maëlle; Mauny, Frédéric; Schwarz, Elisabeth; Mougin, Christiane; Prétet, Jean-Luc

    2013-11-01

    HPV 16 and HPV 18 are responsible for more than 75% of cervical cancers and high HPV 16 loads are associated with both prevalent and incident lesions. The objective of the present study was to develop a method allowing the detection and quantitation of HPV 16 and 18 DNA to improve future strategies for cervical cancer screening. A duplex real-time PCR allowing the simultaneous quantitation of both HPV 16 and HPV 18 was carried out. Mixes of HPV 16 and HPV 18 whole genome plasmids were prepared to test a wide range of viral DNA concentrations. The values obtained for each mix of plasmids with the simplex and the duplex PCR were very close to the theoretical values except when a HPV type represented only 1:1000 genome equivalent or lower than the concurrent type. Cervical samples harboring HPV 16, HPV 18 or both types were tested by comparing the results with simplex and duplex real-time PCR assays. HPV 16 and HPV 18 genome titers were similar with the two assays. In conclusion, the real-time duplex PCR proved to be robust for HPV 16 and HPV 18 DNA quantitation.

  5. Selective quantification of viable Escherichia coli bacteria in biosolids by quantitative PCR with propidium monoazide modification.

    PubMed

    Taskin, Bilgin; Gozen, Ayse Gul; Duran, Metin

    2011-07-01

    Quantitative differentiation of live cells in biosolids samples, without the use of culturing-based approaches, is highly critical from a public health risk perspective, as recent studies have shown significant regrowth and reactivation of indicator organisms. Persistence of DNA in the environment after cell death in the range of days to weeks limits the application of DNA-based approaches as a measure of live cell density. Using selective nucleic acid intercalating dyes like ethidium monoazide (EMA) and propidium monoazide (PMA) is one of the alternative approaches to detecting and quantifying viable cells by quantitative PCR. These compounds have the ability to penetrate only into dead cells with compromised membrane integrity and intercalate with DNA via their photoinducible azide groups and in turn inhibit DNA amplification during PCRs. PMA has been successfully used in different studies and microorganisms, but it has not been evaluated sufficiently for complex environmental samples such as biosolids. In this study, experiments were performed with Escherichia coli ATCC 25922 as the model organism and the uidA gene as the target sequence using real-time PCR via the absolute quantification method. Experiments with the known quantities of live and dead cell mixtures showed that PMA treatment inhibits PCR amplification from dead cells with over 99% efficiency. The results also indicated that PMA-modified quantitative PCR could be successfully applied to biosolids when the total suspended solids (TSS) concentration is at or below 2,000 mg·liter(-1).

  6. Validation of Reference Genes for Real-Time Quantitative PCR (qPCR) Analysis of Avibacterium paragallinarum

    PubMed Central

    Wen, Shuxiang; Chen, Xiaoling; Xu, Fuzhou; Sun, Huiling

    2016-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) offers a robust method for measurement of gene expression levels. Selection of reliable reference gene(s) for gene expression study is conducive to reduce variations derived from different amounts of RNA and cDNA, the efficiency of the reverse transcriptase or polymerase enzymes. Until now reference genes identified for other members of the family Pasteurellaceae have not been validated for Avibacterium paragallinarum. The aim of this study was to validate nine reference genes of serovars A, B, and C strains of A. paragallinarum in different growth phase by qRT-PCR. Three of the most widely used statistical algorithms, geNorm, NormFinder and ΔCT method were used to evaluate the expression stability of reference genes. Data analyzed by overall rankings showed that in exponential and stationary phase of serovar A, the most stable reference genes were gyrA and atpD respectively; in exponential and stationary phase of serovar B, the most stable reference genes were atpD and recN respectively; in exponential and stationary phase of serovar C, the most stable reference genes were rpoB and recN respectively. This study provides recommendations for stable endogenous control genes for use in further studies involving measurement of gene expression levels. PMID:27942007

  7. Quantitative RT-PCR for titration of replication-defective recombinant Semliki Forest virus.

    PubMed

    Puglia, Ana L P; Rezende, Alexandre G; Jorge, Soraia A C; Wagner, Renaud; Pereira, Carlos A; Astray, Renato M

    2013-11-01

    Virus titration may constitute a drawback in the development and use of replication-defective viral vectors like Semliki Forest virus (SFV). The standardization and validation of a reverse transcription quantitative PCR (qRT-PCR) method for SFV titration is presented here. The qRT-PCR target is located within the nsp1 gene of the non-structural polyprotein SFV region (SFV RNA), which allows the strategy to be used for several different recombinant SFV constructs. Titer determinations were carried out by performing virus titration and infection assays with SFVs containing an RNA coding region for the rabies virus glycoprotein (RVGP) or green fluorescent protein (GFP). Results showed that the standardized qRT-PCR is applicable for different SFV constructs, and showed good reproducibility. To evaluate the correlation between the amount of functional SFV RNA in a virus lot and its infectivity in BHK-21 cell cultures, a temperature mediated titer decrease was performed and successfully quantitated by qRT-PCR. When used for cell infection at the same multiplicity of infection (MOI), the temperature treated SFV-RVGP samples induced the same levels of RVGP expression. Similarly, when different SFV-GFP lots with different virus titers, as accessed by qRT-PCR, were used for cell infection at the same MOI, the cultures showed comparable amounts of fluorescent cells. The data demonstrate a good correlation between the amount of virus used for infection, as measured by its SFV RNA, and the protein synthesis in the cells. In conclusion, the qRT-PCR method developed here is accurate and enables the titration of replication-defective SFV vectors, an essential aid for viral vector development as well as for establishment of production bioprocesses.

  8. Real-time quantitative PCR assay for monitoring of nervous necrosis virus infection in grouper aquaculture.

    PubMed

    Kuo, Hsiao-Che; Wang, Ting-Yu; Chen, Peng-Peng; Chen, Young-Mao; Chuang, Hui-Ching; Chen, Tzong-Yueh

    2011-03-01

    Viral nervous necrosis caused by nervous necrosis virus (NNV) exacts a high mortality and results in huge economic losses in grouper aquaculture in Taiwan. The present study developed a real-time quantitative PCR (qPCR) method for NNV monitoring. The assay showed a strong linear correlation (r(2) = 0.99) between threshold cycle (C(T)) and RNA quantities, which allowed identification of infected groupers by the C(T) value and could be exploited to warn of NNV infection prior to an outbreak in grouper fish farms. Real-time qPCR also confirmed the copious content of NNV in grouper fin, similar to that in primary tissues; the result was verified by using in situ reverse transcription-PCR (RT-PCR). This indicated that grouper fin was a suitable sample for NNV detection, in a manner that could be relatively benign to the fish. The rapid spread of NNV infection to the entire population of affected farms was evident. The developed real-time qPCR method is rapid, highly sensitive, and applicable to routine high-throughput detection of large numbers of samples and has potential as a suitable tool for diagnostic, epidemiological, and genetic studies of grouper aquaculture.

  9. Enzymological considerations for a theoretical description of the quantitative competitive polymerase chain reaction (QC-PCR).

    PubMed

    Schnell, S; Mendoza, C

    1997-02-21

    The enzymological principles of the polymerase chain reaction (PCR) and of the quantitative competitive PCR (QC-PCR) are developed, proposing a theoretical framework that will facilitate quantification in experimental methodologies. It is demonstrated that the specificity of the QC-PCR, i.e. the ratio of the target initial velocity to that of the competitor template, remains constant not only during a particular amplification but also for increasing initial competitor concentrations. Linear fitting procedures are thus recommended that will enable a quantitative estimate of the initial target concentration. Finally, expressions for the efficiency of the PCR and QC-PCR are derived that are in agreement with previous experimental inferences.

  10. Probe-based Real-time PCR Approaches for Quantitative Measurement of microRNAs

    PubMed Central

    Wong, Wilson; Farr, Ryan; Joglekar, Mugdha; Januszewski, Andrzej; Hardikar, Anandwardhan

    2015-01-01

    Probe-based quantitative PCR (qPCR) is a favoured method for measuring transcript abundance, since it is one of the most sensitive detection methods that provides an accurate and reproducible analysis. Probe-based chemistry offers the least background fluorescence as compared to other (dye-based) chemistries. Presently, there are several platforms available that use probe-based chemistry to quantitate transcript abundance. qPCR in a 96 well plate is the most routinely used method, however only a maximum of 96 samples or miRNAs can be tested in a single run. This is time-consuming and tedious if a large number of samples/miRNAs are to be analyzed. High-throughput probe-based platforms such as microfluidics (e.g. TaqMan Array Card) and nanofluidics arrays (e.g. OpenArray) offer ease to reproducibly and efficiently detect the abundance of multiple microRNAs in a large number of samples in a short time. Here, we demonstrate the experimental setup and protocol for miRNA quantitation from serum or plasma-EDTA samples, using probe-based chemistry and three different platforms (96 well plate, microfluidics and nanofluidics arrays) offering increasing levels of throughput. PMID:25938938

  11. High dynamic range detection of Chlamydia trachomatis growth by direct quantitative PCR of the infected cells.

    PubMed

    Eszik, Ildikó; Lantos, Ildikó; Önder, Kamil; Somogyvári, Ferenc; Burián, Katalin; Endrész, Valéria; Virok, Dezső P

    2016-01-01

    Chlamydiae are obligate intracellular bacteria developing in an intracytoplasmic niche, the inclusion. Chlamydia growth measurement by inclusion counting is a key task in the development of novel antichlamydial antibiotics and in vaccine studies. Most of the current counting methods rely on the immunofluorescent staining of the inclusions and either manual or automatic microscopy detection and enumeration. The manual method is highly labor intensive, while the automatic methods are either medium-throughput or require automatic microscopy. The sensitive and specific PCR technology could be an effective method for growth related chlamydial DNA detection; however the currently described PCR approaches have a major limitation, the requirement of purification of DNA or RNA from the infected cells. This limitation makes this approach unfeasible for high-throughput screenings. To overcome this, we developed a quantitative PCR (qPCR) method for the detection of Chlamydia trachomatis DNA directly from the infected HeLa cells. With our method we were able to detect the bacterial growth in a 4 log scale (multiplicity of infection (MOI): 64 to 0.0039), with high correlation between the biological and technical replicates. As a further proof of the method, we applied the direct qPCR for antibiotic minimum inhibitory concentration (MIC) measurements. The measured MICs of moxifloxacin, tetracycline, clarithromycin and compound PCC00213 were 0.031 μg/ml, 0.031 μg/ml, 0.0039 μg/ml and 6.2 μg/ml respectively, identical or close to the already published MIC values. Our direct qPCR method for chlamydial growth and antibiotic MIC determination is less time-consuming, more objective and more sensitive than the currently applied manual or automatic fluorescent microscopy- based methods.

  12. Development of Quantitative Real-time PCR Assays for Different Clades of “Candidatus Accumulibacter”

    NASA Astrophysics Data System (ADS)

    Zhang, An Ni; Mao, Yanping; Zhang, Tong

    2016-05-01

    We designed novel quantitative real-time polymerase chain reaction (qPCR) primers for the polyphosphate kinase 1 (ppk1) gene, targeting eight individual “Candidatus Accumulibacter” (referred to as Accumulibacter) clades. An evaluation of primer sets was conducted regarding the coverage, specificity, and PCR efficiency. (i) All primer sets were designed to cover all available sequences of the target clade. (ii) The phylogenetic analysis of the sequences retrieved from the qPCR products by each primer set demonstrated a high level of specificity. (iii) All calibration curves presented high PCR efficiencies in the range of 85–112% (R2 = 0.962–0.998). In addition, the possible interference of non-target amplicons was individually examined using the qPCR assay for 13 Accumulibacter clades, which were either undetected or showed negligible detection. With the primers designed by other research groups, a highly selective and sensitive qPCR-based method was developed to quantify all Accumulibacter clades, with the exception of Clade IE, in one assay, which enables more comprehensive insights into the community dynamics. The applicability to environmental samples was demonstrated by profiling the Accumulibacter clades in activated sludge samples of nine full-scale wastewater treatment plants.

  13. Development of Quantitative Real-time PCR Assays for Different Clades of “Candidatus Accumulibacter”

    PubMed Central

    Zhang, An Ni; Mao, Yanping; Zhang, Tong

    2016-01-01

    We designed novel quantitative real-time polymerase chain reaction (qPCR) primers for the polyphosphate kinase 1 (ppk1) gene, targeting eight individual “Candidatus Accumulibacter” (referred to as Accumulibacter) clades. An evaluation of primer sets was conducted regarding the coverage, specificity, and PCR efficiency. (i) All primer sets were designed to cover all available sequences of the target clade. (ii) The phylogenetic analysis of the sequences retrieved from the qPCR products by each primer set demonstrated a high level of specificity. (iii) All calibration curves presented high PCR efficiencies in the range of 85–112% (R2 = 0.962–0.998). In addition, the possible interference of non-target amplicons was individually examined using the qPCR assay for 13 Accumulibacter clades, which were either undetected or showed negligible detection. With the primers designed by other research groups, a highly selective and sensitive qPCR-based method was developed to quantify all Accumulibacter clades, with the exception of Clade IE, in one assay, which enables more comprehensive insights into the community dynamics. The applicability to environmental samples was demonstrated by profiling the Accumulibacter clades in activated sludge samples of nine full-scale wastewater treatment plants. PMID:27142574

  14. Quantification of cattle DNA using quantitative competitive PCR with sheep DNA as competitor.

    PubMed

    Mariasegaram, Maxy; Robinson, Nicholas Andrew; Goddard, Michael Edward

    2006-02-01

    A novel method was developed to enable accurate and high-throughput measurement of cattle DNA concentration using quantitative competitive PCR, with sheep DNA as competitor. While quantitative competitive PCR has been used extensively for the quantification of specific RNA or DNA molecules, they have required development of internal standards with matching primer binding sites and similar amplification efficiencies to the target molecule. To develop such as assay can constitute a significant work-up. Instead, by utilizing the tendency of microsatellites developed in one species to amplify homologous loci across closely related species removes the need for internal standard development. Two cattle microsatellite markers were identified that produced distinct sheep specific peaks in an electropherogram. A standard graph was plotted for various dilutions of a cattle standard and a constant amount of sheep competitor. The sheep DNA, which is co-amplified with the cattle template in the PCR reaction served as the internal standard. The cattle DNA concentration of an unknown sample was determined by relating the ratio of sheep to cattle PCR product peaks to the standard curve. The standard deviation between replicate measurements of cattle DNA was 0.52 ng/microl using this method.

  15. Quantification of viable Legionella pneumophila cells using propidium monoazide combined with quantitative PCR.

    PubMed

    Yáñez, M Adela; Nocker, Andreas; Soria-Soria, Elena; Múrtula, Raquel; Martínez, Lorena; Catalán, Vicente

    2011-05-01

    One of the greatest challenges of implementing fast molecular detection methods as part of Legionella surveillance systems is to limit detection to live cells. In this work, a protocol for sample treatment with propidium monoazide (PMA) in combination with quantitative PCR (qPCR) has been optimized and validated for L. pneumophila as an alternative of the currently used time-consuming culture method. Results from PMA-qPCR were compared with culture isolation and traditional qPCR. Under the conditions used, sample treatment with 50 μM PMA followed by 5 min of light exposure were assumed optimal resulting in an average reduction of 4.45 log units of the qPCR signal from heat-killed cells. When applied to environmental samples (including water from cooling water towers, hospitals, spas, hot water systems in hotels, and tap water), different degrees of correlations between the three methods were obtained which might be explained by different matrix properties, but also varying degrees of non-culturable cells. It was furthermore shown that PMA displayed substantially lower cytotoxicity with Legionella than the alternative dye ethidium monoazide (EMA) when exposing live cells to the dye followed by plate counting. This result confirmed the findings with other species that PMA is less membrane-permeant and more selective for the intact cells. In conclusion, PMA-qPCR is a promising technique for limiting detection to intact cells and makes Legionella surveillance data substantially more relevant in comparison with qPCR alone. For future research it would be desirable to increase the method's capacity to exclude signals from dead cells in difficult matrices or samples containing high numbers of dead cells.

  16. Quantitative PCR analysis of salivary pathogen burden in periodontitis

    PubMed Central

    Salminen, Aino; Kopra, K. A. Elisa; Hyvärinen, Kati; Paju, Susanna; Mäntylä, Päivi; Buhlin, Kåre; Nieminen, Markku S.; Sinisalo, Juha; Pussinen, Pirkko J.

    2015-01-01

    Our aim was to investigate the value of salivary concentrations of four major periodontal pathogens and their combination in diagnostics of periodontitis. The Parogene study included 462 dentate subjects (mean age 62.9 ± 9.2 years) with coronary artery disease (CAD) diagnosis who underwent an extensive clinical and radiographic oral examination. Salivary levels of four major periodontal bacteria were measured by quantitative real-time PCR (qPCR). Median salivary concentrations of Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia, as well as the sum of the concentrations of the four bacteria, were higher in subjects with moderate to severe periodontitis compared to subjects with no to mild periodontitis. Median salivary Aggregatibacter actinomycetemcomitans concentrations did not differ significantly between the subjects with no to mild periodontitis and subjects with moderate to severe periodontitis. In logistic regression analysis adjusted for age, gender, diabetes, and the number of teeth and implants, high salivary concentrations of P. gingivalis, T. forsythia, and P. intermedia were significantly associated with moderate to severe periodontitis. When looking at different clinical and radiographic parameters of periodontitis, high concentrations of P. gingivalis and T. forsythia were significantly associated with the number of 4–5 mm periodontal pockets, ≥6 mm pockets, and alveolar bone loss (ABL). High level of T. forsythia was associated also with bleeding on probing (BOP). The combination of the four bacteria, i.e., the bacterial burden index, was associated with moderate to severe periodontitis with an odds ratio (OR) of 2.40 (95% CI 1.39–4.13). When A. actinomycetemcomitans was excluded from the combination of the bacteria, the OR was improved to 2.61 (95% CI 1.51–4.52). The highest OR 3.59 (95% CI 1.94–6.63) was achieved when P. intermedia was further excluded from the combination and only the levels of P. gingivalis and

  17. Quantitative PCR analysis of salivary pathogen burden in periodontitis.

    PubMed

    Salminen, Aino; Kopra, K A Elisa; Hyvärinen, Kati; Paju, Susanna; Mäntylä, Päivi; Buhlin, Kåre; Nieminen, Markku S; Sinisalo, Juha; Pussinen, Pirkko J

    2015-01-01

    Our aim was to investigate the value of salivary concentrations of four major periodontal pathogens and their combination in diagnostics of periodontitis. The Parogene study included 462 dentate subjects (mean age 62.9 ± 9.2 years) with coronary artery disease (CAD) diagnosis who underwent an extensive clinical and radiographic oral examination. Salivary levels of four major periodontal bacteria were measured by quantitative real-time PCR (qPCR). Median salivary concentrations of Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia, as well as the sum of the concentrations of the four bacteria, were higher in subjects with moderate to severe periodontitis compared to subjects with no to mild periodontitis. Median salivary Aggregatibacter actinomycetemcomitans concentrations did not differ significantly between the subjects with no to mild periodontitis and subjects with moderate to severe periodontitis. In logistic regression analysis adjusted for age, gender, diabetes, and the number of teeth and implants, high salivary concentrations of P. gingivalis, T. forsythia, and P. intermedia were significantly associated with moderate to severe periodontitis. When looking at different clinical and radiographic parameters of periodontitis, high concentrations of P. gingivalis and T. forsythia were significantly associated with the number of 4-5 mm periodontal pockets, ≥6 mm pockets, and alveolar bone loss (ABL). High level of T. forsythia was associated also with bleeding on probing (BOP). The combination of the four bacteria, i.e., the bacterial burden index, was associated with moderate to severe periodontitis with an odds ratio (OR) of 2.40 (95% CI 1.39-4.13). When A. actinomycetemcomitans was excluded from the combination of the bacteria, the OR was improved to 2.61 (95% CI 1.51-4.52). The highest OR 3.59 (95% CI 1.94-6.63) was achieved when P. intermedia was further excluded from the combination and only the levels of P. gingivalis and T

  18. BactQuant: An enhanced broad-coverage bacterial quantitative real-time PCR assay

    PubMed Central

    2012-01-01

    Background Bacterial load quantification is a critical component of bacterial community analysis, but a culture-independent method capable of detecting and quantifying diverse bacteria is needed. Based on our analysis of a diverse collection of 16 S rRNA gene sequences, we designed a broad-coverage quantitative real-time PCR (qPCR) assay—BactQuant—for quantifying 16 S rRNA gene copy number and estimating bacterial load. We further utilized in silico evaluation to complement laboratory-based qPCR characterization to validate BactQuant. Methods The aligned core set of 4,938 16 S rRNA gene sequences in the Greengenes database were analyzed for assay design. Cloned plasmid standards were generated and quantified using a qPCR-based approach. Coverage analysis was performed computationally using >670,000 sequences and further evaluated following the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines. Results A bacterial TaqMan® qPCR assay targeting a 466 bp region in V3-V4 was designed. Coverage analysis showed that 91% of the phyla, 96% of the genera, and >80% of the 89,537 species analyzed contained at least one perfect sequence match to the BactQuant assay. Of the 106 bacterial species evaluated, amplification efficiencies ranged from 81 to 120%, with r2-value of >0.99, including species with sequence mismatches. Inter- and intra-run coefficient of variance was <3% and <16% for Ct and copy number, respectively. Conclusions The BactQuant assay offers significantly broader coverage than a previously reported universal bacterial quantification assay BactQuant in vitro performance was better than the in silico predictions. PMID:22510143

  19. Evaluation of Lung Metastasis in Mouse Mammary Tumor Models by Quantitative Real-time PCR

    PubMed Central

    Abt, Melissa A.; Grek, Christina L.; Ghatnekar, Gautam S.; Yeh, Elizabeth S.

    2016-01-01

    Metastatic disease is the spread of malignant tumor cells from the primary cancer site to a distant organ and is the primary cause of cancer associated death 1. Common sites of metastatic spread include lung, lymph node, brain, and bone 2. Mechanisms that drive metastasis are intense areas of cancer research. Consequently, effective assays to measure metastatic burden in distant sites of metastasis are instrumental for cancer research. Evaluation of lung metastases in mammary tumor models is generally performed by gross qualitative observation of lung tissue following dissection. Quantitative methods of evaluating metastasis are currently limited to ex vivo and in vivo imaging based techniques that require user defined parameters. Many of these techniques are at the whole organism level rather than the cellular level 3–6. Although newer imaging methods utilizing multi-photon microscopy are able to evaluate metastasis at the cellular level 7, these highly elegant procedures are more suited to evaluating mechanisms of dissemination rather than quantitative assessment of metastatic burden. Here, a simple in vitro method to quantitatively assess metastasis is presented. Using quantitative Real-time PCR (QRT-PCR), tumor cell specific mRNA can be detected within the mouse lung tissue. PMID:26862835

  20. Evaluation of Lung Metastasis in Mouse Mammary Tumor Models by Quantitative Real-time PCR.

    PubMed

    Abt, Melissa A; Grek, Christina L; Ghatnekar, Gautam S; Yeh, Elizabeth S

    2016-01-29

    Metastatic disease is the spread of malignant tumor cells from the primary cancer site to a distant organ and is the primary cause of cancer associated death. Common sites of metastatic spread include lung, lymph node, brain, and bone. Mechanisms that drive metastasis are intense areas of cancer research. Consequently, effective assays to measure metastatic burden in distant sites of metastasis are instrumental for cancer research. Evaluation of lung metastases in mammary tumor models is generally performed by gross qualitative observation of lung tissue following dissection. Quantitative methods of evaluating metastasis are currently limited to ex vivo and in vivo imaging based techniques that require user defined parameters. Many of these techniques are at the whole organism level rather than the cellular level. Although newer imaging methods utilizing multi-photon microscopy are able to evaluate metastasis at the cellular level, these highly elegant procedures are more suited to evaluating mechanisms of dissemination rather than quantitative assessment of metastatic burden. Here, a simple in vitro method to quantitatively assess metastasis is presented. Using quantitative Real-time PCR (QRT-PCR), tumor cell specific mRNA can be detected within the mouse lung tissue.

  1. [Evaluation of pathogen disinfection efficacy by chlorine and monochloramine disinfection based on quantitative PCR combined with propidium monoazide (PMA-qPCR)].

    PubMed

    Tong, Tie-Zheng; Wu, Shu-Xu; Li, Dan; He, Miao; Yang, Tian; Shi, Han-Chang

    2011-04-01

    A novel detection method of quantitative PCR combined with a DNA intercalating dye propidium monoazide (PMA-qPCR) was developed and then applied to analyze inactivation efficacy of chlorine and monochloramine on E. coli as a representative organism. The results shows that PMA removed 99.94% and 99.99% DNA from non-viable E. coli and Salmonella cells respectively and PMA-qPCR could effectively differentiate viable bacteria from non-viable bacteria; According to the first-order kinetic model, the inactivation coefficients on E. coli obtained by PMA-qPCR were 2.24 L x (mg x min)-1 and 0.0175 L x (mg x min)-1 for chlorine and monochloramine respectively, both of which were lower than those obtained by traditional plating counting method. In order to inactivate 99% of E. coli, the ct values by PMA-qPCR were 0.9 mg L(-1) min and more than 100 mg x L(-1) x min for chlorine and monochloramine while those by plating counting method were only 0.6 mg x L(-1) x min and 20 mg x L(-1) min, respectively; E. coli concentration detected by conventional qPCR kept almost the same when ct value increased, indicating that conventional qPCR was unable to evaluate inactivation efficacy of both chlorine and monochloramine disinfection. In summary, PMA-qPCR shows to be a promising method for evaluating disinfection efficacy by chlorine and monochloramine more accurately.

  2. Enumeration of viable and non-viable larvated Ascaris eggs with quantitative PCR.

    PubMed

    Raynal, Maria; Villegas, Eric N; Nelson, Kara L

    2012-12-01

    The goal of this study was to further develop an incubation-quantitative polymerase chain reaction (qPCR) method for quantifying viable Ascaris eggs by characterizing the detection limit and number of template copies per egg, determining the specificity of the method, and testing the method with viable and inactivated larvated eggs. The number of template copies per cell was determined by amplifying DNA from known numbers of eggs at different development stages; the value was estimated to be 32 copies. The specificity of the method was tested against a panel of bacteria, fungi, protozoa and helminths, and no amplification was found with non-target DNA. Finally, fully larvated eggs were inactivated by four different treatments: 254 nm ultraviolet light, 2,000 ppm NH(3)-N at pH 9, moderate heat (48 °C) and high heat (70 °C). Concentrations of treated eggs were measured by direct microscopy and incubation-qPCR. The qPCR signal decreased following all four treatments, and was in general agreement with the decrease in viable eggs determined by microscopy. The incubation-qPCR method for enumerating viable Ascaris eggs is a promising approach that can produce results faster than direct microscopy, and may have benefits for applications such as assessing biosolids.

  3. An international trial of quantitative PCR for monitoring Legionella in artificial water systems

    PubMed Central

    Lee, JV; Lai, S; Exner, M; Lenz, J; Gaia, V; Casati, S; Hartemann, P; Lück, C; Pangon, B; Ricci, ML; Scaturro, M; Fontana, S; Sabria, M; Sánchez, I; Assaf, S; Surman-Lee, S

    2011-01-01

    Aims To perform an international trial to derive alert and action levels for the use of quantitative PCR (qPCR) in the monitoring of Legionella to determine the effectiveness of control measures against legionellae. Methods and Results Laboratories (7) participated from six countries. Legionellae were determined by culture and qPCR methods with comparable detection limits. Systems were monitored over ≥10 weeks. For cooling towers (232 samples), there was a significant difference between the log mean difference between qPCR (GU l−1) and culture (CFU l−1) for Legionella pneumophila (0·71) and for Legionella spp. (2·03). In hot and cold water (506 samples), the differences were less, 0·62 for Leg. pneumophila and 1·05 for Legionella spp. Results for individual systems depended on the nature of the system and its treatment. In cooling towers, Legionella spp. GU l−1 always exceeded CFU l−1, and usually Legionella spp. were detected by qPCR when absent by culture. The pattern of results by qPCR for Leg. pneumophila followed the culture trend. In hot and cold water, culture and qPCR gave similar results, particularly for Leg. pneumophila. There were some marked exceptions with temperatures ≥50°C, or in the presence of supplementary biocides. Action and alert levels for qPCR were derived that gave results comparable to the application of the European Guidelines based on culture. Algorithms are proposed for the use of qPCR for routine monitoring. Conclusions Action and alert levels for qPCR can be adjusted to ensure public health is protected with the benefit that remedial actions can be validated earlier with only a small increase in the frequency of action being required. Significance and Impact of the Study This study confirms it is possible to derive guidelines on the use of qPCR for monitoring the control of legionellae with consequent improvement to response and public health protection. PMID:21276147

  4. Evaluation of Quantitative Real-Time PCR Assays for Detection of Citrus Greening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus huanglongbing (HLB), or citrus greening, is a serious and industry-limiting disease. Preliminary diagnoses can be made through visual symptoms, and greater certainty can be achieved through quantitative real-time PCR (qPCR). Several qPCR procedures are available including those by designed by...

  5. Quantitative PCR for glucose transporter and tristetraprolin family gene expression in cultured mouse adipocytes and macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative real-time PCR (qPCR) such as TaqMan and SYBR Green qPCR are widely used for gene expression analysis. The drawbacks of SYBR Green assay are that the dye binds to any double-stranded DNA which can generate falsepositive signals and that the length of the amplicon affects the intensity of...

  6. Development of a quantitative PCR for detection of Lactobacillus plantarum starters during wine malolactic fermentation.

    PubMed

    Cho, Gyu-Sung; Krauss, Sabrina; Huch, Melanie; Du Toit, Maret; Franz, Charles M A P

    2011-12-01

    A quantitative, real-time PCR method was developed to enumerate Lactobacillus plantarum IWBT B 188 during the malolactic fermentation (MLF) in Grauburgunder wine. The qRT-PCR was strain-specific, as it was based on primers targeting a plasmid DNA sequence, or it was L. plantarum-specific, as it targeted a chromosomally located plantaricin gene sequence. Two 50 l wine fermentations were prepared. One was inoculated with 15 g/hl Saccharomyces cerevisiae, followed by L. plantarum IWBT B 188 at 3.6 × 10(6) CFU/ml, whereas the other was not inoculated (control). Viable cell counts were performed for up to 25 days on MRS agar, and the same cells were enumerated by qRT-PCR with both the plasmid or chromosomally encoded gene primers. The L. plantarum strain survived under the harsh conditions in the wine fermentation at levels above 10(5)/ml for approx. 10 days, after which cell numbers decreased to levels of 10(3) CFU/ml at day 25, and to below the detection limit after day 25. In the control, no lactic acid bacteria could be detected throughout the fermentation, with the exception of two sampling points where ca. 1 × 10(2) CFU/ml was detected. The minimum detection level for quantitative PCR in this study was 1 × 10(2) to 1 × 10(3) CFU/ml. The qRT-PCR results determined generally overestimated the plate count results by about 1 log unit, probably as a result of the presence of DNA from dead cells. Overall, qRT-PCR appeared to be well suited for specifically enumerating Lactobacillus plantarum starter cultures in the MLF in wine.

  7. Development of a rapid and sensitive method combining a cellulose ester microfilter and a real-time quantitative PCR assay to detect Campylobacter jejuni and Campylobacter coli in 20 liters of drinking water or low-turbidity waters.

    PubMed

    Tissier, Adeline; Denis, Martine; Hartemann, Philippe; Gassilloud, Benoît

    2012-02-01

    Investigations of Campylobacter jejuni and Campylobacter coli in samples of drinking water suspected of being at the origin of an outbreak very often lead to negative results. One of the reasons for this failure is the small volume of water typically used for detecting these pathogens (10 to 1,000 ml). The efficiencies of three microfilters and different elution procedures were determined using real-time quantitative PCR to propose a procedure allowing detection of Campylobacter in 20 liters of drinking water or low-turbidity water samples. The results showed that more than 80% of the bacteria inoculated in 1 liter of drinking water were retained on each microfilter. An elution with a solution containing 3% beef extract, 0.05 M glycine at pH 9, combined with direct extraction of the bacterial genomes retained on the cellulose ester microfilter, allowed recovery of 87.3% (±22% [standard deviation]) of Campylobacter per 1 liter of tap water. Recoveries obtained from 20-liter volumes of tap water spiked with a C. coli strain were 69.5% (±10.3%) and 78.5% (±15.1%) for 91 CFU and 36 CFU, respectively. Finally, tests performed on eight samples of 20 liters of groundwater collected from an alluvial well used for the production of drinking water revealed the presence of C. jejuni and C. coli genomes, whereas no bacteria were detected with the normative culture method in volumes ranging from 10 to 1,000 ml. In the absence of available epidemiological data and information on bacterial viability, these last results indicate only that the water resource is not protected from contamination by Campylobacter.

  8. Quantitative real-time PCR eliminates false-positives in colony screening PCR.

    PubMed

    Skarratt, Kristen K; Fuller, Stephen J

    2014-01-01

    We report an alternative approach to colony screening using real-time PCR (qPCR) which can be used instead of the traditional end-point PCR to eliminate false-positives and reduce processing times. False-positive transformants can easily be distinguished from true-positives by comparing Ct values derived from qPCR amplification curves. In addition, the use of qPCR allows for more efficient processing since a gel electrophoresis step is not required and the screening process is no longer limited by the capacity of the gel apparatus.

  9. Variation in copy number of the 28S rDNA of Aspergillus fumigatus measured by droplet digital PCR and analog quantitative real-time PCR.

    PubMed

    Alanio, Alexandre; Sturny-Leclère, Aude; Benabou, Marion; Guigue, Nicolas; Bretagne, Stéphane

    2016-08-01

    Droplet digital PCR (ddPCR) after DNA digestion yielded a 28S rDNA copy number of 61 to 86 copies/genome when testing 10 unrelated Aspergillus fumigatus isolates, higher than with quantitative PCR. Unfortunately, ddPCR after DNA digestion did not improve the sensitivity of our PCR assay when testing serum patients with invasive aspergillosis.

  10. Detection of yellow fever virus: a comparison of quantitative real-time PCR and plaque assay.

    PubMed

    Bae, Hi-Gung; Nitsche, Andreas; Teichmann, Anette; Biel, Stefan S; Niedrig, Matthias

    2003-06-30

    Yellow fever virus quantitation is performed routinely by cultivation of virus containing samples using susceptible cells. Counting of the resulting plaques provides a marker for the number of infectious particles present in the sample. This assay usually takes up to 5 days before results are obtained and must be carried out under L2 or L3 laboratory conditions, depending on the yellow fever virus strain used. For clinical diagnosis of yellow fever virus infections the cell culture-based approach takes too long and is of limited practical relevance. Recently, due to its considerable sensitivity, PCR has become a promising method for virus detection. However, whilst PCR can detect virus-specific nucleic acids, it does not allow conclusions to be drawn regarding the infectious potential of the virus detected. Nonetheless, for diagnostic purposes, a rapid, specific and sensitive virus PCR is preferable. Therefore, two independent yellow fever virus-specific real-time PCR assays were established and compared the viral RNA loads to the results of a traditional plaque assay. The estimated ratio of yellow fever virus genomes to infectious particles was between 1000:1 and 5000:1; both approaches displayed a comparable precision of <45%. A significant correlation between genome number as determined by real-time PCR and the corresponding number of plaques in paired samples was found with a Pearson coefficient of correlation of r=0.88 (P<0.0001).

  11. Quantitative real-time PCR (qPCR) assay for human-dog-cat species identification and nuclear DNA quantification.

    PubMed

    Kanthaswamy, S; Premasuthan, A; Ng, J; Satkoski, J; Goyal, V

    2012-03-01

    In the United States, human forensic evidence collected from crime scenes is usually comingled with biomaterial of canine and feline origins. Knowledge of the concentration of nuclear DNA extracted from a crime scene biological sample and the species from which the sample originated is essential for DNA profiling. The ability to accurately detect and quantify target DNA in mixed-species samples is crucial when target DNA may be overwhelmed by non-target DNA. We have designed and evaluated a species-specific (human, dog and cat) nuclear DNA identification assay based on the TaqMan(®) quantitative real-time PCR (qPCR) technology that can simultaneously detect and measure minute quantities of DNA specific to either humans, dogs and/or cats. The fluorogenic triplex assay employs primers and hydrolysis probes that target the human TH01 locus as well as the dog and cat Melanocortin 1 Receptor (MC1R) sequences in a species-specific manner. We also demonstrate that the assay is a highly sensitive, reliable and robust method for identifying and quantifying mixed-species templates of human-dog-cat origin with as little as 0.4 pg of human and cat nuclear DNA, respectively, and 4.0 pg of dog nuclear DNA.

  12. Optimization of Quantitative Detection of Cytomegalovirus DNA in Plasma by Real-Time PCR

    PubMed Central

    Boeckh, Michael; Huang, MeeiLi; Ferrenberg, James; Stevens-Ayers, Terry; Stensland, Laurence; Garrett Nichols, W.; Corey, Lawrence

    2004-01-01

    Previous studies have shown that detection of cytomegalovirus (CMV) DNA in plasma is less sensitive than the antigenemia assay for CMV surveillance in blood. In 1,983 blood samples, plasma PCR assays with three different primer sets (UL125 alone, UL126 alone, and UL55/UL123-exon 4) were compared to the pp65 antigenemia assay and blood cultures. Plasma PCR detected CMV more frequently in blood specimens than either the antigenemia assay or cultures, but of the three PCR assays, the double-primer assay (UL55/UL123-exon 4) performed best with regard to sensitivity, specificity, and predictive values compared to antigenemia: 122 of 151 antigenemia-positive samples were detected (sensitivity, 80.1%), and there were 122 samples that were PCR positive-antigenemia negative (specificity, 93%). Samples with discrepant results had a low viral load (median, 0.5 cells per slide; 1,150 copies per ml) and were often obtained from patients receiving antiviral therapy. CMV could be detected by other methods in 15 of 29 antigenemia positive-PCR negative samples compared to 121 of 122 PCR positive-antigenemia negative samples (P < 0.001). On a per-subject basis, 21 of 25 patients (antigenemia positive-PCR negative) and all 57 (PCR positive-antigenemia negative) could be confirmed at different time points during follow-up. The higher sensitivity of the double-primer assay resulted in earlier detection compared to antigenemia in a time-to-event analysis of 42 CMV-seropositive stem cell transplant recipients, and two of three patients with CMV disease who were antigenemia negative were detected by plasma PCR prior to the onset of disease. Interassay variability was low, and the dynamic range was >5 log10. Automated DNA extraction resulted in high reproducibility, accurate CMV quantitation (R = 0.87, P < 0.001), improved sensitivity, and increased speed of sample processing. Thus, primer optimization and improved DNA extraction techniques resulted in a plasma-based PCR assay that is

  13. Quantitative imaging methods in osteoporosis

    PubMed Central

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M. Carola

    2016-01-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research. PMID:28090446

  14. Quantitative imaging methods in osteoporosis.

    PubMed

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  15. Allele Specific Locked Nucleic Acid Quantitative PCR (ASLNAqPCR): An Accurate and Cost-Effective Assay to Diagnose and Quantify KRAS and BRAF Mutation

    PubMed Central

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes. PMID:22558339

  16. Development and application of absolute quantitative detection by duplex chamber-based digital PCR of genetically modified maize events without pretreatment steps.

    PubMed

    Zhu, Pengyu; Fu, Wei; Wang, Chenguang; Du, Zhixin; Huang, Kunlun; Zhu, Shuifang; Xu, Wentao

    2016-04-15

    The possibility of the absolute quantitation of GMO events by digital PCR was recently reported. However, most absolute quantitation methods based on the digital PCR required pretreatment steps. Meanwhile, singleplex detection could not meet the demand of the absolute quantitation of GMO events that is based on the ratio of foreign fragments and reference genes. Thus, to promote the absolute quantitative detection of different GMO events by digital PCR, we developed a quantitative detection method based on duplex digital PCR without pretreatment. Moreover, we tested 7 GMO events in our study to evaluate the fitness of our method. The optimized combination of foreign and reference primers, limit of quantitation (LOQ), limit of detection (LOD) and specificity were validated. The results showed that the LOQ of our method for different GMO events was 0.5%, while the LOD is 0.1%. Additionally, we found that duplex digital PCR could achieve the detection results with lower RSD compared with singleplex digital PCR. In summary, the duplex digital PCR detection system is a simple and stable way to achieve the absolute quantitation of different GMO events. Moreover, the LOQ and LOD indicated that this method is suitable for the daily detection and quantitation of GMO events.

  17. The state of RT-quantitative PCR: firsthand observations of implementation of minimum information for the publication of quantitative real-time PCR experiments (MIQE).

    PubMed

    Taylor, Sean C; Mrkusich, Eli M

    2014-01-01

    In the past decade, the techniques of quantitative PCR (qPCR) and reverse transcription (RT)-qPCR have become accessible to virtually all research labs, producing valuable data for peer-reviewed publications and supporting exciting research conclusions. However, the experimental design and validation processes applied to the associated projects are the result of historical biases adopted by individual labs that have evolved and changed since the inception of the techniques and associated technologies. This has resulted in wide variability in the quality, reproducibility and interpretability of published data as a direct result of how each lab has designed their RT-qPCR experiments. The 'minimum information for the publication of quantitative real-time PCR experiments' (MIQE) was published to provide the scientific community with a consistent workflow and key considerations to perform qPCR experiments. We use specific examples to highlight the serious negative ramifications for data quality when the MIQE guidelines are not applied and include a summary of good and poor practices for RT-qPCR.

  18. Detection of the oyster herpesvirus in commercial bivalve in northern California, USA: conventional and quantitative PCR.

    PubMed

    Burge, Colleen A; Strenge, Robyn E; Friedman, Carolyn S

    2011-04-06

    The ostreid herpesvirus (OsHV-1) and related oyster herpesviruses (OsHV) are associated with world-wide mortalities of larval and juvenile bivalves. To quantify OsHV viral loads in mollusc tissues, we developed a SYBR Green quantitative PCR (qPCR) based on the A-region of the OsHV-1 genome. Reaction efficiency and precision were demonstrated using a plasmid standard curve. The analytical sensitivity is 1 copy per reaction. We collected Crassostrea gigas, C. sikamea, C. virginica, Ostrea edulis, O. lurida, Mytilus galloprovincialis, and Venerupis phillipinarum from Tomales Bay (TB), and C. gigas from Drakes Estero (DE), California, U.S.A., and initially used conventional PCR (cPCR) to test for presence of OsHV DNA. Subsequently, viral loads were quantified in selected samples of all tested bivalves except O. lurida. Copy numbers were low in each species tested but were significantly greater in C. gigas (p < 0.0001) compared to all other species, suggesting a higher level of infection. OsHV DNA was detected with cPCR and/or qPCR and confirmed by sequencing in C. gigas, C. sikamea, C. virginica, O. edulis, M. galloprovincialis, and V phillipinarum from TB and C. gigas from DE. These data indicate that multiple bivalve species may act as reservoirs for OsHV in TB. A lack of histological abnormalities in potential reservoirs requires alternative methods for their identification. Further investigation is needed to determine the host-parasite relationship for each potential reservoir, including characterization of viral loads and their relationship with infection (via in situ hybridization), assessments of mortality, and host responses.

  19. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    PubMed

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples.

  20. A real-time, quantitative PCR protocol for assessing the relative parasitemia of Leucocytozoon in waterfowl

    USGS Publications Warehouse

    Smith, Matthew M.; Schmutz, Joel A.; Apelgren, Chloe; Ramey, Andy M.

    2015-01-01

    Microscopic examination of blood smears can be effective at diagnosing and quantifying hematozoa infections. However, this method requires highly trained observers, is time consuming, and may be inaccurate for detection of infections at low levels of parasitemia. To develop a molecular methodology for identifying and quantifying Leucocytozoon parasite infection in wild waterfowl (Anseriformes), we designed a real-time, quantitative PCR protocol to amplify Leucocytozoon mitochondrial DNA using TaqMan fluorogenic probes and validated our methodology using blood samples collected from waterfowl in interior Alaska during late summer and autumn (n = 105). By comparing our qPCR results to those derived from a widely used nested PCR protocol, we determined that our assay showed high levels of sensitivity (91%) and specificity (100%) in detecting Leucocytozoon DNA from host blood samples. Additionally, results of a linear regression revealed significant correlation between the raw measure of parasitemia produced by our qPCR assay (Ct values) and numbers of parasites observed on blood smears (R2 = 0.694, P = 0.003), indicating that our assay can reliably determine the relative parasitemia levels among samples. This methodology provides a powerful new tool for studies assessing effects of haemosporidian infection in wild avian species.

  1. Molecular detection of Mikrocytos mackini in Pacific oysters using quantitative PCR.

    PubMed

    Polinski, Mark; Lowe, Geoff; Meyer, Gary; Corbeil, Serge; Colling, Axel; Caraguel, Charles; Abbott, Cathryn L

    2015-01-01

    Mikrocytos mackini is an internationally regulated pathogen and causative agent of Denman Island disease in Pacific oysters Crassostrea gigas. Recent phylogenetic breakthroughs have placed this parasite within a highly divergent and globally distributed eukaryotic lineage that has been designated a new taxonomic order, Mikrocytida. The discovery of this new radiation of parasites is accompanied by a heightened awareness of the many knowledge gaps that exist with respect to the general biology, epizootiology, and potential impact of mikrocytid parasites on hosts, ecosystems, and commercial fisheries. It has also highlighted current shortcomings regarding our ability to detect these organisms. In this study, we developed a species-specific, sensitive, and quantitative method for detecting M. mackini DNA from host tissues using probe-based real-time qPCR technology. A limit of sensitivity between 2 and 5 genome copy equivalents was achieved in a reaction matrix containing ≥ 40 ng/μL host gDNA without inhibition. This detection proved superior to existing methods based on conventional PCR, histology or gross pathology and is the first species-specific diagnostic test for M. mackini. Quantitative assessment of parasite DNA using this assay remained accurate to between 10 and 50 copies identifying that during infection, M. mackini DNA was significantly more prevalent in hemolymph, labial palp, and mid-body cross-sections compared to mantle or adductor muscle. DNA extracted from a mid-body cross-section also provided the highest likelihood for detection during diagnostic screening of infected oysters. Taken together, these findings provide strong analytical evidence for the adoption of qPCR as the new reference standard for detecting M. mackini and give preliminary insight into the distribution of the parasite within host tissues. Standardised operating methodologies for sample collection and qPCR testing are provided to aid in the international regulatory diagnosis of

  2. [Digital droplet PCR - a prospective technological approach to quantitative profiling of microRNA].

    PubMed

    Kiseleva, Y Y; Ptitsyn, K G; Radko, S P; Zgoda, V G; Archakov, A I

    2016-05-01

    MicroRNA is a special type of regulatory molecules governing gene expression. Circulating microRNAs found in blood and other biological fluids are considered today as potential biomarkers of human pathology. Presently, quantitative alterations of particular microRNAs are revealed for a large number of oncological diseases and other disorders. The recently emerged method of digital droplet PCR (ddPCR) possesses a number of advantages making this method the most suitable for verification and validation of perspective microRNA markers of human pathologies. Among these advantages are the high accuracy and reproducibility of microRNA quantification as well as the capability to directly measure the absolute number of microRNA copies with the large dynamic range and a high throughput. The paper reviews microRNA biogenesis, the origin of circulating microRNAs, and methods used for their quantification. The special technical features of ddPCR, which make it an attractive method both for studying microRNAs as biomarkers of human pathologies and for basic research devoted to aspects of gene regulation by microRNA molecules, are also discussed.

  3. Data-driven normalization strategies for high-throughput quantitative RT-PCR

    PubMed Central

    Mar, Jessica C; Kimura, Yasumasa; Schroder, Kate; Irvine, Katharine M; Hayashizaki, Yoshihide; Suzuki, Harukazu; Hume, David; Quackenbush, John

    2009-01-01

    Background High-throughput real-time quantitative reverse transcriptase polymerase chain reaction (qPCR) is a widely used technique in experiments where expression patterns of genes are to be profiled. Current stage technology allows the acquisition of profiles for a moderate number of genes (50 to a few thousand), and this number continues to grow. The use of appropriate normalization algorithms for qPCR-based data is therefore a highly important aspect of the data preprocessing pipeline. Results We present and evaluate two data-driven normalization methods that directly correct for technical variation and represent robust alternatives to standard housekeeping gene-based approaches. We evaluated the performance of these methods against a single gene housekeeping gene method and our results suggest that quantile normalization performs best. These methods are implemented in freely-available software as an R package qpcrNorm distributed through the Bioconductor project. Conclusion The utility of the approaches that we describe can be demonstrated most clearly in situations where standard housekeeping genes are regulated by some experimental condition. For large qPCR-based data sets, our approaches represent robust, data-driven strategies for normalization. PMID:19374774

  4. Simultaneous detection of influenza viruses A and B using real-time quantitative PCR.

    PubMed

    van Elden, L J; Nijhuis, M; Schipper, P; Schuurman, R; van Loon, A M

    2001-01-01

    Since influenza viruses can cause severe illness, timely diagnosis is important for an adequate intervention. The available rapid detection methods either lack sensitivity or require complex laboratory manipulation. This study describes a rapid, sensitive detection method that can be easily applied to routine diagnosis. This method simultaneously detects influenza viruses A and B in specimens of patients with respiratory infections using a TaqMan-based real-time PCR assay. Primers and probes were selected from highly conserved regions of the matrix protein gene of influenza virus A and the hemagglutinin gene segment of influenza virus B. The applicability of this multiplex PCR was evaluated with 27 influenza virus A and 9 influenza virus B reference strains and isolates. In addition, the specificity of the assay was assessed using eight reference strains of other respiratory viruses (parainfluenza viruses 1 to 3, respiratory syncytial virus Long strain, rhinoviruses 1A and 14, and coronaviruses OC43 and 229E) and 30 combined nose and throat swabs from asymptomatic subjects. Electron microscopy-counted stocks of influenza viruses A and B were used to develop a quantitative PCR format. Thirteen copies of viral RNA were detected for influenza virus A, and 11 copies were detected for influenza virus B, equaling 0.02 and 0.006 50% tissue culture infective doses, respectively. The diagnostic efficacy of the multiplex TaqMan-based PCR was determined by testing 98 clinical samples. This real-time PCR technique was found to be more sensitive than the combination of conventional viral culturing and shell vial culturing.

  5. Reference gene selection for quantitative real-time PCR normalization in Quercus suber.

    PubMed

    Marum, Liliana; Miguel, Andreia; Ricardo, Cândido P; Miguel, Célia

    2012-01-01

    The use of reverse transcription quantitative PCR technology to assess gene expression levels requires an accurate normalization of data in order to avoid misinterpretation of experimental results and erroneous analyses. Despite being the focus of several transcriptomics projects, oaks, and particularly cork oak (Quercus suber), have not been investigated regarding the identification of reference genes suitable for the normalization of real-time quantitative PCR data. In this study, ten candidate reference genes (Act, CACs, EF-1α, GAPDH, His3, PsaH, Sand, PP2A, ß-Tub and Ubq) were evaluated to determine the most stable internal reference for quantitative PCR normalization in cork oak. The transcript abundance of these genes was analysed in several tissues of cork oak, including leaves, reproduction cork, and periderm from branches at different developmental stages (1-, 2-, and 3-year old) or collected in different dates (active growth period versus dormancy). The three statistical methods (geNorm, NormFinder, and CV method) used in the evaluation of the most suitable combination of reference genes identified Act and CACs as the most stable candidates when all the samples were analysed together, while ß-Tub and PsaH showed the lowest expression stability. However, when different tissues, developmental stages, and collection dates were analysed separately, the reference genes exhibited some variation in their expression levels. In this study, and for the first time, we have identified and validated reference genes in cork oak that can be used for quantification of target gene expression in different tissues and experimental conditions and will be useful as a starting point for gene expression studies in other oaks.

  6. Evaluation of four genes in rice for their suitability as endogenous reference standards in quantitative PCR.

    PubMed

    Wang, Chong; Jiang, Lingxi; Rao, Jun; Liu, Yinan; Yang, Litao; Zhang, Dabing

    2010-11-24

    The genetically modified (GM) food/feed quantification depends on the reliable detection systems of endogenous reference genes. Currently, four endogenous reference genes including sucrose phosphate synthase (SPS), GOS9, phospholipase D (PLD), and ppi phosphofructokinase (ppi-PPF) of rice have been used in GM rice detection. To compare the applicability of these four rice reference genes in quantitative PCR systems, we analyzed the target nucleotide sequence variation in 58 conventional rice varieties from various geographic and phylogenic origins, also their quantification performances were evaluated using quantitative real-time PCR and GeNorm analysis via a series of statistical calculation to get a "M value" which is negative correlation with the stability of genes. The sequencing analysis results showed that the reported GOS9 and PLD taqman probe regions had detectable single nucleotide polymorphisms (SNPs) among the tested rice cultivars, while no SNPs were observed for SPS and ppi-PPF amplicons. Also, poor quantitative performance was detectable in these cultivars with SNPs using GOS9 and PLD quantitative PCR systems. Even though the PCR efficiency of ppi-PPF system was slightly lower, the SPS and ppi-PPF quantitative PCR systems were shown to be applicable for rice endogenous reference assay with less variation among the C(t) values, good reproducibility in quantitative assays, and the low M values by the comprehensive quantitative PCR comparison and GeNorm analysis.

  7. Precise Quantitation of MicroRNA in a Single Cell with Droplet Digital PCR Based on Ligation Reaction.

    PubMed

    Tian, Hui; Sun, Yuanyuan; Liu, Chenghui; Duan, Xinrui; Tang, Wei; Li, Zhengping

    2016-12-06

    MicroRNA (miRNA) analysis in a single cell is extremely important because it allows deep understanding of the exact correlation between the miRNAs and cell functions. Herein, we wish to report a highly sensitive and precisely quantitative assay for miRNA detection based on ligation-based droplet digital polymerase chain reaction (ddPCR), which permits the quantitation of miRNA in a single cell. In this ligation-based ddPCR assay, two target-specific oligonucleotide probes can be simply designed to be complementary to the half-sequence of the target miRNA, respectively, which avoids the sophisticated design of reverse transcription and provides high specificity to discriminate a single-base difference among miRNAs with simple operations. After the miRNA-templated ligation, the ddPCR partitions individual ligated products into a water-in-oil droplet and digitally counts the fluorescence-positive and negative droplets after PCR amplification for quantification of the target molecules, which possesses the power of precise quantitation and robustness to variation in PCR efficiency. By integrating the advantages of the precise quantification of ddPCR and the simplicity of the ligation-based PCR, the proposed method can sensitively measure let-7a miRNA with a detection limit of 20 aM (12 copies per microliter), and even a single-base difference can be discriminated in let-7 family members. More importantly, due to its high selectivity and sensitivity, the proposed method can achieve precise quantitation of miRNAs in single-cell lysate. Therefore, the ligation-based ddPCR assay may serve as a useful tool to exactly reveal the miRNAs' actions in a single cell, which is of great importance for the study of miRNAs' biofunction as well as for the related biomedical studies.

  8. Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water

    USGS Publications Warehouse

    Kirshtein, J.D.; Anderson, C.W.; Wood, J.S.; Longcore, J.E.; Voytek, M.A.

    2007-01-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease implicated in amphibian declines on 5 continents. Polymerase chain reaction (PCR) primer sets exist with which amphibians can be tested for this disease, and advances in sampling techniques allow non-invasive testing of animals. We developed filtering and PCR based quantitative methods by modifying existing PCR assays to detect Bd DNA in water and sediments, without the need for testing amphibians; we tested the methods at 4 field sites. The SYBR based assay using Boyle primers (SYBR/Boyle assay) and the Taqman based assay using Wood primers performed similarly with samples generated in the laboratory (Bd spiked filters), but the SYBR/Boyle assay detected Bd DNA in more field samples. We detected Bd DNA in water from 3 of 4 sites tested, including one pond historically negative for chytridiomycosis. Zoospore equivalents in sampled water ranged from 19 to 454 l-1 (nominal detection limit is 10 DNA copies, or about 0.06 zoospore). We did not detect DNA of Bd from sediments collected at any sites. Our filtering and amplification methods provide a new tool to investigate critical aspects of Bd in the environment. ?? Inter-Research 2007.

  9. Quantitative PCR for glucose transporter and tristetraprolin family gene expression in cultured mouse adipocytes and macrophages.

    PubMed

    Cao, Heping; Cao, Fangping; Roussel, Anne-Marie; Anderson, Richard A

    2013-12-01

    Quantitative real-time PCR (qPCR) such as TaqMan and SYBR Green qPCR are widely used for gene expression analysis. The drawbacks of SYBR Green assay are that the dye binds to any double-stranded DNA which can generate false-positive signals and that the length of the amplicon affects the intensity of the amplification. Previous results demonstrate that TaqMan assay is more sensitive but generates lower calculated expression levels than SYBR Green assay in quantifying seven mRNAs in tung tree tissues. The objective of this study is to expand the analysis using animal cells. We compared both qPCR assays for quantifying 24 mRNAs including those coding for glucose transporter (Glut) and mRNA-binding protein tristetraprolin (TTP) in mouse 3T3-L1 adipocytes and RAW264.7 macrophages. The results showed that SYBR Green and TaqMan qPCR were reliable for quantitative gene expression in animal cells. This result was supported by validation analysis of Glut and TTP family gene expression. However, SYBR Green qPCR overestimated the expression levels in most of the genes tested. Finally, both qPCR instruments (Bio-Rad's CFX96 real-time system and Applied Biosystems' Prism 7700 real-time PCR instrument) generated similar gene expression profiles in the mouse cells. These results support the conclusion that both qPCR assays (TaqMan and SYBR Green qPCR) and both qPCR instruments (Bio-Rad's CFX96 real-time system and Applied Biosystems' Prism 7700 real-time PCR instrument) are reliable for quantitative gene expression analyses in animal cells but SYBR Green qPCR generally overestimates gene expression levels than TaqMan qPCR.

  10. Quantitative Reverse Transcription-qPCR-Based Gene Expression Analysis in Plants.

    PubMed

    Abdallah, Heithem Ben; Bauer, Petra

    2016-01-01

    The investigation of gene expression is an initial and essential step to understand the function of a gene in a physiological context. Reverse transcription-quantitative real-time PCR (RT-qPCR) assays are reproducible, quantitative, and fast. They can be adapted to study model and non-model plant species without the need to have whole genome or transcriptome sequence data available. Here, we provide a protocol for a reliable RT-qPCR assay, which can be easily adapted to any plant species of interest. We describe the design of the qPCR strategy and primer design, considerations for plant material generation, RNA preparation and cDNA synthesis, qPCR setup and run, and qPCR data analysis, interpretation, and final presentation.

  11. QUANTITATIVE VS. CONVENTIONAL PCR FOR DETECTION OF HUMAN ADENOVIRUSES IN WATER AND SEDIMENT SAMPLES

    PubMed Central

    STAGGEMEIER, Rodrigo; BORTOLUZZI, Marina; HECK, Tatiana Moraes da Silva; SPILKI, Fernando Rosado; ALMEIDA, Sabrina Esteves de Matos

    2015-01-01

    SUMMARY Human Adenoviruses (HAdV) are notably resistant in the environment. These agents may serve as effective indicators of fecal contamination, and may act as causative agents of a number of different diseases in human beings. Conventional polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) are widely used for detection of viral agents in environmental matrices. In the present study PCR and SYBR(r)Green qPCR assays were compared for detection of HAdV in water (55) and sediments (20) samples of spring and artesian wells, ponds and streams, collected from dairy farms. By the quantitative methodology HAdV were detected in 87.3% of the water samples and 80% of the sediments, while by the conventional PCR 47.3% and 35% were detected in water samples and sediments, respectively. PMID:26422153

  12. QUANTITATIVE VS. CONVENTIONAL PCR FOR DETECTION OF HUMAN ADENOVIRUSES IN WATER AND SEDIMENT SAMPLES.

    PubMed

    Staggemeier, Rodrigo; Bortoluzzi, Marina; Heck, Tatiana Moraes da Silva; Spilki, Fernando Rosado; Almeida, Sabrina Esteves de Matos

    2015-01-01

    Human Adenoviruses (HAdV) are notably resistant in the environment. These agents may serve as effective indicators of fecal contamination, and may act as causative agents of a number of different diseases in human beings. Conventional polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) are widely used for detection of viral agents in environmental matrices. In the present study PCR and SYBR(r)Green qPCR assays were compared for detection of HAdV in water (55) and sediments (20) samples of spring and artesian wells, ponds and streams, collected from dairy farms. By the quantitative methodology HAdV were detected in 87.3% of the water samples and 80% of the sediments, while by the conventional PCR 47.3% and 35% were detected in water samples and sediments, respectively.

  13. Selection of Valid Reference Genes for Reverse Transcription Quantitative PCR Analysis in Heliconius numata (Lepidoptera: Nymphalidae)

    PubMed Central

    Chouteau, Mathieu; Whibley, Annabel; Joron, Mathieu; Llaurens, Violaine

    2016-01-01

    Identifying the genetic basis of adaptive variation is challenging in non-model organisms and quantitative real time PCR. is a useful tool for validating predictions regarding the expression of candidate genes. However, comparing expression levels in different conditions requires rigorous experimental design and statistical analyses. Here, we focused on the neotropical passion-vine butterflies Heliconius, non-model species studied in evolutionary biology for their adaptive variation in wing color patterns involved in mimicry and in the signaling of their toxicity to predators. We aimed at selecting stable reference genes to be used for normalization of gene expression data in RT-qPCR analyses from developing wing discs according to the minimal guidelines described in Minimum Information for publication of Quantitative Real-Time PCR Experiments (MIQE). To design internal RT-qPCR controls, we studied the stability of expression of nine candidate reference genes (actin, annexin, eF1α, FK506BP, PolyABP, PolyUBQ, RpL3, RPS3A, and tubulin) at two developmental stages (prepupal and pupal) using three widely used programs (GeNorm, NormFinder and BestKeeper). Results showed that, despite differences in statistical methods, genes RpL3, eF1α, polyABP, and annexin were stably expressed in wing discs in late larval and pupal stages of Heliconius numata. This combination of genes may be used as a reference for a reliable study of differential expression in wings for instance for genes involved in important phenotypic variation, such as wing color pattern variation. Through this example, we provide general useful technical recommendations as well as relevant statistical strategies for evolutionary biologists aiming to identify candidate-genes involved adaptive variation in non-model organisms. PMID:27271971

  14. Rapid quantitative detection of, Listeria monocytogenes in salmon products: evaluation of pre-real-time PCR strategies.

    PubMed

    Rodríguez-Lázaro, David; Jofré, Anna; Aymerich, Teresa; Garriga, Margarita; Pla, Maria

    2005-07-01

    The spread and persistence of Listeria monocytogenes in smoked fish products and seafood processing factories are big concerns. Thus, the corresponding quality assurance programs must include adequate microbiological control measures. We evaluated eight different pre-PCR sample processing strategies to be coupled with a previously developed real-time PCR assay for the quantitative detection of L. monocytogenes in salmon products. The optimal pre-PCR procedure involved filtration and DNA purification with the use of a commercial kit. This strategy could detect 10 CFU of L. monocytogenes per g of smoked salmon and could quantify 1,000 CFU/g with excellent accuracy compared with the standard plate count method. Thus, this method could be a promising alternative for the quantitative detection of L. monocytogenes in smoked fish products and processing factories. This method could also detect the bacterium in raw salmon.

  15. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters

    USGS Publications Warehouse

    Riedel, Timothy E.; Zimmer-Faust, Amity G.; Thulsiraj, Vanessa; Madi, Tania; Hanley, Kaitlyn T.; Ebentier, Darcy L.; Byappanahalli, Muruleedhara N.; Layton, Blythe; Raith, Meredith; Boehm, Alexandria B.; Griffith, John F.; Holden, Patricia A.; Shanks, Orin C.; Weisberg, Stephen B.; Jay, Jennifer A.

    2014-01-01

    Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample.

  16. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters.

    PubMed

    Riedel, Timothy E; Zimmer-Faust, Amity G; Thulsiraj, Vanessa; Madi, Tania; Hanley, Kaitlyn T; Ebentier, Darcy L; Byappanahalli, Muruleedhara; Layton, Blythe; Raith, Meredith; Boehm, Alexandria B; Griffith, John F; Holden, Patricia A; Shanks, Orin C; Weisberg, Stephen B; Jay, Jennifer A

    2014-04-01

    Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample.

  17. Evaluation of reference genes in Vibrio parahaemolyticus for gene expression analysis using quantitative RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize the viru...

  18. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples

    EPA Science Inventory

    Real-time quantitative PCR assays that target the human-associated HF183 bacterial cluster are considered to be some of the top performing methods for the characterization of human fecal pollution in ambient surface waters. In response, the United States Environmental Protectio...

  19. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Real-time quantitative PCR assays that target the human-associated HF183 bacterial cluster have been found to be some of the top performing methods for the characterization of human fecal pollution in ambient surface waters. The United States Environmental Protection Agency is planning to conduct a ...

  20. Evaluation of propidium monoazide-quantitative PCR to detect viable Mycobacterium fortuitum after chlorine, ozone, and ultraviolet disinfection.

    PubMed

    Lee, Eun-Sook; Lee, Man-Ho; Kim, Bog-Soon

    2015-10-01

    We evaluated whether propidium monoazide (PMA) combined with real-time quantitative PCR (qPCR) is suitable for detecting viable Mycobacterium fortuitum after chlorine, ozone, and ultraviolet (UV) disinfection. PMA-qPCR was effective in determining the viability of M. fortuitum compared with qPCR based on the membrane integrity. However, with a mild chlorine concentration, PMA-qPCR as an alternative method was not applicable due to a large gap between loss of culturability and membrane integrity damage. In ozonation, PMA-qPCR was able to differentiate between viable and injured mycobacteria, and the results were similar to those obtained by the culture method. Interestingly, PMA-qPCR was successful in monitoring the viability after UV disinfection due to the long UV exposure needed to effectively inactivate M. fortuitum. The findings of the present study suggested that the characteristics of disinfectants and the M. fortuitum resistance to disinfectants play critical roles in determining the suitability of PMA-qPCR for evaluating the efficacy of disinfection methods.

  1. Quantitative PCR is a valuable tool to monitor performance of DNA-encoded chemical library selections.

    PubMed

    Li, Yizhou; Zimmermann, Gunther; Scheuermann, Jörg; Neri, Dario

    2017-02-21

    Phage-display libraries and DNA-encoded chemical libraries (DECL) represent useful tools for the isolation of specific binding molecules out of large combinatorial sets of compounds. In both methods, specific binders are recovered at the end of affinity capture procedures, using target proteins of interest immobilized on a solid support. However, while the efficiency of phage-display selections is routinely quantified by counting the phage titer before and after the affinity capture step, no similar quantification procedures have been reported for the characterization of DNA-encoded chemical library selections. In this article, we describe the potential and limitations of quantitative PCR (qPCR) methods for the evaluation of selection efficiency, using a combinatorial chemical library with more than 35 million compounds. In the experimental conditions chosen for the selections, a quantification of DNA input/recovery over five orders of magnitude could be performed, revealing a successful enrichment of abundant binders, which could be confirmed by DNA sequencing. qPCR provides rapid information about the performance of selections, thus facilitating the optimization of experimental conditions.

  2. Validation of reference genes for quantitative real-time PCR during latex regeneration in rubber tree.

    PubMed

    Long, Xiangyu; He, Bin; Gao, Xinsheng; Qin, Yunxia; Yang, Jianghua; Fang, Yongjun; Qi, Jiyan; Tang, Chaorong

    2015-06-01

    In rubber tree, latex regeneration is one of the decisive factors influencing the rubber yield, although its molecular regulation is not well known. Quantitative real-time PCR (qPCR) is a popular and powerful tool used to understand the molecular mechanisms of latex regeneration. However, the suitable reference genes required for qPCR are not available to investigate the expressions of target genes during latex regeneration. In this study, 20 candidate reference genes were selected and evaluated for their expression stability across the samples during the process of latex regeneration. All reference genes showed a relatively wide range of the threshold cycle values, and their stability was validated by four different algorithms (comparative delta Ct method, Bestkeeper, NormFinder and GeNorm). Three softwares (comparative delta Ct method, NormFinder and GeNorm) exported similar results that identify UBC4, ADF, UBC2a, eIF2 and ADF4 as the top five suitable references, and 18S as the least suitable one. The application of the screened references would improve accuracy and reliability of gene expression analysis in latex regeneration experiments.

  3. Integrating quantitative PCR and Bayesian statistics in quantifying human adenoviruses in small volumes of source water.

    PubMed

    Wu, Jianyong; Gronewold, Andrew D; Rodriguez, Roberto A; Stewart, Jill R; Sobsey, Mark D

    2014-02-01

    Rapid quantification of viral pathogens in drinking and recreational water can help reduce waterborne disease risks. For this purpose, samples in small volume (e.g. 1L) are favored because of the convenience of collection, transportation and processing. However, the results of viral analysis are often subject to uncertainty. To overcome this limitation, we propose an approach that integrates Bayesian statistics, efficient concentration methods, and quantitative PCR (qPCR) to quantify viral pathogens in water. Using this approach, we quantified human adenoviruses (HAdVs) in eighteen samples of source water collected from six drinking water treatment plants. HAdVs were found in seven samples. In the other eleven samples, HAdVs were not detected by qPCR, but might have existed based on Bayesian inference. Our integrated approach that quantifies uncertainty provides a better understanding than conventional assessments of potential risks to public health, particularly in cases when pathogens may present a threat but cannot be detected by traditional methods.

  4. Evaluation of a PCR assay for quantitation of Rickettsia rickettsii and closely related spotted fever group rickettsiae.

    PubMed

    Eremeeva, Marina E; Dasch, Gregory A; Silverman, David J

    2003-12-01

    A spotted fever rickettsia quantitative PCR assay (SQ-PCR) was developed for the detection and enumeration of Rickettsia rickettsii and other closely related spotted fever group rickettsiae. The assay is based on fluorescence detection of SYBR Green dye intercalation in a 154-bp fragment of the rOmpA gene during amplification by PCR. As few as 5 copies of the rOmpA gene of R. rickettsii can be detected. SQ-PCR is suitable for quantitation of R. rickettsii and 10 other genotypes of spotted fever group rickettsiae but not for R. akari, R. australis, R. bellii, or typhus group rickettsiae. The sensitivity of SQ-PCR was comparable to that of a plaque assay using centrifugation for inoculation. The SQ-PCR assay was applied successfully to the characterization of rickettsial stock cultures, the replication of rickettsiae in cell culture, the recovery of rickettsial DNA following different methods of extraction, and the quantitation of rickettsial loads in infected animal tissues, clinical samples, and ticks.

  5. Quantitative, competitive PCR assay for HIV-1 using a microplate-based detection system.

    PubMed

    Guenthner, P C; Hart, C E

    1998-05-01

    We have developed a quantitative competitive PCR (QC-PCR) assay in a microplate format for quantifying human immunodeficiency virus Type 1 (HIV-1) DNA or RNA in a broad range of source materials. Our QC-PCR assay is a modification of technique originally described by Piatak et al. (1993), which is based on the presence of a competitive internal standard containing an internal 80-bp deletion of HIV-1 gag target sequence. For improved detection and quantification of the wild-type and internal-standard PCR products in a microplate format, we introduced a non-HIV, 31-bp insert into the internal standard as a probe hybridization site that does not cross-hybridize with wild-type HIV-1 products. By using a primer pair in which one primer is biotinylated, QC-PCRs can be bound to a streptavidin-coated microplate, denatured and probed with a digoxigenin (Dig)-labeled, wild-type or internal-standard probe. The hybridized Dig-labeled probes are detected with an anti-Dig antibody conjugated to detector molecules for luminometry (aequorin) or optical densitometry (peroxidase), yielding results that are quantifiable over the range of 100-10,000 copies of HIV gag. Tested source materials for HIV-1 DNA or RNA quantification include plasma, vaginal lavage and cultured cells. The application of the QC-PCR assay using the microplate format affords a convenient and cost-effective method for quantifying HIV-1 proviral and viral loads from a variety of body fluids, cells and tissues.

  6. Enumeration of viable non-culturable Vibrio cholerae using propidium monoazide combined with quantitative PCR.

    PubMed

    Wu, Bin; Liang, Weili; Kan, Biao

    2015-08-01

    The well-known human pathogenic bacterium, Vibrio cholerae, can enter a physiologically viable but non-culturable (VBNC) state under stress conditions. The differentiation of VBNC cells and nonviable cells is essential for both disease prevention and basic research. Among all the methods for detecting viability, propidium monoazide (PMA) combined with real-time PCR is popular because of its specificity, sensitivity, and speed. However, the effect of PMA treatment is not consistent and varies among different species and conditions. In this study, with an initial cell concentration of 1×10(8) CFU/ml, time and dose-effect relationships of different PMA treatments were evaluated via quantitative real-time PCR using live cell suspensions, dead cell suspensions and VBNC cell suspensions of V. cholerae O1 El Tor strain C6706. The results suggested that a PMA treatment of 20 μM PMA for 20 min was optimal under our conditions. This treatment maximized the suppression of the PCR signal from membrane-compromised dead cells but had little effect on the signal from membrane-intact live cells. In addition to the characteristics of PMA treatment itself, the initial concentration of the targeted bacteria showed a significant negative influence on the stability of PMA-PCR assay in this study. We developed a strategy that mimicked a 1×10(8) CFU/ml cell concentration with dead bacteria of a different bacterial species, the DNA of which cannot be amplified using the real time PCR primers. With this strategy, our optimal approach successfully overcame the impact of low cell density and generated stable and reliable results for counting viable cells of V. cholerae in the VBNC state.

  7. [Detection of hematopoietic chimera by real-time fluorescent quantitative PCR with erythrocyte Kidd blood group gene].

    PubMed

    Chen, Shu; Xu, Xian-Guo; Liu, Ying; Hong, Xiao-Zhen; Zhu, Fa-Ming; Lü, Hang-Jun; Yan, Li-Xing

    2012-06-01

    This study was aimed to establish the real-time fluorescent quantitative PCR (RT-qPCR) with erythrocyte Kidd blood group gene for detecting the hematopoietic chimera and to investigate the feasibility of this method. The TaqMan MGB probes and special primers were designed on basis of difference of erythrocyte Kidd blood group alleles, the hematopoietic chimerism was detected by RT-qPCR, the DNA chimerism was simulated by means of dilution of multiple proportions, and the sensitivity analysis was performed. The results showed that the RT-qPCR with erythrocyte Kidd blood group gene could effectively distinguish JK*A and JK*B alleles. There was no significant difference between the theoretic value and the practical measured value by this method (P > 0.05). As 156 donor's cells could be discriminated from 10(4) chimeric cells, this method may effectively detect donor's cells with correlation coefficient 0.998. It is concluded that the established RT-qPCR with erythrocyte Kidd blood group gene shows the feasibility for quantitative detection of hematopoietic chimera, and may be used to quantitatively detect chimera in a certain range.

  8. Toward metrological traceability for DNA fragment ratios in GM quantification. 1. Effect of DNA extraction methods on the quantitative determination of Bt176 corn by real-time PCR.

    PubMed

    Corbisier, Philippe; Broothaerts, Wim; Gioria, Sabrina; Schimmel, Heinz; Burns, Malcolm; Baoutina, Anna; Emslie, Kerry R; Furui, Satoshi; Kurosawa, Yasunori; Holden, Marcia J; Kim, Hyong-Ha; Lee, Yun-Mi; Kawaharasaki, Mamoru; Sin, Della; Wang, Jing

    2007-05-02

    An international CCQM-P60 pilot study involving eight national metrological institutes was organized to investigate if the quantification of genetically modified (GM) corn powder by real-time PCR was affected by the DNA extraction method applied. Four commonly used extraction methods were compared for the extraction of DNA from a GM Bt176 corn powder. The CTAB-based method yielded the highest DNA template quantity and quality. A difference in the 260 nm/230 nm absorbance ratio was observed among the different extraction methods. Real-time amplification of sequences specific for endogenous genes zein and hmg as well as transgenic sequences within the cryIA(b) gene and a fragment covering the junction between the transformed DNA and the plant genome were used to determine the GM percentage. The detection of the transgenic gene was affected by the quantity and quality of template used for the PCR reaction. The Bt176 percentages measured on diluted or purified templates were statistically different depending on the extraction method applied.

  9. On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform.

    PubMed

    Tachibana, Hiroaki; Saito, Masato; Shibuya, Shogo; Tsuji, Koji; Miyagawa, Nobuyuki; Yamanaka, Keiichiro; Tamiya, Eiichi

    2015-12-15

    Polymerase chain reaction (PCR)-based genetic testing has become a routine part of clinical diagnoses and food testing. In these fields, rapid, easy-to-use, and cost-efficient PCR chips are expected to be appeared for providing such testing on-site. In this study, a new autonomous disposable plastic microfluidic PCR chip was created, and was utilized for quantitative detection of pathogenic microorganisms. To control the capillary flow of the following solution in the PCR microchannel, a driving microchannel was newly designed behind the PCR microchannel. This allowed the effective PCR by simply dropping the PCR solution onto the inlet without any external pumps. In order to achieve disposability, injection-molded cyclo-olefin polymer (COP) of a cost-competitive plastic was used for the PCR chip. We discovered that coating the microchannel walls with non-ionic surfactant produced a suitable hydrophilic surface for driving the capillary flow through the 1250-mm long microchannel. As a result, quantitative real-time PCR with the lowest initial concentration of human, Escherichia coli (E. coli), and pathogenic E. coli O157 genomic DNA of 4, 0.0019, 0.031 pg/μl, respectively, was successfully achieved in less than 18 min. Our results indicate that the platform presented in this study provided a rapid, easy-to-use, and low-cost real-time PCR system that could be potentially used for on-site gene testing.

  10. Development of a real-time quantitative RT-PCR to detect REV contamination in live vaccine.

    PubMed

    Luan, Huaibiao; Wang, Yixin; Li, Yang; Cui, Zhizhong; Chang, Shuang; Zhao, Peng

    2016-09-01

    Based on the published Avian reticuloendotheliosis virus (REV) whole genome sequence, primers and TaqMan probes were designed and synthesized, and the TaqMan probe fluorescence real-time quantitative RT-PCR (qRT-PCR) method for detecting the REV pol gene was established by optimizing the reaction conditions. Sensitivity analysis showed that the qRT-PCR method had a sensitivity that was 1,000-fold higher than conventional PCR. Additionally, no amplification signals were obtained when we attempted to detect DNA or cDNA of ALV-A/B/J, MDV, CIAV, IBDV, ARV, NDV, AIV, or other viruses, suggesting a high specificity for our method. Various titers of REV were artificially "spiked" into the FPV and MDV vaccines to simulate REV contamination in attenuated vaccines to validate this qRT-PCR method. Our findings indicated that this qRT-PCR method could detect REV contamination at a dose of 1 TCID50/1,000 feathers, which was 10,000-fold more sensitive than the regular RT-PCR detection (10(4) TCID50/1000 feathers).

  11. Using multiple PCR and CE with chemiluminescence detection for simultaneous qualitative and quantitative analysis of genetically modified organism.

    PubMed

    Guo, Longhua; Qiu, Bin; Chi, Yuwu; Chen, Guonan

    2008-09-01

    In this paper, an ultrasensitive CE-CL detection system coupled with a novel double-on-column coaxial flow detection interface was developed for the detection of PCR products. A reliable procedure based on this system had been demonstrated for qualitative and quantitative analysis of genetically modified organism-the detection of Roundup Ready Soy (RRS) samples was presented as an example. The promoter, terminator, function and two reference genes of RRS were amplified with multiplex PCR simultaneously. After that, the multiplex PCR products were labeled with acridinium ester at the 5'-terminal through an amino modification and then analyzed by the proposed CE-CL system. Reproducibility of analysis times and peak heights for the CE-CL analysis were determined to be better than 0.91 and 3.07% (RSD, n=15), respectively, for three consecutive days. It was shown that this method could accurately and qualitatively detect RRS standards and the simulative samples. The evaluation in terms of quantitative analysis of RRS provided by this new method was confirmed by comparing our assay results with those of the standard real-time quantitative PCR (RT-QPCR) using SYBR Green I dyes. The results showed a good coherence between the two methods. This approach demonstrated the possibility for accurate qualitative and quantitative detection of GM plants in a single run.

  12. Legionellosis and Lung Abscesses: Contribution of Legionella Quantitative Real-Time PCR to an Adapted Followup

    PubMed Central

    Descours, G.; Tellini, C.; Flamens, C.; Philit, F.; Celard, M.; Etienne, J.; Lina, G.; Jarraud, S.

    2013-01-01

    We report a case of severe Legionnaires' disease (LD) complicated by a lung abscess in an immunocompetent patient who required ECMO therapy and thoracic surgery. The results of repeated Legionella quantitative real-time PCR performed on both sera and respiratory samples correlated with the LD severity and the poor clinical outcome. Moreover, the PCR allowed for the detection of Legionella DNA in the lung abscess specimen, which was negative when cultured for Legionella. This case report provides a logical basis for further investigations to examine whether the Legionella quantitative PCR could improve the assessment of LD severity and constitute a prognostic marker. PMID:23862082

  13. A new PCR method: one primer amplification of PCR-CTPP products.

    PubMed

    Yin, Guang; Mitsuda, Yoko; Ezaki, Takayuki; Hamajima, Nobuyuki

    2012-10-01

    Polymerase chain reaction with confronting two-pair primers (PCR-CTPP) is a convenient method for genotyping single nucleotide polymorphisms, saving time, and costs. It uses four primers for PCR; F1 and R1 for one allele, and F2 and R2 for the other allele, by which three different sizes of DNA are amplified; between F1 and R1, between F2 and R2, and between F1 and R2. To date, we have applied PCR-CTPP successfully for genotyping more than 60 polymorphisms. However, it is not rare that PCR does not produce balanced amplification of allele specific bands. Accordingly, the method was modified by attaching a common sequence at the 5' end of two-pair primers and adding another primer with the common sequence in PCR, in total five different primers in a tube for PCR. The modification allowed one primer amplification for the products of initial PCR with confronting two-pair primers, named as one primer amplification of PCR-CTPP products (OPA-CTPP). This article demonstrates an example for an A/G polymorphism of paraoxonase 1 (PON1) Gln192Arg (rs662). PCR-CTPP failed clear genotyping for the polymorphism, while OPA-CTPP successfully produced PCR products corresponding to the allele. The present example indicated that the OPA-CTPP would be useful in the case that PCR-CTPP failed to produce balanced PCR products specific to each allele.

  14. Improved HF183 Quantitative Real-Time PCR Assay for Characterization of Human Fecal Pollution in Ambient Surface Water Samples

    PubMed Central

    Green, Hyatt C.; Haugland, Richard A.; Varma, Manju; Millen, Hana T.; Borchardt, Mark A.; Field, Katharine G.; Walters, William A.; Knight, R.; Sivaganesan, Mano; Kelty, Catherine A.

    2014-01-01

    Quantitative real-time PCR (qPCR) assays that target the human-associated HF183 bacterial cluster within members of the genus Bacteroides are among the most widely used methods for the characterization of human fecal pollution in ambient surface waters. In this study, we show that a current TaqMan HF183 qPCR assay (HF183/BFDrev) routinely forms nonspecific amplification products and introduce a modified TaqMan assay (HF183/BacR287) that alleviates this problem. The performance of each qPCR assay was compared in head-to-head experiments investigating limits of detection, analytical precision, predicted hybridization to 16S rRNA gene sequences from a reference database, and relative marker concentrations in fecal and sewage samples. The performance of the modified HF183/BacR287 assay is equal to or improves upon that of the original HF183/BFDrev assay. In addition, a qPCR chemistry designed to combat amplification inhibition and a multiplexed internal amplification control are included. In light of the expanding use of PCR-based methods that rely on the detection of extremely low concentrations of DNA template, such as qPCR and digital PCR, the new TaqMan HF183/BacR287 assay should provide more accurate estimations of human-derived fecal contaminants in ambient surface waters. PMID:24610857

  15. Development of an RNA extraction protocol for detection of waterborne viruses by reverse transcriptase quantitative PCR (RT-qPCR).

    PubMed

    Jothikumar, N; Sobsey, M D; Cromeans, T L

    2010-10-01

    RNA extraction from environmental samples yields frequently an RNA preparation containing inhibitors of molecular reactions. Commercial RNA extraction kits commonly permit extraction of only 0.1-0.2 ml sample volume. An RNA extraction buffer (RNAX buffer) was formulated for the extraction of viral RNA from 4.0 ml using a silica column based protocol. To evaluate the RNAX buffer based protocol, we used hepatitis A virus (HAV) and coxsackievirus B3 (CVB3) to monitor the RNA extraction efficiency from environmental samples. For evaluation of viral RNA recovery from water concentrates which were prepared from river and pond water by PEG concentration, serial ten fold dilutions of two waterborne viruses were added to the water concentrates for evaluation by quantitative detection. Quantitative recovery of HAV and CVB3 was determined by reverse transcriptase quantitative real-time PCR (RT-qPCR). The extracted RNA was compatible with RT-qPCR and sensitivity of detection of 0.8PFU per reaction was found with RNAX buffer and the developed protocol. This level of sensitivity was obtained using viral RNA extracted from 4.0 ml of an inoculated water sample concentrate. The RNAX buffer developed in this study could be applicable to the detection of other pathogens in water and food.

  16. X chromosome dosage by quantitative fluorescent PCR and rapid prenatal diagnosis of sex chromosome aneuploidies.

    PubMed

    Cirigliano, Vincenzo; Ejarque, Maijo; Fuster, Carme; Adinolfi, Matteo

    2002-11-01

    During the past few years, rapid prenatal diagnosis of chromosome aneuploidies has been successfully achieved by quantitative fluorescent PCR (QF-PCR) amplification of chromosome-specific small tandem repeats (STR). This approach has proven to be very useful in clinical settings, since it allows the detection of major numerical disorders in a few hours after sampling. For the detection of Turner's syndrome (45,X), several highly polymorphic STR on the X chromosome are needed in order to reduce the likelihood that a normal female might be homozygous for all sequences and, consequently, that the test could fail to discriminate between samples retrieved from a Turner's and a normal female fetus. Here we report a new method for rapid and accurate detection of X chromosome copy number in prenatal samples that does not depend on STR heterozygosity. The test is based on QF-PCR amplification of the X-linked HPRT together with the autosomal D21S1411 used as internal control for quantification. In the course of this study, this assay allowed the prenatal diagnosis of a rare case of a normal female homozygous for four selected highly polymorphic X chromosome STR, as well as the assessment of the normal chromosome complement of a fetus homozygous for five chromosome 21 markers.

  17. Selection of Reference Genes for Real-Time Quantitative PCR in Pinus massoniana Post Nematode Inoculation

    PubMed Central

    Wei, Yongcheng; Liu, Qinghua; Dong, Hongyu; Zhou, Zhichun; Hao, Yanping; Chen, Xuelian; Xu, Liuyi

    2016-01-01

    Pinus massoniaia Lamb has gained more and more attention as the most important tree species for timber and forestation in South China. Gene expression studies are of great importance to identify new and elite cultivars. Real-time quantitative PCR, a highly sensitive and specific method, is commonly used in the analysis of gene expression. The appropriate reference genes must be employed to normalize the calculation program for ascertaining repeatable and significant results. Herein, eleven housekeeping genes were evaluated during different stages of P. massoniana post nematode inoculation in this study. Three statistical approaches such as geNorm, NormFinder and BestKeeper were selected to analyze the stability of candidate genes. The results indicated that U2af and β-TUB were the most stable reference genes. These two genes could be used for the normalization in most of the experiments of P. massoniana, while Histone and AK were the least stable ones. In addition, EF expressed at the lowest average Ct value was the most abundant candidate gene. As an important gene associated with defense mechanisms, ABC transporter was analyzed by qRT-PCR, and the results were used to confirm the reliability of two genes. The selected reference genes in the present study will be conducive to future gene expression normalized by qRT-PCR in P. massoniana. PMID:26800152

  18. Selection of Reference Genes for Real-Time Quantitative PCR in Pinus massoniana Post Nematode Inoculation.

    PubMed

    Wei, Yongcheng; Liu, Qinghua; Dong, Hongyu; Zhou, Zhichun; Hao, Yanping; Chen, Xuelian; Xu, Liuyi

    2016-01-01

    Pinus massoniaia Lamb has gained more and more attention as the most important tree species for timber and forestation in South China. Gene expression studies are of great importance to identify new and elite cultivars. Real-time quantitative PCR, a highly sensitive and specific method, is commonly used in the analysis of gene expression. The appropriate reference genes must be employed to normalize the calculation program for ascertaining repeatable and significant results. Herein, eleven housekeeping genes were evaluated during different stages of P. massoniana post nematode inoculation in this study. Three statistical approaches such as geNorm, NormFinder and BestKeeper were selected to analyze the stability of candidate genes. The results indicated that U2af and β-TUB were the most stable reference genes. These two genes could be used for the normalization in most of the experiments of P. massoniana, while Histone and AK were the least stable ones. In addition, EF expressed at the lowest average Ct value was the most abundant candidate gene. As an important gene associated with defense mechanisms, ABC transporter was analyzed by qRT-PCR, and the results were used to confirm the reliability of two genes. The selected reference genes in the present study will be conducive to future gene expression normalized by qRT-PCR in P. massoniana.

  19. Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR.

    PubMed

    Furet, Jean-Pierre; Firmesse, Olivier; Gourmelon, Michèle; Bridonneau, Chantal; Tap, Julien; Mondot, Stanislas; Doré, Joël; Corthier, Gérard

    2009-06-01

    Pollution of the environment by human and animal faecal pollution affects the safety of shellfish, drinking water and recreational beaches. To pinpoint the origin of contaminations, it is essential to define the differences between human microbiota and that of farm animals. A strategy based on real-time quantitative PCR (qPCR) assays was therefore developed and applied to compare the composition of intestinal microbiota of these two groups. Primers were designed to quantify the 16S rRNA gene from dominant and subdominant bacterial groups. TaqMan probes were defined for the qPCR technique used for dominant microbiota. Human faecal microbiota was compared with that of farm animals using faecal samples collected from rabbits, goats, horses, pigs, sheep and cows. Three dominant bacterial groups (Bacteroides/Prevotella, Clostridium coccoides and Bifidobacterium) of the human microbiota showed differential population levels in animal species. The Clostridium leptum group showed the lowest differences among human and farm animal species. Human subdominant bacterial groups were highly variable in animal species. Partial least squares regression indicated that the human microbiota could be distinguished from all farm animals studied. This culture-independent comparative assessment of the faecal microbiota between humans and farm animals will prove useful in identifying biomarkers of human and animal faecal contaminations that can be applied to microbial source tracking methods.

  20. A systematic comparison of quantitative high-resolution DNA methylation analysis and methylation-specific PCR

    PubMed Central

    Claus, Rainer; Wilop, Stefan; Hielscher, Thomas; Sonnet, Miriam; Dahl, Edgar; Galm, Oliver; Jost, Edgar; Plass, Christoph

    2012-01-01

    Assessment of DNA methylation has become a critical factor for the identification, development and application of methylation based biomarkers. Here we describe a systematic comparison of a quantitative high-resolution mass spectrometry-based approach (MassARRAY), pyrosequencing and the broadly used methylation-specific PCR (MSP) technique analyzing clinically relevant epigenetically silenced genes in acute myeloid leukemia (AML). By MassARRAY and pyrosequencing, we identified significant DNA methylation differences at the ID4 gene promoter and in the 5′ region of members of the SFRP gene family in 62 AML patients compared with healthy controls. We found a good correlation between data obtained by MassARRAY and pyrosequencing (correlation coefficient R2 = 0.88). MSP-based assessment of the identical samples showed less pronounced differences between AML patients and controls. By direct comparison of MSP-derived and MassARRAY-based methylation data as well as pyrosequencing, we could determine overestimation of DNA methylation data by MSP. We found sequence-context dependent highly variable cut-off values of quantitative DNA methylation values serving as discriminator for the two MSP methylation categories. Moreover, good agreements between quantitative methods and MSP could not be achieved for all investigated loci. Significant correlation of the quantitative assessment but not of MSP-derived methylation data with clinically important characteristics in our patient cohort demonstrated clinical relevance of quantitative DNA methylation assessment. Taken together, while MSP is still the most commonly applied technique for DNA methylation assessment, our data highlight advantages of quantitative approaches for precise characterization and reliable biomarker use of aberrant DNA methylation in primary patient samples, particularly. PMID:22647397

  1. Quantitative fluorescent-PCR detection of sex chromosome aneuploidies and AZF deletions/duplications.

    PubMed

    Plaseski, Toso; Noveski, Predrag; Trivodalieva, Svetlana; Efremov, Georgi D; Plaseska-Karanfilska, Dijana

    2008-12-01

    The most common genetic causes of spermatogenic failure are sex chromosomal abnormalities (most frequently Klinefelter's syndrome) and deletions of the azoospermia factor (AZF) regions (AZFa, AZFb, and AZFc) of the Y chromosome. Several studies have proposed that partial AZFc deletions/duplications may be a risk factor for spermatogenic impairment. We describe a multiplex quantitative fluorescent-polymerase chain reaction (QF-PCR) method that allows simultaneous detection of these genetic causes and risk factors of male infertility. The 11-plex QF-PCR permitted the amplification of the amelogenin gene, four polymorphic X-specific short tandem repeat (STR) markers (XHPRT, DXS6803, DXS981, and exon 1 of the androgen receptor gene), nonpolymorphic Y-specific marker (SRY gene), polymorphic Y-specific STR marker (DYS448), and coamplification of DAZ/DAZL, MYPT2Y/MYPT2, and two CDY2/CDY1 fragments that allow for determination of the DAZ, MYPT2Y, and CDY gene copy number. A total of 357 DNA samples from infertile/subfertile men (n = 205) and fertile controls (n = 152) was studied. We detected 14 infertile males with sex chromosome aneuploidy (10 with Klinefelter's syndrome, 2 XX, and 2 XYY males). All previously detected AZF deletions, that is, AZFc (n8), AZFb (n1), AZFb + c (n1), gr/gr (n11), gr/gr with b2/b4 duplication (n3), and b2/b3 (n5), gave a specific pattern with the 11-plex QF-PCR. In addition, 32 DNA samples showed a pattern consistent with presence of gr/gr or b2/b4 and 4 with b2/b3 duplication. We conclude that multiplex QF-PCR is a rapid, simple, reliable, and inexpensive method that can be used as a first-step genetic analysis in infertile/subfertile patients.

  2. The quantification of spermatozoa by real-time quantitative PCR, spectrophotometry, and spermatophore cap size.

    PubMed

    Doyle, Jacqueline M; McCormick, Cory R; DeWoody, J Andrew

    2011-01-01

    Many animals, such as crustaceans, insects, and salamanders, package their sperm into spermatophores, and the number of spermatozoa contained in a spermatophore is relevant to studies of sexual selection and sperm competition. We used two molecular methods, real-time quantitative polymerase chain reaction (RT-qPCR) and spectrophotometry, to estimate sperm numbers from spermatophores. First, we designed gene-specific primers that produced a single amplicon in four species of ambystomatid salamanders. A standard curve generated from cloned amplicons revealed a strong positive relationship between template DNA quantity and cycle threshold, suggesting that RT-qPCR could be used to quantify sperm in a given sample. We then extracted DNA from multiple Ambystoma maculatum spermatophores, performed RT-qPCR on each sample, and estimated template copy numbers (i.e. sperm number) using the standard curve. Second, we used spectrophotometry to determine the number of sperm per spermatophore by measuring DNA concentration relative to the genome size. We documented a significant positive relationship between the estimates of sperm number based on RT-qPCR and those based on spectrophotometry. When these molecular estimates were compared to spermatophore cap size, which in principle could predict the number of sperm contained in the spermatophore, we also found a significant positive relationship between sperm number and spermatophore cap size. This linear model allows estimates of sperm number strictly from cap size, an approach which could greatly simplify the estimation of sperm number in future studies. These methods may help explain variation in fertilization success where sperm competition is mediated by sperm quantity.

  3. Quantitative PCR to diagnose Pneumocystis pneumonia in immunocompromised non-HIV patients.

    PubMed

    Mühlethaler, K; Bögli-Stuber, K; Wasmer, S; von Garnier, C; Dumont, P; Rauch, A; Mühlemann, K; Garzoni, C

    2012-04-01

    The utility of quantitative Pneumocystis jirovecii PCR in clinical routine for diagnosing Pneumocystis pneumonia (PCP) in immunocompromised non-HIV patients is unknown. We analysed bronchoalveolar lavage fluid with real-time quantitative P. jirovecii PCR in 71 cases with definitive PCP defined by positive immunofluorescence (IF) tests and in 171 randomly selected patients with acute lung disease. In those patients, possible PCP cases were identified by using a novel standardised PCP probability algorithm and chart review. PCR performance was compared with IF testing, clinical judgment and the PCP probability algorithm. Quantitative P. jirovecii PCR values >1,450 pathogens·mL(-1) had a positive predictive value of 98.0% (95% CI 89.6-100.0%) for diagnosing definitive PCP. PCR values of between 1 and 1,450 pathogens·mL(-1) were associated with both colonisation and infection; thus, a cut-off between the two conditions could not be identified and diagnosis of PCP in this setting relied on IF and clinical assessment. Clinical PCP could be ruled out in 99.3% of 153 patients with negative PCR results. Quantitative PCR is useful for diagnosing PCP and is complementary to IF. PCR values of >1,450 pathogens·mL(-1) allow reliable diagnosis, whereas negative PCR results virtually exclude PCP. Intermediate values require additional clinical assessment and IF testing. On the basis of our data and for economic and logistical limitations, we propose a clinical algorithm in which IF remains the preferred first test in most cases, followed by PCR in those patients with a negative IF and strong clinical suspicion for PCP.

  4. A novel approach to quantitating leukemia fusion transcripts by qRT-PCR without the need for standard curves.

    PubMed

    Schumacher, Jonathan A; Scott Reading, N; Szankasi, Philippe; Matynia, Anna P; Kelley, Todd W

    2015-08-01

    Acute myeloid leukemia patients with recurrent cytogenetic abnormalities including inv(16);CBFB-MYH11 and t(15;17);PML-RARA may be assessed by monitoring the levels of the corresponding abnormal fusion transcripts by quantitative reverse transcription-PCR (qRT-PCR). Such testing is important for evaluating the response to therapy and for the detection of early relapse. Existing qRT-PCR methods are well established and in widespread use in clinical laboratories but they are laborious and require the generation of standard curves. Here, we describe a new method to quantitate fusion transcripts in acute myeloid leukemia by qRT-PCR without the need for standard curves. Our approach uses a plasmid calibrator containing both a fusion transcript sequence and a reference gene sequence, representing a perfect normalized copy number (fusion transcript copy number/reference gene transcript copy number; NCN) of 1.0. The NCN of patient specimens can be calculated relative to that of the single plasmid calibrator using experimentally derived PCR efficiency values. We compared the data obtained using the plasmid calibrator method to commercially available assays using standard curves and found that the results obtained by both methods are comparable over a broad range of values with similar sensitivities. Our method has the advantage of simplicity and is therefore lower in cost and may be less subject to errors that may be introduced during the generation of standard curves.

  5. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA

    USGS Publications Warehouse

    Hunter, Margaret; Dorazio, Robert M.; Butterfield, John S.; Meigs-Friend, Gaia; Nico, Leo; Ferrante, Jason

    2017-01-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species’ presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty – indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis, and forensic and clinical diagnostics.

  6. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA.

    PubMed

    Hunter, Margaret E; Dorazio, Robert M; Butterfield, John S S; Meigs-Friend, Gaia; Nico, Leo G; Ferrante, Jason A

    2017-03-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low-concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species' presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty-indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis and forensic and clinical diagnostics.

  7. EPA Method 1615. Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. Part III. Virus Detection by RT-qPCR

    EPA Science Inventory

    EPA Method 1615 measures enteroviruses and noroviruses present in environmental and drinking waters. The viral ribonucleic acid (RNA) from water sample concentrates is extracted and tested for enterovirus and norovirus RNA using reverse transcription-quantitative PCR (RT-qPCR). V...

  8. Development of strain-specific PCR primers for quantitative detection of Bacillus mesentericus strain TO-A in human feces.

    PubMed

    Sato, Naoki; Seo, Genichiro; Benno, Yoshimi

    2014-01-01

    Strain-specific polymerase chain reaction (PCR) primers for detection of Bacillus mesentericus strain TO-A (BM TO-A) were developed. The randomly amplified polymorphic DNA (RAPD) technique was used to produce potential strain-specific markers. A 991-bp RAPD marker found to be strain-specific was sequenced, and two primer pairs specific to BM TO-A were constructed based on this sequence. In addition, we explored a more specific DNA region using inverse PCR, and designed a strain-specific primer set for use in real-time quantitative PCR (qPCR). These primer pairs were tested against 25 Bacillus subtilis strains and were found to be strain-specific. After examination of the detection limit and linearity of detection of BM TO-A in feces, the qPCR method and strain-specific primers were used to quantify BM TO-A in the feces of healthy volunteers who had ingested 3×10(8) colony forming unit (CFU) of BM TO-A per day in tablets. During the administration period, BM TO-A was detected in the feces of all 24 subjects, and the average number of BM TO-A detected using the culture method and qPCR was about 10(4.8) and 10(5.8) cells per gram of feces, respectively. Using the qPCR method, BM TO-A was detected in the feces of half of the subjects 3 d after withdrawal, and was detected in the feces of only one subject 1 week after withdrawal. These results suggest that the qPCR method using BM TO-A strain-specific primers is useful for the quantitative detection of this strain in feces.

  9. Cytochrome b gene quantitative PCR for diagnosing Plasmodium falciparum infection in travelers.

    PubMed

    Farrugia, Cécile; Cabaret, Odile; Botterel, Françoise; Bories, Christian; Foulet, Françoise; Costa, Jean-Marc; Bretagne, Stéphane

    2011-06-01

    A cytochrome b (cytb) gene quantitative PCR (qPCR) assay was developed to diagnose malaria in travelers. First, manual and automated DNA extractions were compared and automated DNA extraction of 400 μl of blood was found to be more efficient. Sensitivity was estimated using the WHO international standard for Plasmodium falciparum DNA and compared to that of a previously published qPCR targeting the 18S rRNA coding gene (18S qPCR). The limit of detection of the cytb qPCR assay was 20 DNA copies (i.e., 1 parasite equivalent) per 400 μl of extracted whole blood and was comparable for the two qPCR assays. Both qPCR assays were used on blood samples from 265 consecutive patients seen for suspicion of malaria. There were no microscopy-positive and qPCR-negative samples. Positive cytb qPCR results were observed for 51 samples, and all but 1 were also 18S qPCR positive. Eight (16%) of these 51 samples were negative by microscopic examination. The 8 cytb qPCR-positive and microscopy-negative samples were from African patients, 3 of whom had received antimalarial drugs. Three non-P. falciparum infections were correctly identified using an additional qPCR assay. The absence of PCR inhibitors was tested for by the use of an internal control of mouse DNA to allow reliable quantification of circulating DNA. The high analytical sensitivity of both qPCR assays combined with automated DNA extraction supports its use as a laboratory tool for diagnosis and parasitemia determination in emergencies. Whether to treat qPCR-positive and microscopy-negative patients remains to be determined.

  10. Real-Time PCR Quantitation of Clostridia in Feces of Autistic Children

    PubMed Central

    Song, Yuli; Liu, Chengxu; Finegold, Sydney M.

    2004-01-01

    Based on the hypothesis that intestinal clostridia play a role in late-onset autism, we have been characterizing clostridia from stools of autistic and control children. We applied the TaqMan real-time PCR procedure to detect and quantitate three Clostridium clusters and one Clostridium species, C. bolteae, in stool specimens. Group- and species-specific primers targeting the 16S rRNA genes were designed, and specificity of the primers was confirmed with DNA from related bacterial strains. In this procedure, a linear relationship exists between the threshold cycle (CT) fluorescence value and the number of bacterial cells (CFU). The assay showed high sensitivity: as few as 2 cells of members of cluster I, 6 cells of cluster XI, 4 cells of cluster XIVab, and 0.6 cell of C. bolteae could be detected per PCR. Analysis of the real-time PCR data indicated that the cell count differences between autistic and control children for C. bolteae and the following Clostridium groups were statistically significant: mean counts of C. bolteae and clusters I and XI in autistic children were 46-fold (P = 0.01), 9.0-fold (P = 0.014), and 3.5-fold (P = 0.004) greater than those in control children, respectively, but not for cluster XIVab (2.6 × 108 CFU/g in autistic children and 4.8 × 108 CFU/g in controls; respectively). More subjects need to be studied. The assay is a rapid and reliable method, and it should have great potential for quantitation of other bacteria in the intestinal tract. PMID:15528506

  11. Quantitative Expression Analysis in Brassica napus by Northern Blot Analysis and Reverse Transcription-Quantitative PCR in a Complex Experimental Setting.

    PubMed

    Rumlow, Annekathrin; Keunen, Els; Klein, Jan; Pallmann, Philip; Riemenschneider, Anja; Cuypers, Ann; Papenbrock, Jutta

    Analysis of gene expression is one of the major ways to better understand plant reactions to changes in environmental conditions. The comparison of many different factors influencing plant growth challenges the gene expression analysis for specific gene-targeted experiments, especially with regard to the choice of suitable reference genes. The aim of this study is to compare expression results obtained by Northern blot, semi-quantitative PCR and RT-qPCR, and to identify a reliable set of reference genes for oilseed rape (Brassica napus L.) suitable for comparing gene expression under complex experimental conditions. We investigated the influence of several factors such as sulfur deficiency, different time points during the day, varying light conditions, and their interaction on gene expression in oilseed rape plants. The expression of selected reference genes was indeed influenced under these conditions in different ways. Therefore, a recently developed algorithm, called GrayNorm, was applied to validate a set of reference genes for normalizing results obtained by Northern blot analysis. After careful comparison of the three methods mentioned above, Northern blot analysis seems to be a reliable and cost-effective alternative for gene expression analysis under a complex growth regime. For using this method in a quantitative way a number of references was validated revealing that for our experiment a set of three references provides an appropriate normalization. Semi-quantitative PCR was prone to many handling errors and difficult to control while RT-qPCR was very sensitive to expression fluctuations of the reference genes.

  12. Low-cost monitoring of Campylobacter in poultry houses by air sampling and quantitative PCR.

    PubMed

    Søndergaard, M S R; Josefsen, M H; Löfström, C; Christensen, L S; Wieczorek, K; Osek, J; Hoorfar, J

    2014-02-01

    The present study describes the evaluation of a method for the quantification of Campylobacter by air sampling in poultry houses. Sampling was carried out in conventional chicken houses in Poland, in addition to a preliminary sampling in Denmark. Each measurement consisted of three air samples, two standard boot swab fecal samples, and one airborne particle count. Sampling was conducted over an 8-week period in three flocks, assessing the presence and levels of Campylobacter in boot swabs and air samples using quantitative real-time PCR. The detection limit for air sampling was approximately 100 Campylobacter cell equivalents (CCE)/m3. Airborne particle counts were used to analyze the size distribution of airborne particles (0.3 to 10 μm) in the chicken houses in relation to the level of airborne Campylobacter. No correlation was found. Using air sampling, Campylobacter was detected in the flocks right away, while boot swab samples were positive after 2 weeks. All samples collected were positive for Campylobacter from week 2 through the rest of the rearing period for both sampling techniques, although levels 1- to 2-log CCE higher were found with air sampling. At week 8, the levels were approximately 10(4) and 10(5) CCE per sample for boot swabs and air, respectively. In conclusion, using air samples combined with quantitative real-time PCR, Campylobacter contamination could be detected earlier than by boot swabs and was found to be a more convenient technique for monitoring and/or to obtain enumeration data useful for quantitative risk assessment of Campylobacter.

  13. A novel triplex quantitative PCR strategy for quantification of toxigenic and nontoxigenic Vibrio cholerae in aquatic environments.

    PubMed

    Bliem, Rupert; Schauer, Sonja; Plicka, Helga; Obwaller, Adelheid; Sommer, Regina; Steinrigl, Adolf; Alam, Munirul; Reischer, Georg H; Farnleitner, Andreas H; Kirschner, Alexander

    2015-05-01

    Vibrio cholerae is a severe human pathogen and a frequent member of aquatic ecosystems. Quantification of V. cholerae in environmental water samples is therefore fundamental for ecological studies and health risk assessment. Beside time-consuming cultivation techniques, quantitative PCR (qPCR) has the potential to provide reliable quantitative data and offers the opportunity to quantify multiple targets simultaneously. A novel triplex qPCR strategy was developed in order to simultaneously quantify toxigenic and nontoxigenic V. cholerae in environmental water samples. To obtain quality-controlled PCR results, an internal amplification control was included. The qPCR assay was specific, highly sensitive, and quantitative across the tested 5-log dynamic range down to a method detection limit of 5 copies per reaction. Repeatability and reproducibility were high for all three tested target genes. For environmental application, global DNA recovery (GR) rates were assessed for drinking water, river water, and water from different lakes. GR rates ranged from 1.6% to 76.4% and were dependent on the environmental background. Uncorrected and GR-corrected V. cholerae abundances were determined in two lakes with extremely high turbidity. Uncorrected abundances ranged from 4.6×10(2) to 2.3×10(4) cell equivalents liter(-1), whereas GR-corrected abundances ranged from 4.7×10(3) to 1.6×10(6) cell equivalents liter(-1). GR-corrected qPCR results were in good agreement with an independent cell-based direct detection method but were up to 1.6 log higher than cultivation-based abundances. We recommend the newly developed triplex qPCR strategy as a powerful tool to simultaneously quantify toxigenic and nontoxigenic V. cholerae in various aquatic environments for ecological studies as well as for risk assessment programs.

  14. A method for amplification of unknown flanking sequences based on touchdown PCR and suppression-PCR.

    PubMed

    Gao, Song; He, Dan; Li, Guangquan; Zhang, Yanhua; Lv, Huiying; Wang, Li

    2016-09-15

    Thermal asymmetric staggered PCR is the most widely used technique to obtain the flanking sequences. However, it has some limitations, including a low rate of positivity, and complex operation. In this study, a improved method of it was made based on suppression-PCR and touchdown PCR. The PCR fragment obtained by the amplification was used directly for sequencing after gel purification. Using this improved method, the positive rate of amplified flanking sequences of the ATMT mutants reached 99%. In addition, the time from DNA extraction to flanking sequence analysis was shortened to 2 days with about 6 dollars each sample.

  15. Development of SYBR Green real-time RT-PCR for rapid detection, quantitation and diagnosis of unclassified bovine enteric calicivirus.

    PubMed

    Park, Sang-Ik; Park, Da-Hae; Saif, Linda J; Jeong, Young-Ju; Shin, Dong-Jun; Chun, Young-Hyun; Park, Su-Jin; Kim, Hyun-Jeong; Hosmillo, Myra; Kwon, Hyung-Jun; Kang, Mun-Il; Cho, Kyoung-Oh

    2009-07-01

    Unclassified bovine enteric calicivirus (BECV) is a newly recognized bovine enteric calicivirus that differs from bovine norovirus, and which causes diarrhea in the small intestines of calves. To date, methods such as real-time reverse transcription-polymerase chain reaction (RT-PCR) have not been developed for the rapid detection, quantitation and diagnosis of BECV. Presently, a BECV-specific SYBR Green real-time RT-PCR assay was evaluated and optimized. Diarrheic specimens (n=118) collected from 2004 to 2005 were subjected to RT-PCR, nested PCR and SYBR Green real-time RT-PCR. By conventional RT-PCR and nested PCR, 9 (7.6%) and 59 (50%) samples tested positive, respectively, whereas the SYBR Green assay detected BECV in 91 (77.1%) samples. Using BECV RNA standards generated by in vitro transcription, the SYBR Green real-time RT-PCR assay sensitively detected BECV RNA to 1.1 x 10(0)copies/microl (correlation coefficiency=0.98). The detection limits of the RT-PCR and nested PCR were 1.1 x 10(5) and 1.1 x 10(2)copies/microl, respectively. These results indicate that the SYBR Green real-time RT-PCR assay is more sensitive than conventional RT-PCR and nested PCR assays, and has potential as a reliable, reproducible, specific, sensitive and rapid tool for the detection, quantitation and diagnosis of unclassified BECV.

  16. Critical appraisal of quantitative PCR results in colorectal cancer research: can we rely on published qPCR results?

    PubMed

    Dijkstra, J R; van Kempen, L C; Nagtegaal, I D; Bustin, S A

    2014-06-01

    The use of real-time quantitative polymerase chain reaction (qPCR) in cancer research has become ubiquitous. The relative simplicity of qPCR experiments, which deliver fast and cost-effective results, means that each year an increasing number of papers utilizing this technique are being published. But how reliable are the published results? Since the validity of gene expression data is greatly dependent on appropriate normalisation to compensate for sample-to-sample and run-to-run variation, we have evaluated the adequacy of normalisation procedures in qPCR-based experiments. Consequently, we assessed all colorectal cancer publications that made use of qPCR from 2006 until August 2013 for the number of reference genes used and whether they had been validated. Using even these minimal evaluation criteria, the validity of only three percent (6/179) of the publications can be adequately assessed. We describe common errors, and conclude that the current state of reporting on qPCR in colorectal cancer research is disquieting. Extrapolated to the study of cancer in general, it is clear that the majority of studies using qPCR cannot be reliably assessed and that at best, the results of these studies may or may not be valid and at worst, pervasive incorrect normalisation is resulting in the wholesale publication of incorrect conclusions. This survey demonstrates that the existence of guidelines, such as MIQE, is necessary but not sufficient to address this problem and suggests that the scientific community should examine its responsibility and be aware of the implications of these findings for current and future research.

  17. Real-time quantitative PCR detection of genetically modified Maximizer maize and Roundup Ready soybean in some representative foods.

    PubMed

    Vaïtilingom, M; Pijnenburg, H; Gendre, F; Brignon, P

    1999-12-01

    A fast and quantitative method was developed to detect transgenic "Maximizer" maize "event 176" (Novartis) and "Roundup Ready" soybean (Monsanto) in food by real-time quantitative PCR. The use of the ABI Prism 7700 sequence detection system allowed the determination of the amplified product accumulation through a fluorogenic probe (TaqMan). Fluorescent dyes were chosen in such a way as to coamplify total and transgenic DNA in the same tube. Using real-time quantitative PCR, 2 pg of transgenic or total DNA per gram of starting sample was detected in 3 h after DNA extraction and the relative amounts of "Maximizer" maize and "Roundup Ready" soybean in some representative food products were quantified.

  18. A duplex real-time PCR assay for the quantitative detection of Naegleria fowleri in water samples.

    PubMed

    Behets, Jonas; Declerck, Priscilla; Delaedt, Yasmine; Verelst, Lieve; Ollevier, Frans

    2007-01-01

    A fast and accurate duplex real-time PCR (qPCR) was developed to detect and quantify the human pathogenic amoeba Naegleria fowleri in water samples. In this study, primers and probe based on the Mp2Cl5 gene were designed to amplify and quantify N. fowleri DNA in a single duplex reaction. The qPCR detection limit (DL) corresponds to the minimum DNA quantity showing significant fluorescence with at least 90% of the positive controls in a duplex reaction. Using fluorescent Taqman technology the qPCR was found to be 100% specific for N. fowleri with a DL of 3 N. fowleri cell equivalents and a PCR efficiency of 99%. The quantification limit (QL) was 16 N. fowleri cell equivalents (corresponded with 320 N. fowleri cell equivalents l(-1) water sample) in a duplex qPCR reaction and corresponds to the lowest DNA quantity amplifiable with a coefficient of variation less than 25%. To detect inhibition an exogenous internal positive control (IPC) was included in each PCR reaction preventing false negative results. Comparison of qPCR and most probable number (MPN) culture results confirms that the developed qPCR is well suited for rapid and quantitative detection of this human pathogen in real water samples. Nevertheless 'low contamination levels' of water samples (<200 N. fowleri cells l(-1)) still require culture method analyses. When other thermophilic Naegleria are very dominant, the MPN culture method could result in an underestimation in the real number of N. fowleri and some caution is necessary to interpret the data. The N. fowleri qPCR could be a useful tool to study further competitive phenomena between thermophilic Naegleria strains.

  19. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  20. The applicability of TaqMan-based quantitative real-time PCR assays for detecting and enumeratIng Cryptosporidium spp. oocysts in the environment

    EPA Science Inventory

    Molecular detection methods such as PCR have been extensively used to type Cryptosporidium oocysts detected in the environment. More recently, studies have developed quantitative real-time PCR assays for detection and quantification of microbial contaminants in water as well as ...

  1. Quantitative analysis of diet structure by real-time PCR, reveals different feeding patterns by two dominant grasshopper species

    PubMed Central

    Huang, Xunbing; Wu, Huihui; McNeill, Mark Richard; Qin, Xinghu; Ma, Jingchuan; Tu, Xiongbing; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2016-01-01

    Studies on grasshopper diets have historically employed a range of methodologies, each with certain advantages and disadvantages. For example, some methodologies are qualitative instead of quantitative. Others require long experimental periods or examine population-level effects, only. In this study, we used real-time PCR to examine diets of individual grasshoppers. The method has the advantage of being both fast and quantitative. Using two grasshopper species, Oedaleus asiaticus and Dasyhippus barbipes, we designed ITS primer sequences for their three main host plants, Stipa krylovii, Leymus chinensis and Cleistogenes squarrosa and used real-time PCR method to test diet structure both qualitatively and quantitatively. The lowest detection efficiency of the three grass species was ~80% with a strong correlation between actual and PCR-measured food intake. We found that Oedaleus asiaticus maintained an unchanged diet structure across grasslands with different grass communities. By comparison, Dasyhippus barbipes changed its diet structure. These results revealed why O. asiaticus distribution is mainly confined to Stipa-dominated grassland, and D. barbipes is more widely distributed across Inner Mongolia. Overall, real-time PCR was shown to be a useful tool for investigating grasshopper diets, which in turn offers some insight into grasshopper distributions and improved pest management. PMID:27562455

  2. Modeling real-time PCR kinetics: Richards reparametrized equation for quantitative estimation of European hake (Merluccius merluccius).

    PubMed

    Sánchez, Ana; Vázquez, José A; Quinteiro, Javier; Sotelo, Carmen G

    2013-04-10

    Real-time PCR is the most sensitive method for detection and precise quantification of specific DNA sequences, but it is not usually applied as a quantitative method in seafood. In general, benchmark techniques, mainly cycle threshold (Ct), are the routine method for quantitative estimations, but they are not the most precise approaches for a standard assay. In the present work, amplification data from European hake (Merluccius merluccius) DNA samples were accurately modeled by three sigmoid reparametrized equations, where the lag phase parameter (λc) from the Richards equation with four parameters was demonstrated to be the perfect substitute for Ct for PCR quantification. The concentrations of primers and probes were subsequently optimized by means of that selected kinetic parameter. Finally, the linear correlation among DNA concentration and λc was also confirmed.

  3. Detection and quantification of viable Bacillus cereus group species in milk by propidium monoazide quantitative real-time PCR.

    PubMed

    Cattani, Fernanda; Barth, Valdir C; Nasário, Jéssica S R; Ferreira, Carlos A S; Oliveira, Sílvia D

    2016-04-01

    The Bacillus cereus group includes important spore-forming bacteria that present spoilage capability and may cause foodborne diseases. These microorganisms are traditionally evaluated in food using culturing methods, which can be laborious and time-consuming, and may also fail to detect bacteria in a viable but nonculturable state. The purpose of this study was to develop a quantitative real-time PCR (qPCR) combined with a propidium monoazide (PMA) treatment to analyze the contamination of UHT milk by B. cereus group species viable cells. Thirty micrograms per milliliter of PMA was shown to be the most effective concentration for reducing the PCR amplification of extracellular DNA and DNA from dead cells. The quantification limit of the PMA-qPCR assay was 7.5 × 10(2) cfu/mL of milk. One hundred thirty-five UHT milk samples were analyzed to evaluate the association of PMA to qPCR to selectively detect viable cells. The PMA-qPCR was able to detect B. cereus group species in 44 samples (32.6%), whereas qPCR without PMA detected 78 positive samples (57.8%). Therefore, the PMA probably inhibited the amplification of DNA from cells that were killed during UHT processing, which avoided an overestimation of bacterial cells when using qPCR and, thus, did not overvalue potential health risks. A culture-based method was also used to detect and quantify B. cereus sensu stricto in the same samples and showed positive results in 15 (11.1%) samples. The culture method and PMA-qPCR allowed the detection of B. cereus sensu stricto in quantities compatible with the infective dose required to cause foodborne disease in 3 samples, indicating that, depending on the storage conditions, even after UHT treatment, infective doses may be reached in ready-to-consume products.

  4. Quantification of Endospore-Forming Firmicutes by Quantitative PCR with the Functional Gene spo0A

    PubMed Central

    Bueche, Matthieu; Wunderlin, Tina; Roussel-Delif, Ludovic; Junier, Thomas; Sauvain, Loic; Jeanneret, Nicole

    2013-01-01

    Bacterial endospores are highly specialized cellular forms that allow endospore-forming Firmicutes (EFF) to tolerate harsh environmental conditions. EFF are considered ubiquitous in natural environments, in particular, those subjected to stress conditions. In addition to natural habitats, EFF are often the cause of contamination problems in anthropogenic environments, such as industrial production plants or hospitals. It is therefore desirable to assess their prevalence in environmental and industrial fields. To this end, a high-sensitivity detection method is still needed. The aim of this study was to develop and evaluate an approach based on quantitative PCR (qPCR). For this, the suitability of functional genes specific for and common to all EFF were evaluated. Seven genes were considered, but only spo0A was retained to identify conserved regions for qPCR primer design. An approach based on multivariate analysis was developed for primer design. Two primer sets were obtained and evaluated with 16 pure cultures, including representatives of the genera Bacillus, Paenibacillus, Brevibacillus, Geobacillus, Alicyclobacillus, Sulfobacillus, Clostridium, and Desulfotomaculum, as well as with environmental samples. The primer sets developed gave a reliable quantification when tested on laboratory strains, with the exception of Sulfobacillus and Desulfotomaculum. A test using sediment samples with a diverse EFF community also gave a reliable quantification compared to 16S rRNA gene pyrosequencing. A detection limit of about 104 cells (or spores) per gram of initial material was calculated, indicating this method has a promising potential for the detection of EFF over a wide range of applications. PMID:23811505

  5. Comparison of array comparative genomic hybridization and quantitative real-time PCR-based aneuploidy screening of blastocyst biopsies.

    PubMed

    Capalbo, Antonio; Treff, Nathan R; Cimadomo, Danilo; Tao, Xin; Upham, Kathleen; Ubaldi, Filippo Maria; Rienzi, Laura; Scott, Richard T

    2015-07-01

    Comprehensive chromosome screening (CCS) methods are being extensively used to select chromosomally normal embryos in human assisted reproduction. Some concerns related to the stage of analysis and which aneuploidy screening method to use still remain. In this study, the reliability of blastocyst-stage aneuploidy screening and the diagnostic performance of the two mostly used CCS methods (quantitative real-time PCR (qPCR) and array comparative genome hybridization (aCGH)) has been assessed. aCGH aneuploid blastocysts were rebiopsied, blinded, and evaluated by qPCR. Discordant cases were subsequently rebiopsied, blinded, and evaluated by single-nucleotide polymorphism (SNP) array-based CCS. Although 81.7% of embryos showed the same diagnosis when comparing aCGH and qPCR-based CCS, 18.3% (22/120) of embryos gave a discordant result for at least one chromosome. SNP array reanalysis showed that a discordance was reported in ten blastocysts for aCGH, mostly due to false positives, and in four cases for qPCR. The discordant aneuploidy call rate per chromosome was significantly higher for aCGH (5.7%) compared with qPCR (0.6%; P<0.01). To corroborate these findings, 39 embryos were simultaneously biopsied for aCGH and qPCR during blastocyst-stage aneuploidy screening cycles. 35 matched including all 21 euploid embryos. Blinded SNP analysis on rebiopsies of the four embryos matched qPCR. These findings demonstrate the high reliability of diagnosis performed at the blastocyst stage with the use of different CCS methods. However, the application of aCGH can be expected to result in a higher aneuploidy rate than other contemporary methods of CCS.

  6. Processing of gene expression data generated by quantitative real-time RT-PCR.

    PubMed

    Muller, Patrick Y; Janovjak, Harald; Miserez, André R; Dobbie, Zuzana

    2002-06-01

    Quantitative real-time PCR represents a highly sensitive and powerful technique for the quantitation of nucleic acids. It has a tremendous potential for the high-throughput analysis of gene expression in research and routine diagnostics. However, the major hurdle is not the practical performance of the experiments themselves but rather the efficient evaluation and the mathematical and statistical analysis of the enormous amount of data gained by this technology, as these functions are not included in the software provided by the manufacturers of the detection systems. In this work, we focus on the mathematical evaluation and analysis of the data generated by quantitative real-time PCR, the calculation of the final results, the propagation of experimental variation of the measured values to the final results, and the statistical analysis. We developed a Microsoft Excel-based software application coded in Visual Basic for Applications, called Q-Gene, which addresses these points. Q-Gene manages and expedites the planning, performance, and evaluation of quantitative real-time PCR experiments, as well as the mathematical and statistical analysis, storage, and graphical presentation of the data. The Q-Gene software application is a tool to cope with complex quantitative real-time PCR experiments at a high-throughput scale and considerably expedites and rationalizes the experimental setup, data analysis, and data management while ensuring highest reproducibility.

  7. Combined Overlap Extension PCR Method for Improved Site Directed Mutagenesis

    PubMed Central

    Chong, Nikson Fatt-Ming

    2016-01-01

    The combined overlap extension PCR (COE-PCR) method developed in this work combines the strengths of the overlap extension PCR (OE-PCR) method with the speed and ease of the asymmetrical overlap extension (AOE-PCR) method. This combined method allows up to 6 base pairs to be mutated at a time and requires a total of 40–45 PCR cycles. A total of eight mutagenesis experiments were successfully carried out, with each experiment mutating between two to six base pairs. Up to four adjacent codons were changed in a single experiment. This method is especially useful for codon optimization, where doublet or triplet rare codons can be changed using a single mutagenic primer set, in a single experiment. PMID:27995143

  8. Collaborative trial for the validation of event-specific PCR detection methods of genetically modified papaya Huanong No.1.

    PubMed

    Wei, Jiaojun; Le, Huangying; Pan, Aihu; Xu, Junfeng; Li, Feiwu; Li, Xiang; Quan, Sheng; Guo, Jinchao; Yang, Litao

    2016-03-01

    For transferring the event-specific PCR methods of genetically modified papaya Huanong No.1 to other laboratories, we validated the previous developed PCR assays of Huanong No.1 according to the international standard organization (ISO) guidelines. A total of 11 laboratories participated and returned their test results in this trial. In qualitative PCR assay, the high specificity and limit of detection as low as 0.1% was confirmed. For the quantitative PCR assay, the limit of quantification was as low as 25 copies. The quantitative biases among ten blind samples were within the range between 0.21% and 10.04%. Furthermore, the measurement uncertainty of the quantitative PCR results was calculated within the range between 0.28% and 2.92% for these ten samples. All results demonstrated that the Huanong No.1 qualitative and quantitative PCR assays were creditable and applicable for identification and quantification of GM papaya Huanong No.1 in further routine lab analysis.

  9. Investigation of telomere lengths measurement by quantitative real-time PCR to predict age.

    PubMed

    Hewakapuge, Sudinna; van Oorschot, Roland A H; Lewandowski, Paul; Baindur-Hudson, Swati

    2008-09-01

    Currently DNA profiling methods only compare a suspect's DNA with DNA left at the crime scene. When there is no suspect, it would be useful for the police to be able to predict what the person of interest looks like by analysing the DNA left behind in a crime scene. Determination of the age of the suspect is an important factor in creating an identikit. Human somatic cells gradually lose telomeric repeats with age. This study investigated if one could use a correlation between telomere length and age, to predict the age of an individual from their DNA. Telomere length, in buccal cells, of 167 individuals aged between 1 and 96 years old was measured using real-time quantitative PCR. Telomere length decreased with age (r=-0.185, P<0.05) and the age of an individual could be roughly determined by the following formula: (age=relative telomere length -1.5/-0.005). The regression (R(2)) value between telomere length and age was approximately 0.04, which is too low to be use for forensics. The causes for the presence of large variation in telomere lengths in the population were further investigated. The age prediction accuracies were low even after dividing samples into non-related Caucasians, males and females (5%, 9% and 1%, respectively). Mean telomere lengths of eight age groups representing each decade of life showed non-linear decrease in telomere length with age. There were variations in telomere lengths even among similarly aged individuals aged 26 years old (n=10) and age 54 years old (n=9). Therefore, telomere length measurement by real-time quantitative PCR cannot be used to predict age of a person, due to the presence of large inter-individual variations in telomere lengths.

  10. Exploring Valid Reference Genes for Quantitative Real-Time PCR Analysis in Sesamia inferens (Lepidoptera: Noctuidae)

    PubMed Central

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (−8, −6, −4, −2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens. PMID:25585250

  11. Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae).

    PubMed

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.

  12. Leptin in Whales: Validation and Measurement of mRNA Expression by Absolute Quantitative Real-Time PCR

    PubMed Central

    Ball, Hope C.; Holmes, Robert K.; Londraville, Richard L.; Thewissen, Johannes G. M.; Duff, Robert Joel

    2013-01-01

    Leptin is the primary hormone in mammals that regulates adipose stores. Arctic adapted cetaceans maintain enormous adipose depots, suggesting possible modifications of leptin or receptor function. Determining expression of these genes is the first step to understanding the extreme physiology of these animals, and the uniqueness of these animals presents special challenges in estimating and comparing expression levels of mRNA transcripts. Here, we compare expression of two model genes, leptin and leptin-receptor gene-related product (OB-RGRP), using two quantitative real-time PCR (qPCR) methods: “relative” and “absolute”. To assess the expression of leptin and OB-RGRP in cetacean tissues, we first examined how relative expression of those genes might differ when normalized to four common endogenous control genes. We performed relative expression qPCR assays measuring the amplification of these two model target genes relative to amplification of 18S ribosomal RNA (18S), ubiquitously expressed transcript (Uxt), ribosomal protein 9 (Rs9) and ribosomal protein 15 (Rs15) endogenous controls. Results demonstrated significant differences in the expression of both genes when different control genes were employed; emphasizing a limitation of relative qPCR assays, especially in studies where differences in physiology and/or a lack of knowledge regarding levels and patterns of expression of common control genes may possibly affect data interpretation. To validate the absolute quantitative qPCR methods, we evaluated the effects of plasmid structure, the purity of the plasmid standard preparation and the influence of type of qPCR “background” material on qPCR amplification efficiencies and copy number determination of both model genes, in multiple tissues from one male bowhead whale. Results indicate that linear plasmids are more reliable than circular plasmid standards, no significant differences in copy number estimation based upon background material used, and

  13. Validation and Application of a PCR Primer Set to Quantify Fungal Communities in the Soil Environment by Real-Time Quantitative PCR

    PubMed Central

    Chemidlin Prévost-Bouré, Nicolas; Christen, Richard; Dequiedt, Samuel; Mougel, Christophe; Lelièvre, Mélanie; Jolivet, Claudy; Shahbazkia, Hamid Reza; Guillou, Laure; Arrouays, Dominique; Ranjard, Lionel

    2011-01-01

    Fungi constitute an important group in soil biological diversity and functioning. However, characterization and knowledge of fungal communities is hampered because few primer sets are available to quantify fungal abundance by real-time quantitative PCR (real-time Q-PCR). The aim in this study was to quantify fungal abundance in soils by incorporating, into a real-time Q-PCR using the SYBRGreen® method, a primer set already used to study the genetic structure of soil fungal communities. To satisfy the real-time Q-PCR requirements to enhance the accuracy and reproducibility of the detection technique, this study focused on the 18S rRNA gene conserved regions. These regions are little affected by length polymorphism and may provide sufficiently small targets, a crucial criterion for enhancing accuracy and reproducibility of the detection technique. An in silico analysis of 33 primer sets targeting the 18S rRNA gene was performed to select the primer set with the best potential for real-time Q-PCR: short amplicon length; good fungal specificity and coverage. The best consensus between specificity, coverage and amplicon length among the 33 sets tested was the primer set FR1 / FF390. This in silico analysis of the specificity of FR1 / FF390 also provided additional information to the previously published analysis on this primer set. The specificity of the primer set FR1 / FF390 for Fungi was validated in vitro by cloning - sequencing the amplicons obtained from a real time Q-PCR assay performed on five independent soil samples. This assay was also used to evaluate the sensitivity and reproducibility of the method. Finally, fungal abundance in samples from 24 soils with contrasting physico-chemical and environmental characteristics was examined and ranked to determine the importance of soil texture, organic carbon content, C∶N ratio and land use in determining fungal abundance in soils. PMID:21931659

  14. Real-Time Quantitative PCR Assay for Monitoring of Nervous Necrosis Virus Infection in Grouper Aquaculture▿†

    PubMed Central

    Kuo, Hsiao-Che; Wang, Ting-Yu; Chen, Peng-Peng; Chen, Young-Mao; Chuang, Hui-Ching; Chen, Tzong-Yueh

    2011-01-01

    Viral nervous necrosis caused by nervous necrosis virus (NNV) exacts a high mortality and results in huge economic losses in grouper aquaculture in Taiwan. The present study developed a real-time quantitative PCR (qPCR) method for NNV monitoring. The assay showed a strong linear correlation (r2 = 0.99) between threshold cycle (CT) and RNA quantities, which allowed identification of infected groupers by the CT value and could be exploited to warn of NNV infection prior to an outbreak in grouper fish farms. Real-time qPCR also confirmed the copious content of NNV in grouper fin, similar to that in primary tissues; the result was verified by using in situ reverse transcription-PCR (RT-PCR). This indicated that grouper fin was a suitable sample for NNV detection, in a manner that could be relatively benign to the fish. The rapid spread of NNV infection to the entire population of affected farms was evident. The developed real-time qPCR method is rapid, highly sensitive, and applicable to routine high-throughput detection of large numbers of samples and has potential as a suitable tool for diagnostic, epidemiological, and genetic studies of grouper aquaculture. PMID:21233077

  15. Application of real-time PCR for quantitative detection of Clostridium botulinum type A toxin gene in food.

    PubMed

    Yoon, So-Yeon; Chung, Gyung Tae; Kang, Do-Hyun; Ryu, Chunsun; Yoo, Cheon-Kwon; Seong, Won-Keun

    2005-01-01

    The TaqMan real-time PCR method for the quantitative detection of C. botulinum type A was developed based on sequence-specific hybridization probes. The validity of this assay was verified by using 10 genera of 20 strains, including reference strains of C. botulinum types A, B, C, D, E and F. The detection limit of this assay was evaluated on C. botulinum type A, using a 10-fold dilution series of DNA and spores . The DNA and spores were detected up to level of 0.1 ng/ml and 10(2)spores/ml, respectively. Spore spiked food sample preparation prior to the real-time PCR was performed by two methods, heat treatment and GuSCN. The detection limits after heat treatment showed 10(2) spores/ml for spiked sausage slurry, and 10(3) spores/ml for spiked canned corn slurry, while detection limits after GuSCN precipitation showed 10(2) spores/ml in both sausage and canned corn. Therefore the real-time PCR assay after GuSCN precipitation is useful for the quantification of C. botulinum type A because it showed identical CT values in both pure spore solutions and food slurries. We suggest that quantitative analysis of C. botulinum type A by TaqMan real-time PCR can be a rapid and accurate assessment method for botulinal risk in food samples.

  16. Detection and quantification limits of the EPA Enterococcus qPCR method

    EPA Science Inventory

    The U.S. EPA will be recommending a quantitative polymerase chain reaction (qPCR) method targeting Enterococcus spp. as an option for monitoring recreational beach water quality in 2013 and has published preliminary proposed water quality criteria guidelines for the method. An im...

  17. A Multiplexed, Probe-Based Quantitative PCR Assay for DNA of Phytophthora sojae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora sojae (Kaufm. & Gerd.) causes seed rot, pre- and post-emergence damping off, and sometimes foliar blight in soybean (Glycine max). Crop loss may approach 100% with susceptible cultivars. We report here the development of a unique quantitative PCR assay specific to DNA of P. sojae, and a...

  18. QUANTITATIVE PCR ANALYSIS OF HOUSE DUST CAN REVEAL ABNORMAL MOLD CONDITIONS

    EPA Science Inventory

    Indoor mold populations were measured in the dust of homes in Cleveland and Cincinnati, OH, by quantitative PCR (QPCR) and, in Cincinnati, also by culturing. QPCR assays for 82 species (or groups of species) were used to identify and quantify indoor mold populations in moldy home...

  19. QUANTITATIVE PCR ANALYSIS OF MOLDS IN THE DUST FROM HOMES OF ASTHMATIC CHILDREN IN NORTH CAROLINA

    EPA Science Inventory

    The vacuum bag (VB) dust was analyzed by mold specific quantitative PCR. These results were compared to the analysis survey calculated for each of the homes. The mean and standard deviation (SD) of the ERMI values in the homes of the NC asthmatic children was 16.4 (6.77), compa...

  20. Monitoring Aspergillus species by quantitative PCR during construction of a multi-storey hospital building.

    PubMed

    Morrison, J; Yang, C; Lin, K-T; Haugland, R A; Neely, A N; Vesper, S J

    2004-05-01

    During the enlargement of an existing hospital, quantitative polymerase chain reaction (PCR) was used to monitor Aspergillus spp. populations within the construction site. The rapid availability of results meant that the construction schedule was largely uninterrupted, while assuring that the new construction was free from contamination by the targeted Aspergillus spp.

  1. Detection of microcystin-producing cyanobacteria in Missisquoi Bay, Quebec, Canada, using quantitative PCR.

    PubMed

    Fortin, Nathalie; Aranda-Rodriguez, Rocio; Jing, Hongmei; Pick, Frances; Bird, David; Greer, Charles W

    2010-08-01

    Toxic cyanobacterial blooms, as well as their increasing global occurrence, pose a serious threat to public health, domestic animals, and livestock. In Missisquoi Bay, Lake Champlain, public health advisories have been issued from 2001 to 2009, and local microcystin concentrations found in the lake water regularly exceeded the Canadian drinking water guideline of 1.5 microg liter(-1). A quantitative PCR (Q-PCR) approach was developed for the detection of blooms formed by microcystin-producing cyanobacteria. Primers were designed for the beta-ketoacyl synthase (mcyD(KS)) and the first dehydratase domain (mcyD(DH)) of the mcyD gene, involved in microcystin synthesis. The Q-PCR method was used to track the toxigenic cyanobacteria in Missisquoi Bay during the summers of 2006 and 2007. Two toxic bloom events were detected in 2006: more than 6.5 x 10(4) copies of the mcyD(KS) gene ml(-1) were detected in August, and an average of 4.0 x 10(4) copies ml(-1) were detected in September, when microcystin concentrations were more than 4 microg liter(-1) and approximately 2 microg liter(-1), respectively. Gene copy numbers and total microcystin concentrations (determined by enzyme-linked immunosorbent assay [ELISA]) were highly correlated in the littoral (r = 0.93, P < 0.001) and the pelagic station (r = 0.87, P < 0.001) in 2006. In contrast to the situation in 2006, a cyanobacterial bloom occurred only in late summer-early fall of 2007, reaching only 3 x 10(2) mcyD(KS) copies ml(-1), while the microcystin concentration was barely detectable. The Q-PCR method allowed the detection of microcystin-producing cyanobacteria when toxins and toxigenic cyanobacterial abundance were still below the limit of detection by high-pressure liquid chromatography (HPLC) and microscopy. Toxin gene copy numbers grew exponentially at a steady rate over a period of 7 weeks. Onshore winds selected for cells with a higher cell quota of microcystin. This technique could be an effective approach for

  2. Effectiveness of real-time quantitative PCR compare to repeat PCR for the diagnosis of Charcot-Marie-Tooth Type 1A and hereditary neuropathy with liability to pressure palsies.

    PubMed

    Choi, Jong Rak; Lee, Woon Hyoung; Sunwoo, Il Nam; Lee, Eun Kyung; Lee, Chang Hoon; Lim, Jong Baeck

    2005-06-30

    The majority of cases of Charcot-Marie-Tooth type 1A (CMT1A) and of hereditary neuropathy with a liability to pressure palsies (HNPP) are the result of heterozygosity for the duplication or deletion of peripheral myelin protein 22 gene (PMP22) on 17p11.2. Southern blots, pulsed-field gel electrophoresis (PFGE), fluorescence in situ hybridization (FISH) and polymorphic marker analysis are currently used diagnostic methods. But they are time-consuming, labor-intensive and have some significant limitations. We describe a rapid real- time quantitative PCR method for determining gene copy number for the identification of DNA duplication or deletion occurring in CMT1A or HNPP and compare the results obtained with REP-PCR. Six patients with CMT1A and 14 patients with HNPP [confirmed by Repeat (REP)-PCR], and 16 patients with suspicious CMT1A and 13 patients with suspicious HNPP [negative REP-PCR], and 15 normal controls were studied. We performed REP-PCR, which amplified a 3.6 Kb region (including a 1.7Kb recombination hotspot), using specific CMT1A-REP and real-time quantitative PCR on the LightCycler system. Using a comparative threshold cycle (Ct) method and beta -globin as a reference gene, the gene copy number of the PMP22 gene was quantified. The PMP22 duplication ratio ranged from 1.35 to 1.74, and the PMP22 deletion ratio from 0.41 to 0.53. The PMP22 ratio in normal controls ranged from 0.81 to 1.12. All 6 patients with CMT1A and 14 patients with HNPP confirmed by REP-PCR were positive by real-time quantitative PCR. Among the 16 suspicious CMT1A and 13 suspicious HNPP with negative REP-PCR, 2 and 4 samples, respectively, were positive by real-time quantitative PCR. Real-time quantitative PCR is a more sensitive and more accurate method than REP-PCR for the detection of PMP22 duplications or deletions, and it is also faster and easier than currently available methods. Therefore, we believe that the real-time quantitative method is useful for diagnosing CMT1A and

  3. Easy-to-use strategy for reference gene selection in quantitative real-time PCR experiments.

    PubMed

    Klenke, Stefanie; Renckhoff, Kristina; Engler, Andrea; Peters, Jürgen; Frey, Ulrich H

    2016-12-01

    Real-time PCR is an indispensable technique for mRNA expression analysis but conclusions depend on appropriate reference gene selection. However, while reference gene selection has been a topic of publications, this issue is often disregarded when measuring target mRNA expression. Therefore, we (1) evaluated the frequency of appropriate reference gene selection, (2) suggest an easy-to-use tool for least variability reference gene selection, (3) demonstrate application of this tool, and (4) show effects on target gene expression profiles. All 2015 published articles in Naunyn-Schmiedeberg's Archives of Pharmacology were screened for the use of quantitative real-time PCR analysis and selection of reference genes. Target gene expression (Vegfa, Grk2, Sirt4, and Timp3) in H9c2 cells was analyzed following various interventions (hypoxia, hyperglycemia, and/or isoflurane exposure with and without subsequent hypoxia) in relation to putative reference genes (Actb, Gapdh, B2m, Sdha, and Rplp1) using the least variability method vs. an arbitrarily selected but established reference gene. In the vast majority (18 of 21) of papers, no information was provided regarding selection of an appropriate reference gene. In only 1 of 21 papers, a method of appropriate reference gene selection was described and in 2 papers reference gene selection remains unclear. The method of reference gene selection had major impact on interpretation of target gene expression. With hypoxia, for instance, the least variability gene was Rplp1 and target gene expression (Vefga) heavily showed a 2-fold up-regulation (p = 0.022) but no change (p = 0.3) when arbitrarily using Gapdh. Frequency of appropriate reference gene selection in this journal is low, and we propose our strategy for reference gene selection as an easy tool for proper target gene expression.

  4. Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples.

    PubMed

    Pawluczyk, Marta; Weiss, Julia; Links, Matthew G; Egaña Aranguren, Mikel; Wilkinson, Mark D; Egea-Cortines, Marcos

    2015-03-01

    Unbiased identification of organisms by PCR reactions using universal primers followed by DNA sequencing assumes positive amplification. We used six universal loci spanning 48 plant species and quantified the bias at each step of the identification process from end point PCR to next-generation sequencing. End point amplification was significantly different for single loci and between species. Quantitative PCR revealed that Cq threshold for various loci, even within a single DNA extraction, showed 2,000-fold differences in DNA quantity after amplification. Next-generation sequencing (NGS) experiments in nine species showed significant biases towards species and specific loci using adaptor-specific primers. NGS sequencing bias may be predicted to some extent by the Cq values of qPCR amplification.

  5. Development and evaluation of a real-time PCR assay for the quantitative detection of Theileria annulata in cattle

    PubMed Central

    2012-01-01

    Background The tick-borne apicomplexan bovine parasite Theileria annulata is endemic in many tropical and temperate areas, including Minorca (Balearic Islands, Spain). Real-time PCR is widely used for the detection of piroplasms but quantification is not commonly considered. Results We developed a real-time quantitative PCR (qPCR) assay for the detection and quantification of T. annulata that included an internal amplification control (IAC) to monitor for the presence of potential inhibitors. Specificity, sensitivity, precision, linear range and PCR efficiency were calculated and different methods for transformation of quantification cycle (Cq) values into quantities (Q) were evaluated. The assay was able to detect (100% probability) and quantify (linear response) 100 gene copies, and clinical sensitivity was set at 10 T. annulata per μl of blood. The assay was then validated on 141 bovine blood samples analyzed in parallel by a Luminex® suspension array, showing the utility of the qPCR assay developed here for the detection and quantification of the parasite in field conditions. Once validated it was used to monitor T. annulata parasitaemia throughout a year in 8 carrier animals from a farm in Minorca. Conclusions The developed qPCR assay offers a reliable and simple way to quantify T. annulata infection loads, which could prove crucial in studying the role of carrier animals as a source of the infection, or assessing the efficacy of treatment and control measures. PMID:22889141

  6. Development of a multiplex quantitative fluorescent PCR assay for identification of rearrangements in the AZFb and AZFc regions.

    PubMed

    Zhang, Jun; Li, Pei-qiong; Yu, Qi-hong; Chen, Hua-yun; Li, Juan; He, Yun-shao

    2008-06-01

    The azoospermia factor b (AZFb) and azoospermia factor c (AZFc) regions in the human Y chromosome consist of five palindromes constructed from six distinct families of amplicons and are prone to rearrangement. Partial deletion and duplication in the region can cause azoospermia or oligozoospermia and male infertility. The aim of the study was to establish a quantitative fluorescent PCR (QF-PCR) assay to classify AZFb and AZFc rearrangements. A single pair of fluorescent primers was designed to amplify simultaneously the amplicon in AZFc and the length-variant homologous sequences outside of the region as control. Since the copy number of the control sequences is fixed in the human genome, dosage of the target could be easily obtained through comparing the height of the fluorescent peaks between the target and the control after amplification with limited PCR cycles. Most types of rearrangements in AZFb and AZFc regions could be classified with QF-PCR containing four such primer pairs. Eleven types of rearrangement in AZFb and AZFc regions were well discriminated with QF-PCR. In conclusion, QF-PCR is a simple and reliable method to detect rearrangements in AZFb and AZFc.

  7. Use of propidium monoazide and increased amplicon length reduce false-positive signals in quantitative PCR for bioburden analysis.

    PubMed

    Schnetzinger, Franz; Pan, Youwen; Nocker, Andreas

    2013-03-01

    Rapid microbiological methods (RMMs) as an alternative to conventional cultivation-based bioburden analysis are receiving increasing attention although no single technology is currently able to satisfy the needs of the health care industry. Among the RMMs, quantitative PCR (qPCR) seems particularly suited. Its implementation is, however, hampered by false-positive signals originating from free DNA in PCR reagents or from dead cells in the samples to be analysed. In this study, we assessed the capability of propidium monoazide (PMA) to inactivate exogenous DNA in PCR reagents and thus to minimise its impact in bioburden analysis. PMA is a membrane-impermeant dye that intercalates into DNA and covalently binds to it upon photoactivation leading to strong inhibition of PCR amplification. PMA is currently used mainly for treatment of microbiological samples to exclude signals from membrane-compromised cells, but is also very useful for suppression of exogenous DNA signals. In addition to testing the effect of different PMA concentrations on non-template controls and target DNA, we demonstrate the effect of amplicon length on the exclusion of background amplification. Targeting a 1,108-bp 16S rRNA gene fragment using universal bacterial primers and PCR reagents treated with 5 μM PMA resulted in complete suppression of signals from exogenous DNA within 50 cycles of amplification, while a limit of detection of 10 copies of Escherichia coli genomic DNA per PCR reaction was achieved. A combined PMA treatment of sample and PCR reagents furthermore improved the selective detection of live cells making this method appear a highly attractive RMM.

  8. Blood grouping based on PCR methods and agarose gel electrophoresis.

    PubMed

    Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2015-01-01

    The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.

  9. Comparative evaluation of three commercial quantitative cytomegalovirus standards by use of digital and real-time PCR.

    PubMed

    Hayden, R T; Gu, Z; Sam, S S; Sun, Y; Tang, L; Pounds, S; Caliendo, A M

    2015-05-01

    The recent development of the 1st WHO International Standard for human cytomegalovirus (CMV) and the introduction of commercially produced secondary standards have raised hopes of improved agreement among laboratories performing quantitative PCR for CMV. However, data to evaluate the trueness and uniformity of secondary standards and the consistency of results achieved when these materials are run on various assays are lacking. Three concentrations of each of the three commercially prepared secondary CMV standards were tested in quadruplicate by three real-time and two digital PCR methods. The mean results were compared in a pairwise fashion with nominal values provided by each manufacturer. The agreement of results among all methods for each sample and for like concentrations of each standard was also assessed. The relationship between the nominal values of standards and the measured values varied, depending upon the assay used and the manufacturer of the standards, with the degree of bias ranging from +0.6 to -1.0 log10 IU/ml. The mean digital PCR result differed significantly among the secondary standards, as did the results of the real-time PCRs, particularly when plotted against nominal log10 IU values. Commercially available quantitative secondary CMV standards produce variable results when tested by different real-time and digital PCR assays, with various magnitudes of bias compared to nominal values. These findings suggest that the use of such materials may not achieve the intended uniformity among laboratories measuring CMV viral load, as envisioned by adaptation of the WHO standard.

  10. Quantitative real-time PCR (qPCR) for the detection and quantification of dactylogyrid parasites infecting Lutjanus guttatus.

    PubMed

    Soler-Jiménez, L C; García-Gasca, A; Fajer-Ávila, E J

    2017-03-07

    Severe infections of the spotted rose snapper Lutjanus guttatus resulting from dactylogyrid monogeneans present a risk to aquaculture. Currently, the diagnosis of this infection requires the morphological identification and manual quantification of parasites. Based on the characterization of the 28S rRNA gene of dactylogyrid species present in L. guttatus, specific primers were designed for real-time polymerase chain reaction (qPCR) using EvaGreen® chemistry. The standard curve method estimated the number of dactylogyrids accurately. A total of 85 gill samples from cage-cultured fish infected with dactylogyrids were analysed. The estimated number of dactylogyrids using this molecular method was very similar to the manual count that was performed initially. The standardized qPCR approach will be helpful as a complementary method for the early routine monitoring of dactylogyrid infections and for epidemiological studies in which a high number of fish must be studied.

  11. Application of propidium monoazide quantitative real-time PCR to quantify the viability of Lactobacillus delbrueckii ssp. bulgaricus.

    PubMed

    Shao, Yuyu; Wang, Zhaoxia; Bao, Qiuhua; Zhang, Heping

    2016-12-01

    In this study, a combination of propidium monoazide (PMA) and quantitative real-time PCR (qPCR) was used to develop a method to determine the viability of cells of Lactobacillus delbrueckii ssp. bulgaricus ND02 (L. bulgaricus) that may have entered into a viable but nonculturable state. This can happen due to its susceptibility to cold shock during lyophilization and storage. Propidium monoazide concentration, PMA incubation time, and light exposure time were optimized to fully exploit the PMA-qPCR approach to accurately assess the total number of living L. bulgaricus ND02. Although PMA has little influence on living cells, when concentrations of PMA were higher than 30μg/mL the number of PCR-positive living bacteria decreased from 10(6) to 10(5) cfu/mL in comparison with qPCR enumeration. Mixtures of living and dead cells were used as method verification samples for enumeration by PMA-qPCR, demonstrating that this method was feasible and effective for distinguishing living cells of L. bulgaricus when mixed with a known number of dead cells. We suggest that several conditions need to be studied further before PMA-qPCR methods can be accurately used to distinguish living from dead cells for enumeration under more realistic sampling situations. However, this research provides a rapid way to enumerate living cells of L. bulgaricus and could be used to optimize selection of cryoprotectants in the lyophilization process and develop technologies for high cell density cultivation and optimal freeze-drying processes.

  12. Quantitative real-time PCR analysis of total and propidium monoazide-resistant fecal indicator bacteria in wastewater.

    PubMed

    Varma, M; Field, R; Stinson, M; Rukovets, B; Wymer, L; Haugland, R

    2009-11-01

    A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. These methods were used in the analyses of wastewater samples to investigate their feasibility as alternatives to current fecal indicator bacteria culture methods for predicting the efficiency of viral pathogen removal by standard treatment processes. PMA treatment was effective in preventing qPCR detection of target sequences from non-viable cells. Concentrates of small volume, secondary-treated wastewater samples, collected from a publicly owned treatment works (POTW) under normal operating conditions, had little influence on this effectiveness. Higher levels of total suspended solids, such as those associated with normal primary treatment and all treatment stages during storm flow events, appeared to interfere with PMA effectiveness under the sample preparation conditions employed. During normal operating conditions at three different POTWs, greater reductions were observed in PMA-qPCR detectable target sequences of both Enterococcus and Bacteroidales than in total qPCR detectable sequences. These reductions were not as great as those observed for cultivable fecal indicator bacteria in response to wastewater disinfection. Reductions of PMA-qPCR as well as total qPCR detectable target sequences from enterococci and, to a lesser extent, Bacteroidales correlated well with reductions in infectious viruses during both normal and storm flow operating conditions and therefore may have predictive value in determining the efficiency at which these pathogens are removed.

  13. Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR.

    PubMed

    Hu, Meizhen; Hu, Wenbin; Xia, Zhiqiang; Zhou, Xincheng; Wang, Wenquan

    2016-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (real-time PCR, also referred to as quantitative RT-PCR or RT-qPCR) is a highly sensitive and high-throughput method used to study gene expression. Despite the numerous advantages of RT-qPCR, its accuracy is strongly influenced by the stability of internal reference genes used for normalizations. To date, few studies on the identification of reference genes have been performed on cassava (Manihot esculenta Crantz). Therefore, we selected 26 candidate reference genes mainly via the three following channels: reference genes used in previous studies on cassava, the orthologs of the most stable Arabidopsis genes, and the sequences obtained from 32 cassava transcriptome sequence data. Then, we employed ABI 7900 HT and SYBR Green PCR mix to assess the expression of these genes in 21 materials obtained from various cassava samples under different developmental and environmental conditions. The stability of gene expression was analyzed using two statistical algorithms, namely geNorm and NormFinder. geNorm software suggests the combination of cassava4.1_017977 and cassava4.1_006391 as sufficient reference genes for major cassava samples, the union of cassava4.1_014335 and cassava4.1_006884 as best choice for drought stressed samples, and the association of cassava4.1_012496 and cassava4.1_006391 as optimal choice for normally grown samples. NormFinder software recommends cassava4.1_006884 or cassava4.1_006776 as superior reference for qPCR analysis of different materials and organs of drought stressed or normally grown cassava, respectively. Results provide an important resource for cassava reference genes under specific conditions. The limitations of these findings were also discussed. Furthermore, we suggested some strategies that may be used to select candidate reference genes.

  14. Validation of Reference Genes for Relative Quantitative Gene Expression Studies in Cassava (Manihot esculenta Crantz) by Using Quantitative Real-Time PCR

    PubMed Central

    Hu, Meizhen; Hu, Wenbin; Xia, Zhiqiang; Zhou, Xincheng; Wang, Wenquan

    2016-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (real-time PCR, also referred to as quantitative RT-PCR or RT-qPCR) is a highly sensitive and high-throughput method used to study gene expression. Despite the numerous advantages of RT-qPCR, its accuracy is strongly influenced by the stability of internal reference genes used for normalizations. To date, few studies on the identification of reference genes have been performed on cassava (Manihot esculenta Crantz). Therefore, we selected 26 candidate reference genes mainly via the three following channels: reference genes used in previous studies on cassava, the orthologs of the most stable Arabidopsis genes, and the sequences obtained from 32 cassava transcriptome sequence data. Then, we employed ABI 7900 HT and SYBR Green PCR mix to assess the expression of these genes in 21 materials obtained from various cassava samples under different developmental and environmental conditions. The stability of gene expression was analyzed using two statistical algorithms, namely geNorm and NormFinder. geNorm software suggests the combination of cassava4.1_017977 and cassava4.1_006391 as sufficient reference genes for major cassava samples, the union of cassava4.1_014335 and cassava4.1_006884 as best choice for drought stressed samples, and the association of cassava4.1_012496 and cassava4.1_006391 as optimal choice for normally grown samples. NormFinder software recommends cassava4.1_006884 or cassava4.1_006776 as superior reference for qPCR analysis of different materials and organs of drought stressed or normally grown cassava, respectively. Results provide an important resource for cassava reference genes under specific conditions. The limitations of these findings were also discussed. Furthermore, we suggested some strategies that may be used to select candidate reference genes. PMID:27242878

  15. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    PubMed

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  16. A comparison of quantitative-competitive and realtime PCR assays using an identical target sequence to detect Epstein-Barr virus viral load in the peripheral blood.

    PubMed

    Xu, Shushen; Green, Michael; Kingsley, Laurence; Webber, Steven; Rowe, David

    2006-11-01

    Monitoring the load of Epstein-Barr virus (EBV) in the peripheral blood by quantitative PCR has been accepted as a useful tool for predicting the onset of EBV related diseases, confirming an EBV disease diagnosis and following the response to treatment interventions. In the present study, the use of a realtime polymerase chain reaction (rt-PCR) assay developed for unpurified cell preparations was examined and the results of the realtime assay were compared to an EBV quantitative-competitive PCR assay (QC-PCR). Both assays use the same target sequence and the same method for determining the standard value for the copy number of EBV genomes present. A comparison of 572 PCR results reveals that the realtime assay gave 5-10-fold higher values than the QC-PCR. Fifty-one results (8.9%) were discordant between the two sets of data. The most commonly encountered discordant result was detection of low amounts of EBV DNA by the rt-PCR assay that were not detected in specimens by QC-PCR. The two assays had a high degree of correlation across the range of load detection allowing clinically relevant threshold values determined in the QC-PCR assay to be inferred for the rt-PCR assay. External normalization of the rt-PCR assay was determined to be an important tool for monitoring the quality and/or quantity of human DNA in the starting material. rt-PCR assays with unpurified cell lysates compare favorably with quantitative-competitive assays and when normalized offer real advantages in specimen preparation, assay manipulations and reproducibility over both quantitative-competitive assays and realtime assays that require purified nucleic acid inputs.

  17. Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.

    PubMed

    Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D

    2002-12-20

    A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR.

  18. Using quantitative PCR with retrotransposon-based insertion polymorphisms as markers in sugarcane.

    PubMed

    Metcalfe, Cushla J; Oliveira, Sarah G; Gaiarsa, Jonas W; Aitken, Karen S; Carneiro, Monalisa S; Zatti, Fernanda; Van Sluys, Marie-Anne

    2015-07-01

    Sugarcane is the main source of the world's sugar and is becoming increasingly important as a source of biofuel. The highly polyploid and heterozygous nature of the sugarcane genome has meant that characterization of the genome has lagged behind that of other important crops. Here we developed a method using a combination of quantitative PCR with a transposable marker system to score the relative number of alleles with a transposable element (TE) present at a particular locus. We screened two genera closely related to Saccharum (Miscanthus and Erianthus), wild Saccharum, traditional cultivars, and 127 modern cultivars from Brazilian and Australian breeding programmes. We showed how this method could be used in various ways. First, we showed that the method could be extended to be used as part of a genotyping system. Secondly, the history of insertion and timing of the three TEs examined supports our current understanding of the evolution of the Saccharum complex. Thirdly, all three TEs were found in only one of the two main lineages leading to the modern sugarcane cultivars and are therefore the first TEs identified that could potentially be used as markers for Saccharum spontaneum.

  19. Using quantitative PCR with retrotransposon-based insertion polymorphisms as markers in sugarcane

    PubMed Central

    Metcalfe, Cushla J.; Oliveira, Sarah G.; Gaiarsa, Jonas W.; Aitken, Karen S.; Carneiro, Monalisa S.; Zatti, Fernanda; Van Sluys, Marie-Anne

    2015-01-01

    Sugarcane is the main source of the world’s sugar and is becoming increasingly important as a source of biofuel. The highly polyploid and heterozygous nature of the sugarcane genome has meant that characterization of the genome has lagged behind that of other important crops. Here we developed a method using a combination of quantitative PCR with a transposable marker system to score the relative number of alleles with a transposable element (TE) present at a particular locus. We screened two genera closely related to Saccharum (Miscanthus and Erianthus), wild Saccharum, traditional cultivars, and 127 modern cultivars from Brazilian and Australian breeding programmes. We showed how this method could be used in various ways. First, we showed that the method could be extended to be used as part of a genotyping system. Secondly, the history of insertion and timing of the three TEs examined supports our current understanding of the evolution of the Saccharum complex. Thirdly, all three TEs were found in only one of the two main lineages leading to the modern sugarcane cultivars and are therefore the first TEs identified that could potentially be used as markers for Saccharum spontaneum. PMID:26093024

  20. Highly sensitive and quantitative evaluation of the EGFR T790M mutation by nanofluidic digital PCR.

    PubMed

    Iwama, Eiji; Takayama, Koichi; Harada, Taishi; Okamoto, Isamu; Ookubo, Fumihiko; Kishimoto, Junji; Baba, Eishi; Oda, Yoshinao; Nakanishi, Yoichi

    2015-08-21

    The mutation of T790M in EGFR is a major mechanism of resistance to treatment with EGFR-TKIs. Only qualitative detection (presence or absence) of T790M has been described to date, however. Digital PCR (dPCR) analysis has recently been applied to the quantitative detection of target molecules in cancer with high sensitivity. In the present study, 25 tumor samples (13 obtained before and 12 after EGFR-TKI treatment) from 18 NSCLC patients with activating EGFR mutations were evaluated for T790M with dPCR. The ratio of the number of T790M alleles to that of activating mutation alleles (T/A) was determined. dPCR detected T790M in all 25 samples. Although T790M was present in all pre-TKI samples from 13 patients, 10 of these patients had a low T/A ratio and manifested substantial tumor shrinkage during treatment with EGFR-TKIs. In six of seven patients for whom both pre- and post-TKI samples were available, the T/A ratio increased markedly during EGFR-TKI treatment. Highly sensitive dPCR thus detected T790M in all NSCLC patients harboring activating EGFR mutations whether or not they had received EGFR-TKI treatment. Not only highly sensitive but also quantitative detection of T790M is important for evaluation of the contribution of T790M to EGFR-TKI resistance.

  1. Development of Multiplexed Real-Time Quantitative PCR Assay for Detecting Human Adenoviruses

    PubMed Central

    Huang, Meei-Li; Nguy, Long; Ferrenberg, James; Boeckh, Michael; Cent, Anne; Corey, Lawrence

    2008-01-01

    Adenoviruses (AdV) have been associated with a wide variety of human disease and are increasingly recognized as viral pathogens that can cause significant morbidity and mortality in immunocompromised patients. Early detection of AdV DNA in plasma and sterile fluids has been shown to be useful for identifying patients at risk for invasive AdV disease. Due to the large number of existing Adv types, few real-time quantitative AdV PCR assays published effectively cover all AdV types. We designed a series of AdV PCR primers and probes and empirically multiplexed them into two separate real-time PCR assays to quantitatively detect all 49 serotypes of human AdV (Types 1-49) available from ATCC. We then subsequently multiplexed all the primers and probes into one reaction. The sensitivity of these assays was determined to be less than 10 copies per reaction (500 copies/ml plasma). In a retrospective evaluation we detected all 84 clinical AdV isolates isolated in cell culture from patients undergoing hematopoietic stem cell transplant (HSCT) between 1981 and 1987. Prospective analysis of 46 consecutive clinical samples submitted for adenovirus testing showed greater sensitivity and equal specificity of the AdV PCR than viral culture. This real time PCR assay allows rapid, sensitive and specific quantification of all currently defined adenoviruses into either two or one multiplex assay for clinical samples. PMID:18707838

  2. Measurement of lentiviral vector titre and copy number by cross-species duplex quantitative PCR.

    PubMed

    Christodoulou, I; Patsali, P; Stephanou, C; Antoniou, M; Kleanthous, M; Lederer, C W

    2016-01-01

    Lentiviruses are the vectors of choice for many preclinical studies and clinical applications of gene therapy. Accurate measurement of biological vector titre before treatment is a prerequisite for vector dosing, and the calculation of vector integration sites per cell after treatment is as critical to the characterisation of modified cell products as it is to long-term follow-up and the assessment of risk and therapeutic efficiency in patients. These analyses are typically based on quantitative real-time PCR (qPCR), but as yet compromise accuracy and comparability between laboratories and experimental systems, the former by using separate simplex reactions for the detection of endogene and lentiviral sequences and the latter by designing different PCR assays for analyses in human cells and animal disease models. In this study, we validate in human and murine cells a qPCR system for the single-tube assessment of lentiviral vector copy numbers that is suitable for analyses in at least 33 different mammalian species, including human and other primates, mouse, pig, cat and domestic ruminants. The established assay combines the accuracy of single-tube quantitation by duplex qPCR with the convenience of one-off assay optimisation for cross-species analyses and with the direct comparability of lentiviral transduction efficiencies in different species.

  3. Automated Quantitative Nuclear Cardiology Methods

    PubMed Central

    Motwani, Manish; Berman, Daniel S.; Germano, Guido; Slomka, Piotr J.

    2016-01-01

    Quantitative analysis of SPECT and PET has become a major part of nuclear cardiology practice. Current software tools can automatically segment the left ventricle, quantify function, establish myocardial perfusion maps and estimate global and local measures of stress/rest perfusion – all with minimal user input. State-of-the-art automated techniques have been shown to offer high diagnostic accuracy for detecting coronary artery disease, as well as predict prognostic outcomes. This chapter briefly reviews these techniques, highlights several challenges and discusses the latest developments. PMID:26590779

  4. Quantitative Expression Analysis in Brassica napus by Northern Blot Analysis and Reverse Transcription-Quantitative PCR in a Complex Experimental Setting

    PubMed Central

    Rumlow, Annekathrin; Keunen, Els; Klein, Jan; Pallmann, Philip; Riemenschneider, Anja; Cuypers, Ann

    2016-01-01

    Analysis of gene expression is one of the major ways to better understand plant reactions to changes in environmental conditions. The comparison of many different factors influencing plant growth challenges the gene expression analysis for specific gene-targeted experiments, especially with regard to the choice of suitable reference genes. The aim of this study is to compare expression results obtained by Northern blot, semi-quantitative PCR and RT-qPCR, and to identify a reliable set of reference genes for oilseed rape (Brassica napus L.) suitable for comparing gene expression under complex experimental conditions. We investigated the influence of several factors such as sulfur deficiency, different time points during the day, varying light conditions, and their interaction on gene expression in oilseed rape plants. The expression of selected reference genes was indeed influenced under these conditions in different ways. Therefore, a recently developed algorithm, called GrayNorm, was applied to validate a set of reference genes for normalizing results obtained by Northern blot analysis. After careful comparison of the three methods mentioned above, Northern blot analysis seems to be a reliable and cost-effective alternative for gene expression analysis under a complex growth regime. For using this method in a quantitative way a number of references was validated revealing that for our experiment a set of three references provides an appropriate normalization. Semi-quantitative PCR was prone to many handling errors and difficult to control while RT-qPCR was very sensitive to expression fluctuations of the reference genes. PMID:27685087

  5. Detection and quantitation of HPV DNA replication by Southern blotting and real-time PCR.

    PubMed

    Morgan, Iain M; Taylor, Ewan R

    2005-01-01

    This provides a brief introduction into the mechanism of DNA replication by the E1 and E2 proteins and describes the traditional Southern blotting technique that is used to monitor E1- and E2-mediated DNA replication. It also includes a novel real-time polymerase chain reaction (PCR) approach for monitoring E1- and E2-mediated DNA replication that has enhanced sensitivity and quantitation compared with Southern blotting, and a discussion of when to use the Southern blotting and real-time PCR techniques.

  6. Use of Fluorescence Quantitative Polymerase Chain Reaction (PCR) for the Detection of Escherichia coli Adhesion to Pig Intestinal Epithelial Cells.

    PubMed

    Dai, C H; Gan, L N; Qin, W U; Zi, C; Zhu, G Q; Wu, S L; Bao, W B

    2016-09-01

    An efficient and accurate method to test Escherichia coli (E. coli) adhesion to intestinal epithelial cells will contribute to the study of bacterial pathogenesis and the function of genes that encode receptors related to adhesion. This study used the quantitative real-time polymerase chain reaction (qPCR) method. qPCR primers were designed from the PILIN gene of E. coli F18ab, F18ac, and K88ac, and the pig β-ACTIN gene. Total deoxyribonucleic acid (DNA) from E. coli and intestinal epithelial cells (IPEC-J2 cells) were used as templates for qPCR. The 2-ΔΔCt formula was used to calculate the relative number of bacteria in cultures of different areas. We found that the relative numbers of F18ab, F18ac, and K88ac that adhered to IPEC-J2 cells did not differ significantly in 6-, 12-, and 24-well culture plates. This finding indicated that there was no relationship between the relative adhesion number of E. coli and the area of cells, so the method of qPCR could accurately test the relative number of E. coli. This study provided a convenient and reliable testing method for experiments involving E. coli adhesion, and also provided innovative ideas for similar detection methods.

  7. Use of propidium monoazide for the enumeration of viable Brettanomyces bruxellensis in wine and beer by quantitative PCR.

    PubMed

    Vendrame, Marco; Manzano, Marisa; Comi, Giuseppe; Bertrand, Julien; Iacumin, Lucilla

    2014-09-01

    Brettanomyces bruxellensis is a current problem in winemaking all over the world, and the question if B. bruxellensis has a positive or negative impact on wine is one of the most controversial discussions in the world. The presence of live B. bruxellensis cells represents the risk of growth and an increase in cell numbers, which is related to the potential production of volatile phenols. In this work, the optimisation of a PMA-quantitative PCR (qPCR) method to enumerate only viable cells was carried out using the standard strain B. bruxellensis DSMZ 70726. The obtained detection limits were 0.83 log CFU/mL in red wine, 0.63 log CFU/mL in white wine and 0.23 log CFU/mL in beer. Moreover, the quantification was also performed by Reverse Transcription quantitative PCR (RT-qPCR), and the results showed a higher detection limit for all of the trials.

  8. Recent developments in the use of viability dyes and quantitative PCR in the food microbiology field.

    PubMed

    Elizaquível, P; Aznar, R; Sánchez, G

    2014-01-01

    The increase in foodborne outbreaks highlights the need for rapid, sensitive and specific methods for food safety monitoring, enabling specific detection and quantification of viable foodborne pathogens. Real-time PCR (qPCR) combined with the use of viability dyes, recently introduced, fulfils all these requirements. The strategy relies on the use of DNA-binding molecules such as propidium monoazide (PMA) or ethidium monoazide (EMA) as sample pretreatment previous to the qPCR. These molecules permeate only membrane-compromised cells and have successfully been applied for different types of foodborne pathogens, including bacteria and viruses. Moreover, those dyes have been explored to monitor different food manufacturing processes as an alternative to classical cultural methods. In this review, state-of-the-art information regarding viability PCR (v-PCR) is compiled.

  9. Quantitative PCR for HTLV-1 provirus in adult T-cell leukemia/lymphoma using paraffin tumor sections.

    PubMed

    Kato, Junki; Masaki, Ayako; Fujii, Keiichiro; Takino, Hisashi; Murase, Takayuki; Yonekura, Kentaro; Utsunomiya, Atae; Ishida, Takashi; Iida, Shinsuke; Inagaki, Hiroshi

    2016-11-01

    Detection of HTLV-1 provirus using paraffin tumor sections may assist the diagnosis of adult T-cell leukemia/lymphoma (ATLL). For the detection, non-quantitative PCR assay has been reported, but its usefulness and limitations remain unclear. To our knowledge, quantitative PCR assay using paraffin tumor sections has not been reported. Using paraffin sections from ATLLs and non-ATLL T-cell lymphomas, we first performed non-quantitative PCR for HTLV-1 provirus. Next, we determined tumor ratios and carried out quantitative PCR to obtain provirus copy numbers. The results were analyzed with a simple regression model and a novel criterion, cut-off using 95 % rejection limits. Our quantitative PCR assay showed an excellent association between tumor ratios and the copy numbers (r = 0.89, P < 0.0001). The 95 % rejection limits provided a statistical basis for the range for the determination of HTLV-1 involvement. Its application suggested that results of non-quantitative PCR assay should be interpreted very carefully and that our quantitative PCR assay is useful to estimate the status of HTLV-1 involvement in the tumor cases. In conclusion, our quantitative PCR assay using paraffin tumor sections may be useful for the screening of ATLL cases, especially in HTLV-1 non-endemic areas where easy access to serological testing for HTLV-1 infection is limited.

  10. Immunomagnetic quantitative immuno-PCR for detection of less than one HIV-1 virion.

    PubMed

    Barletta, Janet; Bartolome, Amelita; Constantine, Niel T

    2009-05-01

    Methods that allow the accurate and reliable detection of ultra-low molecular levels of proteins using techniques such as quantitative immuno-PCR (qIPCR) have demonstrated numerous technical difficulties. Protein detection methods lose specificity when the protein target is immersed within a matrix of thousands of molecules having wide ranges of concentrations. In addition, sensitivities are limited because of high background signals. To validate the performance of an immunomagnetic bead qIPCR method designed to remove the 'matrix' effect for HIV-1 p24 antigen detection, regression analyses were performed using samples from patients infected with HIV-1 diluted to approximately 100-1000, 10-100, 1-10, and 0.1-1.0 HIV-1 p24 Ag molecules/reaction. The number of HIV-1 p24 Ag molecules was derived from quantified HIV-1 RNA determinations. The modified immunomagnetic qIPCR bead assay demonstrated a limit of quantification of 10-100 HIV-1 p24 molecules per reaction, with an average correlation coefficient of 0.948+/-0.028 over a 4-log dynamic range. This method detects less than one HIV-1 virion (a limit of detection unreported previously for HIV-1), and thus, has the potential to identify HIV-1 infection and monitor the dynamics of the disease course earlier than nucleic acid methods. The immunomagnetic qIPCR bead assay is a simple and inexpensive method for ultra-low protein detection of infectious agents, toxins, and cancer markers at a level unrecognized previously using any enzymatic or molecular method.

  11. Organic Substances Interfere with Reverse Transcription-Quantitative PCR-Based Virus Detection in Water Samples

    PubMed Central

    Katayama, Hiroyuki; Furumai, Hiroaki

    2014-01-01

    Reverse transcription (RT)-PCR-based virus detection from water samples is occasionally hampered by organic substances that are coconcentrated during virus concentration procedures. To characterize these organic substances, samples containing commercially available humic acid, which is known to inhibit RT-PCR, and river water samples were subjected to adsorption-elution-based virus concentration using an electronegative membrane. In this study, the samples before, during, and after the concentration were analyzed in terms of organic properties and virus detection efficiencies. Two out of the three humic acid solutions resulted in RT-quantitative PCR (qPCR) inhibition that caused >3-log10-unit underestimation of spiked poliovirus. Over 60% of the organics contained in the two solutions were recovered in the concentrate, while over 60% of the organics in the uninhibited solution were lost during the concentration process. River water concentrates also caused inhibition of RT-qPCR. Organic concentrations in the river water samples increased by 2.3 to 3.9 times after the virus concentration procedure. The inhibitory samples contained organic fractions in the 10- to 100-kDa size range, which are suspected to be RT-PCR inhibitors. According to excitation-emission matrices, humic acid-like and protein-like fractions were also recovered from river water concentrates, but these fractions did not seem to affect virus detection. Our findings reveal that detailed organic analyses are effective in characterizing inhibitory substances. PMID:25527552

  12. Identification of stable reference genes for quantitative PCR in cells derived from chicken lymphoid organs.

    PubMed

    Borowska, D; Rothwell, L; Bailey, R A; Watson, K; Kaiser, P

    2016-02-01

    Quantitative polymerase chain reaction (qPCR) is a powerful technique for quantification of gene expression, especially genes involved in immune responses. Although qPCR is a very efficient and sensitive tool, variations in the enzymatic efficiency, quality of RNA and the presence of inhibitors can lead to errors. Therefore, qPCR needs to be normalised to obtain reliable results and allow comparison. The most common approach is to use reference genes as internal controls in qPCR analyses. In this study, expression of seven genes, including β-actin (ACTB), β-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-glucuronidase (GUSB), TATA box binding protein (TBP), α-tubulin (TUBAT) and 28S ribosomal RNA (r28S), was determined in cells isolated from chicken lymphoid tissues and stimulated with three different mitogens. The stability of the genes was measured using geNorm, NormFinder and BestKeeper software. The results from both geNorm and NormFinder were that the three most stably expressed genes in this panel were TBP, GAPDH and r28S. BestKeeper did not generate clear answers because of the highly heterogeneous sample set. Based on these data we will include TBP in future qPCR normalisation. The study shows the importance of appropriate reference gene normalisation in other tissues before qPCR analysis.

  13. Relative neurotoxin gene expression in clostridium botulinum type B, determined using quantitative reverse transcription-PCR.

    PubMed

    Lövenklev, Maria; Holst, Elisabet; Borch, Elisabeth; Rådström, Peter

    2004-05-01

    A quantitative reverse transcription-PCR (qRT-PCR) method was developed to monitor the relative expression of the type B botulinum neurotoxin (BoNT/B) gene (cntB) in Clostridium botulinum. The levels of cntB mRNA in five type B strains were accurately monitored by using primers specific for cntB and for the reference gene encoding the 16S rRNA. The patterns and relative expression of cntB were different in the different strains. Except for one of the strains investigated, an increase in cntB expression was observed when the bacteria entered the early stationary growth phase. In the proteolytic strain C. botulinum ATCC 7949, the level of cntB mRNA was four- to fivefold higher than the corresponding levels in the other strains. This was confirmed when we quantified the production of extracellular BoNT/B by an enzyme-linked immunosorbent assay and measured the toxicity of BoNT/B by a mouse bioassay. When the effect of exposure to air on cntB expression was investigated, no decline in the relative expression was observed in spite of an 83% reduction in the viable count based on the initial cell number. Instead, the level of cntB mRNA remained the same. When there was an increase in the sodium nitrite concentration, the bacteria needed a longer adjustment time in the medium before exponential growth occurred. In addition, there was a reduction in the expression of cntB compared to the expression of the 16S rRNA gene at higher sodium nitrite concentrations. This was most obvious in the late exponential growth phase, but at the highest sodium nitrite concentration investigated, 45 ppm, a one- to threefold decline in the cntB mRNA level was observed in all growth phases.

  14. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    PubMed

    Xie, Xingmei; Liang, Qiaoyi

    2014-01-01

    Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR). Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY), five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377), one X/Y-common STR (X22), and two autosomal STRs (D13S305 and D21S11). Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  15. Microfluidic Quantitative PCR for Simultaneous Quantification of Multiple Viruses in Environmental Water Samples

    PubMed Central

    Kitamura, Gaku; Segawa, Takahiro; Kobayashi, Ayano; Miura, Takayuki; Sano, Daisuke; Okabe, Satoshi

    2014-01-01

    To secure food and water safety, quantitative information on multiple pathogens is important. In this study, we developed a microfluidic quantitative PCR (MFQPCR) system to simultaneously quantify 11 major human viral pathogens, including adenovirus, Aichi virus, astrovirus, enterovirus, human norovirus, rotavirus, sapovirus, and hepatitis A and E viruses. Murine norovirus and mengovirus were also quantified in our MFQPCR system as a sample processing control and an internal amplification control, respectively. River water contaminated with effluents from a wastewater treatment plant in Sapporo, Japan, was collected and used to validate our MFQPCR system for multiple viruses. High-throughput quantitative information was obtained with a quantification limit of 2 copies/μl of cDNA/DNA. Using this MFQPCR system, we could simultaneously quantify multiple viral pathogens in environmental water samples. The viral quantities obtained using MFQPCR were similar to those determined by conventional quantitative PCR. Thus, the MFQPCR system developed in this study can provide direct and quantitative information for viral pathogens, which is essential for risk assessments. PMID:25261510

  16. Automated extraction and quantitation of oncogenic HPV genotypes from cervical samples by a real-time PCR-based system.

    PubMed

    Broccolo, Francesco; Cocuzza, Clementina E

    2008-03-01

    Accurate laboratory assays for the diagnosis of persistent oncogenic HPV infection are being recognized increasingly as essential for clinical management of women with cervical precancerous lesions. HPV viral load has been suggested to be a surrogate marker of persistent infection. Four independent real-time quantitative TaqMan PCR assays were developed for: HPV-16, -31, -18 and/or -45 and -33 and/or -52, -58, -67. The assays had a wide dynamic range of detection and a high degree of accuracy, repeatability and reproducibility. In order to minimize material and hands-on time, automated nucleic acid extraction was performed using a 96-well plate format integrated into a robotic liquid handler workstation. The performance of the TaqMan assays for HPV identification was assessed by comparing results with those obtained by means of PCR using consensus primers (GP5+/GP6+) and sequencing (296 samples) and INNO-LiPA analysis (31 samples). Good agreement was found generally between results obtained by real-time PCR assays and GP(+)-PCR system (kappa statistic=0.91). In conclusion, this study describes four newly developed real-time PCR assays that provide a reliable and high-throughput method for detection of not only HPV DNA but also HPV activity of the most common oncogenic HPV types in cervical specimens.

  17. Development and validation of a reverse transcription quantitative PCR for universal detection of viral hemorrhagic septicemia virus.

    PubMed

    Garver, Kyle A; Hawley, Laura M; McClure, Carol A; Schroeder, Tamara; Aldous, Sandra; Doig, Fiona; Snow, Michael; Edes, Sandra; Baynes, Catherine; Richard, Jon

    2011-06-16

    Viral hemorrhagic septicemia virus (VHSV) infects over 70 fish species inhabiting marine, brackish or freshwater environments throughout the Northern Hemisphere. Over its geographic range, 4 VHSV genotypes and multiple subtypes exist. Here, we describe the development and validation of a rapid, sensitive and specific real-time reverse transcription quantitative PCR assay (RT-qPCR) that amplifies sequence from representative isolates of all VHSV genotypes (I, II, III and IV). The pan-specific VHSV RT-qPCR assay reliably detects 100 copies of VHSV nucleoprotein RNA without cross-reacting with infectious hematopoietic necrosis virus, spring viremia of carp virus or aquatic birnavirus. Test performance characteristics evaluated on experimentally infected Atlantic salmon Salmo salar L. revealed a diagnostic sensitivity (DSe) > or = 93% and specificity (DSp) = 100%. The repeatability and reproducibility of the procedure was exceptionally high, with 93% agreement among test results within and between 2 laboratories. Furthermore, proficiency testing demonstrated the VHSV RT-qPCR assay to be easily transferred to and performed by a total of 9 technicians representing 4 laboratories in 2 countries. The assay performed equivalent to the traditional detection method of virus isolation via cell culture with the advantage of faster turnaround times and high throughput capacity, further suggesting the suitability of the use of this VHSV RT-qPCR in a diagnostic setting.

  18. Development of a real-time quantitative PCR assay to enumerate Yersinia pestis in fleas.

    PubMed

    Gabitzsch, Elizabeth S; Vera-Tudela, Rommelle; Eisen, Rebecca J; Bearden, Scott W; Gage, Kenneth L; Zeidner, Nordin S

    2008-07-01

    A real-time quantitative polymerase chain reaction (qPCR) assay was developed for Yersina pestis. The qPCR assay was developed utilizing a conserved region of the Y. pestis ferric iron uptake regulator gene (fur) to design primers and a fluorescent (FAM-labeled) TaqMan probe. The assay was optimized using cultured Y. pestis (UG05-0454) and was confirmed to work with strains from 3 Y. pestis biovars. The optimized assay was capable of detecting a single organism of cultured Y. pestis and as little as 300 bacteria in infected flea triturates. This qPCR assay enables rapid enumeration of Y. pestis bacterium in laboratory-infected fleas when compared with conventional serial dilution plating.

  19. The workflow of single-cell expression profiling using quantitative real-time PCR

    PubMed Central

    Ståhlberg, Anders; Kubista, Mikael

    2014-01-01

    Biological material is heterogeneous and when exposed to stimuli the various cells present respond differently. Much of the complexity can be eliminated by disintegrating the sample, studying the cells one by one. Single-cell profiling reveals responses that go unnoticed when classical samples are studied. New cell types and cell subtypes may be found and relevant pathways and expression networks can be identified. The most powerful technique for single-cell expression profiling is currently quantitative reverse transcription real-time PCR (RT-qPCR). A robust RT-qPCR workflow for highly sensitive and specific measurements in high-throughput and a reasonable degree of multiplexing has been developed for targeting mRNAs, but also microRNAs, non-coding RNAs and most recently also proteins. We review the current state of the art of single-cell expression profiling and present also the improvements and developments expected in the next 5 years. PMID:24649819

  20. Quantitative PCR estimates Angiostrongylus cantonensis (rat lungworm) infection levels in semi-slugs (Parmarion martensi)

    PubMed Central

    Jarvi, Susan I.; Farias, Margaret E.M.; Howe, Kay; Jacquier, Steven; Hollingsworth, Robert; Pitt, William

    2013-01-01

    The life cycle of the nematode Angiostrongylus cantonensis involves rats as the definitive host and slugs and snails as intermediate hosts. Humans can become infected upon ingestion of intermediate or paratenic (passive carrier) hosts containing stage L3 A. cantonensis larvae. Here, we report a quantitative PCR (qPCR) assay that provides a reliable, relative measure of parasite load in intermediate hosts. Quantification of the levels of infection of intermediate hosts is critical for determining A. cantonensis intensity on the Island of Hawaii. The identification of high intensity infection ‘hotspots’ will allow for more effective targeted rat and slug control measures. qPCR appears more efficient and sensitive than microscopy and provides a new tool for quantification of larvae from intermediate hosts, and potentially from other sources as well. PMID:22902292

  1. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits.

    PubMed

    Demeke, Tigst; Jenkins, G Ronald

    2010-03-01

    Biotechnology-derived varieties of canola, cotton, corn and soybean are being grown in the USA, Canada and other predominantly grain exporting countries. Although the amount of farmland devoted to production of biotechnology-derived crops continues to increase, lingering concerns that unintended consequences may occur provide the EU and most grain-importing countries with justification to regulate these crops. Legislation in the EU requires traceability of grains/oilseeds, food and feed products, and labelling, when a threshold level of 0.9% w/w of genetically engineered trait is demonstrated to be present in an analytical sample. The GE content is routinely determined by quantitative PCR (qPCR) and plant genomic DNA provides the template for the initial steps in this process. A plethora of DNA extraction methods exist for qPCR applications. Implementing standardized methods for detection of genetically engineered traits is necessary to facilitate grain marketing. The International Organization for Standardization draft standard 21571 identifies detergent-based methods and commercially available kits that are widely used for DNA extraction, but also indicates that adaptations may be necessary depending upon the sample matrix. This review assesses advantages and disadvantages of various commercially available DNA extraction kits, as well as modifications to published cetyltrimethylammonium bromide methods. Inhibitors are a major obstacle for efficient amplification in qPCR. The types of PCR inhibitors and techniques to minimize inhibition are discussed. Finally, accurate quantification of DNA for applications in qPCR is not trivial. Many confounders contribute to differences in analytical measurements when a particular DNA quantification method is applied and different methods do not always provide concordant results on the same DNA sample. How these differences impact measurement uncertainty in qPCR is considered.

  2. Detection and quantification of copper-denitrifying bacteria by quantitative competitive PCR.

    PubMed

    Qiu, X-Y; Hurt, R A; Wu, L-Y; Chen, C-H; Tiedje, J M; Zhou, J-Z

    2004-11-01

    We developed a quantitative competitive PCR (QC-PCR) system to detect and quantify copper-denitrifying bacteria in environmental samples. The primers were specific to copper-dependent nitrite reductase gene (nirK). We were able to detect about 200 copeis of nirK in the presence of abundant non-specific target DNA and about 1.2 x 10(3)Pseudomonas sp. G-179 cells from one gram of sterilized soil by PCR amplification. A 312-bp nirK internal standard (IS) was constructed, which showed very similar amplification efficiency with the target nirKfragment (349 bp) over 4 orders of magnitude (10(3)-10(6)). The accuracy of this system was evaluated by quantifying various known amount of nirK DNA. The linear regressions were obtained with a R(2) of 0.9867 for 10(3)copies of nirK, 0.9917 for 10(4) copies of nirK, 0.9899 for 10(5) copies of nirK and 0.9846 for 10(6) copies of nirK. A high correlation between measured nirK and calculated nirK (slope of 1.0398, R(2)=0.9992) demonstrated that an accurate measurement could be achieved with this system. Using this method, we quantified nirK in several A-horizon and stream sediment samples from eastern Tennessee. In general, the abundance of nirK was in the range of 10(8)-10(9) copies g soil(-1) dry weight. The nirK content in the soil samples appeared correlated with NH(4)(N) content in the soil. The activities of copper-denitrifying bacteria were evaluated by quantifying cDNA of nirK. In most of sample examined, the content of nirK cDNA was less than 10(5) copies g soil(-1) dry weight. Higher nirK cDNA content (>10(6) copies g soil(-1) dry weight) was detected from both sediment samples at Rattlebox Creek and the Walker Branch West Ridge. Although the stream sediment samples at the Walker Branch West Ridge contained less half of the nirK gene content as compared to A-horizon sample, the activities of copper-denitrifying bacteria were almost 600 times higher than in the A-horizon sample.

  3. Sensitive on-chip quantitative real-time PCR performed on an adaptable and robust platform.

    PubMed

    Lund-Olesen, Torsten; Dufva, Martin; Dahl, John Arne; Collas, Philippe; Hansen, Mikkel Fougt

    2008-12-01

    A robust, flexible and efficient system for performing high sensitivity quantitative on-chip real-time PCR for research purposes is presented. The chips used consist of microchannels etched in silicon. The surface in the channels is a thermally grown silicon dioxide and the channel is sealed by a glass lid. The chips contain four PCR chambers but this number can be increased for further multiplexing. Contrary to PCR chips with oil covered open chambers, these channel-like chambers are easily integrated in lab-on-a-chip devices. The temperature is controlled by a Peltier element and the fluorochrome detector system is a commercially available fluorescence stereo microscope equipped with a CCD camera. The setup shows an excellent signal-to-noise ratio of about 400 compared to that of about 150 obtained in a commercial real time PCR machine. A detection limit of a few copies of target molecules is found, which is 100 to 100,000-fold better than other on-chip real-time PCR systems presented in the literature. This demonstrates that the PCR system can be used for critical applications. We also demonstrate that high quality melting curves can be obtained. Such curves are important in lab-on-a-chip systems for identification of amplified product. The usability of the system is validated by performing quantitative on-chip measurements of the amount of specific gene sequences co-immunoprecipitated with various posttranslationally modified histone proteins. Similar results are obtained from on-chip experiments and experiments carried out in a commercial system on larger sample volumes.

  4. Determination of allele frequency in pooled DNA: comparison of three PCR-based methods.

    PubMed

    Wilkening, Stefan; Hemminki, Kari; Thirumaran, Ranjit Kumar; Bermejo, Justo Lorenzo; Bonn, Stefan; Försti, Asta; Kumar, Rajiv

    2005-12-01

    Determination of allele frequency in pooled DNA samples is a powerful and efficient tool for large-scale association studies. In this study, we tested and compared three PCR-based methods for accuracy, reproducibility, cost, and convenience. The methods compared were: (i) real-time PCR with allele-specific primers, (ii) real-time PCR with allele-specific TaqMan probes, and (iii) quantitative sequencing. Allele frequencies of three single nucleotide polymorphisms in three different genes were estimated from pooled DNA. The pools were made of genomic DNA samples from 96 cases with basal cell carcinoma of the skin and 96 healthy controls with known genotypes. In this study, the allele frequency estimation made by real-time PCR with allele-specific primers had the smallest median deviation (MD) from the real allele frequency with 1.12% (absolute percentage points) and was also the cheapest method. However; this method required the most time for optimization and showed the highest variation between replicates (SD = 6.47%). Quantitative sequencing, the simplest method, was found to have intermediate accuracies (MD = 1.44%, SD = 4.2%). Real-time PCR with TaqMan probes, a convenient but very expensive method, had an MD of 1.47% and the lowest variation between replicates (SD = 3.18%).

  5. Quantitation of Viral DNA by Real-Time PCR Applying Duplex Amplification, Internal Standardization, and Two-Color Fluorescence Detection

    PubMed Central

    Gruber, Franz; Falkner, Falko G.; Dorner, Friedrich; Hämmerle, Thomas

    2001-01-01

    A real-time PCR method was developed to quantitate viral DNA that includes duplex amplification, internal standardization, and two-color fluorescence detection without the need to generate an external standardization curve. Applied to human parvovirus B19 DNA, the linear range was from 102 to at least 5 × 106 copies per ml of sample. The coefficient of variation was 0.29 using a run control of 2,876 copies per ml. The method reduces the risk of false-negative results, yields high precision, and is applicable for other DNA targets. PMID:11375203

  6. Evaluation of Various Campylobacter-Specific Quantitative PCR (qPCR) Assays for Detection and Enumeration of Campylobacteraceae in Irrigation Water and Wastewater via a Miniaturized Most-Probable-Number–qPCR Assay

    PubMed Central

    Banting, Graham S.; Braithwaite, Shannon; Scott, Candis; Kim, Jinyong; Jeon, Byeonghwa; Ashbolt, Nicholas; Ruecker, Norma; Tymensen, Lisa; Charest, Jollin; Pintar, Katarina; Checkley, Sylvia

    2016-01-01

    ABSTRACT Campylobacter spp. are the leading cause of bacterial gastroenteritis worldwide, and water is increasingly seen as a risk factor in transmission. Here we describe a most-probable-number (MPN)–quantitative PCR (qPCR) assay in which water samples are centrifuged and aliquoted into microtiter plates and the bacteria are enumerated by qPCR. We observed that commonly used Campylobacter molecular assays produced vastly different detection rates. In irrigation water samples, detection rates varied depending upon the PCR assay and culture method used, as follows: 0% by the de Boer Lv1-16S qPCR assay, 2.5% by the Van Dyke 16S and Jensen glyA qPCR assays, and 75% by the Linton 16S endpoint PCR when cultured at 37°C. Primer/probe specificity was the major confounder, with Arcobacter spp. routinely yielding false-positive results. The primers and PCR conditions described by Van Dyke et al. (M. I. Van Dyke, V. K. Morton, N. L. McLellan, and P. M. Huck, J Appl Microbiol 109:1053–1066, 2010, http://dx.doi.org/10.1111/j.1365-2672.2010.04730.x) proved to be the most sensitive and specific for Campylobacter detection in water. Campylobacter occurrence in irrigation water was found to be very low (<2 MPN/300 ml) when this Campylobacter-specific qPCR was used, with the most commonly detected species being C. jejuni, C. coli, and C. lari. Campylobacters in raw sewage were present at ∼102/100 ml, with incubation at 42°C required for reducing microbial growth competition from arcobacters. Overall, when Campylobacter prevalence and/or concentration in water is reported using molecular methods, considerable validation is recommended when adapting methods largely developed for clinical applications. Furthermore, combining MPN methods with molecular biology-based detection algorithms allows for the detection and quantification of Campylobacter spp. in environmental samples and is potentially suited to quantitative microbial risk assessment for improved public health disease

  7. Quantitative PCR Analysis of Molds in the Dust from Homes of Asthmatic Children in North Carolina

    SciTech Connect

    Vesper, Stephen J.; McKinstry, Craig A.; Ashley, Peter; Haugland, Richard A.; Yeatts, Karin; Bradham, Karen; Svendsen, Eric

    2007-07-10

    The vacuum cleaner bag (VCB) dust from the homes of 19 asthmatic children in North Carolina (NC) was analyzed by mold specific quantitative PCR. These results were compared to the analysis of the VCB dust from 157 homes in the HUD “American Healthy Home Survey” of homes in the US. The American Relative Moldiness Index (ARMI) was calculated for each of the homes. The mean and standard deviation (SD) of the ARMI values in the homes of the NC asthmatic children was 11.0 (5.3), compared to the HUD survey VCB ARMI value mean and SD of 6.6 (4.4). The median ARMI value was significantly higher(p < 0.001) in the asthmatic childrens’s homes. The molds Chaetomium globosum and Eurotium amsterdameli were the primary species in the NC homes making the ARMI values higher. Vacuum cleaner bag dust samples may be a less expensive but still useful method of home mold analysis.

  8. Quantitative PCR analysis of molds in the dust from homes of asthmatic children in North Carolina.

    PubMed

    Vesper, Stephen; McKinstry, Craig; Ashley, Peter; Haugland, Richard; Yeatts, Karin; Bradham, Karen; Svendsen, Erik

    2007-08-01

    The vacuum bag (VB) dust from the homes of 19 asthmatic children in North Carolina (NC) was analyzed by mold specific quantitative PCR. These results were compared to the analysis of the VB dust from 176 homes in the HUD, American Healthy Home Survey of homes in the US. The Environmental Relative Moldiness Index (ERMI) was calculated for each of the homes. The mean and standard deviation (SD) of the ERMI values in the homes of the NC asthmatic children was 16.4 (6.77), compared to the HUD survey VB ERMI value mean and SD of 11.2 (6.72), and was significantly greater (t-test, p = 0.003) in the NC asthmatic children's homes. The molds Chaetomium globosum, Aspergillus fumigatus, and the Eurotium Group were the primary species in the NC homes of asthmatics, making the ERMI values significantly higher (p < 0.02 for each). Vacuum bag dust analysis may be a useful method for estimating the mold burden in a home.

  9. A two-step real-time PCR assay for quantitation and genotyping of human parvovirus 4.

    PubMed

    Väisänen, E; Lahtinen, A; Eis-Hübinger, A M; Lappalainen, M; Hedman, K; Söderlund-Venermo, M

    2014-01-01

    Human parvovirus 4 (PARV4) of the family Parvoviridae was discovered in a plasma sample of a patient with an undiagnosed acute infection in 2005. Currently, three PARV4 genotypes have been identified, however, with an unknown clinical significance. Interestingly, these genotypes seem to differ in epidemiology. In Northern Europe, USA and Asia, genotypes 1 and 2 have been found to occur mainly in persons with a history of injecting drug use or other parenteral exposure. In contrast, genotype 3 appears to be endemic in sub-Saharan Africa, where it infects children and adults without such risk behaviour. In this study, a novel straightforward and cost-efficient molecular assay for both quantitation and genotyping of PARV4 DNA was developed. The two-step method first applies a single-probe pan-PARV4 qPCR for screening and quantitation of this relatively rare virus, and subsequently, only the positive samples undergo a real-time PCR-based multi-probe genotyping. The new qPCR-GT method is highly sensitive and specific regardless of the genotype, and thus being suitable for studying the clinical impact and occurrence of the different PARV4 genotypes.

  10. A comparison of four methods for PCR inhibitor removal.

    PubMed

    Hu, Qingqing; Liu, Yuxuan; Yi, Shaohua; Huang, Daixin

    2015-05-01

    Biological samples collected from the crime scenes often contain some compounds that can inhibit the polymerase chain reaction (PCR). The removal of PCR inhibitors from the extracts prior to the PCR amplification is vital for successful forensic DNA typing. This paper aimed to evaluate the ability of four different methods (PowerClean® DNA Clean-Up kit, DNA IQ™ System, Phenol-Chloroform extraction and Chelex®-100 methods) to remove eight commonly encountered PCR inhibitors including: melanin, humic acid, collagen, bile salt, hematin, calcium ions, indigo and urea. Each of these PCR inhibitors was effectively removed by the PowerClean® DNA Clean-Up kit and DNA IQ™ System as demonstrated by generating more complete short tandem repeat (STR) profiles from the cleaned up inhibitor samples than from the raw inhibitor samples. The Phenol-Chloroform extraction and Chelex®-100 methods, however, could only remove some of eight PCR inhibitors. Our results demonstrated that the PowerClean® DNA Clean-Up kit and DNA IQ™ System were very effective for the removal of known PCR inhibitors that are routinely found in DNA extracts from forensic samples.

  11. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays.

    PubMed

    Kimura, Yasumasa; Soma, Takahiro; Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J L; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias

    2016-01-01

    Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download.

  12. Assessment of Legionella pneumophila in recreational spring water with quantitative PCR (Taqman) assay.

    PubMed

    Shen, Shu-Min; Chou, Ming-Yuan; Hsu, Bing-Mu; Ji, Wen-Tsai; Hsu, Tsui-Kang; Tsai, Hsiu-Feng; Huang, Yu-Li; Chiu, Yi-Chou; Kao, Erl-Shyh; Kao, Po-Min; Fan, Cheng-Wei

    2015-07-01

    Legionella spp. are common in various natural and man-made aquatic environments. Recreational hot spring is frequently reported as an infection hotspot because of various factors such as temperature and humidity. Although polymerase chain reaction (PCR) had been used for detecting Legionella, several inhibitors such as humic substances, calcium, and melanin in the recreational spring water may interfere with the reaction thus resulting in risk underestimation. The purpose of this study was to compare the efficiencies of conventional and Taqman quantitative PCR (qPCR) on detecting Legionella pneumophila in spring facilities and in receiving water. In the results, Taqman PCR had much better efficiency on specifying the pathogen in both river and spring samples. L. pneumophila was detected in all of the 27 river water samples and 45 of the 48 hot spring water samples. The estimated L. pneumophela concentrations ranged between 1.0 × 10(2) and 3.3 × 10(5) cells/l in river water and 72.1-5.7 × 10(6) cells/l in hot spring water. Total coliforms and turbidity were significantly correlated with concentrations of L. pneumophila in positive water samples. Significant difference was also found in water temperature between the presence/absence of L. pneumophila. Our results suggest that conventional PCR may be not enough for detecting L. pneumophila particularly in the aquatic environments full of reaction inhibitors.

  13. Merging Absolute and Relative Quantitative PCR Data to Quantify STAT3 Splice Variant Transcripts

    PubMed Central

    Turton, Keren B.; Esnault, Stephane; Delain, Larissa P.; Mosher, Deane F.

    2016-01-01

    Human signal transducer and activator of transcription 3 (STAT3) is one of many genes containing a tandem splicing site. Alternative donor splice sites 3 nucleotides apart result in either the inclusion (S) or exclusion (ΔS) of a single residue, Serine-701. Further downstream, splicing at a pair of alternative acceptor splice sites result in transcripts encoding either the 55 terminal residues of the transactivation domain (α) or a truncated transactivation domain with 7 unique residues (β). As outlined in this manuscript, measuring the proportions of STAT3's four spliced transcripts (Sα, Sβ, ΔSα and ΔSβ) was possible using absolute qPCR (quantitative polymerase chain reaction). The protocol therefore distinguishes and measures highly similar splice variants. Absolute qPCR makes use of calibrator plasmids and thus specificity of detection is not compromised for the sake of efficiency. The protocol necessitates primer validation and optimization of cycling parameters. A combination of absolute qPCR and efficiency-dependent relative qPCR of total STAT3 transcripts allowed a description of the fluctuations of STAT3 splice variants' levels in eosinophils treated with cytokines. The protocol also provided evidence of a co-splicing interdependence between the two STAT3 splicing events. The strategy based on a combination of the two qPCR techniques should be readily adaptable to investigation of co-splicing at other tandem splicing sites. PMID:27768061

  14. Assessment of Legionella pneumophila in recreational spring water with quantitative PCR (Taqman) assay

    PubMed Central

    Shen, Shu-Min; Chou, Ming-Yuan; Ji, Wen-Tsai; Hsu, Tsui-Kang; Tsai, Hsiu-Feng; Huang, Yu-Li; Chiu, Yi-Chou; Kao, Erl-Shyh; Kao, Po-Min; Fan, Cheng-Wei

    2015-01-01

    Legionella spp. are common in various natural and man-made aquatic environments. Recreational hot spring is frequently reported as an infection hotspot because of various factors such as temperature and humidity. Although polymerase chain reaction (PCR) had been used for detecting Legionella, several inhibitors such as humic substances, calcium, and melanin in the recreational spring water may interfere with the reaction thus resulting in risk underestimation. The purpose of this study was to compare the efficiencies of conventional and Taqman quantitative PCR (qPCR) on detecting Legionella pneumophila in spring facilities and in receiving water. In the results, Taqman PCR had much better efficiency on specifying the pathogen in both river and spring samples. L. pneumophila was detected in all of the 27 river water samples and 45 of the 48 hot spring water samples. The estimated L. pneumophela concentrations ranged between 1.0 × 102 and 3.3 × 105 cells/l in river water and 72.1–5.7 × 106 cells/l in hot spring water. Total coliforms and turbidity were significantly correlated with concentrations of L. pneumophila in positive water samples. Significant difference was also found in water temperature between the presence/absence of L. pneumophila. Our results suggest that conventional PCR may be not enough for detecting L. pneumophila particularly in the aquatic environments full of reaction inhibitors. PMID:26184706

  15. Hygienization by anaerobic digestion: comparison between evaluation by cultivation and quantitative real-time PCR.

    PubMed

    Lebuhn, M; Effenberger, M; Garcés, G; Gronauer, A; Wilderer, P A

    2005-01-01

    In order to assess hygienization by anaerobic digestion, a comparison between evaluation by cultivation and quantitative real-time PCR (qPCR) including optimized DNA extraction and quantification was carried out for samples from a full-scale fermenter cascade (F1, mesophilic; F2, thermophilic; F3, mesophilic). The system was highly effective in inactivating (pathogenic) viable microorganisms, except for spore-formers. Conventionally performed cultivation underestimated viable organisms particularly in F2 and F3 by a factor of at least 10 as shown by data from extended incubation times, probably due to the rise of sublethally injured (active but not cultivable) cells. Incubation should hence be extended adequately in incubation-based hygiene monitoring of stressed samples, in order to minimize contamination risks. Although results from qPCR and cultivation agreed for the equilibrated compartments, considerably higher qPCR values were obtained for the fermenters. The difference probably corresponded to DNA copies from decayed cells that had not yet been degraded by the residual microbial activity. An extrapolation from qPCR determination to the quantity of viable organisms is hence not justified for samples that had been exposed to lethal stress.

  16. Estimation of transgene copy number in transformed citrus plants by quantitative multiplex real-time PCR.

    PubMed

    Omar, Ahmad A; Dekkers, Marty G H; Graham, James H; Grosser, Jude W

    2008-01-01

    Quantitative real-time PCR (qRT-PCR) was adapted to estimate transgene copy number of the rice Xa21 gene in transgenic citrus plants. This system used TaqMan qRT-PCR and the endogenous citrus gene encoding for lipid transfer protein (LTP). Transgenic "Hamlin" sweet orange plants were generated using two different protoplast-GFP transformation systems: cotransformation and single plasmid transformation. A dilution series of genomic DNA from one of the transgenic lines was used to generate a standard curve for the endogenous LTP and the transgene Xa21. This standard curve was used for relative quantification of the endogenous gene and the transgene. Copy numbers of the transgene Xa21 detected from qRT-PCR analysis correlated with that from Southern blot analysis (r = 0.834). Thus, qRT-PCR is an efficient means of estimating copy number in transgenic citrus plants. This analysis can be performed at much earlier stages of transgenic plant development than southern blot analysis, which expedites investigation of transgenes in slow-growing woody plants.

  17. Enumeration of Parasitic Chytrid Zoospores in the Columbia River via Quantitative PCR

    PubMed Central

    Maier, Michelle A.

    2016-01-01

    ABSTRACT Through lethal infection, fungal parasites of phytoplankton (“chytrids”) repackage organic material from the large, effectively inedible, colonial diatoms they infect into much smaller zoospores, which are easier for zooplankton to consume. However, their small size and lack of distinguishing morphological features render it difficult to distinguish zoospores from other small flagellates in mixed assemblages in the natural environment. In this study, we developed and tested a method to quantify chytrid zoospores in field studies using quantitative PCR (qPCR) targeting the internal transcribed spacer 2 (ITS2) region within the rRNA gene cluster. To achieve accurate quantification, the assay was designed to be highly specific for a parasite (Rhizophydium planktonicum) of the diatom Asterionella formosa; however, the approach is applicable to additional host-parasite systems. Parasitic zoospores were detected and quantified in the freshwater reaches of the lower Columbia River, as well as in the salt-influenced estuary and river plume. The coincidence between zoospore abundances and a prevalence of small zooplankton during blooms of large, colonial diatoms in the spring suggests that Columbia River zooplankton may be poised to benefit nutritionally from chytrid zoospores, thus providing a mechanism to retain organic carbon within the system and reduce losses to downstream export. We estimate that ∼15% of the carbon biomass tied up in blooms of the dominant diatom species is transformed into zoospores through the parasitic shunt during spring. IMPORTANCE The small size of the parasitic fungi that infect phytoplankton makes it difficult to identify and quantify them in natural systems. We developed and tested a method to quantify these organisms (chytrid zoospores) using a molecular technique that targets the internal transcribed spacer region within the rRNA gene cluster. Using this method, we quantified the abundance of the motile stage of a specific

  18. Development of a quantitative competitive reverse transcription polymerase chain reaction (QC-RT-PCR) for detection and quantitation of Chikungunya virus.

    PubMed

    Sharma, Shashi; Dash, Paban Kumar; Santhosh, S R; Shukla, Jyoti; Parida, Manmohan; Rao, P V Lakshmana

    2010-05-01

    Chikungunya is one of the most important emerging arboviral infections of public health significance. Due to lack of a licensed vaccine, rapid diagnosis plays an important role in early management of patients. In this study, a QC-RT-PCR assay was developed to quantify Chikungunya virus (CHIKV) RNA by targeting the conserved region of E1 gene. A competitor molecule containing an internal insertion was generated, which provided a stringent control of the quantification process. The introduction of 10-fold serially diluted competitor in each reaction was further used to determine sensitivity. The applicability of this assay for quantification of CHIKV RNA was evaluated with human clinical samples, and the results were compared with real-time quantitative RT-PCR. The sensitivity of this assay was estimated to be 100 RNA copies per reaction with a dynamic detection range of 10(2) to 10(10) copies. Specificity was confirmed using closely related alpha and flaviviruses. The comparison of QC-RT-PCR result with real-time RT-PCR revealed 100% concordance for the detection of CHIKV in clinical samples. These findings demonstrated that the reported assay is convenient, sensitive and accurate method and has the potential usefulness for clinical diagnosis due to simultaneous detection and quantification of CHIKV in acute-phase serum samples.

  19. Qualitative versus quantitative methods in psychiatric research.

    PubMed

    Razafsha, Mahdi; Behforuzi, Hura; Azari, Hassan; Zhang, Zhiqun; Wang, Kevin K; Kobeissy, Firas H; Gold, Mark S

    2012-01-01

    Qualitative studies are gaining their credibility after a period of being misinterpreted as "not being quantitative." Qualitative method is a broad umbrella term for research methodologies that describe and explain individuals' experiences, behaviors, interactions, and social contexts. In-depth interview, focus groups, and participant observation are among the qualitative methods of inquiry commonly used in psychiatry. Researchers measure the frequency of occurring events using quantitative methods; however, qualitative methods provide a broader understanding and a more thorough reasoning behind the event. Hence, it is considered to be of special importance in psychiatry. Besides hypothesis generation in earlier phases of the research, qualitative methods can be employed in questionnaire design, diagnostic criteria establishment, feasibility studies, as well as studies of attitude and beliefs. Animal models are another area that qualitative methods can be employed, especially when naturalistic observation of animal behavior is important. However, since qualitative results can be researcher's own view, they need to be statistically confirmed, quantitative methods. The tendency to combine both qualitative and quantitative methods as complementary methods has emerged over recent years. By applying both methods of research, scientists can take advantage of interpretative characteristics of qualitative methods as well as experimental dimensions of quantitative methods.

  20. SYBR® Green and TaqMan® quantitative PCR arrays: expression profile of genes relevant to a pathway or a disease state.

    PubMed

    Alvarez, M Lucrecia; Doné, Stefania Cotta

    2014-01-01

    Quantitative PCR arrays are the most reliable and accurate tool for analyzing the expression of a focused panel of genes relevant to a pathway or a disease state. PCR arrays allow gene expression analysis with the sensitivity, dynamic range, and specificity of a real-time PCR as well as the multi-gene profiling capability of a microarray. Differences among real-time PCR kits used in PCR arrays are largely restricted to the DNA polymerases and the detection methods used. In this chapter, we provide a step-by-step protocol for the two detection methods most commonly used in PCR arrays, known as SYBR(®) Green and TaqMan(®), which are based on two different approaches to detect PCR products. While SYBR(®) Green uses a binding dye that intercalates nonspecifically into double-stranded DNA, the TaqMan(®) approach relies on a fluorogenic oligonucleotide probe that binds only the DNA sequence between the two PCR primers. Therefore, only specific PCR product can generate a fluorescent signal in TaqMan(®) PCR. Here we also provide a comparison of the SYBR(®) Green and TaqMan(®) approaches and highlight their advantages and disadvantages to help the user to choose the best platform.

  1. Selection and Validation of Reference Genes for Quantitative Real-time PCR in Gentiana macrophylla

    PubMed Central

    He, Yihan; Yan, Hailing; Hua, Wenping; Huang, Yaya; Wang, Zhezhi

    2016-01-01

    Real time quantitative PCR (RT-qPCR or qPCR) has been extensively applied for analyzing gene expression because of its accuracy, sensitivity, and high throughput. However, the unsuitable choice of reference gene(s) can lead to a misinterpretation of results. We evaluated the stability of 10 candidates – five traditional housekeeping genes (UBC21, GAPC2, EF-1α4, UBQ10, and UBC10) and five novel genes (SAND1, FBOX, PTB1, ARP, and Expressed1) – using the transcriptome data of Gentiana macrophylla. Common statistical algorithms ΔCt, GeNorm, NormFinder, and BestKeeper were run with samples collected from plants under various experimental conditions. For normalizing expression levels from tissues at different developmental stages, GAPC2 and UBC21 had the highest rankings. Both SAND1 and GAPC2 proved to be the optimal reference genes for roots from plants exposed to abiotic stresses while EF-1α4 and SAND1 were optimal when examining expression data from the leaves of stressed plants. Based on a comprehensive ranking of stability under different experimental conditions, we recommend that SAND1 and EF-1α4 are the most suitable overall. In this study, to find a suitable reference gene and its real-time PCR assay for G. macrophylla DNA content quantification, we evaluated three target genes including WRKY30, G10H, and SLS, through qualitative and absolute quantitative PCR with leaves under elicitors stressed experimental conditions. Arbitrary use of reference genes without previous evaluation can lead to a misinterpretation of the data. Our results will benefit future research on the expression of genes related to secoiridoid biosynthesis in this species under different experimental conditions. PMID:27446172

  2. Enumeration of viable and non-viable larvated Ascaris eggs with quantitative PCR

    EPA Science Inventory

    Aims: The goal of the study was to further develop an incubation-qPCR method for quantifying viable Ascaris eggs. The specific objectives were to characterize the detection limit and number of template copies per egg, determine the specificity of the method, and test the method w...

  3. Comparative Evaluation of Real-Time PCR Methods for Human Noroviruses in Wastewater and Human Stool

    PubMed Central

    Konta, Yoshimitsu; Kazama, Shinobu; Inaba, Manami; Imagawa, Toshifumi; Tohma, Kentaro; Saito, Mayuko; Suzuki, Akira; Oshitani, Hitoshi; Omura, Tatsuo

    2016-01-01

    Selecting the best quantitative PCR assay is essential to detect human norovirus genome effectively from clinical and environmental samples because no cell lines have been developed to propagate this virus. The real-time PCR methods for noroviruses GI (4 assays) and GII (3 assays) were evaluated using wastewater (n = 70) and norovirus-positive stool (n = 77) samples collected in Japan between 2012 and 2013. Standard quantitative PCR assays recommended by the U.S. Environmental Protection Agency, International Organization for Standardization, and Ministry of Health, Labour and Welfare, Japan, together with recently reported assays were included. Significant differences in positive rates and quantification cycles were observed by non-parametric analysis. The present study identifies the best assay for norovirus GI and GII to amplify norovirus genomes efficiently. PMID:27525654

  4. Variables influencing the efficiency and interpretation of reverse transcription quantitative PCR (RT-qPCR): An empirical study using Bacteriophage MS2.

    PubMed

    Miranda, Jaclyn A; Steward, Grieg F

    2017-03-01

    Reverse transcription, quantitative PCR (RT-qPCR) is a sensitive method for quantification of specific RNA targets, but the first step of the assay, reverse transcription, is notoriously variable and sensitive to reaction conditions. In this study, we used purified Bacteriophage MS2 genomic RNA as a model virus target to test two different RT enzymes (SuperScript II and SuperScript III), two RT-priming strategies (gene-specific primers and random hexamers), and varying background RNA concentrations (0-50ngμl(-1)) to determine how these variables influence the efficiency of reverse transcription over a range of target concentrations (10(1)-10(7) copies μl(-1)). The efficiency of the RT reaction was greatly improved by increasing both background RNA and primer concentrations, but the benefit provided by background RNA was source dependent. At a given target concentration, similar RT efficiencies were achieved with gene-specific primers and random hexamers, but the latter required much higher concentrations. With random hexamers, we observed a systematic variation in RT reaction efficiency as a function of target concentration. Using an RNA standard curve that was also subject to RT effectively normalized for this systematic variability, but the assay accuracy depended critically on the length of the standard RNA extending to the 3' end of the qPCR target site. Our results shed some light on previous contradictory conclusions in the literature, and provide insights that may aid in the design of RT-qPCR assays and the design of synthetic RNA standards when full-length material is not available.

  5. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. carinii

    PubMed Central

    Larsen, Hans Henrik; Kovacs, Joseph A.; Stock, Frida; Vestereng, Vibeke H.; Lundgren, Bettina; Fischer, Steven H.; Gill, Vee J.

    2002-01-01

    A method for reliable quantification of Pneumocystis carinii in research models of P. carinii pneumonia (PCP) that is more convenient and reproducible than microscopic enumeration of organisms would greatly facilitate investigations of this organism. We developed a rapid quantitative touchdown (QTD) PCR assay for detecting P. carinii f. sp. carinii, the subspecies of P. carinii commonly used in research models of PCP. The assay was based on the single-copy dihydrofolate reductase gene and was able to detect <5 copies of a plasmid standard per tube. It was reproducibly quantitative (r = 0.99) over 6 log values for standards containing ≥5 copies/tube. Application of the assay to a series of 10-fold dilutions of P. carinii organisms isolated from rat lung demonstrated that it was reproducibly quantitative over 5 log values (r = 0.99). The assay was applied to a recently reported in vitro axenic cultivation system for P. carinii and confirmed our microscopy findings that no organism multiplication had occurred during culture. For all cultures analyzed, QTD PCR assays showed a decrease in P. carinii DNA that exceeded the expected decrease due to dilution of the inoculum upon transfer. In conclusion, a rapid, sensitive, and reproducible quantitative PCR assay for P. carinii f. sp. carinii has been developed and is applicable to in vivo as well as in vitro systems. The assay should prove useful for conducting studies in which quantification of organism burden or growth assessment is critical, such as in vitro antimicrobic susceptibility testing or in vivo immunopathological experiments. PMID:12149363

  6. A quantitative real-time PCR assay for the identification and enumeration of Alexandrium cysts in marine sediments

    NASA Astrophysics Data System (ADS)

    Erdner, D. L.; Percy, L.; Keafer, B.; Lewis, J.; Anderson, D. M.

    2010-02-01

    Harmful algal blooms (HABs) are a global problem that affects both human and ecosystem health. One of the most serious and widespread HAB poisoning syndromes is paralytic shellfish poisoning, commonly caused by Alexandrium spp. dinoflagellates. Like many toxic dinoflagellates, Alexandrium produces resistant resting cysts as part of its life cycle. These cysts play a key role in bloom initiation and decline, as well as dispersal and colonization of new areas. Information on cyst numbers and identity is essential for understanding and predicting blooms, yet comprehensive cyst surveys are extremely time- and labor-intensive. Here we describe the development and validation of a quantitative real-time PCR (qPCR) technique for the enumeration of cysts of A. tamarense of the toxic North American/Group I ribotype. The method uses a cloned fragment of the large subunit ribosomal RNA gene as a standard for cyst quantification, with an experimentally determined conversion factor of 28,402±6152 LSU ribosomal gene copies per cyst. Tests of DNA extraction and PCR efficiency show that mechanical breakage is required for adequate cyst lysis, and that it was necessary to dilute our DNA extracts 50-fold in order to abolish PCR inhibition from compounds co-extracted from the sediment. The resulting assay shows a linear response over 6 orders of magnitude and can reliably quantify ≥10 cysts/cm 3 sediment. For method validation, 129 natural sediment samples were split and analyzed in parallel, using both the qPCR and primulin-staining techniques. Overall, there is a significant correlation ( p<0.001) between the cyst abundances determined by the two methods, although the qPCR counts tend to be lower than the primulin values. This underestimation is less pronounced in those samples collected from the top 1 cm of sediment, and more pronounced in those derived from the next 1-3 cm of the core. These differences may be due to the condition of the cysts in the different layers, as the

  7. Quantitative PCR Assays for Detecting Loach Minnow (Rhinichthys cobitis) and Spikedace (Meda fulgida) in the Southwestern United States

    PubMed Central

    Carim, Kellie J.; Paroz, Yvette M.; McKelvey, Kevin S.; Young, Michael K.; Schwartz, Michael K.

    2016-01-01

    Loach minnow (Rhinichthys cobitis) and spikedace (Meda fulgida) are legally protected with the status of Endangered under the U.S. Endangered Species Act and are endemic to the Gila River basin of Arizona and New Mexico. Efficient and sensitive methods for monitoring these species’ distributions are critical for prioritizing conservation efforts. We developed quantitative PCR assays for detecting loach minnow and spikedace DNA in environmental samples. Each assay reliably detected low concentrations of target DNA without detection of non-target species, including other cyprinid fishes with which they co-occur. PMID:27583576

  8. Mold Species in Dust from the International Space Station Identified and Quantified by Mold Specific Quantitative PCR

    NASA Technical Reports Server (NTRS)

    Vesper, Stephen J.; Wong, Wing; Kuo, C. Mike; Pierson, Duane L.

    2008-01-01

    Dust was collected over a period of several weeks in 2007 from various HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA-based method called mold specific quantitative PCR (MSQPCR), 39 molds were measured in the dust. Opportunistic pathogens Aspergillus flavus and A. niger and toxin producers Penicillium chrysogenum and P. brevicompactum were found at relatively high concentrations (compared to U.S. homes). No cells of the opportunistic pathogens A. fumigatus, A. terreus, Fusarium solani or Candida albicans were detected.

  9. Mold species in dust from the International Space Station identified and quantified by mold-specific quantitative PCR.

    PubMed

    Vesper, Stephen J; Wong, Wing; Kuo, C Mike; Pierson, Duane L

    2008-01-01

    Dust was collected over a period of several weeks in 2007 from HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved and the DNA was extracted. Using a DNA-based method called mold-specific quantitative PCR (MSQPCR), 39 molds were measured in the dust. Potential opportunistic pathogens Aspergillus flavus and Aspergillus niger and potential moderate toxin producers Penicillium chrysogenum and Penicillium brevicompactum were noteworthy. No cells of the potential opportunistic pathogens Aspergillus fumigatus, Aspergillus terreus, Fusarium solani or Candida albicans were detected.

  10. Reference gene validation for quantitative RT-PCR during biotic and abiotic stresses in Vitis vinifera.

    PubMed

    Borges, Alexandre Filipe; Fonseca, Catarina; Ferreira, Ricardo Boavida; Lourenço, Ana Maria; Monteiro, Sara

    2014-01-01

    Grapevine is one of the most cultivated fruit crop worldwide with Vitis vinifera being the species with the highest economical importance. Being highly susceptible to fungal pathogens and increasingly affected by environmental factors, it has become an important agricultural research area, where gene expression analysis plays a fundamental role. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is currently amongst the most powerful techniques to perform gene expression studies. Nevertheless, accurate gene expression quantification strongly relies on appropriate reference gene selection for sample normalization. Concerning V. vinifera, limited information still exists as for which genes are the most suitable to be used as reference under particular experimental conditions. In this work, seven candidate genes were investigated for their stability in grapevine samples referring to four distinct stresses (Erysiphe necator, wounding and UV-C irradiation in leaves and Phaeomoniella chlamydospora colonization in wood). The expression stability was evaluated using geNorm, NormFinder and BestKeeper. In all cases, full agreement was not observed for the three methods. To provide comprehensive rankings integrating the three different programs, for each treatment, a consensus ranking was created using a non-weighted unsupervised rank aggregation method. According to the last, the three most suitable reference genes to be used in grapevine leaves, regardless of the stress, are UBC, VAG and PEP. For the P. chlamydospora treatment, EF1, CYP and UBC were the best scoring genes. Acquaintance of the most suitable reference genes to be used in grapevine samples can contribute for accurate gene expression quantification in forthcoming studies.

  11. Reference Gene Validation for Quantitative RT-PCR during Biotic and Abiotic Stresses in Vitis vinifera

    PubMed Central

    Borges, Alexandre Filipe; Fonseca, Catarina; Ferreira, Ricardo Boavida; Lourenço, Ana Maria; Monteiro, Sara

    2014-01-01

    Grapevine is one of the most cultivated fruit crop worldwide with Vitis vinifera being the species with the highest economical importance. Being highly susceptible to fungal pathogens and increasingly affected by environmental factors, it has become an important agricultural research area, where gene expression analysis plays a fundamental role. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is currently amongst the most powerful techniques to perform gene expression studies. Nevertheless, accurate gene expression quantification strongly relies on appropriate reference gene selection for sample normalization. Concerning V. vinifera, limited information still exists as for which genes are the most suitable to be used as reference under particular experimental conditions. In this work, seven candidate genes were investigated for their stability in grapevine samples referring to four distinct stresses (Erysiphe necator, wounding and UV-C irradiation in leaves and Phaeomoniella chlamydospora colonization in wood). The expression stability was evaluated using geNorm, NormFinder and BestKeeper. In all cases, full agreement was not observed for the three methods. To provide comprehensive rankings integrating the three different programs, for each treatment, a consensus ranking was created using a non-weighted unsupervised rank aggregation method. According to the last, the three most suitable reference genes to be used in grapevine leaves, regardless of the stress, are UBC, VAG and PEP. For the P. chlamydospora treatment, EF1, CYP and UBC were the best scoring genes. Acquaintance of the most suitable reference genes to be used in grapevine samples can contribute for accurate gene expression quantification in forthcoming studies. PMID:25340748

  12. Development of Conventional and Real-Time Quantitative PCR Assays for Diagnosis and Monitoring of Scabies

    PubMed Central

    Wong, Samson S. Y.; Poon, Rosana W. S.; Chau, Sandy; Wong, Sally C. Y.; To, Kelvin K. W.; Cheng, Vincent C. C.; Fung, Kitty S. C.

    2015-01-01

    Scabies remains the most prevalent, endemic, and neglected ectoparasitic infestation globally and can cause institutional outbreaks. The sensitivity of routine microscopy for demonstration of Sarcoptes scabiei mites or eggs in skin scrapings is only about 50%. Except for three studies using conventional or two-tube nested PCR on a small number of cases, no systematic study has been performed to improve the laboratory diagnosis of this important infection. We developed a conventional and a real-time quantitative PCR (qPCR) assay based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of S. scabiei. The cox1 gene is relatively well conserved, with its sequence having no high levels of similarity to the sequences of other human skin mites, pathogenic zoonotic mites, or common house dust mite species. This mitochondrial gene is also present in large quantities in arthropod cells, potentially improving the sensitivity of a PCR-based assay. In our study, both assays were specific and were more sensitive than microscopy in diagnosing scabies, with positive and negative predictive values of 100%. The S. scabiei DNA copy number in the microscopy-positive specimens was significantly higher than that in the microscopy-negative specimens (median S. scabiei DNA copy number, 3.604 versus 2.457 log10 copies per reaction; P = 0.0213). In the patient with crusted scabies, the qPCR assay performed on lesional skin swabs instead of scrapings revealed that the parasite DNA load took about 2 weeks to become negative after treatment. The utility of using lesional skin swabs as an alternative sample for diagnosis of scabies by PCR should be further evaluated. PMID:25903566

  13. Real-time PCR-based assay for quantitative detection of Hematodinium sp. in the blue crab Callinectes sapidus.

    PubMed

    Nagle, L; Place, A R; Schott, E J; Jagus, R; Messick, G; Pitula, J S

    2009-03-09

    Hematodinium sp. is a parasitic dinoflagellate infecting the blue crab Callinectes sapidus and other crustaceans. PCR-based assays are currently being used to identify infections in crabs that would have been undetectable by traditional microscopic examination. We therefore sought to define the limits of quantitative PCR (qPCR) detection within the context of field collection protocols. We present a qPCR assay based on the Hematodinium sp. 18S rRNA gene that can detect 10 copies of the gene per reaction. Analysis of a cell dilution series vs. defined numbers of a cloned Hematodinium sp. 18S rRNA gene suggests a copy number of 10,000 per parasite and predicts a sensitivity of 0.001 cell equivalents. In practice, the assays are based on analysis of 1% of the DNA extracted from 200 microl of serum, yielding a theoretical detection limit of 5 cells ml(-1) hemolymph, assuming that 1 cell is present per sample. When applied to a limited field survey of blue crabs collected in Maryland coastal bays from May to August 2005, 24 of 128 crabs (18.8%) were identified as positive for Hematodinium sp. infection using qPCR. In comparison, only 6 of 128 crabs (4.7%) were identified as positive using traditional hemolymph microscopic examination. The qPCR method also detected the parasite in gill, muscle, heart and hepatopancreas tissues, with 17.2% of the crabs showing infection in at least one of these tissues. Importantly, it is now possible to enumerate parasites within defined quantities of crab tissue, which permits collection of more detailed information on the epizootiology of the pathogen.

  14. Genome-Wide Identification and Validation of Reference Genes in Infected Tomato Leaves for Quantitative RT-PCR Analyses

    PubMed Central

    Müller, Oliver A.; Grau, Jan; Thieme, Sabine; Prochaska, Heike; Adlung, Norman; Sorgatz, Anika; Bonas, Ulla

    2015-01-01

    The Gram-negative bacterium Xanthomonas campestris pv. vesicatoria (Xcv) causes bacterial spot disease of pepper and tomato by direct translocation of type III effector proteins into the plant cell cytosol. Once in the plant cell the effectors interfere with host cell processes and manipulate the plant transcriptome. Quantitative RT-PCR (qRT-PCR) is usually the method of choice to analyze transcriptional changes of selected plant genes. Reliable results depend, however, on measuring stably expressed reference genes that serve as internal normalization controls. We identified the most stably expressed tomato genes based on microarray analyses of Xcv-infected tomato leaves and evaluated the reliability of 11 genes for qRT-PCR studies in comparison to four traditionally employed reference genes. Three different statistical algorithms, geNorm, NormFinder and BestKeeper, concordantly determined the superiority of the newly identified reference genes. The most suitable reference genes encode proteins with homology to PHD finger family proteins and the U6 snRNA-associated protein LSm7. In addition, we identified pepper orthologs and validated several genes as reliable normalization controls for qRT-PCR analysis of Xcv-infected pepper plants. The newly identified reference genes will be beneficial for future qRT-PCR studies of the Xcv-tomato and Xcv-pepper pathosystems, as well as for the identification of suitable normalization controls for qRT-PCR studies of other plant-pathogen interactions, especially, if related plant species are used in combination with bacterial pathogens. PMID:26313760

  15. Genome-Wide Identification and Validation of Reference Genes in Infected Tomato Leaves for Quantitative RT-PCR Analyses.

    PubMed

    Müller, Oliver A; Grau, Jan; Thieme, Sabine; Prochaska, Heike; Adlung, Norman; Sorgatz, Anika; Bonas, Ulla

    2015-01-01

    The Gram-negative bacterium Xanthomonas campestris pv. vesicatoria (Xcv) causes bacterial spot disease of pepper and tomato by direct translocation of type III effector proteins into the plant cell cytosol. Once in the plant cell the effectors interfere with host cell processes and manipulate the plant transcriptome. Quantitative RT-PCR (qRT-PCR) is usually the method of choice to analyze transcriptional changes of selected plant genes. Reliable results depend, however, on measuring stably expressed reference genes that serve as internal normalization controls. We identified the most stably expressed tomato genes based on microarray analyses of Xcv-infected tomato leaves and evaluated the reliability of 11 genes for qRT-PCR studies in comparison to four traditionally employed reference genes. Three different statistical algorithms, geNorm, NormFinder and BestKeeper, concordantly determined the superiority of the newly identified reference genes. The most suitable reference genes encode proteins with homology to PHD finger family proteins and the U6 snRNA-associated protein LSm7. In addition, we identified pepper orthologs and validated several genes as reliable normalization controls for qRT-PCR analysis of Xcv-infected pepper plants. The newly identified reference genes will be beneficial for future qRT-PCR studies of the Xcv-tomato and Xcv-pepper pathosystems, as well as for the identification of suitable normalization controls for qRT-PCR studies of other plant-pathogen interactions, especially, if related plant species are used in combination with bacterial pathogens.

  16. Accurate, fast and cost-effective diagnostic test for monosomy 1p36 using real-time quantitative PCR.

    PubMed

    Cunha, Pricila da Silva; Pena, Heloisa B; D'Angelo, Carla Sustek; Koiffmann, Celia P; Rosenfeld, Jill A; Shaffer, Lisa G; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5-0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.

  17. Reference gene selection for real-time quantitative PCR analysis of the mouse uterus in the peri-implantation period.

    PubMed

    Lin, Pengfei; Lan, Xiangli; Chen, Fenglei; Yang, Yanzhou; Jin, Yaping; Wang, Aihua

    2013-01-01

    The study of uterine gene expression patterns is valuable for understanding the biological and molecular mechanisms that occur during embryo implantation. Real-time quantitative RT-PCR (qRT-PCR) is an extremely sensitive technique that allows for the precise quantification of mRNA abundance; however, selecting stable reference genes suitable for the normalization of qRT-PCR data is required to avoid the misinterpretation of experimental results and erroneous analyses. This study employs several mouse models, including an early pregnancy, a pseudopregnancy, a delayed implantation and activation, an artificial decidualization and a hormonal treatment model; ten candidate reference genes (PPIA, RPLP0, HPRT1, GAPDH, ACTB, TBP, B2M, 18S, UBC and TUBA) that are found in uterine tissues were assessed for their suitability as internal controls for relative qRT-PCR quantification. GeNorm(PLUS), NormFinder, and BestKeeper were used to evaluate these candidate reference genes, and all of these methods identified RPLP0 and GAPDH as the most stable candidates and B2M and 18S as the least stable candidates. However, when the different models were analyzed separately, the reference genes exhibited some variation in their expression levels.

  18. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    PubMed Central

    Cunha, Pricila da Silva; Pena, Heloisa B.; D'Angelo, Carla Sustek; Koiffmann, Celia P.; Rosenfeld, Jill A.; Shaffer, Lisa G.; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs. PMID:24839341

  19. Detection of aneuploidies in spontaneous abortions by quantitative fluorescent PCR with short tandem repeat markers: a retrospective study.

    PubMed

    Coelho, F F; Marques, F K; Gonçalves, M S; Almeida, V C O; Mateo, E C C; Ferreira, A C S

    2016-09-23

    Approximately 10-15% of all pregnancies end in spontaneous abortions. Many factors can lead to embryonic loss; however, it has been well established that over 50% of all miscarriages result from chromosomal abnormalities, primarily aneuploidies (>96%). Identifying the cause of miscarriage can significantly reduce the psychological stress in women, and enable better genetic counseling for a future pregnancy. Quantitative fluorescent polymerase chain reaction (QF-PCR) has been previously used in the study of chromosomal abnormalities. In this retrospective study, the frequency of aneuploidy in samples of 130 miscarriages undergone by patients (age average: 34.1 ± 4.6 years) at our institution was determined by QF-PCR using short tandem repeat markers. The gender of the miscarriage cases was determined by amplifying the amelogenin locus (70 males and 60 females). Seventy-one of these cases (54.6%) presented aneuploidies such as trisomy, monosomy, triploidy, and double trisomy. Trisomy 22 was the most common aneuploidy (present in 14 cases), followed by trisomy 15, trisomy 16, and monosomy X. We also observed monosomy at chromosomes X and 21 and a case with multiple aneuploidies at chromosomes 16 and 22. The most common aneuploidies associated with miscarriages were detected by QF-PCR; therefore, we concluded that QF-PCR is a rapid and reliable method for the detection of aneuploidy, and can be used as an accessory to the widely used karyotype analysis.

  20. Identification of appropriate reference genes for human mesenchymal stem cell analysis by quantitative real-time PCR.

    PubMed

    Li, Xiuying; Yang, Qiwei; Bai, Jinping; Xuan, Yali; Wang, Yimin

    2015-01-01

    Normalization to a reference gene is the method of choice for quantitative reverse transcription-PCR (RT-qPCR) analysis. The stability of reference genes is critical for accurate experimental results and conclusions. We have evaluated the expression stability of eight commonly used reference genes found in four different human mesenchymal stem cells (MSC). Using geNorm, NormFinder and BestKeeper algorithms, we show that beta-2-microglobulin and peptidyl-prolylisomerase A were the optimal reference genes for normalizing RT-qPCR data obtained from MSC, whereas the TATA box binding protein was not suitable due to its extensive variability in expression. Our findings emphasize the significance of validating reference genes for qPCR analyses. We offer a short list of reference genes to use for normalization and recommend some commercially-available software programs as a rapid approach to validate reference genes. We also demonstrate that the two reference genes, β-actin and glyceraldehyde-3-phosphate dehydrogenase, are frequently used are not always successful in many cases.

  1. DEVELOPMENT OF SEMI-QUANTITATIVE PCR ASSAYS FOR THE DETECTION AND ENUMERATION OF GAMBIERDISCUS SPECIES (GONYAULACALES, DINOPHYCEAE)(1).

    PubMed

    Vandersea, Mark W; Kibler, Steven R; Holland, William C; Tester, Patricia A; Schultz, Thomas F; Faust, Maria A; Holmes, Michael J; Chinain, Mirelle; Wayne Litaker, R

    2012-08-01

    Ciguatera fish poisoning (CFP) is a serious health problem in tropical regions and is caused by the bioaccumulation of lipophilic toxins produced by dinoflagellates in the genus Gambierdiscus. Gambierdiscus species are morphologically similar and are difficult to distinguish from one another even when using scanning electron microscopy. Improved identification and detection methods that are sensitive and rapid are needed to identify toxic species and investigate potential distribution and abundance patterns in relation to incidences of CFP. This study presents the first species-specific, semi-quantitative polymerase chain reaction (qPCR) assays that can be used to address these questions. These assays are specific for five Gambierdiscus species and one undescribed ribotype. The assays utilized a SYBR green format and targeted unique sequences found within the SSU, ITS, and the D1/D3 LSU ribosomal domains. Standard curves were constructed using known concentrations of cultured cells and 10-fold serial dilutions of rDNA PCR amplicons containing the target sequence for each specific assay. Assay sensitivity and accuracy were tested using DNA extracts purified from known concentrations of multiple Gambierdiscus species. The qPCR assays were used to assess Gambierdiscus species diversity and abundance in samples collected from nearshore areas adjacent to Ft. Pierce and Jupiter, Florida USA. The results indicated that the practical limit of detection for each assay was 10 cells per sample. Most interestingly, the qPCR analysis revealed that as many as four species of Gambierdiscus were present in a single macrophyte sample.

  2. Competitor template RNA for detection and quantitation of hepatitis A virus by PCR.

    PubMed

    Goswami, B B; Koch, W H; Cebula, T A

    1994-01-01

    PCR was used to introduce a 63-bp deletion into the putative RNA replicase coding sequence of hepatitis A virus. RNA was synthesized in vitro from the deletion mutant cloned into a transcription vector. Upon amplification by PCR, cDNA made from the competitor RNA generated an amplified fragment that could be easily distinguished from the product generated from wild-type hepatitis A virus genomic RNA by gel electrophoresis, when the same primers were used, without further manipulation. The competitor RNA was used as a positive control in PCR-based detection of very low copy numbers of hepatitis A virus genomic RNA in the presence of unrelated hard-shell clam RNA. When the competitor RNA was used for competitive PCR to quantitate wild-type RNA, the presence of one template at a 10-fold to 100-fold higher level almost completely inhibited product formation from the underrepresented template. The competitor RNA should be useful as a control for reverse transcription and PCRs to determine hepatitis A virus genome RNA when accidental contamination of test samples by a wild-type positive control template would compromise the results.

  3. Real-time PCR assay for rapid qualitative and quantitative detection of Entamoeba histolytica.

    PubMed

    Orosz, Erika; Perkátai, Katalin; Kapusinszky, Beatrix; Farkas, Agnes; Kucsera, István

    2012-12-01

    Simple real-time PCR assay with one set of primer and probe for rapid, sensitive qualitative and quantitative detection of Entamoeba histolytica has been used. Consensus sequences were used to amplify a species-specific region of the 16S rRNA gene, and fluorescence resonance energy transfer hybridization probes were used for detection in a LightCycler platform (Roche). The anchor probe sequence was designed to be a perfect match for the 16S rRNA gene of Entamoeba species, while the acceptor probe sequence was designed for Entamoeba histolytica, which allowed differentiation. The performed characteristics of the real-time PCR assay were compared with ELISA antigen and microscopical detection from 77 samples of individuals with suspected clinical diagnosis of imported E. histolytica infection. Stool and liver abscess pus samples were examined with analytical sensitivity of 5 parasites per PCR reaction. The melting curve means Tms (standard deviation) in clinical isolates were 54°C. The real-time assay was 100% sensitive and specific for differentiation of Entamoeba histolytica, compared with conventional ELISA or microscopy. This real-time PCR assay with melting curve analysis is rapid, and specific for the detection and differentiation of Entamoeba histolytica. The suitability for routine use of this assay in clinical diagnostic laboratories is discussed.

  4. Evaluation of Reference Genes for Quantitative Real-Time PCR in Songbirds

    PubMed Central

    Zinzow-Kramer, Wendy M.; Horton, Brent M.; Maney, Donna L.

    2014-01-01

    Quantitative real-time PCR (qPCR) is becoming a popular tool for the quantification of gene expression in the brain and endocrine tissues of songbirds. Accurate analysis of qPCR data relies on the selection of appropriate reference genes for normalization, yet few papers on songbirds contain evidence of reference gene validation. Here, we evaluated the expression of ten potential reference genes (18S, ACTB, GAPDH, HMBS, HPRT, PPIA, RPL4, RPL32, TFRC, and UBC) in brain, pituitary, ovary, and testis in two species of songbird: zebra finch and white-throated sparrow. We used two algorithms, geNorm and NormFinder, to assess the stability of these reference genes in our samples. We found that the suitability of some of the most popular reference genes for target gene normalization in mammals, such as 18S, depended highly on tissue type. Thus, they are not the best choices for brain and gonad in these songbirds. In contrast, we identified alternative genes, such as HPRT, RPL4 and PPIA, that were highly stable in brain, pituitary, and gonad in these species. Our results suggest that the validation of reference genes in mammals does not necessarily extrapolate to other taxonomic groups. For researchers wishing to identify and evaluate suitable reference genes for qPCR songbirds, our results should serve as a starting point and should help increase the power and utility of songbird models in behavioral neuroendocrinology. PMID:24780145

  5. Development of quantitative real-time PCR for detection and enumeration of Enterobacteriaceae.

    PubMed

    Takahashi, Hajime; Saito, Rumi; Miya, Satoko; Tanaka, Yuichiro; Miyamura, Natsumi; Kuda, Takashi; Kimura, Bon

    2017-04-04

    The family Enterobacteriaceae, members of which are widely distributed in the environment, includes many important human pathogens. In this study, a rapid real-time PCR method targeting rplP, coding for L16 protein, a component of the ribosome large subunit, was developed for enumerating Enterobacteriaceae strains, and its efficiency was evaluated using naturally contaminated food products. The rplP-targeted real-time PCR amplified Enterobacteriaceae species with Ct values of 14.0-22.8, whereas the Ct values for non-Enterobacteriaceae species were >30, indicating the specificity of this method for the Enterobacteriaceae. Using a calibration curve of Ct=-3.025 (log CFU/g)+37.35, which was calculated from individual plots of the cell numbers in different concentrations of 5 Enterobacteriaceae species, the rplP-targeted real-time PCR was applied to 51 food samples. A <1log difference between the real-time PCR and culture methods was obtained in a majority of the food samples (81.8%), with good correlation (r(2)=0.8285). This study demonstrated that the rplP-targeted real-time PCR method could detect and enumerate Enterobacteriaceae species in foods rapidly and accurately, and therefore, it can be used for the microbiological risk analysis of foods.

  6. Identification of Alocasia odora (Kuwazuimo in Japanese) Using PCR Method.

    PubMed

    Hagino, Kayo; Nakano, Hisako; Shimizu, Motomu; Terai, Akiko; Ogai, Mami; Aragane, Masako; Abe, Tomohiro; Sasamoto, Takeo

    2017-01-01

    Kuwazuimo (Alocasia odora) and shimakuwazuimo (Alocasia cucullata) are evergreen perennial plants that originated in East Asia. Although inedible, they are occasionally eaten by mistake because they resemble satoimo (Colocasia esculenta), and this has caused food poisoning in Japan. It is not easy to determine the cause of a food poisoning outbreak from the shape or chemical composition when the available sample is small. Therefore, we developed a new primer pair for PCR to identify kuwazuimo and shimakuwazuimo in small samples, based on the internal transcribed spacer (ITS) region of ribosomal DNA. Using PCR with the developed primer pair, we detected all samples of kuwazuimo obtained from the market, while excluding 17 other kinds of crops. The samples were identified as shimakuwazuimo by DNA sequencing of the PCR products. The present PCR method showed high specificity and was confirmed to be applicable to the identification of kuwazuimo and shimakuwazuimo from various crops.

  7. Evaluation of postmortem bacterial migration using culturing and real-time quantitative PCR.

    PubMed

    Tuomisto, Sari; Karhunen, Pekka J; Vuento, Risto; Aittoniemi, Janne; Pessi, Tanja

    2013-07-01

    Postmortem bacteriology can be a valuable tool for evaluating deaths due to bacterial infection or for researching the involvement of bacteria in various diseases. In this study, time-dependent postmortem bacterial migration into liver, mesenteric lymph node, pericardial fluid, portal, and peripheral vein was analyzed in 33 autopsy cases by bacterial culturing and real-time quantitative polymerase chain reaction (RT-qPCR). None suffered or died from bacterial infection. According to culturing, pericardial fluid and liver were the most sterile samples up to 5 days postmortem. In these samples, multigrowth and staphylococci were not or rarely detected. RT-qPCR was more sensitive and showed higher bacterial positivity in all samples. Relative amounts of intestinal bacterial DNA (bifidobacteria, bacteroides, enterobacter, clostridia) increased with time. Sterility of blood samples was low during the studied time periods (1-7 days). The best postmortem microbiological sampling sites were pericardial fluid and liver up to 5 days after death.

  8. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    NASA Astrophysics Data System (ADS)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  9. Threshold microsclerotial inoculum for cotton verticillium wilt determined through wet-sieving and real-time quantitative PCR.

    PubMed

    Wei, Feng; Fan, Rong; Dong, Haitao; Shang, Wenjing; Xu, Xiangming; Zhu, Heqin; Yang, Jiarong; Hu, Xiaoping

    2015-02-01

    Quantification of Verticillium dahliae microsclerotia is an important component of wilt management on a range of crops. Estimation of microsclerotia by dry or wet sieving and plating of soil samples on semiselective medium is a commonly used technique but this method is resource-intensive. We developed a new molecular quantification method based on Synergy Brands (SYBR) Green real-time quantitative polymerase chain reaction of wet-sieving samples (wet-sieving qPCR). This method can detect V. dahliae microsclerotia as low as 0.5 CFU g(-1) of soil. There was a high correlation (r=0.98) between the estimates of conventional plating analysis and the new wet-sieving qPCR method for 40 soil samples. To estimate the inoculum threshold for cotton wilt, >400 soil samples were taken from the rhizosphere of individual plants with or without visual wilt symptoms in experimental and commercial cotton fields at the boll-forming stage. Wilt inoculum was estimated using the wet-sieving qPCR method and related to wilt development. The estimated inoculum threshold varied with cultivar, ranging from 4.0 and 7.0 CFU g(-1) of soil for susceptible and resistant cultivars, respectively. In addition, there was an overall relationship of wilt incidence with inoculum density across 31 commercial fields where a single composite soil sample was taken at each field, with an estimated inoculum threshold of 11 CFU g(-1) of soil. These results suggest that wilt risk can be predicted from the estimated soil inoculum density using the new wet-sieving qPCR method. We recommend the use of 4.0 and 7.0 CFU g(-1) as an inoculum threshold on susceptible and resistant cultivars, respectively, in practical risk prediction schemes.

  10. Quantitative detection of hazelnut (Corylus avellana) in cookies: ELISA versus real-time PCR.

    PubMed

    Platteau, Céline; De Loose, Marc; De Meulenaer, Bruno; Taverniers, Isabel

    2011-11-09

    Hazelnuts (Corylus avellana) are used widely in the food industry, especially in confectionery, where they are used raw, roasted, or in a processed formulation (e.g., praline paste and hazelnut oil). Hazelnuts contain multiple allergenic proteins, which can induce an allergic reaction associated with symptoms ranging from mild irritation to life-threatening anaphylactic shock. To date, immunochemical (e.g., ELISA or dipstick) and PCR-based analyses are the only methods available that can be applied as routine tests. The aim of this study is to make a comparative evaluation of the effectiveness of ELISA and real-time PCR in detecting and correctly quantifying hazelnut in food model systems. To this end, the performances of two commercial ELISAs were compared to those of two commercial and one in-house-developed real-time PCR assays. The results showed that although ELISA seemed to be more sensitive compared to real-time PCR, both detection techniques suffered from matrix effects and lacked robustness with regard to food processing. As these impacts were highly variable among the different evaluated assays (both ELISA and real-time PCR), no firm conclusion can be made as to which technique is suited best to detect hazelnut in (processed) food products. In this regard, the current lack of appropriate DNA calibrators to quantify an allergenic ingredient by means of real-time PCR is highlighted.

  11. TaqMan real-time quantitative PCR assay for detection of fluoroquinolone-resistant Neisseria gonorrhoeae.

    PubMed

    Zhao, LiHong; Zhao, ShuPing

    2012-12-01

    It is noted that more than 99 % of fluoroquinolone resistance in Neisseria gonorrhoeae (QRNG) specimens have been shown to have the mutation of Ser91/Phe in the gyrA gene. In order to detect QRNG isolates as quickly as possible, the real-time TaqMan quantitative PCR assay was established for detection of the point mutation of Ser91/Phe in gyrA gene. The standard curve was generated automatically on ABI Prism PE7500. The correlation coefficient (r) of the standard curve was -0.9984 (R(2) = 0.9968), indicating a quietly precise log-linear relationship between the concentration of target DNA and the Ct value. Presently, correlated, cultured antimicrobial susceptibility testing of N. gonorrhoeae isolates continues to be the gold standard method for the detection of antimicrobial resistance. Comparison to the correlated, cultured antimicrobial susceptibility testing, the sensitivity and specificity of the established TaqMan assay for the detection of the QRNG specimens were 100 and 99 %, respectively. The TaqMan assay also allows for rapid detection of QRNG isolates without complex laboratory techniques. Therefore, real-time TaqMan quantitative PCR assay is a rapid, simple, highly sensitive, highly specific, and easy-to-perform method for the detection of the QRNG specimens. It can be applied as a quick screening method for QRNG isolates to help clinical determination of optimal treatment prescription.

  12. Development and Evaluation of a Quantitative PCR Assay Targeting Sandhill Crane (Grus canadensis) Fecal Pollution

    PubMed Central

    Ryu, Hodon; Lu, Jingrang; Vogel, Jason; Elk, Michael; Chávez-Ramírez, Felipe; Ashbolt, Nicholas

    2012-01-01

    While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics. PMID:22492437

  13. Quantitative Methods in Psychology: Inevitable and Useless

    PubMed Central

    Toomela, Aaro

    2010-01-01

    Science begins with the question, what do I want to know? Science becomes science, however, only when this question is justified and the appropriate methodology is chosen for answering the research question. Research question should precede the other questions; methods should be chosen according to the research question and not vice versa. Modern quantitative psychology has accepted method as primary; research questions are adjusted to the methods. For understanding thinking in modern quantitative psychology, two epistemologies should be distinguished: structural-systemic that is based on Aristotelian thinking, and associative-quantitative that is based on Cartesian–Humean thinking. The first aims at understanding the structure that underlies the studied processes; the second looks for identification of cause–effect relationships between the events with no possible access to the understanding of the structures that underlie the processes. Quantitative methodology in particular as well as mathematical psychology in general, is useless for answering questions about structures and processes that underlie observed behaviors. Nevertheless, quantitative science is almost inevitable in a situation where the systemic-structural basis of behavior is not well understood; all sorts of applied decisions can be made on the basis of quantitative studies. In order to proceed, psychology should study structures; methodologically, constructive experiments should be added to observations and analytic experiments. PMID:21833199

  14. Using quantitative reverse transcriptase PCR and cell culture plaque assays to determine resistance of Toxoplasma gondii oocysts to chemical sanitizers.

    PubMed

    Villegas, Eric N; Augustine, Swinburne A J; Villegas, Leah Fohl; Ware, Michael W; See, Mary Jean; Lindquist, H D Alan; Schaefer, Frank W; Dubey, J P

    2010-06-01

    Toxoplasma gondii oocysts are highly resistant to many chemical sanitizers. Methods used to determine oocyst infectivity have relied primarily on mouse, chicken, and feline bioassays. Although considered gold standards, they only provide a qualitative assessment of oocyst viability. In this study, two alternative approaches were developed to quantitate viable T. gondii oocysts following treatment with several common sanitizers. The first is a quantitative reverse transcriptase real-time PCR (RT-qPCR) assay targeting the ACT1 and SporoSAG genes to enumerate viable T. gondii oocysts. RT-qPCR C(T) values between Wescodyne(R), acidified ethanol, or heat treated oocysts were not significantly different as compared with untreated controls. By contrast, treatment with formalin or Clorox(R) resulted in a 2-log(10) reduction in C(T) values. An in vitro T. gondii oocyst plaque assay (TOP-assay) was also developed to measure oocyst viability. This assay used a combination of bead milling and bile digestion, followed by culturing the excysted sporozoites in a confluent fibroblast cell monolayer. Results showed that no significant reduction in sporozoite viability was detected in acidified ethanol or Wescodyne(R) treated oocysts while at least a 2-log(10) reduction in plaques formed was observed with Clorox(R) treated oocysts. Moreover, formalin or heat treatment of oocysts resulted in at least a 5-log(10) reduction in plaques formed. This study demonstrates that an mRNA-based PCR viability assay targeting the ACT1 or SporoSAG genes is a relatively rapid technique compared to in vitro and in vivo assays. In addition, the TOP-assay proved very effective and sensitive at quantifying oocyst viability when compared with animal bioassays.

  15. Enrichment followed by quantitative PCR both for rapid detection and as a tool for quantitative risk assessment of food-borne thermotolerant campylobacters.

    PubMed

    Josefsen, M H; Jacobsen, N R; Hoorfar, J

    2004-06-01

    As part of a large international project for standardization of PCR (Food-PCR; www.pcr.dk), a multiplex, multiplatform, ready-to-go enrichment followed by a real-time PCR method, including an internal amplification control, was developed for detection of food-borne thermotolerant campylobacters in chickens. Chicken rinse samples were enriched in Bolton broth for 20 h, a simple and rapid (1-h) resin-based DNA extraction was performed, and DNA samples were then tested with two instrument platforms: ABI-PRISM 7700 and RotorGene 3000. The method was validated against an International Standard Organization (ISO)-based culture method by testing low, medium, and high levels of 12 spiked and 66 unspiked, presumably naturally contaminated, chicken rinse samples. In the RotorGene, a positive PCR response was detected in 40 samples of the 66. This was in complete agreement with the enriched ISO culture. The ABI-PRISM 7700 missed one culture-positive sample. Positive samples contained 10(2) to 10(7) CFU/ml after enrichment in Bolton broth. In the enriched samples a detection probability of 95% was obtained at levels of 1 x 10(3) and 2 x 10(3) CFU/ml in the RotorGene and ABI-PRISM, respectively. The amplification efficiency in both platforms was 90%, although the linear range of amplification of purified genomic DNA was 1.5 x 10(1) to 1 x 10(7) (R(2) = 1.00) for the RotorGene and 10(3) to 10(7) (R(2) = 0.99) for the ABI-PRISM. In RotorGene and ABI-PRISM the levels of precision of detection as determined by standard deviation (coefficients of variation) of 6-carboxyfluorescein (FAM) threshold cycle (Ct) values were 0.184 to 0.417 (0.65 to 2.57%) and 0.119 to 0.421 (0.59 to 1.82%), respectively. The results showed a correlation (R(2)) of 0.94 between the target FAM Ct values and CFU per milliliter of enriched naturally contaminated chicken samples, which indicates PCR's additional potential as a tool for quantitative risk assessment. Signal from the internal amplification control

  16. Analysis of Enterococci and Bacteriodales Fecal Indicator Bacteria in a Lake Michigan Tributary by Real-Time Quantitative PCR

    EPA Science Inventory

    The Salt Creek watershed in northwest Indiana drains into Lake Michigan near several heavily used recreational beaches. This study aimed to investigate the levels of fecal indicator bacteria, enterococci and Bacteroidales, in Salt Creek using real-time quantitative PCR (qPCR) an...

  17. Multi-laboratory comparison of quantitative PCR assays for detection and quantification of Fusarium virguliforme from soybean roots and soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate identification and quantification of Fusarium virguliforme, the cause of sudden death syndrome (SDS) in soybean, within root tissue and soil are important tasks. Several quantitative PCR (qPCR) assays have been developed but there are no reports comparing their use in sensitive and specific...

  18. Decay Of Bacterial Pathogen, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...

  19. Decay Of Bacterial Pathogens, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure-Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...

  20. Ultra-sensitive and absolute quantitative detection of Cu(2+) based on DNAzyme and digital PCR in water and drink samples.

    PubMed

    Zhu, Pengyu; Shang, Ying; Tian, Wenying; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2017-04-15

    Here, we developed an ultra-sensitive and absolute quantitative detection method of Cu(2+) based on DNAzyme and digital PCR. The binding model between DNAzyme and Cu(2+) and the influence caused by the additional primer sequence were revealed to ensure quantitation independent of standard curves. The binding model of DNAzyme and Cu(2+) showed that one molecular DNAzyme could bind one Cu(2+) in the biosensor step. Thus, the final quantitative results, evaluated by three parallels, showed that the limit of quantitation (LOQ) was as low as 0.5pmol, while the sensitivity was evaluated as 50fmol. The specificity evaluation of our methodologies shows that extremely low crossing signal is existed within the non-specific ions. Moreover, the results of practical detection have shown that the quantitative results were stable and accurate among different food substrates. In conclusion, a flexible quantitative detection method with ultra-sensitivity was developed to detect trace amounts Cu(2+) within different substrates.

  1. Optimizing methods for PCR-based analysis of predation

    PubMed Central

    Sint, Daniela; Raso, Lorna; Kaufmann, Rüdiger; Traugott, Michael

    2011-01-01

    Molecular methods have become an important tool for studying feeding interactions under natural conditions. Despite their growing importance, many methodological aspects have not yet been evaluated but need to be considered to fully exploit the potential of this approach. Using feeding experiments with high alpine carabid beetles and lycosid spiders, we investigated how PCR annealing temperature affects prey DNA detection success and how post-PCR visualization methods differ in their sensitivity. Moreover, the replicability of prey DNA detection among individual PCR assays was tested using beetles and spiders that had digested their prey for extended times postfeeding. By screening all predators for three differently sized prey DNA fragments (range 116–612 bp), we found that only in the longest PCR product, a marked decrease in prey detection success occurred. Lowering maximum annealing temperatures by 4 °C resulted in significantly increased prey DNA detection rates in both predator taxa. Among the three post-PCR visualization methods, an eightfold difference in sensitivity was observed. Repeated screening of predators increased the total number of samples scoring positive, although the proportion of samples testing positive did not vary significantly between different PCRs. The present findings demonstrate that assay sensitivity, in combination with other methodological factors, plays a crucial role to obtain robust trophic interaction data. Future work employing molecular prey detection should thus consider and minimize the methodologically induced variation that would also allow for better cross-study comparisons. PMID:21507208

  2. Optimizing methods for PCR-based analysis of predation.

    PubMed

    Sint, Daniela; Raso, Lorna; Kaufmann, Rüdiger; Traugott, Michael

    2011-09-01

    Molecular methods have become an important tool for studying feeding interactions under natural conditions. Despite their growing importance, many methodological aspects have not yet been evaluated but need to be considered to fully exploit the potential of this approach. Using feeding experiments with high alpine carabid beetles and lycosid spiders, we investigated how PCR annealing temperature affects prey DNA detection success and how post-PCR visualization methods differ in their sensitivity. Moreover, the replicability of prey DNA detection among individual PCR assays was tested using beetles and spiders that had digested their prey for extended times postfeeding. By screening all predators for three differently sized prey DNA fragments (range 116-612 bp), we found that only in the longest PCR product, a marked decrease in prey detection success occurred. Lowering maximum annealing temperatures by 4 °C resulted in significantly increased prey DNA detection rates in both predator taxa. Among the three post-PCR visualization methods, an eightfold difference in sensitivity was observed. Repeated screening of predators increased the total number of samples scoring positive, although the proportion of samples testing positive did not vary significantly between different PCRs. The present findings demonstrate that assay sensitivity, in combination with other methodological factors, plays a crucial role to obtain robust trophic interaction data. Future work employing molecular prey detection should thus consider and minimize the methodologically induced variation that would also allow for better cross-study comparisons.

  3. Quantitative Methods for Software Selection and Evaluation

    DTIC Science & Technology

    2006-09-01

    Quantitative Methods for Software Selection and Evaluation Michael S. Bandor September 2006 Acquisition Support Program...5 2 Evaluation Methods ...Abstract When performing a “buy” analysis and selecting a product as part of a software acquisition strategy , most organizations will consider primarily

  4. A new HPLC method for azithromycin quantitation.

    PubMed

    Zubata, Patricia; Ceresole, Rita; Rosasco, Maria Ana; Pizzorno, Maria Teresa

    2002-02-01

    A simple liquid chromatographic method was developed for the estimation of azithromycin raw material and in pharmaceutical forms. The sample was chromatographed on a reverse phase C18 column and eluants monitored at a wavelength of 215 nm. The method was accurate, precise and sufficiently selective. It is applicable for its quantitation, stability and dissolution tests.

  5. Improved PCR Methods for Detection of African Rabies and Rabies-Related Lyssaviruses ▿

    PubMed Central

    Coertse, Jessica; Weyer, Jacqueline; Nel, Louis H.; Markotter, Wanda

    2010-01-01

    Eleven different lyssavirus species, four of which occur on the African continent, are presently recognized. These viruses cause rabies, the burden of which is highest in the developing world, where routine laboratory diagnosis is often not available. From an epidemiological and control perspective, it is necessary that diagnostic methods detect the diversity of lyssaviruses present in different regions of the world. A published and widely used heminested reverse transcription-PCR (hnRT-PCR) was evaluated for its ability to detect a panel of diverse African lyssaviruses. Due to the limitations experienced for this assay, an alternative hnRT-PCR was developed. The new assay was found to be accurate and sensitive in the detection of African lyssavirus RNA in a variety of clinical specimens. The assay was further adapted to a real-time PCR platform to allow rapid, one-step, quantitative, and single-probe detection, and an internal control for the verification of sample preparation was included. The limit of detection of the real-time PCR assay was 10 RNA copies per reaction, with inter- and intra-assay variability below 4%. Subsequently, in demonstrating utility, both assays were successfully applied to antemortem rabies diagnosis in humans. We believe that the quantitative real-time PCR assay could find application as a routine confirmatory test for rabies diagnosis in the future and that it will serve as a valuable research tool in the biology of African lyssaviruses. Alternatively, the hnRT-PCR assay can be used in laboratories that do not have access to expensive real-time PCR equipment for sensitive diagnosis of lyssaviruses. PMID:20810772

  6. Development of universal SYBR Green real-time RT-PCR for the rapid detection and quantitation of bovine and porcine toroviruses.

    PubMed

    Hosmillo, Myra D T; Jeong, Young-Ju; Kim, Hyun-Jeong; Collantes, Therese Marie; Alfajaro, Mia Madel; Park, Jun-Gyu; Kim, Ha-Hyun; Kwon, Hyung-Jun; Park, Su-Jin; Kang, Mun-Il; Park, Sang-Ik; Cho, Kyoung-Oh

    2010-09-01

    Toroviruses (ToVs) are a group of emerging viruses that cause gastroenteritis in domestic animals and humans. Currently, methods such as real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) have not yet been developed for the rapid detection and quantitation of bovine (BToV) and porcine (PToV) toroviruses. Using BToV and PToV RNA standards generated by in vitro transcription, the detection limit of the SYBR Green real-time RT-PCR assay was 2.54 x 10(2) BToV and 2.17 x 10(3) PToV copies/reaction (correlation coefficiency=0.99 and 0.97, respectively), whereas those of RT-PCR and nested PCR were 2.54 x 10(5) and 2.54 x 10(4) (BToV) and 2.17 x 10(7) and 2.17 x 10(5) (PToV) cRNA viral copies/reaction, respectively. Archived diarrhea specimens of calves (n=121) and piglets (n=86) were subjected to RT-PCR, nested PCR and SYBR Green real-time RT-PCR. By conventional RT-PCR, 1 (0.8%) bovine and 7 (8.1%) porcine samples tested positive to BToV and PToV, respectively. With nested PCR, 13 (10.7%) bovine and 17 (19.8%) porcine samples tested positive. SYBR Green real-time RT-PCR assay detected BToV and PToV in 22 of 121 (18.2%) bovine and 31 of 86 (36.0%) porcine samples. These results indicate that SYBR Green real-time RT-PCR (P<0.05) is a more sensitive assay, which can be reproduced as a reliable, sensitive, and rapid tool for the detection and quantitation of toroviruses.

  7. Operational Evaluation of the Rapid Viability PCR Method for ...

    EPA Pesticide Factsheets

    Journal Article This research work has a significant impact on the use of the RV-PCR method to analyze post-decontamination environmental samples during an anthrax event. The method has shown 98% agreement with the traditional culture based method. With such a success, this method, upon validation, will significantly increase the laboratory throughput/capacity to analyze a large number of anthrax event samples in a relatively short time.

  8. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters

    EPA Science Inventory

    Modern techniques for tracking fecal pollution in environmental waters require investing in DNA-based methods to determine the presence of specific fecal sources. To help water quality managers decide whether to employ routine polymerase chain reaction (PCR) or quantitative PC...

  9. Exploring the Bacterial Diversity of Belgian Steak Tartare Using Metagenetics and Quantitative Real-Time PCR Analysis.

    PubMed

    Delhalle, L; Korsak, N; Taminiau, B; Nezer, C; Burteau, S; Delcenserie, V; Poullet, J B; Daube, G

    2016-02-01

    Steak tartare is a popular meat dish in Belgium. It is prepared with raw minced beef and is eaten with sauce, vegetables, and spices. Because it contains raw meat, steak tartare is highly prone to bacterial spoilage. The objective of this study was to explore the diversity of bacterial flora in steak tartare in Belgium according to the source and to determine which bacteria are able to grow during shelf life. A total of 58 samples from butchers' shops, restaurants, sandwich shops, and supermarkets were collected. These samples were analyzed using 16S rDNA metagenetics, a classical microbiological technique, and quantitative real-time PCR (qPCR) targeting the Lactobacillus genus. Samples were analyzed at the beginning and at the end of their shelf life, except for those from restaurants and sandwich shops, which were analyzed only on the purchase date. Metagenetic analysis identified up to 180 bacterial species and 90 genera in some samples. But only seven bacterial species were predominant in the samples, depending on the source: Brochothrix thermosphacta, Lactobacillus algidus, Lactococcus piscium, Leuconostoc gelidum, Photobacterium kishitani, Pseudomonas spp., and Xanthomonas oryzae. With this work, an alternative method is proposed to evaluate the total flora in food samples based on the number of reads from metagenetic analysis and the results of qPCR. The degree of underestimation of aerobic plate counts at 30°C estimated with the classical microbiology method was demonstrated in comparison with the proposed culture-independent method. Compared with culture-based methods, metagenetic analysis combined with qPCR targeting Lactobacillus provides valuable information for characterizing the bacterial flora of raw meat.

  10. A Quantitative Real-Time PCR-Based Strategy for Molecular Evaluation of Nicotine Conversion in Burley Tobacco

    PubMed Central

    Sun, Bo; Xue, Sheng-Ling; Zhang, Fen; Luo, Zhao-Peng; Wu, Ming-Zhu; Chen, Qing; Tang, Hao-Ru; Lin, Fu-Cheng; Yang, Jun

    2015-01-01

    Nornicotine production in Nicotiana tabacum is undesirable because it is the precursor of the carcinogen N′-nitrosonornicotine. In some individual burley tobacco plants, a large proportion of the nicotine can be converted to nornicotine, and this process of nicotine conversion is mediated primarily by enzymatic N-demethylation of nicotine which is controlled mainly by CYP82E4. Here we report a novel strategy based on quantitative real-time polymerase chain reaction (qPCR) method, which analyzed the ratio of nicotine conversion through examining the transcript level of CYP82E4 in burley leaves and do not need ethylene induction before detected. The assay was linear in a range from 1 × 101 to 1 × 105 copies/mL of serially diluted standards, and also showed high specificity and reproducibility (93%–99%). To assess its applicability, 55 plants of burley cultivar Ky8959 at leaf maturing stage were analyzed, and the results were in accordance with those from gas chromatograph-mass spectrometry (GC-MS) method. Moreover, a linear correlation existed between conversion level and CYP82E4 transcript abundance. Taken together, the quantitative real-time PCR assay is standardized, rapid and reproducible for estimation of nicotine conversion level in vivo, which is expected to shed new light on monitoring of burley tobacco converter. PMID:26593897

  11. Detection and quantification of Flavobacterium psychrophilum in water and fish tissue samples by quantitative real time PCR

    PubMed Central

    2014-01-01

    Background Flavobacterium psychrophilum is the agent of Bacterial Cold Water Disease and Rainbow Trout Fry Syndrome, two diseases leading to high mortality. Pathogen detection is mainly carried out using cultures and more rapid and sensitive methods are needed. Results We describe a qPCR technique based on the single copy gene β’ DNA-dependent RNA polymerase (rpoC). Its detection limit was 20 gene copies and the quantification limit 103 gene copies per reaction. Tests on spiked spleens with known concentrations of F. psychrophilum (106 to 101 cells per reaction) showed no cross-reactions between the spleen tissue and the primers and probe. Screening of water samples and spleens from symptomless and infected fishes indicated that the pathogen was already present before the outbreaks, but F. psychrophilum was only quantifiable in spleens from diseased fishes. Conclusions This qPCR can be used as a highly sensitive and specific method to detect F. psychrophilum in different sample types without the need for culturing. qPCR allows a reliable detection and quantification of F. psychrophilum in samples with low pathogen densities. Quantitative data on F. psychrophilum abundance could be useful to investigate risk factors linked to infections and also as early warning system prior to potential devastating outbreak. PMID:24767577

  12. Risk assessment of false-positive quantitative real-time PCR results in food, due to detection of DNA originating from dead cells.

    PubMed

    Wolffs, Petra; Norling, Börje; Rådström, Peter

    2005-03-01

    Real-time PCR technology is increasingly used for detection and quantification of pathogens in food samples. A main disadvantage of nucleic acid detection is the inability to distinguish between signals originating from viable cells and DNA released from dead cells. In order to gain knowledge concerning risks of false-positive results due to detection of DNA originating from dead cells, quantitative PCR (qPCR) was used to investigate the degradation kinetics of free DNA in four types of meat samples. Results showed that the fastest degradation rate was observed (1 log unit per 0.5 h) in chicken homogenate, whereas the slowest rate was observed in pork rinse (1 log unit per 120.5 h). Overall results indicated that degradation occurred faster in chicken samples than in pork samples and faster at higher temperatures. Based on these results, it was concluded that, especially in pork samples, there is a risk of false-positive PCR results. This was confirmed in a quantitative study on cell death and signal persistence over a period of 28 days, employing three different methods, i.e. viable counts, direct qPCR, and finally floatation, a recently developed discontinuous density centrifugation method, followed by qPCR. Results showed that direct qPCR resulted in an overestimation of up to 10 times of the amount of cells in the samples compared to viable counts, due to detection of DNA from dead cells. However, after using floatation prior to qPCR, results resembled the viable count data. This indicates that by using of floatation as a sample treatment step prior to qPCR, the risk of false-positive PCR results due to detection of dead cells, can be minimized.

  13. Actuation method and apparatus, micropump, and PCR enhancement method

    DOEpatents

    Ullakko, Kari; Mullner, Peter; Hampikian, Greg; Smith, Aaron

    2015-07-28

    An actuation apparatus includes at least one magnetic shape memory (MSM) element containing a material configured to expand and/or contract in response to exposure to a magnetic field. Among other things, the MSM element may be configured to pump fluid through a micropump by expanding and/or contracting in response to the magnetic field. The magnetic field may rotate about an axis of rotation and exhibit a distribution having a component substantially perpendicular to the axis of rotation. Further, the magnetic field distribution may include at least two components substantially orthogonal to one another lying in one or more planes perpendicular to the axis of rotation. The at least one MSM element may contain nickel, manganese, and gallium. A polymerase chain reaction (PCR) may be enhanced by contacting a PCR reagent and DNA material with the MSM element.

  14. Identification and testing of reference genes for Sesame gene expression analysis by quantitative real-time PCR.

    PubMed

    Wei, Libin; Miao, Hongmei; Zhao, Ruihong; Han, Xiuhua; Zhang, Tide; Zhang, Haiyang

    2013-03-01

    Sesame (Sesamum indicum L.) is an ancient and important oilseed crop. However, few sesame reference genes have been selected for quantitative real-time PCR until now. Screening and validating reference genes is a requisite for gene expression normalization in sesame functional genomics research. In this study, ten candidate reference genes, i.e., SiACT, SiUBQ6, SiTUB, Si18S rRNA, SiEF1α, SiCYP, SiHistone, SiDNAJ, SiAPT and SiGAPDH, were chosen and examined systematically in 32 sesame samples. Three qRT-PCR analysis methods, i.e., geNorm, NormFinder and BestKeeper, were evaluated systematically. Results indicated that all ten candidate reference genes could be used as reference genes in sesame. SiUBQ6 and SiAPT were the optimal reference genes for sesame plant development; SiTUB was suitable for sesame vegetative tissue development, SiDNAJ for pathogen treatment, SiHistone for abiotic stress, SiUBQ6 for bud development and SiACT for seed germination. As for hormone treatment and seed development, SiHistone, SiCYP, SiDNAJ or SiUBQ6, as well as SiACT, SiDNAJ, SiTUB or SiAPT, could be used as reference gene, respectively. To illustrate the suitability of these reference genes, we analyzed the expression variation of three functional sesame genes of SiSS, SiLEA and SiGH in different organs using the optimal qRT-PCR system for the first time. The stability levels of optimal and worst reference genes screened for seed development, anther sterility and plant development were validated in the qRT-PCR normalization. Our results provided a reference gene application guideline for sesame gene expression characterization using qRT-PCR system.

  15. Quantitative real-time PCR as a sensitive protein-protein interaction quantification method and a partial solution for non-accessible autoactivator and false-negative molecule analysis in the yeast two-hybrid system.

    PubMed

    Maier, Richard H; Maier, Christina J; Hintner, Helmut; Bauer, Johann W; Onder, Kamil

    2012-12-01

    Many functional proteomic experiments make use of high-throughput technologies such as mass spectrometry combined with two-dimensional polyacrylamide gel electrophoresis and the yeast two-hybrid (Y2H) system. Currently there are even automated versions of the Y2H system available that can be used for proteome-wide research. The Y2H system has the capacity to deliver a profusion of Y2H positive colonies from a single library screen. However, subsequent analysis of these numerous primary candidates with complementary methods can be overwhelming. Therefore, a method to select the most promising candidates with strong interaction properties might be useful to reduce the number of candidates requiring further analysis. The method described here offers a new way of quantifying and rating the performance of positive Y2H candidates. The novelty lies in the detection and measurement of mRNA expression instead of proteins or conventional Y2H genetic reporters. This method correlates well with the direct genetic reporter readouts usually used in the Y2H system, and has greater sensitivity for detecting and quantifying protein-protein interactions (PPIs) than the conventional Y2H system, as demonstrated by detection of the Y2H false-negative PPI of RXR/PPARG. Approximately 20% of all proteins are not suitable for the Y2H system, the so-called autoactivators. A further advantage of this method is the possibility to evaluate molecules that usually cannot be analyzed in the Y2H system, exemplified by a VDR-LXXLL motif peptide interaction.

  16. [PCR "real time" to analyze the quantitative and qualitative relations microbiota of periodontal pockets].

    PubMed

    Zorina, O A; Kulakov, A A; Boriskina, O A; Rebrikov, D V

    2011-01-01

    The introduction of a broad medical practice PCR "real time" is just beginning and dentistry is no exception. Modern molecular genetic methods provide numerous opportunities for diagnosis, assessment and prediction in patients with inflammatory periodontal diseases. Early and accurate diagnosis can allow in the future reduce the incidence of periodontitis and the progression of its course.

  17. Evaluation of Housekeeping Genes for Quantitative Real-Time PCR Analysis of Bradysia odoriphaga (Diptera: Sciaridae)

    PubMed Central

    Shi, Caihua; Yang, Fengshan; Zhu, Xun; Du, Erxia; Yang, Yuting; Wang, Shaoli; Wu, Qingjun; Zhang, Youjun

    2016-01-01

    The soil insect Bradysia odoriphaga (Diptera: Sciaridae) causes substantial damage to Chinese chive. Suitable reference genes in B. odoriphaga (Bradysia odoriphaga) have yet to be identified for normalizing target gene expression among samples by quantitative real-time PCR (qRT-PCR). This study was focused on identifying the expression stability of 12 candidate housekeeping genes in B. odoriphaga under various experiment conditions. The final stability ranking of 12 housekeeping genes was obtained with RefFinder, and the most suitable number of reference genes was analyzed by GeNorm. The results revealed that the most appropriate sets of internal controls were RPS15, RPL18, and RPS18 across developmental phases; RPS15, RPL28, and GAPDH across temperatures; RPS15 and RPL18 across pesticide treatments; RSP5, RPS18, and SDHA across photoperiods; ACTb, RPS18, and RPS15 across diets; RPS13 and RPL28 across populations; and RPS15, ACTb, and RPS18 across all samples. The use of the most suitable reference genes versus an arbitrarily selected reference gene resulted in significant differences in the analysis of a target gene expression. HSP23 in B. odoriphaga was found to be up-regulated under low temperatures. These results will contribute to the standardization of qRT-PCR and will also be valuable for further research on gene function in B. odoriphaga. PMID:27399679

  18. Evaluation of reference genes for real-time quantitative PCR in the marine flavobacterium Zobellia galactanivorans.

    PubMed

    Thomas, François; Barbeyron, Tristan; Michel, Gurvan

    2011-01-01

    The marine bacteria Zobellia galactanivorans is an emerging model microorganism for the bioconversion of algal polysaccharides. The sequence analysis of its genome opens the way to in-depth gene expression analysis, such as reverse transcription quantitative PCR (RT-qPCR) studies. The selection and validation of reference genes are a mandatory first step for the accurate quantification of transcripts. We selected fourteen candidate reference genes belonging to distinct pathways, namely replication, transcription, translation, citric acid cycle, amino acid, nucleotide and dihydrofolate metabolisms, and peptidoglycan, FMN and aromatic compounds synthesis. We quantified their expression by RT-qPCR in various culture conditions corresponding to different temperatures, carbon sources or stresses. The applications geNorm and Normfinder allowed ranking the genes according to their stability and gave concordant results. We found that the geometric average of the expression of glyA, icdA and gmkA can be confidently used to normalize the transcript abundance of genes of interest. In conclusion, this work provides a reliable procedure for gene expression analysis in the flavobacterium Z. galactanivorans and a validated set of reference genes to be used in future transcriptomics approaches. The strategy developed could also be the starting point for similar studies in other members of the Flavobacteria class.

  19. A Quantitative PCR Protocol for Detection of Oxyspirura petrowi in Northern Bobwhites (Colinus virginianus)

    PubMed Central

    Kistler, Whitney M.; Parlos, Julie A.; Peper, Steven T.; Dunham, Nicholas R.; Kendall, Ronald J.

    2016-01-01

    Oxyspirura petrowi is a parasitic nematode that infects wild birds. This parasite has a broad host range, but has recently been reported in high prevalences from native Galliformes species in the United States. In order to better understand the impact O. petrowi has on wild bird populations, we developed a quantitative PCR protocol to detect infections in wild northern bobwhites (Colinus virginianus). We used paired fecal and cloacal swab samples from wild caught and experimentally infected northern bobwhites and matching fecal float data from experimentally infected birds to validate our assay. Overall we detected more positive birds from fecal samples than the paired cloacal swabs and there was strong agreement between the qPCR results from fecal samples and from fecal flotation (84%; κ = 0.69 [0.53–0.84 95% CI]). We also detected O. petrowi DNA in ten replicates of samples spiked with one O. petrowi egg. This qPCR assay is an effective assay to detect O. petrowi infections in wild birds. Our results suggest that fecal samples are the most appropriate sample for detecting infections; although, cloacal swabs can be useful for determining if O. petrowi is circulating in a population. PMID:27893772

  20. Investigation of Reference Genes in Vibrio parahaemolyticus for Gene Expression Analysis Using Quantitative RT-PCR

    PubMed Central

    Ma, Yue-jiao; Sun, Xiao-hong; Xu, Xiao-yan; Zhao, Yong; Pan, Ying-jie; Hwang, Cheng-An; Wu, Vivian C. H.

    2015-01-01

    Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize its virulence factors and understand the effect of environmental conditions on its pathogenicity. However, there is not a stable gene in V. parahaemolyticus that has been identified for use as a reference gene for qRT-PCR. This study evaluated the stability of 6 reference genes (16S rRNA, recA, rpoS, pvsA, pvuA, and gapdh) in 5 V. parahaemolyticus strains (O3:K6-clinical strain-tdh+, ATCC33846-tdh+, ATCC33847-tdh+, ATCC17802-trh+, and F13-environmental strain-tdh+) cultured at 4 different temperatures (15, 25, 37 and 42°C). Stability values were calculated using GeNorm, NormFinder, BestKeeper, and Delta CT algorithms. The results indicated that recA was the most stably expressed gene in the V. parahaemolyticus strains cultured at different temperatures. This study examined multiple V. parahaemolyticus strains and growth temperatures, hence the finding provided stronger evidence that recA can be used as a reference gene for gene expression studies in V. parahaemolyticus. PMID:26659406

  1. Comparison of conventional PCR, quantitative PCR, bacteriological culture and the Warthin Starry technique to detect Leptospira spp. in kidney and liver samples from naturally infected sheep from Brazil.

    PubMed

    Fornazari, Felipe; da Silva, Rodrigo Costa; Richini-Pereira, Virginia Bodelão; Beserra, Hugo Enrique Orsini; Luvizotto, Maria Cecília Rui; Langoni, Helio

    2012-09-01

    Leptospirosis is an infectious disease of worldwide importance. The development of diagnostic techniques allows sick animals to be identified, reservoirs to be eliminated and the disease prevented and controlled. The present study aimed to compare different techniques for diagnosing leptospirosis in sheep. Samples of kidney, liver and blood were collected from 465 animals that originated from a slaughterhouse. The sera were analyzed by the Microscopic Agglutination Test (MAT), and kidney and liver samples of seropositive animals were analyzed using four techniques: bacteriological culture, the Warthin Starry (WS) technique, conventional PCR (cPCR), and quantitative PCR (qPCR). With the MAT, 21 animals were positive (4.5%) to serovars Hardjo (n=12), Hebdomadis (n=5), Sentot (n=2), Wolfii (n=1) and Shermani (n=1). Titers were 100 (n=10), 200 (n=2), 400 (n=6) and 1600 (n=3). No animal was positive by bacteriological culture; four animals were positive by the WS technique in kidney samples; six animals were positive by cPCR in kidney samples; and 11 animals were positive by qPCR, eight of which in kidney samples and three in liver. The bacterial quantification revealed a median of 4.3 bacteria/μL in liver samples and 36.6 bacteria/μL in kidney samples. qPCR presented the highest sensitivity among the techniques, followed by cPCR, the WS technique and bacteriological culture. These results indicate that sheep can carry leptospires of the Sejroe serogroup, and demonstrate the efficiency of quantitative PCR to detect Leptospira spp. in tissue samples.

  2. Quantitation of viable Coxiella burnetii in milk using an integrated cell culture-polymerase chain reaction (ICC-PCR) assay.

    PubMed

    Stewart, Diana; Shieh, Y-Carol; Tortorello, Mary; Kukreja, Ankush; Shazer, Arlette; Schlesser, Joseph

    2015-11-01

    The obligate intracellular pathogen Coxiella burnetii has long been considered the most heat resistant pathogen in raw milk, making it the reference pathogen for determining pasteurisation conditions for milk products. New milk formulations and novel non-thermal processes require validation of effectiveness which requires a more practical method for analysis than using the currently used animal model for assessing Coxiella survival. Also, there is an interest in better characterising thermal inactivation of Coxiella in various milk formulations. To avoid the use of the guinea pig model for evaluating Coxiella survival, an Integrated Cell Culture-PCR (ICC-PCR) method was developed for determining Coxiella viability in milk. Vero cell cultures were directly infected from Coxiella-contaminated milk in duplicate 24-well plates. Viability of the Coxiella in milk was shown by a ≥ 0.5 log genome equivalent (ge)/ml increase in the quantity of IS111a gene from the baseline post-infection (day 0) level after 9-11 d propagation. Coxiella in skim, 2%, and whole milk, and half and half successfully infected Vero cells and increased in number by at least 2 logs using a 48-h infection period followed by 9-d propagation time. As few as 125 Coxiella ge/ml in whole milk was shown to infect and propagate at least 2 logs in the optimised ICC-PCR assay, though variable confirmation of propagation was shown for as low as 25 Coxiella ge/ml. Applicability of the ICC-PCR method was further proven in an MPN format to quantitate the number of viable Coxiella remaining in whole milk after 60 °C thermal treatment at 0, 20, 40, 60 and 90 min.

  3. Detection and differentiation of human parvovirus variants by commercial quantitative real-time PCR tests.

    PubMed

    Hokynar, Kati; Norja, Päivi; Laitinen, Harri; Palomäki, Pekka; Garbarg-Chenon, Antoine; Ranki, Annamari; Hedman, Klaus; Söderlund-Venermo, Maria

    2004-05-01

    Parvovirus B19 causes a variety of diseases in humans, with outcomes ranging from asymptomatic to severe, such as chronic anemia in immunocompromised patients or fetal hydrops and death after maternal infection during pregnancy. The virus may be transmitted via plasma-derived products. According to the results of solvent-detergent safety studies, an upper limit of B19 DNA in plasma pools was recently defined. To restrict the input of B19 virus into production pools, a quantitative nucleic acid test is a prerequisite. We examined the suitability of the two commercial quantitative B19 PCR tests, LightCycler-Parvovirus B19 quantification kit (Roche Diagnostics) and RealArt Parvo B19 LC PCR (Artus) for detection, quantification, and differentiation of the three known B19 genotypes, including the newly described erythrovirus variants (genotypes 2 and 3). The former kit was highly sensitive for genotype 1 but was not suitable for detection of genotype 2 or one of two genotype 3 strains. The latter kit detected and differentiated all three genotypes, albeit with lower sensitivity for one of the genotype-3 strains. We furthermore assessed the prevalence of the three B19 virus genotypes in blood donors, by screening pooled plasma samples derived from 140,160 Finnish blood-donor units. None of the pools contained detectable levels of B19 virus genotypes 2 or 3. The origin, mode of transmission, and clinical significance of these genotypes are unknown and deserve further study. The RealArt Parvo B19 LC PCR is suitable for detection, quantification, and differentiation of all three B19 virus genotypes in molecular and clinical research.

  4. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  5. Recombinant plasmid-based quantitative Real-Time PCR analysis of Salmonella enterica serotypes and its application to milk samples.

    PubMed

    Gokduman, Kurtulus; Avsaroglu, M Dilek; Cakiris, Aris; Ustek, Duran; Gurakan, G Candan

    2016-03-01

    The aim of the current study was to develop, a new, rapid, sensitive and quantitative Salmonella detection method using a Real-Time PCR technique based on an inexpensive, easy to produce, convenient and standardized recombinant plasmid positive control. To achieve this, two recombinant plasmids were constructed as reference molecules by cloning the two most commonly used Salmonella-specific target gene regions, invA and ttrRSBC. The more rapid detection enabled by the developed method (21 h) compared to the traditional culture method (90 h) allows the quantitative evaluation of Salmonella (quantification limits of 10(1)CFU/ml and 10(0)CFU/ml for the invA target and the ttrRSBC target, respectively), as illustrated using milk samples. Three advantages illustrated by the current study demonstrate the potential of the newly developed method to be used in routine analyses in the medical, veterinary, food and water/environmental sectors: I--The method provides fast analyses including the simultaneous detection and determination of correct pathogen counts; II--The method is applicable to challenging samples, such as milk; III--The method's positive controls (recombinant plasmids) are reproducible in large quantities without the need to construct new calibration curves.

  6. Impact of HIV Infection Status on Interpretation of Quantitative PCR for Detection of Pneumocystis jirovecii

    PubMed Central

    Louis, M.; Guitard, J.; Jodar, M.; Ancelle, T.; Magne, D.; Lascols, O.

    2015-01-01

    Quantitative PCR (qPCR) is now a key diagnostic tool for Pneumocystis pneumonia. However, cutoffs to distinguish between infected and colonized patients according to their HIV status have not yet been determined. According to clinical, radiological, and biological data, we retrospectively classified bronchoalveolar lavage (BAL) samples subjected to qPCR over a 3-year period into four categories, i.e., definite PCP, probable PCP, Pneumocystis colonization, and no infection. Fungal burden was then analyzed according to the HIV status of the patients. Among 1,212 episodes of pneumonia screened in immunocompromised patients, 52 and 27 HIV-positive patients were diagnosed with a definite and probable PCP, whereas 4 and 22 HIV-negative patients had definite and probable PCP, respectively. Among patients with definite or a probable PCP, HIV-negative patients had a significantly lower burden than HIV-positive patients (P < 10−4). In both groups, the median fungal burden was significantly higher in patients with definite PCP than in colonized patients. A single cutoff at 1.5 × 104 copies/ml allowed to differentiate colonized and infected HIV-positive patients with 100% sensitivity and specificity. In HIV-negative patients, cutoff values of 2.87 × 104 and 3.39 × 103 copies/ml resulted in 100% specificity and sensitivity, respectively. Using cutoffs determined for the whole population would have led us to set aside the diagnosis of PCP in 9 HIV-negative patients with definite or probable PCP. qPCR appeared to be the most sensitive test to detect Pneumocystis in BAL samples. However, because of lower inocula in HIV-negative patients, different cutoffs must be used according to the HIV status to differentiate between colonized and infected patients. PMID:26468505

  7. [Clinical significance of ID4 methylation detection by quantitative methylation-specific PCR in acute leukemia].

    PubMed

    Liu, Yang; Zhong, Wen-Wen; Kang, Hui-Yuan; Wang, Li-Li; Lu, Xue-Chun; Yu, Li; Zhu, Hong-Li

    2014-06-01

    The advances of treatment improved the prognosis of the patients with acute leukemia (AL) in the last decade, but the lack of general biomarker for predicting relapse in AL, which is one of the most important factors influencing the survival and prognosis. DNA methylation of ID4 gene promoter occurred frequently in patients with AL and was found to be highly related to the tumor progression. Based on the previous work of the setup of methylation-specific quantitative PCR system for ID4 gene, this study was designed to investigate the relation between the quantitative indicator of methylation density, percentage of methylation reference(PMR) value, and different disease status of AL. PMR of ID4 was detected by MS-PCR in bone marrow (BM) samples of 17 healthy persons and 54 AL patients in the status of newly diagnosis, complete remission and disease relapse. The results showed that at different disease status, PMR value in newly diagnosed group was significantly lower than that in complete remission group (P = 0.031). Among serial samples, PMR value remained very low at the status of patients with continuous complete remission (<1.5‰), and increased along with the accumulation of tumor cells at relapse. In 1 relapse case, the abnormal rise of PMR value occurred prior to morphological relapse. PMR value seemed to be related to body tumor cell load. It is concluded that the quantitative indicator of methylation density and PMR value may reflect the change of tumor cell load in acute leukemia patients. Dynamic monitoring of PMR maybe predict leukemia relapse.

  8. A multiplex calibrated real-time PCR assay for quantitation of DNA of EBV-1 and 2.

    PubMed

    Gatto, Francesca; Cassina, Giulia; Broccolo, Francesco; Morreale, Giuseppe; Lanino, Edoardo; Di Marco, Eddi; Vardas, Efthiya; Bernasconi, Daniela; Buttò, Stefano; Principi, Nicola; Esposito, Susanna; Scarlatti, Gabriella; Lusso, Paolo; Malnati, Mauro S

    2011-12-01

    Accurate and highly sensitive tests for the diagnosis of active Epstein-Barr virus (EBV) infection are essential for the clinical management of individuals infected with EBV. A calibrated quantitative real-time PCR assay for the measurement of EBV DNA of both EBV-1 and 2 subtypes was developed, combining the detection of the EBV DNA and a synthetic DNA calibrator in a multiplex PCR format. The assay displays a wide dynamic range and a high degree of accuracy even in the presence of 1μg of human genomic DNA. This assay measures with the same efficiency EBV DNA from strains prevalent in different geographic areas. The clinical sensitivity and specificity of the system were evaluated by testing 181 peripheral blood mononuclear cell (PBMCs) and plasma specimens obtained from 21 patients subjected to bone marrow transplantation, 70 HIV-seropositive subjects and 23 healthy controls. Patients affected by EBV-associated post-transplant lymphoprolipherative disorders had the highest frequency of EBV detection and the highest viral load. Persons infected with HIV had higher levels of EBV DNA load in PBMCs and a higher frequency of EBV plasma viremia compared to healthy controls. In conclusion, this new assay provides a reliable high-throughput method for the quantitation of EBV DNA in clinical samples.

  9. A high-throughput qPCR system for simultaneous quantitative detection of dairy Lactococcus lactis and Leuconostoc bacteriophages

    PubMed Central

    Muhammed, Musemma K.; Krych, Lukasz; Nielsen, Dennis S.

    2017-01-01

    Simultaneous quantitative detection of Lactococcus (Lc.) lactis and Leuconostoc species bacteriophages (phages) has not been reported in dairies using undefined mixed-strain DL-starters, probably due to the lack of applicable methods. We optimized a high-throughput qPCR system that allows simultaneous quantitative detection of Lc. lactis 936 (now SK1virus), P335, c2 (now C2virus) and Leuconostoc phage groups. Component assays are designed to have high efficiencies and nearly the same dynamic detection ranges, i.e., from ~1.1 x 105 to ~1.1 x 101 phage genomes per reaction, which corresponds to ~9 x 107 to ~9 x 103 phage particles mL-1 without any additional up-concentrating steps. The amplification efficiencies of the corresponding assays were 100.1±2.6, 98.7±2.3, 101.0±2.3 and 96.2±6.2. The qPCR system was tested on samples obtained from a dairy plant that employed traditional mother-bulk-cheese vat system. High levels of 936 and P335 phages were detected in the mother culture and the bulk starter, but also in the whey samples. Low levels of phages were detected in the cheese milk samples. PMID:28339484

  10. Development and Validation of a Highly Accurate Quantitative Real-Time PCR Assay for Diagnosis of Bacterial Vaginosis

    PubMed Central

    Smith, William L.; Chadwick, Sean G.; Toner, Geoffrey; Mordechai, Eli; Adelson, Martin E.; Aguin, Tina J.; Sobel, Jack D.

    2016-01-01

    Bacterial vaginosis (BV) is the most common gynecological infection in the United States. Diagnosis based on Amsel's criteria can be challenging and can be aided by laboratory-based testing. A standard method for diagnosis in research studies is enumeration of bacterial morphotypes of a Gram-stained vaginal smear (i.e., Nugent scoring). However, this technique is subjective, requires specialized training, and is not widely available. Therefore, a highly accurate molecular assay for the diagnosis of BV would be of great utility. We analyzed 385 vaginal specimens collected prospectively from subjects who were evaluated for BV by clinical signs and Nugent scoring. We analyzed quantitative real-time PCR (qPCR) assays on DNA extracted from these specimens to quantify nine organisms associated with vaginal health or disease: Gardnerella vaginalis, Atopobium vaginae, BV-associated bacteria 2 (BVAB2, an uncultured member of the order Clostridiales), Megasphaera phylotype 1 or 2, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus gasseri, and Lactobacillus jensenii. We generated a logistic regression model that identified G. vaginalis, A. vaginae, and Megasphaera phylotypes 1 and 2 as the organisms for which quantification provided the most accurate diagnosis of symptomatic BV, as defined by Amsel's criteria and Nugent scoring, with 92% sensitivity, 95% specificity, 94% positive predictive value, and 94% negative predictive value. The inclusion of Lactobacillus spp. did not contribute sufficiently to the quantitative model for symptomatic BV detection. This molecular assay is a highly accurate laboratory tool to assist in the diagnosis of symptomatic BV. PMID:26818677

  11. Interlaboratory Validation for a Real-Time PCR Salmonella Detection Method Using the ABI 7500 FAST Real-Time PCR System.

    PubMed

    Cheng, Chorng-Ming; Doran, Tara; Lin, Wen; Chen, Kai-Shun; Williams-Hill, Donna; Pamboukian, Ruiqing

    2015-06-01

    Sixteen FERN (Food Emergency Response Network) member laboratories collaborated in this study to verify extension of the real-time PCR Salmonella detection method originally designed for the single-tube Cepheid SmartCycler II and validated against the Salmonella method of the U. S. Food and Drug Administration Bacteriological Analytical Manual to the Applied Biosystems (ABI) 7500 FAST Real-Time PCR system multiwell plate platform. Four foods were selected for this study: chili powder, soft cheese, fish, and tomatoes; these foods represent products that are commonly analyzed for the presence of Salmonella for regulatory purposes. Each food consisted of six uninoculated control samples, six samples inoculated with low Salmonella levels (target 1 to 5 CFU/25 g), and six samples inoculated with high levels (target 10 to 50 CFU/25 g). All samples were tested for Salmonella using the 24-h quantitative PCR (qPCR) method for detecting Salmonella, which utilizes modified buffered peptone water as the sole enrichment medium and an internal control for the qPCR. Each of these 18 samples was individually analyzed for Salmonella by the collaborating laboratories using both the ABI 7500 FAST system (alternative method) and the SmartCycler II system (reference method). Statistical analysis of the data revealed no significant difference (P ≥ 0.05) between these two qPCR platforms except for the chili powder samples. The differences noted with chili powder (P = 0.0455) were attributed to the enhanced sensitivity of the ABI 7500 FAST system compared with the SmartCycler II system. The detection limit of both qPCR methods was 0.02 to 0.15 CFU/g. These results provide a solid basis for extending the 24-h qPCR Salmonella method to the ABI 7500 FAST system for high-throughput detection of Salmonella in foods.

  12. Enumeration of Archaea and Bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy.

    PubMed

    Einen, Jørn; Thorseth, Ingunn H; Ovreås, Lise

    2008-05-01

    A SYBR Green real-time quantitative PCR (Q-PCR) assay for the detection and quantification of Bacteria and Archaea present in the glassy rind of seafloor basalts of different ages and water depths is presented. Two sets of domain-specific primers were designed and validated for specific detection and quantification of bacterial and archaeal 16S rRNA genes in DNA extracted from basaltic glass. Total cell numbers were also estimated by fluorescence microscopy analysis of SYBR Gold-stained samples. The results from the two different approaches were concurrent, and Q-PCR results showed that the total number of cells present in basalts was in the range from 6 x 10(5) to 4 x 10(6) cells g(-1) basaltic glass. Further, it was demonstrated that these cells were almost exclusively from the domain Bacteria. When applying the same methods on samples of different ages (22 years-0.1 Ma) and water depths (139-3390 mbsl), no significant differences in cell concentrations or in the relative abundance of Archaea and Bacteria were detected.

  13. Development of a Chip Assay and Quantitative PCR for Detecting Microcystin Synthetase E Gene Expression ▿ †

    PubMed Central

    Sipari, Hanna; Rantala-Ylinen, Anne; Jokela, Jouni; Oksanen, Ilona; Sivonen, Kaarina

    2010-01-01

    The chip and quantitative real-time PCR (qPCR) assays were optimized to study the expression of microcystin biosynthesis genes (mcy) with RNA samples extracted from cyanobacterial strains and environmental water samples. Both microcystin-producing Anabaena and Microcystis were identified in Lake Tuusulanjärvi samples. Microcystis transcribed the mcyE genes throughout the summer of 2006, while expression by Anabaena became evident later in August and September. Active mcyE gene expression was also detectable when microcystin concentrations were very low. Detection of Anabaena mcyE transcripts by qPCR, as well as certain cyanobacterial 16S rRNAs with the chip assay, showed slightly reduced sensitivity compared with the DNA analyses. In contrast, even groups undetectable or present in low quantities as determined by microscopy could be identified with the chip assay from DNA samples. The methods introduced add to the previously scarce repertoire of applications for mcy expression profiling in environmental samples and enable in situ studies of regulation of microcystin synthesis in response to environmental factors. PMID:20400558

  14. Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR.

    PubMed

    Kuiper, Melanie W; Valster, Rinske M; Wullings, Bart A; Boonstra, Harry; Smidt, Hauke; van der Kooij, Dick

    2006-09-01

    A real-time PCR-based method targeting the 18S rRNA gene was developed for the quantitative detection of Hartmannella vermiformis, a free-living amoeba which is a potential host for Legionella pneumophila in warm water systems and cooling towers. The detection specificity was validated using genomic DNA of the closely related amoeba Hartmannella abertawensis as a negative control and sequence analysis of amplified products from environmental samples. Real-time PCR detection of serially diluted DNA extracted from H. vermiformis was linear for microscopic cell counts between 1.14 x 10(-1) and 1.14 x 10(4) cells per PCR. The genome of H. vermiformis harbors multiple copies of the 18S rRNA gene, and an average number (with standard error) of 1,330 +/- 127 copies per cell was derived from real-time PCR calibration curves for cell suspensions and plasmid DNA. No significant differences were observed between the 18S rRNA gene copy numbers for trophozoites and cysts of strain ATCC 50237 or between the copy numbers for this strain and strain KWR-1. The developed method was applied to water samples (200 ml) collected from a variety of lakes and rivers serving as sources for drinking water production in The Netherlands. Detectable populations were found in 21 of the 28 samples, with concentrations ranging from 5 to 75 cells/liter. A high degree of similarity (> or =98%) was observed between sequences of clones originating from the different surface waters and between these clones and the reference strains. Hence, H. vermiformis, which is highly similar to strains serving as hosts for L. pneumophila, is a common component of the microbial community in fresh surface water.

  15. Development of one novel multiple-target plasmid for duplex quantitative PCR analysis of roundup ready soybean.

    PubMed

    Zhang, Haibo; Yang, Litao; Guo, Jinchao; Li, Xiang; Jiang, Lingxi; Zhang, Dabing

    2008-07-23

    To enforce the labeling regulations of genetically modified organisms (GMOs), the application of reference molecules as calibrators is becoming essential for practical quantification of GMOs. However, the reported reference molecules with tandem marker multiple targets have been proved not suitable for duplex PCR analysis. In this study, we developed one unique plasmid molecule based on one pMD-18T vector with three exogenous target DNA fragments of Roundup Ready soybean GTS 40-3-2 (RRS), that is, CaMV35S, NOS, and RRS event fragments, plus one fragment of soybean endogenous Lectin gene. This Lectin gene fragment was separated from the three exogenous target DNA fragments of RRS by inserting one 2.6 kb DNA fragment with no relatedness to RRS detection targets in this resultant plasmid. Then, we proved that this design allows the quantification of RRS using the three duplex real-time PCR assays targeting CaMV35S, NOS, and RRS events employing this reference molecule as the calibrator. In these duplex PCR assays, the limits of detection (LOD) and quantification (LOQ) were 10 and 50 copies, respectively. For the quantitative analysis of practical RRS samples, the results of accuracy and precision were similar to those of simplex PCR assays, for instance, the quantitative results were at the 1% level, the mean bias of the simplex and duplex PCR were 4.0% and 4.6%, respectively, and the statistic analysis ( t-test) showed that the quantitative data from duplex and simplex PCR had no significant discrepancy for each soybean sample. Obviously, duplex PCR analysis has the advantages of saving the costs of PCR reaction and reducing the experimental errors in simplex PCR testing. The strategy reported in the present study will be helpful for the development of new reference molecules suitable for duplex PCR quantitative assays of GMOs.

  16. Method and apparatus for chromatographic quantitative analysis

    DOEpatents

    Fritz, James S.; Gjerde, Douglas T.; Schmuckler, Gabriella

    1981-06-09

    An improved apparatus and method for the quantitative analysis of a solution containing a plurality of anion species by ion exchange chromatography which utilizes a single eluent and a single ion exchange bed which does not require periodic regeneration. The solution containing the anions is added to an anion exchange resin bed which is a low capacity macroreticular polystyrene-divinylbenzene resin containing quarternary ammonium functional groups, and is eluted therefrom with a dilute solution of a low electrical conductance organic acid salt. As each anion species is eluted from the bed, it is quantitatively sensed by conventional detection means such as a conductivity cell.

  17. Electric Field Quantitative Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  18. Quantitative analysis of the expression of ACAT genes in human tissues by real-time PCR.

    PubMed

    Smith, Jeffery L; Rangaraj, Kavitha; Simpson, Robert; Maclean, Donald J; Nathanson, Les K; Stuart, Katherine A; Scott, Shaun P; Ramm, Grant A; de Jersey, John

    2004-04-01

    ACAT (also called sterol o-acyltransferase) catalyzes the esterification of cholesterol by reaction with long-chain acyl-CoA derivatives and plays a pivotal role in the regulation of cholesterol homeostasis. Although two human ACAT genes termed ACAT-1 and ACAT-2 have been reported, prior research on differential tissue expression is qualitative and incomplete. We have developed a quantitative multiplex assay for each ACAT isoform after RT treatment of total RNA using TaqMan real-time quantitative PCR normalized to beta-actin in the same reaction tube. This enabled us to calculate the relative abundance of transcripts in several human tissues as an ACAT-2/ACAT-1 ratio. In liver (n = 17), ACAT-1 transcripts were on average 9-fold (range, 1.7- to 167-fold) more abundant than ACAT-2, whereas in duodenal samples (n = 10), ACAT-2 transcripts were on average 3-fold (range, 0.39- to 12.2-fold) more abundant than ACAT-1. ACAT-2 was detected for the first time in peripheral blood mononuclear cells. Interesting differences in ACAT-2 mRNA expression were evident in subgroup analysis of samples from different sources. These results demonstrate quantitatively that ACAT-1 transcripts predominate in human liver and ACAT-2 transcripts predominate in human duodenum and support the notion that ACAT-2 has an important regulatory role in liver and intestine.

  19. In-house validation and quality control of real-time PCR methods for GMO detection: a practical approach.

    PubMed

    Ciabatti, I; Froiio, A; Gatto, F; Amaddeo, D; Marchesi, U

    2006-01-01

    GMO detection and quantification methods in the EU are mainly based on real-time PCR. The analytical methods in use must be validated, first on an intra-laboratory scale and through a collaborative trial thereafter. Since a consensual protocol for intra-laboratory validation of real-time PCR methods is lacking, we provide a practical approach for the in-house validation of quantitative real-time PCR methods, establishing acceptability criteria and quality controls for PCR runs. Parameters such as limit of detection, limit of quantification, precision, trueness, linear dynamic range, PCR efficiency, robustness and specificity are considered. The protocol is sufficiently detailed to be directly applicable, increases the reliability of results and their harmonization among different laboratories, and represents a necessary preliminary step before proceeding to a time-consuming and costly full validation study.

  20. Tracking the Invasion of Small Numbers of Cells in Paper-Based Assays with Quantitative PCR.

    PubMed

    Truong, Andrew S; Lochbaum, Christian A; Boyce, Matthew W; Lockett, Matthew R

    2015-11-17

    Paper-based scaffolds are an attractive material for culturing mammalian cells in a three-dimensional environment. There are a number of previously published studies, which utilize these scaffolds to generate models of aortic valves, cardiac ischemia and reperfusion, and solid tumors. These models have largely relied on fluorescence imaging and microscopy to quantify cells in the scaffolds. We present here a polymerase chain reaction (PCR)-based method, capable of quantifying multiple cell types in a single culture with the aid of DNA barcodes: unique sequences of DNA introduced to the genome of individual cells or cell types through lentiviral transduction. PCR-based methods are highly specific and are amenable to high-throughput and multiplexed analyses. To validate this method, we engineered two different breast cancer lines to constitutively express either a green or red fluorescent protein. These cells lines allowed us to directly compare the ability of fluorescence imaging (of the fluorescent proteins) and qPCR (of the unique DNA sequences of the fluorescent proteins) to quantify known numbers of cells in the paper based-scaffolds. We also used both methods to quantify the distribution of these breast cell lines in homotypic and heterotypic invasion assays. In the paper-based invasion assays, a single sheet of paper containing cells suspended in a hydrogel was sandwiched between sheets of paper containing only hydrogel. The stack was incubated, and the cells invaded the adjacent layers. The individual sheets of the invasion assay were then destacked and the number of cells in each layer quantified. Our results show both methods can accurately detect cell populations of greater than 500 cells. The qPCR method can repeatedly and accurately detect as few as 50 cells, allowing small populations of highly invasive cells to be detected and differentiated from other cell types.

  1. A Real-Time PCR Method to Detect the Population Level of Halovirus SNJ1

    PubMed Central

    Mei, Yunjun; He, Congcong; Deng, Wei; Ba, Dala; Yang, Ming; Zhang, Jian; Zhang, Shunxi; Shen, Ping; Chen, Xiangdong

    2016-01-01

    Although viruses of haloarchaea are the predominant predator in hypersaline ecosystem, the culture studies about halovirus-host systems are infancy. The main reason is the tradition methodology (plaque assay) for virus-host interaction depends on culturable and susceptible host. Actually, more than 90% of haloarchaea are unculturable. Therefore, it is necessary to establish an approach for detecting the dynamics of virus in hypersaline environment without culture. In this study, we report a convenient method to determine the dynamics of halovirus SNJ1 based on quantitative real-time PCR (qPCR). All findings showed that the qPCR method was specific (single peak in melt curves), accurate (a good linear relationship between the log of the PFU and the Ct values, R2 = 0.99), reproducible (low coefficient of variations, below 1%). Additionally, the physicochemical characteristics of the samples tested did not influence the stability of qPCR. Therefore, the qPCR method has the potential value in quantifying and surveying haloviruses in halophilic ecological system. PMID:27192212

  2. Quantitative PCR analysis of CYP1A induction in Atlantic salmon (Salmo salar)

    USGS Publications Warehouse

    Rees, C.B.; McCormick, S.D.; Vanden, Heuvel J.P.; Li, W.

    2003-01-01

    Environmental pollutants are hypothesized to be one of the causes of recent declines in wild populations of Atlantic salmon (Salmo salar) across Eastern Canada and the United States. Some of these pollutants, such as polychlorinated biphenyls and dioxins, are known to induce expression of the CYP1A subfamily of genes. We applied a highly sensitive technique, quantitative reverse transcription-polymerase chain reaction (RT-PCR), for measuring the levels of CYP1A induction in Atlantic salmon. This assay was used to detect patterns of CYP1A mRNA levels, a direct measure of CYP1A expression, in Atlantic salmon exposed to pollutants under both laboratory and field conditions. Two groups of salmon were acclimated to 11 and 17??C, respectively. Each subject then received an intraperitoneal injection (50 mg kg-1) of either ??-naphthoflavone (BNF) in corn oil (10 mg BNF ml-1 corn oil) or corn oil alone. After 48 h, salmon gill, kidney, liver, and brain were collected for RNA isolation and analysis. All tissues showed induction of CYP1A by BNF. The highest base level of CYP1A expression (2.56??1010 molecules/??g RNA) was found in gill tissue. Kidney had the highest mean induction at five orders of magnitude while gill tissue showed the lowest mean induction at two orders of magnitude. The quantitative RT-PCR was also applied to salmon sampled from two streams in Massachusetts, USA. Salmon liver and gill tissue sampled from Millers River (South Royalston, Worcester County), known to contain polychlorinated biphenyls (PCBs), showed on average a two orders of magnitude induction over those collected from a stream with no known contamination (Fourmile Brook, Northfield, Franklin County). Overall, the data show CYP1A exists and is inducible in Atlantic salmon gill, brain, kidney, and liver tissue. In addition, the results obtained demonstrate that quantitative PCR analysis of CYP1A expression is useful in studying ecotoxicity in populations of Atlantic salmon in the wild. ?? 2003

  3. Evaluation of putative reference genes for quantitative real-time PCR normalization in Lilium regale during development and under stress

    PubMed Central

    Zhang, Ming-Fang

    2016-01-01

    Normalization to reference genes is the most common method to avoid bias in real-time quantitative PCR (qPCR), which has been widely used for quantification of gene expression. Despite several studies on gene expression, Lilium, and particularly L. regale, has not been fully investigated regarding the evaluation of reference genes suitable for normalization. In this study, nine putative reference genes, namely 18S rRNA, ACT, BHLH, CLA, CYP, EF1, GAPDH, SAND and TIP41, were analyzed for accurate quantitative PCR normalization at different developmental stages and under different stress conditions, including biotic (Botrytis elliptica), drought, salinity, cold and heat stress. All these genes showed a wide variation in their Cq (quantification Cycle) values, and their stabilities were calculated by geNorm, NormFinder and BestKeeper. In a combination of the results from the three algorithms, BHLH was superior to the other candidates when all the experimental treatments were analyzed together; CLA and EF1 were also recommended by two of the three algorithms. As for specific conditions, EF1 under various developmental stages, SAND under biotic stress, CYP/GAPDH under drought stress, and TIP41 under salinity stress were generally considered suitable. All the algorithms agreed on the stability of SAND and GAPDH under cold stress, while only CYP was selected under heat stress by all of them. Additionally, the selection of optimal reference genes under biotic stress was further verified by analyzing the expression level of LrLOX in leaves inoculated with B. elliptica. Our study would be beneficial for future studies on gene expression and molecular breeding of Lilium. PMID:27019788

  4. Quantitative real-time PCR and fluorescence in situ hybridization approaches for enumerating Brevundimonas diminuta in drinking water.

    PubMed

    Donofrio, Robert S; Bestervelt, Lorelle L; Saha, Ratul; Bagley, Susan T

    2010-09-01

    Brevundimonas diminuta is a small Gram-negative bacterium used for validation of membranes and filters used in the pharmaceutical and drinking water treatment industries. Current assays are time consuming, nonselective, and may be subject to interference by competing indigenous microorganisms. The focus of this study is to develop rapid and specific enumeration methodologies for B. diminuta. Quantitative real-time polymerase chain reaction (qPCR) and fluorescence in situ hybridization (FISH) assays were developed based on the gyrB (1,166 bp) and rpoD (829 bp) gene sequences of B. diminuta ATCC 19146. Species-specific primers and probes were designed, and a 100-200 bp segment of each gene was targeted in the qPCR studies. For both the qPCR and FISH assays, an internal 25 bp sequence was selected for use as a TaqMan probe (labeled with 6-FAM and a Black Hole Quencher). Probe specificity studies, conducted against Gram-negative and Gram-positive reference strains as well as environmental strains, revealed high specificity of the primer/probe pairs to B. diminuta. Sensitivities of the qPCR reactions using purified genomic DNA from B. diminuta were determined to be 0.89 pg for rpoD and 8.9 pg for gyrB. The feasibility of using whole-cell B. diminuta suspensions directly with the rpoD qPCR protocol was also evaluated. The greatest sensitivity observed for B. diminuta was 1 x 10(3) colony forming units (CFU) per mL when tryptic soy broth was used as the growth medium. When compared with direct microscopic enumeration using a 5' 6-FAM FISH probe, traditional plating methods showed significant underestimation of B. diminuta concentration (P = 0.01) when this organism was cultivated in saline lactose broth. The results of this investigation demonstrate that qPCR and FISH are effective methods for rapid (<4 h) enumeration of B. diminuta and may be viable alternatives to plating when validating drinking water filtration systems.

  5. Application of real-time PCR for total airborne bacterial assessment: Comparison with epifluorescence microscopy and culture-dependent methods

    NASA Astrophysics Data System (ADS)

    Rinsoz, Thomas; Duquenne, Philippe; Greff-Mirguet, Guylaine; Oppliger, Anne

    Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count non-culturable or non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescence microscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the "impaction on nutrient agar" method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria.

  6. Simple quantitative PCR approach to reveal naturally occurring and mutation-induced repetitive sequence variation on the Drosophila Y chromosome.

    PubMed

    Aldrich, John C; Maggert, Keith A

    2014-01-01

    Heterochromatin is a significant component of the human genome and the genomes of most model organisms. Although heterochromatin is thought to be largely non-coding, it is clear that it plays an important role in chromosome structure and gene regulation. Despite a growing awareness of its functional significance, the repetitive sequences underlying some heterochromatin remain relatively uncharacterized. We have developed a real-time quantitative PCR-based method for quantifying simple repetitive satellite sequences and have used this technique to characterize the heterochromatic Y chromosome of Drosophila melanogaster. In this report, we validate the approach, identify previously unknown satellite sequence copy number polymorphisms in Y chromosomes from different geographic sources, and show that a defect in heterochromatin formation can induce similar copy number polymorphisms in a laboratory strain. These findings provide a simple method to investigate the dynamic nature of repetitive sequences and characterize conditions which might give rise to long-lasting alterations in DNA sequence.

  7. Simple Quantitative PCR Approach to Reveal Naturally Occurring and Mutation-Induced Repetitive Sequence Variation on the Drosophila Y Chromosome

    PubMed Central

    Aldrich, John C.; Maggert, Keith A.

    2014-01-01

    Heterochromatin is a significant component of the human genome and the genomes of most model organisms. Although heterochromatin is thought to be largely non-coding, it is clear that it plays an important role in chromosome structure and gene regulation. Despite a growing awareness of its functional significance, the repetitive sequences underlying some heterochromatin remain relatively uncharacterized. We have developed a real-time quantitative PCR-based method for quantifying simple repetitive satellite sequences and have used this technique to characterize the heterochromatic Y chromosome of Drosophila melanogaster. In this report, we validate the approach, identify previously unknown satellite sequence copy number polymorphisms in Y chromosomes from different geographic sources, and show that a defect in heterochromatin formation can induce similar copy number polymorphisms in a laboratory strain. These findings provide a simple method to investigate the dynamic nature of repetitive sequences and characterize conditions which might give rise to long-lasting alterations in DNA sequence. PMID:25285439

  8. Distribution of Human-Specific Bacteroidales and Fecal Indicator Bacteria in an Urban Watershed Impacted by Sewage Pollution, Determined Using RNA- and DNA-Based Quantitative PCR Assays

    PubMed Central

    Kapoor, Vikram; Pitkänen, Tarja; Ryu, Hodon; Elk, Michael

    2014-01-01

    The identification of fecal pollution sources is commonly carried out using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as “naked DNA” in the environment. Furthermore, it has been shown that rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) assays can be more sensitive than rRNA gene-based qPCR assays since metabolically active cells usually contain higher numbers of ribosomes than quiescent cells. To this end, we compared the detection frequency of host-specific markers and fecal bacteria using RNA-based RT-qPCR and DNA-based qPCR methods for water samples collected in sites impacted by combined sewer overflows. As a group, fecal bacteria were more frequently detected in most sites using RNA-based methods. Specifically, 8, 87, and 85% of the samples positive for general enterococci, Enterococcus faecalis, and Enterococcus faecium markers, respectively, were detected using RT-qPCR, but not with the qPCR assay counterpart. On average, two human-specific Bacteroidales markers were not detected when using DNA in 12% of the samples, while they were positive for all samples when using RNA (cDNA) as the template. Moreover, signal intensity was up to three orders of magnitude higher in RT-qPCR assays than in qPCR assays. The human-specific Bacteroidales markers exhibited moderate correlation with conventional fecal indicators using RT-qPCR results, suggesting the persistence of nonhuman sources of fecal pollution or the presence of false-positive signals. In general, the results from this study suggest that RNA-based assays can increase the detection sensitivity of fecal bacteria in urban watersheds impacted with human fecal sources. PMID:25326295

  9. Evaluation and Validation of Reference Genes for Normalization of Quantitative Real-Time PCR Based Gene Expression Studies in Peanut

    PubMed Central

    Cindhuri, Katamreddy Sri; Sharma, Kiran K.

    2013-01-01

    The quantitative real-time PCR (qPCR) based techniques have become essential for gene expression studies and high-throughput molecular characterization of transgenic events. Normalizing to reference gene in relative quantification make results from qPCR more reliable when compared to absolute quantification, but requires robust reference genes. Since, ideal reference gene should be species specific, no single internal control gene is universal for use as a reference gene across various plant developmental stages and diverse growth conditions. Here, we present validation studies of multiple stably expressed reference genes in cultivated peanut with minimal variations in temporal and spatial expression when subjected to various biotic and abiotic stresses. Stability in the expression of eight candidate reference genes including ADH3, ACT11, ATPsyn, CYP2, ELF1B, G6PD, LEC and UBC1 was compared in diverse peanut plant samples. The samples were categorized into distinct experimental sets to check the suitability of candidate genes for accurate and reliable normalization of gene expression using qPCR. Stability in expression of the references genes in eight sets of samples was determined by geNorm and NormFinder methods. While three candidate reference genes including ADH3, G6PD and ELF1B were identified to be stably expressed across experiments, LEC was observed to be the least stable, and hence must be avoided for gene expression studies in peanut. Inclusion of the former two genes gave sufficiently reliable results; nonetheless, the addition of the third reference gene ELF1B may be potentially better in a diverse set of tissue samples of peanut. PMID:24167633

  10. Evaluation and validation of reference genes for normalization of quantitative real-time PCR based gene expression studies in peanut.

    PubMed

    Reddy, Dumbala Srinivas; Bhatnagar-Mathur, Pooja; Cindhuri, Katamreddy Sri; Sharma, Kiran K

    2013-01-01

    The quantitative real-time PCR (qPCR) based techniques have become essential for gene expression studies and high-throughput molecular characterization of transgenic events. Normalizing to reference gene in relative quantification make results from qPCR more reliable when compared to absolute quantification, but requires robust reference genes. Since, ideal reference gene should be species specific, no single internal control gene is universal for use as a reference gene across various plant developmental stages and diverse growth conditions. Here, we present validation studies of multiple stably expressed reference genes in cultivated peanut with minimal variations in temporal and spatial expression when subjected to various biotic and abiotic stresses. Stability in the expression of eight candidate reference genes including ADH3, ACT11, ATPsyn, CYP2, ELF1B, G6PD, LEC and UBC1 was compared in diverse peanut plant samples. The samples were categorized into distinct experimental sets to check the suitability of candidate genes for accurate and reliable normalization of gene expression using qPCR. Stability in expression of the references genes in eight sets of samples was determined by geNorm and NormFinder methods. While three candidate reference genes including ADH3, G6PD and ELF1B were identified to be stably expressed across experiments, LEC was observed to be the least stable, and hence must be avoided for gene expression studies in peanut. Inclusion of the former two genes gave sufficiently reliable results; nonetheless, the addition of the third reference gene ELF1B may be potentially better in a diverse set of tissue samples of peanut.

  11. Strategy for the extraction of yeast DNA from artisan agave must for quantitative PCR analysis.

    PubMed

    Kirchmayr, Manuel Reinhart; Segura-Garcia, Luis Eduardo; Flores-Berrios, Ericka Patricia; Gschaedler, Anne

    2011-11-01

    An efficient method for the direct extraction of yeast genomic DNA from agave must was developed. The optimized protocol, which was based on silica-adsorption of DNA on microcolumns, included an enzymatic cell wall degradation step followed by prolonged lysis with hot detergent. The resulting extracts were suitable templates for subsequent qPCR assays that quantified mixed yeast populations in artisan Mexican mezcal fermentations.

  12. Universal real-time PCR assay for quantitation and size evaluation of residual cell DNA in human viral vaccines.

    PubMed

    André, Murielle; Reghin, Sylviane; Boussard, Estelle; Lempereur, Laurent; Maisonneuve, Stéphane

    2016-05-01

    Residual host cellular DNA (rcDNA) is one of the principal risk associated with continuous cell lines derived medicines such as viral vaccines. To assess rcDNA degradation, we suggest two quantitative real-time PCR assays designed to separately quantify target sequences shorter and longer than the 200 bp risk limit, the relative abundance of both targets reflecting the extent of rcDNA fragmentation. The conserved multicopy ribosomal 18S RNA gene was targeted to detect host cell templates from most mammalian cell substrates commonly used in the manufacture of human viral vaccines. The detection range of the method was assessed on purified DNA templates from different animal origins. The standard calibrator origin and structural conformation were shown crucial to achieve accurate quantification. Artificial mixtures of PCR products shorter and longer than 200 bp were used as a model to check the ability of the assay to estimate the fragment size distribution. The method was successfully applied to a panel of Vero cell derived vaccines and could be used as a universal method for determination of both content and size distribution of rcDNA in vaccines.

  13. Measurement of ice nucleation-active bacteria on plants and in precipitation by quantitative PCR.

    PubMed

    Hill, Thomas C J; Moffett, Bruce F; Demott, Paul J; Georgakopoulos, Dimitrios G; Stump, William L; Franc, Gary D

    2014-02-01

    Ice nucleation-active (INA) bacteria may function as high-temperature ice-nucleating particles (INP) in clouds, but their effective contribution to atmospheric processes, i.e., their potential to trigger glaciation and precipitation, remains uncertain. We know little about their abundance on natural vegetation, factors that trigger their release, or persistence of their ice nucleation activity once airborne. To facilitate these investigations, we developed two quantitative PCR (qPCR) tests of the ina gene to directly count INA bacteria in environmental samples. Each of two primer pairs amplified most alleles of the ina gene and, taken together, they should amplify all known alleles. To aid primer design, we collected many new INA isolates. Alignment of their partial ina sequences revealed new and deeply branching clades, including sequences from Pseudomonas syringae pv. atropurpurea, Ps. viridiflava, Pantoea agglomerans, Xanthomonas campestris, and possibly Ps. putida, Ps. auricularis, and Ps. poae. qPCR of leaf washings recorded ∼10(8) ina genes g(-1) fresh weight of foliage on cereals and 10(5) to 10(7) g(-1) on broadleaf crops. Much lower populations were found on most naturally occurring vegetation. In fresh snow, ina genes from various INA bacteria were detected in about half the samples but at abundances that could have accounted for only a minor proportion of INP at -10°C (assuming one ina gene per INA bacterium). Despite this, an apparent biological source contributed an average of ∼85% of INP active at -10°C in snow samples. In contrast, a thunderstorm hail sample contained 0.3 INA bacteria per INP active at -10°C, suggesting a significant contribution to this sample.

  14. Measurement of Ice Nucleation-Active Bacteria on Plants and in Precipitation by Quantitative PCR

    PubMed Central

    Moffett, Bruce F.; DeMott, Paul J.; Georgakopoulos, Dimitrios G.; Stump, William L.; Franc, Gary D.

    2014-01-01

    Ice nucleation-active (INA) bacteria may function as high-temperature ice-nucleating particles (INP) in clouds, but their effective contribution to atmospheric processes, i.e., their potential to trigger glaciation and precipitation, remains uncertain. We know little about their abundance on natural vegetation, factors that trigger their release, or persistence of their ice nucleation activity once airborne. To facilitate these investigations, we developed two quantitative PCR (qPCR) tests of the ina gene to directly count INA bacteria in environmental samples. Each of two primer pairs amplified most alleles of the ina gene and, taken together, they should amplify all known alleles. To aid primer design, we collected many new INA isolates. Alignment of their partial ina sequences revealed new and deeply branching clades, including sequences from Pseudomonas syringae pv. atropurpurea, Ps. viridiflava, Pantoea agglomerans, Xanthomonas campestris, and possibly Ps. putida, Ps. auricularis, and Ps. poae. qPCR of leaf washings recorded ∼108 ina genes g−1 fresh weight of foliage on cereals and 105 to 107 g−1 on broadleaf crops. Much lower populations were found on most naturally occurring vegetation. In fresh snow, ina genes from various INA bacteria were detected in about half the samples but at abundances that could have accounted for only a minor proportion of INP at −10°C (assuming one ina gene per INA bacterium). Despite this, an apparent biological source contributed an average of ∼85% of INP active at −10°C in snow samples. In contrast, a thunderstorm hail sample contained 0.3 INA bacteria per INP active at −10°C, suggesting a significant contribution to this sample. PMID:24317082

  15. Identification of Reference Genes for Quantitative RT-PCR in Ascending Aortic Aneurysms

    PubMed Central

    Henn, Dominic; Bandner-Risch, Doris; Perttunen, Hilja; Schmied, Wolfram; Porras, Carlos; Ceballos, Francisco; Rodriguez-Losada, Noela; Schäfers, Hans-Joachim

    2013-01-01

    Hypertension and congenital aortic valve malformations are frequent causes of ascending aortic aneurysms. The molecular mechanisms of aneurysm formation under these circumstances are not well understood. Reference genes for gene activity studies in aortic tissue that are not influenced by aortic valve morphology and its hemodynamic consequences, aortic dilatation, hypertension, or antihypertensive medication are not available so far. This study determines genes in ascending aortic tissue that are independent of these parameters. Tissue specimens from dilated and undilated ascending aortas were obtained from 60 patients (age ≤70 years) with different morphologies of the aortic valve (tricuspid undilated n = 24, dilated n = 11; bicuspid undilated n = 6, dilated n = 15; unicuspid dilated n = 4). Of the studied individuals, 36 had hypertension, and 31 received ACE inhibitors or AT1 receptor antagonists. The specimens were obtained intraoperatively from the wall of the ascending aorta. We analyzed the expression levels of 32 candidate reference genes by quantitative RT-PCR (RT-qPCR). Differential expression levels were assessed by parametric statistics. The expression analysis of these 32 genes by RT-qPCR showed that EIF2B1, ELF1, and PPIA remained constant in their expression levels in the different specimen groups, thus being insensitive to aortic valve morphology, aortic dilatation, hypertension, and medication with ACE inhibitors or AT1 receptor antagonists. Unlike many other commonly used reference genes, the genes EIF2B1, ELF1, and PPIA are neither confounded by aortic comorbidities nor by antihypertensive medication and therefore are most suitable for gene expression analysis of ascending aortic tissue. PMID:23326585

  16. Quantitative real-time PCR assay for Clostridium septicum in poultry gangrenous dermatitis associated samples.

    PubMed

    Neumann, A P; Dunham, S M; Rehberger, T G; Siragusa, G R

    2010-08-01

    Clostridium septicum is a spore-forming anaerobe frequently implicated in cases of gangrenous dermatitis (GD) and other spontaneously occurring myonecrotic infections of poultry. Although C. septicum is readily cultured from diseased tissues it can be difficult to enumerate due to its tendency to swarm over the surface of agar plates. In this study a quantitative real-time PCR assay was developed in order to more accurately measure the levels of C. septicum in healthy as well as GD associated poultry samples. The assay was specifically designed to target the C. septicum alpha toxin gene, csa, which is, to our knowledge, carried by all strains of C. septicum and has been shown to be essential for virulence. Genomic DNAs from a diverse collection of bacterial species, including closely related Clostridium chauvoei, Clostridium carnis, Clostridium tertium as well as several strains of Clostridium perfringens, all failed to produce a positive reaction. An approximate reproducible limit of detection in spiked extracts of at least 10(3) cfu/g of C. septicum was observed for a variety of different sample types. C. septicum levels in broiler chicken field samples estimated from the results of qPCR were statistically correlated to culture based enumerations obtained from those same tissues.

  17. Detection of Campylobacter jejuni in Lizard Faeces from Central Australia Using Quantitative PCR

    PubMed Central

    Whiley, Harriet; McLean, Ryan; Ross, Kirstin

    2016-01-01

    Worldwide, Campylobacter is a significant cause of gastrointestinal illness. It is predominately considered a foodborne pathogen, with human exposure via non-food transmission routes generally overlooked. Current literature has been exploring environmental reservoirs of campylobacteriosis including potential wildlife reservoirs. Given the close proximity between lizards and human habitats in Central Australia, this study examined the presence of Campylobacter jejuni from lizard faeces collected from this region. Of the 51 samples collected, 17 (33%) (this included 14/46 (30%) wild and 3/5 (60%) captive lizard samples) were positive for C. jejuni using quantitative PCR (qPCR). This was the first study to investigate the presence of C. jejuni in Australian lizards. This has public health implications regarding the risk of campylobacteriosis from handling of pet reptiles and through cross-contamination or contact with wild lizard faeces. Additionally this has implication for horizontal transmission via lizards of C. jejuni to food production farms. Further research is needed on this environmental reservoir and potential transmission routes to reduce the risk to public health. PMID:28025556

  18. Monitoring of Saccharomyces and Hanseniaspora populations during alcoholic fermentation by real-time quantitative PCR.

    PubMed

    Hierro, Núria; Esteve-Zarzoso, Braulio; Mas, Albert; Guillamón, Jose M

    2007-12-01

    Real-time, or quantitative, PCR (QPCR) was developed for the rapid quantification of two of the most important yeast groups in alcoholic fermentation (Saccharomyces spp. and Hanseniaspora spp.). Specific primers were designed from the region spanning the internal transcribed spacer 2 (ITS2) and the 5.8S rRNA gene. To confirm the specificity of these primers, they were tested with different yeast species, acetic acid bacteria and lactic acid bacteria. The designed primers only amplified for the intended group of species and none of the PCR assays was positive for any other wine microorganisms. This technique was performed on reference yeast strains from pure cultures and validated with both artificially contaminated wines and real wine fermentation samples. To determine the effectiveness of the technique, the QPCR results were compared with those obtained by plating. The design of new primers for other important wine yeast species will enable to monitor yeast diversity during industrial wine fermentation and to detect the main spoilage yeasts in wine.

  19. Development of two quantitative real-time PCR diagnostic kits for HPV isolates from Korea.

    PubMed

    Jeeva, Subbiah; Kim, Nam-Il; Jang, In-Kwon; Choi, Tae-Jin

    2012-10-01

    Viral pathogens, alongside other pathogens, have major effects on crustacean aquaculture. Hepatopancreatic parvovirus (HPV) is an emerging virus in the shrimp industry and has been detected in shrimp farms worldwide. The HPV genome has greater diversity than other shrimp viruses owing to its wide host range and geographical distribution. Therefore, developing diagnostic tools is essential to detect even small copy numbers from the target region of native HPV isolates. We have developed two easy to use quantitative real-time PCR kits, called Green Star and Dual Star, which contain all of the necessary components for real-time PCR, including HPV primers, using the primers obtained from the sequences of HPV isolates from Korea, and analyzed their specificity, efficiency, and reproducibility. These two kits could detect from 1 to 1 × 10(9) copies of cloned HPV DNA. The minimum detection limits obtained from HPV-infected shrimp were 7.74 × 10(1) and 9.06 × 10(1) copies in the Green Star and Dual Star assay kits, respectively. These kits can be used for rapid, sensitive, and efficient screening for HPV isolates from Korea before the introduction of postlarval stages into culture ponds, thereby decreasing the incidence of early development of the disease.

  20. PCR Inhibition of a Quantitative PCR for Detection of Mycobacterium avium Subspecies Paratuberculosis DNA in Feces: Diagnostic Implications and Potential Solutions

    PubMed Central

    Acharya, Kamal R.; Dhand, Navneet K.; Whittington, Richard J.; Plain, Karren M.

    2017-01-01

    Molecular tests such as polymerase chain reaction (PCR) are increasingly being applied for the diagnosis of Johne’s disease, a chronic intestinal infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Feces, as the primary test sample, presents challenges in terms of effective DNA isolation, with potential for PCR inhibition and ultimately for reduced analytical and diagnostic sensitivity. However, limited evidence is available regarding the magnitude and diagnostic implications of PCR inhibition for the detection of MAP in feces. This study aimed to investigate the presence and diagnostic implications of PCR inhibition in a quantitative PCR assay for MAP (High-throughput Johne’s test) to investigate the characteristics of samples prone to inhibition and to identify measures that can be taken to overcome this. In a study of fecal samples derived from a high prevalence, endemically infected cattle herd, 19.94% of fecal DNA extracts showed some evidence of inhibition. Relief of inhibition by a five-fold dilution of the DNA extract led to an average increase in quantification of DNA by 3.3-fold that consequently increased test sensitivity of the qPCR from 55 to 80% compared to fecal culture. DNA extracts with higher DNA and protein content had 19.33 and 10.94 times higher odds of showing inhibition, respectively. The results suggest that the current test protocol is sensitive for herd level diagnosis of Johne’s disease but that test sensitivity and individual level diagnosis could be enhanced by relief of PCR inhibition, achieved by five-fold dilution of the DNA extract. Furthermore, qualitative and quantitative parameters derived from absorbance measures of DNA extracts could be useful for prediction of inhibitory fecal samples. PMID:28210245

  1. PCR Inhibition of a Quantitative PCR for Detection of Mycobacterium avium Subspecies Paratuberculosis DNA in Feces: Diagnostic Implications and Potential Solutions.

    PubMed

    Acharya, Kamal R; Dhand, Navneet K; Whittington, Richard J; Plain, Karren M

    2017-01-01

    Molecular tests such as polymerase chain reaction (PCR) are increasingly being applied for the diagnosis of Johne's disease, a chronic intestinal infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Feces, as the primary test sample, presents challenges in terms of effective DNA isolation, with potential for PCR inhibition and ultimately for reduced analytical and diagnostic sensitivity. However, limited evidence is available regarding the magnitude and diagnostic implications of PCR inhibition for the detection of MAP in feces. This study aimed to investigate the presence and diagnostic implications of PCR inhibition in a quantitative PCR assay for MAP (High-throughput Johne's test) to investigate the characteristics of samples prone to inhibition and to identify measures that can be taken to overcome this. In a study of fecal samples derived from a high prevalence, endemically infected cattle herd, 19.94% of fecal DNA extracts showed some evidence of inhibition. Relief of inhibition by a five-fold dilution of the DNA extract led to an average increase in quantification of DNA by 3.3-fold that consequently increased test sensitivity of the qPCR from 55 to 80% compared to fecal culture. DNA extracts with higher DNA and protein content had 19.33 and 10.94 times higher odds of showing inhibition, respectively. The results suggest that the current test protocol is sensitive for herd level diagnosis of Johne's disease but that test sensitivity and individual level diagnosis could be enhanced by relief of PCR inhibition, achieved by five-fold dilution of the DNA extract. Furthermore, qualitative and quantitative parameters derived from absorbance measures of DNA extracts could be useful for prediction of inhibitory fecal samples.

  2. Evaluation of Reference Genes for Quantitative Real-Time PCR in Oil Palm Elite Planting Materials Propagated by Tissue Culture

    PubMed Central

    Chan, Pek-Lan; Rose, Ray J.; Abdul Murad, Abdul Munir; Zainal, Zamri; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    Background The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. Results In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Conclusions Systematic selection of the most stably expressed reference genes for RT-qPCR w