Sample records for quantitative phase contrast

  1. Isotropic differential phase contrast microscopy for quantitative phase bio-imaging.

    PubMed

    Chen, Hsi-Hsun; Lin, Yu-Zi; Luo, Yuan

    2018-05-16

    Quantitative phase imaging (QPI) has been investigated to retrieve optical phase information of an object and applied to biological microscopy and related medical studies. In recent examples, differential phase contrast (DPC) microscopy can recover phase image of thin sample under multi-axis intensity measurements in wide-field scheme. Unlike conventional DPC, based on theoretical approach under partially coherent condition, we propose a new method to achieve isotropic differential phase contrast (iDPC) with high accuracy and stability for phase recovery in simple and high-speed fashion. The iDPC is simply implemented with a partially coherent microscopy and a programmable thin-film transistor (TFT) shield to digitally modulate structured illumination patterns for QPI. In this article, simulation results show consistency of our theoretical approach for iDPC under partial coherence. In addition, we further demonstrate experiments of quantitative phase images of a standard micro-lens array, as well as label-free live human cell samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quantitative phase-contrast digital holographic microscopy for cell dynamic evaluation

    NASA Astrophysics Data System (ADS)

    Yu, Lingfeng; Mohanty, Samarendra; Berns, Michael W.; Chen, Zhongping

    2009-02-01

    The laser microbeam uses lasers to alter and/or to ablate intracellular organelles and cellular and tissue samples, and, today, has become an important tool for cell biologists to study the molecular mechanism of complex biological systems by removing individual cells or sub-cellular organelles. However, absolute quantitation of the localized alteration/damage to transparent phase objects, such as the cell membrane or chromosomes, was not possible using conventional phase-contrast or differential interference contrast microscopy. We report the development of phase-contrast digital holographic microscopy for quantitative evaluation of cell dynamic changes in real time during laser microsurgery. Quantitative phase images are recorded during the process of laser microsurgery and thus, the dynamic change in phase can be continuously evaluated. Out-of-focus organelles are re-focused by numerical reconstruction algorithms.

  3. Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast

    PubMed Central

    Lu, Hangwen; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei

    2016-01-01

    Differential phase contrast (DPC) is a non-interferometric quantitative phase imaging method achieved by using an asymmetric imaging procedure. We report a pupil modulation differential phase contrast (PMDPC) imaging method by filtering a sample’s Fourier domain with half-circle pupils. A phase gradient image is captured with each half-circle pupil, and a quantitative high resolution phase image is obtained after a deconvolution process with a minimum of two phase gradient images. Here, we introduce PMDPC quantitative phase image reconstruction algorithm and realize it experimentally in a 4f system with an SLM placed at the pupil plane. In our current experimental setup with the numerical aperture of 0.36, we obtain a quantitative phase image with a resolution of 1.73μm after computationally removing system aberrations and refocusing. We also extend the depth of field digitally by 20 times to ±50μm with a resolution of 1.76μm. PMID:27828473

  4. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)

    PubMed Central

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification—an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel. PMID:28152023

  5. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).

    PubMed

    Phillips, Zachary F; Chen, Michael; Waller, Laura

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  6. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  7. Diffraction enhance x-ray imaging for quantitative phase contrast studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, A. K.; Singh, B., E-mail: balwants@rrcat.gov.in; Kashyap, Y. S.

    2016-05-23

    Conventional X-ray imaging based on absorption contrast permits limited visibility of feature having small density and thickness variations. For imaging of weakly absorbing material or materials possessing similar densities, a novel phase contrast imaging techniques called diffraction enhanced imaging has been designed and developed at imaging beamline Indus-2 RRCAT Indore. The technique provides improved visibility of the interfaces and show high contrast in the image forsmall density or thickness gradients in the bulk. This paper presents basic principle, instrumentation and analysis methods for this technique. Initial results of quantitative phase retrieval carried out on various samples have also been presented.

  8. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    NASA Astrophysics Data System (ADS)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  9. Low-dose quantitative phase contrast medical CT

    NASA Astrophysics Data System (ADS)

    Mittone, A.; Bravin, A.; Coan, P.

    2018-02-01

    X-ray computed tomography (CT) is a powerful and routinely used clinical diagnostic technique, which is well tolerated by patients, and which provides high-resolution images and volumetric information about the body. However, two important limitations still affect this examination procedure: (1) its low sensitivity with respect to soft tissues, and (2) the hazards associated with x-ray exposure. Conventional radiology is based on the detection of the different photon absorption properties that characterize biological tissues, and thus the obtainable image contrast from soft and/or similar tissues is intrinsically limited. In this scenario, x-ray phase contrast imaging (XPCI) has been extensively tested and proven to overcome some of the main issues surrounding standard x-ray imaging. In addition to the absorption signal, XPCI relies on detecting the phase shifts induced by an object. Interestingly, as the order of magnitude of the phase contrast is higher than that of absorption, XPCI can, in principle, offer higher sensitivity at lower radiation doses. However, other technical aspects may counterbalance this gain, and an optimized setup and image processing solutions need to be implemented. The work presented here describes the strategies and developments we have realized, with the aim of controlling the radiation dose for the highly sensitive and quantitative XPCI-CT. Different algorithms for the phase retrieval and CT reconstruction of the XPCI data are presented. The CT algorithms we have implemented, namely the equally sloped tomography and the dictionary learning method, allow the image quality to be preserved while reducing the number of angular projections required by a factor of five. The results applied to breast imaging report accurate reconstructions at clinically compatible doses of the 3D distribution of the refractive properties of full human organs obtained by using three different phase retrieval methods. The described methodologies and the

  10. Influence of sample preparation and identification of subcelluar structures in quantitative holographic phase contrast microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Schmidt, Lisa; Przibilla, Sabine; Rommel, Christina; Vollmer, Angelika; Ketelhut, Steffi; Schnekenburger, Jürgen; von Bally, Gert

    2010-04-01

    Digital holographic microscopy (DHM) provides label-free quantitative phase contrast with low demands on sample preparation. Nevertheless, for DHM measurements on fixed cells the mounting medium has to be considered while the phase contrast of living cells may be influenced by the used buffer solution. To quantify these effects, the maximum cell caused phase contrast and the visibility of the nucleoli were analyzed. A second aim of the study was to identify subcellular components in DHM phase contrast images. Therefore, comparative investigations using bright field imaging, DHM and fluorescence microscopy with 4',6- Diamidino-2-phenylindol (DAPI) staining were performed. DAPI-staining visualizes cell components containing DNA. The obtained results demonstrate exemplarily for two tumor cell lines that from DHM phase contrast images of fixed cells in phosphate buffer saline (PBS) cell thickness values are obtained which are comparable to living cells. Furthermore, it is shown that in many cases nucleus components can be identified only by DHM phase contrast.

  11. Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination.

    PubMed

    Lin, Yu-Zi; Huang, Kuang-Yuh; Luo, Yuan

    2018-06-15

    Half-circle illumination-based differential phase contrast (DPC) microscopy has been utilized to recover phase images through a pair of images along multiple axes. Recently, the half-circle based DPC using 12-axis measurements significantly provides a circularly symmetric phase transfer function to improve accuracy for more stable phase recovery. Instead of using half-circle-based DPC, we propose a new scheme of DPC under radially asymmetric illumination to achieve circularly symmetric phase transfer function and enhance the accuracy of phase recovery in a more stable and efficient fashion. We present the design, implementation, and experimental image data demonstrating the ability of our method to obtain quantitative phase images of microspheres, as well as live fibroblast cell samples.

  12. Theory and preliminary experimental verification of quantitative edge illumination x-ray phase contrast tomography.

    PubMed

    Hagen, C K; Diemoz, P C; Endrizzi, M; Rigon, L; Dreossi, D; Arfelli, F; Lopez, F C M; Longo, R; Olivo, A

    2014-04-07

    X-ray phase contrast imaging (XPCi) methods are sensitive to phase in addition to attenuation effects and, therefore, can achieve improved image contrast for weakly attenuating materials, such as often encountered in biomedical applications. Several XPCi methods exist, most of which have already been implemented in computed tomographic (CT) modality, thus allowing volumetric imaging. The Edge Illumination (EI) XPCi method had, until now, not been implemented as a CT modality. This article provides indications that quantitative 3D maps of an object's phase and attenuation can be reconstructed from EI XPCi measurements. Moreover, a theory for the reconstruction of combined phase and attenuation maps is presented. Both reconstruction strategies find applications in tissue characterisation and the identification of faint, weakly attenuating details. Experimental results for wires of known materials and for a biological object validate the theory and confirm the superiority of the phase over conventional, attenuation-based image contrast.

  13. Phase contrast MR angiography techniques.

    PubMed

    Dumoulin, C L

    1995-08-01

    Phase contrast MR methods encode information from macroscopic motion into the phase of the MR signal. Phase contrast methods can be applied with small and large fields-of-view, can give quantitative measures of velocity, and provide excellent suppression of signals from stationary tissue. Unlike time-of-flight methods, phase contrast methods directly measure flow and thus are not hindered by the artifactual appearance of tissue having short T1. Phase contrast angiograms can be two-dimensional (thin slice or projectile), three-dimensional, and/or time resolved and have applications throughout the body.

  14. Quantitative X-ray Differential Interference Contrast Microscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    Full-field soft x-ray microscopes are widely used in many fields of sciences. Advances in nanofabrication technology enabled short wavelength focusing elements with significantly improved spatial resolution. In the soft x-ray spectral region, samples as small as 12 nm can be resolved using micro zone-plates as the objective lens. In addition to conventional x-ray microscopy in which x-ray absorption difference provides the image contrast, phase contrast mechanisms such as differential phase contrast (DIC) and Zernike phase contrast have also been demonstrated These phase contrast imaging mechanisms are especially attractive at the x-ray wavelengths where phase contrast of most materials is typically 10 times stronger than the absorption contrast. With recent progresses in plasma-based x- ray sources and increasing accessibility to synchrotron user facilities, x-ray microscopes are quickly becoming standard measurement equipment in the laboratory. To further the usefulness of x-ray DIC microscopy this thesis explicitly addresses three known issues with this imaging modality by introducing new techniques and devices First, as opposed to its visible-light counterpart, no quantitative phase imaging technique exists for x-ray DIC microscopy. To address this issue, two nanoscale x-ray quantitative phase imaging techniques, using exclusive OR (XOR) patterns and zone-plate doublets, respectively, are proposed. Unlike existing x-ray quantitative phase imaging techniques such as Talbot interferometry and ptychography, no dedicated experimental setups or stringent illumination coherence are needed for quantitative phase retrieval. Second, to the best of our knowledge, no quantitative performance characterization of DIC microscopy exists to date. Therefore the imaging system's response to sample's spatial frequency is not known In order to gain in-depth understanding of this imaging modality, performance of x-ray DIC microscopy is quantified using modulation transfer function

  15. Quantitative hard x-ray phase contrast imaging of micropipes in SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohn, V. G.; Argunova, T. S.; Je, J. H., E-mail: jhje@postech.ac.kr

    2013-12-15

    Peculiarities of quantitative hard x-ray phase contrast imaging of micropipes in SiC are discussed. The micropipe is assumed as a hollow cylinder with an elliptical cross section. The major and minor diameters can be restored using the least square fitting procedure by comparing the experimental data, i.e. the profile across the micropipe axis, with those calculated based on phase contrast theory. It is shown that one projection image gives an information which does not allow a complete determination of the elliptical cross section, if an orientation of micropipe is not known. Another problem is a weak accuracy in estimating themore » diameters, partly because of using pink synchrotron radiation, which is necessary because a monochromatic beam intensity is not sufficient to reveal the weak contrast from a very small object. The general problems of accuracy in estimating the two diameters using the least square procedure are discussed. Two experimental examples are considered to demonstrate small as well as modest accuracies in estimating the diameters.« less

  16. Quantitative studies on inner interfaces in conical metal joints using hard x-ray inline phase contrast radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabler, S.; Rack, T.; Nelson, K.

    2010-10-15

    Quantitative investigation of micrometer and submicrometer gaps between joining metal surfaces is applied to conical plug-socket connections in dental titanium implants. Microgaps of widths well beyond the resolving power of industrial x-ray systems are imaged by synchrotron phase contrast radiography. Furthermore, by using an analytical model for the relatively simple sample geometry and applying it to numerical forward simulations of the optical Fresnel propagation, we show that quantitative measurements of the microgap width down to 0.1 {mu}m are possible. Image data recorded at the BAMline (BESSY-II light source, Germany) are presented, with the resolving power of the imaging system beingmore » 4 {mu}m in absorption mode and {approx}14 {mu}m in phase contrast mode (z{sub 2}=0.74 m). Thus, phase contrast radiography, combined with numerical forward simulations, is capable of measuring the widths of gaps that are two orders of magnitude thinner than the conventional detection limit.« less

  17. Ptychography: use of quantitative phase information for high-contrast label free time-lapse imaging of living cells

    NASA Astrophysics Data System (ADS)

    Suman, Rakesh; O'Toole, Peter

    2014-03-01

    Here we report a novel label free, high contrast and quantitative method for imaging live cells. The technique reconstructs an image from overlapping diffraction patterns using a ptychographical algorithm. The algorithm utilises both amplitude and phase data from the sample to report on quantitative changes related to the refractive index (RI) and thickness of the specimen. We report the ability of this technique to generate high contrast images, to visualise neurite elongation in neuronal cells, and to provide measure of cell proliferation.

  18. Quantitative tracking of tumor cells in phase-contrast microscopy exploiting halo artifact pattern

    NASA Astrophysics Data System (ADS)

    Kang, Mi-Sun; Song, Soo-Min; Lee, Hana; Kim, Myoung-Hee

    2012-03-01

    Tumor cell morphology is closely related to its invasiveness characteristics and migratory behaviors. An invasive tumor cell has a highly irregular shape, whereas a spherical cell is non-metastatic. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use phase-contrast microscopy to analyze single cell morphology and to monitor its change because it enables observation of long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring, among others. Thus, we first applied a local filter to compensate for non-uniform illumination. Then, we used intensity distribution information to detect the cell boundary. In phase-contrast microscopy images, the cell normally appears as a dark region surrounded by a bright halo. As the halo artifact around the cell body is minimal and has an asymmetric diffusion pattern, we calculated the cross-sectional plane that intersected the center of each cell and was orthogonal to the first principal axis. Then, we extracted the dark cell region by level set. However, a dense population of cultured cells still rendered single-cell analysis difficult. Finally, we measured roundness and size to classify tumor cells into malignant and benign groups. We validated segmentation accuracy by comparing our findings with manually obtained results.

  19. Quantitative x-ray phase-contrast imaging using a single grating of comparable pitch to sample feature size.

    PubMed

    Morgan, Kaye S; Paganin, David M; Siu, Karen K W

    2011-01-01

    The ability to quantitatively retrieve transverse phase maps during imaging by using coherent x rays often requires a precise grating or analyzer-crystal-based setup. Imaging of live animals presents further challenges when these methods require multiple exposures for image reconstruction. We present a simple method of single-exposure, single-grating quantitative phase contrast for a regime in which the grating period is much greater than the effective pixel size. A grating is used to create a high-visibility reference pattern incident on the sample, which is distorted according to the complex refractive index and thickness of the sample. The resolution, along a line parallel to the grating, is not restricted by the grating spacing, and the detector resolution becomes the primary determinant of the spatial resolution. We present a method of analysis that maps the displacement of interrogation windows in order to retrieve a quantitative phase map. Application of this analysis to the imaging of known phantoms shows excellent correspondence.

  20. Quantitative electron density characterization of soft tissue substitute plastic materials using grating-based x-ray phase-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarapata, A.; Chabior, M.; Zanette, I.

    2014-10-15

    Many scientific research areas rely on accurate electron density characterization of various materials. For instance in X-ray optics and radiation therapy, there is a need for a fast and reliable technique to quantitatively characterize samples for electron density. We present how a precise measurement of electron density can be performed using an X-ray phase-contrast grating interferometer in a radiographic mode of a homogenous sample in a controlled geometry. A batch of various plastic materials was characterized quantitatively and compared with calculated results. We found that the measured electron densities closely match theoretical values. The technique yields comparable results between amore » monochromatic and a polychromatic X-ray source. Measured electron densities can be further used to design dedicated X-ray phase contrast phantoms and the additional information on small angle scattering should be taken into account in order to exclude unsuitable materials.« less

  1. High-speed quantitative phase imaging using time-stretch spectral shearing contrast (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bosworth, Bryan; Foster, Mark A.

    2017-02-01

    Photonic time-stretch microscopy (TSM) provides an ideal platform for high-throughput imaging flow cytometry, affording extremely high shutter speeds and frame rates with high sensitivity. In order to resolve weakly scattering cells in biofluid and solve the issue of signal-to-noise in cell labeling specificity of biomarkers in imaging flow cytometry, several quantitative phase (QP) techniques have recently been adapted to TSM. However, these techniques have relied primarily on sensitive free-space optical configurations to generate full electric field measurements. The present work draws from the field of ultrashort pulse characterization to leverage the coherence of the ultrashort optical pulses integral to all TSM systems in order to do self-referenced single-shot quantitative phase imaging in a TSM system. Self-referencing is achieved via spectral shearing interferometry in an exceptionally stable and straightforward Sagnac loop incorporating an electro-optic phase modulator and polarization-maintaining fiber that produce sheared and unsheared copies of the pulse train with an inter-pulse delay determined by polarization mode dispersion. The spectral interferogram then yields a squared amplitude and a phase derivative image that can be integrated for conventional phase. We apply this spectral shearing contrast microscope to acquire QP images on a high-speed flow microscope at 90-MHz line rates with <400 pixels per line. We also consider the extension of this technique to compressed sensing (CS) acquisition by intensity modulating the interference spectra with pseudorandom binary waveforms to reconstruct the images from a highly sub-Nyquist number of random inner products, providing a path to even higher operating rates and reduced data storage requirements.

  2. Quantitative characterization of edge enhancement in phase contrast x-ray imaging.

    PubMed

    Monnin, P; Bulling, S; Hoszowska, J; Valley, J F; Meuli, R; Verdun, F R

    2004-06-01

    The aim of this study was to model the edge enhancement effect in in-line holography phase contrast imaging. A simple analytical approach was used to quantify refraction and interference contrasts in terms of beam energy and imaging geometry. The model was applied to predict the peak intensity and frequency of the edge enhancement for images of cylindrical fibers. The calculations were compared with measurements, and the relationship between the spatial resolution of the detector and the amplitude of the phase contrast signal was investigated. Calculations using the analytical model were in good agreement with experimental results for nylon, aluminum and copper wires of 50 to 240 microm diameter, and with numerical simulations based on Fresnel-Kirchhoff theory. A relationship between the defocusing distance and the pixel size of the image detector was established. This analytical model is a useful tool for optimizing imaging parameters in phase contrast in-line holography, including defocusing distance, detector resolution and beam energy.

  3. Portable smartphone based quantitative phase microscope

    NASA Astrophysics Data System (ADS)

    Meng, Xin; Tian, Xiaolin; Yu, Wei; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2018-01-01

    To realize portable device with high contrast imaging capability, we designed a quantitative phase microscope using transport of intensity equation method based on a smartphone. The whole system employs an objective and an eyepiece as imaging system and a cost-effective LED as illumination source. A 3-D printed cradle is used to align these components. Images of different focal planes are captured by manual focusing, followed by calculation of sample phase via a self-developed Android application. To validate its accuracy, we first tested the device by measuring a random phase plate with known phases, and then red blood cell smear, Pap smear, broad bean epidermis sections and monocot root were also measured to show its performance. Owing to its advantages as accuracy, high-contrast, cost-effective and portability, the portable smartphone based quantitative phase microscope is a promising tool which can be future adopted in remote healthcare and medical diagnosis.

  4. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

    DOE PAGES

    Appel, Alyssa A.; Larson, Jeffrey C.; Jiang, Bin; ...

    2015-10-20

    Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript we describe results using XPC to image a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted inmore » a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. In quantitative results, there were no differences between XPC and the gold-standard histological measurements. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response.« less

  5. A Simple Configuration for Quantitative Phase Contrast Microscopy of Transmissible Samples

    NASA Astrophysics Data System (ADS)

    Sengupta, Chandan; Dasgupta, Koustav; Bhattacharya, K.

    Phase microscopy attempts to visualize and quantify the phase distribution of samples which are otherwise invisible under microscope without the use of stains. The two principal approaches to phase microscopy are essentially those of Fourier plane modulation and interferometric techniques. Although the former, first proposed by Zernike, had been the harbinger of phase microscopy, it was the latter that allowed for quantitative evaluation of phase samples. However interferometric techniques are fraught with associated problems such as complicated setup involving mirrors and beam-splitters, the need for a matched objective in the reference arm and also the need for vibration isolation. The present work proposes a single element cube beam-splitter (CBS) interferometer combined with a microscope objective (MO) for interference microscopy. Because of the monolithic nature of the interferometer, the system is almost insensitive to vibrations and relatively simple to align. It will be shown that phase shifting properties may also be introduced by suitable and proper use of polarizing devices. Initial results showing the quantitative three dimensional phase profiles of simulated and actual biological specimens are presented.

  6. Using digital inline holographic microscopy and quantitative phase contrast imaging to assess viability of cultured mammalian cells

    NASA Astrophysics Data System (ADS)

    Missan, Sergey; Hrytsenko, Olga

    2015-03-01

    Digital inline holographic microscopy was used to record holograms of mammalian cells (HEK293, B16, and E0771) in culture. The holograms have been reconstructed using Octopus software (4Deep inwater imaging) and phase shift maps were unwrapped using the FFT-based phase unwrapping algorithm. The unwrapped phase shifts were used to determine the maximum phase shifts in individual cells. Addition of 0.5 mM H2O2 to cell media produced rapid rounding of cultured cells, followed by cell membrane rupture. The cell morphology changes and cell membrane ruptures were detected in real time and were apparent in the unwrapped phase shift images. The results indicate that quantitative phase contrast imaging produced by the digital inline holographic microscope can be used for the label-free real time automated determination of cell viability and confluence in mammalian cell cultures.

  7. Phase calibration target for quantitative phase imaging with ptychography.

    PubMed

    Godden, T M; Muñiz-Piniella, A; Claverley, J D; Yacoot, A; Humphry, M J

    2016-04-04

    Quantitative phase imaging (QPI) utilizes refractive index and thickness variations that lead to optical phase shifts. This gives contrast to images of transparent objects. In quantitative biology, phase images are used to accurately segment cells and calculate properties such as dry mass, volume and proliferation rate. The fidelity of the measured phase shifts is of critical importance in this field. However to date, there has been no standardized method for characterizing the performance of phase imaging systems. Consequently, there is an increasing need for protocols to test the performance of phase imaging systems using well-defined phase calibration and resolution targets. In this work, we present a candidate for a standardized phase resolution target, and measurement protocol for the determination of the transfer of spatial frequencies, and sensitivity of a phase imaging system. The target has been carefully designed to contain well-defined depth variations over a broadband range of spatial frequencies. In order to demonstrate the utility of the target, we measure quantitative phase images on a ptychographic microscope, and compare the measured optical phase shifts with Atomic Force Microscopy (AFM) topography maps and surface profile measurements from coherence scanning interferometry. The results show that ptychography has fully quantitative nanometer sensitivity in optical path differences over a broadband range of spatial frequencies for feature sizes ranging from micrometers to hundreds of micrometers.

  8. Qualitative and Quantitative Imaging Evaluation of Renal Cell Carcinoma Subtypes with Grating-based X-ray Phase-contrast CT

    NASA Astrophysics Data System (ADS)

    Braunagel, Margarita; Birnbacher, Lorenz; Willner, Marian; Marschner, Mathias; De Marco, Fabio; Viermetz, Manuel; Notohamiprodjo, Susan; Hellbach, Katharina; Auweter, Sigrid; Link, Vera; Woischke, Christine; Reiser, Maximilian F.; Pfeiffer, Franz; Notohamiprodjo, Mike; Herzen, Julia

    2017-03-01

    Current clinical imaging methods face limitations in the detection and correct characterization of different subtypes of renal cell carcinoma (RCC), while these are important for therapy and prognosis. The present study evaluates the potential of grating-based X-ray phase-contrast computed tomography (gbPC-CT) for visualization and characterization of human RCC subtypes. The imaging results for 23 ex vivo formalin-fixed human kidney specimens obtained with phase-contrast CT were compared to the results of the absorption-based CT (gbCT), clinical CT and a 3T MRI and validated using histology. Regions of interest were placed on each specimen for quantitative evaluation. Qualitative and quantitative gbPC-CT imaging could significantly discriminate between normal kidney cortex (54 ± 4 HUp) and clear cell (42 ± 10), papillary (43 ± 6) and chromophobe RCCs (39 ± 7), p < 0.05 respectively. The sensitivity for detection of tumor areas was 100%, 50% and 40% for gbPC-CT, gbCT and clinical CT, respectively. RCC architecture like fibrous strands, pseudocapsules, necrosis or hyalinization was depicted clearly in gbPC-CT and was not equally well visualized in gbCT, clinical CT and MRI. The results show that gbPC-CT enables improved discrimination of normal kidney parenchyma and tumorous tissues as well as different soft-tissue components of RCCs without the use of contrast media.

  9. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    DOE PAGES

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    2015-07-29

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edgesmore » complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.« less

  10. X-ray computed tomography of wood-adhesive bondlines: Attenuation and phase-contrast effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paris, Jesse L.; Kamke, Frederick A.; Xiao, Xianghui

    Microscale X-ray computed tomography (XCT) is discussed as a technique for identifying 3D adhesive distribution in wood-adhesive bondlines. Visualization and material segmentation of the adhesives from the surrounding cellular structures require sufficient gray-scale contrast in the reconstructed XCT data. Commercial wood-adhesive polymers have similar chemical characteristics and density to wood cell wall polymers and therefore do not provide good XCT attenuation contrast in their native form. Here, three different adhesive types, namely phenol formaldehyde, polymeric diphenylmethane diisocyanate, and a hybrid polyvinyl acetate, are tagged with iodine such that they yield sufficient X-ray attenuation contrast. However, phase-contrast effects at material edgesmore » complicate image quality and segmentation in XCT data reconstructed with conventional filtered backprojection absorption contrast algorithms. A quantitative phase retrieval algorithm, which isolates and removes the phase-contrast effect, was demonstrated. The paper discusses and illustrates the balance between material X-ray attenuation and phase-contrast effects in all quantitative XCT analyses of wood-adhesive bondlines.« less

  11. Quantitative phase and amplitude imaging using Differential-Interference Contrast (DIC) microscopy

    NASA Astrophysics Data System (ADS)

    Preza, Chrysanthe; O'Sullivan, Joseph A.

    2009-02-01

    We present an extension of the development of an alternating minimization (AM) method for the computation of a specimen's complex transmittance function (magnitude and phase) from DIC images. The ability to extract both quantitative phase and amplitude information from two rotationally-diverse DIC images (i.e., acquired by rotating the sample) extends previous efforts in computational DIC microscopy that have focused on quantitative phase imaging only. Simulation results show that the inverse problem at hand is sensitive to noise as well as to the choice of the AM algorithm parameters. The AM framework allows constraints and penalties on the magnitude and phase estimates to be incorporated in a principled manner. Towards this end, Green and De Pierro's "log-cosh" regularization penalty is applied to the magnitude of differences of neighboring values of the complex-valued function of the specimen during the AM iterations. The penalty is shown to be convex in the complex space. A procedure to approximate the penalty within the iterations is presented. In addition, a methodology to pre-compute AM parameters that are optimal with respect to the convergence rate of the AM algorithm is also presented. Both extensions of the AM method are investigated with simulations.

  12. High resolution laboratory grating-based x-ray phase-contrast CT

    NASA Astrophysics Data System (ADS)

    Viermetz, Manuel P.; Birnbacher, Lorenz J. B.; Fehringer, Andreas; Willner, Marian; Noel, Peter B.; Pfeiffer, Franz; Herzen, Julia

    2017-03-01

    Grating-based phase-contrast computed tomography (gbPC-CT) is a promising imaging method for imaging of soft tissue contrast without the need of any contrast agent. The focus of this study is the increase in spatial resolution without loss in sensitivity to allow visualization of pathologies comparable to the convincing results obtained at the synchrotron. To improve the effective pixel size a super-resolution reconstruction based on subpixel shifts involving a deconvolution of the image is applied on differential phase-contrast data. In our study we could achieve an effective pixel sizes of 28mm without any drawback in terms of sensitivity or the ability to measure quantitative data.

  13. Analyser-based phase contrast image reconstruction using geometrical optics.

    PubMed

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-07-21

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 microm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser.

  14. Quantitative phase imaging of arthropods

    PubMed Central

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-01-01

    Abstract. Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy. PMID:26334858

  15. Quantitative investigation of the edge enhancement in in-line phase contrast projections and tomosynthesis provided by distributing microbubbles on the interface between two tissues: a phantom study

    NASA Astrophysics Data System (ADS)

    Wu, Di; Donovan Wong, Molly; Li, Yuhua; Fajardo, Laurie; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2017-12-01

    The objective of this study was to quantitatively investigate the ability to distribute microbubbles along the interface between two tissues, in an effort to improve the edge and/or boundary features in phase contrast imaging. The experiments were conducted by employing a custom designed tissue simulating phantom, which also simulated a clinical condition where the ligand-targeted microbubbles are self-aggregated on the endothelium of blood vessels surrounding malignant cells. Four different concentrations of microbubble suspensions were injected into the phantom: 0%, 0.1%, 0.2%, and 0.4%. A time delay of 5 min was implemented before image acquisition to allow the microbubbles to become distributed at the interface between the acrylic and the cavity simulating a blood vessel segment. For comparison purposes, images were acquired using three system configurations for both projection and tomosynthesis imaging with a fixed radiation dose delivery: conventional low-energy contact mode, low-energy in-line phase contrast and high-energy in-line phase contrast. The resultant images illustrate the edge feature enhancements in the in-line phase contrast imaging mode when the microbubble concentration is extremely low. The quantitative edge-enhancement-to-noise ratio calculations not only agree with the direct image observations, but also indicate that the edge feature enhancement can be improved by increasing the microbubble concentration. In addition, high-energy in-line phase contrast imaging provided better performance in detecting low-concentration microbubble distributions.

  16. Characterization of a high-energy in-line phase contrast tomosynthesis prototype.

    PubMed

    Wu, Di; Yan, Aimin; Li, Yuhua; Wong, Molly D; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2015-05-01

    In this research, a high-energy in-line phase contrast tomosynthesis prototype was developed and characterized through quantitative investigations and phantom studies. The prototype system consists of an x-ray source, a motorized rotation stage, and a CMOS detector with a pixel pitch of 0.05 mm. The x-ray source was operated at 120 kVp for this study, and the objects were mounted on the rotation stage 76.2 cm (R1) from the source and 114.3 cm (R2) from the detector. The large air gap between the object and detector guarantees sufficient phase-shift effects. The quantitative evaluation of this prototype included modulation transfer function and noise power spectrum measurements conducted under both projection mode and tomosynthesis mode. Phantom studies were performed including three custom designed phantoms with complex structures: a five-layer bubble wrap phantom, a fishbone phantom, and a chicken breast phantom with embedded fibrils and mass structures extracted from an ACR phantom. In-plane images of the phantoms were acquired to investigate their image qualities through observation, intensity profile plots, edge enhancement evaluations, and/or contrast-to-noise ratio calculations. In addition, the robust phase-attenuation duality (PAD)-based phase retrieval method was applied to tomosynthesis for the first time in this research. It was utilized as a preprocessing method to fully exhibit phase contrast on the angular projection before reconstruction. The resolution and noise characteristics of this high-energy in-line phase contrast tomosynthesis prototype were successfully investigated and demonstrated. The phantom studies demonstrated that this imaging prototype can successfully remove the structure overlapping in phantom projections, obtain delineate interfaces, and achieve better contrast-to-noise ratio after applying phase retrieval to the angular projections. This research successfully demonstrated a high-energy in-line phase contrast tomosynthesis

  17. Characterization of a high-energy in-line phase contrast tomosynthesis prototype

    PubMed Central

    Wu, Di; Yan, Aimin; Li, Yuhua; Wong, Molly D.; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2015-01-01

    Purpose: In this research, a high-energy in-line phase contrast tomosynthesis prototype was developed and characterized through quantitative investigations and phantom studies. Methods: The prototype system consists of an x-ray source, a motorized rotation stage, and a CMOS detector with a pixel pitch of 0.05 mm. The x-ray source was operated at 120 kVp for this study, and the objects were mounted on the rotation stage 76.2 cm (R1) from the source and 114.3 cm (R2) from the detector. The large air gap between the object and detector guarantees sufficient phase-shift effects. The quantitative evaluation of this prototype included modulation transfer function and noise power spectrum measurements conducted under both projection mode and tomosynthesis mode. Phantom studies were performed including three custom designed phantoms with complex structures: a five-layer bubble wrap phantom, a fishbone phantom, and a chicken breast phantom with embedded fibrils and mass structures extracted from an ACR phantom. In-plane images of the phantoms were acquired to investigate their image qualities through observation, intensity profile plots, edge enhancement evaluations, and/or contrast-to-noise ratio calculations. In addition, the robust phase-attenuation duality (PAD)-based phase retrieval method was applied to tomosynthesis for the first time in this research. It was utilized as a preprocessing method to fully exhibit phase contrast on the angular projection before reconstruction. Results: The resolution and noise characteristics of this high-energy in-line phase contrast tomosynthesis prototype were successfully investigated and demonstrated. The phantom studies demonstrated that this imaging prototype can successfully remove the structure overlapping in phantom projections, obtain delineate interfaces, and achieve better contrast-to-noise ratio after applying phase retrieval to the angular projections. Conclusions: This research successfully demonstrated a high-energy in

  18. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zhao; Gao, Kun; Chen, Jian

    2015-02-15

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using themore » error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations.« less

  19. Dynamic phase differences based on quantitative phase imaging for the objective evaluation of cell behavior.

    PubMed

    Krizova, Aneta; Collakova, Jana; Dostal, Zbynek; Kvasnica, Lukas; Uhlirova, Hana; Zikmund, Tomas; Vesely, Pavel; Chmelik, Radim

    2015-01-01

    Quantitative phase imaging (QPI) brought innovation to noninvasive observation of live cell dynamics seen as cell behavior. Unlike the Zernike phase contrast or differential interference contrast, QPI provides quantitative information about cell dry mass distribution. We used such data for objective evaluation of live cell behavioral dynamics by the advanced method of dynamic phase differences (DPDs). The DPDs method is considered a rational instrument offered by QPI. By subtracting the antecedent from the subsequent image in a time-lapse series, only the changes in mass distribution in the cell are detected. The result is either visualized as a two dimensional color-coded projection of these two states of the cell or as a time dependence of changes quantified in picograms. Then in a series of time-lapse recordings, the chain of cell mass distribution changes that would otherwise escape attention is revealed. Consequently, new salient features of live cell behavior should emerge. Construction of the DPDs method and results exhibiting the approach are presented. Advantage of the DPDs application is demonstrated on cells exposed to an osmotic challenge. For time-lapse acquisition of quantitative phase images, the recently developed coherence-controlled holographic microscope was employed.

  20. Dynamic phase differences based on quantitative phase imaging for the objective evaluation of cell behavior

    NASA Astrophysics Data System (ADS)

    Krizova, Aneta; Collakova, Jana; Dostal, Zbynek; Kvasnica, Lukas; Uhlirova, Hana; Zikmund, Tomas; Vesely, Pavel; Chmelik, Radim

    2015-11-01

    Quantitative phase imaging (QPI) brought innovation to noninvasive observation of live cell dynamics seen as cell behavior. Unlike the Zernike phase contrast or differential interference contrast, QPI provides quantitative information about cell dry mass distribution. We used such data for objective evaluation of live cell behavioral dynamics by the advanced method of dynamic phase differences (DPDs). The DPDs method is considered a rational instrument offered by QPI. By subtracting the antecedent from the subsequent image in a time-lapse series, only the changes in mass distribution in the cell are detected. The result is either visualized as a two-dimensional color-coded projection of these two states of the cell or as a time dependence of changes quantified in picograms. Then in a series of time-lapse recordings, the chain of cell mass distribution changes that would otherwise escape attention is revealed. Consequently, new salient features of live cell behavior should emerge. Construction of the DPDs method and results exhibiting the approach are presented. Advantage of the DPDs application is demonstrated on cells exposed to an osmotic challenge. For time-lapse acquisition of quantitative phase images, the recently developed coherence-controlled holographic microscope was employed.

  1. Quantitative contrast-enhanced mammography for contrast medium kinetics studies

    NASA Astrophysics Data System (ADS)

    Arvanitis, C. D.; Speller, R.

    2009-10-01

    Quantitative contrast-enhanced mammography, based on a dual-energy approach, aims to extract quantitative and temporal information of the tumour enhancement after administration of iodinated vascular contrast media. Simulations using analytical expressions and optimization of critical parameters essential for the development of quantitative contrast-enhanced mammography are presented. The procedure has been experimentally evaluated using a tissue-equivalent phantom and an amorphous silicon active matrix flat panel imager. The x-ray beams were produced by a tungsten target tube and spectrally shaped using readily available materials. Measurement of iodine projected thickness in mg cm-2 has been performed. The effect of beam hardening does not introduce nonlinearities in the measurement of iodine projected thickness for values of thicknesses found in clinical investigations. However, scattered radiation introduces significant deviations from slope equal to unity when compared with the actual iodine projected thickness. Scatter correction before the analysis of the dual-energy images provides accurate iodine projected thickness measurements. At 10% of the exposure used in clinical mammography, signal-to-noise ratios in excess of 5 were achieved for iodine projected thicknesses less than 3 mg cm-2 within a 4 cm thick phantom. For the extraction of temporal information, a limited number of low-dose images were used with the phantom incorporating a flow of iodinated contrast medium. The results suggest that spatial and temporal information of iodinated contrast media can be used to indirectly measure the tumour microvessel density and determine its uptake and washout from breast tumours. The proposed method can significantly improve tumour detection in dense breasts. Its application to perform in situ x-ray biopsy and assessment of the oncolytic effect of anticancer agents is foreseeable.

  2. X-ray phase contrast tomography by tracking near field speckle

    PubMed Central

    Wang, Hongchang; Berujon, Sebastien; Herzen, Julia; Atwood, Robert; Laundy, David; Hipp, Alexander; Sawhney, Kawal

    2015-01-01

    X-ray imaging techniques that capture variations in the x-ray phase can yield higher contrast images with lower x-ray dose than is possible with conventional absorption radiography. However, the extraction of phase information is often more difficult than the extraction of absorption information and requires a more sophisticated experimental arrangement. We here report a method for three-dimensional (3D) X-ray phase contrast computed tomography (CT) which gives quantitative volumetric information on the real part of the refractive index. The method is based on the recently developed X-ray speckle tracking technique in which the displacement of near field speckle is tracked using a digital image correlation algorithm. In addition to differential phase contrast projection images, the method allows the dark-field images to be simultaneously extracted. After reconstruction, compared to conventional absorption CT images, the 3D phase CT images show greatly enhanced contrast. This new imaging method has advantages compared to other X-ray imaging methods in simplicity of experimental arrangement, speed of measurement and relative insensitivity to beam movements. These features make the technique an attractive candidate for material imaging such as in-vivo imaging of biological systems containing soft tissue. PMID:25735237

  3. Halo-free phase contrast microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Tan H.; Kandel, Mikhail E.; Shakir, Haadi M.; Best, Catherine; Do, Minh N.; Popescu, Gabriel

    2017-02-01

    The phase contrast (PC) method is one of the most impactful developments in the four-century long history of microscopy. It allows for intrinsic, nondestructive contrast of transparent specimens, such as live cells. However, PC is plagued by the halo artifact, a result of insufficient spatial coherence in the illumination field, which limits its applicability. We present a new approach for retrieving halo-free phase contrast microscopy (hfPC) images by upgrading the conventional PC microscope with an external interferometric module, which generates sufficient data for reversing the halo artifact. Measuring four independent intensity images, our approach first measures haloed phase maps of the sample. We solve for the halo-free sample transmission function by using a physical model of the image formation under partial spatial coherence. Using this halo-free sample transmission, we can numerically generate artifact-free PC images. Furthermore, this transmission can be further used to obtain quantitative information about the sample, e.g., the thickness with known refractive indices, dry mass of live cells during their cycles. We tested our hfPC method on various control samples, e.g., beads, pillars and validated its potential for biological investigation by imaging live HeLa cells, red blood cells, and neurons.

  4. Quantitative photothermal phase imaging of red blood cells using digital holographic photothermal microscope.

    PubMed

    Vasudevan, Srivathsan; Chen, George C K; Lin, Zhiping; Ng, Beng Koon

    2015-05-10

    Photothermal microscopy (PTM), a noninvasive pump-probe high-resolution microscopy, has been applied as a bioimaging tool in many biomedical studies. PTM utilizes a conventional phase contrast microscope to obtain highly resolved photothermal images. However, phase information cannot be extracted from these photothermal images, as they are not quantitative. Moreover, the problem of halos inherent in conventional phase contrast microscopy needs to be tackled. Hence, a digital holographic photothermal microscopy technique is proposed as a solution to obtain quantitative phase images. The proposed technique is demonstrated by extracting phase values of red blood cells from their photothermal images. These phase values can potentially be used to determine the temperature distribution of the photothermal images, which is an important study in live cell monitoring applications.

  5. Phase-contrast Hounsfield units of fixated and non-fixated soft-tissue samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willner, Marian; Fior, Gabriel; Marschner, Mathias

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissuemore » specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. In addition, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results.« less

  6. Phase-Contrast Hounsfield Units of Fixated and Non-Fixated Soft-Tissue Samples

    PubMed Central

    Willner, Marian; Fior, Gabriel; Marschner, Mathias; Birnbacher, Lorenz; Schock, Jonathan; Braun, Christian; Fingerle, Alexander A.; Noël, Peter B.; Rummeny, Ernst J.; Pfeiffer, Franz; Herzen, Julia

    2015-01-01

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissue specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. Furthermore, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results. PMID:26322638

  7. Phase-contrast Hounsfield units of fixated and non-fixated soft-tissue samples

    DOE PAGES

    Willner, Marian; Fior, Gabriel; Marschner, Mathias; ...

    2015-08-31

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissuemore » specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. In addition, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results.« less

  8. Halo-free Phase Contrast Microscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Tan H.; Kandel, Mikhail; Shakir, Haadi M.; Best-Popescu, Catherine; Arikkath, Jyothi; Do, Minh N.; Popescu, Gabriel

    2017-03-01

    We present a new approach for retrieving halo-free phase contrast microscopy (hfPC) images by upgrading the conventional PC microscope with an external interferometric module, which generates sufficient data for reversing the halo artifact. Acquiring four independent intensity images, our approach first measures haloed phase maps of the sample. We solve for the halo-free sample transmission function by using a physical model of the image formation under partial spatial coherence. Using this halo-free sample transmission, we can numerically generate artifact-free PC images. Furthermore, this transmission can be further used to obtain quantitative information about the sample, e.g., the thickness with known refractive indices, dry mass of live cells during their cycles. We tested our hfPC method on various control samples, e.g., beads, pillars and validated its potential for biological investigation by imaging live HeLa cells, red blood cells, and neurons.

  9. Regularized iterative integration combined with non-linear diffusion filtering for phase-contrast x-ray computed tomography.

    PubMed

    Burger, Karin; Koehler, Thomas; Chabior, Michael; Allner, Sebastian; Marschner, Mathias; Fehringer, Andreas; Willner, Marian; Pfeiffer, Franz; Noël, Peter

    2014-12-29

    Phase-contrast x-ray computed tomography has a high potential to become clinically implemented because of its complementarity to conventional absorption-contrast.In this study, we investigate noise-reducing but resolution-preserving analytical reconstruction methods to improve differential phase-contrast imaging. We apply the non-linear Perona-Malik filter on phase-contrast data prior or post filtered backprojected reconstruction. Secondly, the Hilbert kernel is replaced by regularized iterative integration followed by ramp filtered backprojection as used for absorption-contrast imaging. Combining the Perona-Malik filter with this integration algorithm allows to successfully reveal relevant sample features, quantitatively confirmed by significantly increased structural similarity indices and contrast-to-noise ratios. With this concept, phase-contrast imaging can be performed at considerably lower dose.

  10. Non-interferometric quantitative phase imaging of yeast cells

    NASA Astrophysics Data System (ADS)

    Poola, Praveen K.; Pandiyan, Vimal Prabhu; John, Renu

    2015-12-01

    Real-time imaging of live cells is quite difficult without the addition of external contrast agents. Various methods for quantitative phase imaging of living cells have been proposed like digital holographic microscopy and diffraction phase microscopy. In this paper, we report theoretical and experimental results of quantitative phase imaging of live yeast cells with nanometric precision using transport of intensity equations (TIE). We demonstrate nanometric depth sensitivity in imaging live yeast cells using this technique. This technique being noninterferometric, does not need any coherent light sources and images can be captured through a regular bright-field microscope. This real-time imaging technique would deliver the depth or 3-D volume information of cells and is highly promising in real-time digital pathology applications, screening of pathogens and staging of diseases like malaria as it does not need any preprocessing of samples.

  11. Phase-contrast scanning transmission electron microscopy.

    PubMed

    Minoda, Hiroki; Tamai, Takayuki; Iijima, Hirofumi; Hosokawa, Fumio; Kondo, Yukihito

    2015-06-01

    This report introduces the first results obtained using phase-contrast scanning transmission electron microscopy (P-STEM). A carbon-film phase plate (PP) with a small center hole is placed in the condenser aperture plane so that a phase shift is introduced in the incident electron waves except those passing through the center hole. A cosine-type phase-contrast transfer function emerges when the phase-shifted scattered waves interfere with the non-phase-shifted unscattered waves, which passed through the center hole before incidence onto the specimen. The phase contrast resulting in P-STEM is optically identical to that in phase-contrast transmission electron microscopy that is used to provide high contrast for weak phase objects. Therefore, the use of PPs can enhance the phase contrast of the STEM images of specimens in principle. The phase shift resulting from the PP, whose thickness corresponds to a phase shift of π, has been confirmed using interference fringes displayed in the Ronchigram of a silicon single crystal specimen. The interference fringes were found to abruptly shift at the edge of the PP hole by π. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Quantitative phase imaging of retinal cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    LaForest, Timothé; Carpentras, Dino; Kowalczuk, Laura; Behar-Cohen, Francine; Moser, Christophe

    2017-02-01

    Vision process is ruled by several cells layers of the retina. Before reaching the photoreceptors, light entering the eye has to pass through a few hundreds of micrometers thick layer of ganglion and neurons cells. Macular degeneration is a non-curable disease of themacula occurring with age. This disease can be diagnosed at an early stage by imaging neuronal cells in the retina and observing their death chronically. These cells are phase objects locatedon a background that presents an absorption pattern and so difficult to see with standard imagingtechniques in vivo. Phase imaging methods usually need the illumination system to be on the opposite side of the sample with respect to theimaging system. This is a constraintand a challenge for phase imaging in-vivo. Recently, the possibility of performing phase contrast imaging from one side using properties of scattering media has been shown. This phase contrast imaging is based on the back illumination generated by the sample itself. Here, we present a reflection phase imaging technique based on oblique back-illumination. The oblique back-illumination creates a dark field image of the sample. Generating asymmetric oblique illumination allows obtaining differential phase contrast image, which in turn can be processed to recover a quantitative phase image. In the case of the eye, a transcleral illumination can generate oblique incident light on the retina and the choroidal layer.The back reflected light is then collected by the eye lens to produce dark field image. We show experimental results of retinal phase imagesin ex vivo samples of human and pig retina.

  13. A software platform for phase contrast x-ray breast imaging research.

    PubMed

    Bliznakova, K; Russo, P; Mettivier, G; Requardt, H; Popov, P; Bravin, A; Buliev, I

    2015-06-01

    To present and validate a computer-based simulation platform dedicated for phase contrast x-ray breast imaging research. The software platform, developed at the Technical University of Varna on the basis of a previously validated x-ray imaging software simulator, comprises modules for object creation and for x-ray image formation. These modules were updated to take into account the refractive index for phase contrast imaging as well as implementation of the Fresnel-Kirchhoff diffraction theory of the propagating x-ray waves. Projection images are generated in an in-line acquisition geometry. To test and validate the platform, several phantoms differing in their complexity were constructed and imaged at 25 keV and 60 keV at the beamline ID17 of the European Synchrotron Radiation Facility. The software platform was used to design computational phantoms that mimic those used in the experimental study and to generate x-ray images in absorption and phase contrast modes. The visual and quantitative results of the validation process showed an overall good correlation between simulated and experimental images and show the potential of this platform for research in phase contrast x-ray imaging of the breast. The application of the platform is demonstrated in a feasibility study for phase contrast images of complex inhomogeneous and anthropomorphic breast phantoms, compared to x-ray images generated in absorption mode. The improved visibility of mammographic structures suggests further investigation and optimisation of phase contrast x-ray breast imaging, especially when abnormalities are present. The software platform can be exploited also for educational purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Quantitative phase retrieval with arbitrary pupil and illumination

    DOE PAGES

    Claus, Rene A.; Naulleau, Patrick P.; Neureuther, Andrew R.; ...

    2015-10-02

    We present a general algorithm for combining measurements taken under various illumination and imaging conditions to quantitatively extract the amplitude and phase of an object wave. The algorithm uses the weak object transfer function, which incorporates arbitrary pupil functions and partially coherent illumination. The approach is extended beyond the weak object regime using an iterative algorithm. Finally, we demonstrate the method on measurements of Extreme Ultraviolet Lithography (EUV) multilayer mask defects taken in an EUV zone plate microscope with both a standard zone plate lens and a zone plate implementing Zernike phase contrast.

  15. Combined use of X-ray fluorescence microscopy, phase contrast imaging for high resolution quantitative iron mapping in inflamed cells

    NASA Astrophysics Data System (ADS)

    Gramaccioni, C.; Procopio, A.; Farruggia, G.; Malucelli, E.; Iotti, S.; Notargiacomo, A.; Fratini, M.; Yang, Y.; Pacureanu, A.; Cloetens, P.; Bohic, S.; Massimi, L.; Cutone, A.; Valenti, P.; Rosa, L.; Berlutti, F.; Lagomarsino, S.

    2017-06-01

    X-ray fluorescence microscopy (XRFM) is a powerful technique to detect and localize elements in cells. To derive information useful for biology and medicine, it is essential not only to localize, but also to map quantitatively the element concentration. Here we applied quantitative XRFM to iron in phagocytic cells. Iron, a primary component of living cells, can become toxic when present in excess. In human fluids, free iron is maintained at 10-18 M concentration thanks to iron binding proteins as lactoferrin (Lf). The iron homeostasis, involving the physiological ratio of iron between tissues/secretions and blood, is strictly regulated by ferroportin, the sole protein able to export iron from cells to blood. Inflammatory processes induced by lipopolysaccharide (LPS) or bacterial pathoge inhibit ferroportin synthesis in epithelial and phagocytic cells thus hindering iron export, increasing intracellular iron and bacterial multiplication. In this respect, Lf is emerging as an important regulator of both iron and inflammatory homeostasis. Here we studied phagocytic cells inflamed by bacterial LPS and untreated or treated with milk derived bovine Lf. Quantitative mapping of iron concentration and mass fraction at high spatial resolution is obtained combining X-ray fluorescence microscopy, atomic force microscopy and synchrotron phase contrast imaging.

  16. Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging.

    PubMed

    Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert

    2009-03-10

    In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.

  17. Revising the lower statistical limit of x-ray grating-based phase-contrast computed tomography.

    PubMed

    Marschner, Mathias; Birnbacher, Lorenz; Willner, Marian; Chabior, Michael; Herzen, Julia; Noël, Peter B; Pfeiffer, Franz

    2017-01-01

    Phase-contrast x-ray computed tomography (PCCT) is currently investigated as an interesting extension of conventional CT, providing high soft-tissue contrast even if examining weakly absorbing specimen. Until now, the potential for dose reduction was thought to be limited compared to attenuation CT, since meaningful phase retrieval fails for scans with very low photon counts when using the conventional phase retrieval method via phase stepping. In this work, we examine the statistical behaviour of the reverse projection method, an alternative phase retrieval approach and compare the results to the conventional phase retrieval technique. We investigate the noise levels in the projections as well as the image quality and quantitative accuracy of the reconstructed tomographic volumes. The results of our study show that this method performs better in a low-dose scenario than the conventional phase retrieval approach, resulting in lower noise levels, enhanced image quality and more accurate quantitative values. Overall, we demonstrate that the lower statistical limit of the phase stepping procedure as proposed by recent literature does not apply to this alternative phase retrieval technique. However, further development is necessary to overcome experimental challenges posed by this method which would enable mainstream or even clinical application of PCCT.

  18. An iterative method for near-field Fresnel region polychromatic phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Carroll, Aidan J.; van Riessen, Grant A.; Balaur, Eugeniu; Dolbnya, Igor P.; Tran, Giang N.; Peele, Andrew G.

    2017-07-01

    We present an iterative method for polychromatic phase contrast imaging that is suitable for broadband illumination and which allows for the quantitative determination of the thickness of an object given the refractive index of the sample material. Experimental and simulation results suggest the iterative method provides comparable image quality and quantitative object thickness determination when compared to the analytical polychromatic transport of intensity and contrast transfer function methods. The ability of the iterative method to work over a wider range of experimental conditions means the iterative method is a suitable candidate for use with polychromatic illumination and may deliver more utility for laboratory-based x-ray sources, which typically have a broad spectrum.

  19. Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method.

    PubMed

    Meng, Xin; Huang, Huachuan; Yan, Keding; Tian, Xiaolin; Yu, Wei; Cui, Haoyang; Kong, Yan; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-12-20

    In order to realize high contrast imaging with portable devices for potential mobile healthcare, we demonstrate a hand-held smartphone based quantitative phase microscope using the transport of intensity equation method. With a cost-effective illumination source and compact microscope system, multi-focal images of samples can be captured by the smartphone's camera via manual focusing. Phase retrieval is performed using a self-developed Android application, which calculates sample phases from multi-plane intensities via solving the Poisson equation. We test the portable microscope using a random phase plate with known phases, and to further demonstrate its performance, a red blood cell smear, a Pap smear and monocot root and broad bean epidermis sections are also successfully imaged. Considering its advantages as an accurate, high-contrast, cost-effective and field-portable device, the smartphone based hand-held quantitative phase microscope is a promising tool which can be adopted in the future in remote healthcare and medical diagnosis.

  20. Stable and simple quantitative phase-contrast imaging by Fresnel biprism

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Samira; Dashtdar, Masoomeh; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Javidi, Bahram

    2018-03-01

    Digital holographic (DH) microscopy has grown into a powerful nondestructive technique for the real-time study of living cells including dynamic membrane changes and cell fluctuations in nanometer and sub-nanometer scales. The conventional DH microscopy configurations require a separately generated coherent reference wave that results in a low phase stability and a necessity to precisely adjust the intensity ratio between two overlapping beams. In this work, we present a compact, simple, and very stable common-path DH microscope, employing a self-referencing configuration. The microscope is implemented by a diode laser as the source and a Fresnel biprism for splitting and recombining the beams simultaneously. In the overlapping area, linear interference fringes with high contrast are produced. The frequency of the interference pattern could be easily adjusted by displacement of the biprism along the optical axis without a decrease in fringe contrast. To evaluate the validity of the method, the spatial noise and temporal stability of the setup are compared with the common off-axis DH microscope based on a Mach-Zehnder interferometer. It is shown that the proposed technique has low mechanical noise as well as superb temporal stability with sub-nanometer precision without any external vibration isolation. The higher temporal stability improves the capabilities of the microscope for studying micro-object fluctuations, particularly in the case of biological specimens. Experimental results are presented using red blood cells and silica microspheres to demonstrate the system performance.

  1. High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement

    DTIC Science & Technology

    2005-06-01

    Ultrasonics Symp 1319 (1999). 17. Sarvazyan, A. P. Shear Wave Elasticity Imaging: A New Ultrasonic Technology of Medical Diagnostics. Ultrasound in...samples using acoustically modulated X-ray phase contrast imaging. 15. SUBJECT TERMS x-ray, ultrasound, phase contrast, imaging, elastography 16...x-rays, phase contrast imaging is based on phase changes as x-rays traverse a body resulting in wave interference that result in intensity changes in

  2. X-ray phase contrast tomography from whole organ down to single cells

    NASA Astrophysics Data System (ADS)

    Krenkel, Martin; Töpperwien, Mareike; Bartels, Matthias; Lingor, Paul; Schild, Detlev; Salditt, Tim

    2014-09-01

    We use propagation based hard x-ray phase contrast tomography to explore the three dimensional structure of neuronal tissues from the organ down to sub-cellular level, based on combinations of synchrotron radiation and laboratory sources. To this end a laboratory based microfocus tomography setup has been built in which the geometry was optimized for phase contrast imaging and tomography. By utilizing phase retrieval algorithms, quantitative reconstructions can be obtained that enable automatic renderings without edge artifacts. A high brightness liquid metal microfocus x-ray source in combination with a high resolution detector yielding a resolution down to 1.5 μm. To extend the method to nanoscale resolution we use a divergent x-ray waveguide beam geometry at the synchrotron. Thus, the magnification can be easily tuned by placing the sample at different defocus distances. Due to the small Fresnel numbers in this geometry the measured images are of holographic nature which poses a challenge in phase retrieval.

  3. Spatiotemporal Characterization of a Fibrin Clot Using Quantitative Phase Imaging

    PubMed Central

    Gannavarpu, Rajshekhar; Bhaduri, Basanta; Tangella, Krishnarao; Popescu, Gabriel

    2014-01-01

    Studying the dynamics of fibrin clot formation and its morphology is an important problem in biology and has significant impact for several scientific and clinical applications. We present a label-free technique based on quantitative phase imaging to address this problem. Using quantitative phase information, we characterized fibrin polymerization in real-time and present a mathematical model describing the transition from liquid to gel state. By exploiting the inherent optical sectioning capability of our instrument, we measured the three-dimensional structure of the fibrin clot. From this data, we evaluated the fractal nature of the fibrin network and extracted the fractal dimension. Our non-invasive and speckle-free approach analyzes the clotting process without the need for external contrast agents. PMID:25386701

  4. Identification of malaria infected red blood samples by digital holographic quantitative phase microscope

    NASA Astrophysics Data System (ADS)

    Patel, Nimit R.; Chhaniwal, Vani K.; Javidi, Bahram; Anand, Arun

    2015-07-01

    Development of devices for automatic identification of diseases is desired especially in developing countries. In the case of malaria, even today the gold standard is the inspection of chemically treated blood smears through a microscope. This requires a trained technician/microscopist to identify the cells in the field of view, with which the labeling chemicals gets attached. Bright field microscopes provide only low contrast 2D images of red blood cells and cell thickness distribution cannot be obtained. Quantitative phase contrast microscopes can provide both intensity and phase profiles of the cells under study. The phase information can be used to determine thickness profile of the cell. Since cell morphology is available, many parameters pertaining to the 3D shape of the cell can be computed. These parameters in turn could be used to decide about the state of health of the cell leading to disease diagnosis. Here the investigations done on digital holographic microscope, which provides quantitative phase images, for comparison of parameters obtained from the 3D shape profile of objects leading to identification of diseased samples is described.

  5. Quantitative x-ray phase imaging at the nanoscale by multilayer Laue lenses

    PubMed Central

    Yan, Hanfei; Chu, Yong S.; Maser, Jörg; Nazaretski, Evgeny; Kim, Jungdae; Kang, Hyon Chol; Lombardo, Jeffrey J.; Chiu, Wilson K. S.

    2013-01-01

    For scanning x-ray microscopy, many attempts have been made to image the phase contrast based on a concept of the beam being deflected by a specimen, the so-called differential phase contrast imaging (DPC). Despite the successful demonstration in a number of representative cases at moderate spatial resolutions, these methods suffer from various limitations that preclude applications of DPC for ultra-high spatial resolution imaging, where the emerging wave field from the focusing optic tends to be significantly more complicated. In this work, we propose a highly robust and generic approach based on a Fourier-shift fitting process and demonstrate quantitative phase imaging of a solid oxide fuel cell (SOFC) anode by multilayer Laue lenses (MLLs). The high sensitivity of the phase to structural and compositional variations makes our technique extremely powerful in correlating the electrode performance with its buried nanoscale interfacial structures that may be invisible to the absorption and fluorescence contrasts. PMID:23419650

  6. Improved specimen reconstruction by Hilbert phase contrast tomography.

    PubMed

    Barton, Bastian; Joos, Friederike; Schröder, Rasmus R

    2008-11-01

    The low signal-to-noise ratio (SNR) in images of unstained specimens recorded with conventional defocus phase contrast makes it difficult to interpret 3D volumes obtained by electron tomography (ET). The high defocus applied for conventional tilt series generates some phase contrast but leads to an incomplete transfer of object information. For tomography of biological weak-phase objects, optimal image contrast and subsequently an optimized SNR are essential for the reconstruction of details such as macromolecular assemblies at molecular resolution. The problem of low contrast can be partially solved by applying a Hilbert phase plate positioned in the back focal plane (BFP) of the objective lens while recording images in Gaussian focus. Images recorded with the Hilbert phase plate provide optimized positive phase contrast at low spatial frequencies, and the contrast transfer in principle extends to the information limit of the microscope. The antisymmetric Hilbert phase contrast (HPC) can be numerically converted into isotropic contrast, which is equivalent to the contrast obtained by a Zernike phase plate. Thus, in-focus HPC provides optimal structure factor information without limiting effects of the transfer function. In this article, we present the first electron tomograms of biological specimens reconstructed from Hilbert phase plate image series. We outline the technical implementation of the phase plate and demonstrate that the technique is routinely applicable for tomography. A comparison between conventional defocus tomograms and in-focus HPC volumes shows an enhanced SNR and an improved specimen visibility for in-focus Hilbert tomography.

  7. Quantitative Phase Fraction Detection in Organic Photovoltaic Materials through EELS Imaging

    DOE PAGES

    Dyck, Ondrej; Hu, Sheng; Das, Sanjib; ...

    2015-11-24

    Organic photovoltaic materials have recently seen intense interest from the research community. Improvements in device performance are occurring at an impressive rate; however, visualization of the active layer phase separation still remains a challenge. Our paper outlines the application of two electron energy-loss spectroscopic (EELS) imaging techniques that can complement and enhance current phase detection techniques. Specifically, the bulk plasmon peak position, often used to produce contrast between phases in energy filtered transmission electron microscopy (EFTEM), is quantitatively mapped across a sample cross section. One complementary spectrum image capturing the carbon and sulfur core loss edges is compared with themore » plasmon peak map and found to agree quite well, indicating that carbon and sulfur density differences between the two phases also allows phase discrimination. Additionally, an analytical technique for determining absolute atomic areal density is used to produce an absolute carbon and sulfur areal density map. We also show how these maps may be re-interpreted as a phase ratio map, giving quantitative information about the purity of the phases within the junction.« less

  8. Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner.

    PubMed

    Müller, Mark; Yaroshenko, Andre; Velroyen, Astrid; Bech, Martin; Tapfer, Arne; Pauwels, Bart; Bruyndonckx, Peter; Sasov, Alexander; Pfeiffer, Franz

    2015-12-01

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed.

  9. Biological applications of phase-contrast electron microscopy.

    PubMed

    Nagayama, Kuniaki

    2014-01-01

    Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.

  10. X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  11. Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus.

    PubMed

    Kim, D S; Choi, J U; Huh, R; Yun, P H; Kim, D I

    1999-09-01

    This investigation was undertaken to characterize CSF flow at the level of the aqueduct of Sylvius with a phase-contrast cine MR pulse sequence in 28 healthy volunteers. Sixteen patients with obstructive hydrocephalus and 11 patients with normal pressure hydrocephalus (NPH) were investigated with the same sequence before and after CSF diversion. The peak CSF flow velocity and stroke volume in the aqueduct increased significantly in the NPH group and decreased significantly in the obstructive hydrocephalus group. After lumboperitoneal shunting in the NPH group, the retrograde flow of CSF was anterogradely converted and the peak flow velocities decreased somewhat. The clinical diagnosis of NPH was well correlated with the results of cine MRI. After endoscopic III ventriculostomy in the obstructive hydrocephalus group we noted increased CSF flow velocity with markedly increased stroke volume at the prepontine cistern. Phase-contrast cine MR is useful in evaluating CSF dynamics in patients with hyperdynamic aqueductal CSF or aqueductal obstruction.

  12. Phase contrast imaging of cochlear soft tissue.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.; Hwang, M.; Rau, C.

    A noninvasive technique to image soft tissue could expedite diagnosis and disease management in the auditory system. We propose inline phase contrast imaging with hard X-rays as a novel method that overcomes the limitations of conventional absorption radiography for imaging soft tissue. In this study, phase contrast imaging of mouse cochleae was performed at the Argonne National Laboratory Advanced Photon Source. The phase contrast tomographic reconstructions show soft tissue structures of the cochlea, including the inner pillar cells, the inner spiral sulcus, the tectorial membrane, the basilar membrane, and the Reissner's membrane. The results suggest that phase contrast X-ray imagingmore » and tomographic techniques hold promise to noninvasively image cochlear structures at an unprecedented cellular level.« less

  13. Quantitative evaluation of phase processing approaches in susceptibility weighted imaging

    NASA Astrophysics Data System (ADS)

    Li, Ningzhi; Wang, Wen-Tung; Sati, Pascal; Pham, Dzung L.; Butman, John A.

    2012-03-01

    Susceptibility weighted imaging (SWI) takes advantage of the local variation in susceptibility between different tissues to enable highly detailed visualization of the cerebral venous system and sensitive detection of intracranial hemorrhages. Thus, it has been increasingly used in magnetic resonance imaging studies of traumatic brain injury as well as other intracranial pathologies. In SWI, magnitude information is combined with phase information to enhance the susceptibility induced image contrast. Because of global susceptibility variations across the image, the rate of phase accumulation varies widely across the image resulting in phase wrapping artifacts that interfere with the local assessment of phase variation. Homodyne filtering is a common approach to eliminate this global phase variation. However, filter size requires careful selection in order to preserve image contrast and avoid errors resulting from residual phase wraps. An alternative approach is to apply phase unwrapping prior to high pass filtering. A suitable phase unwrapping algorithm guarantees no residual phase wraps but additional computational steps are required. In this work, we quantitatively evaluate these two phase processing approaches on both simulated and real data using different filters and cutoff frequencies. Our analysis leads to an improved understanding of the relationship between phase wraps, susceptibility effects, and acquisition parameters. Although homodyne filtering approaches are faster and more straightforward, phase unwrapping approaches perform more accurately in a wider variety of acquisition scenarios.

  14. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

    PubMed Central

    Appel, Alyssa A.; Larson, Jeffery C.; Jiang, Bin; Zhong, Zhong; Anastasio, Mark A.; Brey, Eric M.

    2015-01-01

    Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript, we investigate the use of XPC for imaging a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted in a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. There were no differences between invading tissue measurements from XPC and the gold-standard histology. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response. PMID:26487123

  15. Quantitative phase microscopy via optimized inversion of the phase optical transfer function.

    PubMed

    Jenkins, Micah H; Gaylord, Thomas K

    2015-10-01

    Although the field of quantitative phase imaging (QPI) has wide-ranging biomedical applicability, many QPI methods are not well-suited for such applications due to their reliance on coherent illumination and specialized hardware. By contrast, methods utilizing partially coherent illumination have the potential to promote the widespread adoption of QPI due to their compatibility with microscopy, which is ubiquitous in the biomedical community. Described herein is a new defocus-based reconstruction method that utilizes a small number of efficiently sampled micrographs to optimally invert the partially coherent phase optical transfer function under assumptions of weak absorption and slowly varying phase. Simulation results are provided that compare the performance of this method with similar algorithms and demonstrate compatibility with large phase objects. The accuracy of the method is validated experimentally using a microlens array as a test phase object. Lastly, time-lapse images of live adherent cells are obtained with an off-the-shelf microscope, thus demonstrating the new method's potential for extending QPI capability widely in the biomedical community.

  16. Mesh-based phase contrast Fourier transform imaging

    NASA Astrophysics Data System (ADS)

    Tahir, Sajjad; Bashir, Sajid; MacDonald, C. A.; Petruccelli, Jonathan C.

    2017-04-01

    Traditional x-ray radiography is limited by low attenuation contrast in materials of low electron density. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a recently developed technique that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 μm spot Mo source, a CCD with 22 μm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the mesh in the Fourier domain. The effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the width of the window function used to separate the harmonics were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and combined to form improved phase contrast images.

  17. Improvements in Diagnostic Accuracy with Quantitative Dynamic Contrast-Enhanced MRI

    DTIC Science & Technology

    2011-12-01

    Magnetic   Resonance   Imaging  during  the  Menstrual  Cylce:  Perfusion   Imaging  Signal   Enhanceent,  and  Influence  of...acquisition of quantitative images displaying the concentration of contrast media as well as MRI -detectable proton density. To date 21 patients have...truly  quantitative   images  of  a  dynamic  contrast-­‐enhanced  (DCE)   MRI  of  the

  18. Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Baran, P.; Pacile, S.; Nesterets, Y. I.; Mayo, S. C.; Dullin, C.; Dreossi, D.; Arfelli, F.; Thompson, D.; Lockie, D.; McCormack, M.; Taba, S. T.; Brun, F.; Pinamonti, M.; Nickson, C.; Hall, C.; Dimmock, M.; Zanconati, F.; Cholewa, M.; Quiney, H.; Brennan, P. C.; Tromba, G.; Gureyev, T. E.

    2017-03-01

    The aim of this study was to optimise the experimental protocol and data analysis for in-vivo breast cancer x-ray imaging. Results are presented of the experiment at the SYRMEP beamline of Elettra Synchrotron using the propagation-based phase-contrast mammographic tomography method, which incorporates not only absorption, but also x-ray phase information. In this study the images of breast tissue samples, of a size corresponding to a full human breast, with radiologically acceptable x-ray doses were obtained, and the degree of improvement of the image quality (from the diagnostic point of view) achievable using propagation-based phase-contrast image acquisition protocols with proper incorporation of x-ray phase retrieval into the reconstruction pipeline was investigated. Parameters such as the x-ray energy, sample-to-detector distance and data processing methods were tested, evaluated and optimized with respect to the estimated diagnostic value using a mastectomy sample with a malignant lesion. The results of quantitative evaluation of images were obtained by means of radiological assessment carried out by 13 experienced specialists. A comparative analysis was performed between the x-ray and the histological images of the specimen. The results of the analysis indicate that, within the investigated range of parameters, both the objective image quality characteristics and the subjective radiological scores of propagation-based phase-contrast images of breast tissues monotonically increase with the strength of phase contrast which in turn is directly proportional to the product of the radiation wavelength and the sample-to-detector distance. The outcomes of this study serve to define the practical imaging conditions and the CT reconstruction procedures appropriate for low-dose phase-contrast mammographic imaging of live patients at specially designed synchrotron beamlines.

  19. Optofluidic time-stretch quantitative phase microscopy.

    PubMed

    Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke

    2018-03-01

    Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Using machine-learning to optimize phase contrast in a low-cost cellphone microscope

    PubMed Central

    Wartmann, Rolf; Schadwinkel, Harald; Heintzmann, Rainer

    2018-01-01

    Cellphones equipped with high-quality cameras and powerful CPUs as well as GPUs are widespread. This opens new prospects to use such existing computational and imaging resources to perform medical diagnosis in developing countries at a very low cost. Many relevant samples, like biological cells or waterborn parasites, are almost fully transparent. As they do not exhibit absorption, but alter the light’s phase only, they are almost invisible in brightfield microscopy. Expensive equipment and procedures for microscopic contrasting or sample staining often are not available. Dedicated illumination approaches, tailored to the sample under investigation help to boost the contrast. This is achieved by a programmable illumination source, which also allows to measure the phase gradient using the differential phase contrast (DPC) [1, 2] or even the quantitative phase using the derived qDPC approach [3]. By applying machine-learning techniques, such as a convolutional neural network (CNN), it is possible to learn a relationship between samples to be examined and its optimal light source shapes, in order to increase e.g. phase contrast, from a given dataset to enable real-time applications. For the experimental setup, we developed a 3D-printed smartphone microscope for less than 100 $ using off-the-shelf components only such as a low-cost video projector. The fully automated system assures true Koehler illumination with an LCD as the condenser aperture and a reversed smartphone lens as the microscope objective. We show that the effect of a varied light source shape, using the pre-trained CNN, does not only improve the phase contrast, but also the impression of an improvement in optical resolution without adding any special optics, as demonstrated by measurements. PMID:29494620

  1. Phase contrast STEM for thin samples: Integrated differential phase contrast.

    PubMed

    Lazić, Ivan; Bosch, Eric G T; Lazar, Sorin

    2016-01-01

    It has been known since the 1970s that the movement of the center of mass (COM) of a convergent beam electron diffraction (CBED) pattern is linearly related to the (projected) electrical field in the sample. We re-derive a contrast transfer function (CTF) for a scanning transmission electron microscopy (STEM) imaging technique based on this movement from the point of view of image formation and continue by performing a two-dimensional integration on the two images based on the two components of the COM movement. The resulting integrated COM (iCOM) STEM technique yields a scalar image that is linear in the phase shift caused by the sample and therefore also in the local (projected) electrostatic potential field of a thin sample. We confirm that the differential phase contrast (DPC) STEM technique using a segmented detector with 4 quadrants (4Q) yields a good approximation for the COM movement. Performing a two-dimensional integration, just as for the COM, we obtain an integrated DPC (iDPC) image which is approximately linear in the phase of the sample. Beside deriving the CTFs of iCOM and iDPC, we clearly point out the objects of the two corresponding imaging techniques, and highlight the differences to objects corresponding to COM-, DPC-, and (HA) ADF-STEM. The theory is validated with simulations and we present first experimental results of the iDPC-STEM technique showing its capability for imaging both light and heavy elements with atomic resolution and a good signal to noise ratio (SNR). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Phase-contrast CT: Qualitative and Quantitative Evaluation of Capillarized Sinusoids and Trabecular Structure in Human Hepatocellular Carcinoma Tissues.

    PubMed

    Jian, Jianbo; Zhang, Wenxue; Yang, Hao; Zhao, Xinyan; Xuan, Ruijiao; Li, Dongyue; Hu, Chunhong

    2017-01-01

    Capillarization of sinusoids and change of trabecular thickness are the main histologic features in hepatocellular carcinoma (HCC). Of particular interest are the three-dimensional (3D) visualization and quantitative evaluation of such alterations in the HCC progression. X-ray phase-contrast computed tomography (PCCT) is an emerging imaging method that provides excellent image contrast for soft tissues. This study aimed to explore the potential of in-line PCCT in microstructure imaging of capillarized sinusoids and trabecular structure in human HCC tissues and to quantitatively evaluate the alterations of those fine structures during the development of HCC. This project was designed as an ex vivo experimental study. The study was approved by the institutional review board, and informed consent was obtained from the patients. Eight human resected HCC tissue samples were imaged using in-line PCCT. After histologic processing, PCCT images and histopathologic data were matched. Fine structures in HCC tissues were revealed. Quantitative analyses of capillarized sinusoids (ie, percentage of sinusoidal area [PSA], sinusoidal volume) and trabecular structure (ie, trabecular thickness, surface-area-to-volume ratio [SA/V]) in low-grade (well or moderately differentiated) and high-grade (poorly differentiated) HCC groups were performed. Using PCCT, the alterations of capillarized sinusoids and trabecular structure were clearly observed in 3D geometry, which was confirmed by the corresponding histologic sections. The 3D qualitative analyses of sinusoids in the high-grade HCC group were significantly different (P < 0.05) in PSA (7.8 ± 2.5%) and sinusoidal volume (2.9 ± 0.6 × 10 7  µm 3 ) from those in the low-grade HCC group (PSA, 12.9 ± 2.2%; sinusoidal volume, 2.4 ± 0.3 × 10 7  µm 3 ). Moreover, the 3D quantitative evaluation of the trabecular structure in the high-grade HCC group showed a significant change (P < 0.05) in the

  3. Flow-gated radial phase-contrast imaging in the presence of weak flow.

    PubMed

    Peng, Hsu-Hsia; Huang, Teng-Yi; Wang, Fu-Nien; Chung, Hsiao-Wen

    2013-01-01

    To implement a flow-gating method to acquire phase-contrast (PC) images of carotid arteries without use of an electrocardiography (ECG) signal to synchronize the acquisition of imaging data with pulsatile arterial flow. The flow-gating method was realized through radial scanning and sophisticated post-processing methods including downsampling, complex difference, and correlation analysis to improve the evaluation of flow-gating times in radial phase-contrast scans. Quantitatively comparable results (R = 0.92-0.96, n = 9) of flow-related parameters, including mean velocity, mean flow rate, and flow volume, with conventional ECG-gated imaging demonstrated that the proposed method is highly feasible. The radial flow-gating PC imaging method is applicable in carotid arteries. The proposed flow-gating method can potentially avoid the setting up of ECG-related equipment for brain imaging. This technique has potential use in patients with arrhythmia or weak ECG signals.

  4. X-ray phase-contrast imaging: the quantum perspective

    NASA Astrophysics Data System (ADS)

    Slowik, J. M.; Santra, R.

    2013-08-01

    Time-resolved phase-contrast imaging using ultrafast x-ray sources is an emerging method to investigate ultrafast dynamical processes in matter. Schemes to generate attosecond x-ray pulses have been proposed, bringing electronic timescales into reach and emphasizing the demand for a quantum description. In this paper, we present a method to describe propagation-based x-ray phase-contrast imaging in nonrelativistic quantum electrodynamics. We explain why the standard scattering treatment via Fermi’s golden rule cannot be applied. Instead, the quantum electrodynamical treatment of phase-contrast imaging must be based on a different approach. It turns out that it is essential to select a suitable observable. Here, we choose the quantum-mechanical Poynting operator. We determine the expectation value of our observable and demonstrate that the leading order term describes phase-contrast imaging. It recovers the classical expression of phase-contrast imaging. Thus, it makes the instantaneous electron density of non-stationary electronic states accessible to time-resolved imaging. Interestingly, inelastic (Compton) scattering does automatically not contribute in leading order, explaining the success of the semiclassical description.

  5. Diagnosis of breast cancer biopsies using quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Majeed, Hassaan; Kandel, Mikhail E.; Han, Kevin; Luo, Zelun; Macias, Virgilia; Tangella, Krishnarao; Balla, Andre; Popescu, Gabriel

    2015-03-01

    The standard practice in the histopathology of breast cancers is to examine a hematoxylin and eosin (H&E) stained tissue biopsy under a microscope. The pathologist looks at certain morphological features, visible under the stain, to diagnose whether a tumor is benign or malignant. This determination is made based on qualitative inspection making it subject to investigator bias. Furthermore, since this method requires a microscopic examination by the pathologist it suffers from low throughput. A quantitative, label-free and high throughput method for detection of these morphological features from images of tissue biopsies is, hence, highly desirable as it would assist the pathologist in making a quicker and more accurate diagnosis of cancers. We present here preliminary results showing the potential of using quantitative phase imaging for breast cancer screening and help with differential diagnosis. We generated optical path length maps of unstained breast tissue biopsies using Spatial Light Interference Microscopy (SLIM). As a first step towards diagnosis based on quantitative phase imaging, we carried out a qualitative evaluation of the imaging resolution and contrast of our label-free phase images. These images were shown to two pathologists who marked the tumors present in tissue as either benign or malignant. This diagnosis was then compared against the diagnosis of the two pathologists on H&E stained tissue images and the number of agreements were counted. In our experiment, the agreement between SLIM and H&E based diagnosis was measured to be 88%. Our preliminary results demonstrate the potential and promise of SLIM for a push in the future towards quantitative, label-free and high throughput diagnosis.

  6. Geometry of phase-separated domains in phospholipid bilayers by diffraction-contrast electron microscopy.

    PubMed Central

    Hui, S W

    1981-01-01

    The sizes and shapes of solidus (gel) phase domains in the hydrated molecular bilayers of dilauroylphosphatidylcholine/dipalmitoylphasphatidylcholine (DLPC/DPPC) (1:1) and phosphatidylserine (PS)/DPPC (1:2) are visualized directly by low dose diffraction-contrast electron microscopy. The temperature and humidity of the bilayers are controlled by an environmental chamber set in an electron microscope. The contrast between crystalline domains is enhanced by electron optical filtering of the diffraction patterns of the bilayers. The domains are seen as a patchwork in the plane of the bilayer, with an average width of 0.2-0.5 micrometer. The percentage of solidus area measured from diffraction-contrast micrographs at various temperatures agrees in general with those depicted by known phase diagrams. The shape and size of the domains resemble those seen by freeze-fracture in multilamellar vesicles. Temperature-related changes in domain size and in phase boundary per unit area are more pronounced in the less miscible DLPC/DPPC mixture. No significant change in these geometric parameters with temperature is found in the PS/DPPC mixture. Mapping domains by their molecular diffraction signals not only verifies the existance of areas of different molecular packing during phase separation but also provides a quantitative measurement of structural boundaries and defects in lipid bilayers. Images FIGURE 1 FIGURE 3 FIGURE 6 PMID:6894707

  7. Label-free imaging of intracellular motility by low-coherent quantitative phase microscope in reflection geometry

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka

    2011-11-01

    We demonstrate tomographic imaging of intracellular activity of living cells by a low-coherent quantitative phase microscope. The intracellular organelles, such as the nucleus, nucleolus, and mitochondria, are moving around inside living cells, driven by the cellular physiological activity. In order to visualize the intracellular motility in a label-free manner we have developed a reflection-type quantitative phase microscope which employs the phase shifting interferometric technique with a low-coherent light source. The phase shifting interferometry enables us to quantitatively measure the intensity and phase of the optical field, and the low-coherence interferometry makes it possible to selectively probe a specific sectioning plane in the cell volume. The results quantitatively revealed the depth-resolved fluctuations of intracellular surfaces so that the plasma membrane and the membranes of intracellular organelles were independently measured. The transversal and the vertical spatial resolutions were 0.56 μm and 0.93 μm, respectively, and the mechanical sensitivity of the phase measurement was 1.2 nanometers. The mean-squared displacement was applied as a statistical tool to analyze the temporal fluctuation of the intracellular organelles. To the best of our knowledge, our system visualized depth-resolved intracellular organelles motion for the first time in sub-micrometer resolution without contrast agents.

  8. Cross-phase modulation spectral shifting: nonlinear phase contrast in a pump-probe microscope

    PubMed Central

    Wilson, Jesse W.; Samineni, Prathyush; Warren, Warren S.; Fischer, Martin C.

    2012-01-01

    Microscopy with nonlinear phase contrast is achieved by a simple modification to a nonlinear pump-probe microscope. The technique measures cross-phase modulation by detecting a pump-induced spectral shift in the probe pulse. Images with nonlinear phase contrast are acquired both in transparent and absorptive media. In paraffin-embedded biopsy sections, cross-phase modulation complements the chemically-specific pump-probe images with structural context. PMID:22567580

  9. High Resolution X-ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement

    DTIC Science & Technology

    2008-06-01

    Imaging with Acoustic Tissue-Selective Contrast Enhancement PRINCIPAL INVESTIGATOR: Gerald J. Diebold, Ph.D. CONTRACTING... Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement 5b. GRANT NUMBER W81XWH-04-1-0481 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...additional phase contrast features are visible at the interfaces of soft tissues as slight contrast enhancements . The image sequence in Fig. 2 shows an image

  10. Quantitative orientation-independent differential interference contrast (DIC) microscopy

    NASA Astrophysics Data System (ADS)

    Shribak, Michael; LaFountain, James; Biggs, David; Inoué, Shinya

    2007-02-01

    We describe a new DIC technique, which records phase gradients within microscopic specimens independently of their orientation. The proposed system allows the generation of images representing the distribution of dry mass (optical path difference) in the specimen. Unlike in other forms of interference microscopes, this approach does not require a narrow illuminating cone. The orientation-independent differential interference contrast (OI-DIC) system can also be combined with orientation-independent polarization (OI-Pol) measurements to yield two complementary images: one showing dry mass distribution (which is proportional to refractive index) and the other showing distribution of birefringence (due to structural or internal anisotropy). With a model specimen used for this work -- living spermatocytes from the crane fly, Nephrotoma suturalis --- the OI-DIC image clearly reveals the detailed shape of the chromosomes while the polarization image quantitatively depicts the distribution of the birefringent microtubules in the spindle, both without any need for staining or other modifications of the cell. We present examples of a pseudo-color combined image incorporating both orientation-independent DIC and polarization images of a spermatocyte at diakinesis and metaphase of meiosis I. Those images provide clear evidence that the proposed technique can reveal fine architecture and molecular organization in live cells without perturbation associated with staining or fluorescent labeling. The phase image was obtained using optics having a numerical aperture 1.4, thus achieving a level of resolution never before achieved with any interference microscope.

  11. Phase Contrast Microscopy Analysis of Breast Tissue

    PubMed Central

    Wells, Wendy A.; Wang, Xin; Daghlian, Charles P.; Paulsen, Keith D.; Pogue, Brian W.

    2010-01-01

    OBJECTIVE To assess how optical scatter properties in breast tissue, as measured by phase contrast microscopy and interpreted pathophysiologically, might be exploited as a diagnostic tool to differentiate cancer from benign tissue. STUDY DESIGN We evaluated frozen human breast tissue sections of adipose tissue, normal breast parenchyma, benign fibroadenoma tumors and noninvasive and invasive malignant cancers by phase contrast microscopy through quantification of grayscale values, using multiple regions of interest (ROI). Student’s t tests were performed on phase contrast measures across diagnostic categories testing data from individual cases; all ROI data were used as separate measures. RESULTS Stroma demonstrated significantly higher scatter intensity than did epithelium, with lower scattering in tumor-associated stroma as compared with normal or benign-associated stroma. Measures were comparable for invasive and noninvasive malignant tumors but were higher than those found in benign tumors and were lowest in adipose tissue. CONCLUSION Significant differences were found in scatter coefficient properties of epithelium and stroma across diagnostic categories of breast tissue, particularly between benign and malignant-associated stroma. Improved understanding of how scatter properties correlate with morphologic criteria used in routine pathologic diagnoses could have a significant clinical impact as developing optical technology allows macroscopic in situ phase contrast imaging. PMID:19736867

  12. Experimentally enhanced model-based deconvolution of propagation-based phase-contrast data

    NASA Astrophysics Data System (ADS)

    Pichotka, M.; Palma, K.; Hasn, S.; Jakubek, J.; Vavrik, D.

    2016-12-01

    In recent years phase-contrast has become a much investigated modality in radiographic imaging. The radiographic setups employed in phase-contrast imaging are typically rather costly and complex, e.g. high performance Talbot-Laue interferometers operated at synchrotron light sources. In-line phase-contrast imaging states the most pedestrian approach towards phase-contrast enhancement. Utilizing small angle deflection within the imaged sample and the entailed interference of the deflected and un-deflected beam during spatial propagation, in-line phase-contrast imaging only requires a well collimated X-ray source with a high contrast & high resolution detector. Employing high magnification the above conditions are intrinsically fulfilled in cone-beam micro-tomography. As opposed of 2D imaging, where contrast enhancement is generally considered beneficial, in tomographic modalities the in-line phase-contrast effect can be quite a nuisance since it renders the inverse problem posed by tomographic reconstruction inconsistent, thus causing reconstruction artifacts. We present an experimentally enhanced model-based approach to disentangle absorption and in-line phase-contrast. The approach employs comparison of transmission data to a system model computed iteratively on-line. By comparison of the forward model to absorption data acquired in continuous rotation strong local deviations of the data residual are successively identified as likely candidates for in-line phase-contrast. By inducing minimal vibrations (few mrad) to the sample around the peaks of such deviations the transmission signal can be decomposed into a constant absorptive fraction and an oscillating signal caused by phase-contrast which again allows to generate separate maps for absorption and phase-contrast. The contributions of phase-contrast and the corresponding artifacts are subsequently removed from the tomographic dataset. In principle, if a 3D handling of the sample is available, this method also

  13. Zeroth-order phase-contrast technique.

    PubMed

    Pizolato, José Carlos; Cirino, Giuseppe Antonio; Gonçalves, Cristhiane; Neto, Luiz Gonçalves

    2007-11-01

    What we believe to be a new phase-contrast technique is proposed to recover intensity distributions from phase distributions modulated by spatial light modulators (SLMs) and binary diffractive optical elements (DOEs). The phase distribution is directly transformed into intensity distributions using a 4f optical correlator and an iris centered in the frequency plane as a spatial filter. No phase-changing plates or phase dielectric dots are used as a filter. This method allows the use of twisted nematic liquid-crystal televisions (LCTVs) operating in the real-time phase-mostly regime mode between 0 and p to generate high-intensity multiple beams for optical trap applications. It is also possible to use these LCTVs as input SLMs for optical correlators to obtain high-intensity Fourier transform distributions of input amplitude objects.

  14. Velocity Measurement in Carotid Artery: Quantitative Comparison of Time-Resolved 3D Phase-Contrast MRI and Image-based Computational Fluid Dynamics

    PubMed Central

    Sarrami-Foroushani, Ali; Nasr Esfahany, Mohsen; Nasiraei Moghaddam, Abbas; Saligheh Rad, Hamidreza; Firouznia, Kavous; Shakiba, Madjid; Ghanaati, Hossein; Wilkinson, Iain David; Frangi, Alejandro Federico

    2015-01-01

    Background: Understanding hemodynamic environment in vessels is important for realizing the mechanisms leading to vascular pathologies. Objectives: Three-dimensional velocity vector field in carotid bifurcation is visualized using TR 3D phase-contrast magnetic resonance imaging (TR 3D PC MRI) and computational fluid dynamics (CFD). This study aimed to present a qualitative and quantitative comparison of the velocity vector field obtained by each technique. Subjects and Methods: MR imaging was performed on a 30-year old male normal subject. TR 3D PC MRI was performed on a 3 T scanner to measure velocity in carotid bifurcation. 3D anatomical model for CFD was created using images obtained from time-of-flight MR angiography. Velocity vector field in carotid bifurcation was predicted using CFD and PC MRI techniques. A statistical analysis was performed to assess the agreement between the two methods. Results: Although the main flow patterns were the same for the both techniques, CFD showed a greater resolution in mapping the secondary and circulating flows. Overall root mean square (RMS) errors for all the corresponding data points in PC MRI and CFD were 14.27% in peak systole and 12.91% in end diastole relative to maximum velocity measured at each cardiac phase. Bland-Altman plots showed a very good agreement between the two techniques. However, this study was not aimed to validate any of methods, instead, the consistency was assessed to accentuate the similarities and differences between Time-resolved PC MRI and CFD. Conclusion: Both techniques provided quantitatively consistent results of in vivo velocity vector fields in right internal carotid artery (RCA). PC MRI represented a good estimation of main flow patterns inside the vasculature, which seems to be acceptable for clinical use. However, limitations of each technique should be considered while interpreting results. PMID:26793288

  15. Motionless phase stepping in X-ray phase contrast imaging with a compact source

    PubMed Central

    Miao, Houxun; Chen, Lei; Bennett, Eric E.; Adamo, Nick M.; Gomella, Andrew A.; DeLuca, Alexa M.; Patel, Ajay; Morgan, Nicole Y.; Wen, Han

    2013-01-01

    X-ray phase contrast imaging offers a way to visualize the internal structures of an object without the need to deposit significant radiation, and thereby alleviate the main concern in X-ray diagnostic imaging procedures today. Grating-based differential phase contrast imaging techniques are compatible with compact X-ray sources, which is a key requirement for the majority of clinical X-ray modalities. However, these methods are substantially limited by the need for mechanical phase stepping. We describe an electromagnetic phase-stepping method that eliminates mechanical motion, thus removing the constraints in speed, accuracy, and flexibility. The method is broadly applicable to both projection and tomography imaging modes. The transition from mechanical to electromagnetic scanning should greatly facilitate the translation of X-ray phase contrast techniques into mainstream applications. PMID:24218599

  16. Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications

    PubMed Central

    Liu, Chunlei; Wei, Hongjiang; Gong, Nan-Jie; Cronin, Matthew; Dibb, Russel; Decker, Kyle

    2016-01-01

    Quantitative susceptibility mapping (QSM) is a recently developed MRI technique for quantifying the spatial distribution of magnetic susceptibility within biological tissues. It first uses the frequency shift in the MRI signal to map the magnetic field profile within the tissue. The resulting field map is then used to determine the spatial distribution of the underlying magnetic susceptibility by solving an inverse problem. The solution is achieved by deconvolving the field map with a dipole field, under the assumption that the magnetic field is a result of the superposition of the dipole fields generated by all voxels and that each voxel has its unique magnetic susceptibility. QSM provides improved contrast to noise ratio for certain tissues and structures compared to its magnitude counterpart. More importantly, magnetic susceptibility is a direct reflection of the molecular composition and cellular architecture of the tissue. Consequently, by quantifying magnetic susceptibility, QSM is becoming a quantitative imaging approach for characterizing normal and pathological tissue properties. This article reviews the mechanism generating susceptibility contrast within tissues and some associated applications. PMID:26844301

  17. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    PubMed Central

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Åslund, Magnus

    2012-01-01

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption

  18. Complex dark-field contrast and its retrieval in x-ray phase contrast imaging implemented with Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2014-10-01

    Under the existing theoretical framework of x-ray phase contrast imaging methods implemented with Talbot interferometry, the dark-field contrast refers to the reduction in interference fringe visibility due to small-angle x-ray scattering of the subpixel microstructures of an object to be imaged. This study investigates how an object's subpixel microstructures can also affect the phase of the intensity oscillations. Instead of assuming that the object's subpixel microstructures distribute in space randomly, the authors' theoretical derivation starts by assuming that an object's attenuation projection and phase shift vary at a characteristic size that is not smaller than the period of analyzer grating G₂ and a characteristic length dc. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the zeroth- and first-order Fourier coefficients of the x-ray irradiance recorded at each detector cell are derived. Then the concept of complex dark-field contrast is introduced to quantify the influence of the object's microstructures on both the interference fringe visibility and the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues and high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. Through computer simulation study with a specially designed numerical phantom, they evaluate and validate the derived analytic formulae and the proposed retrieval method. Both theoretical analysis and computer simulation study show that the effect of an object's subpixel microstructures on x-ray phase contrast imaging method implemented with Talbot interferometry can be fully characterized by a complex dark-field contrast. The imaginary part of complex dark-field contrast quantifies the influence of the object's subpixel microstructures on the phase of intensity oscillations. Furthermore, at relatively high energies, for soft tissues it can be

  19. The Accuracy and Precision of Flow Measurements Using Phase Contrast Techniques

    NASA Astrophysics Data System (ADS)

    Tang, Chao

    Quantitative volume flow rate measurements using the magnetic resonance imaging technique are studied in this dissertation because the volume flow rates have a special interest in the blood supply of the human body. The method of quantitative volume flow rate measurements is based on the phase contrast technique, which assumes a linear relationship between the phase and flow velocity of spins. By measuring the phase shift of nuclear spins and integrating velocity across the lumen of the vessel, we can determine the volume flow rate. The accuracy and precision of volume flow rate measurements obtained using the phase contrast technique are studied by computer simulations and experiments. The various factors studied include (1) the partial volume effect due to voxel dimensions and slice thickness relative to the vessel dimensions; (2) vessel angulation relative to the imaging plane; (3) intravoxel phase dispersion; (4) flow velocity relative to the magnitude of the flow encoding gradient. The partial volume effect is demonstrated to be the major obstacle to obtaining accurate flow measurements for both laminar and plug flow. Laminar flow can be measured more accurately than plug flow in the same condition. Both the experiment and simulation results for laminar flow show that, to obtain the accuracy of volume flow rate measurements to within 10%, at least 16 voxels are needed to cover the vessel lumen. The accuracy of flow measurements depends strongly on the relative intensity of signal from stationary tissues. A correction method is proposed to compensate for the partial volume effect. The correction method is based on a small phase shift approximation. After the correction, the errors due to the partial volume effect are compensated, allowing more accurate results to be obtained. An automatic program based on the correction method is developed and implemented on a Sun workstation. The correction method is applied to the simulation and experiment results. The

  20. New approaches for the analysis of confluent cell layers with quantitative phase digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Pohl, L.; Kaiser, M.; Ketelhut, S.; Pereira, S.; Goycoolea, F.; Kemper, Björn

    2016-03-01

    Digital holographic microscopy (DHM) enables high resolution non-destructive inspection of technical surfaces and minimally-invasive label-free live cell imaging. However, the analysis of confluent cell layers represents a challenge as quantitative DHM phase images in this case do not provide sufficient information for image segmentation, determination of the cellular dry mass or calculation of the cell thickness. We present novel strategies for the analysis of confluent cell layers with quantitative DHM phase contrast utilizing a histogram based-evaluation procedure. The applicability of our approach is illustrated by quantification of drug induced cell morphology changes and it is shown that the method is capable to quantify reliable global morphology changes of confluent cell layers.

  1. Reconstruction methods for phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raven, C.

    Phase contrast imaging with coherent x-rays can be distinguished in outline imaging and holography, depending on the wavelength {lambda}, the object size d and the object-to-detector distance r. When r << d{sup 2}{lambda}, phase contrast occurs only in regions where the refractive index fastly changes, i.e. at interfaces and edges in the sample. With increasing object-to-detector distance we come in the area of holographic imaging. The image contrast outside the shadow region of the object is due to interference of the direct, undiffracted beam and a beam diffracted by the object, or, in terms of holography, the interference of amore » reference wave with the object wave. Both, outline imaging and holography, offer the possibility to obtain three dimensional information of the sample in conjunction with a tomographic technique. But the data treatment and the kind of information one can obtain from the reconstruction is different.« less

  2. Enhanced renal image contrast by ethanol fixation in phase-contrast X-ray computed tomography.

    PubMed

    Shirai, Ryota; Kunii, Takuya; Yoneyama, Akio; Ooizumi, Takahito; Maruyama, Hiroko; Lwin, Thet Thet; Hyodo, Kazuyuki; Takeda, Tohoru

    2014-07-01

    Phase-contrast X-ray imaging using a crystal X-ray interferometer can depict the fine structures of biological objects without the use of a contrast agent. To obtain higher image contrast, fixation techniques have been examined with 100% ethanol and the commonly used 10% formalin, since ethanol causes increased density differences against background due to its physical properties and greater dehydration of soft tissue. Histological comparison was also performed. A phase-contrast X-ray system was used, fitted with a two-crystal X-ray interferometer at 35 keV X-ray energy. Fine structures, including cortex, tubules in the medulla, and the vessels of ethanol-fixed kidney could be visualized more clearly than that of formalin-fixed tissues. In the optical microscopic images, shrinkage of soft tissue and decreased luminal space were observed in ethanol-fixed kidney; and this change was significantly shown in the cortex and outer stripe of the outer medulla. The ethanol fixation technique enhances image contrast by approximately 2.7-3.2 times in the cortex and the outer stripe of the outer medulla; the effect of shrinkage and the physical effect of ethanol cause an increment of approximately 78% and 22%, respectively. Thus, the ethanol-fixation technique enables the image contrast to be enhanced in phase-contrast X-ray imaging.

  3. Dual-modality wide-field photothermal quantitative phase microscopy and depletion of cell populations

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Barnea, Itay; Blum, Omry; Korenstein, Rafi; Shaked, Natan T.

    2015-03-01

    We review our dual-modality technique for quantitative imaging and selective depletion of populations of cells based on wide-field photothermal (PT) quantitative phase imaging and simultaneous PT cell extermination. The cells are first labeled by plasmonic gold nanoparticles, which evoke local plasmonic resonance when illuminated by light in a wavelength corresponding to their specific plasmonic resonance peak. This reaction creates changes of temperature, resulting in changes of phase. This phase changes are recorded by a quantitative phase microscope (QPM), producing specific imaging contrast, and enabling bio-labeling in phase microscopy. Using this technique, we have shown discrimination of EGFR over-expressing (EGFR+) cancer cells from EGFR under-expressing (EGFR-) cancer cells. Then, we have increased the excitation power in order to evoke greater temperatures, which caused specific cell death, all under real-time phase acquisition using QPM. Close to 100% of all EGFR+ cells were immediately exterminated when illuminated with the strong excitation beam, while all EGFR- cells survived. For the second experiment, in order to simulate a condition where circulating tumor cells (CTCs) are present in blood, we have mixed the EGFR+ cancer cells with white blood cells (WBCs) from a healthy donor. Here too, we have used QPM to observe and record the phase of the cells as they were excited for selective visualization and then exterminated. The WBCs survival rate was over 95%, while the EGFR+ survival rate was under 5%. The technique may be the basis for real-time detection and controlled treatment of CTCs.

  4. Propagation-based x-ray phase contrast imaging using an iterative phase diversity technique

    NASA Astrophysics Data System (ADS)

    Carroll, Aidan J.; van Riessen, Grant A.; Balaur, Eugeniu; Dolbnya, Igor P.; Tran, Giang N.; Peele, Andrew G.

    2018-03-01

    Through the use of a phase diversity technique, we demonstrate a near-field in-line x-ray phase contrast algorithm that provides improved object reconstruction when compared to our previous iterative methods for a homogeneous sample. Like our previous methods, the new technique uses the sample refractive index distribution during the reconstruction process. The technique complements existing monochromatic and polychromatic methods and is useful in situations where experimental phase contrast data is affected by noise.

  5. Phase contrast imaging with coherent high energy X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snigireva, I.

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known inmore » optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.« less

  6. Phase contrast portal imaging using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, K.; Kondoh, T.

    2014-07-01

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures.

  7. Biofilm imaging in porous media by laboratory X-Ray tomography: Combining a non-destructive contrast agent with propagation-based phase-contrast imaging tools.

    PubMed

    Carrel, Maxence; Beltran, Mario A; Morales, Verónica L; Derlon, Nicolas; Morgenroth, Eberhard; Kaufmann, Rolf; Holzner, Markus

    2017-01-01

    X-ray tomography is a powerful tool giving access to the morphology of biofilms, in 3D porous media, at the mesoscale. Due to the high water content of biofilms, the attenuation coefficient of biofilms and water are very close, hindering the distinction between biofilms and water without the use of contrast agents. Until now, the use of contrast agents such as barium sulfate, silver-coated micro-particles or 1-chloronaphtalene added to the liquid phase allowed imaging the biofilm 3D morphology. However, these contrast agents are not passive and potentially interact with the biofilm when injected into the sample. Here, we use a natural inorganic compound, namely iron sulfate, as a contrast agent progressively bounded in dilute or colloidal form into the EPS matrix during biofilm growth. By combining a very long source-to-detector distance on a X-ray laboratory source with a Lorentzian filter implemented prior to tomographic reconstruction, we substantially increase the contrast between the biofilm and the surrounding liquid, which allows revealing the 3D biofilm morphology. A comparison of this new method with the method proposed by Davit et al (Davit et al., 2011), which uses barium sulfate as a contrast agent to mark the liquid phase was performed. Quantitative evaluations between the methods revealed substantial differences for the volumetric fractions obtained from both methods. Namely, contrast agent-biofilm interactions (e.g. biofilm detachment) occurring during barium sulfate injection caused a reduction of the biofilm volumetric fraction of more than 50% and displacement of biofilm patches elsewhere in the column. Two key advantages of the newly proposed method are that passive addition of iron sulfate maintains the integrity of the biofilm prior to imaging, and that the biofilm itself is marked by the contrast agent, rather than the liquid phase as in other available methods. The iron sulfate method presented can be applied to understand biofilm development

  8. Intracellular subsurface imaging using a hybrid shear-force feedback/scanning quantitative phase microscopy technique

    NASA Astrophysics Data System (ADS)

    Edward, Kert

    Quantitative phase microscopy (QPM) allows for the imaging of translucent or transparent biological specimens without the need for exogenous contrast agents. This technique is usually applied towards the investigation of simple cells such as red blood cells which are typically enucleated and can be considered to be homogenous. However, most biological cells are nucleated and contain other interesting intracellular organelles. It has been established that the physical characteristics of certain subsurface structures such as the shape and roughness of the nucleus is well correlated with onset and progress of pathological conditions such as cancer. Although the acquired quantitative phase information of biological cells contains surface information as well as coupled subsurface information, the latter has been ignored up until now. A novel scanning quantitative phase imaging system unencumbered by 2pi ambiguities is hereby presented. This system is incorporated into a shear-force feedback scheme which allows for simultaneous phase and topography determination. It will be shown how subsequent image processing of these two data sets allows for the extraction of the subsurface component in the phase data and in vivo cell refractometry studies. Both fabricated samples and biological cells ranging from rat fibroblast cells to malaria infected human erythrocytes were investigated as part of this research. The results correlate quite well with that obtained via other microscopy techniques.

  9. Single particle analysis based on Zernike phase contrast transmission electron microscopy.

    PubMed

    Danev, Radostin; Nagayama, Kuniaki

    2008-02-01

    We present the first application of Zernike phase-contrast transmission electron microscopy to single-particle 3D reconstruction of a protein, using GroEL chaperonin as the test specimen. We evaluated the performance of the technique by comparing 3D models derived from Zernike phase contrast imaging, with models from conventional underfocus phase contrast imaging. The same resolution, about 12A, was achieved by both imaging methods. The reconstruction based on Zernike phase contrast data required about 30% fewer particles. The advantages and prospects of each technique are discussed.

  10. Report of improved performance in Talbot–Lau phase-contrast computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thomas, E-mail: thomas.weber@fau.de; Pelzer, Georg; Rieger, Jens

    Purpose: Many expectations have been raised since the use of conventional x-ray tubes on grating-based x-ray phase-contrast imaging. Despite a reported increase in contrast-to-noise ratio (CNR) in many publications, there is doubt on whether phase-contrast computed tomography (CT) is advantageous in clinical CT scanners in vivo. The aim of this paper is to contribute to this discussion by analyzing the performance of a phase-contrast CT laboratory setup. Methods: A phase-contrast CT performance analysis was done. Projection images of a phantom were recorded, and image slices were reconstructed using standard filtered back projection methods. The resulting image slices were analyzed bymore » determining the CNRs in the attenuation and phase image. These results were compared to analytically calculated expectations according to the already published phase-contrast CT performance analysis by Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)]. There, a severe mistake was found leading to wrong predictions of the performance of phase-contrast CT. The error was corrected and with the new formulae, the experimentally obtained results matched the analytical calculations. Results: The squared ratios of the phase-contrast CNR and the attenuation CNR obtained in the authors’ experiment are five- to ten-fold higher than predicted by Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)]. The effective lateral spatial coherence length deduced outnumbers the already optimistic assumption of Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)] by a factor of 3. Conclusions: The authors’ results indicate that the assumptions made in former performance analyses are pessimistic. The break-even point, when phase-contrast CT outperforms attenuation CT, is within reach even with realistic, nonperfect gratings. Further improvements to state-of-the-art clinical CT scanners, like increasing the spatial resolution, could change the balance in favor of phase-contrast computed

  11. In-line phase contrast micro-CT reconstruction for biomedical specimens.

    PubMed

    Fu, Jian; Tan, Renbo

    2014-01-01

    X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.

  12. Transportable and vibration-free full-field low-coherent quantitative phase microscope

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Yamada, Hidenao; Goto, Kentaro; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio

    2018-02-01

    We developed a transportable Linnik-type full-field low-coherent quantitative phase microscope that is able to compensate for optical path length (OPL) disturbance due to environmental mechanical noises. Though two-beam interferometers such as Linnik ones suffer from unstable OPL difference, we overcame this problem with a mechanical feedback system based on digital signal-processing that controls the OPL difference in sub-nanometer resolution precisely with a feedback bandwidth of 4 kHz. The developed setup has a footprint of 200 mm by 200 mm, a height of 500 mm, and a weight of 4.5 kilograms. In the transmission imaging mode, cells were cultured on a reflection-enhanced glass-bottom dish, and we obtained interference images sequentially while performing stepwise quarter-wavelength phase-shifting. Real-time image processing, including retrieval of the unwrapped phase from interference images and its background correction, along with the acquisition of interference images, was performed on a laptop computer. Emulation of the phase contrast (PhC) images and the differential interference contrast (DIC) images was also performed in real time. Moreover, our setup was applied for full-field cell membrane imaging in the reflection mode, where the cells were cultured on an anti-reflection (AR)-coated glass-bottom dish. The phase and intensity of the light reflected by the membrane revealed the outer shape of the cells independent of the refractive index. In this paper, we show imaging results on cultured cells in both transmission and reflection modes.

  13. A comparison of phase imaging and quantitative susceptibility mapping in the imaging of multiple sclerosis lesions at ultrahigh field.

    PubMed

    Cronin, Matthew John; Wharton, Samuel; Al-Radaideh, Ali; Constantinescu, Cris; Evangelou, Nikos; Bowtell, Richard; Gowland, Penny Anne

    2016-06-01

    The aim of this study was to compare the use of high-resolution phase and QSM images acquired at ultra-high field in the investigation of multiple sclerosis (MS) lesions with peripheral rings, and to discuss their usefulness for drawing inferences about underlying tissue composition. Thirty-nine Subjects were scanned at 7 T, using 3D T 2*-weighted and T 1-weighted sequences. Phase images were then unwrapped and filtered, and quantitative susceptibility maps were generated using a thresholded k-space division method. Lesions were compared visually and using a 1D profiling algorithm. Lesions displaying peripheral rings in the phase images were identified in 10 of the 39 subjects. Dipolar projections were apparent in the phase images outside of the extent of several of these lesions; however, QSM images showed peripheral rings without such projections. These projections appeared ring-like in a small number of phase images where no ring was observed in QSM. 1D profiles of six well-isolated example lesions showed that QSM contrast corresponds more closely to the magnitude images than phase contrast. Phase images contain dipolar projections, which confounds their use in the investigation of tissue composition in MS lesions. Quantitative susceptibility maps correct these projections, providing insight into the composition of MS lesions showing peripheral rings.

  14. Quantitative dispersion microscopy

    PubMed Central

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Yaqoob, Zahid; Dasari, Ramachandra R.; Feld, Michael

    2010-01-01

    Refractive index dispersion is an intrinsic optical property and a useful source of contrast in biological imaging studies. In this report, we present the first dispersion phase imaging of living eukaryotic cells. We have developed quantitative dispersion microscopy based on the principle of quantitative phase microscopy. The dual-wavelength quantitative phase microscope makes phase measurements at 310 nm and 400 nm wavelengths to quantify dispersion (refractive index increment ratio) of live cells. The measured dispersion of living HeLa cells is found to be around 1.088, which agrees well with that measured directly for protein solutions using total internal reflection. This technique, together with the dry mass and morphology measurements provided by quantitative phase microscopy, could prove to be a useful tool for distinguishing different types of biomaterials and studying spatial inhomogeneities of biological samples. PMID:21113234

  15. 4D x-ray phase contrast tomography for repeatable motion of biological samples

    NASA Astrophysics Data System (ADS)

    Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto

    2016-09-01

    X-ray phase contrast tomography based on a grating interferometer was applied to fast and dynamic measurements of biological samples. To achieve this, the scanning procedure in the tomographic scan was improved. A triangle-shaped voltage signal from a waveform generator to a Piezo stage was used for the fast phase stepping in the grating interferometer. In addition, an optical fiber coupled x-ray scientific CMOS camera was used to achieve fast and highly efficient image acquisitions. These optimizations made it possible to perform an x-ray phase contrast tomographic measurement within an 8 min scan with density resolution of 2.4 mg/cm3. A maximum volume size of 13 × 13 × 6 mm3 was obtained with a single tomographic measurement with a voxel size of 6.5 μm. The scanning procedure using the triangle wave was applied to four-dimensional measurements in which highly sensitive three-dimensional x-ray imaging and a time-resolved dynamic measurement of biological samples were combined. A fresh tendon in the tail of a rat was measured under a uniaxial stretching and releasing condition. To maintain the freshness of the sample during four-dimensional phase contrast tomography, the temperature of the bathing liquid of the sample was kept below 10° using a simple cooling system. The time-resolved deformation of the tendon and each fascicle was measured with a temporal resolution of 5.7 Hz. Evaluations of cross-sectional area size, length of the axis, and mass density in the fascicle during a stretching process provided a basis for quantitative analysis of the deformation of tendon fascicle.

  16. 4D x-ray phase contrast tomography for repeatable motion of biological samples.

    PubMed

    Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto

    2016-09-01

    X-ray phase contrast tomography based on a grating interferometer was applied to fast and dynamic measurements of biological samples. To achieve this, the scanning procedure in the tomographic scan was improved. A triangle-shaped voltage signal from a waveform generator to a Piezo stage was used for the fast phase stepping in the grating interferometer. In addition, an optical fiber coupled x-ray scientific CMOS camera was used to achieve fast and highly efficient image acquisitions. These optimizations made it possible to perform an x-ray phase contrast tomographic measurement within an 8 min scan with density resolution of 2.4 mg/cm 3 . A maximum volume size of 13 × 13 × 6 mm 3 was obtained with a single tomographic measurement with a voxel size of 6.5 μm. The scanning procedure using the triangle wave was applied to four-dimensional measurements in which highly sensitive three-dimensional x-ray imaging and a time-resolved dynamic measurement of biological samples were combined. A fresh tendon in the tail of a rat was measured under a uniaxial stretching and releasing condition. To maintain the freshness of the sample during four-dimensional phase contrast tomography, the temperature of the bathing liquid of the sample was kept below 10° using a simple cooling system. The time-resolved deformation of the tendon and each fascicle was measured with a temporal resolution of 5.7 Hz. Evaluations of cross-sectional area size, length of the axis, and mass density in the fascicle during a stretching process provided a basis for quantitative analysis of the deformation of tendon fascicle.

  17. Integrated quantitative phase and birefringence microscopy for imaging malaria-infected red blood cells.

    PubMed

    Li, Chengshuai; Chen, Shichao; Klemba, Michael; Zhu, Yizheng

    2016-09-01

    A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.

  18. Integrated quantitative phase and birefringence microscopy for imaging malaria-infected red blood cells

    NASA Astrophysics Data System (ADS)

    Li, Chengshuai; Chen, Shichao; Klemba, Michael; Zhu, Yizheng

    2016-09-01

    A dual-modality birefringence/phase imaging system is presented. The system features a crystal retarder that provides polarization mixing and generates two interferometric carrier waves in a single signal spectrum. The retardation and orientation of sample birefringence can then be measured simultaneously based on spectral multiplexing interferometry. Further, with the addition of a Nomarski prism, the same setup can be used for quantitative differential interference contrast (DIC) imaging. Sample phase can then be obtained with two-dimensional integration. In addition, birefringence-induced phase error can be corrected using the birefringence data. This dual-modality approach is analyzed theoretically with Jones calculus and validated experimentally with malaria-infected red blood cells. The system generates not only corrected DIC and phase images, but a birefringence map that highlights the distribution of hemozoin crystals.

  19. Phase contrast in high resolution electron microscopy

    DOEpatents

    Rose, H.H.

    1975-09-23

    This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)

  20. Enhanced Positive-Contrast Visualization of Paramagnetic Contrast Agents Using Phase Images

    PubMed Central

    Mills, Parker H.; Ahrens, Eric T.

    2009-01-01

    Iron oxide–based MRI contrast agents are increasingly being used to noninvasively track cells, target molecular epitopes, and monitor gene expression in vivo. Detecting regions of contrast agent accumulation can be challenging if resulting contrast is subtle relative to endogenous tissue hypointensities. A postprocessing method is presented that yields enhanced positive-contrast images from the phase map associated with T2*-weighted MRI data. As examples, the method was applied to an agarose gel phantom doped with superparamagnetic iron-oxide nanoparticles and in vivo and ex vivo mouse brains inoculated with recombinant viruses delivering transgenes that induce overexpression of paramagnetic ferritin. Overall, this approach generates images that exhibit a 1- to 8-fold improvement in contrast-to-noise ratio in regions where paramagnetic agents are present compared to conventional magnitude images. This approach can be used in conjunction with conventional T2* pulse sequences, requires no prescans or increased scan time, and can be applied retrospectively to previously acquired data. PMID:19780169

  1. Quantitative X-ray dark-field and phase tomography using single directional speckle scanning technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Sawhney, Kawal

    2016-03-21

    X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematicmore » investigation of complex samples containing both soft and hard materials.« less

  2. Bilateral filtering using the full noise covariance matrix applied to x-ray phase-contrast computed tomography.

    PubMed

    Allner, S; Koehler, T; Fehringer, A; Birnbacher, L; Willner, M; Pfeiffer, F; Noël, P B

    2016-05-21

    The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields.

  3. Geometry-constraint-scan imaging for in-line phase contrast micro-CT.

    PubMed

    Fu, Jian; Yu, Guangyuan; Fan, Dekai

    2014-01-01

    X-ray phase contrast computed tomography (CT) uses the phase shift that x-rays undergo when passing through matter, rather than their attenuation, as the imaging signal and may provide better image quality in soft-tissue and biomedical materials with low atomic number. Here a geometry-constraint-scan imaging technique for in-line phase contrast micro-CT is reported. It consists of two circular-trajectory scans with x-ray detector at different positions, the phase projection extraction method with the Fresnel free-propagation theory and the filter back-projection reconstruction algorithm. This method removes the contact-detector scan and the pure phase object assumption in classical in-line phase contrast Micro-CT. Consequently it relaxes the experimental conditions and improves the image contrast. This work comprises a numerical study of this technique and its experimental verification using a biomedical composite dataset measured at an x-ray tube source Micro-CT setup. The numerical and experimental results demonstrate the validity of the presented method. It will be of interest for a wide range of in-line phase contrast Micro-CT applications in biology and medicine.

  4. Phase contrast imaging X-ray computed tomography: quantitative characterization of human patellar cartilage matrix with topological and geometrical features

    NASA Astrophysics Data System (ADS)

    Nagarajan, Mahesh B.; Coan, Paola; Huber, Markus B.; Diemoz, Paul C.; Wismüller, Axel

    2014-03-01

    Current assessment of cartilage is primarily based on identification of indirect markers such as joint space narrowing and increased subchondral bone density on x-ray images. In this context, phase contrast CT imaging (PCI-CT) has recently emerged as a novel imaging technique that allows a direct examination of chondrocyte patterns and their correlation to osteoarthritis through visualization of cartilage soft tissue. This study investigates the use of topological and geometrical approaches for characterizing chondrocyte patterns in the radial zone of the knee cartilage matrix in the presence and absence of osteoarthritic damage. For this purpose, topological features derived from Minkowski Functionals and geometric features derived from the Scaling Index Method (SIM) were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of healthy and osteoarthritic specimens of human patellar cartilage. The extracted features were then used in a machine learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with high-dimensional geometrical feature vectors derived from SIM (0.95 ± 0.06) which outperformed all Minkowski Functionals (p < 0.001). These results suggest that such quantitative analysis of chondrocyte patterns in human patellar cartilage matrix involving SIM-derived geometrical features can distinguish between healthy and osteoarthritic tissue with high accuracy.

  5. Quantifying activation of perfluorocarbon-based phase-change contrast agents using simultaneous acoustic and optical observation.

    PubMed

    Li, Sinan; Lin, Shengtao; Cheng, Yi; Matsunaga, Terry O; Eckersley, Robert J; Tang, Meng-Xing

    2015-05-01

    Phase-change contrast agents in the form of nanoscale droplets can be activated into microbubbles by ultrasound, extending the contrast beyond the vasculature. This article describes simultaneous optical and acoustical measurements for quantifying the ultrasound activation of phase-change contrast agents over a range of concentrations. In experiments, decafluorobutane-based nanodroplets of different dilutions were sonicated with a high-pressure activation pulse and two low-pressure interrogation pulses immediately before and after the activation pulse. The differences between the pre- and post-interrogation signals were calculated to quantify the acoustic power scattered by the microbubbles activated over a range of droplet concentrations. Optical observation occurred simultaneously with the acoustic measurement, and the pre- and post-microscopy images were processed to generate an independent quantitative indicator of the activated microbubble concentration. Both optical and acoustic measurements revealed linear relationships to the droplet concentration at a low concentration range <10(8)/mL when measured at body temperature. Further increases in droplet concentration resulted in saturation of the acoustic interrogation signal. Compared with body temperature, room temperature was found to produce much fewer and larger bubbles after ultrasound droplet activation. Copyright © 2015. Published by Elsevier Inc.

  6. Phased Contrast X-Ray Imaging

    ScienceCinema

    Miller, Erin

    2018-02-07

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  7. Redefining the lower statistical limit in x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Marschner, M.; Birnbacher, L.; Willner, M.; Chabior, M.; Fehringer, A.; Herzen, J.; Noël, P. B.; Pfeiffer, F.

    2015-03-01

    Phase-contrast x-ray computed tomography (PCCT) is currently investigated and developed as a potentially very interesting extension of conventional CT, because it promises to provide high soft-tissue contrast for weakly absorbing samples. For data acquisition several images at different grating positions are combined to obtain a phase-contrast projection. For short exposure times, which are necessary for lower radiation dose, the photon counts in a single stepping position are very low. In this case, the currently used phase-retrieval does not provide reliable results for some pixels. This uncertainty results in statistical phase wrapping, which leads to a higher standard deviation in the phase-contrast projections than theoretically expected. For even lower statistics, the phase retrieval breaks down completely and the phase information is lost. New measurement procedures rely on a linear approximation of the sinusoidal phase stepping curve around the zero crossings. In this case only two images are acquired to obtain the phase-contrast projection. The approximation is only valid for small phase values. However, typically nearly all pixels are within this regime due to the differential nature of the signal. We examine the statistical properties of a linear approximation method and illustrate by simulation and experiment that the lower statistical limit can be redefined using this method. That means that the phase signal can be retrieved even with very low photon counts and statistical phase wrapping can be avoided. This is an important step towards enhanced image quality in PCCT with very low photon counts.

  8. Biofilm imaging in porous media by laboratory X-Ray tomography: Combining a non-destructive contrast agent with propagation-based phase-contrast imaging tools

    PubMed Central

    Beltran, Mario A.; Morales, Verónica L.; Derlon, Nicolas; Morgenroth, Eberhard; Kaufmann, Rolf; Holzner, Markus

    2017-01-01

    X-ray tomography is a powerful tool giving access to the morphology of biofilms, in 3D porous media, at the mesoscale. Due to the high water content of biofilms, the attenuation coefficient of biofilms and water are very close, hindering the distinction between biofilms and water without the use of contrast agents. Until now, the use of contrast agents such as barium sulfate, silver-coated micro-particles or 1-chloronaphtalene added to the liquid phase allowed imaging the biofilm 3D morphology. However, these contrast agents are not passive and potentially interact with the biofilm when injected into the sample. Here, we use a natural inorganic compound, namely iron sulfate, as a contrast agent progressively bounded in dilute or colloidal form into the EPS matrix during biofilm growth. By combining a very long source-to-detector distance on a X-ray laboratory source with a Lorentzian filter implemented prior to tomographic reconstruction, we substantially increase the contrast between the biofilm and the surrounding liquid, which allows revealing the 3D biofilm morphology. A comparison of this new method with the method proposed by Davit et al (Davit et al., 2011), which uses barium sulfate as a contrast agent to mark the liquid phase was performed. Quantitative evaluations between the methods revealed substantial differences for the volumetric fractions obtained from both methods. Namely, contrast agent—biofilm interactions (e.g. biofilm detachment) occurring during barium sulfate injection caused a reduction of the biofilm volumetric fraction of more than 50% and displacement of biofilm patches elsewhere in the column. Two key advantages of the newly proposed method are that passive addition of iron sulfate maintains the integrity of the biofilm prior to imaging, and that the biofilm itself is marked by the contrast agent, rather than the liquid phase as in other available methods. The iron sulfate method presented can be applied to understand biofilm

  9. Grating-based x-ray differential phase contrast imaging with twin peaks in phase-stepping curves—phase retrieval and dewrapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Xie, Huiqiao; Tang, Xiangyang, E-mail: xiangyang.tang@emory.edu

    Purpose: X-ray differential phase contrast CT implemented with Talbot interferometry employs phase-stepping to extract information of x-ray attenuation, phase shift, and small-angle scattering. Since inaccuracy may exist in the absorption grating G{sub 2} due to an imperfect fabrication, the effective period of G{sub 2} can be as large as twice the nominal period, leading to a phenomenon of twin peaks that differ remarkably in their heights. In this work, the authors investigate how to retrieve and dewrap the phase signal from the phase-stepping curve (PSC) with the feature of twin peaks for x-ray phase contrast imaging. Methods: Based on themore » paraxial Fresnel–Kirchhoff theory, the analytical formulae to characterize the phenomenon of twin peaks in the PSC are derived. Then an approach to dewrap the retrieved phase signal by jointly using the phases of the first- and second-order Fourier components is proposed. Through an experimental investigation using a prototype x-ray phase contrast imaging system implemented with Talbot interferometry, the authors evaluate and verify the derived analytic formulae and the proposed approach for phase retrieval and dewrapping. Results: According to theoretical analysis, the twin-peak phenomenon in PSC is a consequence of combined effects, including the inaccuracy in absorption grating G{sub 2}, mismatch between phase grating and x-ray source spectrum, and finite size of x-ray tube’s focal spot. The proposed approach is experimentally evaluated by scanning a phantom consisting of organic materials and a lab mouse. The preliminary data show that compared to scanning G{sub 2} over only one single nominal period and correcting the measured phase signal with an intuitive phase dewrapping method that is being used in the field, stepping G{sub 2} over twice its nominal period and dewrapping the measured phase signal with the proposed approach can significantly improve the quality of x-ray differential phase contrast imaging

  10. MTF evaluation of in-line phase contrast imaging system

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoran; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2017-02-01

    X-ray phase contrast imaging (XPCI) is a novel method that exploits the phase shift for the incident X-ray to form an image. Various XPCI methods have been proposed, among which, in-line phase contrast imaging (IL-PCI) is regarded as one of the most promising clinical methods. The contrast of the interface is enhanced due to the introduction of the boundary fringes in XPCI, thus it is generally used to evaluate the image quality of XPCI. But the contrast is a comprehensive index and it does not reflect the information of image quality in the frequency range. The modulation transfer function (MTF), which is the Fourier transform of the system point spread function, is recognized as the metric to characterize the spatial response of conventional X-ray imaging system. In this work, MTF is introduced into the image quality evaluation of the IL-PCI system. Numerous simulations based on Fresnel - Kirchhoff diffraction theory are performed with varying system settings and the corresponding MTFs were calculated for comparison. The results show that MTF can provide more comprehensive information of image quality comparing to contrast in IL-PCI.

  11. Quantitative phase imaging using four interferograms with special phase shifts by dual-wavelength in-line phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Wang, Yawei; Ji, Ying; Xu, Yuanyuan; Xie, Ming; Han, Hao

    2018-05-01

    A new approach of quantitative phase imaging using four interferograms with special phase shifts in dual-wavelength in-line phase-shifting interferometry is presented. In this method, positive negative 2π phase shifts are employed to easily separate the incoherent addition of two single-wavelength interferograms by combining the phase-shifting technique with the subtraction procedure, then the quantitative phase at one of both wavelengths can be achieved based on two intensities without the corresponding dc terms by the use of the character of the trigonometric function. The quantitative phase of the other wavelength can be retrieved from two dc-term suppressed intensities obtained by employing the two-step phase-shifting technique or the filtering technique in the frequency domain. The proposed method is illustrated with theory, and its effectiveness is demonstrated by simulation experiments of the spherical cap and the HeLa cell, respectively.

  12. Simultaneous fast scanning XRF, dark field, phase-, and absorption contrast tomography

    NASA Astrophysics Data System (ADS)

    Medjoubi, Kadda; Bonissent, Alain; Leclercq, Nicolas; Langlois, Florent; Mercère, Pascal; Somogyi, Andrea

    2013-09-01

    Scanning hard X-ray nanoprobe imaging provides a unique tool for probing specimens with high sensitivity and large penetration depth. Moreover, the combination of complementary techniques such as X-ray fluorescence, absorption, phase contrast and dark field imaging gives complete quantitative information on the sample structure, composition and chemistry. The multi-technique "FLYSCAN" data acquisition scheme developed at Synchrotron SOLEIL permits to perform fast continuous scanning imaging and as such makes scanning tomography techniques feasible in a time-frame well-adapted to typical user experiments. Here we present the recent results of simultaneous fast scanning multi-technique tomography performed at Soleil. This fast scanning scheme will be implemented at the Nanoscopium beamline for large field of view 2D and 3D multimodal imaging.

  13. Origins of phase contrast in the atomic force microscope in liquids

    PubMed Central

    Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L.; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind

    2009-01-01

    We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage ϕ29 virions in buffer solutions using the phase-contrast images. PMID:19666560

  14. Origins of phase contrast in the atomic force microscope in liquids.

    PubMed

    Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind

    2009-08-18

    We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage 29 virions in buffer solutions using the phase-contrast images.

  15. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science

    PubMed Central

    Mayo, Sheridan C.; Stevenson, Andrew W.; Wilkins, Stephen W.

    2012-01-01

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies. PMID:28817018

  16. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.

    PubMed

    Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W

    2012-05-24

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  17. Quantitative analysis of enhanced malignant and benign lesions on contrast-enhanced spectral mammography.

    PubMed

    Deng, Chih-Ying; Juan, Yu-Hsiang; Cheung, Yun-Chung; Lin, Yu-Ching; Lo, Yung-Feng; Lin, GiGin; Chen, Shin-Cheh; Ng, Shu-Hang

    2018-02-27

    To retrospectively analyze the quantitative measurement and kinetic enhancement among pathologically proven benign and malignant lesions using contrast-enhanced spectral mammography (CESM). We investigated the differences in enhancement between 44 benign and 108 malignant breast lesions in CESM, quantifying the extent of enhancements and the relative enhancements between early (between 2-3 min after contrast medium injection) and late (3-6 min) phases. The enhancement was statistically stronger in malignancies compared to benign lesions, with good performance by the receiver operating characteristic curve [0.877, 95% confidence interval (0.813-0.941)]. Using optimal cut-off value at 220.94 according to Youden index, the sensitivity was 75.9%, specificity 88.6%, positive likelihood ratio 6.681, negative likelihood ratio 0.272 and accuracy 82.3%. The relative enhancement patterns of benign and malignant lesions, showing 29.92 vs 73.08% in the elevated pattern, 7.14 vs 92.86% in the steady pattern, 5.71 vs 94.29% in the depressed pattern, and 80.00 vs 20.00% in non-enhanced lesions (p < 0.0001), respectively. Despite variations in the degree of tumour angiogenesis, quantitative analysis of the breast lesions on CESM documented the malignancies had distinctive stronger enhancement and depressed relative enhancement patterns than benign lesions. Advances in knowledge: To our knowledge, this is the first study evaluating the feasibility of quantifying lesion enhancement on CESM. The quantities of enhancement were informative for assessing breast lesions in which the malignancies had stronger enhancement and more relative depressed enhancement than the benign lesions.

  18. In vitro motility of cells from human epidermoid carcinomas. A study by phase-contrast and reflection-contrast cinematography.

    PubMed

    Haemmerli, G; Sträuli, P

    1981-05-15

    The motile behavior of six cell lines derived from human squamous carcinomas (two from the larynx, four from the tongue) was studied by cinematography under phase- and reflection-contrast illumination. The recorded cell activities consist in spreading, stationary and translocation motility, and aggregate formation. Within this common pattern, quantitative modifications ("sub-pattern") are stable properties of the individual cells lines. Such modifications are particularly evident with regard to the dynamic texture of the aggregates which ranges from loose, netlike structures to compact islands with smooth borders. Accordingly, the intensity of cell traffic within and around the aggregates varies considerably. It is discussed to what extent the in vitro motility of the carcinoma cell populations reflects their behavior in the organism and thus the significance of cell movements for invasion.

  19. Enhancing Tabletop X-Ray Phase Contrast Imaging with Nano-Fabrication

    PubMed Central

    Miao, Houxun; Gomella, Andrew A.; Harmon, Katherine J.; Bennett, Eric E.; Chedid, Nicholas; Znati, Sami; Panna, Alireza; Foster, Barbara A.; Bhandarkar, Priya; Wen, Han

    2015-01-01

    X-ray phase-contrast imaging is a promising approach for improving soft-tissue contrast and lowering radiation dose in biomedical applications. While current tabletop imaging systems adapt to common x-ray tubes and large-area detectors by employing absorptive elements such as absorption gratings or monolithic crystals to filter the beam, we developed nanometric phase gratings which enable tabletop x-ray far-field interferometry with only phase-shifting elements, leading to a substantial enhancement in the performance of phase contrast imaging. In a general sense the method transfers the demands on the spatial coherence of the x-ray source and the detector resolution to the feature size of x-ray phase masks. We demonstrate its capabilities in hard x-ray imaging experiments at a fraction of clinical dose levels and present comparisons with the existing Talbot-Lau interferometer and with conventional digital radiography. PMID:26315891

  20. Grating-Based Phase-Contrast Imaging of Tumor Angiogenesis in Lung Metastases

    PubMed Central

    Li, Xiangting; Wang, Yujie; Ding, Bei; Shi, Chen; Liu, Huanhuan; Tang, Rongbiao; Sun, Jianqi; Yan, Fuhua; Zhang, Huan

    2015-01-01

    Purpose To assess the feasibility of the grating-based phase-contrast imaging (GPI) technique for studying tumor angiogenesis in nude BALB/c mice, without contrast agents. Methods We established lung metastatic models of human gastric cancer by injecting the moderately differentiated SGC-7901 gastric cancer cell line into the tail vein of nude mice. Samples were embedded in a 10% formalin suspension and dried before imaging. Grating-based X-ray phase-contrast images were obtained at the BL13W beamline of the Shanghai Synchrotron Radiation Facility (SSRF) and compared with histological sections. Results Without contrast agents, grating-based X-ray phase-contrast imaging still differentiated angiogenesis within metastatic tumors with high spatial resolution. Vessels, down to tens of microns, showed gray values that were distinctive from those of the surrounding tumors, which made them easily identifiable. The vessels depicted in the imaging study were similar to those identified on histopathology, both in size and shape. Conclusions Our preliminary study demonstrates that grating-based X-ray phase-contrast imaging has the potential to depict angiogenesis in lung metastases. PMID:25811626

  1. Quantitative prediction of phase transformations in silicon during nanoindentation

    NASA Astrophysics Data System (ADS)

    Zhang, Liangchi; Basak, Animesh

    2013-08-01

    This paper establishes the first quantitative relationship between the phases transformed in silicon and the shape characteristics of nanoindentation curves. Based on an integrated analysis using TEM and unit cell properties of phases, the volumes of the phases emerged in a nanoindentation are formulated as a function of pop-out size and depth of nanoindentation impression. This simple formula enables a fast, accurate and quantitative prediction of the phases in a nanoindentation cycle, which has been impossible before.

  2. Linear information retrieval method in X-ray grating-based phase contrast imaging and its interchangeability with tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Gao, K.; Wang, Z. L.; Shao, Q. G.; Hu, R. F.; Wei, C. X.; Zan, G. B.; Wali, F.; Luo, R. H.; Zhu, P. P.; Tian, Y. C.

    2017-06-01

    In X-ray grating-based phase contrast imaging, information retrieval is necessary for quantitative research, especially for phase tomography. However, numerous and repetitive processes have to be performed for tomographic reconstruction. In this paper, we report a novel information retrieval method, which enables retrieving phase and absorption information by means of a linear combination of two mutually conjugate images. Thanks to the distributive law of the multiplication as well as the commutative law and associative law of the addition, the information retrieval can be performed after tomographic reconstruction, thus simplifying the information retrieval procedure dramatically. The theoretical model of this method is established in both parallel beam geometry for Talbot interferometer and fan beam geometry for Talbot-Lau interferometer. Numerical experiments are also performed to confirm the feasibility and validity of the proposed method. In addition, we discuss its possibility in cone beam geometry and its advantages compared with other methods. Moreover, this method can also be employed in other differential phase contrast imaging methods, such as diffraction enhanced imaging, non-interferometric imaging, and edge illumination.

  3. Binocular combination of phase and contrast explained by a gain-control and gain-enhancement model

    PubMed Central

    Ding, Jian; Klein, Stanley A.; Levi, Dennis M.

    2013-01-01

    We investigated suprathreshold binocular combination, measuring both the perceived phase and perceived contrast of a cyclopean sine wave. We used a paradigm adapted from Ding and Sperling (2006, 2007) to measure the perceived phase by indicating the apparent location (phase) of the dark trough in the horizontal cyclopean sine wave relative to a black horizontal reference line, and we used the same stimuli to measure perceived contrast by matching the binocular combined contrast to a standard contrast presented to one eye. We found that under normal viewing conditions (high contrast and long stimulus duration), perceived contrast is constant, independent of the interocular contrast ratio and the interocular phase difference, while the perceived phase shifts smoothly from one eye to the other eye depending on the contrast ratios. However, at low contrasts and short stimulus durations, binocular combination is more linear and contrast summation is phase-dependent. To account for phase-dependent contrast summation, we incorporated a fusion remapping mechanism into our model, using disparity energy to shift the monocular phases towards the cyclopean phase in order to align the two eyes' images through motor/sensory fusion. The Ding-Sperling model with motor/sensory fusion mechanism gives a reasonable account of the phase dependence of binocular contrast combination and can account for either the perceived phase or the perceived contrast of a cyclopean sine wave separately; however it requires different model parameters for the two. However, when fit to both phase and contrast data simultaneously, the Ding-Sperling model fails. Incorporating interocular gain enhancement into the model results in a significant improvement in fitting both phase and contrast data simultaneously, successfully accounting for both linear summation at low contrast energy and strong nonlinearity at high contrast energy. PMID:23397038

  4. Phase contrast imaging of buccal mucosa tissues-Feasibility study

    NASA Astrophysics Data System (ADS)

    Fatima, A.; Tripathi, S.; Shripathi, T.; Kulkarni, V. K.; Banda, N. R.; Agrawal, A. K.; Sarkar, P. S.; Kashyap, Y.; Sinha, A.

    2015-06-01

    Phase Contrast Imaging (PCI) technique has been used to interpret physical parameters obtained from the image taken on the normal buccal mucosa tissue extracted from cheek of a patient. The advantages of this method over the conventional imaging techniques are discussed. PCI technique uses the X-ray phase shift at the edges differentiated by very minute density differences and the edge enhanced high contrast images reveal details of soft tissues. The contrast in the images produced is related to changes in the X-ray refractive index of the tissues resulting in higher clarity compared with conventional absorption based X-ray imaging. The results show that this type of imaging has better ability to visualize microstructures of biological soft tissues with good contrast, which can lead to the diagnosis of lesions at an early stage of the diseases.

  5. Probing the limits of the rigid-intensity-shift model in differential-phase-contrast scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Clark, L.; Brown, H. G.; Paganin, D. M.; Morgan, M. J.; Matsumoto, T.; Shibata, N.; Petersen, T. C.; Findlay, S. D.

    2018-04-01

    The rigid-intensity-shift model of differential-phase-contrast imaging assumes that the phase gradient imposed on the transmitted probe by the sample causes the diffraction pattern intensity to shift rigidly by an amount proportional to that phase gradient. This behavior is seldom realized exactly in practice. Through a combination of experimental results, analytical modeling and numerical calculations, using as case studies electron microscope imaging of the built-in electric field in a p-n junction and nanoscale domains in a magnetic alloy, we explore the breakdown of rigid-intensity-shift behavior and how this depends on the magnitude of the phase gradient and the relative scale of features in the phase profile and the probe size. We present guidelines as to when the rigid-intensity-shift model can be applied for quantitative phase reconstruction using segmented detectors, and propose probe-shaping strategies to further improve the accuracy.

  6. Identification of ginseng root using quantitative X-ray microtomography.

    PubMed

    Ye, Linlin; Xue, Yanling; Wang, Yudan; Qi, Juncheng; Xiao, Tiqiao

    2017-07-01

    The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ , and three-dimensional quantitative imaging properties. The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

  7. Multimodal quantitative phase and fluorescence imaging of cell apoptosis

    NASA Astrophysics Data System (ADS)

    Fu, Xinye; Zuo, Chao; Yan, Hao

    2017-06-01

    Fluorescence microscopy, utilizing fluorescence labeling, has the capability to observe intercellular changes which transmitted and reflected light microscopy techniques cannot resolve. However, the parts without fluorescence labeling are not imaged. Hence, the processes simultaneously happen in these parts cannot be revealed. Meanwhile, fluorescence imaging is 2D imaging where information in the depth is missing. Therefore the information in labeling parts is also not complete. On the other hand, quantitative phase imaging is capable to image cells in 3D in real time through phase calculation. However, its resolution is limited by the optical diffraction and cannot observe intercellular changes below 200 nanometers. In this work, fluorescence imaging and quantitative phase imaging are combined to build a multimodal imaging system. Such system has the capability to simultaneously observe the detailed intercellular phenomenon and 3D cell morphology. In this study the proposed multimodal imaging system is used to observe the cell behavior in the cell apoptosis. The aim is to highlight the limitations of fluorescence microscopy and to point out the advantages of multimodal quantitative phase and fluorescence imaging. The proposed multimodal quantitative phase imaging could be further applied in cell related biomedical research, such as tumor.

  8. Deciphering complex, functional structures with synchrotron-based absorption and phase contrast tomographic microscopy

    NASA Astrophysics Data System (ADS)

    Stampanoni, M.; Reichold, J.; Weber, B.; Haberthür, D.; Schittny, J.; Eller, J.; Büchi, F. N.; Marone, F.

    2010-09-01

    Nowadays, thanks to the high brilliance available at modern, third generation synchrotron facilities and recent developments in detector technology, it is possible to record volumetric information at the micrometer scale within few minutes. High signal-to-noise ratio, quantitative information on very complex structures like the brain micro vessel architecture, lung airways or fuel cells can be obtained thanks to the combination of dedicated sample preparation protocols, in-situ acquisition schemes and cutting-edge imaging analysis instruments. In this work we report on recent experiments carried out at the TOMCAT beamline of the Swiss Light Source [1] where synchrotron-based tomographic microscopy has been successfully used to obtain fundamental information on preliminary models for cerebral fluid flow [2], to provide an accurate mesh for 3D finite-element simulation of the alveolar structure of the pulmonary acinus [3] and to investigate the complex functional mechanism of fuel cells [4]. Further, we introduce preliminary results on the combination of absorption and phase contrast microscopy for the visualization of high-Z nanoparticles in soft tissues, a fundamental information when designing modern drug delivery systems [5]. As an outlook we briefly discuss the new possibilities offered by high sensitivity, high resolution grating interferomtery as well as Zernike Phase contrast nanotomography [6].

  9. X-ray phase-contrast imaging of the breast—advances towards clinical implementation

    PubMed Central

    Herzen, J; Willner, M; Grandl, S; Scherer, K; Bamberg, F; Reiser, M F; Pfeiffer, F; Hellerhoff, K

    2014-01-01

    Breast cancer constitutes about one-quarter of all cancers and is the leading cause of cancer death in women. To reduce breast cancer mortality, mammographic screening programmes have been implemented in many Western countries. However, these programmes remain controversial because of the associated radiation exposure and the need for improvement in terms of diagnostic accuracy. Phase-contrast imaging is a new X-ray-based technology that has been shown to provide enhanced soft-tissue contrast and improved visualization of cancerous structures. Furthermore, there is some indication that these improvements of image quality can be maintained at reduced radiation doses. Thus, X-ray phase-contrast mammography may significantly contribute to advancements in early breast cancer diagnosis. Feasibility studies of X-ray phase-contrast breast CT have provided images that allow resolution of the fine structure of tissue that can otherwise only be obtained by histology. This implies that X-ray phase-contrast imaging may also lead to the development of entirely new (micro-) radiological applications. This review provides a brief overview of the physical characteristics of this new technology and describes recent developments towards clinical implementation of X-ray phase-contrast imaging of the breast. PMID:24452106

  10. Technical Note: Quantitative dynamic contrast-enhanced MRI of a 3-dimensional artificial capillary network.

    PubMed

    Gaass, Thomas; Schneider, Moritz Jörg; Dietrich, Olaf; Ingrisch, Michael; Dinkel, Julien

    2017-04-01

    Variability across devices, patients, and time still hinders widespread recognition of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as quantitative biomarker. The purpose of this work was to introduce and characterize a dedicated microchannel phantom as a model for quantitative DCE-MRI measurements. A perfusable, MR-compatible microchannel network was constructed on the basis of sacrificial melt-spun sugar fibers embedded in a block of epoxy resin. Structural analysis was performed on the basis of light microscopy images before DCE-MRI experiments. During dynamic acquisition the capillary network was perfused with a standard contrast agent injection system. Flow-dependency, as well as inter- and intrascanner reproducibility of the computed DCE parameters were evaluated using a 3.0 T whole-body MRI. Semi-quantitative and quantitative flow-related parameters exhibited the expected proportionality to the set flow rate (mean Pearson correlation coefficient: 0.991, P < 2.5e-5). The volume fraction was approximately independent from changes of the applied flow rate through the phantom. Repeatability and reproducibility experiments yielded maximum intrascanner coefficients of variation (CV) of 4.6% for quantitative parameters. All evaluated parameters were well in the range of known in vivo results for the applied flow rates. The constructed phantom enables reproducible, flow-dependent, contrast-enhanced MR measurements with the potential to facilitate standardization and comparability of DCE-MRI examinations. © 2017 American Association of Physicists in Medicine.

  11. Contrast-enhanced spectral mammography based on a photon-counting detector: quantitative accuracy and radiation dose

    NASA Astrophysics Data System (ADS)

    Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Contrast-enhanced mammography has been used to demonstrate functional information about a breast tumor by injecting contrast agents. However, a conventional technique with a single exposure degrades the efficiency of tumor detection due to structure overlapping. Dual-energy techniques with energy-integrating detectors (EIDs) also cause an increase of radiation dose and an inaccuracy of material decomposition due to the limitations of EIDs. On the other hands, spectral mammography with photon-counting detectors (PCDs) is able to resolve the issues induced by the conventional technique and EIDs using their energy-discrimination capabilities. In this study, the contrast-enhanced spectral mammography based on a PCD was implemented by using a polychromatic dual-energy model, and the proposed technique was compared with the dual-energy technique with an EID in terms of quantitative accuracy and radiation dose. The results showed that the proposed technique improved the quantitative accuracy as well as reduced radiation dose comparing to the dual-energy technique with an EID. The quantitative accuracy of the contrast-enhanced spectral mammography based on a PCD was slightly improved as a function of radiation dose. Therefore, the contrast-enhanced spectral mammography based on a PCD is able to provide useful information for detecting breast tumors and improving diagnostic accuracy.

  12. Zernike phase contrast cryo-electron tomography of whole bacterial cells.

    PubMed

    Guerrero-Ferreira, Ricardo C; Wright, Elizabeth R

    2014-01-01

    Cryo-electron tomography (cryo-ET) provides three-dimensional (3D) structural information of bacteria preserved in a native, frozen-hydrated state. The typical low contrast of tilt-series images, a result of both the need for a low electron dose and the use of conventional defocus phase-contrast imaging, is a challenge for high-quality tomograms. We show that Zernike phase-contrast imaging allows the electron dose to be reduced. This limits movement of gold fiducials during the tilt series, which leads to better alignment and a higher-resolution reconstruction. Contrast is also enhanced, improving visibility of weak features. The reduced electron dose also means that more images at more tilt angles could be recorded, further increasing resolution. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Zernike phase contrast cryo-electron tomography of whole bacterial cells

    PubMed Central

    Guerrero-Ferreira, Ricardo C.; Wright, Elizabeth R.

    2014-01-01

    Cryo-electron tomography (cryo-ET) provides three-dimensional (3D) structural information of bacteria preserved in a native, frozen-hydrated state. The typical low contrast of tilt-series images, a result of both the need for a low electron dose and the use of conventional defocus phase-contrast imaging, is a challenge for high-quality tomograms. We show that Zernike phase-contrast imaging allows the electron dose to be reduced. This limits movement of gold fiducials during the tilt series, which leads to better alignment and a higher-resolution reconstruction. Contrast is also enhanced, improving visibility of weak features. The reduced electron dose also means that more images at more tilt angles could be recorded, further increasing resolution. PMID:24075950

  14. Fundamentals of quantitative dynamic contrast-enhanced MR imaging.

    PubMed

    Paldino, Michael J; Barboriak, Daniel P

    2009-05-01

    Quantitative analysis of dynamic contrast-enhanced MR imaging (DCE-MR imaging) has the power to provide information regarding physiologic characteristics of the microvasculature and is, therefore, of great potential value to the practice of oncology. In particular, these techniques could have a significant impact on the development of novel anticancer therapies as a promising biomarker of drug activity. Standardization of DCE-MR imaging acquisition and analysis to provide more reproducible measures of tumor vessel physiology is of crucial importance to realize this potential. The purpose of this article is to review the pathophysiologic basis and technical aspects of DCE-MR imaging techniques.

  15. Quantitative Phase Imaging in a Volume Holographic Microscope

    NASA Astrophysics Data System (ADS)

    Waller, Laura; Luo, Yuan; Barbastathis, George

    2010-04-01

    We demonstrate a method for quantitative phase imaging in a Volume Holographic Microscope (VHM) from a single exposure, describe the properties of the system and show experimental results. The VHM system uses a multiplexed volume hologram (VH) to laterally separate images from different focal planes. This 3D intensity information is then used to solve the transport of intensity (TIE) equation and recover phase quantitatively. We discuss the modifications to the technique that were made in order to give accurate results.

  16. Analysis of speckle patterns in phase-contrast images of lung tissue

    NASA Astrophysics Data System (ADS)

    Kitchen, M. J.; Paganin, D.; Lewis, R. A.; Yagi, N.; Uesugi, K.

    2005-08-01

    Propagation-based phase-contrast images of mice lungs have been obtained at the SPring-8 synchrotron research facility. Such images exhibit a speckled intensity pattern that bears a superficial resemblance to alveolar structures. This speckle results from focussing effects as projected air-filled alveoli form aberrated compound refractive lenses. An appropriate phase-retrieval algorithm has been utilized to reconstruct the approximate projected lung tissue thickness from single-phase-contrast mice chest radiographs. The results show projected density variations across the lung, highlighting regions of low density corresponding to air-filled regions. Potentially, this offers a better method than conventional radiography for detecting lung diseases such as fibrosis, emphysema and cancer, though this has yet to be demonstrated. As such, the approach can assist in continuing studies of lung function utilizing propagation-based phase-contrast imaging.

  17. 3-D Quantitative Dynamic Contrast Ultrasound for Prostate Cancer Localization.

    PubMed

    Schalk, Stefan G; Huang, Jing; Li, Jia; Demi, Libertario; Wijkstra, Hessel; Huang, Pintong; Mischi, Massimo

    2018-04-01

    To investigate quantitative 3-D dynamic contrast-enhanced ultrasound (DCE-US) and, in particular 3-D contrast-ultrasound dispersion imaging (CUDI), for prostate cancer detection and localization, 43 patients referred for 10-12-core systematic biopsy underwent 3-D DCE-US. For each 3-D DCE-US recording, parametric maps of CUDI-based and perfusion-based parameters were computed. The parametric maps were divided in regions, each corresponding to a biopsy core. The obtained parameters were validated per biopsy location and after combining two or more adjacent regions. For CUDI by correlation (r) and for the wash-in time (WIT), a significant difference in parameter values between benign and malignant biopsy cores was found (p < 0.001). In a per-prostate analysis, sensitivity and specificity were 94% and 50% for r, and 53% and 81% for WIT. Based on these results, it can be concluded that quantitative 3-D DCE-US could aid in localizing prostate cancer. Therefore, we recommend follow-up studies to investigate its value for targeting biopsies. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  18. Noise in x-ray grating-based phase-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thomas; Bartl, Peter; Bayer, Florian

    Purpose: Grating-based x-ray phase-contrast imaging is a fast developing new modality not only for medical imaging, but as well for other fields such as material sciences. While these many possible applications arise, the knowledge of the noise behavior is essential. Methods: In this work, the authors used a least squares fitting algorithm to calculate the noise behavior of the three quantities absorption, differential phase, and dark-field image. Further, the calculated error formula of the differential phase image was verified by measurements. Therefore, a Talbot interferometer was setup, using a microfocus x-ray tube as source and a Timepix detector for photonmore » counting. Additionally, simulations regarding this topic were performed. Results: It turned out that the variance of the reconstructed phase is only dependent of the total number of photons used to generate the phase image and the visibility of the experimental setup. These results could be evaluated in measurements as well as in simulations. Furthermore, the correlation between absorption and dark-field image was calculated. Conclusions: These results provide the understanding of the noise characteristics of grating-based phase-contrast imaging and will help to improve image quality.« less

  19. Noise in x-ray grating-based phase-contrast imaging.

    PubMed

    Weber, Thomas; Bartl, Peter; Bayer, Florian; Durst, Jürgen; Haas, Wilhelm; Michel, Thilo; Ritter, André; Anton, Gisela

    2011-07-01

    Grating-based x-ray phase-contrast imaging is a fast developing new modality not only for medical imaging, but as well for other fields such as material sciences. While these many possible applications arise, the knowledge of the noise behavior is essential. In this work, the authors used a least squares fitting algorithm to calculate the noise behavior of the three quantities absorption, differential phase, and dark-field image. Further, the calculated error formula of the differential phase image was verified by measurements. Therefore, a Talbot interferometer was setup, using a microfocus x-ray tube as source and a Timepix detector for photon counting. Additionally, simulations regarding this topic were performed. It turned out that the variance of the reconstructed phase is only dependent of the total number of photons used to generate the phase image and the visibility of the experimental setup. These results could be evaluated in measurements as well as in simulations. Furthermore, the correlation between absorption and dark-field image was calculated. These results provide the understanding of the noise characteristics of grating-based phase-contrast imaging and will help to improve image quality.

  20. Intact Imaging of Human Heart Structure Using X-ray Phase-Contrast Tomography.

    PubMed

    Kaneko, Yukihiro; Shinohara, Gen; Hoshino, Masato; Morishita, Hiroyuki; Morita, Kiyozo; Oshima, Yoshihiro; Takahashi, Masashi; Yagi, Naoto; Okita, Yutaka; Tsukube, Takuro

    2017-02-01

    Structural examination of human heart specimens at the microscopic level is a prerequisite for understanding congenital heart diseases. It is desirable not to destroy or alter the properties of such specimens because of their scarcity. However, many of the currently available imaging techniques either destroy the specimen through sectioning or alter the chemical and mechanical properties of the specimen through staining and contrast agent injection. As a result, subsequent studies may not be possible. X-ray phase-contrast tomography is an imaging modality for biological soft tissues that does not destroy or alter the properties of the specimen. The feasibility of X-ray phase-contrast tomography for the structural examination of heart specimens was tested using infantile and fetal heart specimens without congenital diseases. X-ray phase-contrast tomography was carried out at the SPring-8 synchrotron radiation facility using the Talbot grating interferometer at the bending magnet beamline BL20B2 to visualize the structure of five non-pretreated whole heart specimens obtained by autopsy. High-resolution, three-dimensional images were obtained for all specimens. The images clearly showed the myocardial structure, coronary vessels, and conduction bundle. X-ray phase-contrast tomography allows high-resolution, three-dimensional imaging of human heart specimens. Intact imaging using X-ray phase-contrast tomography can contribute to further structural investigation of heart specimens with congenital heart diseases.

  1. Quantitative structure-property relationship (correlation analysis) of phosphonic acid-based chelates in design of MRI contrast agent.

    PubMed

    Tiwari, Anjani K; Ojha, Himanshu; Kaul, Ankur; Dutta, Anupama; Srivastava, Pooja; Shukla, Gauri; Srivastava, Rakesh; Mishra, Anil K

    2009-07-01

    Nuclear magnetic resonance imaging is a very useful tool in modern medical diagnostics, especially when gadolinium (III)-based contrast agents are administered to the patient with the aim of increasing the image contrast between normal and diseased tissues. With the use of soft modelling techniques such as quantitative structure-activity relationship/quantitative structure-property relationship after a suitable description of their molecular structure, we have studied a series of phosphonic acid for designing new MRI contrast agent. Quantitative structure-property relationship studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors of the phosphonic acid-based chelating agent and their stability constants. The final quantitative structure-property relationship mathematical models were found as--quantitative structure-property relationship Model for phosphonic acid series (Model 1)--log K(ML) = {5.00243(+/-0.7102)}- MR {0.0263(+/-0.540)}n = 12 l r l = 0.942 s = 0.183 F = 99.165 quantitative structure-property relationship Model for phosphonic acid series (Model 2)--log K(ML) = {5.06280(+/-0.3418)}- MR {0.0252(+/- .198)}n = 12 l r l = 0.956 s = 0.186 F = 99.256.

  2. Cell segmentation in phase contrast microscopy images via semi-supervised classification over optics-related features.

    PubMed

    Su, Hang; Yin, Zhaozheng; Huh, Seungil; Kanade, Takeo

    2013-10-01

    Phase-contrast microscopy is one of the most common and convenient imaging modalities to observe long-term multi-cellular processes, which generates images by the interference of lights passing through transparent specimens and background medium with different retarded phases. Despite many years of study, computer-aided phase contrast microscopy analysis on cell behavior is challenged by image qualities and artifacts caused by phase contrast optics. Addressing the unsolved challenges, the authors propose (1) a phase contrast microscopy image restoration method that produces phase retardation features, which are intrinsic features of phase contrast microscopy, and (2) a semi-supervised learning based algorithm for cell segmentation, which is a fundamental task for various cell behavior analysis. Specifically, the image formation process of phase contrast microscopy images is first computationally modeled with a dictionary of diffraction patterns; as a result, each pixel of a phase contrast microscopy image is represented by a linear combination of the bases, which we call phase retardation features. Images are then partitioned into phase-homogeneous atoms by clustering neighboring pixels with similar phase retardation features. Consequently, cell segmentation is performed via a semi-supervised classification technique over the phase-homogeneous atoms. Experiments demonstrate that the proposed approach produces quality segmentation of individual cells and outperforms previous approaches. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Large-field high-contrast hard x-ray Zernike phase-contrast nano-imaging beamline at Pohang Light Source.

    PubMed

    Lim, Jun; Park, So Yeong; Huang, Jung Yun; Han, Sung Mi; Kim, Hong-Tae

    2013-01-01

    We developed an off-axis-illuminated zone-plate-based hard x-ray Zernike phase-contrast microscope beamline at Pohang Light Source. Owing to condenser optics-free and off-axis illumination, a large field of view was achieved. The pinhole-type Zernike phase plate affords high-contrast images of a cell with minimal artifacts such as the shade-off and halo effects. The setup, including the optics and the alignment, is simple and easy, and allows faster and easier imaging of large bio-samples.

  4. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Nelson, J.; Holzner, C.; Andrews, J. C.; Pianetta, P.

    2013-12-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented.

  5. Phase contrast imaging using a micro focus x-ray source

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-09-01

    Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten Kα1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.

  6. PHASE QUANTIZATION STUDY OF SPATIAL LIGHT MODULATOR FOR EXTREME HIGH-CONTRAST IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Jiangpei; Ren, Deqing, E-mail: jpdou@niaot.ac.cn, E-mail: jiangpeidou@gmail.com

    2016-11-20

    Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave-front control is a critical technique to attenuate the speckle noise in order to achieve an extremely high contrast. We present a phase quantization study of a spatial light modulator (SLM) for wave-front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimizationmore » algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask. The simulation result has constrained the specification for SLM phase accuracy in the above two optical configurations, which gives us a phase accuracy of 0.4/1000 and 1/1000 waves to achieve a contrast of 10{sup -10}. Finally, we have demonstrated that an SLM with more actuators can deliver a competitive contrast performance on the order of 10{sup -10} in comparison to that by using a deformable mirror.« less

  7. Phase Quantization Study of Spatial Light Modulator for Extreme High-contrast Imaging

    NASA Astrophysics Data System (ADS)

    Dou, Jiangpei; Ren, Deqing

    2016-11-01

    Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave-front control is a critical technique to attenuate the speckle noise in order to achieve an extremely high contrast. We present a phase quantization study of a spatial light modulator (SLM) for wave-front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimization algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask. The simulation result has constrained the specification for SLM phase accuracy in the above two optical configurations, which gives us a phase accuracy of 0.4/1000 and 1/1000 waves to achieve a contrast of 10-10. Finally, we have demonstrated that an SLM with more actuators can deliver a competitive contrast performance on the order of 10-10 in comparison to that by using a deformable mirror.

  8. Diffracting aperture based differential phase contrast for scanning X-ray microscopy.

    PubMed

    Kaulich, Burkhard; Polack, Francois; Neuhaeusler, Ulrich; Susini, Jean; di Fabrizio, Enzo; Wilhein, Thomas

    2002-10-07

    It is demonstrated that in a zone plate based scanning X-ray microscope, used to image low absorbing, heterogeneous matter at a mesoscopic scale, differential phase contrast (DPC) can be implemented without adding any additional optical component to the normal scheme of the microscope. The DPC mode is simply generated by an appropriate positioning and alignment of microscope apertures. Diffraction from the apertures produces a wave front with a non-uniform intensity. The signal recorded by a pinhole photo diode located in the intensity gradient is highly sensitive to phase changes introduced by the specimen to be recorded. The feasibility of this novel DPC technique was proven with the scanning X-ray microscope at the ID21 beamline of the European Synchrotron Radiation facility (ESRF) operated at 6 keV photon energy. We observe a differential phase contrast, similar to Nomarski's differential interference contrast for the light microscope, which results in a tremendous increase in image contrast of up to 20 % when imaging low absorbing specimen.

  9. Soft-tissue and phase-contrast imaging at the Swiss Light Source

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Mohan, Nishant; Stampanoni, Marco; Muller, Ralph

    2004-05-01

    Recent results show that bone vasculature is a major contributor to local tissue porosity, and therefore can be directly linked to the mechanical properties of bone tissue. With the advent of third generation synchrotron radiation (SR) sources, micro-computed tomography (μCT) with resolutions in the order of 1 μm and better has become feasible. This technique has been employed frequently to analyze trabecular architecture and local bone tissue properties, i.e. the hard or mineralized bone tissue. Nevertheless, less is known about the soft tissues in bone, mainly due to inadequate imaging capabilities. Here, we discuss three different methods and applications to visualize soft tissues. The first approach is referred to as negative imaging. In this case the material around the soft tissue provides the absorption contrast necessary for X-ray based tomography. Bone vasculature from two different mouse strains was investigated and compared qualitatively. Differences were observed in terms of local vessel number and vessel orientation. The second technique represents corrosion casting, which is principally adapted for imaging of vascular systems. The technique of corrosion casting has already been applied successfully at the Swiss Light Source. Using the technology we were able to show that pathological features reminiscent of Alzheimer"s disease could be distinguished in the brain vasculature of APP transgenic mice. The third technique discussed here is phase contrast imaging exploiting the high degree of coherence of third generation synchrotron light sources, which provide the necessary physical conditions for phase contrast. The in-line approach followed here for phase contrast retrieval is a modification of the Gerchberg-Saxton-Fienup type. Several measurements and theoretical thoughts concerning phase contrast imaging are presented, including mathematical phase retrieval. Although up-to-now only phase images have been computed, the approach is now ready to

  10. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  11. Table-top phase-contrast imaging employing photon-counting detectors towards mammographic applications

    NASA Astrophysics Data System (ADS)

    Palma, K. D.; Pichotka, M.; Hasn, S.; Granja, C.

    2017-02-01

    In mammography the difficult task to detect microcalcifications (≈ 100 μm) and low contrast structures in the breast has been a topic of interest from its beginnings. The possibility to improve the image quality requires the effort to employ novel X-ray imaging techniques, such as phase-contrast, and high resolution detectors. Phase-contrast techniques are promising tools for medical diagnosis because they provide additional and complementary information to traditional absorption-based X-ray imaging methods. In this work a Hamamatsu microfocus X-ray source with tungsten anode and a photon counting detector (Timepix operated in Medipix mode) was used. A significant improvement in the detection of phase-effects using Medipix detector was observed in comparison to an standard flat-panel detector. An optimization of geometrical parameters reveals the dependency on the X-ray propagation path and the small angle deviation. The quantification of these effects was achieved taking into account the image noise, contrast, spatial resolution of the phase-enhancement, absorbed dose, and energy dependence.

  12. Phase contrast: the frontier of x-ray and electron imaging

    NASA Astrophysics Data System (ADS)

    Hwu, Y.; Margaritondo, G.

    2013-12-01

    Phase contrast has been a fundamental component of microscopy since the early 1940s. In broad terms, it refers to the formation of images using not the combination of wave intensities but their amplitudes with the corresponding phase factors. The impact on visible microscopy of biological specimens has been major. This contrast mechanism is now playing an increasingly important role in other kinds of microscopy, notably those based on electrons or x-rays. It notably solves the background problem of weak absorption contrast. New breakthroughs and new techniques are continuously produced, unfortunately unknown to most of the scientists that could exploit them. The present special cluster issue of reviews was inspired by this situation. The case of x-rays is very interesting. Phase contrast requires a high degree of longitudinal and lateral coherence. But conventional x-ray sources are not coherent. The progress of synchrotron sources yielded high coherence as a key byproduct—and started a rapid expansion of phase contrast radiology. No review—or cluster of reviews—can possibly cover all the facets of the recent progress. Without trying to be absolutely comprehensive, the present special cluster issue touches a variety of issues, giving a very broad picture. Liu et al review in general terms the different phase-based hard-x-ray techniques, with an interesting variety of examples. Then, Suortti et al and Wang et al present more specialized overviews of crystal and grating based x-ray imaging techniques, very powerful in the analysis of biological specimens. Mokso et al discuss the many facets of tomography using phase effects, expanding the picture of tomographic reconstruction of the three previous reviews. Wu et al treat the rapid progress in hard-x-ray focusing and its impact on radiology and tomography for materials science and biomedical research. The next two reviews deal with special and very interesting classes of applications. Specifically, Lee et al

  13. Observation of human tissue with phase-contrast x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-05-01

    Human tissues obtained from cancerous kidneys fixed in formalin were observed with phase-contrast X-ray computed tomography (CT) using 17.7-keV synchrotron X-rays. By measuring the distributions of the X-ray phase shift caused by samples using an X-ray interferometer, sectional images that map the distribution of the refractive index were reconstructed. Because of the high sensitivity of phase- contrast X-ray CT, a cancerous lesion was differentiated from normal tissue and a variety of other structures were revealed without the need for staining.

  14. Phase-contrast x-ray computed tomography for observing biological specimens and organic materials

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1995-02-01

    A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.

  15. Various clinical application of phase contrast X-ray

    NASA Astrophysics Data System (ADS)

    Oh, Chilhwan; Park, Sangyong; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Je, Jungho

    2008-02-01

    In biomedical application study using phase contrast X-ray, both sample thickness or density and absorption difference are very important factors in aspects of contrast enhancement. We present experimental evidence that synchrotron hard X-ray are suitable for radiological imaging of biological samples down to the cellular level. We investigated the potential of refractive index radiology using un-monochromatized synchrotron hard X-rays for the imaging of cell and tissue in various diseases. Material had been adopted various medical field, such as apoE knockout mouse in cardiologic field, specimen from renal and prostatic carcinoma patient in urology, basal cell epithelioma in dermatology, brain tissue from autosy sample of pakinson's disease, artificially induced artilrtis tissue from rabbits and extracted tooth from patients of crack tooth syndrome. Formalin and paraffin fixed tissue blocks were cut in 3 mm thickness for the X-ray radiographic imaging. From adjacent areas, 4 μm thickness sections were also prepared for hematoxylin-eosin staining. Radiographic images of dissected tissues were obtained using the hard X-rays from the 7B2 beamline of the Pohang Light Source (PLS). The technique used for the study was the phase contrast images were compared with the optical microscopic images of corresponding histological slides. Radiographic images of various diseased tissues showed clear histological details of organelles in normal tissues. Most of cancerous lesions were well differentiated from adjacent normal tissues and detailed histological features of each tumor were clearly identified. Also normal microstructures were identifiable by the phase contrast imaging. Tissue in cancer or other disease showed clearly different findings from those of surrounding normal tissue. For the first time we successfully demonstrated that synchrotron hard X-rays can be used for radiological imaging of relatively thick tissue samples with great histological details.

  16. Quantitative evaluation of mucosal vascular contrast in narrow band imaging using Monte Carlo modeling

    NASA Astrophysics Data System (ADS)

    Le, Du; Wang, Quanzeng; Ramella-Roman, Jessica; Pfefer, Joshua

    2012-06-01

    Narrow-band imaging (NBI) is a spectrally-selective reflectance imaging technique for enhanced visualization of superficial vasculature. Prior clinical studies have indicated NBI's potential for detection of vasculature abnormalities associated with gastrointestinal mucosal neoplasia. While the basic mechanisms behind the increased vessel contrast - hemoglobin absorption and tissue scattering - are known, a quantitative understanding of the effect of tissue and device parameters has not been achieved. In this investigation, we developed and implemented a numerical model of light propagation that simulates NBI reflectance distributions. This was accomplished by incorporating mucosal tissue layers and vessel-like structures in a voxel-based Monte Carlo algorithm. Epithelial and mucosal layers as well as blood vessels were defined using wavelength-specific optical properties. The model was implemented to calculate reflectance distributions and vessel contrast values as a function of vessel depth (0.05 to 0.50 mm) and diameter (0.01 to 0.10 mm). These relationships were determined for NBI wavelengths of 410 nm and 540 nm, as well as broadband illumination common to standard endoscopic imaging. The effects of illumination bandwidth on vessel contrast were also simulated. Our results provide a quantitative analysis of the effect of absorption and scattering on vessel contrast. Additional insights and potential approaches for improving NBI system contrast are discussed.

  17. Influence of sample preparation and reliability of automated numerical refocusing in stain-free analysis of dissected tissues with quantitative phase digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Lenz, Philipp; Bettenworth, Dominik; Krausewitz, Philipp; Domagk, Dirk; Ketelhut, Steffi

    2015-05-01

    Digital holographic microscopy (DHM) has been demonstrated to be a versatile tool for high resolution non-destructive quantitative phase imaging of surfaces and multi-modal minimally-invasive monitoring of living cell cultures in-vitro. DHM provides quantitative monitoring of physiological processes through functional imaging and structural analysis which, for example, gives new insight into signalling of cellular water permeability and cell morphology changes due to toxins and infections. Also the analysis of dissected tissues quantitative DHM phase contrast prospects application fields by stain-free imaging and the quantification of tissue density changes. We show that DHM allows imaging of different tissue layers with high contrast in unstained tissue sections. As the investigation of fixed samples represents a very important application field in pathology, we also analyzed the influence of the sample preparation. The retrieved data demonstrate that the quality of quantitative DHM phase images of dissected tissues depends strongly on the fixing method and common staining agents. As in DHM the reconstruction is performed numerically, multi-focus imaging is achieved from a single digital hologram. Thus, we evaluated the automated refocussing feature of DHM for application on different types of dissected tissues and revealed that on moderately stained samples highly reproducible holographic autofocussing can be achieved. Finally, it is demonstrated that alterations of the spatial refractive index distribution in murine and human tissue samples represent a reliable absolute parameter that is related of different degrees of inflammation in experimental colitis and Crohn's disease. This paves the way towards the usage of DHM in digital pathology for automated histological examinations and further studies to elucidate the translational potential of quantitative phase microscopy for the clinical management of patients, e.g., with inflammatory bowel disease.

  18. Slit-scanning differential phase-contrast mammography: first experimental results

    NASA Astrophysics Data System (ADS)

    Roessl, Ewald; Daerr, Heiner; Koehler, Thomas; Martens, Gerhard; van Stevendaal, Udo

    2014-03-01

    The demands for a large field-of-view (FOV) and the stringent requirements for a stable acquisition geometry rank among the major obstacles for the translation of grating-based, differential phase-contrast techniques from the laboratory to clinical applications. While for state-of-the-art Full-Field-Digital Mammography (FFDM) FOVs of 24 cm x 30 cm are common practice, the specifications for mechanical stability are naturally derived from the detector pixel size which ranges between 50 and 100 μm. However, in grating-based, phasecontrast imaging, the relative placement of the gratings in the interferometer must be guaranteed to within micro-meter precision. In this work we report on first experimental results on a phase-contrast x-ray imaging system based on the Philips MicroDose L30 mammography unit. With the proposed approach we achieve a FOV of about 65 mm x 175 mm by the use of the slit-scanning technique. The demand for mechanical stability on a micrometer scale was relaxed by the specific interferometer design, i.e., a rigid, actuator-free mount of the phase-grating G1 with respect to the analyzer-grating G2 onto a common steel frame. The image acquisition and formation processes are described and first phase-contrast images of a test object are presented. A brief discussion of the shortcomings of the current approach is given, including the level of remaining image artifacts and the relatively inefficient usage of the total available x-ray source output.

  19. High-throughput label-free screening of euglena gracilis with optofluidic time-stretch quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Baoshan; Lei, Cheng; Ito, Takuro; Yaxiaer, Yalikun; Kobayashi, Hirofumi; Jiang, Yiyue; Tanaka, Yo; Ozeki, Yasuyuki; Goda, Keisuke

    2017-02-01

    The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, microalgal biofuel is expected to play a key role in reducing the detrimental effects of global warming since microalgae absorb atmospheric CO2 via photosynthesis. Unfortunately, conventional analytical methods only provide population-averaged lipid contents and fail to characterize a diverse population of microalgal cells with single-cell resolution in a noninvasive and interference-free manner. Here we demonstrate high-throughput label-free single-cell screening of lipid-producing microalgal cells with optofluidic time-stretch quantitative phase microscopy. In particular, we use Euglena gracilis - an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement) within lipid droplets. Our optofluidic time-stretch quantitative phase microscope is based on an integration of a hydrodynamic-focusing microfluidic chip, an optical time-stretch phase-contrast microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase contents of every single cell at a high throughput of 10,000 cells/s. We characterize heterogeneous populations of E. gracilis cells under two different culture conditions to evaluate their lipid production efficiency. Our method holds promise as an effective analytical tool for microalgaebased biofuel production.

  20. Dynamic three-dimensional phase-contrast technique in MRI: application to complex flow analysis around the artificial heart valve

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jeong; Lee, Dong Hyuk; Song, Inchang; Kim, Nam Gook; Park, Jae-Hyeung; Kim, JongHyo; Han, Man Chung; Min, Byong Goo

    1998-07-01

    Phase-contrast (PC) method of magnetic resonance imaging (MRI) has bee used for quantitative measurements of flow velocity and volume flow rate. It is a noninvasive technique which provides an accurate two-dimensional velocity image. Moreover, Phase Contrast Cine magnetic resonance imaging combines the flow dependent contrast of PC-MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. However, the accuracy of the data acquired from the single through-plane velocity encoding can be reduced by the effect of flow direction, because in many practical cases flow directions are not uniform throughout the whole region of interest. In this study, we present dynamic three-dimensional velocity vector mapping method using PC-MRI which can visualize the complex flow pattern through 3D volume rendered images displayed dynamically. The direction of velocity mapping can be selected along any three orthogonal axes. By vector summation, the three maps can be combined to form a velocity vector map that determines the velocity regardless of the flow direction. At the same time, Cine method is used to observe the dynamic change of flow. We performed a phantom study to evaluate the accuracy of the suggested PC-MRI in continuous and pulsatile flow measurement. Pulsatile flow wave form is generated by the ventricular assistant device (VAD), HEMO-PULSA (Biomedlab, Seoul, Korea). We varied flow velocity, pulsatile flow wave form, and pulsing rate. The PC-MRI-derived velocities were compared with Doppler-derived results. The velocities of the two measurements showed a significant linear correlation. Dynamic three-dimensional velocity vector mapping was carried out for two cases. First, we applied to the flow analysis around the artificial heart valve in a flat phantom. We could observe the flow pattern around the valve through the 3-dimensional cine image. Next, it is applied to the complex flow inside the polymer sac that is used as ventricle in

  1. Quantitation of MRI sensitivity to quasi-monodisperse microbubble contrast agents for spatially resolved manometry.

    PubMed

    Bencsik, Martin; Al-Rwaili, Amgad; Morris, Robert; Fairhurst, David J; Mundell, Victoria; Cave, Gareth; McKendry, Jonathan; Evans, Stephen

    2013-11-01

    The direct in-vivo measurement of fluid pressure cannot be achieved with MRI unless it is done with the contribution of a contrast agent. No such contrast agents are currently available commercially, whilst those demonstrated previously only produced qualitative results due to their broad size distribution. Our aim is to quantitate then model the MR sensitivity to the presence of quasi-monodisperse microbubble populations. Lipid stabilised microbubble populations with mean radius 1.2 ± 0.8 μm have been produced by mechanical agitation. Contrast agents with increasing volume fraction of bubbles up to 4% were formed and the contribution the bubbles bring to the relaxation rate was quantitated. A periodic pressure change was also continuously applied to the same contrast agent, until MR signal changes were only due to bubble radius change and not due to a change in bubble density. The MR data compared favourably with the prediction of an improved numerical simulation. An excellent MR sensitivity of 23 % bar(-1) has been demonstrated. This work opens up the possibility of generating microbubble preparations tailored to specific applications with optimised MR sensitivity, in particular MRI based in-vivo manometry. Copyright © 2012 Wiley Periodicals, Inc.

  2. Simple broadband implementation of a phase contrast wavefront sensor for adaptive optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.

    2004-01-01

    The most critical element of an adaptive optics system is its wavefront sensor, which must measure the closed-loop difference between the corrected wavefront and an ideal template at high speed, in real time, over a dense sampling of the pupil. Most high-order systems have used Shack-Hartmann wavefront sensors, but a novel approach based on Zernike's phase contrast principle appears promising. In this paper we discuss a simple way to achromatize such a phase contrast wavefront sensor, using the pi/2 phase difference between reflected and transmitted rays in a thin, symmetric beam splitter. We further model the response at a range of wavelengths to show that the required transverse dimension of the focal-plane phase-shifting spot, nominally lambda/D, may not be very sensitive to wavelength, and so in practice additional optics to introduce wavelength-dependent transverse magnification achromatizing this spot diameter may not be required. A very simple broadband implementation of the phase contrast wavefront sensor results.

  3. Asymmetric masks for laboratory-based X-ray phase-contrast imaging with edge illumination.

    PubMed

    Endrizzi, Marco; Astolfo, Alberto; Vittoria, Fabio A; Millard, Thomas P; Olivo, Alessandro

    2016-05-05

    We report on an asymmetric mask concept that enables X-ray phase-contrast imaging without requiring any movement in the system during data acquisition. The method is compatible with laboratory equipment, namely a commercial detector and a rotating anode tube. The only motion required is that of the object under investigation which is scanned through the imaging system. Two proof-of-principle optical elements were designed, fabricated and experimentally tested. Quantitative measurements on samples of known shape and composition were compared to theory with good agreement. The method is capable of measuring the attenuation, refraction and (ultra-small-angle) X-ray scattering, does not have coherence requirements and naturally adapts to all those situations in which the X-ray image is obtained by scanning a sample through the imaging system.

  4. Linearization improves the repeatability of quantitative dynamic contrast-enhanced MRI.

    PubMed

    Jones, Kyle M; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2018-04-01

    The purpose of this study was to compare the repeatabilities of the linear and nonlinear Tofts and reference region models (RRM) for dynamic contrast-enhanced MRI (DCE-MRI). Simulated and experimental DCE-MRI data from 12 rats with a flank tumor of C6 glioma acquired over three consecutive days were analyzed using four quantitative and semi-quantitative DCE-MRI metrics. The quantitative methods used were: 1) linear Tofts model (LTM), 2) non-linear Tofts model (NTM), 3) linear RRM (LRRM), and 4) non-linear RRM (NRRM). The following semi-quantitative metrics were used: 1) maximum enhancement ratio (MER), 2) time to peak (TTP), 3) initial area under the curve (iauc64), and 4) slope. LTM and NTM were used to estimate K trans , while LRRM and NRRM were used to estimate K trans relative to muscle (R Ktrans ). Repeatability was assessed by calculating the within-subject coefficient of variation (wSCV) and the percent intra-subject variation (iSV) determined with the Gage R&R analysis. The iSV for R Ktrans using LRRM was two-fold lower compared to NRRM at all simulated and experimental conditions. A similar trend was observed for the Tofts model, where LTM was at least 50% more repeatable than the NTM under all experimental and simulated conditions. The semi-quantitative metrics iauc64 and MER were as equally repeatable as K trans and R Ktrans estimated by LTM and LRRM respectively. The iSV for iauc64 and MER were significantly lower than the iSV for slope and TTP. In simulations and experimental results, linearization improves the repeatability of quantitative DCE-MRI by at least 30%, making it as repeatable as semi-quantitative metrics. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Phase Contrast Wavefront Sensing for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.; Bloemhof, E. E.

    2004-01-01

    Most ground-based adaptive optics systems use one of a small number of wavefront sensor technologies, notably (for relatively high-order systems) the Shack-Hartmann sensor, which provides local measurements of the phase slope (first-derivative) at a number of regularly-spaced points across the telescope pupil. The curvature sensor, with response proportional to the second derivative of the phase, is also sometimes used, but has undesirable noise propagation properties during wavefront reconstruction as the number of actuators becomes large. It is interesting to consider the use for astronomical adaptive optics of the "phase contrast" technique, originally developed for microscopy by Zemike to allow convenient viewing of phase objects. In this technique, the wavefront sensor provides a direct measurement of the local value of phase in each sub-aperture of the pupil. This approach has some obvious disadvantages compared to Shack-Hartmann wavefront sensing, but has some less obvious but substantial advantages as well. Here we evaluate the relative merits in a practical ground-based adaptive optics system.

  6. Subsurface imaging and cell refractometry using quantitative phase/ shear-force feedback microscopy

    NASA Astrophysics Data System (ADS)

    Edward, Kert; Farahi, Faramarz

    2009-10-01

    Over the last few years, several novel quantitative phase imaging techniques have been developed for the study of biological cells. However, many of these techniques are encumbered by inherent limitations including 2π phase ambiguities and diffraction limited spatial resolution. In addition, subsurface information in the phase data is not exploited. We hereby present a novel quantitative phase imaging system without 2 π ambiguities, which also allows for subsurface imaging and cell refractometry studies. This is accomplished by utilizing simultaneously obtained shear-force topography information. We will demonstrate how the quantitative phase and topography data can be used for subsurface and cell refractometry analysis and will present results for a fabricated structure and a malaria infected red blood cell.

  7. SU-E-I-91: Quantitative Assessment of Early Hepatocellular Carcinoma and Cavernous Hemangioma of Live Using In-Line Phase-Contrast X-Ray Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, J

    Purpose: To investigate the potential utility of in-line phase-contrast imaging (ILPCI) technique with synchrotron radiation in detecting early hepatocellular carcinoma and cavernous hemangioma of live using in vitro model system. Methods: Without contrast agents, three typical early hepatocellular carcinoma specimens and three typical cavernous hemangioma of live specimens were imaged using ILPCI. To quantitatively discriminate early hepatocellular carcinoma tissues and cavernous hemangioma tissues, the projection images texture feature based on gray level co-occurrence matrix (GLCM) were extracted. The texture parameters of energy, inertia, entropy, correlation, sum average, sum entropy, difference average, difference entropy and inverse difference moment, were obtained respectively.more » Results: In the ILPCI planar images of early hepatocellular carcinoma specimens, vessel trees were clearly visualized on the micrometer scale. Obvious distortion deformation was presented, and the vessel mostly appeared as a ‘dry stick’. Liver textures appeared not regularly. In the ILPCI planar images of cavernous hemangioma of live specimens, typical vessels had not been found compared with the early hepatocellular carcinoma planar images. The planar images of cavernous hemangioma of live specimens clearly displayed the dilated hepatic sinusoids with the diameter of less than 100 microns, but all of them were overlapped with each other. The texture parameters of energy, inertia, entropy, correlation, sum average, sum entropy, and difference average, showed a statistically significant between the two types specimens image (P<0.01), except the texture parameters of difference entropy and inverse difference moment(P>0.01). Conclusion: The results indicate that there are obvious changes in morphological levels including vessel structures and liver textures. The study proves that this imaging technique has a potential value in evaluating early hepatocellular carcinoma and

  8. Quantitative Assessment of Degenerative Cartilage and Subchondral Bony Lesions in a Preserved Cadaveric Knee: Propagation-Based Phase-Contrast CT Versus Conventional MRI and CT.

    PubMed

    Geith, Tobias; Brun, Emmanuel; Mittone, Alberto; Gasilov, Sergei; Weber, Loriane; Adam-Neumair, Silvia; Bravin, Alberto; Reiser, Maximilian; Coan, Paola; Horng, Annie

    2018-06-01

    The aim of this study was to quantitatively assess hyaline cartilage and subchondral bone conditions in a fully preserved cadaveric human knee joint using high-resolution x-ray propagation-based phase-contrast imaging (PBI) CT and to compare the performance of the new technique with conventional CT and MRI. A cadaveric human knee was examined using an x-ray beam of 60 keV, a detector with a 90-mm 2 FOV, and a pixel size of 46 × 46 μm 2 . PBI CT images were reconstructed with both the filtered back projection algorithm and the equally sloped tomography method. Conventional 3-T MRI and CT were also performed. Measurements of cartilage thickness, cartilage lesions, International Cartilage Repair Society scoring, and detection of subchondral bone changes were evaluated. Visual inspection of the specimen akin to arthroscopy was conducted and served as a standard of reference for lesion detection. Loss of cartilage height was visible on PBI CT and MRI. Quantification of cartilage thickness showed a strong correlation between the two modalities. Cartilage lesions appeared darker than the adjacent cartilage on PBI CT. PBI CT showed similar agreement to MRI for depicting cartilage substance defects or lesions compared with the visual inspection. The assessment of subchondral bone cysts showed moderate to strong agreement between PBI CT and CT. In contrast to the standard clinical methods of MRI and CT, PBI CT is able to simultaneously depict cartilage and bony changes at high resolution. Though still an experimental technique, PBI CT is a promising high-resolution imaging method to evaluate comprehensive changes of osteoarthritic disease in a clinical setting.

  9. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization.

  10. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography.

    PubMed

    Demi, Libertario; van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2015-11-07

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization.

  11. Improving image quality in laboratory x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    De Marco, F.; Marschner, M.; Birnbacher, L.; Viermetz, M.; Noël, P.; Herzen, J.; Pfeiffer, F.

    2017-03-01

    Grating-based X-ray phase-contrast (gbPC) is known to provide significant benefits for biomedical imaging. To investigate these benefits, a high-sensitivity gbPC micro-CT setup for small (≍ 5 cm) biological samples has been constructed. Unfortunately, high differential-phase sensitivity leads to an increased magnitude of data processing artifacts, limiting the quality of tomographic reconstructions. Most importantly, processing of phase-stepping data with incorrect stepping positions can introduce artifacts resembling Moiré fringes to the projections. Additionally, the focal spot size of the X-ray source limits resolution of tomograms. Here we present a set of algorithms to minimize artifacts, increase resolution and improve visual impression of projections and tomograms from the examined setup. We assessed two algorithms for artifact reduction: Firstly, a correction algorithm exploiting correlations of the artifacts and differential-phase data was developed and tested. Artifacts were reliably removed without compromising image data. Secondly, we implemented a new algorithm for flatfield selection, which was shown to exclude flat-fields with strong artifacts. Both procedures successfully improved image quality of projections and tomograms. Deconvolution of all projections of a CT scan can minimize blurring introduced by the finite size of the X-ray source focal spot. Application of the Richardson-Lucy deconvolution algorithm to gbPC-CT projections resulted in an improved resolution of phase-contrast tomograms. Additionally, we found that nearest-neighbor interpolation of projections can improve the visual impression of very small features in phase-contrast tomograms. In conclusion, we achieved an increase in image resolution and quality for the investigated setup, which may lead to an improved detection of very small sample features, thereby maximizing the setup's utility.

  12. Prospects and challenges of quantitative phase imaging in tumor cell biology

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  13. Hard x-ray phase contrastmicroscopy - techniques and applications

    NASA Astrophysics Data System (ADS)

    Holzner, Christian

    In 1918, Einstein provided the first description of the nature of the refractive index for X-rays, showing that phase contrast effects are significant. A century later, most x-ray microscopy and nearly all medical imaging remains based on absorption contrast, even though phase contrast offers orders of magnitude improvements in contrast and reduced radiation exposure at multi-keV x-ray energies. The work presented is concerned with developing practical and quantitative methods of phase contrast for x-ray microscopy. A theoretical framework for imaging in phase contrast is put forward; this is used to obtain quantitative images in a scanning microscope using a segmented detector, and to correct for artifacts in a commercial phase contrast x-ray nano-tomography system. The principle of reciprocity between scanning and full-field microscopes is then used to arrive at a novel solution: Zernike contrast in a scanning microscope. These approaches are compared on a theoretical and experimental basis in direct connection with applications using multi-keV x-ray microscopes at the Advanced Photon Source at Argonne National Laboratory. Phase contrast provides the best means to image mass and ultrastructure of light elements that mainly constitute biological matter, while stimulated x-ray fluorescence provides high sensitivity for studies of the distribution of heavier trace elements, such as metals. These approaches are combined in a complementary way to yield quantitative maps of elemental concentration from 2D images, with elements placed in their ultrastructural context. The combination of x-ray fluorescence and phase contrast poses an ideal match for routine, high resolution tomographic imaging of biological samples in the future. The presented techniques and demonstration experiments will help pave the way for this development.

  14. Mouse blood vessel imaging by in-line x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Liu, Xiao-Song; Yang, Xin-Rong; Chen, Shao-Liang; Zhu, Pei-Ping; Yuan, Qing-Xi

    2008-10-01

    It is virtually impossible to observe blood vessels by conventional x-ray imaging techniques without using contrast agents. In addition, such x-ray systems are typically incapable of detecting vessels with diameters less than 200 µm. Here we show that vessels as small as 30 µm could be detected using in-line phase-contrast x-ray imaging without the use of contrast agents. Image quality was greatly improved by replacing resident blood with physiological saline. Furthermore, an entire branch of the portal vein from the main axial portal vein to the eighth generation of branching could be captured in a single phase-contrast image. Prior to our work, detection of 30 µm diameter blood vessels could only be achieved using x-ray interferometry, which requires sophisticated x-ray optics. Our results thus demonstrate that in-line phase-contrast x-ray imaging, using physiological saline as a contrast agent, provides an alternative to the interferometric method that can be much more easily implemented and also offers the advantage of a larger field of view. A possible application of this methodology is in animal tumor models, where it can be used to observe tumor angiogenesis and the treatment effects of antineoplastic agents.

  15. Differential phase contrast with a segmented detector in a scanning X-ray microprobe

    PubMed Central

    Hornberger, B.; de Jonge, M. D.; Feser, M.; Holl, P.; Holzner, C.; Jacobsen, C.; Legnini, D.; Paterson, D.; Rehak, P.; Strüder, L.; Vogt, S.

    2008-01-01

    Scanning X-ray microprobes are unique tools for the nanoscale investigation of specimens from the life, environmental, materials and other fields of sciences. Typically they utilize absorption and fluorescence as contrast mechanisms. Phase contrast is a complementary technique that can provide strong contrast with reduced radiation dose for weakly absorbing structures in the multi-keV range. In this paper the development of a segmented charge-integrating silicon detector which provides simultaneous absorption and differential phase contrast is reported. The detector can be used together with a fluorescence detector for the simultaneous acquisition of transmission and fluorescence data. It can be used over a wide range of photon energies, photon rates and exposure times at third-generation synchrotron radiation sources, and is currently operating at two beamlines at the Advanced Photon Source. Images obtained at around 2 keV and 10 keV demonstrate the superiority of phase contrast over absorption for specimens composed of light elements. PMID:18552427

  16. The second-order differential phase contrast and its retrieval for imaging with x-ray Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2012-12-01

    The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ(") (s)(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ = δ(s) + δ(f), where δ(f) corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ(s), which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the contrast generated by the

  17. A generalized quantitative interpretation of dark-field contrast for highly concentrated microsphere suspensions

    PubMed Central

    Gkoumas, Spyridon; Villanueva-Perez, Pablo; Wang, Zhentian; Romano, Lucia; Abis, Matteo; Stampanoni, Marco

    2016-01-01

    In X-ray grating interferometry, dark-field contrast arises due to partial extinction of the detected interference fringes. This is also called visibility reduction and is attributed to small-angle scattering from unresolved structures in the imaged object. In recent years, analytical quantitative frameworks of dark-field contrast have been developed for highly diluted monodisperse microsphere suspensions with maximum 6% volume fraction. These frameworks assume that scattering particles are separated by large enough distances, which make any interparticle scattering interference negligible. In this paper, we start from the small-angle scattering intensity equation and, by linking Fourier and real-space, we introduce the structure factor and thus extend the analytical and experimental quantitative interpretation of dark-field contrast, for a range of suspensions with volume fractions reaching 40%. The structure factor accounts for interparticle scattering interference. Without introducing any additional fitting parameters, we successfully predict the experimental values measured at the TOMCAT beamline, Swiss Light Source. Finally, we apply this theoretical framework to an experiment probing a range of system correlation lengths by acquiring dark-field images at different energies. This proposed method has the potential to be applied in single-shot-mode using a polychromatic X-ray tube setup and a single-photon-counting energy-resolving detector. PMID:27734931

  18. Quantitative evaluation of contrast-enhanced ultrasound after intravenous administration of a microbubble contrast agent for differentiation of benign and malignant thyroid nodules: assessment of diagnostic accuracy.

    PubMed

    Nemec, Ursula; Nemec, Stefan F; Novotny, Clemens; Weber, Michael; Czerny, Christian; Krestan, Christian R

    2012-06-01

    To investigate the diagnostic accuracy, through quantitative analysis, of contrast-enhanced ultrasound (CEUS), using a microbubble contrast agent, in the differentiation of thyroid nodules. This prospective study enrolled 46 patients with solitary, scintigraphically non-functional thyroid nodules. These patients were scheduled for surgery and underwent preoperative CEUS with pulse-inversion harmonic imaging after intravenous microbubble contrast medium administration. Using histology as a standard of reference, time-intensity curves of benign and malignant nodules were compared by means of peak enhancement and wash-out enhancement relative to the baseline intensity using a mixed model ANOVA. ROC analysis was performed to assess the diagnostic accuracy in the differentiation of benign and malignant nodules on CEUS. The complete CEUS data of 42 patients (31/42 [73.8%] benign and 11/42 [26.2%] malignant nodules) revealed a significant difference (P < 0.001) in enhancement between benign and malignant nodules. Furthermore, based on ROC analysis, CEUS demonstrated sensitivity of 76.9%, specificity of 84.8% and accuracy of 82.6%. Quantitative analysis of CEUS using a microbubble contrast agent allows the differentiation of benign and malignant thyroid nodules and may potentially serve, in addition to grey-scale and Doppler ultrasound, as an adjunctive tool in the assessment of patients with thyroid nodules. • Contrast-enhanced ultrasound (CEUS) helps differentiate between benign and malignant thyroid nodules. • Quantitative CEUS analysis yields sensitivity of 76.9% and specificity of 84.8%. • CEUS may be a potentially useful adjunct in assessing thyroid nodules.

  19. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    PubMed Central

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-01

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS

  20. Low dose reconstruction algorithm for differential phase contrast imaging.

    PubMed

    Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni

    2011-01-01

    Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.

  1. X-ray micro-beam techniques and phase contrast tomography applied to biomaterials

    NASA Astrophysics Data System (ADS)

    Fratini, Michela; Campi, Gaetano; Bukreeva, Inna; Pelliccia, Daniele; Burghammer, Manfred; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Cedola, Alessia

    2015-12-01

    A deeper comprehension of the biomineralization (BM) process is at the basis of tissue engineering and regenerative medicine developments. Several in-vivo and in-vitro studies were dedicated to this purpose via the application of 2D and 3D diagnostic techniques. Here, we develop a new methodology, based on different complementary experimental techniques (X-ray phase contrast tomography, micro-X-ray diffraction and micro-X-ray fluorescence scanning technique) coupled to new analytical tools. A qualitative and quantitative structural investigation, from the atomic to the micrometric length scale, is obtained for engineered bone tissues. The high spatial resolution achieved by X-ray scanning techniques allows us to monitor the bone formation at the first-formed mineral deposit at the organic-mineral interface within a porous scaffold. This work aims at providing a full comprehension of the morphology and functionality of the biomineralization process, which is of key importance for developing new drugs for preventing and healing bone diseases and for the development of bio-inspired materials.

  2. Phase-contrast tomography of sciatic nerves: image quality and experimental parameters

    NASA Astrophysics Data System (ADS)

    Töpperwien, M.; Krenkel, M.; Ruhwedel, T.; Möbius, W.; Pacureanu, A.; Cloetens, P.; Salditt, T.

    2017-06-01

    We present propagation-based phase-contrast tomography of mouse sciatic nerves stained with osmium, leading to an enhanced contrast in the myelin sheath around the axons, in order to visualize the threedimensional (3D) structure of the nerve. We compare different experimental parameters and show that contrast and resolution are high enough to identify single axons in the nerve, including characteristic functional structures such as Schmidt-Lanterman incisures.

  3. X-ray Phase Contrast Imaging of Calcified Tissue and Biomaterial Structure in Bioreactor Engineered Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Alyssa A.; Larson, Jeffery C.; Garson, III, Alfred B.

    2014-11-04

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. These techniques allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems and will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing tomore » their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. Furthermore, these results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.« less

  4. Deciphering the internal complexity of living cells with quantitative phase microscopy: a multiscale approach

    NASA Astrophysics Data System (ADS)

    Martinez-Torres, Cristina; Laperrousaz, Bastien; Berguiga, Lotfi; Boyer-Provera, Elise; Elezgaray, Juan; Nicolini, Franck E.; Maguer-Satta, Veronique; Arneodo, Alain; Argoul, Françoise

    2015-09-01

    The distribution of refractive indices (RIs) of a living cell contributes in a nonintuitive manner to its optical phase image and quite rarely can be inverted to recover its internal structure. The interpretation of the quantitative phase images of living cells remains a difficult task because (1) we still have very little knowledge on the impact of its internal macromolecular complexes on the local RI and (2) phase changes produced by light propagation through the sample are mixed with diffraction effects by the internal cell bodies. We propose to implement a two-dimensional wavelet-based contour chain detection method to distinguish internal boundaries based on their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are the morphological indicators suited for comparing cells of different origins and/or to follow their transformation in pathologic situations. We use this method to compare nonadherent blood cells from primary and laboratory culture origins and to assess the internal transformation of hematopoietic stem cells by the transduction of the BCR-ABL oncogene responsible for the chronic myelogenous leukemia.

  5. High-Resolution Phase-Contrast Imaging of Submicron Particles in Unstained Lung Tissue

    NASA Astrophysics Data System (ADS)

    Schittny, J. C.; Barré, S. F.; Mokso, R.; Haberthür, D.; Semmler-Behnke, M.; Kreyling, W. G.; Tsuda, A.; Stampanoni, M.

    2011-09-01

    To access the risks and chances of deposition of submicron particles in the gas-exchange area of the lung, a precise three-dimensional (3D)-localization of the sites of deposition is essential—especially because local peaks of deposition are expected in the acinar tree and in individual alveoli. In this study we developed the workflow for such an investigation. We administered 200-nm gold particles to young adult rats by intratracheal instillation. After fixation and paraffin embedding, their lungs were imaged unstained using synchrotron radiation x-ray tomographic microscopy (SRXTM) at the beamline TOMCAT (Swiss Light Source, Villigen, Switzerland) at sample detector distances of 2.5 mm (absorption contrast) and of 52.5 mm (phase contrast). A segmentation based on a global threshold of grey levels was successfully done on absorption-contrast images for the gold and on the phase-contrast images for the tissue. The smallest spots containing gold possessed a size of 1-2 voxels of 370-nm side length. We conclude that a combination of phase and absorption contrast SRXTM imaging is necessary to obtain the correct segmentation of both tissue and gold particles. This method will be used for the 3D localization of deposited particles in the gas-exchange area of the lung.

  6. Phase contrast imaging simulation and measurements using polychromatic sources with small source-object distances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golosio, Bruno; Carpinelli, Massimo; Masala, Giovanni Luca

    Phase contrast imaging is a technique widely used in synchrotron facilities for nondestructive analysis. Such technique can also be implemented through microfocus x-ray tube systems. Recently, a relatively new type of compact, quasimonochromatic x-ray sources based on Compton backscattering has been proposed for phase contrast imaging applications. In order to plan a phase contrast imaging system setup, to evaluate the system performance and to choose the experimental parameters that optimize the image quality, it is important to have reliable software for phase contrast imaging simulation. Several software tools have been developed and tested against experimental measurements at synchrotron facilities devotedmore » to phase contrast imaging. However, many approximations that are valid in such conditions (e.g., large source-object distance, small transverse size of the object, plane wave approximation, monochromatic beam, and Gaussian-shaped source focal spot) are not generally suitable for x-ray tubes and other compact systems. In this work we describe a general method for the simulation of phase contrast imaging using polychromatic sources based on a spherical wave description of the beam and on a double-Gaussian model of the source focal spot, we discuss the validity of some possible approximations, and we test the simulations against experimental measurements using a microfocus x-ray tube on three types of polymers (nylon, poly-ethylene-terephthalate, and poly-methyl-methacrylate) at varying source-object distance. It will be shown that, as long as all experimental conditions are described accurately in the simulations, the described method yields results that are in good agreement with experimental measurements.« less

  7. High-throughput, high-resolution X-ray phase contrast tomographic microscopy for visualisation of soft tissue

    NASA Astrophysics Data System (ADS)

    McDonald, S. A.; Marone, F.; Hintermüller, C.; Bensadoun, J.-C.; Aebischer, P.; Stampanoni, M.

    2009-09-01

    The use of conventional absorption based X-ray microtomography can become limited for samples showing only very weak absorption contrast. However, a wide range of samples studied in biology and materials science can produce significant phase shifts of the X-ray beam, and thus the use of the phase signal can provide substantially increased contrast and therefore new and otherwise inaccessible information. The application of two approaches for high-throughput, high-resolution X-ray phase contrast tomography, both available on the TOMCAT beamline of the SLS, is illustrated. Differential Phase Contrast (DPC) imaging uses a grating interferometer and a phase-stepping technique. It has been integrated into the beamline environment on TOMCAT in terms of the fast acquisition and reconstruction of data and the availability to scan samples within an aqueous environment. The second phase contrast approach is a modified transfer of intensity approach that can yield the 3D distribution of the phase (refractive index) of a weakly absorbing object from a single tomographic dataset. These methods are being used for the evaluation of cell integrity in 3D, with the specific aim of following and analyzing progressive cell degeneration to increase knowledge of the mechanistic events of neurodegenerative disorders such as Parkinson's disease.

  8. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging.

    PubMed

    Jung, Jae-Hwang; Jang, Jaeduck; Park, Yongkeun

    2013-11-05

    We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.

  9. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography.

    PubMed

    Brun, E; Grandl, S; Sztrókay-Gaul, A; Barbone, G; Mittone, A; Gasilov, S; Bravin, A; Coan, P

    2014-11-01

    Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure's possible applications. A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  10. Non-destructive phase contrast hard x-ray imaging to reveal the three-dimensional microstructure of soft and hard tissues

    NASA Astrophysics Data System (ADS)

    Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Hieber, Simone E.; Hasan, Samiul; Bikis, Christos; Schulz, Joachim; Costeur, Loïc.; Müller, Bert

    2016-04-01

    X-ray imaging in the absorption contrast mode is an established method of visualising calcified tissues such as bone and teeth. Physically soft tissues such as brain or muscle are often imaged using magnetic resonance imaging (MRI). However, the spatial resolution of MRI is insufficient for identifying individual biological cells within three-dimensional tissue. X-ray grating interferometry (XGI) has advantages for the investigation of soft tissues or the simultaneous three-dimensional visualisation of soft and hard tissues. Since laboratory microtomography (μCT) systems have better accessibility than tomography set-ups at synchrotron radiation facilities, a great deal of effort has been invested in optimising XGI set-ups for conventional μCT systems. In this conference proceeding, we present how a two-grating interferometer is incorporated into a commercially available nanotom m (GE Sensing and Inspection Technologies GmbH) μCT system to extend its capabilities toward phase contrast. We intend to demonstrate superior contrast in spiders (Hogna radiata (Fam. Lycosidae) and Xysticus erraticus (Fam. Thomisidae)), as well as the simultaneous visualisation of hard and soft tissues. XGI is an imaging modality that provides quantitative data, and visualisation is an important part of biomimetics; consequently, hard X-ray imaging provides a sound basis for bioinspiration, bioreplication and biomimetics and allows for the quantitative comparison of biofabricated products with their natural counterparts.

  11. Nonlinear dynamic phase contrast microscopy for microfluidic and microbiological applications

    NASA Astrophysics Data System (ADS)

    Denz, C.; Holtmann, F.; Woerdemann, M.; Oevermann, M.

    2008-08-01

    In live sciences, the observation and analysis of moving living cells, molecular motors or motion of micro- and nano-objects is a current field of research. At the same time, microfluidic innovations are needed for biological and medical applications on a micro- and nano-scale. Conventional microscopy techniques are reaching considerable limits with respect to these issues. A promising approach for this challenge is nonlinear dynamic phase contrast microscopy. It is an alternative full field approach that allows to detect motion as well as phase changes of living unstained micro-objects in real-time, thereby being marker free, without contact and non destructive, i.e. fully biocompatible. The generality of this system allows it to be combined with several other microscope techniques such as conventional bright field or fluorescence microscopy. In this article we will present the dynamic phase contrast technique and its applications in analysis of micro organismic dynamics, micro flow velocimetry and micro-mixing analysis.

  12. Binocular contrast-gain control for natural scenes: Image structure and phase alignment.

    PubMed

    Huang, Pi-Chun; Dai, Yu-Ming

    2018-05-01

    In the context of natural scenes, we applied the pattern-masking paradigm to investigate how image structure and phase alignment affect contrast-gain control in binocular vision. We measured the discrimination thresholds of bandpass-filtered natural-scene images (targets) under various types of pedestals. Our first experiment had four pedestal types: bandpass-filtered pedestals, unfiltered pedestals, notch-filtered pedestals (which enabled removal of the spatial frequency), and misaligned pedestals (which involved rotation of unfiltered pedestals). Our second experiment featured six types of pedestals: bandpass-filtered, unfiltered, and notch-filtered pedestals, and the corresponding phase-scrambled pedestals. The thresholds were compared for monocular, binocular, and dichoptic viewing configurations. The bandpass-filtered pedestal and unfiltered pedestals showed classic dipper shapes; the dipper shapes of the notch-filtered, misaligned, and phase-scrambled pedestals were weak. We adopted a two-stage binocular contrast-gain control model to describe our results. We deduced that the phase-alignment information influenced the contrast-gain control mechanism before the binocular summation stage and that the phase-alignment information and structural misalignment information caused relatively strong divisive inhibition in the monocular and interocular suppression stages. When the pedestals were phase-scrambled, the elimination of the interocular suppression processing was the most convincing explanation of the results. Thus, our results indicated that both phase-alignment information and similar image structures cause strong interocular suppression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Quantitative Differences Between the First and Second Injection of Contrast Agent in Contrast-Enhanced Ultrasonography of Feline Kidneys and Spleen.

    PubMed

    Stock, Emmelie; Vanderperren, Katrien; Haers, Hendrik; Duchateau, Luc; Hesta, Myriam; Saunders, Jimmy H

    2017-02-01

    Contrast-enhanced ultrasound is a valuable and safe technique for the evaluation of organ perfusion. Repeated injections of ultrasound contrast agent are often administered during the same imaging session. However, it remains unclear if quantitative differences are present between the consecutive microbubble injections. Therefore, the first and second injection of contrast agent for the left renal cortex, renal medulla and the splenic parenchyma in healthy cats were compared. A lower peak intensity and area under the curve were observed for the first injection of contrast agent in the feline kidney, both for the renal cortex and medulla, and spleen. Moreover, for the renal cortex, the time-intensity curve was steeper after the second injection. Findings from the present study demonstrate that a second injection of contrast agent provides stronger enhancement. The exact mechanism behind our findings remains unclear; however, saturation of the lung macrophages is believed to play an important role. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Ethanol fixed brain imaging by phase-contrast X-ray technique

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Thet-Thet-Lwin; Kunii, Takuya; Sirai, Ryota; Ohizumi, Takahito; Maruyama, Hiroko; Hyodo, Kazuyuki; Yoneyama, Akio; Ueda, Kazuhiro

    2013-03-01

    The two-crystal phase-contrast X-ray imaging technique using an X-ray crystal interferometer can depict the fine structures of rat's brain such as cerebral cortex, white matter, and basal ganglia. Image quality and contrast by ethanol fixed brain showed significantly better than those by usually used formalin fixation at 35 keV X-ray energy. Image contrast of cortex by ethanol fixation was more than 3-times higher than that by formalin fixation. Thus, the technique of ethanol fixation might be better suited to image cerebral structural detail at 35 keV X-ray energy.

  15. Measurements and simulations analysing the noise behaviour of grating-based X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Weber, T.; Bartl, P.; Durst, J.; Haas, W.; Michel, T.; Ritter, A.; Anton, G.

    2011-08-01

    In the last decades, phase-contrast imaging using a Talbot-Lau grating interferometer is possible even with a low-brilliance X-ray source. With the potential of increasing the soft-tissue contrast, this method is on its way into medical imaging. For this purpose, the knowledge of the underlying physics of this technique is necessary.With this paper, we would like to contribute to the understanding of grating-based phase-contrast imaging by presenting results on measurements and simulations regarding the noise behaviour of the differential phases.These measurements were done using a microfocus X-ray tube with a hybrid, photon-counting, semiconductor Medipix2 detector. The additional simulations were performed by our in-house developed phase-contrast simulation tool “SPHINX”, combining both wave and particle contributions of the simulated photons.The results obtained by both of these methods show the same behaviour. Increasing the number of photons leads to a linear decrease of the standard deviation of the phase. The number of used phase steps has no influence on the standard deviation, if the total number of photons is held constant.Furthermore, the probability density function (pdf) of the reconstructed differential phases was analysed. It turned out that the so-called von Mises distribution is the physically correct pdf, which was also confirmed by measurements.This information advances the understanding of grating-based phase-contrast imaging and can be used to improve image quality.

  16. Quantitative DIC microscopy using an off-axis self-interference approach.

    PubMed

    Fu, Dan; Oh, Seungeun; Choi, Wonshik; Yamauchi, Toyohiko; Dorn, August; Yaqoob, Zahid; Dasari, Ramachandra R; Feld, Michael S

    2010-07-15

    Traditional Normarski differential interference contrast (DIC) microscopy is a very powerful method for imaging nonstained biological samples. However, one of its major limitations is the nonquantitative nature of the imaging. To overcome this problem, we developed a quantitative DIC microscopy method based on off-axis sample self-interference. The digital holography algorithm is applied to obtain quantitative phase gradients in orthogonal directions, which leads to a quantitative phase image through a spiral integration of the phase gradients. This method is practically simple to implement on any standard microscope without stringent requirements on polarization optics. Optical sectioning can be obtained through enlarged illumination NA.

  17. Differential phase contrast X-ray imaging system and components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stutman, Daniel; Finkenthal, Michael

    2017-11-21

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  18. Visualisation by high resolution synchrotron X-ray phase contrast micro-tomography of gas films on submerged superhydrophobic leaves.

    PubMed

    Lauridsen, Torsten; Glavina, Kyriaki; Colmer, Timothy David; Winkel, Anders; Irvine, Sarah; Lefmann, Kim; Feidenhans'l, Robert; Pedersen, Ole

    2014-10-01

    Floods can completely submerge terrestrial plants but some wetland species can sustain O2 and CO2 exchange with the environment via gas films forming on superhydrophobic leaf surfaces. We used high resolution synchrotron X-ray phase contrast micro-tomography in a novel approach to visualise gas films on submerged leaves of common cordgrass (Spartina anglica). 3D tomograms enabled a hitherto unmatched level of detail regarding the micro-topography of leaf gas films. Gas films formed only on the superhydrophobic adaxial leaf side (water droplet contact angle, Φ=162°) but not on the abaxial side (Φ=135°). The adaxial side of the leaves of common cordgrass is plicate with a longitudinal system of parallel grooves and ridges and the vast majority of the gas film volume was found in large ∼180μm deep elongated triangular volumes in the grooves and these volumes were connected to each neighbouring groove via a fine network of gas tubules (∼1.7μm diameter) across the ridges. In addition to the gas film retained on the leaf exterior, the X-ray phase contrast micro-tomography also successfully distinguished gas spaces internally in the leaf tissues, and the tissue porosity (gas volume per unit tissue volume) ranged from 6.3% to 20.3% in tip and base leaf segments, respectively. We conclude that X-ray phase contrast micro-tomography is a powerful tool to obtain quantitative data of exterior gas features on biological samples because of the significant difference in electron density between air, biological tissues and water. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Quantifying Morphological Parameters of the Terminal Branching Units in a Mouse Lung by Phase Contrast Synchrotron Radiation Computed Tomography

    PubMed Central

    Hwang, Jeongeun; Kim, Miju; Kim, Seunghwan; Lee, Jinwon

    2013-01-01

    An effective technique of phase contrast synchrotron radiation computed tomography was established for the quantitative analysis of the microstructures in the respiratory zone of a mouse lung. Heitzman’s method was adopted for the whole-lung sample preparation, and Canny’s edge detector was used for locating the air-tissue boundaries. This technique revealed detailed morphology of the respiratory zone components, including terminal bronchioles and alveolar sacs, with sufficiently high resolution of 1.74 µm isotropic voxel size. The technique enabled visual inspection of the respiratory zone components and comprehension of their relative positions in three dimensions. To check the method’s feasibility for quantitative imaging, morphological parameters such as diameter, surface area and volume were measured and analyzed for sixteen randomly selected terminal branching units, each consisting of a terminal bronchiole and a pair of succeeding alveolar sacs. The four types of asymmetry ratios concerning alveolar sac mouth diameter, alveolar sac surface area, and alveolar sac volume are measured. This is the first ever finding of the asymmetry ratio for the terminal bronchioles and alveolar sacs, and it is noteworthy that an appreciable degree of branching asymmetry was observed among the alveolar sacs at the terminal end of the airway tree, despite the number of samples was small yet. The series of efficient techniques developed and confirmed in this study, from sample preparation to quantification, is expected to contribute to a wider and exacter application of phase contrast synchrotron radiation computed tomography to a variety of studies. PMID:23704918

  20. Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability

    PubMed Central

    Tang, M.-X.; Mulvana, H.; Gauthier, T.; Lim, A. K. P.; Cosgrove, D. O.; Eckersley, R. J.; Stride, E.

    2011-01-01

    Ultrasound provides a valuable tool for medical diagnosis offering real-time imaging with excellent spatial resolution and low cost. The advent of microbubble contrast agents has provided the additional ability to obtain essential quantitative information relating to tissue vascularity, tissue perfusion and even endothelial wall function. This technique has shown great promise for diagnosis and monitoring in a wide range of clinical conditions such as cardiovascular diseases and cancer, with considerable potential benefits in terms of patient care. A key challenge of this technique, however, is the existence of significant variations in the imaging results, and the lack of understanding regarding their origin. The aim of this paper is to review the potential sources of variability in the quantification of tissue perfusion based on microbubble contrast-enhanced ultrasound images. These are divided into the following three categories: (i) factors relating to the scanner setting, which include transmission power, transmission focal depth, dynamic range, signal gain and transmission frequency, (ii) factors relating to the patient, which include body physical differences, physiological interaction of body with bubbles, propagation and attenuation through tissue, and tissue motion, and (iii) factors relating to the microbubbles, which include the type of bubbles and their stability, preparation and injection and dosage. It has been shown that the factors in all the three categories can significantly affect the imaging results and contribute to the variations observed. How these factors influence quantitative imaging is explained and possible methods for reducing such variations are discussed. PMID:22866229

  1. Application of X-ray phase contrast micro-tomography to the identification of traditional Chinese medicines

    NASA Astrophysics Data System (ADS)

    Ye, L. L.; Xue, Y. L.; Ni, L. H.; Tan, H.; Wang, Y. D.; Xiao, T. Q.

    2013-07-01

    Nondestructive and in situ investigation to the characteristic microstructures are important to the identification of traditional Chinese medicines (TCMs), especially for precious specimens and samples with oil contains. X-ray phase contrast micro-tomography (XPCMT) could be a practical solution for this kind of investigation. Fructus Foeniculi, a fruit kind of TCMs, is selected as the test sample. Experimental results show that the characteristic microstructures of Fructus Foeniculi, including vittae, vascular bundles, embryo, endosperm and the mesocarp reticulate cells around the vittae can be clearly distinguished and the integrated dissepiments microstructure in the vittae was observed successfully. Especially, for the first time, with virtual slice technique, it can investigate the liquid contains inside the TCMs. The results show that the vittae filled with volatile oil in the oil chamber were observed with this nondestructive and in situ 3-dimensional imaging technique. Furthermore, taking the advantage of micro-computed tomography, we can obtain the characteristic microstructures' quantitative information of the volume in liquid state. The volume of the oil chambers and the volatile oil, which are contained inside the vittae, was quantitatively analyzed. Accordingly, it can calculate the volume ratio of the volatile oil easily and accurately. As a result, we could conclude that XPCMT could be a useful tool for the nondestructive identification and quantitative analysis to TCMs.

  2. Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy

    NASA Astrophysics Data System (ADS)

    Stutman, D.; Finkenthal, M.

    2012-08-01

    A Talbot-Lau interferometer is demonstrated using micro-periodic gratings inclined at a glancing angle along the light propagation direction. Due to the increase in the effective thickness of the absorption gratings, the device enables differential phase contrast imaging at high x-ray energy, with improved fringe visibility (contrast). For instance, at 28° glancing angle, we obtain up to ˜35% overall interferometer contrast with a spectrum having ˜43 keV mean energy, suitable for medical applications. In addition, glancing angle interferometers could provide high contrast at energies above 100 keV, enabling industrial and security applications of phase contrast imaging.

  3. Relationship between Plaque Echo, Thickness and Neovascularization Assessed by Quantitative and Semi-quantitative Contrast-Enhanced Ultrasonography in Different Stenosis Groups.

    PubMed

    Song, Yan; Feng, Jun; Dang, Ying; Zhao, Chao; Zheng, Jie; Ruan, Litao

    2017-12-01

    The aim of this study was to determine the relationship between plaque echo, thickness and neovascularization in different stenosis groups using quantitative and semi-quantitative contrast-enhanced ultrasound (CEUS) in patients with carotid atherosclerosis plaque. A total of 224 plaques were divided into mild stenosis (<50%; 135 plaques, 60.27%), moderate stenosis (50%-69%; 39 plaques, 17.41%) and severe stenosis (70%-99%; 50 plaques, 22.32%) groups. Quantitative and semi-quantitative methods were used to assess plaque neovascularization and determine the relationship between plaque echo, thickness and neovascularization. Correlation analysis revealed no relationship of neovascularization with plaque echo in the groups using either quantitative or semi-quantitative methods. Furthermore, there was no correlation of neovascularization with plaque thickness using the semi-quantitative method. The ratio of areas under the curve (RAUC) was negatively correlated with plaque thickness (r = -0.317, p = 0.001) in the mild stenosis group. With the quartile method, plaque thickness of the mild stenosis group was divided into four groups, with significant differences between the 1.5-2.2 mm and ≥3.5 mm groups (p = 0.002), 2.3-2.8 mm and ≥3.5 mm groups (p <0.001) and 2.9-3.4 mm and ≥3.5 mm groups (p <0.001). Both semi-quantitative and quantitative CEUS methods characterizing neovascularization of plaque are equivalent with respect to assessing relationships between neovascularization, echogenicity and thickness. However, the quantitative method could fail for plaque <3.5 mm because of motion artifacts. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  4. Improved cancer risk stratification and diagnosis via quantitative phase microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Uttam, Shikhar; Pham, Hoa V.; Hartman, Douglas J.

    2017-02-01

    Pathology remains the gold standard for cancer diagnosis and in some cases prognosis, in which trained pathologists examine abnormality in tissue architecture and cell morphology characteristic of cancer cells with a bright-field microscope. The limited resolution of conventional microscope can result in intra-observer variation, missed early-stage cancers, and indeterminate cases that often result in unnecessary invasive procedures in the absence of cancer. Assessment of nanoscale structural characteristics via quantitative phase represents a promising strategy for identifying pre-cancerous or cancerous cells, due to its nanoscale sensitivity to optical path length, simple sample preparation (i.e., label-free) and low cost. I will present the development of quantitative phase microscopy system in transmission and reflection configuration to detect the structural changes in nuclear architecture, not be easily identifiable by conventional pathology. Specifically, we will present the use of transmission-mode quantitative phase imaging to improve diagnostic accuracy of urine cytology and the nuclear dry mass is progressively correlate with negative, atypical, suspicious and positive cytological diagnosis. In a second application, we will present the use of reflection-mode quantitative phase microscopy for depth-resolved nanoscale nuclear architecture mapping (nanoNAM) of clinically prepared formalin-fixed, paraffin-embedded tissue sections. We demonstrated that the quantitative phase microscopy system detects a gradual increase in the density alteration of nuclear architecture during malignant transformation in animal models of colon carcinogenesis and in human patients with ulcerative colitis, even in tissue that appears histologically normal according to pathologists. We evaluated the ability of nanoNAM to predict "future" cancer progression in patients with ulcerative colitis.

  5. Semi-quantitative assessment of pulmonary perfusion in children using dynamic contrast-enhanced MRI

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Thong, William E.; Ou, Phalla

    2013-03-01

    This paper addresses the study of semi-quantitative assessment of pulmonary perfusion acquired from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in a study population mainly composed of children with pulmonary malformations. The automatic analysis approach proposed is based on the indicator-dilution theory introduced in 1954. First, a robust method is developed to segment the pulmonary artery and the lungs from anatomical MRI data, exploiting 2D and 3D mathematical morphology operators. Second, the time-dependent contrast signal of the lung regions is deconvolved by the arterial input function for the assessment of the local hemodynamic system parameters, ie. mean transit time, pulmonary blood volume and pulmonary blood flow. The discrete deconvolution method implements here a truncated singular value decomposition (tSVD) method. Parametric images for the entire lungs are generated as additional elements for diagnosis and quantitative follow-up. The preliminary results attest the feasibility of perfusion quantification in pulmonary DCE-MRI and open an interesting alternative to scintigraphy for this type of evaluation, to be considered at least as a preliminary decision in the diagnostic due to the large availability of the technique and to the non-invasive aspects.

  6. Thermal x-ray diffraction and near-field phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Classen, Anton; Peng, Tao; Medvedev, Nikita; Wang, Fenglin; Chapman, Henry N.; Shih, Yanhua

    2017-10-01

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  7. Thermal x-ray diffraction and near-field phase contrast imaging

    DOE PAGES

    Li, Zheng; Classen, Anton; Peng, Tao; ...

    2017-12-27

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. Here in this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  8. Multiphase CT scanning and different intravenous contrast media concentrations in combined F-18-FDG PET/CT: Effect on quantitative and clinical assessment.

    PubMed

    Rebière, Marilou; Verburg, Frederik A; Palmowski, Moritz; Krohn, Thomas; Pietsch, Hubertus; Kuhl, Christiane K; Mottaghy, Felix M; Behrendt, Florian F

    2012-08-01

    To evaluate the influence of multiphase CT scanning and different intravenous contrast media on contrast enhancement, attenuation correction and image quality in combined PET/CT. 140 patients were prospectively enrolled for F-18-FDG-PET/CT including a low-dose unenhanced, arterial and venous contrast enhanced CT. The first (second) 70 patients, received contrast medium with 370 (300) mg iodine/ml. The iodine delivery rate (1.3mg/s) and total iodine load (44.4g) were identical for both groups. Contrast enhancement and maximum and mean standardized FDG uptake values (SUVmax and SUVmean) were determined for the un-enhanced, arterial and venous PET/CT at multiple anatomic sites and PET reconstructions were visually evaluated. Arterial contrast enhancement was significantly higher for the 300mg/ml contrast medium compared to 370mgI/ml at all anatomic sites. Venous enhancement was not different between the two contrast media. SUVmean and SUVmax were significantly higher for the contrast enhanced compared to the non-enhanced PET/CT at all anatomic sites (all P<0.001). Tracer uptake was significantly higher in the arterial than in the venous PET/CT in the arteries using both contrast media (all P<0.001). No differences in tracer uptake were found between the contrast media (all P>0.05). Visual assessment revealed no relevant differences between the different PET reconstructions. There is no relevant qualitative influence on the PET scan from the use of different intravenous contrast media in its various phases in combined multiphase PET/CT. For quantitative analysis of tracer uptake it is required to use an identical PET/CT protocol. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Application of Fourier-wavelet regularized deconvolution for improving image quality of free space propagation x-ray phase contrast imaging.

    PubMed

    Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin

    2012-11-21

    New x-ray phase contrast imaging techniques without using synchrotron radiation confront a common problem from the negative effects of finite source size and limited spatial resolution. These negative effects swamp the fine phase contrast fringes and make them almost undetectable. In order to alleviate this problem, deconvolution procedures should be applied to the blurred x-ray phase contrast images. In this study, three different deconvolution techniques, including Wiener filtering, Tikhonov regularization and Fourier-wavelet regularized deconvolution (ForWaRD), were applied to the simulated and experimental free space propagation x-ray phase contrast images of simple geometric phantoms. These algorithms were evaluated in terms of phase contrast improvement and signal-to-noise ratio. The results demonstrate that the ForWaRD algorithm is most appropriate for phase contrast image restoration among above-mentioned methods; it can effectively restore the lost information of phase contrast fringes while reduce the amplified noise during Fourier regularization.

  10. Multifactorial Optimization of Contrast-Enhanced Nanofocus Computed Tomography for Quantitative Analysis of Neo-Tissue Formation in Tissue Engineering Constructs.

    PubMed

    Sonnaert, Maarten; Kerckhofs, Greet; Papantoniou, Ioannis; Van Vlierberghe, Sandra; Boterberg, Veerle; Dubruel, Peter; Luyten, Frank P; Schrooten, Jan; Geris, Liesbet

    2015-01-01

    To progress the fields of tissue engineering (TE) and regenerative medicine, development of quantitative methods for non-invasive three dimensional characterization of engineered constructs (i.e. cells/tissue combined with scaffolds) becomes essential. In this study, we have defined the most optimal staining conditions for contrast-enhanced nanofocus computed tomography for three dimensional visualization and quantitative analysis of in vitro engineered neo-tissue (i.e. extracellular matrix containing cells) in perfusion bioreactor-developed Ti6Al4V constructs. A fractional factorial 'design of experiments' approach was used to elucidate the influence of the staining time and concentration of two contrast agents (Hexabrix and phosphotungstic acid) and the neo-tissue volume on the image contrast and dataset quality. Additionally, the neo-tissue shrinkage that was induced by phosphotungstic acid staining was quantified to determine the operating window within which this contrast agent can be accurately applied. For Hexabrix the staining concentration was the main parameter influencing image contrast and dataset quality. Using phosphotungstic acid the staining concentration had a significant influence on the image contrast while both staining concentration and neo-tissue volume had an influence on the dataset quality. The use of high concentrations of phosphotungstic acid did however introduce significant shrinkage of the neo-tissue indicating that, despite sub-optimal image contrast, low concentrations of this staining agent should be used to enable quantitative analysis. To conclude, design of experiments allowed us to define the most optimal staining conditions for contrast-enhanced nanofocus computed tomography to be used as a routine screening tool of neo-tissue formation in Ti6Al4V constructs, transforming it into a robust three dimensional quality control methodology.

  11. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; Yildirim, Ali Önder; Hertz, Hans M.

    2016-12-01

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-power small-spot liquid-metal-jet electron-impact source. The tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.

  12. Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology

    NASA Astrophysics Data System (ADS)

    Töpperwien, Mareike; Krenkel, Martin; Quade, Felix; Salditt, Tim

    2016-09-01

    Due to the large penetration depth and small wavelength hard x-rays offer a unique potential for 3D biomedical and biological imaging, combining capabilities of high resolution and large sample volume. However, in classical absorption-based computed tomography, soft tissue only shows a weak contrast, limiting the actual resolution. With the advent of phase-contrast methods, the much stronger phase shift induced by the sample can now be exploited. For high resolution, free space propagation behind the sample is particularly well suited to make the phase shift visible. Contrast formation is based on the self-interference of the transmitted beam, resulting in object-induced intensity modulations in the detector plane. As this method requires a sufficiently high degree of spatial coherence, it was since long perceived as a synchrotron-based imaging technique. In this contribution we show that by combination of high brightness liquid-metal jet microfocus sources and suitable sample preparation techniques, as well as optimized geometry, detection and phase retrieval, excellent three-dimensional image quality can be obtained, revealing the anatomy of a cobweb spider in high detail. This opens up new opportunities for 3D virtual histology of small organisms. Importantly, the image quality is finally augmented to a level accessible to automatic 3D segmentation.

  13. A user-friendly LabVIEW software platform for grating based X-ray phase-contrast imaging.

    PubMed

    Wang, Shenghao; Han, Huajie; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Wu, Zhao; Wu, Ziyu

    2015-01-01

    X-ray phase-contrast imaging can provide greatly improved contrast over conventional absorption-based imaging for weakly absorbing samples, such as biological soft tissues and fibre composites. In this study, we introduced an easy and fast way to develop a user-friendly software platform dedicated to the new grating-based X-ray phase-contrast imaging setup at the National Synchrotron Radiation Laboratory of the University of Science and Technology of China. The control of 21 motorized stages, of a piezoelectric stage and of an X-ray tube are achieved with this software, it also covers image acquisition with a flat panel detector for automatic phase stepping scan. Moreover, a data post-processing module for signals retrieval and other custom features are in principle available. With a seamless integration of all the necessary functions in one software package, this platform greatly facilitate users' activities during experimental runs with this grating based X-ray phase contrast imaging setup.

  14. Quantitative phase measurement for wafer-level optics

    NASA Astrophysics Data System (ADS)

    Qu, Weijuan; Wen, Yongfu; Wang, Zhaomin; Yang, Fang; Huang, Lei; Zuo, Chao

    2015-07-01

    Wafer-level-optics now is widely used in smart phone camera, mobile video conferencing or in medical equipment that require tiny cameras. Extracting quantitative phase information has received increased interest in order to quantify the quality of manufactured wafer-level-optics, detect defective devices before packaging, and provide feedback for manufacturing process control, all at the wafer-level for high-throughput microfabrication. We demonstrate two phase imaging methods, digital holographic microscopy (DHM) and Transport-of-Intensity Equation (TIE) to measure the phase of the wafer-level lenses. DHM is a laser-based interferometric method based on interference of two wavefronts. It can perform a phase measurement in a single shot. While a minimum of two measurements of the spatial intensity of the optical wave in closely spaced planes perpendicular to the direction of propagation are needed to do the direct phase retrieval by solving a second-order differential equation, i.e., with a non-iterative deterministic algorithm from intensity measurements using the Transport-of-Intensity Equation (TIE). But TIE is a non-interferometric method, thus can be applied to partial-coherence light. We demonstrated the capability and disability for the two phase measurement methods for wafer-level optics inspection.

  15. High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast

    NASA Astrophysics Data System (ADS)

    Sztrókay, A.; Diemoz, P. C.; Schlossbauer, T.; Brun, E.; Bamberg, F.; Mayr, D.; Reiser, M. F.; Bravin, A.; Coan, P.

    2012-05-01

    Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm2 pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation.

  16. Atomic force microscope image contrast mechanisms on supported lipid bilayers.

    PubMed

    Schneider, J; Dufrêne, Y F; Barger, W R; Lee, G U

    2000-08-01

    This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures onto a monolayer of DSPE show an abrupt breakthrough event at a repeatable, material-dependent force. The breakthrough force for DSPE and MGDG is sizable, whereas the breakthrough force for DOPE is too small to measure accurately. Contact-mode AFM images on 1:1 mixed monolayers of DSPE/DOPE and MGDG/DOPE have a high topographic contrast at loads between the breakthrough force of each phase, and a low topographic contrast at loads above the breakthrough force of both phases. Frictional contrast is inverted and magnified at loads above the breakthrough force of both phases. These results emphasize the important role that surface forces and mechanics can play in imaging multicomponent biomembranes with AFM.

  17. Quantitative Oxygenation Venography from MRI Phase

    PubMed Central

    Fan, Audrey P.; Bilgic, Berkin; Gagnon, Louis; Witzel, Thomas; Bhat, Himanshu; Rosen, Bruce R.; Adalsteinsson, Elfar

    2014-01-01

    Purpose To demonstrate acquisition and processing methods for quantitative oxygenation venograms that map in vivo oxygen saturation (SvO2) along cerebral venous vasculature. Methods Regularized quantitative susceptibility mapping (QSM) is used to reconstruct susceptibility values and estimate SvO2 in veins. QSM with ℓ1 and ℓ2 regularization are compared in numerical simulations of vessel structures with known magnetic susceptibility. Dual-echo, flow-compensated phase images are collected in three healthy volunteers to create QSM images. Bright veins in the susceptibility maps are vectorized and used to form a three-dimensional vascular mesh, or venogram, along which to display SvO2 values from QSM. Results Quantitative oxygenation venograms that map SvO2 along brain vessels of arbitrary orientation and geometry are shown in vivo. SvO2 values in major cerebral veins lie within the normal physiological range reported by 15O positron emission tomography. SvO2 from QSM is consistent with previous MR susceptometry methods for vessel segments oriented parallel to the main magnetic field. In vessel simulations, ℓ1 regularization results in less than 10% SvO2 absolute error across all vessel tilt orientations and provides more accurate SvO2 estimation than ℓ2 regularization. Conclusion The proposed analysis of susceptibility images enables reliable mapping of quantitative SvO2 along venograms and may facilitate clinical use of venous oxygenation imaging. PMID:24006229

  18. A Bayesian model for highly accelerated phase-contrast MRI.

    PubMed

    Rich, Adam; Potter, Lee C; Jin, Ning; Ash, Joshua; Simonetti, Orlando P; Ahmad, Rizwan

    2016-08-01

    Phase-contrast magnetic resonance imaging is a noninvasive tool to assess cardiovascular disease by quantifying blood flow; however, low data acquisition efficiency limits the spatial and temporal resolutions, real-time application, and extensions to four-dimensional flow imaging in clinical settings. We propose a new data processing approach called Reconstructing Velocity Encoded MRI with Approximate message passing aLgorithms (ReVEAL) that accelerates the acquisition by exploiting data structure unique to phase-contrast magnetic resonance imaging. The proposed approach models physical correlations across space, time, and velocity encodings. The proposed Bayesian approach exploits the relationships in both magnitude and phase among velocity encodings. A fast iterative recovery algorithm is introduced based on message passing. For validation, prospectively undersampled data are processed from a pulsatile flow phantom and five healthy volunteers. The proposed approach is in good agreement, quantified by peak velocity and stroke volume (SV), with reference data for acceleration rates R≤10. For SV, Pearson r≥0.99 for phantom imaging (n = 24) and r≥0.96 for prospectively accelerated in vivo imaging (n = 10) for R≤10. The proposed approach enables accurate quantification of blood flow from highly undersampled data. The technique is extensible to four-dimensional flow imaging, where higher acceleration may be possible due to additional redundancy. Magn Reson Med 76:689-701, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. In Vitro Validation of an Artefact Suppression Algorithm in X-Ray Phase-Contrast Computed Tomography.

    PubMed

    Sunaguchi, Naoki; Yuasa, Tetsuya; Hirano, Shin-Ichi; Gupta, Rajiv; Ando, Masami

    2015-01-01

    X-ray phase-contrast tomography can significantly increase the contrast-resolution of conventional attenuation-contrast imaging, especially for soft-tissue structures that have very similar attenuation. Just as in attenuation-based tomography, phase contrast tomography requires a linear dependence of aggregate beam direction on the incremental direction alteration caused by individual voxels along the path of the X-ray beam. Dense objects such as calcifications in biological specimens violate this condition. There are extensive beam deflection artefacts in the vicinity of such structures because they result in large distortion of wave front due to the large difference of refractive index; for such large changes in beam direction, the transmittance of the silicon analyzer crystal saturates and is no longer linearly dependent on the angle of refraction. This paper describes a method by which these effects can be overcome and excellent soft-tissue contrast of phase tomography can be preserved in the vicinity of such artefact-producing structures.

  20. High-energy x-ray grating-based phase-contrast radiography of human anatomy

    NASA Astrophysics Data System (ADS)

    Horn, Florian; Hauke, Christian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Seifert, Maria; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-03-01

    X-ray grating-based phase-contrast Talbot-Lau interferometry is a promising imaging technology that has the potential to raise soft tissue contrast in comparison to conventional attenuation-based imaging. Additionally, it is sensitive to attenuation, refraction and scattering of the radiation and thus provides complementary and otherwise inaccessible information due to the dark-field image, which shows the sub-pixel size granularity of the measured object. Until recent progress the method has been mainly limited to photon energies below 40 keV. Scaling the method to photon energies that are sufficient to pass large and spacious objects represents a challenging task. This is caused by increasing demands regarding the fabrication process of the gratings and the broad spectra that come along with the use of polychromatic X-ray sources operated at high acceleration voltages. We designed a setup that is capable to reach high visibilities in the range from 50 to 120 kV. Therefore, spacious and dense parts of the human body with high attenuation can be measured, such as a human knee. The authors will show investigations on the resulting attenuation, differential phase-contrast and dark-field images. The images experimentally show that X-ray grating-based phase-contrast radiography is feasible with highly absorbing parts of the human body containing massive bones.

  1. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-powermore » small-spot liquid-metal-jet electron-impact source. Lastly, the tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.« less

  2. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    DOE PAGES

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; ...

    2016-12-13

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-powermore » small-spot liquid-metal-jet electron-impact source. Lastly, the tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.« less

  3. Improved image reconstruction of low-resolution multichannel phase contrast angiography

    PubMed Central

    P. Krishnan, Akshara; Joy, Ajin; Paul, Joseph Suresh

    2016-01-01

    Abstract. In low-resolution phase contrast magnetic resonance angiography, the maximum intensity projected channel images will be blurred with consequent loss of vascular details. The channel images are enhanced using a stabilized deblurring filter, applied to each channel prior to combining the individual channel images. The stabilized deblurring is obtained by the addition of a nonlocal regularization term to the reverse heat equation, referred to as nonlocally stabilized reverse diffusion filter. Unlike reverse diffusion filter, which is highly unstable and blows up noise, nonlocal stabilization enhances intensity projected parallel images uniformly. Application to multichannel vessel enhancement is illustrated using both volunteer data and simulated multichannel angiograms. Robustness of the filter applied to volunteer datasets is shown using statistically validated improvement in flow quantification. Improved performance in terms of preserving vascular structures and phased array reconstruction in both simulated and real data is demonstrated using structureness measure and contrast ratio. PMID:26835501

  4. Virtual dissection of Thoropa miliaris tadpole using phase-contrast synchrotron microtomography

    NASA Astrophysics Data System (ADS)

    Fidalgo, G.; Colaço, M. V.; Nogueira, L. P.; Braz, D.; Silva, H. R.; Colaço, G.; Barroso, R. C.

    2018-05-01

    In this work, in-line phase-contrast synchrotron microtomography was used in order to study the external and internal morphology of Thoropa miliaris tadpoles. Whole-specimens of T. miliaris in larval stages of development 28, 37 and 42, collected in the municipality of Mangaratiba (Rio de Janeiro, Brazil) were used for the study. The samples were scanned in microtomography beamline (IMX) at the Brazilian Synchrotron Light Laboratory (LNLS). The phase-contrast technique allowed us to obtain high quality images which made possible the structures segmentation on the rendered volume by the Avizo graphic image editing software. The combination of high quality images and segmentation process provides adequate visualization of different organs and soft (liver, notochord, brain, crystalline, cartilages) and hard (elements of the bone skeleton) tissues.

  5. Quantitative evaluation of microvascular blood flow by contrast-enhanced ultrasound (CEUS).

    PubMed

    Greis, Christian

    2011-01-01

    Ultrasound contrast agents consist of tiny gas-filled microbubbles the size of red blood cells. Due to their size distribution, they are purely intravascular tracers which do not extravasate into the interstitial fluid, and thus they are perfect agents for imaging blood distribution and flow. Using ultrasound scanners with contrast-specific software, the specific microbubble-derived echo signals can be separated from tissue signals in realtime, allowing selective imaging of the contrast agent. The signal intensity obtained lies in a linear relationship to the amount of microbubbles in the target organ, which allows easy and reliable assessment of relative blood volume. Imaging of the contrast wash-in and wash-out after bolus injection, or more precisely using the flash-replenishment technique, allows assessment of regional blood flow velocity. Commercially available quantification software packages can calculate time-related intensity values from the contrast wash-in and wash-out phase for each image pixel from stored video clips. After fitting of a mathematical model curve according to the respective kinetic model (bolus or flash-replenishment kinetics), time/intensity curves (TIC) can be calculated from single pixels or user-defined regions of interest (ROI). Characteristic parameters of these TICs (e.g. peak intensity, area under the curve, wash-in rate, etc.) can be displayed as color-coded parametric maps on top of the anatomical image, to identify cold and hot spots with abnormal perfusion.

  6. Assessment of the effects of different sample perfusion procedures on phase-contrast tomographic images of mouse spinal cord

    NASA Astrophysics Data System (ADS)

    Stefanutti, E.; Sierra, A.; Miocchi, P.; Massimi, L.; Brun, F.; Maugeri, L.; Bukreeva, I.; Nurmi, A.; Begani Provinciali, G.; Tromba, G.; Gröhn, O.; Giove, F.; Cedola, A.; Fratini, M.

    2018-03-01

    Synchrotron X-ray Phase Contrast micro-Tomography (SXrPCμT) is a powerful tool in the investigation of biological tissues, including the central nervous system (CNS), and it allows to simultaneously detect the vascular and neuronal network avoiding contrast agents or destructive sample preparations. However, specific sample preparation procedures aimed to optimize the achievable contrast- and signal-to-noise ratio (CNR and SNR, respectively) are required. Here we report and discuss the effects of perfusion with two different fixative agents (ethanol and paraformaldehyde) and with a widely used contrast medium (MICROFIL®) on mouse spinal cord. As a main result, we found that ethanol enhances contrast at the grey/white matter interface and increases the contrast in correspondence of vascular features and fibres, thus providing an adequate spatial resolution to visualise the vascular network at the microscale. On the other hand, ethanol is known to induce tissue dehydration, likely reducing cell dimensions below the spatial resolution limit imposed by the experimental technique. Nonetheless, neurons remain well visible using either perfused paraformaldehyde or MICROFIL® compound, as these latter media do not affect tissues with dehydration effects. Paraformaldehyde appears as the best compromise: it is not a contrast agent, like MICROFIL®, but it is less invasive than ethanol and permits to visualise well both cells and blood vessels. However, a quantitative estimation of the relative grey matter volume of each sample has led us to conclude that no significant alterations in the grey matter extension compared to the white matter occur as a consequence of the perfusion procedures tested in this study.

  7. Quantification of signal detection performance degradation induced by phase-retrieval in propagation-based x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Chou, Cheng-Ying; Anastasio, Mark A.

    2016-04-01

    In propagation-based X-ray phase-contrast (PB XPC) imaging, the measured image contains a mixture of absorption- and phase-contrast. To obtain separate images of the projected absorption and phase (i.e., refractive) properties of a sample, phase retrieval methods can be employed. It has been suggested that phase-retrieval can always improve image quality in PB XPC imaging. However, when objective (task-based) measures of image quality are employed, this is not necessarily true and phase retrieval can be detrimental. In this work, signal detection theory is utilized to quantify the performance of a Hotelling observer (HO) for detecting a known signal in a known background. Two cases are considered. In the first case, the HO acts directly on the measured intensity data. In the second case, the HO acts on either the retrieved phase or absorption image. We demonstrate that the performance of the HO is superior when acting on the measured intensity data. The loss of task-specific information induced by phase-retrieval is quantified by computing the efficiency of the HO as the ratio of the test statistic signal-to-noise ratio (SNR) for the two cases. The effect of the system geometry on this efficiency is systematically investigated. Our findings confirm that phase-retrieval can impair signal detection performance in XPC imaging.

  8. Preliminary research on dual-energy X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Han, Hua-Jie; Wang, Sheng-Hao; Gao, Kun; Wang, Zhi-Li; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Pei-Ping

    2016-04-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure the bone mineral density (BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials. Supported by Major State Basic Research Development Program (2012CB825800), Science Fund for Creative Research Groups (11321503) and National Natural Science Foundation of China (11179004, 10979055, 11205189, 11205157)

  9. Using X-Ray In-Line Phase-Contrast Imaging for the Investigation of Nude Mouse Hepatic Tumors

    PubMed Central

    Zhang, Lu; Luo, Shuqian

    2012-01-01

    The purpose of this paper is to report the noninvasive imaging of hepatic tumors without contrast agents. Both normal tissues and tumor tissues can be detected, and tumor tissues in different stages can be classified quantitatively. We implanted BEL-7402 human hepatocellular carcinoma cells into the livers of nude mice and then imaged the livers using X-ray in-line phase-contrast imaging (ILPCI). The projection images' texture feature based on gray level co-occurrence matrix (GLCM) and dual-tree complex wavelet transforms (DTCWT) were extracted to discriminate normal tissues and tumor tissues. Different stages of hepatic tumors were classified using support vector machines (SVM). Images of livers from nude mice sacrificed 6 days after inoculation with cancer cells show diffuse distribution of the tumor tissue, but images of livers from nude mice sacrificed 9, 12, or 15 days after inoculation with cancer cells show necrotic lumps in the tumor tissue. The results of the principal component analysis (PCA) of the texture features based on GLCM of normal regions were positive, but those of tumor regions were negative. The results of PCA of the texture features based on DTCWT of normal regions were greater than those of tumor regions. The values of the texture features in low-frequency coefficient images increased monotonically with the growth of the tumors. Different stages of liver tumors can be classified using SVM, and the accuracy is 83.33%. Noninvasive and micron-scale imaging can be achieved by X-ray ILPCI. We can observe hepatic tumors and small vessels from the phase-contrast images. This new imaging approach for hepatic cancer is effective and has potential use in the early detection and classification of hepatic tumors. PMID:22761929

  10. Comparison of Dynamic Contrast Enhanced MRI and Quantitative SPECT in a Rat Glioma Model

    PubMed Central

    Skinner, Jack T.; Yankeelov, Thomas E.; Peterson, Todd E.; Does, Mark D.

    2012-01-01

    Pharmacokinetic modeling of dynamic contrast enhanced (DCE)-MRI data provides measures of the extracellular volume fraction (ve) and the volume transfer constant (Ktrans) in a given tissue. These parameter estimates may be biased, however, by confounding issues such as contrast agent and tissue water dynamics, or assumptions of vascularization and perfusion made by the commonly used model. In contrast to MRI, radiotracer imaging with SPECT is insensitive to water dynamics. A quantitative dual-isotope SPECT technique was developed to obtain an estimate of ve in a rat glioma model for comparison to the corresponding estimates obtained using DCE-MRI with a vascular input function (VIF) and reference region model (RR). Both DCE-MRI methods produced consistently larger estimates of ve in comparison to the SPECT estimates, and several experimental sources were postulated to contribute to these differences. PMID:22991315

  11. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarapata, A., E-mail: adrian.sarapata@tum.de; Stayman, J. W.; Siewerdsen, J. H.

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code themore » authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not

  12. Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI.

    PubMed

    Dyverfeldt, Petter; Sigfridsson, Andreas; Kvitting, John-Peder Escobar; Ebbers, Tino

    2006-10-01

    Turbulent flow, characterized by velocity fluctuations, is a contributing factor to the pathogenesis of several cardiovascular diseases. A clinical noninvasive tool for assessing turbulence is lacking, however. It is well known that the occurrence of multiple spin velocities within a voxel during the influence of a magnetic gradient moment causes signal loss in phase-contrast magnetic resonance imaging (PC-MRI). In this paper a mathematical derivation of an expression for computing the standard deviation (SD) of the blood flow velocity distribution within a voxel is presented. The SD is obtained from the magnitude of PC-MRI signals acquired with different first gradient moments. By exploiting the relation between the SD and turbulence intensity (TI), this method allows for quantitative studies of turbulence. For validation, the TI in an in vitro flow phantom was quantified, and the results compared favorably with previously published laser Doppler anemometry (LDA) results. This method has the potential to become an important tool for the noninvasive assessment of turbulence in the arterial tree.

  13. On-sky performance of the Zernike phase contrast sensor for the phasing of segmented telescopes.

    PubMed

    Surdej, Isabelle; Yaitskova, Natalia; Gonte, Frederic

    2010-07-20

    The Zernike phase contrast method is a novel technique to phase the primary mirrors of segmented telescopes. It has been tested on-sky on a unit telescope of the Very Large Telescope with a segmented mirror conjugated to the primary mirror to emulate a segmented telescope. The theoretical background of this sensor and the algorithm used to retrieve the piston, tip, and tilt information are described. The performance of the sensor as a function of parameters such as star magnitude, seeing, and integration time is discussed. The phasing accuracy has always been below 15 nm root mean square wavefront error under normal conditions of operation and the limiting star magnitude achieved on-sky with this sensor is 15.7 in the red, which would be sufficient to phase segmented telescopes in closed-loop during observations.

  14. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.

    PubMed

    Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz

    2012-09-10

    Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.

  15. Early quantitative evaluation of a tumor vasculature disruptive agent AVE8062 using dynamic contrast-enhanced ultrasonography.

    PubMed

    Lavisse, Sonia; Lejeune, Pascale; Rouffiac, Valérie; Elie, Nicolas; Bribes, Estelle; Demers, Brigitte; Vrignaud, Patricia; Bissery, Marie-Christine; Brulé, Aude; Koscielny, Serge; Péronneau, Pierre; Lassau, Nathalie

    2008-02-01

    To evaluate the early tumor vasculature disrupting effects of the AVE8062 molecule and the feasibility of dynamic contrast-enhanced ultrasonography (DCE-US) in the quantitative assessment of these effects. AVE8062 was administered at a single dose (41 mg/kg) to 40 melanoma-bearing nude mice, which were all imaged before and after drug administration (5 + 15 minutes, 1, 6, and 24 hours). Using an ultrasound scanner (Aplio, Toshiba), intratumor vessels were counted in power Doppler mode and tumor microvasculature was assessed in a specific harmonic mode associated with a perfusion and quantification software for contrast-uptake quantification (Sonovue, Bracco). The peak intensity (PI), time-to-PI (T PI), and full-width at half maximum (FWHM) were extracted from the time-intensity curves expressed as linear raw data. Histologic analysis evaluated microvessel density (MVD) and necrosis at each time point studied. Statistical significance was estimated (paired sum rank and Mann-Whitney tests) to evaluate drug activity and to compare its efficacy at the different time points. In power Doppler mode, intratumoral vessels depletion started 15 minutes postinjection (32%, P = 0.004) and the decrease was maximal at 6 hours (51%, P = 0.002). PI decreased by 3.5- and 45.7-fold at 1 and 6 hours, respectively, compared with preinjection values (P = 0.016 and P = 0.008). The decrease at 6 hours was significantly different from the variation at 1 hour (P = 0.0012) and at 24 hours (P = 0.0008). T PI and FWHM showed a significant increase exclusively at 6 hours (P = 0.0034, P = 0.0039). Histology revealed significantly decreased MVD and increased necrosis at 24 hours (P < 0.01). DCE-US allowed quantitative in vivo evaluation of the functional effects of AVE8062, which was found most effective on tumoral microvasculature 6 hours after its administration. A clinical phase-1 study of AVE8062 is ongoing using the same ultrasonography methodology before and 6 and 24 hours

  16. Noise robustness of a combined phase retrieval and reconstruction method for phase-contrast tomography.

    PubMed

    Kongskov, Rasmus Dalgas; Jørgensen, Jakob Sauer; Poulsen, Henning Friis; Hansen, Per Christian

    2016-04-01

    Classical reconstruction methods for phase-contrast tomography consist of two stages: phase retrieval and tomographic reconstruction. A novel algebraic method combining the two was suggested by Kostenko et al. [Opt. Express21, 12185 (2013)OPEXFF1094-408710.1364/OE.21.012185], and preliminary results demonstrated improved reconstruction compared with a given two-stage method. Using simulated free-space propagation experiments with a single sample-detector distance, we thoroughly compare the novel method with the two-stage method to address limitations of the preliminary results. We demonstrate that the novel method is substantially more robust toward noise; our simulations point to a possible reduction in counting times by an order of magnitude.

  17. Large field of view quantitative phase imaging of induced pluripotent stem cells and optical pathlength reference materials

    NASA Astrophysics Data System (ADS)

    Kwee, Edward; Peterson, Alexander; Stinson, Jeffrey; Halter, Michael; Yu, Liya; Majurski, Michael; Chalfoun, Joe; Bajcsy, Peter; Elliott, John

    2018-02-01

    Induced pluripotent stem cells (iPSCs) are reprogrammed cells that can have heterogeneous biological potential. Quality assurance metrics of reprogrammed iPSCs will be critical to ensure reliable use in cell therapies and personalized diagnostic tests. We present a quantitative phase imaging (QPI) workflow which includes acquisition, processing, and stitching multiple adjacent image tiles across a large field of view (LFOV) of a culture vessel. Low magnification image tiles (10x) were acquired with a Phasics SID4BIO camera on a Zeiss microscope. iPSC cultures were maintained using a custom stage incubator on an automated stage. We implement an image acquisition strategy that compensates for non-flat illumination wavefronts to enable imaging of an entire well plate, including the meniscus region normally obscured in Zernike phase contrast imaging. Polynomial fitting and background mode correction was implemented to enable comparability and stitching between multiple tiles. LFOV imaging of reference materials indicated that image acquisition and processing strategies did not affect quantitative phase measurements across the LFOV. Analysis of iPSC colony images demonstrated mass doubling time was significantly different than area doubling time. These measurements were benchmarked with prototype microsphere beads and etched-glass gratings with specified spatial dimensions designed to be QPI reference materials with optical pathlength shifts suitable for cell microscopy. This QPI workflow and the use of reference materials can provide non-destructive traceable imaging method for novel iPSC heterogeneity characterization.

  18. Zernike phase-contrast electron cryotomography applied to marine cyanobacteria infected with cyanophages.

    PubMed

    Dai, Wei; Fu, Caroline; Khant, Htet A; Ludtke, Steven J; Schmid, Michael F; Chiu, Wah

    2014-11-01

    Advances in electron cryotomography have provided new opportunities to visualize the internal 3D structures of a bacterium. An electron microscope equipped with Zernike phase-contrast optics produces images with markedly increased contrast compared with images obtained by conventional electron microscopy. Here we describe a protocol to apply Zernike phase plate technology for acquiring electron tomographic tilt series of cyanophage-infected cyanobacterial cells embedded in ice, without staining or chemical fixation. We detail the procedures for aligning and assessing phase plates for data collection, and methods for obtaining 3D structures of cyanophage assembly intermediates in the host by subtomogram alignment, classification and averaging. Acquiring three or four tomographic tilt series takes ∼12 h on a JEM2200FS electron microscope. We expect this time requirement to decrease substantially as the technique matures. The time required for annotation and subtomogram averaging varies widely depending on the project goals and data volume.

  19. Contrast features of breast cancer in frequency-domain laser scanning mammography

    NASA Astrophysics Data System (ADS)

    Moesta, K. Thomas; Fantini, Sergio; Jess, Helge; Totkas, Susan; Franceschini, Maria-Angela; Kaschke, Michael; Schlag, Peter M.

    1998-04-01

    Frequency-domain optical mammography has been advocated to improve contrast and thus cancer detectability in breast transillumination. To the best of our knowledge, this report provides the first systematic clinical results of a frequency-domain laser scanning mammograph (FLM). The instrument provides monochromatic light at 690 and 810 nm, whose intensity is modulated at 110.0008 MHz, respectively. The breast is scanned by stepwise positioning of source and detector, and amplitude and phase for both wavelengths are measured by a photomultiplier tube using heterodyne detection. Images are formed representing amplitude or phase data on linear gray scales. Furthermore, various algorithms carrying on more than one signal were essayed. Twenty visible cancers out of 25 cancers in the first 59 investigations were analyzed for their quantitative contrast with respect to the whole breast or to defined reference areas. Contrast definitions refer to the signal itself, to the signal noise, or were based on nonparametric comparison. The amplitude signal provides better contrast than the phase signal. Ratio images between red and IR amplitudes gave variable results; in some cases the tumor contrast was canceled. The algorithms to determine (mu) a and (mu) sPRM from amplitude and phase data did not significantly improve upon objective contrast. The N algorithm, using the phase signal to flatten the amplitude signal did significantly improve upon contrast according to contrast definitions 1 and 2, however, did not improve upon nonparametric contrast. Thus, with the current instrumentation, the phase signal is helpful to correct for the complex and variable geometry of the breast. However, an independent informational content for tumor differentiation could not be determined. The flat field algorithm did greatly enhance optical contrast in comparison with amplitude or amplitude ratio images. Further evaluation of FLM will have to be based on the N-algorithm images.

  20. Tomography using monochromatic thermal neutrons with attenuation and phase contrast

    NASA Astrophysics Data System (ADS)

    Dubus, Francois; Bonse, Ulrich; Biermann, Theodor; Baron, Matthias; Beckmann, Felix; Zawisky, Michael

    2002-01-01

    Attenuation-contrast tomography with monochromatic thermal neutrons was developed and operated at guide station S18 of the institute Laue-Langevin in Grenoble. From the S18 spectrum the neutron wavelength (lambda) equals 0.18 nm was selected by employing a fore crystal with the silicon 220 reflection at a Bragg angle (Theta) equals 30 degrees. Projections were registered by a position sensitive detector (PSD) consisting of a neutron-to-visible-light converter coupled to a CCD detector. Neutron tomography and its comparison with X-ray tomography is studied. This is of special interest since the cross section for neutron attenuation ((sigma) atom) and the cross section for neutron phase shift (bc) are isotope specific and, in addition, by no means mostly monotonous functions of atomic number Z as are attenuation coefficient ((mu) x) and atomic scattering amplitude (f) in the case of X-rays. Results obtained with n-attenuation tomography will be presented. Possibilities and the setup of an instrument for neutron phase-contrast tomography based on single-crystal neutron interferometry will be described.

  1. Potential of phase contrast x-ray imaging for detecting tumors in dense breast: initial phantom studies

    NASA Astrophysics Data System (ADS)

    Omoumi, Farid H.; Wu, Di; Guo, Yuran; Ghani, Muhammad U.; Li, Yuhua; Boyce, Kari E.; Liu, Hong

    2018-02-01

    The objective of this study is to demonstrate the potential of using the High-energy in-line phase contrast x-ray imaging to detect lesions that are indistinguishable by conventional x-ray mammography but are detectable by supplemental ultrasound screening within dense breasts. For this study, a custom-made prototype x-ray/ultrasound dualmodality phantom that mimics dense breast is created to include embedded carbon fiber disks with multiple diameters and thicknesses. The phase contrast image is acquired using a prototype at 120kVp, 67μA, exposure time of 16.7sec and focal spot size of 18.3μm with average glandular dose (AGD) of 0.3mGy under a geometric magnification of 2.48. The conventional x-ray image is acquired with a bench top system operating at 40kVp, 300μA, exposure time of 50sec and same AGD. The results demonstrate that conventional x-ray imaging is unable to detect any of the carbon fiber disks, while phase contrast imaging and ultrasonography are able to detect most or all of the disks under the applied experimental conditions. These results illustrate phase contrast imaging is capable of detecting targets in a dual-modality phantom which simulates lesions in dense breast tissue, when the simulated lesions are not distinguishable by conventional mammography. Therefore mammographic screening with phase contrast technique could eventually replace both x-ray and ultrasonography for screening detection of small lesions with microcalcification in dense breasts where pathologic lesions are masked due to highly glandular tissue. These results encourage further investigation using high glandular density phantoms to further evaluate the effectiveness of phase contrast imaging as a single modality test, which combines the advantages of both x-ray and ultrasound imaging in cancer screening of patients with dense breasts.

  2. Refractive index variance of cells and tissues measured by quantitative phase imaging.

    PubMed

    Shan, Mingguang; Kandel, Mikhail E; Popescu, Gabriel

    2017-01-23

    The refractive index distribution of cells and tissues governs their interaction with light and can report on morphological modifications associated with disease. Through intensity-based measurements, refractive index information can be extracted only via scattering models that approximate light propagation. As a result, current knowledge of refractive index distributions across various tissues and cell types remains limited. Here we use quantitative phase imaging and the statistical dispersion relation (SDR) to extract information about the refractive index variance in a variety of specimens. Due to the phase-resolved measurement in three-dimensions, our approach yields refractive index results without prior knowledge about the tissue thickness. With the recent progress in quantitative phase imaging systems, we anticipate that using SDR will become routine in assessing tissue optical properties.

  3. Food Consumption and Handling Survey for Quantitative Microbiological Consumer Phase Risk Assessments.

    PubMed

    Chardon, Jurgen; Swart, Arno

    2016-07-01

    In the consumer phase of a typical quantitative microbiological risk assessment (QMRA), mathematical equations identify data gaps. To acquire useful data we designed a food consumption and food handling survey (2,226 respondents) for QMRA applications that is especially aimed at obtaining quantitative data. For a broad spectrum of food products, the survey covered the following topics: processing status at retail, consumer storage, preparation, and consumption. Questions were designed to facilitate distribution fitting. In the statistical analysis, special attention was given to the selection of the most adequate distribution to describe the data. Bootstrap procedures were used to describe uncertainty. The final result was a coherent quantitative consumer phase food survey and parameter estimates for food handling and consumption practices in The Netherlands, including variation over individuals and uncertainty estimates.

  4. Benchmarking the x-ray phase contrast imaging for ICF DT ice characterization using roughened surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewald, E; Kozioziemski, B; Moody, J

    2008-06-26

    We use x-ray phase contrast imaging to characterize the inner surface roughness of DT ice layers in capsules planned for future ignition experiments. It is therefore important to quantify how well the x-ray data correlates with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical artifacts with azimuthally uniform sinusoidal perturbations with 100 um period and 1 um amplitude demonstrated 0.02 um accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close tomore » that required for the DT ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the x-ray measurements. When comparing average power spectra of individual measurements, the accuracy mode number limits of the x-ray phase contrast system benchmarked against surface characterization performed by Atomic Force Microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are >100 when comparing matching individual measurements. We will discuss the implications for interpreting DT ice roughness data derived from phase-contrast x-ray imaging.« less

  5. Realistic wave-optics simulation of X-ray phase-contrast imaging at a human scale

    NASA Astrophysics Data System (ADS)

    Sung, Yongjin; Segars, W. Paul; Pan, Adam; Ando, Masami; Sheppard, Colin J. R.; Gupta, Rajiv

    2015-07-01

    X-ray phase-contrast imaging (XPCI) can dramatically improve soft tissue contrast in X-ray medical imaging. Despite worldwide efforts to develop novel XPCI systems, a numerical framework to rigorously predict the performance of a clinical XPCI system at a human scale is not yet available. We have developed such a tool by combining a numerical anthropomorphic phantom defined with non-uniform rational B-splines (NURBS) and a wave optics-based simulator that can accurately capture the phase-contrast signal from a human-scaled numerical phantom. Using a synchrotron-based, high-performance XPCI system, we provide qualitative comparison between simulated and experimental images. Our tool can be used to simulate the performance of XPCI on various disease entities and compare proposed XPCI systems in an unbiased manner.

  6. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    NASA Astrophysics Data System (ADS)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  7. Phase contrast X-ray microtomography of the Rhodnius prolixus head: Comparison of direct reconstruction and phase retrieval approach

    NASA Astrophysics Data System (ADS)

    Almeida, A. P.; Braz, D.; Nogueira, L. P.; Colaço, M. V.; Soares, J.; Cardoso, S. C.; Garcia, E. S.; Azambuja, P.; Gonzalez, M. S.; Mohammadi, S.; Tromba, G.; Barroso, R. C.

    2014-02-01

    We have used phase-contrast X-ray microtomography (PPC-μCT) to study the head of the blood-feeding bug, Rhodnius prolixus, which is one of the most important insect vector of Trypanosoma cruzi, ethiologic agent of Chagas disease in Latin America. Images reconstructed from phase-retrieved projections processed by ANKA phase are compared to those obtained through direct tomographic reconstruction of the flat-field-corrected transmission radiographs. It should be noted that the relative locations of the important morphological internal structures are observable with a precision that is difficult to obtain without the phase retrieval approach.

  8. Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Tian, Xiaolin; He, Xiaoliang; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-08-01

    Microscopy based on transport of intensity equation provides quantitative phase distributions which opens another perspective for cellular observations. However, it requires multi-focal image capturing while mechanical and electrical scanning limits its real time capacity in sample detections. Here, in order to break through this restriction, real time quantitative phase microscopy based on single-shot transport of the intensity equation method is proposed. A programmed phase mask is designed to realize simultaneous multi-focal image recording without any scanning; thus, phase distributions can be quantitatively retrieved in real time. It is believed the proposed method can be potentially applied in various biological and medical applications, especially for live cell imaging.

  9. Slit-scanning differential x-ray phase-contrast mammography: proof-of-concept experimental studies.

    PubMed

    Koehler, Thomas; Daerr, Heiner; Martens, Gerhard; Kuhn, Norbert; Löscher, Stefan; van Stevendaal, Udo; Roessl, Ewald

    2015-04-01

    The purpose of this work is to investigate the feasibility of grating-based, differential phase-contrast, full-field digital mammography (FFDM) in terms of the requirements for field-of-view (FOV), mechanical stability, and scan time. A rigid, actuator-free Talbot interferometric unit was designed and integrated into a state-of-the-art x-ray slit-scanning mammography system, namely, the Philips MicroDose L30 FFDM system. A dedicated phase-acquisition and phase retrieval method was developed and implemented that exploits the redundancy of the data acquisition inherent to the slit-scanning approach to image generation of the system. No modifications to the scan arm motion control were implemented. The authors achieve a FOV of 160 × 196 mm consisting of two disjoint areas measuring 77 × 196 mm with a gap of 6 mm between them. Typical scanning times vary between 10 and 15 s and dose levels are lower than typical FFDM doses for conventional scans with identical acquisition parameters due to the presence of the source-grating G0. Only minor to moderate artifacts are observed in the three reconstructed images, indicating that mechanical vibrations induced by other system components do not prevent the use of the platform for phase contrast imaging. To the best of our knowledge, this is the first attempt to integrate x-ray gratings hardware into a clinical mammography unit. The results demonstrate that a scanning differential phase contrast FFDM system that meets the requirements of FOV, stability, scan time, and dose can be build.

  10. Quantitative label-free sperm imaging by means of transport of intensity

    NASA Astrophysics Data System (ADS)

    Poola, Praveen Kumar; Pandiyan, Vimal Prabhu; Jayaraman, Varshini; John, Renu

    2016-03-01

    Most living cells are optically transparent which makes it difficult to visualize them under bright field microscopy. Use of contrast agents or markers and staining procedures are often followed to observe these cells. However, most of these staining agents are toxic and not applicable for live cell imaging. In the last decade, quantitative phase imaging has become an indispensable tool for morphological characterization of the phase objects without any markers. In this paper, we report noninterferometric quantitative phase imaging of live sperm cells by solving transport of intensity equations with recorded intensity measurements along optical axis on a commercial bright field microscope.

  11. Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays

    DOE PAGES

    Giera, Brian; Bukosky, Scott; Lee, Elaine; ...

    2018-01-23

    Here, quantitative color analysis is performed on videos of high contrast, low power reversible electrophoretic deposition (EPD)-based displays operated under different applied voltages. This analysis is coded in an open-source software, relies on a color differentiation metric, ΔE * 00, derived from digital video, and provides an intuitive relationship between the operating conditions of the devices and their performance. Time-dependent ΔE * 00 color analysis reveals color relaxation behavior, recoverability for different voltage sequences, and operating conditions that can lead to optimal performance.

  12. Quantitative Analysis of Color Differences within High Contrast, Low Power Reversible Electrophoretic Displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giera, Brian; Bukosky, Scott; Lee, Elaine

    Here, quantitative color analysis is performed on videos of high contrast, low power reversible electrophoretic deposition (EPD)-based displays operated under different applied voltages. This analysis is coded in an open-source software, relies on a color differentiation metric, ΔE * 00, derived from digital video, and provides an intuitive relationship between the operating conditions of the devices and their performance. Time-dependent ΔE * 00 color analysis reveals color relaxation behavior, recoverability for different voltage sequences, and operating conditions that can lead to optimal performance.

  13. Contrast-enhanced sonography for quantitative assessment of portal hypertension in patients with liver cirrhosis.

    PubMed

    Qu, En-Ze; Zhang, Ying-Cai; Li, Zhi-Yan; Liu, Yang; Wang, Jin-Rui

    2014-11-01

    The clinical utility of contrast-enhanced sonography in portal hypertension remains unclear. We explored the feasibility of using contrast-enhanced sonography for noninvasive assessment of portal venous pressure. Twenty healthy individuals (control group; 9 men; mean age, 46.4 years) and 18 patients with portal hypertension (15 men; mean age, 46.2 years) were enrolled in this study. The portal hypertension group included patients who underwent splenectomy and pericardial blood vessel disarticulation at our hospital from October 2010 to March 2011. One week before surgery, patients with portal hypertension underwent preoperative liver contrast-enhanced sonography. Two-dimensional, Doppler, and contrast-enhanced sonographic parameters were compared between the groups. Portal venous pressure was measured intraoperatively by portal vein puncture in the portal hypertension group, and its relationship with the other parameters was analyzed. The 2-dimensional, Doppler, and contrast-enhanced sonographic parameters differed between the groups (P < .01). Portal venous pressure was inversely correlated with the area under the portal vein/hepatic artery time-intensity curve ratio (Qp/Qa), portal vein/hepatic artery strength ratio (Ip/Ia), and portal vein/hepatic artery wash-in perfusion slope ratio (βp/βa), with correlation coefficients of -0.701, -0.625, and -0.494, respectively. Measurement of the liver contrast-enhanced sonographic parameters Qp/Qa, Ip/Ia, and βp/βa could be used as a new quantitative method for noninvasively assessing portal venous pressure. © 2014 by the American Institute of Ultrasound in Medicine.

  14. Time-resolved quantitative-phase microscopy of laser-material interactions using a wavefront sensor.

    PubMed

    Gallais, Laurent; Monneret, Serge

    2016-07-15

    We report on a simple and efficient technique based on a wavefront sensor to obtain time-resolved amplitude and phase images of laser-material interactions. The main interest of the technique is to obtain quantitative self-calibrated phase measurements in one shot at the femtosecond time-scale, with high spatial resolution. The technique is used for direct observation and quantitative measurement of the Kerr effect in a fused silica substrate and free electron generation by photo-ionization processes in an optical coating.

  15. Role of serum hepatitis B virus marker quantitation to differentiate natural history phases of HBV infection.

    PubMed

    Wang, Li; Zou, Zhi-Qiang; Wang, Kai; Yu, Ji-Guang; Liu, Xiang-Zhong

    2016-01-01

    The purpose of this study was to characterize roles of serum hepatitis B virus marker quantitation in differentiation of natural phases of HBV infection. A total of 184 chronic hepatitis B (CHB) patients were analyzed retrospectively. Patients were classified into four categories: immune tolerant phase (IT, n = 36), immune clearance phase (IC, n = 81), low-replicative phase (LR, n = 31), and HBeAg-negative hepatitis phase (ENH, n = 36), based on clinical, biochemical, serological, HBV DNA level and histological data. Hepatitis B surface antigen (HBsAg) quantitation in four phases were 4.7 ± 0.2, 3.8 ± 0.5, 2.5 ± 1.2 and 3.4 ± 0.4 log10 IU/mL, respectively. There were significant differences between IT and IC (p < 0.001) and between LR and ENH phases (p < 0.001). Quantitation of hepatitis B e antigen (HBeAg) in IT and IC phases are 1317.9 ± 332.9 and 673.4 ± 562.1 S/CO, respectively (p < 0.001). Hepatitis B core antibody (HBcAb) quantitation in the four groups were 9.48 ± 3.3, 11.7 ± 2.8, 11.2 ± 2.6 and 13.2 ± 2.9 S/CO, respectively. Area under receiver operating characteristic curve (AUCs) of HBsAg and HBeAg at cutoff values of 4.41 log10 IU/mL and 1118.96 S/CO for differentiation of IT and IC phases are 0.984 and 0.828, with sensitivity 94.4 and 85.2 %, specificity 98.7 and 75 %, respectively. AUCs of HBsAg and HBcAb at cutoff values of 3.4 log10 IU/mL and 10.5 S/CO for differentiation of LR and ENT phases are 0.796 and 0.705, with sensitivity 58.1 and 85.7 %, and specificity 94.4 and 46.2 %, respectively. HBsAg quantitation has high predictive value and HBeAg quantitation has moderate predictive value for discriminating IT and IC phase. HBsAg and HBcAb quantitations have moderate predictive values for differentiation of LR and ENH phase.

  16. Quantitative analysis applied to contrast medium extravasation by using the computed-tomography number within the region of interest

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kim, Moon-Jib; Goo, Eun-Hoe; Kim, Sun-Ju; Kim, Kwang; Kwak, Byung-Joon

    2014-02-01

    The present study was carried out to present a method to analyze extravasation quantitatively by measuring the computed tomography (CT) number after determining the region of interest (ROI) in the CT images obtained from patients suspected of extravasation induced by contrast medium auto-injection. To achieve this, we divided the study subjects into a group of patients who incurred extravasation and a group of patients who underwent routine scans without incurring extravasation. The CT numbers at IV sites were obtained as reference values, and CT numbers at extravasation sites and hepatic portal veins, respectively, were obtained as relative values. Thereupon, the predicted time for extravasation ( T EP ) and the predicted ratio for extravasation ( R EP ) of an extravasation site were obtained and analyzed quantitatively. In the case of extravasation induced by a dual auto-injector, the values of the CT numbers were confirmed to be lower and the extravasation site to be enlarged when compared to the extravasation induced by a single autoinjector. This is because the physiological saline introduced after the injection of the contrast agent diluted the concentration of the extravasated contrast agent. Additionally, the T EP caused by the auto-injector was about 40 seconds, and we could perform a precise quantitative assessment of the site suspected of extravasation. In conclusion, the dual auto-injection method, despite its advantage of reducing the volume of contrast agent and improving the quality of images for patients with good vascular integrity, was judged to be likely to increase the risk of extravasation and aggravate outcomes for patients with poor vascular integrity by enlarging extravasation sites.

  17. Realistic wave-optics simulation of X-ray phase-contrast imaging at a human scale

    PubMed Central

    Sung, Yongjin; Segars, W. Paul; Pan, Adam; Ando, Masami; Sheppard, Colin J. R.; Gupta, Rajiv

    2015-01-01

    X-ray phase-contrast imaging (XPCI) can dramatically improve soft tissue contrast in X-ray medical imaging. Despite worldwide efforts to develop novel XPCI systems, a numerical framework to rigorously predict the performance of a clinical XPCI system at a human scale is not yet available. We have developed such a tool by combining a numerical anthropomorphic phantom defined with non-uniform rational B-splines (NURBS) and a wave optics-based simulator that can accurately capture the phase-contrast signal from a human-scaled numerical phantom. Using a synchrotron-based, high-performance XPCI system, we provide qualitative comparison between simulated and experimental images. Our tool can be used to simulate the performance of XPCI on various disease entities and compare proposed XPCI systems in an unbiased manner. PMID:26169570

  18. Approximated transport-of-intensity equation for coded-aperture x-ray phase-contrast imaging.

    PubMed

    Das, Mini; Liang, Zhihua

    2014-09-15

    Transport-of-intensity equations (TIEs) allow better understanding of image formation and assist in simplifying the "phase problem" associated with phase-sensitive x-ray measurements. In this Letter, we present for the first time to our knowledge a simplified form of TIE that models x-ray differential phase-contrast (DPC) imaging with coded-aperture (CA) geometry. The validity of our approximation is demonstrated through comparison with an exact TIE in numerical simulations. The relative contributions of absorption, phase, and differential phase to the acquired phase-sensitive intensity images are made readily apparent with the approximate TIE, which may prove useful for solving the inverse phase-retrieval problem associated with these CA geometry based DPC.

  19. Quantitative phase imaging method based on an analytical nonparaxial partially coherent phase optical transfer function.

    PubMed

    Bao, Yijun; Gaylord, Thomas K

    2016-11-01

    Multifilter phase imaging with partially coherent light (MFPI-PC) is a promising new quantitative phase imaging method. However, the existing MFPI-PC method is based on the paraxial approximation. In the present work, an analytical nonparaxial partially coherent phase optical transfer function is derived. This enables the MFPI-PC to be extended to the realistic nonparaxial case. Simulations over a wide range of test phase objects as well as experimental measurements on a microlens array verify higher levels of imaging accuracy compared to the paraxial method. Unlike the paraxial version, the nonparaxial MFPI-PC with obliquity factor correction exhibits no systematic error. In addition, due to its analytical expression, the increase in computation time compared to the paraxial version is negligible.

  20. Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources

    NASA Astrophysics Data System (ADS)

    Krenkel, Martin; Töpperwien, Mareike; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2016-03-01

    We have performed high-resolution phase-contrast tomography on whole mice with a laboratory setup. Enabled by a high-brilliance liquid-metal-jet source, we show the feasibility of propagation-based phase contrast in local tomography even in the presence of strongly absorbing surrounding tissue as it is the case in small animal imaging of the lung. We demonstrate the technique by reconstructions of the mouse lung for two different fields of view, covering the whole organ, and a zoom to the local finer structure of terminal airways and alveoli. With a resolution of a few micrometers and the wide availability of the technique, studies of larger biological samples at the cellular level become possible.

  1. Correlation between human observer performance and model observer performance in differential phase contrast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ke; Garrett, John; Chen, Guang-Hong

    2013-11-15

    Purpose: With the recently expanding interest and developments in x-ray differential phase contrast CT (DPC-CT), the evaluation of its task-specific detection performance and comparison with the corresponding absorption CT under a given radiation dose constraint become increasingly important. Mathematical model observers are often used to quantify the performance of imaging systems, but their correlations with actual human observers need to be confirmed for each new imaging method. This work is an investigation of the effects of stochastic DPC-CT noise on the correlation of detection performance between model and human observers with signal-known-exactly (SKE) detection tasks.Methods: The detectabilities of different objectsmore » (five disks with different diameters and two breast lesion masses) embedded in an experimental DPC-CT noise background were assessed using both model and human observers. The detectability of the disk and lesion signals was then measured using five types of model observers including the prewhitening ideal observer, the nonprewhitening (NPW) observer, the nonprewhitening observer with eye filter and internal noise (NPWEi), the prewhitening observer with eye filter and internal noise (PWEi), and the channelized Hotelling observer (CHO). The same objects were also evaluated by four human observers using the two-alternative forced choice method. The results from the model observer experiment were quantitatively compared to the human observer results to assess the correlation between the two techniques.Results: The contrast-to-detail (CD) curve generated by the human observers for the disk-detection experiments shows that the required contrast to detect a disk is inversely proportional to the square root of the disk size. Based on the CD curves, the ideal and NPW observers tend to systematically overestimate the performance of the human observers. The NPWEi and PWEi observers did not predict human performance well either, as the slopes of

  2. Volumetric quantitative characterization of human patellar cartilage with topological and geometrical features on phase-contrast X-ray computed tomography.

    PubMed

    Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Wismüller, Axel

    2015-11-01

    Phase-contrast X-ray computed tomography (PCI-CT) has attracted significant interest in recent years for its ability to provide significantly improved image contrast in low absorbing materials such as soft biological tissue. In the research context of cartilage imaging, previous studies have demonstrated the ability of PCI-CT to visualize structural details of human patellar cartilage matrix and capture changes to chondrocyte organization induced by osteoarthritis. This study evaluates the use of geometrical and topological features for volumetric characterization of such chondrocyte patterns in the presence (or absence) of osteoarthritic damage. Geometrical features derived from the scaling index method (SIM) and topological features derived from Minkowski Functionals were extracted from 1392 volumes of interest (VOI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. These features were subsequently used in a machine learning task with support vector regression to classify VOIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver operating characteristic curve (AUC). Our results show that the classification performance of SIM-derived geometrical features (AUC: 0.90 ± 0.09) is significantly better than Minkowski Functionals volume (AUC: 0.54 ± 0.02), surface (AUC: 0.72 ± 0.06), mean breadth (AUC: 0.74 ± 0.06) and Euler characteristic (AUC: 0.78 ± 0.04) (p < 10(-4)). These results suggest that such geometrical features can provide a detailed characterization of the chondrocyte organization in the cartilage matrix in an automated manner, while also enabling classification of cartilage as healthy or osteoarthritic with high accuracy. Such features could potentially serve as diagnostic imaging markers for evaluating osteoarthritis progression and its response to different therapeutic intervention strategies.

  3. Automatic detection and analysis of cell motility in phase-contrast time-lapse images using a combination of maximally stable extremal regions and Kalman filter approaches.

    PubMed

    Kaakinen, M; Huttunen, S; Paavolainen, L; Marjomäki, V; Heikkilä, J; Eklund, L

    2014-01-01

    Phase-contrast illumination is simple and most commonly used microscopic method to observe nonstained living cells. Automatic cell segmentation and motion analysis provide tools to analyze single cell motility in large cell populations. However, the challenge is to find a sophisticated method that is sufficiently accurate to generate reliable results, robust to function under the wide range of illumination conditions encountered in phase-contrast microscopy, and also computationally light for efficient analysis of large number of cells and image frames. To develop better automatic tools for analysis of low magnification phase-contrast images in time-lapse cell migration movies, we investigated the performance of cell segmentation method that is based on the intrinsic properties of maximally stable extremal regions (MSER). MSER was found to be reliable and effective in a wide range of experimental conditions. When compared to the commonly used segmentation approaches, MSER required negligible preoptimization steps thus dramatically reducing the computation time. To analyze cell migration characteristics in time-lapse movies, the MSER-based automatic cell detection was accompanied by a Kalman filter multiobject tracker that efficiently tracked individual cells even in confluent cell populations. This allowed quantitative cell motion analysis resulting in accurate measurements of the migration magnitude and direction of individual cells, as well as characteristics of collective migration of cell groups. Our results demonstrate that MSER accompanied by temporal data association is a powerful tool for accurate and reliable analysis of the dynamic behaviour of cells in phase-contrast image sequences. These techniques tolerate varying and nonoptimal imaging conditions and due to their relatively light computational requirements they should help to resolve problems in computationally demanding and often time-consuming large-scale dynamical analysis of cultured cells.

  4. Optimal visualization of focal nodular hyperplasia: quantitative and qualitative evaluation of single and multiphasic arterial phase acquisition at 1.5 T MR imaging.

    PubMed

    Rousseau, Caroline; Ronot, Maxime; Vilgrain, Valérie; Zins, Marc

    2016-05-01

    To evaluate the qualitative and quantitative benefit of multiple arterial phase acquisitions for the depiction of hypervascularity in FNH explored MR imaging using an extracellular contrast agent. Between 2007 and 2014, all patients who underwent MR imaging for the exploration of FNH were included. The protocol included a single or a triple arterial phase ("single" and "triple" group, respectively). Arterial phases were visually divided into four types: (1) angiographic, (2) early, (3) late, and (4) portal. Signal intensity on arterial phase images was visually recorded as intense, moderate, or low for each lesion. Lesion-to-liver contrast (LLC) and relative lesion enhancement (RE) were calculated and compared between the two groups using the Mann-Whitney test. Thirty-five women were included (mean 45-year old, range 20-66), with 50 FNH (mean size 30 mm). Single and triple groups included 20 patients (30 FNH) and 15 patients (20 FNH), respectively. Signal intensity was intense in all lesions in the triple group and in 22/30 (73%) in the single group (p = 0.041). Intense signals were more frequently found in the early arterial phase (p < 0.001). RE was not significantly different (1.78 ± 0.84 vs. 1.98 ± 1.81 p = 0.430, in the single and triple groups, respectively) but LLC was significantly higher in the triple group (0.32 ± 0.10 vs. 0.22 ± 0.10, p = 0.005). LLC was significantly higher in the first two arterial phases in the triple group (p < 0.001). Acquisition of three arterial phases improves the visualization of hypervascularity of FNH, as lesions show high visual signal intensity and contrast. Optimal visualization is obtained in the early arterial phase.

  5. Optical path design of phase contrast imaging on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Qiyun, CHENG; Yi, YU; Shaobo, GONG; Min, XU; Tao, LAN; Wei, JIANG; Boda, YUAN; Yifan, WU; Lin, NIE; Rui, KE; Ting, LONG; Dong, GUO; Minyou, YE; Xuru, DUAN

    2017-12-01

    A phase contrast imaging (PCI) diagnostic has recently been developed on HL-2A tokamak. It can diagnose plasma density fluctuations with maximum wave number of 15 cm-1 and wave number resolution of 2 cm-1. The time resolution reaches 2 μs. A 10.6 μm CO2 laser is expanded to a beam with a diameter of 30 mm and injected into the plasma as an incident beam, injecting into plasma. The emerging scattered and unscattered beams are contrasted by a phase plate. The ideas of optical path design are presented in this paper, together with the parameters of the main optical components. The whole optical path of PCI is not only carefully designed, but also constructed on HL-2A. First calibration results show the ability of this system to catch plasma turbulence in a wide frequency domain.

  6. The optical lens coupled X-ray in-line phase contrast imaging system for the characterization of low Z materials

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Lin, Wei; Dai, Fei; Li, Jun; Qi, Xiaobo; Lei, Haile; Liu, Yuanqiong

    2018-05-01

    Due to the high spatial resolution and contrast, the optical lens coupled X-ray in-line phase contrast imaging system with the secondary optical magnification is more suitable for the characterization of the low Z materials. The influence of the source to object distance and the object to scintillator distance on the image resolution and contrast is studied experimentally. A phase correlation algorithm is used for the image mosaic of a serial of X-ray phase contrast images acquired with high resolution, the resulting resolution is less than 1.0 μm, and the whole field of view is larger than 1.4 mm. Finally, the geometric morphology and the inner structure of various weakly absorbing samples and the evaporation of water in the plastic micro-shell are in situ characterized by the optical lens coupled X-ray in-line phase contrast imaging system.

  7. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    DOE PAGES

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; ...

    2016-02-29

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, makingmore » it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Ultimately, simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.« less

  8. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry

    PubMed Central

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R.; Chess, Jordan; McMorran, Benjamin J.; Czarnik, Cory; Rose, Harald H.; Ercius, Peter

    2016-01-01

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals. PMID:26923483

  9. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry.

    PubMed

    Ophus, Colin; Ciston, Jim; Pierce, Jordan; Harvey, Tyler R; Chess, Jordan; McMorran, Benjamin J; Czarnik, Cory; Rose, Harald H; Ercius, Peter

    2016-02-29

    The ability to image light elements in soft matter at atomic resolution enables unprecedented insight into the structure and properties of molecular heterostructures and beam-sensitive nanomaterials. In this study, we introduce a scanning transmission electron microscopy technique combining a pre-specimen phase plate designed to produce a probe with structured phase with a high-speed direct electron detector to generate nearly linear contrast images with high efficiency. We demonstrate this method by using both experiment and simulation to simultaneously image the atomic-scale structure of weakly scattering amorphous carbon and strongly scattering gold nanoparticles. Our method demonstrates strong contrast for both materials, making it a promising candidate for structural determination of heterogeneous soft/hard matter samples even at low electron doses comparable to traditional phase-contrast transmission electron microscopy. Simulated images demonstrate the extension of this technique to the challenging problem of structural determination of biological material at the surface of inorganic crystals.

  10. Detectability index of differential phase contrast CT compared with conventional CT: a preliminary channelized Hotelling observer study

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2013-03-01

    Under the framework of model observer with signal and background exactly known (SKE/BKE), we investigate the detectability of differential phase contrast CT compared with that of the conventional attenuation-based CT. Using the channelized Hotelling observer and the radially symmetric difference-of-Gaussians channel template , we investigate the detectability index and its variation over the dimension of object and detector cells. The preliminary data show that the differential phase contrast CT outperforms the conventional attenuation-based CT significantly in the detectability index while both the object to be detected and the cell of detector used for data acquisition are relatively small. However, the differential phase contrast CT's dominance in the detectability index diminishes with increasing dimension of either object or detector cell, and virtually disappears while the dimension of object or detector cell approaches a threshold, respectively. It is hoped that the preliminary data reported in this paper may provide insightful understanding of the differential phase contrast CT's characteristic in the detectability index and its comparison with that of the conventional attenuation-based CT.

  11. Investigating biofilm structure using x-ray microtomography and gratings-based phase contrast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; Xiao, Xianghui; Miller, Micah D.

    2012-10-17

    Direct examination of natural and engineered environments has revealed that the majority of microorganisms in these systems live in structured communities termed biofilms. To gain a better understanding for how biofilms function and interact with their local environment, fundamental capabilities for enhanced visualization, compositional analysis, and functional characterization of biofilms are needed. For pore-scale and community-scale analysis (100’s of nm to 10’s of microns), a variety of surface tools are available. However, understanding biofilm structure in complex three-dimensional (3-D) environments is considerably more difficult. X-ray microtomography can reveal a biofilm’s internal structure, but the obtaining sufficient contrast to image low-Zmore » biological material against a higher-Z substrate makes detecting biofilms difficult. Here we present results imaging Shewanella oneidensis biofilms on a Hollow-fiber Membrane Biofilm Reactor (HfMBR), using the x-ray microtomography system at sector 2-BM of the Advanced Photon Source (APS), at energies ranging from 13-15.4 keV and pixel sizes of 0.7 and 1.3 μm/pixel. We examine the use of osmium (Os) as a contrast agent to enhance biofilm visibility and demonstrate that staining improves imaging of hydrated biofilms. We also present results using a Talbot interferometer to provide phase and scatter contrast information in addition to absorption. Talbot interferometry allows imaging of unstained hydrated biofilms with phase contrast, while absorption contrast primarily highlights edges and scatter contrast provides little information. However, the gratings used here limit the spatial resolution to no finer than 2 μm, which hinders the ability to detect small features. Future studies at higher resolution or higher Talbot order for greater sensitivity to density variations may improve imaging.« less

  12. Quantitative evaluation of contrast agent uptake in standard fat-suppressed dynamic contrast-enhanced MRI examinations of the breast.

    PubMed

    Kousi, Evanthia; Smith, Joely; Ledger, Araminta E; Scurr, Erica; Allen, Steven; Wilson, Robin M; O'Flynn, Elizabeth; Pope, Romney J E; Leach, Martin O; Schmidt, Maria A

    2018-01-01

    To propose a method to quantify T 1 and contrast agent uptake in breast dynamic contrast-enhanced (DCE) examinations undertaken with standard clinical fat-suppressed MRI sequences and to demonstrate the proposed approach by comparing the enhancement characteristics of lobular and ductal carcinomas. A standard fat-suppressed DCE of the breast was performed at 1.5 T (Siemens Aera), followed by the acquisition of a proton density (PD)-weighted sequence, also fat suppressed. Both sequences were characterized with test objects (T 1 ranging from 30 ms to 2,400 ms) and calibration curves were obtained to enable T 1 calculation. The reproducibility and accuracy of the calibration curves were also investigated. Healthy volunteers and patients were scanned with Ethics Committee approval. The effect of B 0 field inhomogeneity was assessed in test objects and healthy volunteers. The T 1 of breast tumors was calculated at different time points (pre-, peak-, and post-contrast agent administration) for 20 patients, pre-treatment (10 lobular and 10 ductal carcinomas) and the two cancer types were compared (Wilcoxon rank-sum test). The calibration curves proved to be highly reproducible (coefficient of variation under 10%). T 1 measurements were affected by B 0 field inhomogeneity, but frequency shifts below 50 Hz introduced only 3% change to fat-suppressed T 1 measurements of breast parenchyma in volunteers. The values of T 1 measured pre-, peak-, and post-contrast agent administration demonstrated that the dynamic range of the DCE sequence was correct, that is, image intensity is approximately directly proportional to 1/T 1 for that range. Significant differences were identified in the width of the distributions of the post-contrast T 1 values between lobular and ductal carcinomas (P < 0.05); lobular carcinomas demonstrated a wider range of post-contrast T 1 values, potentially related to their infiltrative growth pattern. This work has demonstrated the feasibility of fat

  13. Zernike Phase Contrast Electron Cryo-Tomography Applied to Marine Cyanobacteria Infected with Cyanophages

    PubMed Central

    Dai, Wei; Fu, Caroline; Khant, Htet A.; Ludtke, Steven J.; Schmid, Michael F.; Chiu, Wah

    2015-01-01

    Advances in electron cryo-tomography have provided a new opportunity to visualize the internal 3D structures of a bacterium. An electron microscope equipped with Zernike phase contrast optics produces images with dramatically increased contrast compared to images obtained by conventional electron microscopy. Here we describe a protocol to apply Zernike phase plate technology for acquiring electron tomographic tilt series of cyanophage-infected cyanobacterial cells embedded in ice, without staining or chemical fixation. We detail the procedures for aligning and assessing phase plates for data collection, and methods to obtain 3D structures of cyanophage assembly intermediates in the host, by subtomogram alignment, classification and averaging. Acquiring three to four tomographic tilt series takes approximately 12 h on a JEM2200FS electron microscope. We expect this time requirement to decrease substantially as the technique matures. Time required for annotation and subtomogram averaging varies widely depending on the project goals and data volume. PMID:25321408

  14. Consistency of flow quantifications in tridirectional phase-contrast MRI

    NASA Astrophysics Data System (ADS)

    Unterhinninghofen, R.; Ley, S.; Dillmann, R.

    2009-02-01

    Tridirectionally encoded phase-contrast MRI is a technique to non-invasively acquire time-resolved velocity vector fields of blood flow. These may not only be used to analyze pathological flow patterns, but also to quantify flow at arbitrary positions within the acquired volume. In this paper we examine the validity of this approach by analyzing the consistency of related quantifications instead of comparing it with an external reference measurement. Datasets of the thoracic aorta were acquired from 6 pigs, 1 healthy volunteer and 3 patients with artificial aortic valves. Using in-house software an elliptical flow quantification plane was placed manually at 6 positions along the descending aorta where it was rotated to 5 different angles. For each configuration flow was computed based on the original data and data that had been corrected for phase offsets. Results reveal that quantifications are more dependent on changes in position than on changes in angle. Phase offset correction considerably reduces this dependency. Overall consistency is good with a maximum variation coefficient of 9.9% and a mean variation coefficient of 7.2%.

  15. Phase contrast tomography of the mouse cochlea at microfocus x-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartels, Matthias; Krenkel, Martin; Hernandez, Victor H.

    2013-08-19

    We present phase contrast x-ray tomography of functional soft tissue within the bony cochlear capsule of mice, carried out at laboratory microfocus sources with well-matched source, detector, geometry, and reconstruction algorithms at spatial resolutions down to 2 μm. Contrast, data quality and resolution enable the visualization of thin membranes and nerve fibers as well as automated segmentation of surrounding bone. By complementing synchrotron radiation imaging techniques, a broad range of biomedical applications becomes possible as demonstrated for optogenetic cochlear implant research.

  16. Simulation tools for analyzer-based x-ray phase contrast imaging system with a conventional x-ray source

    NASA Astrophysics Data System (ADS)

    Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.

    2016-09-01

    Analyzer-based X-ray phase contrast imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray imaging modalities. Unlike the conventional X-ray radiography, which measures only X-ray absorption, in PC imaging one can also measures the X-rays deflection induced by the object refractive properties. It has been shown that refraction imaging provides better contrast when imaging the soft tissue, which is of great interest in medical imaging applications. In this paper, we introduce a simulation tool specifically designed to simulate the analyzer-based X-ray phase contrast imaging system with a conventional polychromatic X-ray source. By utilizing ray tracing and basic physical principles of diffraction theory our simulation tool can predicting the X-ray beam profile shape, the energy content, the total throughput (photon count) at the detector. In addition we can evaluate imaging system point-spread function for various system configurations.

  17. Super-resolution differential interference contrast microscopy by structured illumination.

    PubMed

    Chen, Jianling; Xu, Yan; Lv, Xiaohua; Lai, Xiaomin; Zeng, Shaoqun

    2013-01-14

    We propose a structured illumination differential interference contrast (SI-DIC) microscopy, breaking the diffraction resolution limit of differential interference contrast (DIC) microscopy. SI-DIC extends the bandwidth of coherent transfer function of the DIC imaging system, thus the resolution is improved. With 0.8 numerical aperture condenser and objective, the reconstructed SI-DIC image of 53 nm polystyrene beads reveals lateral resolution of approximately 190 nm, doubling that of the conventional DIC image. We also demonstrate biological observations of label-free cells with improved spatial resolution. The SI-DIC microscopy can provide sub-diffraction resolution and high contrast images with marker-free specimens, and has the potential for achieving sub-diffraction resolution quantitative phase imaging.

  18. The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Eastwood, D. S.; Bradley, R. S.; Tariq, F.; Cooper, S. J.; Taiwo, O. O.; Gelb, J.; Merkle, A.; Brett, D. J. L.; Brandon, N. P.; Withers, P. J.; Lee, P. D.; Shearing, P. R.

    2014-04-01

    In order to accelerate the commercialization of fuel cells and batteries across a range of applications, an understanding of the mechanisms by which they age and degrade at the microstructural level is required. Here, the most widely commercialized Li-ion batteries based on porous graphite based electrodes which de/intercalate Li+ ions during charge/discharge are studied by two phase contrast enhanced X-ray imaging modes, namely in-line phase contrast and Zernike phase contrast at the micro (synchrotron) and nano (laboratory X-ray microscope) level, respectively. The rate of charge cycling is directly dependent on the nature of the electrode microstructure, which are typically complex multi-scale 3D geometries with significant microstructural heterogeneities. We have been able to characterise the porosity and the tortuosity by micro-CT as well as the morphology of 5 individual graphite particles by nano-tomography finding that while their volume varied significantly their sphericity was surprisingly similar. The volume specific surface areas of the individual grains measured by nano-CT are significantly larger than the total volume specific surface area of the electrode from the micro-CT imaging, which can be attributed to the greater particle surface area visible at higher resolution.

  19. Quantitative analysis of aqueous phase composition of model dentin adhesives experiencing phase separation

    PubMed Central

    Ye, Qiang; Park, Jonggu; Parthasarathy, Ranganathan; Pamatmat, Francis; Misra, Anil; Laurence, Jennifer S.; Marangos, Orestes; Spencer, Paulette

    2013-01-01

    There have been reports of the sensitivity of our current dentin adhesives to excess moisture, for example, water-blisters in adhesives placed on over-wet surfaces, and phase separation with concomitant limited infiltration of the critical dimethacrylate component into the demineralized dentin matrix. To determine quantitatively the hydrophobic/hydrophilic components in the aqueous phase when exposed to over-wet environments, model adhesives were mixed with 16, 33, and 50 wt % water to yield well-separated phases. Based upon high-performance liquid chromatography coupled with photodiode array detection, it was found that the amounts of hydrophobic BisGMA and hydrophobic initiators are less than 0.1 wt % in the aqueous phase. The amount of these compounds decreased with an increase in the initial water content. The major components of the aqueous phase were hydroxyethyl methacrylate (HEMA) and water, and the HEMA content ranged from 18.3 to 14.7 wt %. Different BisGMA homologues and the relative content of these homologues in the aqueous phase have been identified; however, the amount of crosslinkable BisGMA was minimal and, thus, could not help in the formation of a crosslinked polymer network in the aqueous phase. Without the protection afforded by a strong crosslinked network, the poorly photoreactive compounds of this aqueous phase could be leached easily. These results suggest that adhesive formulations should be designed to include hydrophilic multimethacrylate monomers and water compatible initiators. PMID:22331596

  20. Three-dimensional virtual histology of human cerebellum by X-ray phase-contrast tomography.

    PubMed

    Töpperwien, Mareike; van der Meer, Franziska; Stadelmann, Christine; Salditt, Tim

    2018-06-18

    To quantitatively evaluate brain tissue and its corresponding function, knowledge of the 3D cellular distribution is essential. The gold standard to obtain this information is histology, a destructive and labor-intensive technique where the specimen is sliced and examined under a light microscope, providing 3D information at nonisotropic resolution. To overcome the limitations of conventional histology, we use phase-contrast X-ray tomography with optimized optics, reconstruction, and image analysis, both at a dedicated synchrotron radiation endstation, which we have equipped with X-ray waveguide optics for coherence and wavefront filtering, and at a compact laboratory source. As a proof-of-concept demonstration we probe the 3D cytoarchitecture in millimeter-sized punches of unstained human cerebellum embedded in paraffin and show that isotropic subcellular resolution can be reached at both setups throughout the specimen. To enable a quantitative analysis of the reconstructed data, we demonstrate automatic cell segmentation and localization of over 1 million neurons within the cerebellar cortex. This allows for the analysis of the spatial organization and correlation of cells in all dimensions by borrowing concepts from condensed-matter physics, indicating a strong short-range order and local clustering of the cells in the granular layer. By quantification of 3D neuronal "packing," we can hence shed light on how the human cerebellum accommodates 80% of the total neurons in the brain in only 10% of its volume. In addition, we show that the distribution of neighboring neurons in the granular layer is anisotropic with respect to the Purkinje cell dendrites. Copyright © 2018 the Author(s). Published by PNAS.

  1. Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Min, Junwei; Yao, Baoli; Ketelhut, Steffi; Kemper, Björn

    2017-02-01

    The modular combination of optical microscopes with digital holographic microscopy (DHM) has been proven to be a powerful tool for quantitative live cell imaging. The introduction of condenser and different microscope objectives (MO) simplifies the usage of the technique and makes it easier to measure different kinds of specimens with different magnifications. However, the high flexibility of illumination and imaging also causes variable phase aberrations that need to be eliminated for high resolution quantitative phase imaging. The existent phase aberrations compensation methods either require add additional elements into the reference arm or need specimen free reference areas or separate reference holograms to build up suitable digital phase masks. These inherent requirements make them unpractical for usage with highly variable illumination and imaging systems and prevent on-line monitoring of living cells. In this paper, we present a simple numerical method for phase aberration compensation based on the analysis of holograms in spatial frequency domain with capabilities for on-line quantitative phase imaging. From a single shot off-axis hologram, the whole phase aberration can be eliminated automatically without numerical fitting or pre-knowledge of the setup. The capabilities and robustness for quantitative phase imaging of living cancer cells are demonstrated.

  2. Time-resolved imaging refractometry of microbicidal films using quantitative phase microscopy.

    PubMed

    Rinehart, Matthew T; Drake, Tyler K; Robles, Francisco E; Rohan, Lisa C; Katz, David; Wax, Adam

    2011-12-01

    Quantitative phase microscopy is applied to image temporal changes in the refractive index (RI) distributions of solutions created by microbicidal films undergoing hydration. We present a novel method of using an engineered polydimethylsiloxane structure as a static phase reference to facilitate calibration of the absolute RI across the entire field. We present a study of dynamic structural changes in microbicidal films during hydration and subsequent dissolution. With assumptions about the smoothness of the phase changes induced by these films, we calculate absolute changes in the percentage of film in regions across the field of view.

  3. Far-field phase contrast from orbiting objects: Characterizing progenitors of binary mergers

    NASA Astrophysics Data System (ADS)

    Matthias, P.; Hofmann, R.

    2018-05-01

    We propose an idea to determine the size of a binary, composed of two compact stars or black holes, its diffractive power, the distance between components, and the distance to an observer, in exploiting the emergence of intensity contrast by free-space propagation when the phase of coherent light from a very distant background source is affected by diffraction. We assume that this effect can be characterized by the projected real part of an effective refractive index n . Here we model the according two-dimensional exit phase-map by a superposition of two Gaussians. In the extreme far field, phase information is captured by scaling functions which are analyzed here. Both spatial and temporal scanning of the intensity contrast are discussed. While the former mode can be used, e.g., to determine the distance to the observer, the latter allows, e.g., one to measure the overall diffractive power of the binary in terms of the particular dependence of a scaling curve on the projected spatial separation between the binary's components. Both modes of observation may be of relevance in monitoring the progenitor dynamics of binary collapse using radio telescopes.

  4. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    NASA Astrophysics Data System (ADS)

    Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.

    2016-03-01

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  5. Quantitative assessment of tumor angiogenesis using real-time motion-compensated contrast-enhanced ultrasound imaging

    PubMed Central

    Pysz, Marybeth A.; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K.

    2015-01-01

    Purpose To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. Materials and methods The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. Results MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Conclusion Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts. PMID:22535383

  6. Quantitative assessment of tumor angiogenesis using real-time motion-compensated contrast-enhanced ultrasound imaging.

    PubMed

    Pysz, Marybeth A; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K

    2012-09-01

    To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts.

  7. Confocal reflectance quantitative phase microscope system for cellular membranes dynamics study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Vijay Raj; Yaqoob, Zahid; So, Peter T. C.

    2017-02-01

    Quantitative phase microscopy (QPM) techniques developed so far primarily belongs to high speed transmitted light based systems that has enough sensitivity to resolve membrane fluctuations and dynamics, but has no depth resolution. Therefore, most biomechanics studies using QPM today is confined to simple cells, such as RBCs, without internal organelles. An important instrument that will greatly extend the biomedical applications of QPM is to develop next generation microscope with 3D capability and sufficient temporal resolution to study biomechanics of complex eukaryotic cells including the mechanics of their internal compartments. For eukaryotic cells, the depth sectioning capability is critical and should be sufficient to distinguish nucleic membrane fluctuations from plasma membrane fluctuations. Further, this microscope must provide high temporal resolution since typical eukaryotes membranes are substantially stiffer than RBCs. A confocal reflectance quantitative phase microscope is presented based on multi-pinhole scanning, with the capabilities of higher temporal resolution and sensitivity for nucleic and plasma membranes of eukaryotic cells. System hardware is developed based on an array of confocal pinhole generated by using the `ON' state of subset of micro-mirrors of digital micro-mirror device (DMD, from Texas Instruments) and high-speed raster scanning provides 14ms imaging speed in wide-field mode. A common path interferometer is integrated at the imaging arm for detection of specimens' quantitative phase information. Theoretical investigation of quantitative phase reconstructed from system is investigated and application of system is presented for dimensional fluctuations measurements of both cellular plasma and nucleic membranes of embryonic stem cells.

  8. Teachable, high-content analytics for live-cell, phase contrast movies.

    PubMed

    Alworth, Samuel V; Watanabe, Hirotada; Lee, James S J

    2010-09-01

    CL-Quant is a new solution platform for broad, high-content, live-cell image analysis. Powered by novel machine learning technologies and teach-by-example interfaces, CL-Quant provides a platform for the rapid development and application of scalable, high-performance, and fully automated analytics for a broad range of live-cell microscopy imaging applications, including label-free phase contrast imaging. The authors used CL-Quant to teach off-the-shelf universal analytics, called standard recipes, for cell proliferation, wound healing, cell counting, and cell motility assays using phase contrast movies collected on the BioStation CT and BioStation IM platforms. Similar to application modules, standard recipes are intended to work robustly across a wide range of imaging conditions without requiring customization by the end user. The authors validated the performance of the standard recipes by comparing their performance with truth created manually, or by custom analytics optimized for each individual movie (and therefore yielding the best possible result for the image), and validated by independent review. The validation data show that the standard recipes' performance is comparable with the validated truth with low variation. The data validate that the CL-Quant standard recipes can provide robust results without customization for live-cell assays in broad cell types and laboratory settings.

  9. From Relativistic Electrons to X-ray Phase Contrast Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Garson, A. B.; Anastasio, M. A.

    2017-10-09

    We report the initial demonstrations of the use of single crystals in indirect x-ray imaging for x-ray phase contrast imaging at the Washington University in St. Louis Computational Bioimaging Laboratory (CBL). Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point spread function (21 μm (FWHM)) with the 25-mm diameter single crystals than the reference polycrystalline phosphor’s 80-μm value. Potential fiber-optic plate depth-of-focus aspects and 33-μm diameter carbon fiber imaging are also addressed.

  10. Investigation of gastric cancers in nude mice using X-ray in-line phase contrast imaging.

    PubMed

    Tao, Qiang; Luo, Shuqian

    2014-07-24

    This paper is to report the new imaging of gastric cancers without the use of imaging agents. Both gastric normal regions and gastric cancer regions can be distinguished by using the principal component analysis (PCA) based on the gray level co-occurrence matrix (GLCM). Human gastric cancer BGC823 cells were implanted into the stomachs of nude mice. Then, 3, 5, 7, 9 or 11 days after cancer cells implantation, the nude mice were sacrificed and their stomachs were removed. X-ray in-line phase contrast imaging (XILPCI), an X-ray phase contrast imaging method, has greater soft tissue contrast than traditional absorption radiography and generates higher-resolution images. The gastric specimens were imaged by an XILPCIs' charge coupled device (CCD) of 9 μm image resolution. The PCA of the projective images' region of interests (ROIs) based on GLCM were extracted to discriminate gastric normal regions and gastric cancer regions. Different stages of gastric cancers were classified by using support vector machines (SVMs). The X-ray in-line phase contrast images of nude mice gastric specimens clearly show the gastric architectures and the details of the early gastric cancers. The phase contrast computed tomography (CT) images of nude mice gastric cancer specimens are better than the traditional absorption CT images without the use of imaging agents. The results of the PCA of the texture parameters based on GLCM of normal regions is (F1+F2) >8.5, but those of cancer regions is (F1+F2) <8.5. The classification accuracy is 83.3% that classifying gastric specimens into different stages using SVMs. This is a very preliminary feasibility study. With further researches, XILPCI could become a noninvasive method for future the early detection of gastric cancers or medical researches.

  11. Investigation of gastric cancers in nude mice using X-ray in-line phase contrast imaging

    PubMed Central

    2014-01-01

    Background This paper is to report the new imaging of gastric cancers without the use of imaging agents. Both gastric normal regions and gastric cancer regions can be distinguished by using the principal component analysis (PCA) based on the gray level co-occurrence matrix (GLCM). Methods Human gastric cancer BGC823 cells were implanted into the stomachs of nude mice. Then, 3, 5, 7, 9 or 11 days after cancer cells implantation, the nude mice were sacrificed and their stomachs were removed. X-ray in-line phase contrast imaging (XILPCI), an X-ray phase contrast imaging method, has greater soft tissue contrast than traditional absorption radiography and generates higher-resolution images. The gastric specimens were imaged by an XILPCIs’ charge coupled device (CCD) of 9 μm image resolution. The PCA of the projective images’ region of interests (ROIs) based on GLCM were extracted to discriminate gastric normal regions and gastric cancer regions. Different stages of gastric cancers were classified by using support vector machines (SVMs). Results The X-ray in-line phase contrast images of nude mice gastric specimens clearly show the gastric architectures and the details of the early gastric cancers. The phase contrast computed tomography (CT) images of nude mice gastric cancer specimens are better than the traditional absorption CT images without the use of imaging agents. The results of the PCA of the texture parameters based on GLCM of normal regions is (F1 + F2) > 8.5, but those of cancer regions is (F1 + F2) < 8.5. The classification accuracy is 83.3% that classifying gastric specimens into different stages using SVMs. Conclusions This is a very preliminary feasibility study. With further researches, XILPCI could become a noninvasive method for future the early detection of gastric cancers or medical researches. PMID:25060352

  12. Quantitative phase tomography by using x-ray microscope with Foucault knife-edge scanning filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Norio; Tsuburaya, Yuji; Shimada, Akihiro

    2016-01-28

    Quantitative phase tomography was evaluated by using a differential phase microscope with a Foucault knife-edge scanning filter. A 3D x-ray phase image of polystyrene beads was obtained at 5.4 keV. The reconstructed refractive index was fairly good agreement with the Henke’s tabulated data.

  13. Optical properties of acute kidney injury measured by quantitative phase imaging

    PubMed Central

    Ban, Sungbea; Min, Eunjung; Baek, Songyee; Kwon, Hyug Moo; Popescu, Gabriel

    2018-01-01

    The diagnosis of acute kidney disease (AKI) has been examined mainly by histology, immunohistochemistry and western blot. Though these approaches are widely accepted in the field, it has an inherent limitation due to the lack of high-throughput and quantitative information. For a better understanding of prognosis in AKI, we present a new approach using quantitative phase imaging combined with a wide-field scanning platform. Through the phase-delay information from the tissue, we were able to predict a stage of AKI based on various optical properties such as light scattering coefficient and anisotropy. These optical parameters quantify the deterioration process of the AKI model of tissue. Our device would be a very useful tool when it is required to deliver fast feedback of tissue pathology or when diseases are related to mechanical properties such as fibrosis. PMID:29541494

  14. Improved diagnostic differentiation of renal cystic lesions with phase-contrast computed tomography (PCCT)

    NASA Astrophysics Data System (ADS)

    Noel, Peter B.; Willner, Marian; Fingerle, Alexander; Herzen, Julia; Münzel, Daniela; Hahn, Dieter; Rummeny, Ernst J.; Pfeiffer, Franz

    2012-03-01

    The diagnostic quality of phase-contrast computed tomography (PCCT) is one the unexplored areas in medical imaging; at the same time, it seems to offer the opportunity as a fast and highly sensitive diagnostic tool. Conventional computed tomography (CT) has had an enormous impact on medicine, while it is limited in soft-tissue contrast. One example that portrays this challenge is the differentiation between benign and malignant renal cysts. In this work we report on a feasibility study to determine the usefulness of PCCT in differentiation of renal cysts. A renal phantom was imaged with a grating-based PCCT system consisting of a standard rotating anode x-ray tube (40 kV, 70 mA) and a Pilatus II photoncounting detector (pixel size: 172 μm). The phantom is composed of a renal equivalent soft-tissue and cystic lesions grouped in non-enhancing cyst and hemorrhage series and an iodine enhancing series. The acquired projection images (absorption and phase-contrast) are reconstructed with a standard filtered backprojection algorithm. For evaluation both reconstructions are compared in respect to contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and subjective image quality. We found that with PCCT a significantly improved differentiation between hemorrhage renal cysts from contrast enhancing malignant cysts is possible. If comparing PCCT and CT with respect to CNR and SNR, PCCT shows significant improvements. In conclusion, PCCT has the potential to improve the diagnostics and characterization of renal cysts without using any contrast agents. These results in combination with a non-synchrotron setup indicate a future paradigm shift in diagnostic computed tomography.

  15. Phase Contrast Imaging on the HL-2A Tokamak

    NASA Astrophysics Data System (ADS)

    Yu, Yi; Gong, Shaobo; Xu, Min; Jiang, Wei; Zhong, Wulv; Shi, Zhongbin; Wang, Huajie; Wu, Yifan; Yuan, Boda; Lan, Tao; Ye, Minyou; Duan, Xuru; HL-2A Team

    2016-10-01

    In this article we present the design of a phase contrast imaging (PCI) system on the HL-2A tokamak. This diagnostic is developed to infer line integrated plasma density fluctuations by measuring the phase shift of an expanded CO2 laser beam passing through magnetically confined high temperature plasmas. This system is designed to diagnose plasma density fluctuations with the maximum wavenumber of 66 cm-1. The designed wavenumber resolution is 2.09cm-1, and the time resolution is higher than 0.2 μs. The broad kρs ranging from 0.34 to 13.37 makes it suitable for turbulence measurement. An upgraded PCI system is also discussed, which is designed for the HL-2M tokamak. Supported by the National Magnetic Confinement Fusion Energy Research Project (Grant No. 2015GB120002), the National Natural Science Foundation of China (Grant No. 11375053, 11105144, 10905057, 11535013).

  16. Comparative study of contrast-enhanced ultrasound qualitative and quantitative analysis for identifying benign and malignant breast tumor lumps.

    PubMed

    Liu, Jian; Gao, Yun-Hua; Li, Ding-Dong; Gao, Yan-Chun; Hou, Ling-Mi; Xie, Ting

    2014-01-01

    To compare the value of contrast-enhanced ultrasound (CEUS) qualitative and quantitative analysis in the identification of breast tumor lumps. Qualitative and quantitative indicators of CEUS for 73 cases of breast tumor lumps were retrospectively analyzed by univariate and multivariate approaches. Logistic regression was applied and ROC curves were drawn for evaluation and comparison. The CEUS qualitative indicator-generated regression equation contained three indicators, namely enhanced homogeneity, diameter line expansion and peak intensity grading, which demonstrated prediction accuracy for benign and malignant breast tumor lumps of 91.8%; the quantitative indicator-generated regression equation only contained one indicator, namely the relative peak intensity, and its prediction accuracy was 61.5%. The corresponding areas under the ROC curve for qualitative and quantitative analyses were 91.3% and 75.7%, respectively, which exhibited a statistically significant difference by the Z test (P<0.05). The ability of CEUS qualitative analysis to identify breast tumor lumps is better than with quantitative analysis.

  17. Phase contrast and DIC instrumentation and applications in cell, developmental, and marine biology

    NASA Astrophysics Data System (ADS)

    Gundlach, Heinz

    1994-05-01

    Nomarski's differential interference contrast (DIC) microscopy is discussed in comparison to Zernike's phase contrast (PhC) microscopy. The possibilities and limits of both are demonstrated by various applications. The high contrast and the use of the full numerical aperture of the DIC optics makes it possible to obtain a series of 'optical sections' through rather thick living specimens (e.g. head of water flea, salivary gland of Drosophila, Xenopus nucleolus, sea urchen egg, mouse embryo). PhC and DIC optics are today available for high resolution light microscopy until N.A. 1.4 Oil as well as for long working distance (LWD) optics, mainly combined with inverted biological microscopes.

  18. A study of quantification of aortic compliance in mice using radial acquisition phase contrast MRI

    NASA Astrophysics Data System (ADS)

    Zhao, Xuandong

    Spatiotemporal changes in blood flow velocity measured using Phase contrast Magnetic Resonance Imaging (MRI) can be used to quantify Pulse Wave Velocity (PWV) and Wall Shear Stress (WSS), well known indices of vessel compliance. A study was conducted to measure the PWV in the aortic arch in young healthy children using conventional phase contrast MRI and a post processing algorithm that automatically track the peak velocity in phase contrast images. It is shown that the PWV calculated using peak velocity-time data has less variability compared to that using mean velocity and flow. Conventional MR data acquisition techniques lack both the spatial and temporal resolution needed to accurately calculate PWV and WSS in in vivo studies using transgenic animal models of arterial diseases. Radial k-space acquisition can improve both spatial and temporal resolution. A major part of this thesis was devoted to developing technology for Radial Phase Contrast Magnetic Resonance (RPCMR) cine imaging on a 7 Tesla Animal scanner. A pulse sequence with asymmetric radial k-space acquisition was designed and implemented. Software developed to reconstruct the RPCMR images include gridding, density compensation and centering of k-Space that corrects the image ghosting introduced by hardware response time. Image processing software was developed to automatically segment the vessel lumen and correct for phase offset due to eddy currents. Finally, in vivo and ex vivo aortic compliance measurements were conducted in a well-established mouse model for atherosclerosis: Apolipoprotein E-knockout (ApoE-KO). Using RPCMR technique, a significantly higher PWV value as well as a higher average WSS was detected among 9 months old ApoE-KO mice compare to in wild type mice. A follow up ex-vivo test of tissue elasticity confirmed the impaired distensibility of aortic arteries among ApoE-KO mice.

  19. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  20. Ultrasound phase contrast thermal imaging with reflex transmission imaging methods in tissue phantoms

    PubMed Central

    Farny, Caleb H.; Clement, Gregory T.

    2009-01-01

    Thermal imaging measurements using ultrasound phase contrast have been performed in tissue phantoms heated with a focused ultrasound source. Back projection and reflex transmission imaging principles were employed to detect sound speed-induced changes in the phase caused by an increase in the temperature. The temperature was determined from an empirical relationship for the temperature dependence on sound speed. The phase contrast was determined from changes in the sound field measured with a hydrophone scan conducted before and during applied heating. The lengthy scanning routine used to mimic a large two-dimensional array required a steady-state temperature distribution within the phantom. The temperature distribution in the phantom was validated with magnetic resonance (MR) thermal imaging measurements. The peak temperature was found to agree within 1°C with MR and good agreement was found between the temperature profiles. The spatial resolution was 0.3 × 0.3 × 0.3 mm, comparing favorably with the 0.625 × 0.625 × 1.5 mm MR spatial resolution. PMID:19683380

  1. Fabrication of absorption gratings with X-ray lithography for X-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Yu-Ting; Yi, Fu-Ting; Zhang, Tian-Chong; Liu, Jing; Zhou, Yue

    2018-05-01

    Grating-based X-ray phase contrast imaging is promising especially in the medical area. Two or three gratings are involved in grating-based X-ray phase contrast imaging in which the absorption grating of high-aspect-ratio is the most important device and the fabrication process is a great challenge. The material with large atomic number Z is used to fabricate the absorption grating for excellent absorption of X-ray, and Au is usually used. The fabrication process, which involves X-ray lithography, development and gold electroplating, is described in this paper. The absorption gratings with 4 μm period and about 100 μm height are fabricated and the high-aspect-ratio is 50.

  2. Time-resolved imaging refractometry of microbicidal films using quantitative phase microscopy

    PubMed Central

    Rinehart, Matthew T.; Drake, Tyler K.; Robles, Francisco E.; Rohan, Lisa C.; Katz, David; Wax, Adam

    2011-01-01

    Quantitative phase microscopy is applied to image temporal changes in the refractive index (RI) distributions of solutions created by microbicidal films undergoing hydration. We present a novel method of using an engineered polydimethylsiloxane structure as a static phase reference to facilitate calibration of the absolute RI across the entire field. We present a study of dynamic structural changes in microbicidal films during hydration and subsequent dissolution. With assumptions about the smoothness of the phase changes induced by these films, we calculate absolute changes in the percentage of film in regions across the field of view. PMID:22191912

  3. Equilibrium-phase MR angiography: Comparison of unspecific extracellular and protein-binding gadolinium-based contrast media with respect to image quality.

    PubMed

    Erb-Eigner, Katharina; Taupitz, Matthias; Asbach, Patrick

    2016-01-01

    The purpose of this study was to compare contrast and image quality of whole-body equilibrium-phase high-spatial-resolution MR angiography using a non-protein-binding unspecific extracellular gadolinium-based contrast medium with that of two contrast media with different protein-binding properties. 45 patients were examined using either 15 mL of gadobutrol (non-protein-binding, n = 15), 32 mL of gadobenate dimeglumine (weakly protein binding, n = 15) or 11 mL gadofosveset trisodium (protein binding, n = 15) followed by equilibrium-phase high-spatial-resolution MR-angiography of four consecutive anatomic regions. The time elapsed between the contrast injection and the beginning of the equilibrium-phase image acquisition in the respective region was measured and was up to 21 min. Signal intensity was measured in two vessels per region and in muscle tissue. Relative contrast (RC) values were calculated. Vessel contrast, artifacts and image quality were rated by two radiologists in consensus on a five-point scale. Compared with gadobutrol, gadofosveset trisodium revealed significantly higher RC values only when acquired later than 15 min after bolus injection. Otherwise, no significant differences between the three contrast media were found regarding vascular contrast and image quality. Equilibrium-phase high-spatial-resolution MR-angiography using a weakly protein-binding or even non-protein-binding contrast medium is equivalent to using a stronger protein-binding contrast medium when image acquisition is within the first 15 min after contrast injection, and allows depiction of the vasculature with high contrast and image quality. The protein-binding contrast medium was superior for imaging only later than 15 min after contrast medium injection. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Comparison of semi-quantitative and quantitative dynamic contrast-enhanced MRI evaluations of vertebral marrow perfusion in a rat osteoporosis model.

    PubMed

    Zhu, Jingqi; Xiong, Zuogang; Zhang, Jiulong; Qiu, Yuyou; Hua, Ting; Tang, Guangyu

    2017-11-14

    This study aims to investigate the technical feasibility of semi-quantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of longitudinal changes of marrow perfusion in a rat osteoporosis model, using bone mineral density (BMD) measured by micro-computed tomography (micro-CT) and histopathology as the gold standards. Fifty rats were randomly assigned to the control group (n=25) and ovariectomy (OVX) group whose bilateral ovaries were excised (n=25). Semi-quantitative and quantitative DCE-MRI, micro-CT, and histopathological examinations were performed on lumbar vertebrae at baseline and 3, 6, 9, and 12 weeks after operation. The differences between the two groups in terms of semi-quantitative DCE-MRI parameter (maximum enhancement, E max ), quantitative DCE-MRI parameters (volume transfer constant, K trans ; interstitial volume, V e ; and efflux rate constant, K ep ), micro-CT parameter (BMD), and histopathological parameter (microvessel density, MVD) were compared at each of the time points using an independent-sample t test. The differences in these parameters between baseline and other time points in each group were assessed via Bonferroni's multiple comparison test. A Pearson correlation analysis was applied to assess the relationships between DCE-MRI, micro-CT, and histopathological parameters. In the OVX group, the E max values decreased significantly compared with those of the control group at weeks 6 and 9 (p=0.003 and 0.004, respectively). The K trans values decreased significantly compared with those of the control group from week 3 (p<0.05). However, the V e values decreased significantly only at week 9 (p=0.032), and no difference in the K ep was found between two groups. The BMD values of the OVX group decreased significantly compared with those of the control group from week 3 (p<0.05). Transmission electron microscopy showed tighter gaps between vascular endothelial cells with swollen mitochondria

  5. Contrast-enhanced ultrasound for quantitative assessment of portal pressure in canine liver fibrosis.

    PubMed

    Zhai, Lin; Qiu, Lan-Yan; Zu, Yuan; Yan, Yan; Ren, Xiao-Zhuan; Zhao, Jun-Feng; Liu, Yu-Jiang; Liu, Ji-Bin; Qian, Lin-Xue

    2015-04-21

    To explore the feasibility of non-invasive quantitative estimation of portal venous pressure by contrast-enhanced ultrasound (CEUS) in a canine model. Liver fibrosis was established in adult canines (Beagles; n = 14) by subcutaneous injection of carbon tetrachloride (CCl4). CEUS parameters, including the area under the time-intensity curve and intensity at portal/arterial phases (Qp/Qa and Ip/Ia, respectively), were used to quantitatively assess the blood flow ratio of the portal vein/hepatic artery at multiple time points. The free portal venous pressures (FPP) were measured by a multi-channel baroreceptor using a percutaneous approach at baseline and 8, 16, and 24 wk after CCl4 injections in each canine. Liver biopsies were obtained at the end of 8, 16, and 24 wk from each animal, and the stage of the fibrosis was assessed according to the Metavir scoring system. A Pearson correlation test was performed to compare the FPP with Qp/Qa and Ip/Ia. Pathologic examination of 42 biopsies from the 14 canines at weeks 8, 16, and 24 revealed that liver fibrosis was induced by CCl4 and represented various stages of liver fibrosis, including F0 (n = 3), F1 (n = 12), F2 (n = 14), F3 (n = 11), and F4 (n = 2). There were significant differences in the measurements of Qp/Qa (19.85 ± 3.30 vs 10.43 ± 1.21, 9.63 ± 1.03, and 8.77 ± 0.96) and Ip/Ia (1.77 ± 0.37 vs 1.03 ± 0.12, 0.83 ± 0.10, and 0.69 ± 0.13) between control and canine fibrosis at 8, 16, and 24 wk, respectively (all P < 0.001). There were statistically significant negative correlations between FPP and Qp/Qa (r = -0.707, P < 0.001), and between FPP and Ip/Ia (r = -0.759, P < 0.001) in the canine fibrosis model. Prediction of elevated FPP based on Qp/Qa and Ip/Ia was highly sensitive, as assessed by the area under the receiver operating curve (0.866 and 0.895, respectively). CEUS is a potential method to accurately, but non-invasively, estimate portal venous pressure through measurement of Qp/Qa and Ip

  6. Dual function microscope for quantitative DIC and birefringence imaging

    NASA Astrophysics Data System (ADS)

    Li, Chengshuai; Zhu, Yizheng

    2016-03-01

    A spectral multiplexing interferometry (SXI) method is presented for integrated birefringence and phase gradient measurement on label-free biological specimens. With SXI, the retardation and orientation of sample birefringence are simultaneously encoded onto two separate spectral carrier waves, generated by a crystal retarder oriented at a specific angle. Thus sufficient information for birefringence determination can be obtained from a single interference spectrum, eliminating the need for multiple acquisitions with mechanical rotation or electrical modulation. In addition, with the insertion of a Nomarski prism, the setup can then acquire quantitative differential interference contrast images. Red blood cells infected by malaria parasites are imaged for birefringence retardation as well as phase gradient. The results demonstrate that the SXI approach can achieve both quantitative phase imaging and birefringence imaging with a single, high-sensitivity system.

  7. Diagnostic efficacy of contrast-enhanced sonography by combined qualitative and quantitative analysis in breast lesions: a comparative study with magnetic resonance imaging.

    PubMed

    Wang, Lin; Du, Jing; Li, Feng-Hua; Fang, Hua; Hua, Jia; Wan, Cai-Feng

    2013-10-01

    The purpose of this study was to evaluate the diagnostic efficacy of contrast-enhanced sonography for differentiation of breast lesions by combined qualitative and quantitative analyses in comparison to magnetic resonance imaging (MRI). Fifty-six patients with American College of Radiology Breast Imaging Reporting and Data System category 3 to 5 breast lesions on conventional sonography were evaluated by contrast-enhanced sonography and MRI. A comparative analysis of diagnostic results between contrast-enhanced sonography and MRI was conducted in light of the pathologic findings. Pathologic analysis showed 26 benign and 30 malignant lesions. The predominant enhancement patterns of the benign lesions on contrast-enhanced sonography were homogeneous, centrifugal, and isoenhancement or hypoenhancement, whereas the patterns of the malignant lesions were mainly heterogeneous, centripetal, and hyperenhancement. The detection rates for perfusion defects and peripheral radial vessels in the malignant group were much higher than those in the benign group (P < .05). As to quantitative analysis, statistically significant differences were found in peak and time-to-peak values between the groups (P < .05). With pathologic findings as the reference standard, the sensitivity, specificity, and accuracy of contrast-enhanced sonography and MRI were 90.0%, 92.3%, 91.1% and 96.7%, 88.5%, and 92.9%, respectively. The two methods had a concordant rate of 87.5% (49 of 56), and the concordance test gave a value of κ = 0.75, indicating that there was high concordance in breast lesion assessment between the two diagnostic modalities. Contrast-enhanced sonography provided typical enhancement patterns and valuable quantitative parameters, which showed good agreement with MRI in diagnostic efficacy and may potentially improve characterization of breast lesions.

  8. Contrast medium usage reduction in abdominal computed tomography by using high-iodinated concentration contrast medium

    NASA Astrophysics Data System (ADS)

    Suwannasri, A.; Kaewlai, R.; Asavaphatiboon, S.

    2016-03-01

    This study was to determine if administration of a low volume high-concentration iodinated contrast medium can preserve image quality in comparison with regular-concentration intravenous contrast medium in patient undergoing contrast-enhancement abdominal computed tomography (CT). Eighty-four patients were randomly divided into 3 groups of similar iodine delivery rate; A: 1.2 cc/kg of iomeprol-400, B: 1.0 cc/kg of iomeprol-400 and C: 1.5 cc/kg of ioversol-350. Contrast enhancement of the liver parenchyma, pancreas and aorta was quantitatively measured in Hounsfield units and qualitative assessed by a radiologist. T-test was used to evaluate contrast enhancement, and Chi-square test was used to evaluate qualitative image assessment, at significance level of 0.05 with 95% confidence intervals. There were no statistically significant differences in contrast enhancement of liver parenchyma and pancreas between group A and group C in both quantitative and qualitative analyses. Group C showed superior vascular enhancement to group A and B on quantitative analysis.

  9. Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.

    PubMed

    Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu

    2013-01-01

    Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (<1 μm thick) sections of biological specimens, many questions involve the three-dimensional organization of a cell or the interconnectivity of cells. X-ray microscopy offers superior imaging resolution compared to light microscopy, and unique capability of nondestructive three-dimensional imaging of hydrated unstained biological cells, complementary to existing light and electron microscopy. Until now, X-ray microscopes operating in the "water window" energy range between carbon and oxygen k-shell absorption edges have produced outstanding 3D images of cryo-preserved cells. The relatively low X-ray energy (<540 eV) of the water window imposes two important limitations: limited penetration (<10 μm) not suitable for imaging larger cells or tissues, and small depth of focus (DoF) for high resolution 3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Quantitative phase imaging of human red blood cells using phase-shifting white light interference microscopy with colour fringe analysis

    NASA Astrophysics Data System (ADS)

    Singh Mehta, Dalip; Srivastava, Vishal

    2012-11-01

    We report quantitative phase imaging of human red blood cells (RBCs) using phase-shifting interference microscopy. Five phase-shifted white light interferograms are recorded using colour charge coupled device camera. White light interferograms were decomposed into red, green, and blue colour components. The phase-shifted interferograms of each colour were then processed by phase-shifting analysis and phase maps for red, green, and blue colours were reconstructed. Wavelength dependent refractive index profiles of RBCs were computed from the single set of white light interferogram. The present technique has great potential for non-invasive determination of refractive index variation and morphological features of cells and tissues.

  11. Multi-frame X-ray Phase Contrast Imaging (MPCI) for Dynamic Experiments

    NASA Astrophysics Data System (ADS)

    Iverson, Adam; Carlson, Carl; Sanchez, Nathaniel; Jensen, Brian

    2017-06-01

    Recent advances in coupling synchrotron X-ray diagnostics to dynamic experiments are providing new information about the response of materials at extremes. For example, propagation based X-ray Phase Contrast Imaging (PCI) which is sensitive to differences in density has been successfully used to study a wide range of phenomena, e.g. jet-formation, compression of additive manufactured (AM) materials, and detonator dynamics. In this talk, we describe the current multi-frame X-ray phase contrast imaging (MPCI) system which allows up to eight frames per experiment, remote optimization, and an improved optical design that increases optical efficiency and accommodates dual-magnification during a dynamic event. Data will be presented that used the dual-magnification feature to obtain multiple images of an exploding foil initiator. In addition, results from static testing will be presented that used a multiple scintillator configuration required to extend the density retrieval to multi-constituent, or heterogeneous systems. The continued development of this diagnostic is fundamentally important to capabilities at the APS including IMPULSE and the Dynamic Compression Sector (DCS), and will benefit future facilities such as MaRIE at Los Alamos National Laboratory.

  12. Phase-contrast x-ray imaging of microstructure and fatigue-crack propagation in single-crystal nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Husseini, Naji Sami

    Single-crystal nickel-base superalloys are ubiquitous in demanding turbine-blade applications, and they owe their remarkable resilience to their dendritic, hierarchical microstructure and complex composition. During normal operations, they endure rapid low-stress vibrations that may initiate fatigue cracks. This failure mode in the very high-cycle regime is poorly understood, in part due to inadequate testing and diagnostic equipment. Phase-contrast imaging with coherent synchrotron x rays, however, is an emergent technique ideally suited for dynamic processes such as crack initiation and propagation. A specially designed portable ultrasonic-fatigue apparatus, coupled with x-ray radiography, allows real-time, in situ imaging while simulating service conditions. Three contrast mechanisms - absorption, diffraction, and phase contrast - span the immense breadth of microstructural features in superalloys. Absorption contrast is sensitive to composition and crack displacements, and diffraction contrast illuminates dislocation aggregates and crystallographic misorientations. Phase contrast enhances electron-density gradients and is particularly useful for fatigue-crack studies, sensitive to internal crack tips and openings less than one micrometer. Superalloy samples were imaged without external stresses to study microstructure and mosaicity. Maps of rhenium and tungsten concentrations revealed strong segregation to the center of dendrites, as manifested by absorption contrast. Though nominally single crystals, dendrites were misoriented from the bulk by a few degrees, as revealed by diffraction contrast. For dynamic studies of cyclic fatigue, superalloys were mounted in the portable ultrasonic-fatigue apparatus, subjected to a mean tensile stress of ˜50-150 MPa, and cycled in tension to initiate and propagate fatigue cracks. Radiographs were recorded every thousand cycles over the multimillion-cycle lifetime to measure micron-scale crack growth. Crack

  13. Fusion of GFP and phase contrast images with complex shearlet transform and Haar wavelet-based energy rule.

    PubMed

    Qiu, Chenhui; Wang, Yuanyuan; Guo, Yanen; Xia, Shunren

    2018-03-14

    Image fusion techniques can integrate the information from different imaging modalities to get a composite image which is more suitable for human visual perception and further image processing tasks. Fusing green fluorescent protein (GFP) and phase contrast images is very important for subcellular localization, functional analysis of protein and genome expression. The fusion method of GFP and phase contrast images based on complex shearlet transform (CST) is proposed in this paper. Firstly the GFP image is converted to IHS model and its intensity component is obtained. Secondly the CST is performed on the intensity component and the phase contrast image to acquire the low-frequency subbands and the high-frequency subbands. Then the high-frequency subbands are merged by the absolute-maximum rule while the low-frequency subbands are merged by the proposed Haar wavelet-based energy (HWE) rule. Finally the fused image is obtained by performing the inverse CST on the merged subbands and conducting IHS-to-RGB conversion. The proposed fusion method is tested on a number of GFP and phase contrast images and compared with several popular image fusion methods. The experimental results demonstrate that the proposed fusion method can provide better fusion results in terms of subjective quality and objective evaluation. © 2018 Wiley Periodicals, Inc.

  14. Analyzing the texture changes in the quantitative phase maps of adipocytes

    NASA Astrophysics Data System (ADS)

    Roitshtain, Darina; Sharabani-Yosef, Orna; Gefen, Amit; Shaked, Natan T.

    2016-03-01

    We present a new analysis tool for studying texture changes in the quantitative phase maps of live cells acquired by wide-field interferometry. The sensitivity of wide-field interferometry systems to small changes in refractive index enables visualizing cells and inner cell organelles without the using fluorescent dyes or other cell-invasive approaches, which may affect the measurement and require external labeling. Our label-free texture-analysis tool is based directly on the optical path delay profile of the sample and does not necessitate decoupling refractive index and thickness in the cell quantitative phase profile; thus, relevant parameters can be calculated using a single-frame acquisition. Our experimental system includes low-coherence wide-field interferometer, combined with simultaneous florescence microscopy system for validation. We used this system and analysis tool for studying lipid droplets formation in adipocytes. The latter demonstration is relevant for various cellular functions such as lipid metabolism, protein storage and degradation to viral replication. These processes are functionally linked to several physiological and pathological conditions, including obesity and metabolic diseases. Quantification of these biological phenomena based on the texture changes in the cell phase map has a potential as a new cellular diagnosis tool.

  15. High resolution quantitative phase imaging of live cells with constrained optimization approach

    NASA Astrophysics Data System (ADS)

    Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu

    2016-03-01

    Quantitative phase imaging (QPI) aims at studying weakly scattering and absorbing biological specimens with subwavelength accuracy without any external staining mechanisms. Use of a reference beam at an angle is one of the necessary criteria for recording of high resolution holograms in most of the interferometric methods used for quantitative phase imaging. The spatial separation of the dc and twin images is decided by the reference beam angle and Fourier-filtered reconstructed image will have a very poor resolution if hologram is recorded below a minimum reference angle condition. However, it is always inconvenient to have a large reference beam angle while performing high resolution microscopy of live cells and biological specimens with nanometric features. In this paper, we treat reconstruction of digital holographic microscopy images as a constrained optimization problem with smoothness constraint in order to recover only complex object field in hologram plane even with overlapping dc and twin image terms. We solve this optimization problem by gradient descent approach iteratively and the smoothness constraint is implemented by spatial averaging with appropriate size. This approach will give excellent high resolution image recovery compared to Fourier filtering while keeping a very small reference angle. We demonstrate this approach on digital holographic microscopy of live cells by recovering the quantitative phase of live cells from a hologram recorded with nearly zero reference angle.

  16. Potential for Imaging Engineered Tissues with X-Ray Phase Contrast

    PubMed Central

    Appel, Alyssa; Anastasio, Mark A.

    2011-01-01

    As the field of tissue engineering advances, it is crucial to develop imaging methods capable of providing detailed three-dimensional information on tissue structure. X-ray imaging techniques based on phase-contrast (PC) have great potential for a number of biomedical applications due to their ability to provide information about soft tissue structure without exogenous contrast agents. X-ray PC techniques retain the excellent spatial resolution, tissue penetration, and calcified tissue contrast of conventional X-ray techniques while providing drastically improved imaging of soft tissue and biomaterials. This suggests that X-ray PC techniques are very promising for evaluation of engineered tissues. In this review, four different implementations of X-ray PC imaging are described and applications to tissues of relevance to tissue engineering reviewed. In addition, recent applications of X-ray PC to the evaluation of biomaterial scaffolds and engineered tissues are presented and areas for further development and application of these techniques are discussed. Imaging techniques based on X-ray PC have significant potential for improving our ability to image and characterize engineered tissues, and their continued development and optimization could have significant impact on the field of tissue engineering. PMID:21682604

  17. Calibration of phase contrast imaging on HL-2A Tokamak

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Gong, S. B.; Xu, M.; Xiao, C. J.; Jiang, W.; Zhong, W. L.; Shi, Z. B.; Wang, H. J.; Wu, Y. F.; Yuan, B. D.; Lan, T.; Ye, M. Y.; Duan, X. R.; HL-2A Team

    2017-10-01

    Phase contrast imaging (PCI) has recently been developed on HL-2A tokamak. In this article we present the calibration of this diagnostic. This system is to diagnose chord integral density fluctuations by measuring the phase shift of a CO2 laser beam with a wavelength of 10.6 μm when the laser beam passes through plasma. Sound waves are used to calibrate PCI diagnostic. The signal series in different PCI channels show a pronounced modulation of incident laser beam by the sound wave. Frequency-wavenumber spectrum is achieved. Calibrations by sound waves with different frequencies exhibit a maximal wavenumber response of 12 cm-1. The conversion relationship between the chord integral plasma density fluctuation and the signal intensity is 2.3 × 1013 m-2/mV, indicating a high sensitivity.

  18. Contrast enhanced liver MRI in patients with primary sclerosing cholangitis: inverse appearance of focal confluent fibrosis on delayed phase MR images with hepatocyte specific versus extracellular gadolinium based contrast agents.

    PubMed

    Husarik, Daniela B; Gupta, Rajan T; Ringe, Kristina I; Boll, Daniel T; Merkle, Elmar M

    2011-12-01

    To assess the enhancement pattern of focal confluent fibrosis (FCF) on contrast-enhanced hepatic magnetic resonance imaging (MRI) using hepatocyte-specific (Gd-EOB-DTPA) and extracellular (ECA) gadolinium-based contrast agents in patients with primary sclerosing cholangitis (PSC). After institutional review board approval, 10 patients with PSC (6 male, 4 female; 33-61 years) with 13 FCF were included in this retrospective study. All patients had a Gd-EOB-DTPA-enhanced liver MRI exam, and a comparison ECA-enhanced MRI. On each T1-weighted dynamic dataset, the signal intensity (SI) of FCF and the surrounding liver as well as the paraspinal muscle (M) were measured. In the Gd-EOB-DTPA group, hepatocyte phase images were also included. SI FCF/SI M, SI liver/SI M, and [(SI liver - SI FCF)/SI liver] were compared between the different contrast agents for each dynamic phase using the paired Student's t-test. There was no significant difference in SI FCF/SI M in all imaging phases. SI liver/SI M was significantly higher for the Gd-EOB-DTPA group in the delayed phase (P < .001), whereas there was no significant difference in all other imaging phases. In the Gd-EOB-DTPA group, mean [(SI liver - SI FCF)/SI liver] were as follows (values for ECA group in parentheses): unenhanced phase: 0.26 (0.26); arterial phase: 0.01 (-0.31); portal venous phase (PVP): -0.05 (-0.26); delayed phase (DP): 0.14 (-0.54); and hepatocyte phase: 0.26. Differences were significant for the DP (P < .001). On delayed phase MR images the FCF-to-liver contrast is reversed with the lesions appearing hyperintense on ECA enhanced images and hypointense on Gd-EOB-DTPA-enhanced images. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  19. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  20. Spatially encoded phase-contrast MRI-3D MRI movies of 1D and 2D structures at millisecond resolution.

    PubMed

    Merboldt, Klaus-Dietmar; Uecker, Martin; Voit, Dirk; Frahm, Jens

    2011-10-01

    This work demonstrates that the principles underlying phase-contrast MRI may be used to encode spatial rather than flow information along a perpendicular dimension, if this dimension contains an MRI-visible object at only one spatial location. In particular, the situation applies to 3D mapping of curved 2D structures which requires only two projection images with different spatial phase-encoding gradients. These phase-contrast gradients define the field of view and mean spin-density positions of the object in the perpendicular dimension by respective phase differences. When combined with highly undersampled radial fast low angle shot (FLASH) and image reconstruction by regularized nonlinear inversion, spatial phase-contrast MRI allows for dynamic 3D mapping of 2D structures in real time. First examples include 3D MRI movies of the acting human hand at a temporal resolution of 50 ms. With an even simpler technique, 3D maps of curved 1D structures may be obtained from only three acquisitions of a frequency-encoded MRI signal with two perpendicular phase encodings. Here, 3D MRI movies of a rapidly rotating banana were obtained at 5 ms resolution or 200 frames per second. In conclusion, spatial phase-contrast 3D MRI of 2D or 1D structures is respective two or four orders of magnitude faster than conventional 3D MRI. Copyright © 2011 Wiley-Liss, Inc.

  1. Experimental demonstration of passive coherent combining of fiber lasers by phase contrast filtering.

    PubMed

    Jeux, François; Desfarges-Berthelemot, Agnès; Kermène, Vincent; Barthelemy, Alain

    2012-12-17

    We report experiments on a new laser architecture involving phase contrast filtering to coherently combine an array of fiber lasers. We demonstrate that the new technique yields a more stable phase-locking than standard methods using only amplitude filtering. A spectral analysis of the output beams shows that the new scheme generates more resonant frequencies common to the coupled lasers. This property can enhance the combining efficiency when the number of lasers to be coupled is large.

  2. Total internal reflection holographic microscopy (TIRHM) for quantitative phase characterization of cell-substrate adhesion

    NASA Astrophysics Data System (ADS)

    Ash, William Mason, III

    Total Internal Reflection Holographic Microscopy (TIRHM) combines near-field microscopy with digital holography to produce a new form of near-field phase microscopy. Using a prism in TIR as a near-field imager, the presence of microscopic organisms, cell-substrate interfaces, and adhesions, causes relative refractive index (RRI) and frustrated TIR (f-TIR) to modulate the object beam's evanescent wave phase front. Quantitative phase images of test specimens such as Amoeba proteus, Dictyostelium Discoideum and cells such as SKOV-3 ovarian cancer and 3T3 fibroblasts are produced without the need to introduce stains or fluorophores. The angular spectrum method of digital holography to compensate for tilt anamorphism due to the inclined TIR plane is also discussed. The results of this work conclusively demonstrate, for the first time, the integration of near-field microscopy with digital holography. The cellular images presented show a correlation between the physical extent of the Amoeba proteus plasma membrane and the adhesions that are quantitatively profiled by phase cross-sectioning of the holographic images obtained by digital holography. With its ability to quantitatively characterise cellular adhesion and motility, it is anticipated that TIRHM can be a tool for characterizing and combating cancer metastasis, as well as improving our understanding of morphogenesis and embryogenesis itself.

  3. Phase gradient imaging for positive contrast generation to superparamagnetic iron oxide nanoparticle-labeled targets in magnetic resonance imaging.

    PubMed

    Zhu, Haitao; Demachi, Kazuyuki; Sekino, Masaki

    2011-09-01

    Positive contrast imaging methods produce enhanced signal at large magnetic field gradient in magnetic resonance imaging. Several postprocessing algorithms, such as susceptibility gradient mapping and phase gradient mapping methods, have been applied for positive contrast generation to detect the cells targeted by superparamagnetic iron oxide nanoparticles. In the phase gradient mapping methods, smoothness condition has to be satisfied to keep the phase gradient unwrapped. Moreover, there has been no discussion about the truncation artifact associated with the algorithm of differentiation that is performed in k-space by the multiplication with frequency value. In this work, phase gradient methods are discussed by considering the wrapping problem when the smoothness condition is not satisfied. A region-growing unwrapping algorithm is used in the phase gradient image to solve the problem. In order to reduce the truncation artifact, a cosine function is multiplied in the k-space to eliminate the abrupt change at the boundaries. Simulation, phantom and in vivo experimental results demonstrate that the modified phase gradient mapping methods may produce improved positive contrast effects by reducing truncation or wrapping artifacts. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Quantitative contrast-enhanced ultrasound for monitoring vedolizumab therapy in inflammatory bowel disease patients: a pilot study.

    PubMed

    Goertz, Ruediger S; Klett, Daniel; Wildner, Dane; Atreya, Raja; Neurath, Markus F; Strobel, Deike

    2018-01-01

    Background Microvascularization of the bowel wall can be visualized and quantified non-invasively by software-assisted analysis of derived time-intensity curves. Purpose To perform software-based quantification of bowel wall perfusion using quantitative contrast-enhanced ultrasound (CEUS) according to clinical response in patients with inflammatory bowel disease treated with vedolizumab. Material and Methods In a prospective study, in 18 out of 34 patients, high-frequency ultrasound of bowel wall thickness using color Doppler flow combined with CEUS was performed at baseline and after 14 weeks of treatment with vedolizumab. Clinical activity scores at week 14 were used to differentiate between responders and non-responders. CEUS parameters were calculated by software analysis of the video loops. Results Nine of 18 patients (11 with Crohn's disease and seven with ulcerative colitis) showed response to treatment with vedolizumab. Overall, the responder group showed a significant decrease in the semi-quantitative color Doppler vascularization score. Amplitude-derived CEUS parameters of mural microvascularization such as peak enhancement or wash-in rate decreased in responders, in contrast with non-responders. Time-derived parameters remained stable or increased during treatment in all patients. Conclusion Analysis of bowel microvascularization by CEUS shows statistically significant changes in the wash-in-rate related to response of vedolizumab therapy.

  5. Contrast-enhanced small-animal PET/CT in cancer research: strong improvement of diagnostic accuracy without significant alteration of quantitative accuracy and NEMA NU 4-2008 image quality parameters.

    PubMed

    Lasnon, Charline; Quak, Elske; Briand, Mélanie; Gu, Zheng; Louis, Marie-Hélène; Aide, Nicolas

    2013-01-17

    The use of iodinated contrast media in small-animal positron emission tomography (PET)/computed tomography (CT) could improve anatomic referencing and tumor delineation but may introduce inaccuracies in the attenuation correction of the PET images. This study evaluated the diagnostic performance and accuracy of quantitative values in contrast-enhanced small-animal PET/CT (CEPET/CT) as compared to unenhanced small animal PET/CT (UEPET/CT). Firstly, a NEMA NU 4-2008 phantom (filled with 18F-FDG or 18F-FDG plus contrast media) and a homemade phantom, mimicking an abdominal tumor surrounded by water or contrast media, were used to evaluate the impact of iodinated contrast media on the image quality parameters and accuracy of quantitative values for a pertinent-sized target. Secondly, two studies in 22 abdominal tumor-bearing mice and rats were performed. The first animal experiment studied the impact of a dual-contrast media protocol, comprising the intravenous injection of a long-lasting contrast agent mixed with 18F-FDG and the intraperitoneal injection of contrast media, on tumor delineation and the accuracy of quantitative values. The second animal experiment compared the diagnostic performance and quantitative values of CEPET/CT versus UEPET/CT by sacrificing the animals after the tracer uptake period and imaging them before and after intraperitoneal injection of contrast media. There was minimal impact on IQ parameters (%SDunif and spillover ratios in air and water) when the NEMA NU 4-2008 phantom was filled with 18F-FDG plus contrast media. In the homemade phantom, measured activity was similar to true activity (-0.02%) and overestimated by 10.30% when vials were surrounded by water or by an iodine solution, respectively. The first animal experiment showed excellent tumor delineation and a good correlation between small-animal (SA)-PET and ex vivo quantification (r2 = 0.87, P < 0.0001). The second animal experiment showed a good correlation between CEPET/CT and

  6. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel.

    PubMed

    Roitshtain, Darina; Turko, Nir A; Javidi, Bahram; Shaked, Natan T

    2016-05-15

    We present a portable, off-axis interferometric module for quantitative phase microscopy of live cells, positioned at the exit port of a coherently illuminated inverted microscope. The module creates on the digital camera an interference pattern between the image of the sample and its flipped version. The proposed simplified module is based on a retro-reflector modification in an external Michelson interferometer. The module does not contain any lenses, pinholes, or gratings and its alignment is straightforward. Still, it allows full control of the off-axis angle and does not suffer from ghost images. As experimentally demonstrated, the module is useful for quantitative phase microscopy of live cells rapidly flowing in a micro-channel.

  7. High temporal resolution dynamic contrast-enhanced MRI using compressed sensing-combined sequence in quantitative renal perfusion measurement.

    PubMed

    Chen, Bin; Zhao, Kai; Li, Bo; Cai, Wenchao; Wang, Xiaoying; Zhang, Jue; Fang, Jing

    2015-10-01

    To demonstrate the feasibility of the improved temporal resolution by using compressed sensing (CS) combined imaging sequence in dynamic contrast-enhanced MRI (DCE-MRI) of kidney, and investigate its quantitative effects on renal perfusion measurements. Ten rabbits were included in the accelerated scans with a CS-combined 3D pulse sequence. To evaluate the image quality, the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between the proposed CS strategy and the conventional full sampling method. Moreover, renal perfusion was estimated by using the separable compartmental model in both CS simulation and realistic CS acquisitions. The CS method showed DCE-MRI images with improved temporal resolution and acceptable image contrast, while presenting significantly higher SNR than the fully sampled images (p<.01) at 2-, 3- and 4-X acceleration. In quantitative measurements, renal perfusion results were in good agreement with the fully sampled one (concordance correlation coefficient=0.95, 0.91, 0.88) at 2-, 3- and 4-X acceleration in CS simulation. Moreover, in realistic acquisitions, the estimated perfusion by the separable compartmental model exhibited no significant differences (p>.05) between each CS-accelerated acquisition and the full sampling method. The CS-combined 3D sequence could improve the temporal resolution for DCE-MRI in kidney while yielding diagnostically acceptable image quality, and it could provide effective measurements of renal perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A feasibility study of X-ray phase-contrast mammographic tomography at the Imaging and Medical beamline of the Australian Synchrotron.

    PubMed

    Nesterets, Yakov I; Gureyev, Timur E; Mayo, Sheridan C; Stevenson, Andrew W; Thompson, Darren; Brown, Jeremy M C; Kitchen, Marcus J; Pavlov, Konstantin M; Lockie, Darren; Brun, Francesco; Tromba, Giuliana

    2015-11-01

    Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.

  9. Feasibility of measuring renal blood flow by phase-contrast magnetic resonance imaging in patients with autosomal dominant polycystic kidney disease.

    PubMed

    Spithoven, E M; Meijer, E; Borns, C; Boertien, W E; Gaillard, C A J M; Kappert, P; Greuter, M J W; van der Jagt, E; Vart, P; de Jong, P E; Gansevoort, R T

    2016-03-01

    Renal blood flow (RBF) has been shown to predict disease progression in autosomal dominant polycystic kidney disease (ADPKD). We investigated the feasibility and accuracy of phase-contrast RBF by MRI (RBFMRI) in ADPKD patients with a wide range of estimated glomerular filtration rate (eGFR) values. First, we validated RBFMRI measurement using phantoms simulating renal artery hemodynamics. Thereafter, we investigated in a test-set of 21 patients intra- and inter-observer coefficient of variation of RBFMRI. After validation, we measured RBFMRI in a cohort of 91 patients and compared the variability explained by characteristics indicative for disease severity for RBFMRI and RBF measured by continuous hippuran infusion. The correlation in flow measurement using phantoms by phase-contrast MRI was high and fluid collection was high (CCC=0.969). Technical problems that precluded RBFMRI measurement occurred predominantly in patients with a lower eGFR (34% vs. 16%). In subjects with higher eGFRs, variability in RBF explained by disease characteristics was similar for RBFMRI compared to RBFHip, whereas in subjects with lower eGFRs, this was significantly less for RBFMRI. Our study shows that RBF can be measured accurately in ADPKD patients by phase-contrast, but this technique may be less feasible in subjects with a lower eGFR. Renal blood flow (RBF) can be accurately measured by phase-contrast MRI in ADPKD patients. RBF measured by phase-contrast is associated with ADPKD disease severity. RBF measurement by phase-contrast MRI may be less feasible in patients with an impaired eGFR.

  10. Phase-contrast X-ray computed tomography of non-formalin fixed biological objects

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Momose, Atsushi; Wu, Jin; Zeniya, Tsutomu; Yu, Quanwen; Thet-Thet-Lwin; Itai, Yuji

    2001-07-01

    Using a monolithic X-ray interferometer having the view size of 25 mm×25 mm, phase-contrast X-ray CT (PCCT) was performed for non-formalin fixed livers of two normal rats and a rabbit transplanted with VX-2 cancer. PCCT images of liver and cancer lesions resembled well those obtained by formalin fixed samples.

  11. First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation.

    PubMed

    Larsson, Daniel H; Lundström, Ulf; Westermark, Ulrica K; Arsenian Henriksson, Marie; Burvall, Anna; Hertz, Hans M

    2013-02-01

    Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga∕In∕Sn alloy and the other an In∕Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with ∼7 μm x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. High-resolution absorption imaging is demonstrated on mice with CT, showing 50 μm bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.

  12. Single-exposure quantitative phase imaging in color-coded LED microscopy.

    PubMed

    Lee, Wonchan; Jung, Daeseong; Ryu, Suho; Joo, Chulmin

    2017-04-03

    We demonstrate single-shot quantitative phase imaging (QPI) in a platform of color-coded LED microscopy (cLEDscope). The light source in a conventional microscope is replaced by a circular LED pattern that is trisected into subregions with equal area, assigned to red, green, and blue colors. Image acquisition with a color image sensor and subsequent computation based on weak object transfer functions allow for the QPI of a transparent specimen. We also provide a correction method for color-leakage, which may be encountered in implementing our method with consumer-grade LEDs and image sensors. Most commercially available LEDs and image sensors do not provide spectrally isolated emissions and pixel responses, generating significant error in phase estimation in our method. We describe the correction scheme for this color-leakage issue, and demonstrate improved phase measurement accuracy. The computational model and single-exposure QPI capability of our method are presented by showing images of calibrated phase samples and cellular specimens.

  13. Spatial resolution characterization of differential phase contrast CT systems via modulation transfer function (MTF) measurements

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zambelli, Joseph; Bevins, Nicholas; Ge, Yongshuai; Chen, Guang-Hong

    2013-06-01

    By adding a Talbot-Lau interferometer to a conventional x-ray absorption computed tomography (CT) imaging system, both differential phase contrast (DPC) signal and absorption contrast signal can be simultaneously measured from the same set of CT measurements. The imaging performance of such multi-contrast x-ray CT imaging systems can be characterized with standard metrics such as noise variance, noise power spectrum, contrast-to-noise ratio, modulation transfer function (MTF), and task-based detectability index. Among these metrics, the measurement of the MTF can be challenging in DPC-CT systems due to several confounding factors such as phase wrapping and the difficulty of using fine wires as probes. To address these technical challenges, this paper discusses a viable and reliable method to experimentally measure the MTF of DPC-CT. It has been found that the spatial resolution of DPC-CT is degraded, when compared to that of the corresponding absorption CT, due to the presence of a source grating G0 in the Talbot-Lau interferometer. An effective MTF was introduced and experimentally estimated to describe the impact of the Talbot-Lau interferometer on the system MTF.

  14. Quantification of turbulence and velocity in stenotic flow using spiral three-dimensional phase-contrast MRI.

    PubMed

    Petersson, Sven; Dyverfeldt, Petter; Sigfridsson, Andreas; Lantz, Jonas; Carlhäll, Carl-Johan; Ebbers, Tino

    2016-03-01

    Evaluate spiral three-dimensional (3D) phase contrast MRI for the assessment of turbulence and velocity in stenotic flow. A-stack-of-spirals 3D phase contrast MRI sequence was evaluated in vitro against a conventional Cartesian sequence. Measurements were made in a flow phantom with a 75% stenosis. Both spiral and Cartesian imaging were performed using different scan orientations and flow rates. Volume flow rate, maximum velocity and turbulent kinetic energy (TKE) were computed for both methods. Moreover, the estimated TKE was compared with computational fluid dynamics (CFD) data. There was good agreement between the turbulent kinetic energy from the spiral, Cartesian and CFD data. Flow rate and maximum velocity from the spiral data agreed well with Cartesian data. As expected, the short echo time of the spiral sequence resulted in less prominent displacement artifacts compared with the Cartesian sequence. However, both spiral and Cartesian flow rate estimates were sensitive to displacement when the flow was oblique to the encoding directions. Spiral 3D phase contrast MRI appears favorable for the assessment of stenotic flow. The spiral sequence was more than three times faster and less sensitive to displacement artifacts when compared with a conventional Cartesian sequence. © 2015 Wiley Periodicals, Inc.

  15. Quantitative comparison between a multiecho sequence and a single-echo sequence for susceptibility-weighted phase imaging.

    PubMed

    Gilbert, Guillaume; Savard, Geneviève; Bard, Céline; Beaudoin, Gilles

    2012-06-01

    The aim of this study was to investigate the benefits arising from the use of a multiecho sequence for susceptibility-weighted phase imaging using a quantitative comparison with a standard single-echo acquisition. Four healthy adult volunteers were imaged on a clinical 3-T system using a protocol comprising two different three-dimensional susceptibility-weighted gradient-echo sequences: a standard single-echo sequence and a multiecho sequence. Both sequences were repeated twice in order to evaluate the local noise contribution by a subtraction of the two acquisitions. For the multiecho sequence, the phase information from each echo was independently unwrapped, and the background field contribution was removed using either homodyne filtering or the projection onto dipole fields method. The phase information from all echoes was then combined using a weighted linear regression. R2 maps were also calculated from the multiecho acquisitions. The noise standard deviation in the reconstructed phase images was evaluated for six manually segmented regions of interest (frontal white matter, posterior white matter, globus pallidus, putamen, caudate nucleus and lateral ventricle). The use of the multiecho sequence for susceptibility-weighted phase imaging led to a reduction of the noise standard deviation for all subjects and all regions of interest investigated in comparison to the reference single-echo acquisition. On average, the noise reduction ranged from 18.4% for the globus pallidus to 47.9% for the lateral ventricle. In addition, the amount of noise reduction was found to be strongly inversely correlated to the estimated R2 value (R=-0.92). In conclusion, the use of a multiecho sequence is an effective way to decrease the noise contribution in susceptibility-weighted phase images, while preserving both contrast and acquisition time. The proposed approach additionally permits the calculation of R2 maps. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Reproducibility of cerebrospinal venous blood flow and vessel anatomy with the use of phase contrast-vastly undersampled isotropic projection reconstruction and contrast-enhanced MRA.

    PubMed

    Schrauben, E M; Johnson, K M; Huston, J; Del Rio, A M; Reeder, S B; Field, A; Wieben, O

    2014-05-01

    The chronic cerebrospinal venous insufficiency hypothesis raises interest in cerebrospinal venous blood flow imaging, which is more complex and less established than in arteries. For accurate assessment of venous flow in chronic cerebrospinal venous insufficiency diagnosis and research, we must account for physiologic changes in flow patterns. This study examines day-to-day flow variability in cerebrospinal veins by use of 4D MR flow and contrast-enhanced MRA under typical, uncontrolled conditions in healthy individuals. Ten healthy volunteers were scanned in a test-retest fashion by use of a 4D flow MR imaging technique and contrast-enhanced MRA. Flow parameters obtained from phase contrast-vastly undersampled isotropic projection reconstruction and contrast-enhanced MRA scoring measurements in the head, neck, and chest veins were analyzed for internal consistency and interscan reproducibility. Internal consistency was satisfied at the torcular herophili, with an input-output difference of 2.2%. Percentages of variations in flow were 20.3%, internal jugular vein; 20.4%, azygos vein; 6.8%, transverse sinus; and 5.1%, common carotid artery. Retrograde flow was found in the lower internal jugular vein (4.8%) and azygos vein (7.2%). Contrast-enhanced MRA interscan κ values for the internal jugular vein (left: 0.474, right: 0.366) and azygos vein (-0.053) showed poor interscan agreement. Phase contrast-vastly undersampled isotropic projection reconstruction blood flow measurements are reliable and highly reproducible in intracranial veins and in the common carotid artery but not in veins of the neck (internal jugular vein) and chest (azygos vein) because of normal physiologic variation. Retrograde flow normally may be observed in the lower internal jugular vein and azygos vein. Low interrater agreement in contrast-enhanced MRA scans was observed. These findings have important implications for imaging diagnosis and experimental research of chronic cerebrospinal venous

  17. [Diagnostic value of quantitative pharmacokinetic parameters and relative quantitative pharmacokinetic parameters in breast lesions with dynamic contrast-enhanced MRI].

    PubMed

    Sun, T T; Liu, W H; Zhang, Y Q; Li, L H; Wang, R; Ye, Y Y

    2017-08-01

    Objective: To explore the differential between the value of dynamic contrast-enhanced MRI quantitative pharmacokinetic parameters and relative pharmacokinetic quantitative parameters in breast lesions. Methods: Retrospective analysis of 255 patients(262 breast lesions) who was obtained by clinical palpation , ultrasound or full-field digital mammography , and then all lessions were pathologically confirmed in Zhongda Hospital, Southeast University from May 2012 to May 2016. A 3.0 T MRI scanner was used to obtain the quantitative MR pharmacokinetic parameters: volume transfer constant (K(trans)), exchange rate constant (k(ep))and extravascular extracellular volume fraction (V(e)). And measured the quantitative pharmacokinetic parameters of normal glands tissues which on the same side of the same level of the lesions; and then calculated the value of relative pharmacokinetic parameters: rK(rans)、rk(ep) and rV(e).To explore the diagnostic value of two pharmacokinetic parameters in differential diagnosis of benign and malignant breast lesions using receiver operating curves and model of logistic regression. Results: (1)There were significant differences between benign lesions and malignant lesions in K(trans) and k(ep) ( t =15.489, 15.022, respectively, P <0.05), there were no significant differences between benign lesions and malignant lesions in V(e)( t =-2.346, P >0.05). The areas under the ROC curve(AUC)of K(trans), k(ep) and V(e) between malignant and benign lesions were 0.933, 0.948 and 0.387, the sensitivity of K(trans), k(ep) and V(e) were 77.1%, 85.0%, 51.0% , and the specificity of K(trans), k(ep) and V(e) were 96.3%, 93.6%, 60.8% for the differential diagnosis of breast lesions if taken the maximum Youden's index as cut-off. (2)There were significant differences between benign lesions and malignant lesions in rK(trans), rk(ep) and rV(e) ( t =14.177, 11.726, 2.477, respectively, P <0.05). The AUC of rK(trans), rk(ep) and rV(e) between malignant and benign

  18. Photothermal quantitative phase imaging of living cells with nanoparticles utilizing a cost-efficient setup

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Isbach, Michael; Ketelhut, Steffi; Greve, Burkhard; Schnekenburger, Jürgen; Shaked, Natan T.; Kemper, Björn

    2017-02-01

    We explored photothermal quantitative phase imaging (PTQPI) of living cells with functionalized nanoparticles (NPs) utilizing a cost-efficient setup based on a cell culture microscope. The excitation light was modulated by a mechanical chopper wheel with low frequencies. Quantitative phase imaging (QPI) was performed with Michelson interferometer-based off-axis digital holographic microscopy and a standard industrial camera. We present results from PTQPI observations on breast cancer cells that were incubated with functionalized gold NPs binding to the epidermal growth factor receptor. Moreover, QPI was used to quantify the impact of the NPs and the low frequency light excitation on cell morphology and viability.

  19. 4D phase contrast flow imaging for in-stent flow visualization and assessment of stent patency in peripheral vascular stents--a phantom study.

    PubMed

    Bunck, Alexander C; Jüttner, Alena; Kröger, Jan Robert; Burg, Matthias C; Kugel, Harald; Niederstadt, Thomas; Tiemann, Klaus; Schnackenburg, Bernhard; Crelier, Gerard R; Heindel, Walter; Maintz, David

    2012-09-01

    4D phase contrast flow imaging is increasingly used to study the hemodynamics in various vascular territories and pathologies. The aim of this study was to assess the feasibility and validity of MRI based 4D phase contrast flow imaging for the evaluation of in-stent blood flow in 17 commonly used peripheral stents. 17 different peripheral stents were implanted into a MR compatible flow phantom. In-stent visibility, maximal velocity and flow visualization were assessed and estimates of in-stent patency obtained from 4D phase contrast flow data sets were compared to a conventional 3D contrast-enhanced magnetic resonance angiography (CE-MRA) as well as 2D PC flow measurements. In all but 3 of the tested stents time-resolved 3D particle traces could be visualized inside the stent lumen. Quality of 4D flow visualization and CE-MRA images depended on stent type and stent orientation relative to the magnetic field. Compared to the visible lumen area determined by 3D CE-MRA, estimates of lumen patency derived from 4D flow measurements were significantly higher and less dependent on stent type. A higher number of stents could be assessed for in-stent patency by 4D phase contrast flow imaging (n=14) than by 2D phase contrast flow imaging (n=10). 4D phase contrast flow imaging in peripheral vascular stents is feasible and appears advantageous over conventional 3D contrast-enhanced MR angiography and 2D phase contrast flow imaging. It allows for in-stent flow visualization and flow quantification with varying quality depending on stent type. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Computer-aided diagnosis in phase contrast imaging X-ray computed tomography for quantitative characterization of ex vivo human patellar cartilage.

    PubMed

    Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Glaser, Christian; Wismuller, Axel

    2013-10-01

    Visualization of ex vivo human patellar cartilage matrix through the phase contrast imaging X-ray computed tomography (PCI-CT) has been previously demonstrated. Such studies revealed osteoarthritis-induced changes to chondrocyte organization in the radial zone. This study investigates the application of texture analysis to characterizing such chondrocyte patterns in the presence and absence of osteoarthritic damage. Texture features derived from Minkowski functionals (MF) and gray-level co-occurrence matrices (GLCM) were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. These texture features were subsequently used in a machine learning task with support vector regression to classify ROIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver operating characteristic curve (AUC). The best classification performance was observed with the MF features perimeter (AUC: 0.94 ±0.08 ) and "Euler characteristic" (AUC: 0.94 ±0.07 ), and GLCM-derived feature "Correlation" (AUC: 0.93 ±0.07). These results suggest that such texture features can provide a detailed characterization of the chondrocyte organization in the cartilage matrix, enabling classification of cartilage as healthy or osteoarthritic with high accuracy.

  1. Optimization of Region of Interest Drawing for Quantitative Analysis: Differentiation Between Benign and Malignant Breast Lesions on Contrast-Enhanced Sonography.

    PubMed

    Nakata, Norio; Ohta, Tomoyuki; Nishioka, Makiko; Takeyama, Hiroshi; Toriumi, Yasuo; Kato, Kumiko; Nogi, Hiroko; Kamio, Makiko; Fukuda, Kunihiko

    2015-11-01

    This study was performed to evaluate the diagnostic utility of quantitative analysis of benign and malignant breast lesions using contrast-enhanced sonography. Contrast-enhanced sonography using the perflubutane-based contrast agent Sonazoid (Daiichi Sankyo, Tokyo, Japan) was performed in 94 pathologically proven palpable breast mass lesions, which could be depicted with B-mode sonography. Quantitative analyses using the time-intensity curve on contrast-enhanced sonography were performed in 5 region of interest (ROI) types (manually traced ROI and circular ROIs of 5, 10, 15, and 20 mm in diameter). The peak signal intensity, initial slope, time to peak, positive enhancement integral, and wash-out ratio were investigated in each ROI. There were significant differences between benign and malignant lesions in the time to peak (P < .05), initial slope (P < .001), and positive enhancement integral (P < .05) for the manual ROI. Significant differences were found between benign and malignant lesions in the time to peak (P < .05) for the 5-mm ROI; the time to peak (P < .05) and initial slope (P< .05) for the 10-mm ROI; absolute values of the peak signal intensity (P< .05), time to peak (P< .01), and initial slope (P< .005) for the 15-mm ROI; and the time to peak (P < .05) and initial slope (P < .05) for the 20-mm ROI. There were no statistically significant differences in any wash-out ratio values for the 5 ROI types. Kinetic analysis using contrast-enhanced sonography is useful for differentiation between benign and malignant breast lesions. © 2015 by the American Institute of Ultrasound in Medicine.

  2. Contrast-enhanced ultrasound for quantitative assessment of portal pressure in canine liver fibrosis

    PubMed Central

    Zhai, Lin; Qiu, Lan-Yan; Zu, Yuan; Yan, Yan; Ren, Xiao-Zhuan; Zhao, Jun-Feng; Liu, Yu-Jiang; Liu, Ji-Bin; Qian, Lin-Xue

    2015-01-01

    AIM: To explore the feasibility of non-invasive quantitative estimation of portal venous pressure by contrast-enhanced ultrasound (CEUS) in a canine model. METHODS: Liver fibrosis was established in adult canines (Beagles; n = 14) by subcutaneous injection of carbon tetrachloride (CCl4). CEUS parameters, including the area under the time-intensity curve and intensity at portal/arterial phases (Qp/Qa and Ip/Ia, respectively), were used to quantitatively assess the blood flow ratio of the portal vein/hepatic artery at multiple time points. The free portal venous pressures (FPP) were measured by a multi-channel baroreceptor using a percutaneous approach at baseline and 8, 16, and 24 wk after CCl4 injections in each canine. Liver biopsies were obtained at the end of 8, 16, and 24 wk from each animal, and the stage of the fibrosis was assessed according to the Metavir scoring system. A Pearson correlation test was performed to compare the FPP with Qp/Qa and Ip/Ia. RESULTS: Pathologic examination of 42 biopsies from the 14 canines at weeks 8, 16, and 24 revealed that liver fibrosis was induced by CCl4 and represented various stages of liver fibrosis, including F0 (n = 3), F1 (n = 12), F2 (n = 14), F3 (n = 11), and F4 (n = 2). There were significant differences in the measurements of Qp/Qa (19.85 ± 3.30 vs 10.43 ± 1.21, 9.63 ± 1.03, and 8.77 ± 0.96) and Ip/Ia (1.77 ± 0.37 vs 1.03 ± 0.12, 0.83 ± 0.10, and 0.69 ± 0.13) between control and canine fibrosis at 8, 16, and 24 wk, respectively (all P < 0.001). There were statistically significant negative correlations between FPP and Qp/Qa (r = -0.707, P < 0.001), and between FPP and Ip/Ia (r = -0.759, P < 0.001) in the canine fibrosis model. Prediction of elevated FPP based on Qp/Qa and Ip/Ia was highly sensitive, as assessed by the area under the receiver operating curve (0.866 and 0.895, respectively). CONCLUSION: CEUS is a potential method to accurately, but non-invasively, estimate portal venous pressure through

  3. Four dimensional material movies: High speed phase-contrast tomography by backprojection along dynamically curved paths.

    PubMed

    Ruhlandt, A; Töpperwien, M; Krenkel, M; Mokso, R; Salditt, T

    2017-07-26

    We present an approach towards four dimensional (4d) movies of materials, showing dynamic processes within the entire 3d structure. The method is based on tomographic reconstruction on dynamically curved paths using a motion model estimated by optical flow techniques, considerably reducing the typical motion artefacts of dynamic tomography. At the same time we exploit x-ray phase contrast based on free propagation to enhance the signal from micron scale structure recorded with illumination times down to a millisecond (ms). The concept is demonstrated by observing the burning process of a match stick in 4d, using high speed synchrotron phase contrast x-ray tomography recordings. The resulting movies reveal the structural changes of the wood cells during the combustion.

  4. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    PubMed

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  5. Simultaneous fluorescence and quantitative phase microscopy with single-pixel detectors

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Suo, Jinli; Zhang, Yuanlong; Dai, Qionghai

    2018-02-01

    Multimodal microscopy offers high flexibilities for biomedical observation and diagnosis. Conventional multimodal approaches either use multiple cameras or a single camera spatially multiplexing different modes. The former needs expertise demanding alignment and the latter suffers from limited spatial resolution. Here, we report an alignment-free full-resolution simultaneous fluorescence and quantitative phase imaging approach using single-pixel detectors. By combining reference-free interferometry with single-pixel detection, we encode the phase and fluorescence of the sample in two detection arms at the same time. Then we employ structured illumination and the correlated measurements between the sample and the illuminations for reconstruction. The recovered fluorescence and phase images are inherently aligned thanks to single-pixel detection. To validate the proposed method, we built a proof-of-concept setup for first imaging the phase of etched glass with the depth of a few hundred nanometers and then imaging the fluorescence and phase of the quantum dot drop. This method holds great potential for multispectral fluorescence microscopy with additional single-pixel detectors or a spectrometer. Besides, this cost-efficient multimodal system might find broad applications in biomedical science and neuroscience.

  6. Accurate single-shot quantitative phase imaging of biological specimens with telecentric digital holographic microscopy.

    PubMed

    Doblas, Ana; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Saavedra, Genaro; Garcia-Sucerquia, Jorge

    2014-04-01

    The advantages of using a telecentric imaging system in digital holographic microscopy (DHM) to study biological specimens are highlighted. To this end, the performances of nontelecentric DHM and telecentric DHM are evaluated from the quantitative phase imaging (QPI) point of view. The evaluated stability of the microscope allows single-shot QPI in DHM by using telecentric imaging systems. Quantitative phase maps of a section of the head of the drosophila melanogaster fly and of red blood cells are obtained via single-shot DHM with no numerical postprocessing. With these maps we show that the use of telecentric DHM provides larger field of view for a given magnification and permits more accurate QPI measurements with less number of computational operations.

  7. Effects of microchannel confinement on acoustic vaporisation of ultrasound phase change contrast agents

    NASA Astrophysics Data System (ADS)

    Lin, Shengtao; Zhang, Ge; Hau Leow, Chee; Tang, Meng-Xing

    2017-09-01

    The sub-micron phase change contrast agent (PCCA) composed of a perfluorocarbon liquid core can be activated into gaseous state and form stable echogenic microbubbles for contrast-enhanced ultrasound imaging. It has shown great promise in imaging microvasculature, tumour microenvironment, and cancer cells. Although PCCAs have been extensively studied for different diagnostic and therapeutic applications, the effect of biologically geometrical confinement on the acoustic vaporisation of PCCAs is still not clear. We have investigated the difference in PCCA-produced ultrasound contrast enhancement after acoustic activation with and without a microvessel confinement on a microchannel phantom. The experimental results indicated more than one-order of magnitude less acoustic vaporisation in a microchannel than that in a free environment taking into account the attenuation effect of the vessel on the microbubble scattering. This may provide an improved understanding in the applications of PCCAs in vivo.

  8. Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming.

    PubMed

    Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2012-04-23

    We report on a new beam-forming system for generating high intensity programmable optical spikes using so-called matched-filtering Generalized Phase Contrast (mGPC) applying two consumer handheld pico-projectors. Such a system presents a low-cost alternative for optical trapping and manipulation, optical lattices and other beam-shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices are used as binary phase-only spatial light modulators by carefully setting the appropriate polarization of the laser illumination. The devices are subsequently placed into the object and Fourier plane of a standard 4f-setup according to the mGPC spatial filtering configuration. Having a reconfigurable spatial phase filter, instead of a fixed and fabricated one, allows the beam shaper to adapt to different input phase patterns suited for different requirements. Despite imperfections in these consumer pico-projectors, the mGPC approach tolerates phase aberrations that would have otherwise been hard to overcome by standard phase projection. © 2012 Optical Society of America

  9. Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brendel, Bernhard, E-mail: bernhard.brendel@philips.com; Teuffenbach, Maximilian von; Noël, Peter B.

    2016-01-15

    Purpose: The purpose of this work is to propose a cost function with regularization to iteratively reconstruct attenuation, phase, and scatter images simultaneously from differential phase contrast (DPC) acquisitions, without the need of phase retrieval, and examine its properties. Furthermore this reconstruction method is applied to an acquisition pattern that is suitable for a DPC tomographic system with continuously rotating gantry (sliding window acquisition), overcoming the severe smearing in noniterative reconstruction. Methods: We derive a penalized maximum likelihood reconstruction algorithm to directly reconstruct attenuation, phase, and scatter image from the measured detector values of a DPC acquisition. The proposed penaltymore » comprises, for each of the three images, an independent smoothing prior. Image quality of the proposed reconstruction is compared to images generated with FBP and iterative reconstruction after phase retrieval. Furthermore, the influence between the priors is analyzed. Finally, the proposed reconstruction algorithm is applied to experimental sliding window data acquired at a synchrotron and results are compared to reconstructions based on phase retrieval. Results: The results show that the proposed algorithm significantly increases image quality in comparison to reconstructions based on phase retrieval. No significant mutual influence between the proposed independent priors could be observed. Further it could be illustrated that the iterative reconstruction of a sliding window acquisition results in images with substantially reduced smearing artifacts. Conclusions: Although the proposed cost function is inherently nonconvex, it can be used to reconstruct images with less aliasing artifacts and less streak artifacts than reconstruction methods based on phase retrieval. Furthermore, the proposed method can be used to reconstruct images of sliding window acquisitions with negligible smearing artifacts.« less

  10. Measuring the Nonuniform Evaporation Dynamics of Sprayed Sessile Microdroplets with Quantitative Phase Imaging.

    PubMed

    Edwards, Chris; Arbabi, Amir; Bhaduri, Basanta; Wang, Xiaozhen; Ganti, Raman; Yunker, Peter J; Yodh, Arjun G; Popescu, Gabriel; Goddard, Lynford L

    2015-10-13

    We demonstrate real-time quantitative phase imaging as a new optical approach for measuring the evaporation dynamics of sessile microdroplets. Quantitative phase images of various droplets were captured during evaporation. The images enabled us to generate time-resolved three-dimensional topographic profiles of droplet shape with nanometer accuracy and, without any assumptions about droplet geometry, to directly measure important physical parameters that characterize surface wetting processes. Specifically, the time-dependent variation of the droplet height, volume, contact radius, contact angle distribution along the droplet's perimeter, and mass flux density for two different surface preparations are reported. The studies clearly demonstrate three phases of evaporation reported previously: pinned, depinned, and drying modes; the studies also reveal instances of partial pinning. Finally, the apparatus is employed to investigate the cooperative evaporation of the sprayed droplets. We observe and explain the neighbor-induced reduction in evaporation rate, that is, as compared to predictions for isolated droplets. In the future, the new experimental methods should stimulate the exploration of colloidal particle dynamics on the gas-liquid-solid interface.

  11. Edge-illumination x-ray phase contrast imaging with Pt-based metallic glass masks

    NASA Astrophysics Data System (ADS)

    Saghamanesh, Somayeh; Aghamiri, Seyed Mahmoud-Reza; Olivo, Alessandro; Sadeghilarijani, Maryam; Kato, Hidemi; Kamali-Asl, Alireza; Yashiro, Wataru

    2017-06-01

    Edge-illumination x-ray phase contrast imaging (EI XPCI) is a non-interferometric phase-sensitive method where two absorption masks are employed. These masks are fabricated through a photolithography process followed by electroplating which is challenging in terms of yield as well as time- and cost-effectiveness. We report on the first implementation of EI XPCI with Pt-based metallic glass masks fabricated by an imprinting method. The new tested alloy exhibits good characteristics including high workability beside high x-ray attenuation. The fabrication process is easy and cheap, and can produce large-size masks for high x-ray energies within minutes. Imaging experiments show a good quality phase image, which confirms the potential of these masks to make the EI XPCI technique widely available and affordable.

  12. STrategically Acquired Gradient Echo (STAGE) imaging, part I: Creating enhanced T1 contrast and standardized susceptibility weighted imaging and quantitative susceptibility mapping.

    PubMed

    Chen, Yongsheng; Liu, Saifeng; Wang, Yu; Kang, Yan; Haacke, E Mark

    2018-02-01

    To provide whole brain grey matter (GM) to white matter (WM) contrast enhanced T1W (T1WE) images, multi-echo quantitative susceptibility mapping (QSM), proton density (PD) weighted images, T1 maps, PD maps, susceptibility weighted imaging (SWI), and R2* maps with minimal misregistration in scanning times <5min. Strategically acquired gradient echo (STAGE) imaging includes two fully flow compensated double echo gradient echo acquisitions with a resolution of 0.67×1.33×2.0mm 3 acquired in 5min for 64 slices. Ten subjects were recruited and scanned at 3 Tesla. The optimum pair of flip angles (6° and 24° with TR=25ms at 3T) were used for both T1 mapping with radio frequency (RF) transmit field correction and creating enhanced GM/WM contrast (the T1WE). The proposed T1WE image was created from a combination of the proton density weighted (6°, PDW) and T1W (24°) images and corrected for RF transmit field variations. Prior to the QSM calculation, a multi-echo phase unwrapping strategy was implemented using the unwrapped short echo to unwrap the longer echo to speed up computation. R2* maps were used to mask deep grey matter and veins during the iterative QSM calculation. A weighted-average sum of susceptibility maps was generated to increase the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). The proposed T1WE image has a significantly improved CNR both for WM to deep GM and WM to cortical GM compared to the acquired T1W image (the first echo of 24° scan) and the T1MPRAGE image. The weighted-average susceptibility maps have 80±26%, 55±22%, 108±33% SNR increases across the ten subjects compared to the single echo result of 17.5ms for the putamen, caudate nucleus, and globus pallidus, respectively. STAGE imaging offers the potential to create a standardized brain imaging protocol providing four pieces of quantitative tissue property information and multiple types of qualitative information in just 5min. Published by Elsevier Inc.

  13. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneip, S.; Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109; McGuffey, C.

    2011-08-29

    We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlightingmore » the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.« less

  14. Cine phase-contrast MRI evaluation of normal aqueductal cerebrospinal fluid flow according to sex and age.

    PubMed

    Unal, Ozkan; Kartum, Alp; Avcu, Serhat; Etlik, Omer; Arslan, Halil; Bora, Aydin

    2009-12-01

    The aim of this study was cerebrospinal flow quantification in the cerebral aqueduct using cine phase-contrast magnetic resonance imaging (MRI) technique in both sexes and five different age groups to provide normative data. Sixty subjects with no cerebral pathology were included in this study. Subjects were divided into five age groups: < or =14 years, 15-24 years, 25-34 years, 35-44 years, and > or =45 years. Phase, rephase, and magnitude images were acquired by 1.5 T MR unit at the level of cerebral aqueduct with spoiled gradient echo through-plane, which is a cine phase-contrast sequence. At this level, peak flow velocity (cm/s), average flow rate (cm/ s), average flow (L/min), volumes in cranial and caudal directions (mL), and net volumes (mL) were studied. There was a statistically significant difference in peak flow between the age group of < or =14 years and the older age groups. There were no statistically significant differences in average velocity, cranial and caudal volume, net volume, and average flow parameters among different age groups. Statistically significant differences were not detected in flow parameters between sexes. When using cine-phase contrast MRI in the cerebral aqueduct, only the peak velocity showed a statistically significant difference between age groups; it was higher in subjects aged < or =14 years than those in older age groups. When performing age-dependent clinical studies including adolescents, this should be taken into consideration.

  15. Recent observations with phase-contrast x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-09-01

    Recent development in phase-contrast X-ray computed tomography using an X-ray interferometer is reported. To observe larger samples than is possible with our previous X-ray interferometer, a large monolithic X-ray interferometer and a separated-type X-ray interferometer were studied. At the present time, 2.5 cm X 1.5 cm interference patterns have been generated with the X-ray interferometers using synchrotron X-rays. The large monolithic X-ray interferometer has produced interference fringes with 80% visibility, and has been used to measure various tissues. To produce images with higher spatial resolution, we fabricated another X-ray interferometer whose wafer was partially thinned by chemical etching. A preliminary test suggested that the spatial resolution has been improved.

  16. Determination of iodinated X-ray contrast media in sewage by solid-phase extraction and liquid chromatography tandem mass spectrometry.

    PubMed

    Echeverría, S; Borrull, F; Fontanals, N; Pocurull, E

    2013-11-15

    A method for the quantitative determination of five iodinated X-ray contrast media (ICMs) in sewage was developed by solid-phase extraction and high-performance liquid chromatography-tandem mass spectrometry. A fused-core analytical column was successfully applied for the first time for the separation of ICMs. Oasis HLB was selected from the sorbents tested because of its higher recoveries. The optimized method allowed the determination of the ICMs at low ng/L levels in both influent and effluent sewage, with detection limits of 40 ng/L and 10 ng/L for most compounds in influent and effluent sewage, respectively. The five ICMs studied were determined in all samples analysed, with iopromide being the analyte found at the highest concentration (8.9 µg/L), while iopamidol was the analyte found at lowest concentration (1.3 µg/L) in influent sewage. Effluent sewage did not show a significant decrease in ICM concentrations. © 2013 Elsevier B.V. All rights reserved.

  17. Accurate and quantitative polarization-sensitive OCT by unbiased birefringence estimator with noise-stochastic correction

    NASA Astrophysics Data System (ADS)

    Kasaragod, Deepa; Sugiyama, Satoshi; Ikuno, Yasushi; Alonso-Caneiro, David; Yamanari, Masahiro; Fukuda, Shinichi; Oshika, Tetsuro; Hong, Young-Joo; Li, En; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2016-03-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT that contrasts the polarization properties of tissues. It has been applied to ophthalmology, cardiology, etc. Proper quantitative imaging is required for a widespread clinical utility. However, the conventional method of averaging to improve the signal to noise ratio (SNR) and the contrast of the phase retardation (or birefringence) images introduce a noise bias offset from the true value. This bias reduces the effectiveness of birefringence contrast for a quantitative study. Although coherent averaging of Jones matrix tomography has been widely utilized and has improved the image quality, the fundamental limitation of nonlinear dependency of phase retardation and birefringence to the SNR was not overcome. So the birefringence obtained by PS-OCT was still not accurate for a quantitative imaging. The nonlinear effect of SNR to phase retardation and birefringence measurement was previously formulated in detail for a Jones matrix OCT (JM-OCT) [1]. Based on this, we had developed a maximum a-posteriori (MAP) estimator and quantitative birefringence imaging was demonstrated [2]. However, this first version of estimator had a theoretical shortcoming. It did not take into account the stochastic nature of SNR of OCT signal. In this paper, we present an improved version of the MAP estimator which takes into account the stochastic property of SNR. This estimator uses a probability distribution function (PDF) of true local retardation, which is proportional to birefringence, under a specific set of measurements of the birefringence and SNR. The PDF was pre-computed by a Monte-Carlo (MC) simulation based on the mathematical model of JM-OCT before the measurement. A comparison between this new MAP estimator, our previous MAP estimator [2], and the standard mean estimator is presented. The comparisons are performed both by numerical simulation and in vivo measurements of anterior and

  18. Development of optics for x-ray phase-contrast imaging of high energy density plasmas.

    PubMed

    Stutman, D; Finkenthal, M; Moldovan, N

    2010-10-01

    Phase-contrast or refraction-enhanced x-ray radiography can be useful for the diagnostic of low-Z high energy density plasmas, such as imploding inertial confinement fusion (ICF) pellets, due to its sensitivity to density gradients. To separate and quantify the absorption and refraction contributions to x-ray images, methods based on microperiodic optics, such as shearing interferometry, can be used. To enable applying such methods with the energetic x rays needed for ICF radiography, we investigate a new type of optics consisting of grazing incidence microperiodic mirrors. Using such mirrors, efficient phase-contrast imaging systems could be built for energies up to ∼100 keV. In addition, a simple lithographic method is proposed for the production of the microperiodic x-ray mirrors based on the difference in the total reflection between a low-Z substrate and a high-Z film. Prototype mirrors fabricated with this method show promising characteristics in laboratory tests.

  19. Quantitative phase imaging of living cells with a swept laser source

    NASA Astrophysics Data System (ADS)

    Chen, Shichao; Zhu, Yizheng

    2016-03-01

    Digital holographic phase microscopy is a well-established quantitative phase imaging technique. However, interference artifacts from inside the system, typically induced by elements whose optical thickness are within the source coherence length, limit the imaging quality as well as sensitivity. In this paper, a swept laser source based technique is presented. Spectra acquired at a number of wavelengths, after Fourier Transform, can be used to identify the sources of the interference artifacts. With proper tuning of the optical pathlength difference between sample and reference arms, it is possible to avoid these artifacts and achieve sensitivity below 0.3nm. Performance of the proposed technique is examined in live cell imaging.

  20. Quantitative analysis of thoria phase in Th-U alloys using diffraction studies

    NASA Astrophysics Data System (ADS)

    Thakur, Shital; Krishna, P. S. R.; Shinde, A. B.; Kumar, Raj; Roy, S. B.

    2017-05-01

    In the present study the quantitative phase analysis of Th-U alloys in bulk form namely Th-52 wt% U and Th-3wt%U has been performed over the data obtained from both X ray diffraction and neutron diffraction technique using Rietveld method of FULLPROF software. Quantifying thoria (ThO2) phase present in bulk of the sample is limited due to surface oxidation and low penetration of x rays in high Z material. Neutron diffraction study probing bulk of the samples has been presented in comparison with x-ray diffraction study.

  1. Volumetric characterization of human patellar cartilage matrix on phase contrast x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Abidin, Anas Z.; Nagarajan, Mahesh B.; Checefsky, Walter A.; Coan, Paola; Diemoz, Paul C.; Hobbs, Susan K.; Huber, Markus B.; Wismüller, Axel

    2015-03-01

    Phase contrast X-ray computed tomography (PCI-CT) has recently emerged as a novel imaging technique that allows visualization of cartilage soft tissue, subsequent examination of chondrocyte patterns, and their correlation to osteoarthritis. Previous studies have shown that 2D texture features are effective at distinguishing between healthy and osteoarthritic regions of interest annotated in the radial zone of cartilage matrix on PCI-CT images. In this study, we further extend the texture analysis to 3D and investigate the ability of volumetric texture features at characterizing chondrocyte patterns in the cartilage matrix for purposes of classification. Here, we extracted volumetric texture features derived from Minkowski Functionals and gray-level co-occurrence matrices (GLCM) from 496 volumes of interest (VOI) annotated on PCI-CT images of human patellar cartilage specimens. The extracted features were then used in a machine-learning task involving support vector regression to classify ROIs as healthy or osteoarthritic. Classification performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). The best classification performance was observed with GLCM features correlation (AUC = 0.83 +/- 0.06) and homogeneity (AUC = 0.82 +/- 0.07), which significantly outperformed all Minkowski Functionals (p < 0.05). These results suggest that such quantitative analysis of chondrocyte patterns in human patellar cartilage matrix involving GLCM-derived statistical features can distinguish between healthy and osteoarthritic tissue with high accuracy.

  2. An experimental study of turbulence by phase-contrast imaging in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Coda, Stefano

    1997-10-01

    A CO2-laser imaging system employing the Zernike phase-contrast technique was designed, built, installed, and operated on the DIII-D tokamak. This system measures the line integrals of plasma density fluctuations along 16 vertical chords at the outer edge of the tokamak (0.85 phase-contrast imaging (PCI) and of other imaging and scintillation techniques was also carried out. Studies of edge turbulence were performed. The radial- wave-number spectrum peaks at finite wave numbers, both positive and negative. This first observation of radial modes is in agreement with recent predictions from theoretical and numerical work. The dependence of the correlation length and peak wave number on plasma parameters and on the frequency was studied in detail. Frequency spectra typically obey an inverse square law, consistent with a Lorentzian distribution. At the transition from L to H mode the amplitude and correlation length of the turbulence decrease, while the decorrelation time remains approximately constant. The Biglari-Diamond-Terry shear-decorrelation criterion was verified quantitatively; theoretical scaling laws for the correlation parameters were also tested. The turbulence amplitude follows a mixing-length scaling in L mode only: the

  3. Quantitative EPMA of Nano-Phase Iron-Silicides in Apollo 16 Lunar Regolith

    NASA Astrophysics Data System (ADS)

    Gopon, P.; Fournelle, J.; Valley, J. W.; Pinard, P. T.; Sobol, P.; Horn, W.; Spicuzza, M.; Llovet, X.; Richter, S.

    2013-12-01

    Until recently, quantitative EPMA of phases under a few microns in size has been extremely difficult. In order to achieve analytical volumes to analyze sub-micron features, accelerating voltages between 5 and 8 keV need to be used. At these voltages the normally used K X-ray transitions (of higher Z elements) are no longer excited, and we must rely of outer shell transitions (L and M). These outer shell transitions are difficult to use for quantitative EPMA because they are strongly affected by different bonding environments, the error associated with their mass attenuation coefficients (MAC), and their proximity to absorption edges. These problems are especially prevalent for the transition metals, because of the unfilled M5 electron shell where the Lα transition originates. Previous studies have tried to overcome these limitations by using standards that almost exactly matched their unknowns. This, however, is cumbersome and requires accurate knowledge of the composition of your sample beforehand, as well as an exorbitant number of well characterized standards. Using a 5 keV electron beam and utilizing non-standard X-ray transitions (Ll) for the transition metals, we are able to conduct accurate quantitative analyses of phases down to ~300nm. The Ll transition in the transition metals behaves more like a core-state transition, and unlike the Lα/β lines, is unaffected by bonding effects and does not lie near an absorption edge. This allows for quantitative analysis using standards do not have to exactly match the unknown. In our case pure metal standards were used for all elements except phosphorus. We present here data on iron-silicides in two Apollo 16 regolith grains. These plagioclase grains (A6-7 and A6-8) were collected between North and South Ray Craters, in the lunar highlands, and thus are associated with one or more large impact events. We report the presence of carbon, nickel, and phosphorus (in order of abundance) in these iron-silicide phases

  4. Normalized Temperature Contrast Processing in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  5. Quantitative analysis of carbides and the sigma phase in thermally exposed GTD-111

    NASA Astrophysics Data System (ADS)

    Lee, Han-sang; Kim, Doo-soo; Yoo, Keun-bong; Song, Kyu-so

    2012-04-01

    The effects of thermal exposure on γ', carbides and TCP-type phases, such as the sigma and eta phases, in the nickel-based superalloy GTD-111 were investigated in this study. The thermal exposure was performed at 871 °C and 982 °C for 1,000, 5,000 and 10,000 h, after which the thermally exposed specimens were compared in terms of their microstructure, weight fraction and growth rate of each precipitate. Electrolytic extraction and Rietveld refinement were successfully applied for a quantitative analysis of the carbides and the sigma phase in the thermally exposed GTD-111. The weight fractions of MC, Cr-rich M23C6 and the sigma phase for various thermal exposure times and temperatures were obtained to understand the formation and decomposition rate of each phase.

  6. Monitoring stem cells in phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Lam, K. P.; Dempsey, K. P.; Collins, D. J.; Richardson, J. B.

    2016-04-01

    Understanding the mechanisms behind the proliferation of Mesenchymal Stem cells (MSCs) can offer a greater insight into the behaviour of these cells throughout their life cycles. Traditional methods of determining the rate of MSC differentiation rely on population based studies over an extended time period. However, such methods can be inadequate as they are unable to track cells as they interact; for example, in autologous cell therapies for osteoarthritis, the development of biological assays that could predict in vivo functional activity and biological action are particularly challenging. Here further research is required to determine non-histochemical biomarkers which provide correlations between cell survival and predictive functional outcome. This paper proposes using a (previously developed) advanced texture-based analysis algorithm to facilitate in vitro cells tracking using time-lapsed microscopy. The technique was adopted to monitor stem cells in the context of unlabelled, phase contrast imaging, with the goal of examining the cell to cell interactions in both monoculture and co-culture systems. The results obtained are analysed using established exploratory procedures developed for time series data and compared with the typical fluorescent-based approach of cell labelling. A review of the progress and the lessons learned are also presented.

  7. Phase-contrast x-ray computed tomography for biological imaging

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1997-10-01

    We have shown so far that 3D structures in biological sot tissues such as cancer can be revealed by phase-contrast x- ray computed tomography using an x-ray interferometer. As a next step, we aim at applications of this technique to in vivo observation, including radiographic applications. For this purpose, the size of view field is desired to be more than a few centimeters. Therefore, a larger x-ray interferometer should be used with x-rays of higher energy. We have evaluated the optimal x-ray energy from an aspect of does as a function of sample size. Moreover, desired spatial resolution to an image sensor is discussed as functions of x-ray energy and sample size, basing on a requirement in the analysis of interference fringes.

  8. Automated high resolution full-field spatial coherence tomography for quantitative phase imaging of human red blood cells

    NASA Astrophysics Data System (ADS)

    Singla, Neeru; Dubey, Kavita; Srivastava, Vishal; Ahmad, Azeem; Mehta, D. S.

    2018-02-01

    We developed an automated high-resolution full-field spatial coherence tomography (FF-SCT) microscope for quantitative phase imaging that is based on the spatial, rather than the temporal, coherence gating. The Red and Green color laser light was used for finding the quantitative phase images of unstained human red blood cells (RBCs). This study uses morphological parameters of unstained RBCs phase images to distinguish between normal and infected cells. We recorded the single interferogram by a FF-SCT microscope for red and green color wavelength and average the two phase images to further reduced the noise artifacts. In order to characterize anemia infected from normal cells different morphological features were extracted and these features were used to train machine learning ensemble model to classify RBCs with high accuracy.

  9. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders.

    PubMed

    Marquet, Pierre; Depeursinge, Christian; Magistretti, Pierre J

    2014-10-01

    Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed.

  10. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders

    PubMed Central

    Marquet, Pierre; Depeursinge, Christian; Magistretti, Pierre J.

    2014-01-01

    Abstract. Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed. PMID:26157976

  11. Absolute calibration of Phase Contrast Imaging on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Yu, Yi; Gong, Shaobo; Xu, Min; Wu, Yifan; Yuan, Boda; Ye, Minyou; Duan, Xuru; HL-2A Team Team

    2017-10-01

    Phase contrast imaging (PCI) has recently been developed on HL-2A tokamak. In this article we present the calibration of this diagnostic. This system is to diagnose chord integral density fluctuations by measuring the phase shift of a CO2 laser beam with a wavelength of 10.6 μm when the laser beam passes through plasma. Sound waves are used to calibrate PCI diagnostic. The signal series in different PCI channels show a pronounced modulation of incident laser beam by the sound wave. Frequency-wavenumber spectrum is achieved. Calibrations by sound waves with different frequencies exhibit a maximal wavenumber response of 12 cm-1. The conversion relationship between the chord integral plasma density fluctuation and the signal intensity is 2.3-1013 m-2/mV, indicating a high sensitivity. Supported by the National Magnetic Confinement Fusion Energy Research Project (Grant No.2015GB120002, 2013GB107001).

  12. Conventional and phase contrast x-ray imaging techniques and ultrasound imaging method in breast tumor detection: initial comparison studies using phantom

    NASA Astrophysics Data System (ADS)

    Guo, Yuran; Wu, Di; Omoumi, Farid H.; Li, Yuhua; Wong, Molly Donovan; Ghani, Muhammad U.; Zheng, Bin; Liu, Hong

    2018-02-01

    The objective of this study was to demonstrate the capability of the high-energy in-line phase contrast imaging in detecting the breast tumors which are undetectable by conventional x-ray imaging but detectable by ultrasound. Experimentally, a CIRS multipurpose breast phantom with heterogeneous 50% glandular and 50% adipose breast tissue was imaged by high-energy in-line phase contrast system, conventional x-ray system and ultrasonography machine. The high-energy in-line phase contrast projection was acquired at 120 kVp, 0.3 mAs with the focal spot size of 18.3 μm. The conventional x-ray projection was acquired at 40 kVp, 3.3 mAs with the focal spot size of 22.26 μm. Both of the x-ray imaging acquisitions were conducted with a unique mean glandular dose of 0.08 mGy. As the result, the high-energy in-line phase contrast system was able to detect one lesion-like object which was also detected by the ultrasonography. This object was spherical shape with the length of about 12.28 mm. Also, the conventional x-ray system was not able to detect any objects. This result indicated the advantages provided by high-energy in-line phase contrast over conventional x-ray system in detecting lesion-like object under the same radiation dose. To meet the needs of current clinical strategies for high-density breasts screening, breast phantoms with higher glandular densities will be employed in future studies.

  13. First evidence of phase-contrast imaging with laboratory sources and active pixel sensors

    NASA Astrophysics Data System (ADS)

    Olivo, A.; Arvanitis, C. D.; Bohndiek, S. E.; Clark, A. T.; Prydderch, M.; Turchetta, R.; Speller, R. D.

    2007-11-01

    The aim of the present work is to achieve a first step towards combining the advantages of an innovative X-ray imaging technique—phase-contrast imaging (XPCi)—with those of a new class of sensors, i.e. CMOS-based active pixel sensors (APSs). The advantages of XPCi are well known and include increased image quality and detection of details invisible to conventional techniques, with potential application fields encompassing the medical, biological, industrial and security areas. Vanilla, one of the APSs developed by the MI-3 collaboration (see http://mi3.shef.ac.uk), was thoroughly characterised and an appropriate scintillator was selected to provide X-ray sensitivity. During this process, a set of phase-contrast images of different biological samples was acquired by means of the well-established free-space propagation XPCi technique. The obtained results are very encouraging and are in optimum agreement with the predictions of a simulation recently developed by some of the authors thus further supporting its reliability. This paper presents these preliminary results in detail and discusses in brief both the background to this work and its future developments.

  14. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  15. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles.

    PubMed

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-13

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm 2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  16. Quantitative contrast-enhanced optical coherence tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winetraub, Yonatan; SoRelle, Elliott D.; Bio-X Program, Stanford University, 299 Campus Drive, Stanford, California 94305

    2016-01-11

    We have developed a model to accurately quantify the signals produced by exogenous scattering agents used for contrast-enhanced Optical Coherence Tomography (OCT). This model predicts distinct concentration-dependent signal trends that arise from the underlying physics of OCT detection. Accordingly, we show that real scattering particles can be described as simplified ideal scatterers with modified scattering intensity and concentration. The relation between OCT signal and particle concentration is approximately linear at concentrations lower than 0.8 particle per imaging voxel. However, at higher concentrations, interference effects cause signal to increase with a square root dependence on the number of particles within amore » voxel. Finally, high particle concentrations cause enough light attenuation to saturate the detected signal. Predictions were validated by comparison with measured OCT signals from gold nanorods (GNRs) prepared in water at concentrations ranging over five orders of magnitude (50 fM to 5 nM). In addition, we validated that our model accurately predicts the signal responses of GNRs in highly heterogeneous scattering environments including whole blood and living animals. By enabling particle quantification, this work provides a valuable tool for current and future contrast-enhanced in vivo OCT studies. More generally, the model described herein may inform the interpretation of detected signals in modalities that rely on coherence-based detection or are susceptible to interference effects.« less

  17. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-10-01

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO® UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  18. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    DOE PAGES

    Hudspeth, M.; Sun, T.; Parab, N.; ...

    2015-01-01

    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s –1and 5000 s –1strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imagedviaphase-contrast imaging. It ismore » also shown that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffractionviain-house software ( WBXRD_GUI). Finally, of current interest is the ability to evaluate crystald-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates.« less

  19. Quantitative phase imaging of biological cells and tissues using singleshot white light interference microscopy and phase subtraction method for extended range of measurement

    NASA Astrophysics Data System (ADS)

    Mehta, Dalip Singh; Sharma, Anuradha; Dubey, Vishesh; Singh, Veena; Ahmad, Azeem

    2016-03-01

    We present a single-shot white light interference microscopy for the quantitative phase imaging (QPI) of biological cells and tissues. A common path white light interference microscope is developed and colorful white light interferogram is recorded by three-chip color CCD camera. The recorded white light interferogram is decomposed into the red, green and blue color wavelength component interferograms and processed it to find out the RI for different color wavelengths. The decomposed interferograms are analyzed using local model fitting (LMF)" algorithm developed for reconstructing the phase map from single interferogram. LMF is slightly off-axis interferometric QPI method which is a single-shot method that employs only a single image, so it is fast and accurate. The present method is very useful for dynamic process where path-length changes at millisecond level. From the single interferogram a wavelength-dependent quantitative phase imaging of human red blood cells (RBCs) are reconstructed and refractive index is determined. The LMF algorithm is simple to implement and is efficient in computation. The results are compared with the conventional phase shifting interferometry and Hilbert transform techniques.

  20. [Contrast-enhanced Ultrasound in Diagnostic Imaging of Muscle Injuries: Perfusion Imaging in the Early Arterial Phase].

    PubMed

    Hotfiel, T; Carl, H D; Swoboda, B; Engelhardt, M; Heinrich, M; Strobel, D; Wildner, D

    2016-03-01

    Ultrasound is a standard procedure widely used in the diagnostic investigation of muscle injuries and widely described in the literature. Its advantages include rapid availability, cost effectiveness and the possibility to perform a real-time dynamic examination with the highest possible spatial resolution. In the diagnostic work-up of minor lesions (muscle stiffness, muscle strain), plain ultrasound has so far been inferior to MRI. The case presented by us is an example of the possibilities offered by contrast-enhanced ultrasound (CEUS) in the imaging of muscle injuries compared with plain B-mode image ultrasound and MRI imaging of the affected region. This case report is about a high-performance football player who sustained a muscle injury. He underwent an ultrasound examination (S 2000, 9L4 Probe, Siemens, Germany), which was performed simultaneously in the conventional and contrast-enhanced mode at the level of the lesion. An intravenous bolus injection of 4.8 ml of intravascular contrast agent (SonoVue(®), Bracco, Italy) was given via a cubital intravenous line. After that, the distribution of contrast agent was visualised in the early arterial phase. In addition, a plain magnetic resonance imaging scan of both thighs was performed for reference. On conventional ultrasound, the lesion was not clearly distinguishable from neighbouring tissue, whereas contrast-enhanced ultrasound demonstrated a well delineated, circumscribed area of impaired perfusion with hypoenhancement compared with the surrounding muscles at the clinical level of the lesion in the arterial wash-in phase (0-30 sec, after intravenous administration). The MRI scan revealed an edema signal with perifascial fluid accumulation in the corresponding site. The use of intravascular contrast agent enabled the sensitive detection of a minor injury by ultrasound for the first time. An intramuscular edema seen in the MRI scan showed a functional arterial perfusion impairment on ultrasound, which was

  1. Interior tomography from differential phase contrast data via Hilbert transform based on spline functions

    NASA Astrophysics Data System (ADS)

    Yang, Qingsong; Cong, Wenxiang; Wang, Ge

    2016-10-01

    X-ray phase contrast imaging is an important mode due to its sensitivity to subtle features of soft biological tissues. Grating-based differential phase contrast (DPC) imaging is one of the most promising phase imaging techniques because it works with a normal x-ray tube of a large focal spot at a high flux rate. However, a main obstacle before this paradigm shift is the fabrication of large-area gratings of a small period and a high aspect ratio. Imaging large objects with a size-limited grating results in data truncation which is a new type of the interior problem. While the interior problem was solved for conventional x-ray CT through analytic extension, compressed sensing and iterative reconstruction, the difficulty for interior reconstruction from DPC data lies in that the implementation of the system matrix requires the differential operation on the detector array, which is often inaccurate and unstable in the case of noisy data. Here, we propose an iterative method based on spline functions. The differential data are first back-projected to the image space. Then, a system matrix is calculated whose components are the Hilbert transforms of the spline bases. The system matrix takes the whole image as an input and outputs the back-projected interior data. Prior information normally assumed for compressed sensing is enforced to iteratively solve this inverse problem. Our results demonstrate that the proposed algorithm can successfully reconstruct an interior region of interest (ROI) from the differential phase data through the ROI.

  2. Visualization of small lesions in rat cartilage by means of laboratory-based x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Marenzana, Massimo; Hagen, Charlotte K.; Das Neves Borges, Patricia; Endrizzi, Marco; Szafraniec, Magdalena B.; Ignatyev, Konstantin; Olivo, Alessandro

    2012-12-01

    Being able to quantitatively assess articular cartilage in three-dimensions (3D) in small rodent animal models, with a simple laboratory set-up, would prove extremely important for the development of pre-clinical research focusing on cartilage pathologies such as osteoarthritis (OA). These models are becoming essential tools for the development of new drugs for OA, a disease affecting up to 1/3 of the population older than 50 years for which there is no cure except prosthetic surgery. However, due to limitations in imaging technology, high-throughput 3D structural imaging has not been achievable in small rodent models, thereby limiting their translational potential and their efficiency as research tools. We show that a simple laboratory system based on coded-aperture x-ray phase contrast imaging (CAXPCi) can correctly visualize the cartilage layer in slices of an excised rat tibia imaged both in air and in saline solution. Moreover, we show that small, surgically induced lesions are also correctly detected by the CAXPCi system, and we support this finding with histopathology examination. Following these successful proof-of-concept results in rat cartilage, we expect that an upgrade of the system to higher resolutions (currently underway) will enable extending the method to the imaging of mouse cartilage as well. From a technological standpoint, by showing the capability of the system to detect cartilage also in water, we demonstrate phase sensitivity comparable to other lab-based phase methods (e.g. grating interferometry). In conclusion, CAXPCi holds a strong potential for being adopted as a routine laboratory tool for non-destructive, high throughput assessment of 3D structural changes in murine articular cartilage, with a possible impact in the field similar to the revolution that conventional microCT brought into bone research.

  3. Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography.

    PubMed

    Willett, N J; Thote, T; Hart, M; Moran, S; Guldberg, R E; Kamath, R V

    2016-09-01

    The development of effective therapies for cartilage protection has been limited by a lack of efficient quantitative cartilage imaging modalities in pre-clinical in vivo models. Our objectives were two-fold: first, to validate a new contrast-enhanced 3D imaging analysis technique, equilibrium partitioning of an ionic contrast agent-micro computed tomography (EPIC-μCT), in a rat medial meniscal transection (MMT) osteoarthritis (OA) model; and second, to quantitatively assess the sensitivity of EPIC-μCT to detect the effects of matrix metalloproteinase inhibitor (MMPi) therapy on cartilage degeneration. Rats underwent MMT surgery and tissues were harvested at 1, 2, and 3 weeks post-surgery or rats received an MMPi or vehicle treatment and tissues harvested 3 weeks post-surgery. Parameters of disease progression were evaluated using histopathology and EPIC-μCT. Correlations and power analyses were performed to compare the techniques. EPIC-μCT was shown to provide simultaneous 3D quantification of multiple parameters, including cartilage degeneration and osteophyte formation. In MMT animals treated with MMPi, OA progression was attenuated, as measured by 3D parameters such as lesion volume and osteophyte size. A post-hoc power analysis showed that 3D parameters for EPIC-μCT were more sensitive than 2D parameters requiring fewer animals to detect a therapeutic effect of MMPi. 2D parameters were comparable between EPIC-μCT and histopathology. This study demonstrated that EPIC-μCT has high sensitivity to provide 3D structural and compositional measurements of cartilage and bone in the joint. EPIC-μCT can be used in combination with histology to provide a comprehensive analysis to screen new potential therapies. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Evaluation of the Dark-Medium Objective Lens in Counting Asbestos Fibers by Phase-Contrast Microscopy

    PubMed Central

    Lee, Eun Gyung; Nelson, John H.; Kashon, Michael L.; Harper, Martin

    2015-01-01

    A Japanese round-robin study revealed that analysts who used a dark-medium (DM) objective lens reported higher fiber counts from American Industrial Hygiene Association (AIHA) Proficiency Analytical Testing (PAT) chrysotile samples than those using a standard objective lens, but the cause of this difference was not investigated at that time. The purpose of this study is to determine any major source of this difference by performing two sets of round-robin studies. For the first round-robin study, 15 AIHA PAT samples (five each of chrysotile and amosite generated by water-suspended method, and five chrysotile generated by aerosolization method) were prepared with relocatable cover slips and examined by nine laboratories. A second round-robin study was then performed with six chrysotile field sample slides by six out of nine laboratories who participated in the first round-robin study. In addition, two phase-shift test slides to check analysts’ visibility and an eight-form diatom test plate to compare resolution between the two objectives were examined. For the AIHA PAT chrysotile reference slides, use of the DM objective resulted in consistently higher fiber counts (1.45 times for all data) than the standard objective (P-value < 0.05), regardless of the filter generation (water-suspension or aerosol) method. For the AIHA PAT amosite reference and chrysotile field sample slides, the fiber counts between the two objectives were not significantly different. No statistically significant differences were observed in the visibility of blocks of the test slides between the two objectives. Also, the DM and standard objectives showed no pattern of differences in viewing the fine lines and/or dots of each species images on the eight-form diatom test plate. Among various potential factors that might affect the analysts’ performance of fiber counts, this study supports the greater contrast caused by the different phase plate absorptions as the main cause of high counts for

  5. Phase processing for quantitative susceptibility mapping of regions with large susceptibility and lack of signal.

    PubMed

    Fortier, Véronique; Levesque, Ives R

    2018-06-01

    Phase processing impacts the accuracy of quantitative susceptibility mapping (QSM). Techniques for phase unwrapping and background removal have been proposed and demonstrated mostly in brain. In this work, phase processing was evaluated in the context of large susceptibility variations (Δχ) and negligible signal, in particular for susceptibility estimation using the iterative phase replacement (IPR) algorithm. Continuous Laplacian, region-growing, and quality-guided unwrapping were evaluated. For background removal, Laplacian boundary value (LBV), projection onto dipole fields (PDF), sophisticated harmonic artifact reduction for phase data (SHARP), variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP), regularization enabled sophisticated harmonic artifact reduction for phase data (RESHARP), and 3D quadratic polynomial field removal were studied. Each algorithm was quantitatively evaluated in simulation and qualitatively in vivo. Additionally, IPR-QSM maps were produced to evaluate the impact of phase processing on the susceptibility in the context of large Δχ with negligible signal. Quality-guided unwrapping was the most accurate technique, whereas continuous Laplacian performed poorly in this context. All background removal algorithms tested resulted in important phase inaccuracies, suggesting that techniques used for brain do not translate well to situations where large Δχ and no or low signal are expected. LBV produced the smallest errors, followed closely by PDF. Results suggest that quality-guided unwrapping should be preferred, with PDF or LBV for background removal, for QSM in regions with large Δχ and negligible signal. This reduces the susceptibility inaccuracy introduced by phase processing. Accurate background removal remains an open question. Magn Reson Med 79:3103-3113, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Use of three-dimensional time-resolved phase-contrast magnetic resonance imaging with vastly undersampled isotropic projection reconstruction to assess renal blood flow in a renal cell carcinoma patient treated with sunitinib: a case report.

    PubMed

    Takayama, Tatsuya; Takehara, Yasuo; Sugiyama, Masataka; Sugiyama, Takayuki; Ishii, Yasuo; Johnson, Kevin E; Wieben, Oliver; Wakayama, Tetsuya; Sakahara, Harumi; Ozono, Seiichiro

    2014-08-14

    New imaging modalities to assess the efficacy of drugs that have molecular targets remain under development. Here, we describe for the first time the use of time-resolved three-dimensional phase-contrast magnetic resonance imaging to monitor changes in blood supply to a tumor during sunitinib treatment in a patient with localized renal cell carcinoma. A 43-year-old Japanese woman with a tumor-bearing but functional single kidney presented at our hospital in July 2012. Computed tomography and magnetic resonance imaging revealed a cT1aN0M0 renal cell carcinoma embedded in the upper central region of the left kidney. She was prescribed sunitinib as neoadjuvant therapy for 8 months, and then underwent partial nephrectomy. Tumor monitoring during this time was done using time-resolved three-dimensional phase-contrast magnetic resonance imaging, a recent technique which specifically measures blood flow in the various vessels of the kidney. This imaging allowed visualization of the redistribution of renal blood flow during treatment, and showed that flow to the tumor was decreased and flows to other areas increased. Of note, this change occurred in the absence of any change in tumor size. The ability of time-resolved three-dimensional phase-contrast magnetic resonance imaging to provide quantitative information on blood supply to tumors may be useful in monitoring the efficacy of sunitinib treatment.

  7. The phase-contrast imaging instrument at the matter in extreme conditions endstation at LCLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagler, Bob; Schropp, Andreas; Galtier, Eric C.

    2016-10-07

    Here, we describe the phase-contrast imaging instrument at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. The instrument can image phenomena with a spatial resolution of a few hundreds of nanometers and at the same time reveal the atomic structure through X-ray diffraction, with a temporal resolution better than 100 fs. It was specifically designed for studies relevant to high-energy-density science and can monitor, e.g., shock fronts, phase transitions, or void collapses. This versatile instrument was commissioned last year and is now available to the MEC user community.

  8. Operation of a separated-type x-ray interferometer for phase-contrast x-ray imaging

    NASA Astrophysics Data System (ADS)

    Yoneyama, Akio; Momose, Atsushi; Seya, Eiichi; Hirano, Keiichi; Takeda, Tohoru; Itai, Yuji

    1999-12-01

    Aiming at large-area phase-contrast x-ray imaging, a separated-type x-ray interferometer system was designed and developed to produce 25×20 mm interference patterns. The skew-symmetric optical system was adopted because of the feasibility of alignment. The rotation between the separated crystal blocks was controlled within a drift of 0.06 nrad using a feedback positioning system. This interferometer generated a 25×15 mm interference pattern with 0.07 nm synchrotron x-rays. A slice of a rabbit's kidney was observed, and its tubular structure could be revealed in a measured phase map.

  9. Phase-and-amplitude recovery from a single phase-contrast image using partially spatially coherent x-ray radiation

    NASA Astrophysics Data System (ADS)

    Beltran, Mario A.; Paganin, David M.; Pelliccia, Daniele

    2018-05-01

    A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single-material. A priori knowledge of the object’s complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase-contrast data measured with a laboratory-based micro-focus x-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise.

  10. Quantitative phase microscopy for cellular dynamics based on transport of intensity equation.

    PubMed

    Li, Ying; Di, Jianglei; Ma, Chaojie; Zhang, Jiwei; Zhong, Jinzhan; Wang, Kaiqiang; Xi, Teli; Zhao, Jianlin

    2018-01-08

    We demonstrate a simple method for quantitative phase imaging of tiny transparent objects such as living cells based on the transport of intensity equation. The experiments are performed using an inverted bright field microscope upgraded with a flipping imaging module, which enables to simultaneously create two laterally separated images with unequal defocus distances. This add-on module does not include any lenses or gratings and is cost-effective and easy-to-alignment. The validity of this method is confirmed by the measurement of microlens array and human osteoblastic cells in culture, indicating its potential in the applications of dynamically measuring living cells and other transparent specimens in a quantitative, non-invasive and label-free manner.

  11. Energy efficiency and pulmonary artery flow after balloon pulmonary angioplasty for inoperable, chronic thromboembolic pulmonary hypertension: Analysis by phase-contrast MRI.

    PubMed

    Nagao, Michinobu; Yamasaki, Yuzo; Abe, Kohtaro; Hosokawa, Kazuya; Kawanami, Satoshi; Kamitani, Takeshi; Yamanouchi, Torahiko; Yabuuchi, Hidetake; Fukushima, Kenji; Honda, Hiroshi

    2017-02-01

    The aims of this study were to propose a new quantitative method for pulmonary artery (PA) flow energetics using phase-contrast magnetic resonance imaging (PC-MRI), and to investigate how balloon pulmonary angioplasty (BPA) impacts energetics in chronic thromboembolic pulmonary hypertension (CTEPH). PC-MRI at 3-Teslar and with a flow sensitive gradient echo was used to examine energetics prior to and following BPA for 24 CTEPH patients. Stroke volume (m; ml) and mean velocity (V; mm/s) for the main pulmonary artery (PA), right PA, and left PA were calculated from a time-flow curve derived from PC-MRI. Based on the Bernoulli principle, PA energy was identified as 1/2mV 2 (μj/kg), and energy loss was defined as the following equation "energy loss=main PA energy-(rt. PA energy+lt. PA energy)". Right PA energy was significantly greater post-BPA than pre-BPA (61±55 vs. 32±40μj/kg). There was no difference in main PA and left PA energies. Energy loss was significantly decreased post-BPA (18±97μj/kg) than pre-BPA (79±125μj/kg). An optimal cutoff of left PA energy of 45μj/kg pre-BPA can be used to predict patients with mPAP≥30mmHg after BPA, with an area under the curve of 0.91, 78% sensitivity, and 92% specificity. Analysis of PA energetics using phase-contrast MRI demonstrates that BPA improves energy loss in CTEPH. In addition, BPA responses can be predicted by PA energy status pre-treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography

    NASA Astrophysics Data System (ADS)

    Hagen, Charlotte K.; Maghsoudlou, Panagiotis; Totonelli, Giorgia; Diemoz, Paul C.; Endrizzi, Marco; Rigon, Luigi; Menk, Ralf-Hendrik; Arfelli, Fulvia; Dreossi, Diego; Brun, Emmanuel; Coan, Paola; Bravin, Alberto; de Coppi, Paolo; Olivo, Alessandro

    2015-12-01

    Acellular scaffolds obtained via decellularization are a key instrument in regenerative medicine both per se and to drive the development of future-generation synthetic scaffolds that could become available off-the-shelf. In this framework, imaging is key to the understanding of the scaffolds’ internal structure as well as their interaction with cells and other organs, including ideally post-implantation. Scaffolds of a wide range of intricate organs (esophagus, lung, liver and small intestine) were imaged with x-ray phase contrast computed tomography (PC-CT). Image quality was sufficiently high to visualize scaffold microarchitecture and to detect major anatomical features, such as the esophageal mucosal-submucosal separation, pulmonary alveoli and intestinal villi. These results are a long-sought step for the field of regenerative medicine; until now, histology and scanning electron microscopy have been the gold standard to study the scaffold structure. However, they are both destructive: hence, they are not suitable for imaging scaffolds prior to transplantation, and have no prospect for post-transplantation use. PC-CT, on the other hand, is non-destructive, 3D and fully quantitative. Importantly, not only do we demonstrate achievement of high image quality at two different synchrotron facilities, but also with commercial x-ray equipment, which makes the method available to any research laboratory.

  13. Condenser-free contrast methods for transmitted-light microscopy

    PubMed Central

    WEBB, K F

    2015-01-01

    Phase contrast microscopy allows the study of highly transparent yet detail-rich specimens by producing intensity contrast from phase objects within the sample. Presented here is a generalized phase contrast illumination schema in which condenser optics are entirely abrogated, yielding a condenser-free yet highly effective method of obtaining phase contrast in transmitted-light microscopy. A ring of light emitting diodes (LEDs) is positioned within the light-path such that observation of the objective back focal plane places the illuminating ring in appropriate conjunction with the phase ring. It is demonstrated that true Zernike phase contrast is obtained, whose geometry can be flexibly manipulated to provide an arbitrary working distance between illuminator and sample. Condenser-free phase contrast is demonstrated across a range of magnifications (4–100×), numerical apertures (0.13–1.65NA) and conventional phase positions. Also demonstrated is condenser-free darkfield microscopy as well as combinatorial contrast including Rheinberg illumination and simultaneous, colour-contrasted, brightfield, darkfield and Zernike phase contrast. By providing enhanced and arbitrary working space above the preparation, a range of concurrent imaging and electrophysiological techniques will be technically facilitated. Condenser-free phase contrast is demonstrated in conjunction with scanning ion conductance microscopy (SICM), using a notched ring to admit the scanned probe. The compact, versatile LED illumination schema will further lend itself to novel next-generation transmitted-light microscopy designs. The condenser-free illumination method, using rings of independent or radially-scanned emitters, may be exploited in future in other electromagnetic wavebands, including X-rays or the infrared. PMID:25226859

  14. Phase Error Correction in Time-Averaged 3D Phase Contrast Magnetic Resonance Imaging of the Cerebral Vasculature

    PubMed Central

    MacDonald, M. Ethan; Forkert, Nils D.; Pike, G. Bruce; Frayne, Richard

    2016-01-01

    Purpose Volume flow rate (VFR) measurements based on phase contrast (PC)-magnetic resonance (MR) imaging datasets have spatially varying bias due to eddy current induced phase errors. The purpose of this study was to assess the impact of phase errors in time averaged PC-MR imaging of the cerebral vasculature and explore the effects of three common correction schemes (local bias correction (LBC), local polynomial correction (LPC), and whole brain polynomial correction (WBPC)). Methods Measurements of the eddy current induced phase error from a static phantom were first obtained. In thirty healthy human subjects, the methods were then assessed in background tissue to determine if local phase offsets could be removed. Finally, the techniques were used to correct VFR measurements in cerebral vessels and compared statistically. Results In the phantom, phase error was measured to be <2.1 ml/s per pixel and the bias was reduced with the correction schemes. In background tissue, the bias was significantly reduced, by 65.6% (LBC), 58.4% (LPC) and 47.7% (WBPC) (p < 0.001 across all schemes). Correction did not lead to significantly different VFR measurements in the vessels (p = 0.997). In the vessel measurements, the three correction schemes led to flow measurement differences of -0.04 ± 0.05 ml/s, 0.09 ± 0.16 ml/s, and -0.02 ± 0.06 ml/s. Although there was an improvement in background measurements with correction, there was no statistical difference between the three correction schemes (p = 0.242 in background and p = 0.738 in vessels). Conclusions While eddy current induced phase errors can vary between hardware and sequence configurations, our results showed that the impact is small in a typical brain PC-MR protocol and does not have a significant effect on VFR measurements in cerebral vessels. PMID:26910600

  15. Comparison of phase-contrast MR and flow simulations for the study of CSF dynamics in the cervical spine.

    PubMed

    Lindstrøm, Erika Kristina; Schreiner, Jakob; Ringstad, Geir Andre; Haughton, Victor; Eide, Per Kristian; Mardal, Kent-Andre

    2018-06-01

    Background Investigators use phase-contrast magnetic resonance (PC-MR) and computational fluid dynamics (CFD) to assess cerebrospinal fluid dynamics. We compared qualitative and quantitative results from the two methods. Methods Four volunteers were imaged with a heavily T2-weighted volume gradient echo scan of the brain and cervical spine at 3T and with PC-MR. Velocities were calculated from PC-MR for each phase in the cardiac cycle. Mean pressure gradients in the PC-MR acquisition through the cardiac cycle were calculated with the Navier-Stokes equations. Volumetric MR images of the brain and upper spine were segmented and converted to meshes. Models of the subarachnoid space were created from volume images with the Vascular Modeling Toolkit. CFD simulations were performed with a previously verified flow solver. The flow patterns, velocities and pressures were compared in PC-MR and CFD flow images. Results PC-MR images consistently revealed more inhomogeneous flow patterns than CFD, especially in the anterolateral subarachnoid space where spinal nerve roots are located. On average, peak systolic and diastolic velocities in PC-MR exceeded those in CFD by 31% and 41%, respectively. On average, systolic and diastolic pressure gradients calculated from PC-MR exceeded those of CFD by 11% and 39%, respectively. Conclusions PC-MR shows local flow disturbances that are not evident in typical CFD. The velocities and pressure gradients calculated from PC-MR are systematically larger than those calculated from CFD.

  16. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  17. Quantitative evaluation of retinal degeneration in royal college of surgeons rats by contrast enhanced ultrahigh resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Syu, Jia-Pu; Su, Min-Jyun; Chen, Po-Wei; Ke, Chang-Chih; Chiou, Shih-Hwa; Kuo, Wen-Chuan

    2018-02-01

    This study presents a spectral domain optical coherence tomography (SD-OCT) using supercontinuum laser combined with a fundus photography for in vivo high-resolution imaging of retinal degeneration in Royal College of Surgeons (RCS-/- rat). These findings were compared with the Sprague-Dawley (SD) rats and the corresponding histology. Quantitative measurements show that changes in thickness were not significantly different between SD control and young RCS retinas (4 weeks). However, in old RCS rats (55 weeks), the thickness of photoreceptor layer decreased significantly as compared to young RCS rats (both 4 weeks and 5 weeks). After contrast enhancement method, this platform will be useful for the quantitative evaluation of the degree of retinal degeneration, treatment outcome after therapy, and drug screening development in the future.

  18. A Bayesian Model for Highly Accelerated Phase-Contrast MRI

    PubMed Central

    Rich, Adam; Potter, Lee C.; Jin, Ning; Ash, Joshua; Simonetti, Orlando P.; Ahmad, Rizwan

    2015-01-01

    Purpose Phase-contrast magnetic resonance imaging (PC-MRI) is a noninvasive tool to assess cardiovascular disease by quantifying blood flow; however, low data acquisition efficiency limits the spatial and temporal resolutions, real-time application, and extensions to 4D flow imaging in clinical settings. We propose a new data processing approach called Reconstructing Velocity Encoded MRI with Approximate message passing aLgorithms (ReVEAL) that accelerates the acquisition by exploiting data structure unique to PC-MRI. Theory and Methods ReVEAL models physical correlations across space, time, and velocity encodings. The proposed Bayesian approach exploits the relationships in both magnitude and phase among velocity encodings. A fast iterative recovery algorithm is introduced based on message passing. For validation, prospectively undersampled data are processed from a pulsatile flow phantom and five healthy volunteers. Results ReVEAL is in good agreement, quantified by peak velocity and stroke volume (SV), with reference data for acceleration rates R ≤ 10. For SV, Pearson r ≥ 0.996 for phantom imaging (n = 24) and r ≥ 0.956 for prospectively accelerated in vivo imaging (n = 10) for R ≤ 10. Conclusion ReVEAL enables accurate quantification of blood flow from highly undersampled data. The technique is extensible to 4D flow imaging, where higher acceleration may be possible due to additional redundancy. PMID:26444911

  19. Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging.

    PubMed

    Zhang, Qinnan; Zhong, Liyun; Tang, Ping; Yuan, Yingjie; Liu, Shengde; Tian, Jindong; Lu, Xiaoxu

    2017-05-31

    Cell refractive index, an intrinsic optical parameter, is closely correlated with the intracellular mass and concentration. By combining optical phase-shifting interferometry (PSI) and atomic force microscope (AFM) imaging, we constructed a label free, non-invasive and quantitative refractive index of single cell measurement system, in which the accurate phase map of single cell was retrieved with PSI technique and the cell morphology with nanoscale resolution was achieved with AFM imaging. Based on the proposed AFM/PSI system, we achieved quantitative refractive index distributions of single red blood cell and Jurkat cell, respectively. Further, the quantitative change of refractive index distribution during Daunorubicin (DNR)-induced Jurkat cell apoptosis was presented, and then the content changes of intracellular biochemical components were achieved. Importantly, these results were consistent with Raman spectral analysis, indicating that the proposed PSI/AFM based refractive index system is likely to become a useful tool for intracellular biochemical components analysis measurement, and this will facilitate its application for revealing cell structure and pathological state from a new perspective.

  20. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demi, Libertario, E-mail: l.demi@tue.nl; Sloun, Ruud J. G. van; Mischi, Massimo

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC platemore » (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO{sup ®} UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.« less

  1. Radiologic-Pathologic Analysis of Contrast-enhanced and Diffusion-weighted MR Imaging in Patients with HCC after TACE: Diagnostic Accuracy of 3D Quantitative Image Analysis

    PubMed Central

    Chapiro, Julius; Wood, Laura D.; Lin, MingDe; Duran, Rafael; Cornish, Toby; Lesage, David; Charu, Vivek; Schernthaner, Rüdiger; Wang, Zhijun; Tacher, Vania; Savic, Lynn Jeanette; Kamel, Ihab R.

    2014-01-01

    Purpose To evaluate the diagnostic performance of three-dimensional (3Dthree-dimensional) quantitative enhancement-based and diffusion-weighted volumetric magnetic resonance (MR) imaging assessment of hepatocellular carcinoma (HCChepatocellular carcinoma) lesions in determining the extent of pathologic tumor necrosis after transarterial chemoembolization (TACEtransarterial chemoembolization). Materials and Methods This institutional review board–approved retrospective study included 17 patients with HCChepatocellular carcinoma who underwent TACEtransarterial chemoembolization before surgery. Semiautomatic 3Dthree-dimensional volumetric segmentation of target lesions was performed at the last MR examination before orthotopic liver transplantation or surgical resection. The amount of necrotic tumor tissue on contrast material–enhanced arterial phase MR images and the amount of diffusion-restricted tumor tissue on apparent diffusion coefficient (ADCapparent diffusion coefficient) maps were expressed as a percentage of the total tumor volume. Visual assessment of the extent of tumor necrosis and tumor response according to European Association for the Study of the Liver (EASLEuropean Association for the Study of the Liver) criteria was performed. Pathologic tumor necrosis was quantified by using slide-by-slide segmentation. Correlation analysis was performed to evaluate the predictive values of the radiologic techniques. Results At histopathologic examination, the mean percentage of tumor necrosis was 70% (range, 10%–100%). Both 3Dthree-dimensional quantitative techniques demonstrated a strong correlation with tumor necrosis at pathologic examination (R2 = 0.9657 and R2 = 0.9662 for quantitative EASLEuropean Association for the Study of the Liver and quantitative ADCapparent diffusion coefficient, respectively) and a strong intermethod agreement (R2 = 0.9585). Both methods showed a significantly lower discrepancy with pathologically measured necrosis (residual

  2. Optimisation of a propagation-based x-ray phase-contrast micro-CT system

    NASA Astrophysics Data System (ADS)

    Nesterets, Yakov I.; Gureyev, Timur E.; Dimmock, Matthew R.

    2018-03-01

    Micro-CT scanners find applications in many areas ranging from biomedical research to material sciences. In order to provide spatial resolution on a micron scale, these scanners are usually equipped with micro-focus, low-power x-ray sources and hence require long scanning times to produce high resolution 3D images of the object with acceptable contrast-to-noise. Propagation-based phase-contrast tomography (PB-PCT) has the potential to significantly improve the contrast-to-noise ratio (CNR) or, alternatively, reduce the image acquisition time while preserving the CNR and the spatial resolution. We propose a general approach for the optimisation of the PB-PCT imaging system. When applied to an imaging system with fixed parameters of the source and detector this approach requires optimisation of only two independent geometrical parameters of the imaging system, i.e. the source-to-object distance R 1 and geometrical magnification M, in order to produce the best spatial resolution and CNR. If, in addition to R 1 and M, the system parameter space also includes the source size and the anode potential this approach allows one to find a unique configuration of the imaging system that produces the required spatial resolution and the best CNR.

  3. Automated method for the rapid and precise estimation of adherent cell culture characteristics from phase contrast microscopy images.

    PubMed

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-03-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (<1 s per 1,208 × 960 pixels image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source-code for MATLAB and ImageJ is freely available under a permissive open-source license. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  4. Automated Method for the Rapid and Precise Estimation of Adherent Cell Culture Characteristics from Phase Contrast Microscopy Images

    PubMed Central

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-01-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (<1 s per 1,208 × 960 pixels image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source-code for MATLAB and ImageJ is freely available under a permissive open-source license. Biotechnol. Bioeng. 2014;111: 504–517. © 2013 Wiley Periodicals, Inc. PMID:24037521

  5. Quantitative ultrasound molecular imaging by modeling the binding kinetics of targeted contrast agent

    NASA Astrophysics Data System (ADS)

    Turco, Simona; Tardy, Isabelle; Frinking, Peter; Wijkstra, Hessel; Mischi, Massimo

    2017-03-01

    Ultrasound molecular imaging (USMI) is an emerging technique to monitor diseases at the molecular level by the use of novel targeted ultrasound contrast agents (tUCA). These consist of microbubbles functionalized with targeting ligands with high-affinity for molecular markers of specific disease processes, such as cancer-related angiogenesis. Among the molecular markers of angiogenesis, the vascular endothelial growth factor receptor 2 (VEGFR2) is recognized to play a major role. In response, the clinical-grade tUCA BR55 was recently developed, consisting of VEGFR2-targeting microbubbles which can flow through the entire circulation and accumulate where VEGFR2 is over-expressed, thus causing selective enhancement in areas of active angiogenesis. Discrimination between bound and free microbubbles is crucial to assess cancer angiogenesis. Currently, this is done non-quantitatively by looking at the late enhancement, about 10 min after injection, or by calculation of the differential targeted enhancement, requiring the application of a high-pressure ultrasound (US) burst to destroy all the microbubbles in the acoustic field and isolate the signal coming only from bound microbubbles. In this work, we propose a novel method based on mathematical modeling of the binding kinetics during the tUCA first pass, thus reducing the acquisition time and with no need for a destructive US burst. Fitting time-intensity curves measured with USMI by the proposed model enables the assessment of cancer angiogenesis at both the vascular and molecular levels. This is achieved by estimation of quantitative parameters related to the microvascular architecture and microbubble binding. The proposed method was tested in 11 prostate-tumor bearing rats by performing USMI after injection of BR55, and showed good agreement with current USMI methods. The novel information provided by the proposed method, possibly combined with the current non-quantitative methods, may bring deeper insight into

  6. Differences in aortic vortex flow pattern between normal and patients with stroke: qualitative and quantitative assessment using transesophageal contrast echocardiography.

    PubMed

    Son, Jang-Won; Hong, Geu-Ru; Hong, Woosol; Kim, Minji; Houle, Helene; Vannan, Mani A; Pedrizzetti, Gianni; Chung, Namsik

    2016-06-01

    The flow in the aorta forms a vortex, which is a critical determinant of the flow dynamics in the aorta. Arteriosclerosis can alter the blood flow pattern of the aorta and cause characteristic alterations of the vortex. However, this change in aortic vortex has not yet been studied. This study aimed to characterize aortic vortex flow pattern using transesophageal contrast echocardiography in normal and stroke patients. A total of 85 patients who diagnosed with ischemic stroke and 16 normal controls were recruited for this study. The 16 normal control subjects were designated as the control group, and the 85 ischemic stroke patients were designated as the stroke group. All subjects underwent contrast transesophageal echocardiography (TEE), and particle image velocimetry was used to assess aortic vortex flow. Qualitative and quantitative analyses of vortex flow morphology, location, phasic variation, and pulsatility were undertaken and compared between the groups. In the control group, multiple irregularly-shaped vortices were observed in a peripheral location in the descending thoracic aorta. In contrast, the stroke group had a single, round, merged, and more centrally located aortic vortex flow. In the quantitative analysis of vortex, vortex depth, which represents the location of the major vortex in the aorta, was significantly higher in the control group than in the stroke group (0.599 ± 0.159 vs. 0.522 ± 0.101, respectively, P = 0.013). Vortex relative strength, which is the pulsatility parameter of the vortex itself, was significantly higher in the stroke group than in the control group (0.367 ± 0.148 vs. 0.304 ± 0.087, respectively, P = 0.025). It was feasible to visualize and quantify the characteristic morphology and pulsatility of the aortic vortex flow using contrast TEE, and aortic vortex pattern significantly differed between normal and stroke patients.

  7. Integral refractive index imaging of flowing cell nuclei using quantitative phase microscopy combined with fluorescence microscopy.

    PubMed

    Dardikman, Gili; Nygate, Yoav N; Barnea, Itay; Turko, Nir A; Singh, Gyanendra; Javidi, Barham; Shaked, Natan T

    2018-03-01

    We suggest a new multimodal imaging technique for quantitatively measuring the integral (thickness-average) refractive index of the nuclei of live biological cells in suspension. For this aim, we combined quantitative phase microscopy with simultaneous 2-D fluorescence microscopy. We used 2-D fluorescence microscopy to localize the nucleus inside the quantitative phase map of the cell, as well as for measuring the nucleus radii. As verified offline by both 3-D confocal fluorescence microscopy and 2-D fluorescence microscopy while rotating the cells during flow, the nucleus of cells in suspension that are not during division can be assumed to be an ellipsoid. The entire shape of a cell in suspension can be assumed to be a sphere. Then, the cell and nucleus 3-D shapes can be evaluated based on their in-plain radii available from the 2-D phase and fluorescent measurements, respectively. Finally, the nucleus integral refractive index profile is calculated. We demonstrate the new technique on cancer cells, obtaining nucleus refractive index values that are lower than those of the cytoplasm, coinciding with recent findings. We believe that the proposed technique has the potential to be used for flow cytometry, where full 3-D refractive index tomography is too slow to be implemented during flow.

  8. Sequential processing of quantitative phase images for the study of cell behaviour in real-time digital holographic microscopy.

    PubMed

    Zikmund, T; Kvasnica, L; Týč, M; Křížová, A; Colláková, J; Chmelík, R

    2014-11-01

    Transmitted light holographic microscopy is particularly used for quantitative phase imaging of transparent microscopic objects such as living cells. The study of the cell is based on extraction of the dynamic data on cell behaviour from the time-lapse sequence of the phase images. However, the phase images are affected by the phase aberrations that make the analysis particularly difficult. This is because the phase deformation is prone to change during long-term experiments. Here, we present a novel algorithm for sequential processing of living cells phase images in a time-lapse sequence. The algorithm compensates for the deformation of a phase image using weighted least-squares surface fitting. Moreover, it identifies and segments the individual cells in the phase image. All these procedures are performed automatically and applied immediately after obtaining every single phase image. This property of the algorithm is important for real-time cell quantitative phase imaging and instantaneous control of the course of the experiment by playback of the recorded sequence up to actual time. Such operator's intervention is a forerunner of process automation derived from image analysis. The efficiency of the propounded algorithm is demonstrated on images of rat fibrosarcoma cells using an off-axis holographic microscope. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  9. Development and characterization of a dynamic lesion phantom for the quantitative evaluation of dynamic contrast-enhanced MRI.

    PubMed

    Freed, Melanie; de Zwart, Jacco A; Hariharan, Prasanna; Myers, Matthew R; Badano, Aldo

    2011-10-01

    To develop a dynamic lesion phantom that is capable of producing physiological kinetic curves representative of those seen in human dynamic contrast-enhanced MRI (DCE-MRI) data. The objective of this phantom is to provide a platform for the quantitative comparison of DCE-MRI protocols to aid in the standardization and optimization of breast DCE-MRI. The dynamic lesion consists of a hollow, plastic mold with inlet and outlet tubes to allow flow of a contrast agent solution through the lesion over time. Border shape of the lesion can be controlled using the lesion mold production method. The configuration of the inlet and outlet tubes was determined using fluid transfer simulations. The total fluid flow rate was determined using x-ray images of the lesion for four different flow rates (0.25, 0.5, 1.0, and 1.5 ml/s) to evaluate the resultant kinetic curve shape and homogeneity of the contrast agent distribution in the dynamic lesion. High spatial and temporal resolution x-ray measurements were used to estimate the true kinetic curve behavior in the dynamic lesion for benign and malignant example curves. DCE-MRI example data were acquired of the dynamic phantom using a clinical protocol. The optimal inlet and outlet tube configuration for the lesion molds was two inlet molds separated by 30° and a single outlet tube directly between the two inlet tubes. X-ray measurements indicated that 1.0 ml/s was an appropriate total fluid flow rate and provided truth for comparison with MRI data of kinetic curves representative of benign and malignant lesions. DCE-MRI data demonstrated the ability of the phantom to produce realistic kinetic curves. The authors have constructed a dynamic lesion phantom, demonstrated its ability to produce physiological kinetic curves, and provided estimations of its true kinetic curve behavior. This lesion phantom provides a tool for the quantitative evaluation of DCE-MRI protocols, which may lead to improved discrimination of breast cancer lesions.

  10. Development and characterization of a dynamic lesion phantom for the quantitative evaluation of dynamic contrast-enhanced MRI

    PubMed Central

    Freed, Melanie; de Zwart, Jacco A.; Hariharan, Prasanna; R. Myers, Matthew; Badano, Aldo

    2011-01-01

    Purpose: To develop a dynamic lesion phantom that is capable of producing physiological kinetic curves representative of those seen in human dynamic contrast-enhanced MRI (DCE-MRI) data. The objective of this phantom is to provide a platform for the quantitative comparison of DCE-MRI protocols to aid in the standardization and optimization of breast DCE-MRI. Methods: The dynamic lesion consists of a hollow, plastic mold with inlet and outlet tubes to allow flow of a contrast agent solution through the lesion over time. Border shape of the lesion can be controlled using the lesion mold production method. The configuration of the inlet and outlet tubes was determined using fluid transfer simulations. The total fluid flow rate was determined using x-ray images of the lesion for four different flow rates (0.25, 0.5, 1.0, and 1.5 ml∕s) to evaluate the resultant kinetic curve shape and homogeneity of the contrast agent distribution in the dynamic lesion. High spatial and temporal resolution x-ray measurements were used to estimate the true kinetic curve behavior in the dynamic lesion for benign and malignant example curves. DCE-MRI example data were acquired of the dynamic phantom using a clinical protocol. Results: The optimal inlet and outlet tube configuration for the lesion molds was two inlet molds separated by 30° and a single outlet tube directly between the two inlet tubes. X-ray measurements indicated that 1.0 ml∕s was an appropriate total fluid flow rate and provided truth for comparison with MRI data of kinetic curves representative of benign and malignant lesions. DCE-MRI data demonstrated the ability of the phantom to produce realistic kinetic curves. Conclusions: The authors have constructed a dynamic lesion phantom, demonstrated its ability to produce physiological kinetic curves, and provided estimations of its true kinetic curve behavior. This lesion phantom provides a tool for the quantitative evaluation of DCE-MRI protocols, which may lead to

  11. The behavior of single-crystal silicon to dynamic loading using in-situ X-ray diffraction and phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hae Ja; Xing, Zhou; Galtier, Eric; Arnold, Brice; Granados, Eduardo; Brown, Shaughnessy B.; Tavella, Franz; McBride, Emma; Fry, Alan; Nagler, Bob; Schropp, Andreas; Seiboth, Frank; Samberg, Dirk; Schroer, Christian; Gleason, Arianna E.; Higginbotham, Andrew

    Hydrostatic and uniaxial compression studies have revealed that crystalline silicon undergoes phase transitions from a cubic diamond structure to a variety of phases including orthorhombic Imma phase, body-centered tetragonal phase, and a hexagonal primitive phase. The dynamic response of silicon at high pressure, however, is not well understood. Phase contrast imaging has proven to be a powerful tool for probing density changes caused by the shock propagation into a material. In order to characterize the elastic and phase transitions, we image shock waves in Si with high spatial resolution using the LCLS X-ray free electron laser and Matter in Extreme Conditions instrument. In this study, the long pulse optical laser with pseudo-flat top shape creates high pressures up to 60 GPa. We measure the crystal structure by observing X-ray diffraction orthogonal to the shock propagation direction over a range of pressures. We describe the capability of simultaneously performing phase contrast imaging and in situ X-ray diffraction during shock loading and discuss the dynamic response of Si in high-pressure phases Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The MEC instrument is supported by.

  12. Computational cell quantification in the human brain tissues based on hard x-ray phase-contrast tomograms

    NASA Astrophysics Data System (ADS)

    Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Chicherova, Natalia; Rack, Alexander; Zdora, Marie-Christine; Zanette, Irene; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert

    2016-10-01

    Cell visualization and counting plays a crucial role in biological and medical research including the study of neurodegenerative diseases. The neuronal cell loss is typically determined to measure the extent of the disease. Its characterization is challenging because the cell density and size already differs by more than three orders of magnitude in a healthy cerebellum. Cell visualization is commonly performed by histology and fluorescence microscopy. These techniques are limited to resolve complex microstructures in the third dimension. Phase- contrast tomography has been proven to provide sufficient contrast in the three-dimensional imaging of soft tissue down to the cell level and, therefore, offers the basis for the three-dimensional segmentation. Within this context, a human cerebellum sample was embedded in paraffin and measured in local phase-contrast mode at the beamline ID19 (ESRF, Grenoble, France) and the Diamond Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK). After the application of Frangi-based filtering the data showed sufficient contrast to automatically identify the Purkinje cells and to quantify their density to 177 cells per mm3 within the volume of interest. Moreover, brain layers were segmented in a region of interest based on edge detection. Subsequently performed histological analysis validated the presence of the cells, which required a mapping from the two- dimensional histological slices to the three-dimensional tomogram. The methodology can also be applied to further tissue types and shows potential for the computational tissue analysis in health and disease.

  13. Leukotriene B4 catabolism: quantitation of leukotriene B4 and its omega-oxidation products by reversed-phase high-performance liquid chromatography.

    PubMed

    Shak, S

    1987-01-01

    LTB4 and its omega-oxidation products may be rapidly, sensitively, and specifically quantitated by the methods of solid-phase extraction and reversed-phase high-performance liquid chromatography (HPLC), which are described in this chapter. Although other techniques, such as radioimmunoassay or gas chromatography-mass spectrometry, may be utilized for quantitative analysis of the lipoxygenase products of arachidonic acid, only the technique of reversed-phase HPLC can quantitate as many as 10 metabolites in a single analysis, without prior derivatization. In this chapter, we also reviewed the chromatographic theory which we utilized in order to optimize reversed-phase HPLC analysis of LTB4 and its omega-oxidation products. With this information and a gradient HPLC system, it is possible for any investigator to develop a powerful assay for the potent inflammatory mediator, LTB4, or for any other lipoxygenase product of arachidonic acid.

  14. Phase contrast imaging of preclinical portal vein embolization with CO2 microbubbles.

    PubMed

    Tang, Rongbiao; Yan, Fuhua; Yang, Guo Yuan; Chen, Ke Min

    2017-11-01

    Preoperative portal vein embolization (PVE) is employed clinically to avoid postoperative liver insufficiency. Animal models are usually used to study PVE in terms of mechanisms and pathophysiological changes. PVE is formerly monitored by conventional absorption contrast imaging (ACI) with iodine contrast agent. However, the side effects induced by iodine can give rise to animal damage and death. In this study, the feasibility of using phase contrast imaging (PCI) to show PVE using homemade CO 2 microbubbles in living rats has been investigated. CO 2 gas was first formed from the reaction between citric acid and sodium bicarbonate. The CO 2 gas was then encapsulated by egg white to fabricate CO 2 microbubbles. ACI and PCI of CO 2 microbubbles were performed and compared in vitro. An additional increase in contrast was detected in PCI. PCI showed that CO 2 microbubbles gradually dissolved over time, and the remaining CO 2 microbubbles became larger. By PCI, the CO 2 microbubbles were found to have certain stability, suggesting their potential use as embolic agents. CO 2 microbubbles were injected into the main portal trunk to perform PVE in living rats. PCI exploited the differences in the refractive index and facilitated clear visualization of the PVE after the injection of CO 2 microbubbles. Findings from this study suggest that homemade CO 2 microbubbles-based PCI is a novel modality for preclinical PVE research.

  15. Quantitative dosimetric assessment for effect of gold nanoparticles as contrast media on radiotherapy planning

    NASA Astrophysics Data System (ADS)

    Tu, Shu-Ju; Yang, Pei-Ying; Hong, Ji-Hong; Lo, Ching-Jung

    2013-07-01

    In CT planning for radiation therapy, patients may be asked to have a medical procedure of contrast agent (CA) administration as required by their physicians. CA media improve quality of CT images and assist radiation oncologists in delineation of the target or organs with accuracy. However, dosimetric discrepancy may occur between scenarios in which CA media are present in CT planning and absent in treatment delivery. In recent preclinical experiments of small animals, gold nanoparticles (AuNPs) have been identified as an excellent contrast material of x-ray imaging. In this work, we quantitatively evaluate the effect of AuNPs to be used as a potential material of contrast enhancement in radiotherapy planning with an analytical phantom and clinical case. Conray 60, an iodine-based product for contrast enhancement in clinical uses, is included as a comparison. Other additional variables such as different concentrations of CA media, radiation delivery techniques and dose calculation algorithms are included. We consider 1-field AP, 4-field box, 7-field intensity modulated radiation therapy (IMRT) and a recent technique of volumetric modulated arc therapy (VMAT). CA media of AuNPs (Conray 60) with concentrations of 10%, 20%, 30%, 40% and 50% containing 28.2, 56.4, 84.6, 112.8 and 141.0 mg of gold (iodine) per mL were prepared prior to CT scanning. A virtual phantom with a target where nanoparticle media are loaded and clinical case of gastric lymphoma in which the Conray 60 media were given to the patient prior to the CT planning are included for the study. Compared to Conray 60 media with concentration of 10%/50%, Hounsfield units for AuNP media of 10%/50% are 322/1608 higher due to the fact that atomic number of Au (Z=79) is larger than I (Z=53). In consequence, dosimetric discrepancy of AuNPs is magnified between presence and absence of contrast media. It was found in the phantom study that percent dose differences between presence and absence of CA media may be

  16. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution.

    PubMed

    Yücelen, Emrah; Lazić, Ivan; Bosch, Eric G T

    2018-02-08

    Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text

  17. AHA classification of coronary and carotid atherosclerotic plaques by grating-based phase-contrast computed tomography.

    PubMed

    Hetterich, Holger; Webber, Nicole; Willner, Marian; Herzen, Julia; Birnbacher, Lorenz; Hipp, Alexander; Marschner, Mathias; Auweter, Sigrid D; Habbel, Christopher; Schüller, Ulrich; Bamberg, Fabian; Ertl-Wagner, Birgit; Pfeiffer, Franz; Saam, Tobias

    2016-09-01

    To evaluate the potential of grating-based phase-contrast computed-tomography (gb-PCCT) to classify human carotid and coronary atherosclerotic plaques according to modified American Heart Association (AHA) criteria. Experiments were carried out at a laboratory-based set-up consisting of X-ray tube (40 kVp), grating-interferometer and detector. Eighteen human carotid and coronary artery specimens were examined. Histopathology served as the standard of reference. Vessel cross-sections were classified as AHA lesion type I/II, III, IV/V, VI, VII or VIII plaques by two independent reviewers blinded to histopathology. Conservative measurements of diagnostic accuracies for the detection and differentiation of plaque types were evaluated. A total of 127 corresponding gb-PCCT/histopathology sections were analyzed. Based on histopathology, lesion type I/II was present in 12 (9.5 %), III in 18 (14.2 %), IV/V in 38 (29.9 %), VI in 16 (12.6 %), VII in 34 (26.8 %) and VIII in 9 (7.0 %) cross-sections. Sensitivity, specificity and positive and negative predictive value were ≥0.88 for most analyzed plaque types with a good level of agreement (Cohen's kappa = 0.90). Overall, results were better in carotid (kappa = 0.97) than in coronary arteries (kappa = 0.85). Inter-observer agreement was high with kappa = 0.85, p < 0.0001. These results indicate that gb-PCCT can reliably classify atherosclerotic plaques according to modified AHA criteria with excellent agreement to histopathology. • Different atherosclerotic plaque types display distinct morphological features in phase-contrast CT. • Phase-contrast CT can detect and differentiate AHA plaque types. • Calcifications caused streak artefacts and reduced sensitivity in type VI lesions. • Overall agreement was higher in carotid than in coronary arteries.

  18. Compact laser accelerators for X-ray phase-contrast imaging

    PubMed Central

    Najmudin, Z.; Kneip, S.; Bloom, M. S.; Mangles, S. P. D.; Chekhlov, O.; Dangor, A. E.; Döpp, A.; Ertel, K.; Hawkes, S. J.; Holloway, J.; Hooker, C. J.; Jiang, J.; Lopes, N. C.; Nakamura, H.; Norreys, P. A.; Rajeev, P. P.; Russo, C.; Streeter, M. J. V.; Symes, D. R.; Wing, M.

    2014-01-01

    Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications. With advances in laser plasma acceleration, electron beams can now be generated at energies comparable to those used in light sources, but in university-sized laboratories. By making use of the strong transverse focusing of plasma accelerators, bright sources of betatron radiation have been produced. Here, we demonstrate phase-contrast imaging of a biological sample for the first time by radiation generated by GeV electron beams produced by a laser accelerator. The work was performed using a greater than 300 TW laser, which allowed the energy of the synchrotron source to be extended to the 10–100 keV range. PMID:24470414

  19. Contrastive Linguistics and Social Lectology.

    ERIC Educational Resources Information Center

    Wolfram, Walt

    In the past, social lectologists have not considered their work as contrastive linguistics. One reason is that sociolects of a language differ quantitatively; differences lie in the frequency patterns with which certain forms occur in each lect. Contrastive linguistics deals with standard or idealized languages, while sociolects are often…

  20. Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury: a pilot investigation.

    PubMed

    Prowle, John R; Molan, Maurice P; Hornsey, Emma; Bellomo, Rinaldo

    2012-06-01

    In septic patients, decreased renal perfusion is considered to play a major role in the pathogenesis of acute kidney injury. However, the accurate measurement of renal blood flow in such patients is problematic and invasive. We sought to overcome such obstacles by measuring renal blood flow in septic patients with acute kidney injury using cine phase-contrast magnetic resonance imaging. Pilot observational study. University-affiliated general adult intensive care unit. Ten adult patients with established septic acute kidney injury and 11 normal volunteers. Cine phase-contrast magnetic resonance imaging measurement of renal blood flow and cardiac output. The median age of the study patients was 62.5 yrs and eight were male. At the time of magnetic resonance imaging, eight patients were mechanically ventilated, nine were on continuous hemofiltration, and five required vasopressors. Cine phase-contrast magnetic resonance imaging examinations were carried out without complication. Median renal blood flow was 482 mL/min (range 335-1137) in septic acute kidney injury and 1260 mL/min (range 791-1750) in healthy controls (p = .003). Renal blood flow indexed to body surface area was 244 mL/min/m2 (range 165-662) in septic acute kidney injury and 525 mL/min/m2 (range 438-869) in controls (p = .004). In patients with septic acute kidney injury, median cardiac index was 3.5 L/min/m2 (range 1.6-8.7), and median renal fraction of cardiac output was only 7.1% (range 4.4-10.8). There was no rank correlation between renal blood flow index and creatinine clearance in patients with septic acute kidney injury (r = .26, p = .45). Cine phase-contrast magnetic resonance imaging can be used to noninvasively and safely assess renal perfusion during critical illness in man. Near-simultaneous accurate measurement of cardiac output enables organ blood flow to be assessed in the context of the global circulation. Renal blood flow seems consistently reduced as a fraction of cardiac output in

  1. Radial k-t SPIRiT: autocalibrated parallel imaging for generalized phase-contrast MRI.

    PubMed

    Santelli, Claudio; Schaeffter, Tobias; Kozerke, Sebastian

    2014-11-01

    To extend SPIRiT to additionally exploit temporal correlations for highly accelerated generalized phase-contrast MRI and to compare the performance of the proposed radial k-t SPIRiT method relative to frame-by-frame SPIRiT and radial k-t GRAPPA reconstruction for velocity and turbulence mapping in the aortic arch. Free-breathing navigator-gated two-dimensional radial cine imaging with three-directional multi-point velocity encoding was implemented and fully sampled data were obtained in the aortic arch of healthy volunteers. Velocities were encoded with three different first gradient moments per axis to permit quantification of mean velocity and turbulent kinetic energy. Velocity and turbulent kinetic energy maps from up to 14-fold undersampled data were compared for k-t SPIRiT, frame-by-frame SPIRiT, and k-t GRAPPA relative to the fully sampled reference. Using k-t SPIRiT, improvements in magnitude and velocity reconstruction accuracy were found. Temporally resolved magnitude profiles revealed a reduction in spatial blurring with k-t SPIRiT compared with frame-by-frame SPIRiT and k-t GRAPPA for all velocity encodings, leading to improved estimates of turbulent kinetic energy. k-t SPIRiT offers improved reconstruction accuracy at high radial undersampling factors and hence facilitates the use of generalized phase-contrast MRI for routine use. Copyright © 2013 Wiley Periodicals, Inc.

  2. Augmented Quadruple-Phase Contrast Media Administration and Triphasic Scan Protocol Increases Image Quality at Reduced Radiation Dose During Computed Tomography Urography.

    PubMed

    Saade, Charbel; Mohamad, May; Kerek, Racha; Hamieh, Nadine; Alsheikh Deeb, Ibrahim; El-Achkar, Bassam; Tamim, Hani; Abdul Razzak, Farah; Haddad, Maurice; Abi-Ghanem, Alain S; El-Merhi, Fadi

    The aim of this article was to investigate the opacification of the renal vasculature and the urogenital system during computed tomography urography by using a quadruple-phase contrast media in a triphasic scan protocol. A total of 200 patients with possible urinary tract abnormalities were equally divided between 2 protocols. Protocol A used the conventional single bolus and quadruple-phase scan protocol (pre, arterial, venous, and delayed), retrospectively. Protocol B included a quadruple-phase contrast media injection with a triphasic scan protocol (pre, arterial and combined venous, and delayed), prospectively. Each protocol used 100 mL contrast and saline at a flow rate of 4.5 mL. Attenuation profiles and contrast-to-noise ratio of the renal arteries, veins, and urogenital tract were measured. Effective radiation dose calculation, data analysis by independent sample t test, receiver operating characteristic, and visual grading characteristic analyses were performed. In arterial circulation, only the inferior interlobular arteries in both protocols showed a statistical significance (P < 0.05). Venously, the inferior vena cava, proximal and distal renal veins demonstrated a significant opacification reduction in protocol B than in protocol A (P < 0.001). Protocol B showed a significantly higher mean contrast-to-noise ratio than protocol A (protocol B: 22.68 ± 13.72; protocol A: 14.75 ± 5.76; P < 0.001). Radiation dose was significantly reduced in protocol B (7.38 ± 2.22 mSv) than in protocol A (12.28 ± 2.72 mSv) (P < 0.001). Visual grading characteristic (P < 0.027) and receiver operating characteristic (P < 0.0001) analyses demonstrated a significant preference for protocol B. In computed tomography urography, augmented quadruple-phase contrast media and triphasic scan protocol usage increases the image quality at a reduced radiation dose.

  3. Multi-phase-fluid discrimination with local fibre-optical probes: III. Three-phase flows

    NASA Astrophysics Data System (ADS)

    Fordham, E. J.; Ramos, R. T.; Holmes, A.; Simonian, S.; Huang, S.-M.; Lenn, C. P.

    1999-12-01

    Local fibre-optical sensors (or `local probes') for immiscible-fluid discrimination are demonstrated in three-phase (oil/water/gas) flows. The probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with surface treatment for wettability control. They use total internal reflection to distinguish among drops, bubbles and other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Dual probes, using two sensors each with a quasi-binary output, are used to determine profiles of three-phase volume fraction in a flow of kerosene, water and air in a pipe. The individual sensors used discriminate oil from `not-oil' and gas from liquid; their logical combination discriminates among the three phases. Companion papers deal with the sensor designs used and quantitative results achieved in the simpler two-phase cases of liquid/liquid flows and gas/liquid flows.

  4. Large-area full field x-ray differential phase-contrast imaging using 2D tiled gratings

    NASA Astrophysics Data System (ADS)

    Schröter, Tobias J.; Koch, Frieder J.; Kunka, Danays; Meyer, Pascal; Tietze, Sabrina; Engelhardt, Sabine; Zuber, Marcus; Baumbach, Tilo; Willer, Konstantin; Birnbacher, Lorenz; Prade, Friedrich; Pfeiffer, Franz; Reichert, Klaus-Martin; Hofmann, Andreas; Mohr, Jürgen

    2017-06-01

    Grating-based x-ray differential phase-contrast imaging (DPCI) is capable of acquiring information based on phase-shift and dark-field signal, in addition to conventional x-ray absorption-contrast. Thus DPCI gives an advantage to investigate composite materials with component wise similar absorption properties like soft tissues. Due to technological challenges in fabricating high quality gratings over a large extent, the field of view (FoV) of the imaging systems is limited to a grating area of a couple of square centimeters. For many imaging applications (e.g. in medicine), however, a FoV that ranges over several ten centimeters is needed. In this manuscript we propose to create large area gratings of theoretically any extent by assembling a number of individual grating tiles. We discuss the precision needed for alignment of each microstructure tile in order to reduce image artifacts and to preserve minimum 90% of the sensitivity obtainable with a monolithic grating. To achieve a reliable high precision alignment a semiautomatic assembly system consisting of a laser autocollimator, a digital microscope and a force sensor together with positioning devices was built. The setup was used to tile a first four times four analyzer grating with a size of 200 mm  ×  200 mm together with a two times two phase grating. First imaging results prove the applicability and quality of the tiling concept.

  5. Comparative study of quantitative phase imaging techniques for refractometry of optical fibers

    NASA Astrophysics Data System (ADS)

    de Dorlodot, Bertrand; Bélanger, Erik; Bérubé, Jean-Philippe; Vallée, Réal; Marquet, Pierre

    2018-02-01

    The refractive index difference profile of optical fibers is the key design parameter because it determines, among other properties, the insertion losses and propagating modes. Therefore, an accurate refractive index profiling method is of paramount importance to their development and optimization. Quantitative phase imaging (QPI) is one of the available tools to retrieve structural characteristics of optical fibers, including the refractive index difference profile. Having the advantage of being non-destructive, several different QPI methods have been developed over the last decades. Here, we present a comparative study of three different available QPI techniques, namely the transport-of-intensity equation, quadriwave lateral shearing interferometry and digital holographic microscopy. To assess the accuracy and precision of those QPI techniques, quantitative phase images of the core of a well-characterized optical fiber have been retrieved for each of them and a robust image processing procedure has been applied in order to retrieve their refractive index difference profiles. As a result, even if the raw images for all the three QPI methods were suffering from different shortcomings, our robust automated image-processing pipeline successfully corrected these. After this treatment, all three QPI techniques yielded accurate, reliable and mutually consistent refractive index difference profiles in agreement with the accuracy and precision of the refracted near-field benchmark measurement.

  6. PHYSICAL EFFECTS OCCURRING DURING GENERATION AND AMPLIFICATION OF LASER RADIATION: Reversal of the contrast of optical radiation in round-trip amplifiers with a phase conjugation mirror

    NASA Astrophysics Data System (ADS)

    Afanas'ev, Anatolii A.; Samson, B. A.

    1989-02-01

    A description is given of a method for inversion of the contrast of optical radiation in a round-trip amplifier with a phase conjugation mirror and a phase nonreciprocal element. The system can be used to achieve high powers of contrast-reversed radiation because of compensation of phase distortions introduced by amplification.

  7. Label-free cell-cycle analysis by high-throughput quantitative phase time-stretch imaging flow cytometry

    NASA Astrophysics Data System (ADS)

    Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2018-02-01

    Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.

  8. Characterization of LiBC by phase-contrast scanning transmission electron microscopy.

    PubMed

    Krumeich, Frank; Wörle, Michael; Reibisch, Philipp; Nesper, Reinhard

    2014-08-01

    LiBC was used as a model compound for probing the applicability of phase-contrast (PC) imaging in an aberration-corrected scanning transmission electron microscope (STEM) to visualize lithium distributions. In the LiBC structure, boron and carbon are arranged to hetero graphite layers between which lithium is incorporated. The crystal structure is reflected in the PC-STEM images recorded perpendicular to the layers. The experimental images and their defocus dependence match with multi-slice simulations calculated utilizing the reciprocity principle. The observation that a part of the Li positions is not occupied is likely an effect of the intense electron beam triggering Li displacement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Assessment of cardiac time intervals using high temporal resolution real-time spiral phase contrast with UNFOLDed-SENSE.

    PubMed

    Kowalik, Grzegorz T; Knight, Daniel S; Steeden, Jennifer A; Tann, Oliver; Odille, Freddy; Atkinson, David; Taylor, Andrew; Muthurangu, Vivek

    2015-02-01

    To develop a real-time phase contrast MR sequence with high enough temporal resolution to assess cardiac time intervals. The sequence utilized spiral trajectories with an acquisition strategy that allowed a combination of temporal encoding (Unaliasing by fourier-encoding the overlaps using the temporal dimension; UNFOLD) and parallel imaging (Sensitivity encoding; SENSE) to be used (UNFOLDed-SENSE). An in silico experiment was performed to determine the optimum UNFOLD filter. In vitro experiments were carried out to validate the accuracy of time intervals calculation and peak mean velocity quantification. In addition, 15 healthy volunteers were imaged with the new sequence, and cardiac time intervals were compared to reference standard Doppler echocardiography measures. For comparison, in silico, in vitro, and in vivo experiments were also carried out using sliding window reconstructions. The in vitro experiments demonstrated good agreement between real-time spiral UNFOLDed-SENSE phase contrast MR and the reference standard measurements of velocity and time intervals. The protocol was successfully performed in all volunteers. Subsequent measurement of time intervals produced values in keeping with literature values and good agreement with the gold standard echocardiography. Importantly, the proposed UNFOLDed-SENSE sequence outperformed the sliding window reconstructions. Cardiac time intervals can be successfully assessed with UNFOLDed-SENSE real-time spiral phase contrast. Real-time MR assessment of cardiac time intervals may be beneficial in assessment of patients with cardiac conditions such as diastolic dysfunction. © 2014 Wiley Periodicals, Inc.

  10. Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells.

    PubMed

    Park, Han Sang; Rinehart, Matthew T; Walzer, Katelyn A; Chi, Jen-Tsan Ashley; Wax, Adam

    2016-01-01

    Malaria detection through microscopic examination of stained blood smears is a diagnostic challenge that heavily relies on the expertise of trained microscopists. This paper presents an automated analysis method for detection and staging of red blood cells infected by the malaria parasite Plasmodium falciparum at trophozoite or schizont stage. Unlike previous efforts in this area, this study uses quantitative phase images of unstained cells. Erythrocytes are automatically segmented using thresholds of optical phase and refocused to enable quantitative comparison of phase images. Refocused images are analyzed to extract 23 morphological descriptors based on the phase information. While all individual descriptors are highly statistically different between infected and uninfected cells, each descriptor does not enable separation of populations at a level satisfactory for clinical utility. To improve the diagnostic capacity, we applied various machine learning techniques, including linear discriminant classification (LDC), logistic regression (LR), and k-nearest neighbor classification (NNC), to formulate algorithms that combine all of the calculated physical parameters to distinguish cells more effectively. Results show that LDC provides the highest accuracy of up to 99.7% in detecting schizont stage infected cells compared to uninfected RBCs. NNC showed slightly better accuracy (99.5%) than either LDC (99.0%) or LR (99.1%) for discriminating late trophozoites from uninfected RBCs. However, for early trophozoites, LDC produced the best accuracy of 98%. Discrimination of infection stage was less accurate, producing high specificity (99.8%) but only 45.0%-66.8% sensitivity with early trophozoites most often mistaken for late trophozoite or schizont stage and late trophozoite and schizont stage most often confused for each other. Overall, this methodology points to a significant clinical potential of using quantitative phase imaging to detect and stage malaria infection

  11. Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells

    PubMed Central

    Park, Han Sang; Rinehart, Matthew T.; Walzer, Katelyn A.; Chi, Jen-Tsan Ashley; Wax, Adam

    2016-01-01

    Malaria detection through microscopic examination of stained blood smears is a diagnostic challenge that heavily relies on the expertise of trained microscopists. This paper presents an automated analysis method for detection and staging of red blood cells infected by the malaria parasite Plasmodium falciparum at trophozoite or schizont stage. Unlike previous efforts in this area, this study uses quantitative phase images of unstained cells. Erythrocytes are automatically segmented using thresholds of optical phase and refocused to enable quantitative comparison of phase images. Refocused images are analyzed to extract 23 morphological descriptors based on the phase information. While all individual descriptors are highly statistically different between infected and uninfected cells, each descriptor does not enable separation of populations at a level satisfactory for clinical utility. To improve the diagnostic capacity, we applied various machine learning techniques, including linear discriminant classification (LDC), logistic regression (LR), and k-nearest neighbor classification (NNC), to formulate algorithms that combine all of the calculated physical parameters to distinguish cells more effectively. Results show that LDC provides the highest accuracy of up to 99.7% in detecting schizont stage infected cells compared to uninfected RBCs. NNC showed slightly better accuracy (99.5%) than either LDC (99.0%) or LR (99.1%) for discriminating late trophozoites from uninfected RBCs. However, for early trophozoites, LDC produced the best accuracy of 98%. Discrimination of infection stage was less accurate, producing high specificity (99.8%) but only 45.0%-66.8% sensitivity with early trophozoites most often mistaken for late trophozoite or schizont stage and late trophozoite and schizont stage most often confused for each other. Overall, this methodology points to a significant clinical potential of using quantitative phase imaging to detect and stage malaria infection

  12. Active illumination using a digital micromirror device for quantitative phase imaging.

    PubMed

    Shin, Seungwoo; Kim, Kyoohyun; Yoon, Jonghee; Park, YongKeun

    2015-11-15

    We present a powerful and cost-effective method for active illumination using a digital micromirror device (DMD) for quantitative phase-imaging techniques. Displaying binary illumination patterns on a DMD with appropriate spatial filtering, plane waves with various illumination angles are generated and impinged onto a sample. Complex optical fields of the sample obtained with various incident angles are then measured via Mach-Zehnder interferometry, from which a high-resolution 2D synthetic aperture phase image and a 3D refractive index tomogram of the sample are reconstructed. We demonstrate the fast and stable illumination-control capability of the proposed method by imaging colloidal spheres and biological cells. The capability of high-speed optical diffraction tomography is also demonstrated by measuring 3D Brownian motion of colloidal particles with the tomogram acquisition rate of 100 Hz.

  13. Diagnostic performance of different measurement methods for lung nodule enhancement at quantitative contrast-enhanced computed tomography

    NASA Astrophysics Data System (ADS)

    Wormanns, Dag; Klotz, Ernst; Dregger, Uwe; Beyer, Florian; Heindel, Walter

    2004-05-01

    Lack of angiogenesis virtually excludes malignancy of a pulmonary nodule; assessment with quantitative contrast-enhanced CT (QECT) requires a reliable enhancement measurement technique. Diagnostic performance of different measurement methods in the distinction between malignant and benign nodules was evaluated. QECT (unenhanced scan and 4 post-contrast scans) was performed in 48 pulmonary nodules (12 malignant, 12 benign, 24 indeterminate). Nodule enhancement was the difference between the highest nodule density at any post-contrast scan and the unenhanced scan. Enhancement was determined with: A) the standard 2D method; B) a 3D method consisting of segmentation, removal of peripheral structures and density averaging. Enhancement curves were evaluated for their plausibility using a predefined set of criteria. Sensitivity and specificity were 100% and 33% for the 2D method resp. 92% and 55% for the 3D method using a threshold of 20 HU. One malignant nodule did not show significant enhancement with method B due to adjacent atelectasis which disappeared within the few minutes of the QECT examination. Better discrimination between benign and malignant lesions was achieved with a slightly higher threshold than proposed in the literature. Application of plausibility criteria to the enhancement curves rendered less plausibility faults with the 3D method. A new 3D method for analysis of QECT scans yielded less artefacts and better specificity in the discrimination between benign and malignant pulmonary nodules when using an appropriate enhancement threshold. Nevertheless, QECT results must be interpreted with care.

  14. Fourier domain image fusion for differential X-ray phase-contrast breast imaging.

    PubMed

    Coello, Eduardo; Sperl, Jonathan I; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-04-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Automatic neuron segmentation and neural network analysis method for phase contrast microscopy images.

    PubMed

    Pang, Jincheng; Özkucur, Nurdan; Ren, Michael; Kaplan, David L; Levin, Michael; Miller, Eric L

    2015-11-01

    Phase Contrast Microscopy (PCM) is an important tool for the long term study of living cells. Unlike fluorescence methods which suffer from photobleaching of fluorophore or dye molecules, PCM image contrast is generated by the natural variations in optical index of refraction. Unfortunately, the same physical principles which allow for these studies give rise to complex artifacts in the raw PCM imagery. Of particular interest in this paper are neuron images where these image imperfections manifest in very different ways for the two structures of specific interest: cell bodies (somas) and dendrites. To address these challenges, we introduce a novel parametric image model using the level set framework and an associated variational approach which simultaneously restores and segments this class of images. Using this technique as the basis for an automated image analysis pipeline, results for both the synthetic and real images validate and demonstrate the advantages of our approach.

  16. Pain & resistance in patients with adhesive capsulitis during contrast material injection phase of MR arthrography.

    PubMed

    Yilmaz, Mehmet Halit; Kantarci, Fatih; Adaletli, Ibrahim; Ulus, Sila; Gulsen, Fatih; Ozer, Harun; Aktas, Ilknur; Akgun, Kenan; Kanberoglu, Kaya

    2007-04-01

    Adhesive capsulitis of the shoulder is a condition of unknown aetiology that results in the development of restricted active and passive glenohumeral motion. It has been reported that magnetic resonance (MR) imaging is useful in diagnosing adhesive capsulitis. We carried out this study to assess how pain and/or resistance during contrast material injection affects the diagnosis of adhesive capsulitis on magnetic resonance (MR) arthrography. The study included MR arthrography examinations of 21 patients with a diagnosis of adhesive capsulitis. The control group consisted of 20 patients who presented clinically with rotator cuff tear. The pain (visual analog scale, VAS), resistance to injection and the amount of contrast material that could be injected during injection phase of MR arthrography was assessed and compared between groups. The patients in adhesive capsulitis group (mean VAS score 66.5+/-25.5) experienced more pain when compared with the control group (mean VAS score 34.9+/-27.7, P<0.001). A statistically significant difference (P<0.001) in terms of the amount of the injected fluid (4.3+/-2.6 ml for adhesive capsulitis group, and 10.9+/-4.1 ml for control group) was seen into the joint cavity. Resistance to injection was significantly more (P<0.001) in patients with adhesive capsulitis when compared to control group. Experience of pain during injection, a decreased amount of contrast material injected and resistance to injection in patients during injection phase of MR arthrography may suggest adhesive capsulitis.

  17. Comparison of Simulated Contrast Performance of Different Phase Induced Amplitude Apodization (PIAA) Coronagraph Configurations

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Kern, Brian; Kuhnert, Andreas; Shaklan, Stuart

    2013-01-01

    We compare the broadband contrast performances of several Phase Induced Amplitude Apodization (PIAA) coronagraph configurations through modeling and simulations. The basic optical design of the PIAA coronagraph is the same as NASA's High Contrast Imaging Testbed (HCIT) setup at the Jet Propulsion Laboratory (JPL). Using a deformable mirror and a broadband wavefront sensing and control algorithm, we create a "dark hole" in the broadband point-spread function (PSF) with an inner working angle (IWA) of 2(f lambda/D)(sub sky). We evaluate two systems in parallel. One is a perfect system having a design PIAA output amplitude and not having any wavefront error at its exit-pupil. The other is a realistic system having a design PIAA output amplitude and the measured residual wavefront error. We also investigate the effect of Lyot stops of various sizes when a postapodizer is and is not present. Our simulations show that the best 7.5%-broadband contrast value achievable with the current PIAA coronagraph is approximately 1.5x10(exp -8).

  18. Phase Contrast Imaging of Damage Initiation During Ballistic Impact of Boron Carbide

    NASA Astrophysics Data System (ADS)

    Schuster, Brian; Tonge, Andrew; Ramos, Kyle; Rigg, Paulo; Iverson, Adam; Schuman, Adam; Lorenzo, Nicholas

    2017-06-01

    For several decades, flash X-ray imaging has been used to perform time-resolved investigations of the response of ceramics under ballistic impact. Traditional absorption based contrast offers little insight into the early initiation of inelastic deformation mechanisms and instead typically only shows the gross deformation and fracture behavior. In the present work, we employed phase contrast imaging (PCI) at the Dynamic Compression Sector (DCS) at the Advanced Photon Source, Argonne National Laboratory, to investigate crack initiation and propagation following the impact of copper penetrators into boron carbide targets. These experiments employed a single-stage propellant gun to launch small-scale (0.6 mm diameter by 3 mm long) pure copper impactors at velocities ranging from 0.9 to 1.9 km/s into commercially available boron carbide targets that were 8 mm on a side. At the lowest striking velocities the penetrator undergoes dwell or interface defeat and the target response is consistent with the cone crack formation at the impact site. At higher striking velocities there is a distinct transition to massive fragmentation leading to the onset of penetration.

  19. Quantitative Visualization of Salt Concentration Distributions in Lithium-Ion Battery Electrolytes during Battery Operation Using X-ray Phase Imaging.

    PubMed

    Takamatsu, Daiko; Yoneyama, Akio; Asari, Yusuke; Hirano, Tatsumi

    2018-02-07

    A fundamental understanding of concentrations of salts in lithium-ion battery electrolytes during battery operation is important for optimal operation and design of lithium-ion batteries. However, there are few techniques that can be used to quantitatively characterize salt concentration distributions in the electrolytes during battery operation. In this paper, we demonstrate that in operando X-ray phase imaging can quantitatively visualize the salt concentration distributions that arise in electrolytes during battery operation. From quantitative evaluation of the concentration distributions at steady states, we obtained the salt diffusivities in electrolytes with different initial salt concentrations. Because of no restriction on samples and high temporal and spatial resolutions, X-ray phase imaging will be a versatile technique for evaluating electrolytes, both aqueous and nonaqueous, of many electrochemical systems.

  20. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images

    PubMed Central

    Wang, Yuliang; Zhang, Zaicheng; Wang, Huimin; Bi, Shusheng

    2015-01-01

    Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells. PMID:26066315

  1. Quantitative-phase microscopy of nanosecond laser-induced micro-modifications inside silicon.

    PubMed

    Li, Q; Chambonneau, M; Chanal, M; Grojo, D

    2016-11-20

    Laser-induced permanent modification inside silicon has been recently demonstrated by using tightly focused nanosecond sources at a 1550 nm wavelength. We have developed a quantitative-phase microscope operating in the near-infrared domain to characterize the laser-induced modifications deep into silicon. By varying the number of applied laser pulses and the energy, we observe porous and densified regions in the focal region. The observed changes are associated with refractive index variations |Δn| exceeding 10-3, enough to envision the laser writing of optical functionalities inside silicon.

  2. Computer-aided diagnosis for phase-contrast X-ray computed tomography: quantitative characterization of human patellar cartilage with high-dimensional geometric features.

    PubMed

    Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Glaser, Christian; Wismüller, Axel

    2014-02-01

    Phase-contrast computed tomography (PCI-CT) has shown tremendous potential as an imaging modality for visualizing human cartilage with high spatial resolution. Previous studies have demonstrated the ability of PCI-CT to visualize (1) structural details of the human patellar cartilage matrix and (2) changes to chondrocyte organization induced by osteoarthritis. This study investigates the use of high-dimensional geometric features in characterizing such chondrocyte patterns in the presence or absence of osteoarthritic damage. Geometrical features derived from the scaling index method (SIM) and statistical features derived from gray-level co-occurrence matrices were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. These features were subsequently used in a machine learning task with support vector regression to classify ROIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic curve (AUC). SIM-derived geometrical features exhibited the best classification performance (AUC, 0.95 ± 0.06) and were most robust to changes in ROI size. These results suggest that such geometrical features can provide a detailed characterization of the chondrocyte organization in the cartilage matrix in an automated and non-subjective manner, while also enabling classification of cartilage as healthy or osteoarthritic with high accuracy. Such features could potentially serve as imaging markers for evaluating osteoarthritis progression and its response to different therapeutic intervention strategies.

  3. Use of Caval Subtraction 2D Phase-Contrast MR Imaging to Measure Total Liver and Hepatic Arterial Blood Flow: Preclinical Validation and Initial Clinical Translation.

    PubMed

    Chouhan, Manil D; Mookerjee, Rajeshwar P; Bainbridge, Alan; Walker-Samuel, Simon; Davies, Nathan; Halligan, Steve; Lythgoe, Mark F; Taylor, Stuart A

    2016-09-01

    Purpose To validate caval subtraction two-dimensional (2D) phase-contrast magnetic resonance (MR) imaging measurements of total liver blood flow (TLBF) and hepatic arterial fraction in an animal model and evaluate consistency and reproducibility in humans. Materials and Methods Approval from the institutional ethical committee for animal care and research ethics was obtained. Fifteen Sprague-Dawley rats underwent 2D phase-contrast MR imaging of the portal vein (PV) and infrahepatic and suprahepatic inferior vena cava (IVC). TLBF and hepatic arterial flow were estimated by subtracting infrahepatic from suprahepatic IVC flow and PV flow from estimated TLBF, respectively. Direct PV transit-time ultrasonography (US) and fluorescent microsphere measurements of hepatic arterial fraction were the standards of reference. Thereafter, consistency of caval subtraction phase-contrast MR imaging-derived TLBF and hepatic arterial flow was assessed in 13 volunteers (mean age, 28.3 years ± 1.4) against directly measured phase-contrast MR imaging PV and proper hepatic arterial inflow; reproducibility was measured after 7 days. Bland-Altman analysis of agreement and coefficient of variation comparisons were undertaken. Results There was good agreement between PV flow measured with phase-contrast MR imaging and that measured with transit-time US (mean difference, -3.5 mL/min/100 g; 95% limits of agreement [LOA], ±61.3 mL/min/100 g). Hepatic arterial fraction obtained with caval subtraction agreed well with those with fluorescent microspheres (mean difference, 4.2%; 95% LOA, ±20.5%). Good consistency was demonstrated between TLBF in humans measured with caval subtraction and direct inflow phase-contrast MR imaging (mean difference, -1.3 mL/min/100 g; 95% LOA, ±23.1 mL/min/100 g). TLBF reproducibility at 7 days was similar between the two methods (95% LOA, ±31.6 mL/min/100 g vs ±29.6 mL/min/100 g). Conclusion Caval subtraction phase-contrast MR imaging is a simple and clinically

  4. Diagnostic value of quantitative contrast-enhanced ultrasound (CEUS) for early detection of renal hyperperfusion in diabetic kidney disease.

    PubMed

    Wang, Ling; Wu, Jian; Cheng, Jia-Fen; Liu, Xin-Ying; Ma, Fang; Guo, Le-Hang; Xu, Jun-Mei; Wu, Tianfu; Mohan, Chandra; Peng, Ai; Xu, Hui-Xiong; Song, Ya-Xiang

    2015-12-01

    To investigate the diagnostic value of quantitative contrast-enhanced ultrasound (CEUS) for early detection of renal hyperperfusion in diabetic kidney disease (DKD). 55 DKD patients with estimated glomerular filtration rate (eGFR) >30 ml/min/1.73 m(2) and 26 normal controls (NCs) were enrolled. Clinical data was well documented. Blood samples were drawn for evaluation of renal function including blood urea nitrogen (BUN), serum creatinine (SCr) and serum uric acid (SUA), and urine samples were assayed for total protein quantification, and various microprotein markers. According to eGFR level, DKD patients were divided into early-stage DKD (eGFR ≥90 ml/min/1.73 m(2), n = 18) and middle-stage DKD (eGFR 30-90 ml/min/1.73 m(2), n = 37). Based on urinary microalbumin/creatinine ratio (MALB/UCR), early-stage DKD patients were further classified into two groups: MALB/UCR <10 g/mol (n = 11) and MALB/UCR ≥10 g/mol (n = 7). Then, CEUS was performed to observe the real-time renal perfusion, and low acoustic power contrast-specific imaging was used for quantitative analysis. The renal perfusion images of CEUS were well developed successively. The corresponding perfusion curves based on echo-power signals in time series were constructed. Quantitative analysis showed that area under the descending curve (AUC2) was significantly increased in early-stage DKD compared to middle-stage DKD (p < 0.05), but AUC showed no significant difference. Further comparison between different MALB/UCR levels of early-stage DKD showed that patients with MALB/UCR ≥10 g/mol had significantly increased levels of AUC, AUC2 and proteinuria than patients with low MALB/UCR (p < 0.05). Also, high MALB/UCR DKD patients had increased proteinuria but similar eGFR compared to low MALB/UCR patients. Renal microvascular hyperperfusion may be responsible for overt proteinuria until decline of renal filtration in DKD. AUC2 could be an early and sensitive marker for early renal injury and renal microvascular

  5. Dose optimization of contrast-enhanced carotid MR angiography.

    PubMed

    Unterweger, M; Froehlich, J M; Kubik-Huch, R A; Seifert, B; Birrer, M; Huber, T; Otto, R

    2005-09-01

    The purpose of this work was to compare the diagnostic performance of a single-contrast or a double-contrast dose of carotid contrast-enhanced MR angiography (MRA). One-hundred nineteen patients (mean age 65+/-14.4 years) underwent carotid contrast-enhanced MRA with a standardized protocol (repetition time/echo 3.73 ms/1.38 ms, flip-angle 25 degrees, acquisition-time 19 s, voxel size 1.2 x 1.2 x 0.9 mm3) on a 1.5-T scanner (Sonata, Siemens-Medical-Systems) using a neck phased-array coil. Contrast agent was administered intravenously at a rate of 3.0 ml/s, either as a single dose (n=57; 0.1 mmol/kg body weight) or as a double dose (n=62; 0.2 mmol/kg body weight) of meglumine gadoterate (0.5 M/l), followed by 30 ml saline. Qualitative image analysis was performed on maximum intensity projections using a five-point scale. Signal intensities were measured at three different vascular levels on both sides to assess the contrast-to-noise ratios (CNRs). Image quality was rated as good or excellent in all cases. A double dose did not influence the efficacy of carotid enhancement (CNR single dose 69.12+/-19.8; CNR double dose 70.01+/-20.7; p = 0.81) compared with a single dose. In both dose groups the mean CNRs were inversely related to bodyweight, despite adjusted contrast volumes (p=0.0005). Double-dose contrast-enhanced carotid MRA is not superior to single-dose MRA, as overall diagnostic performance and quantitative contrast enhancement are equal. Being more cost-efficient, a single-dose administration of contrast agent is recommended for MRA of the carotid arteries.

  6. Virtual unrolling and deciphering of Herculaneum papyri by X-ray phase-contrast tomography

    PubMed Central

    Bukreeva, I.; Mittone, A.; Bravin, A.; Festa, G.; Alessandrelli, M.; Coan, P.; Formoso, V.; Agostino, R. G.; Giocondo, M.; Ciuchi, F.; Fratini, M.; Massimi, L.; Lamarra, A.; Andreani, C.; Bartolino, R.; Gigli, G.; Ranocchia, G.; Cedola, A.

    2016-01-01

    A collection of more than 1800 carbonized papyri, discovered in the Roman ‘Villa dei Papiri’ at Herculaneum is the unique classical library survived from antiquity. These papyri were charred during 79 A.D. Vesuvius eruption, a circumstance which providentially preserved them until now. This magnificent collection contains an impressive amount of treatises by Greek philosophers and, especially, Philodemus of Gadara, an Epicurean thinker of 1st century BC. We read many portions of text hidden inside carbonized Herculaneum papyri using enhanced X-ray phase-contrast tomography non-destructive technique and a new set of numerical algorithms for ‘virtual-unrolling’. Our success lies in revealing the largest portion of Greek text ever detected so far inside unopened scrolls, with unprecedented spatial resolution and contrast, all without damaging these precious historical manuscripts. Parts of text have been decoded and the ‘voice’ of the Epicurean philosopher Philodemus is brought back again after 2000 years from Herculaneum papyri. PMID:27265417

  7. Assessment of inflammatory activity in Crohn's disease by means of dynamic contrast-enhanced MRI.

    PubMed

    Pupillo, V A; Di Cesare, E; Frieri, G; Limbucci, N; Tanga, M; Masciocchi, C

    2007-09-01

    Our aim was to perform a dynamic study of contrast enhancement of the intestinal wall in patients with Crohn's disease to quantitatively assess local inflammatory activity. We studied a population of 50 patients with histologically proven Crohn's disease. Magnetic resonance imaging (MRI) was performed using a 1.5-T magnet with a phased-array coil and acquisition of T2-weighted single-shot fast spin echo (SSFSE) half Fourier sequences before intravenous administration of gadolinium, and T1-weighted fast spoiled gradient (FSPGR) fat-saturated sequences before and after contrast administration. Before the examination, patents received oral polyethylene glycol (PEG) (1,000 ml for adults; 10 ml/Kg of body weight for children). Regions of interest (ROI) were placed on the normal and diseased intestinal wall to assess signal intensity and rate of increase in contrast enhancement over time. Data were compared with the Crohn's Disease Activity Index (CDAI). The diseased bowel wall showed early and intense uptake of contrast that increases over time until a plateau is reached. In patients in the remission phase after treatment, signal intensity was only slightly higher in diseased bowel loops than in healthy loops. There was a significant correlation between the peak of contrast uptake and CDAI. Dynamic MRI is a good technique for quantifying local inflammatory activity of bowel wall in patients with Crohn's disease.

  8. Quantitative contrast-enhanced spectral mammography based on photon-counting detectors: A feasibility study.

    PubMed

    Ding, Huanjun; Molloi, Sabee

    2017-08-01

    , the correlation slope and offset values were strongly dependent on the total breast thickness and density. The results of this study suggest that iodine mass thickness for cm-scale lesions can be accurately quantified with contrast-enhanced spectral mammography. The quantitative information can potentially improve the differential power for malignancy. © 2017 American Association of Physicists in Medicine.

  9. Gas exsolution and bubbles nucleation from the 1669 lava flow of Mount Etna (Italy): evidences from phase-contrast synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Lanzafame, Gabriele; Ferlito, Carmelo; Mancini, Lucia

    2017-04-01

    Bubbles are usually present in lavas, often showing an increase in their size and number from bottom to the top of vertical profile of the flows. Their presence is commonly interpreted as the final phase of the degassing processes starting and massively occurring at depth, before the eruption. In this work we present the results of a detailed study of size, shape and volumetric distribution of bubbles in lavas from the 1669 eruption of Mount Etna (Italy), one of the most voluminous and destructive historic events of this volcano. The lava field produced during this event extends up to 18 km from the craters, and the massive presence of bubbles in lavas sampled many kilometres away from the emission point is in contrast with the models predicting their almost total exsolution from the magma before the eruption, at depth of several kilometres beneath the volcano edifice. Sampling of the 1669 lava field has been performed along the longitudinal profile of the field at increasing distance from the vent. Collected rocks have been analysed by X-ray fluorescence and phase-contrast synchrotron X-ray computed microtomography in order to extract three-dimensional (3D) qualitative and quantitative information on the bubbles network. The use of synchrotron light permitted to investigate small portions of the samples at high spatial and contrast resolution and allowed us to obtain the 3D morphology and distribution of the micro-bubbles present in the lava, avoiding the limitations of the traditional two-dimensional analysis on thin sections. Results indicate that bubbles in lavas are present in various abundance, constituting up to 18% of the rocks volume, and are randomly distributed, with no regards for the distance from the vent. Their casual abundance, morphological characteristics and spatial distribution indicate large nucleation from syn- to post-eruptive stage, during the lava flowing and probably after it halted its run. These observations are in contrast with the

  10. Quantitative phase-filtered wavelength-modulated differential photoacoustic radar tumor hypoxia imaging toward early cancer detection.

    PubMed

    Dovlo, Edem; Lashkari, Bahman; Soo Sean Choi, Sung; Mandelis, Andreas; Shi, Wei; Liu, Fei-Fei

    2017-09-01

    Overcoming the limitations of conventional linear spectroscopy used in multispectral photoacoustic imaging, wherein a linear relationship is assumed between the absorbed optical energy and the absorption spectra of the chromophore at a specific location, is crucial for obtaining accurate spatially-resolved quantitative functional information by exploiting known chromophore-specific spectral characteristics. This study introduces a non-invasive phase-filtered differential photoacoustic technique, wavelength-modulated differential photoacoustic radar (WM-DPAR) imaging that addresses this issue by eliminating the effect of the unknown wavelength-dependent fluence. It employs two laser wavelengths modulated out-of-phase to significantly suppress background absorption while amplifying the difference between the two photoacoustic signals. This facilitates pre-malignant tumor identification and hypoxia monitoring, as minute changes in total hemoglobin concentration and hemoglobin oxygenation are detectable. The system can be tuned for specific applications such as cancer screening and SO 2 quantification by regulating the amplitude ratio and phase shift of the signal. The WM-DPAR imaging of a head and neck carcinoma tumor grown in the thigh of a nude rat demonstrates the functional PA imaging of small animals in vivo. The PA appearance of the tumor in relation to tumor vascularity is investigated by immunohistochemistry. Phase-filtered WM-DPAR imaging is also illustrated, maximizing quantitative SO 2 imaging fidelity of tissues. Oxygenation levels within a tumor grown in the thigh of a nude rat using the two-wavelength phase-filtered differential PAR method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Using Dynamic Contrast Enhanced MRI to Quantitatively Characterize Maternal Vascular Organization in the Primate Placenta

    PubMed Central

    Frias, A.E.; Schabel, M.C.; Roberts, V.H.J.; Tudorica, A.; Grigsby, P.L.; Oh, K.Y.; Kroenke, C. D.

    2015-01-01

    Purpose The maternal microvasculature of the primate placenta is organized into 10-20 perfusion domains that are functionally optimized to facilitate nutrient exchange to support fetal growth. This study describes a dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) method for identifying vascular domains, and quantifying maternal blood flow in them. Methods A rhesus macaque on the 133rd day of pregnancy (G133, term=165 days) underwent Doppler ultrasound (US) procedures, DCE-MRI, and Cesarean-section delivery. Serial T1-weighted images acquired throughout intravenous injection of a contrast reagent (CR) bolus were analyzed to obtain CR arrival time maps of the placenta. Results Watershed segmentation of the arrival time map identified 16 perfusion domains. The number and location of these domains corresponded to anatomical cotyledonary units observed following delivery. Analysis of the CR wave front through each perfusion domain enabled determination of volumetric flow, which ranged from 9.03 to 44.9 mL/sec (25.2 ± 10.3 mL/sec). These estimates are supported by Doppler US results. Conclusions The DCE-MRI analysis described here provides quantitative estimates of the number of maternal perfusion domains in a primate placenta, and estimates flow within each domain. Anticipated extensions of this technique are to the study placental function in nonhuman primate models of obstetric complications. PMID:24753177

  12. Effect of fuel and nozzle geometry on the off-axis oscillation of needle in diesel injectors using high-speed X-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Liu, J.; Wang, J.

    2016-05-01

    The diesel spray characteristics are strongly influenced by the flow dynamics inside the injector nozzle. Moreover, the off-axis oscillation of needle could lead to variation of orifice flow in the nozzle. In this paper, the needle oscillation was investigated using high-speed X-ray phase contrast imaging and quantitative image processing. The effects of fuel, injection pressure and nozzle geometry on the needle oscillation were analyzed. The results showed that the vertical and horizontal oscillation of needle was independent on the injection pressure. The maximum oscillation range of 14μ m was found. Biodiesel application slightly decreased the needle oscillation due to high viscosity. The needle oscillation range increased generally with increasing hole number. The larger needle oscillation in multi-hole injectors was dominated by the geometry problem or production issue at lower needle lift. In addition, the influence of needle oscillation on the spray morphology was also discussed.

  13. Concept of contrast transfer function for edge illumination x-ray phase-contrast imaging and its comparison with the free-space propagation technique.

    PubMed

    Diemoz, Paul C; Vittoria, Fabio A; Olivo, Alessandro

    2016-05-16

    Previous studies on edge illumination (EI) X-ray phase-contrast imaging (XPCi) have investigated the nature and amplitude of the signal provided by this technique. However, the response of the imaging system to different object spatial frequencies was never explicitly considered and studied. This is required in order to predict the performance of a given EI setup for different classes of objects. To this scope, in the present work we derive analytical expressions for the contrast transfer function of an EI imaging system, using the approximation of near-field regime, and study its dependence upon the main experimental parameters. We then exploit these results to compare the frequency response of an EI system with respect of that of a free-space propagation XPCi one. The results achieved in this work can be useful for predicting the signals obtainable for different types of objects and also as a basis for new retrieval methods.

  14. Digital micromirror device-based common-path quantitative phase imaging.

    PubMed

    Zheng, Cheng; Zhou, Renjie; Kuang, Cuifang; Zhao, Guangyuan; Yaqoob, Zahid; So, Peter T C

    2017-04-01

    We propose a novel common-path quantitative phase imaging (QPI) method based on a digital micromirror device (DMD). The DMD is placed in a plane conjugate to the objective back-aperture plane for the purpose of generating two plane waves that illuminate the sample. A pinhole is used in the detection arm to filter one of the beams after sample to create a reference beam. Additionally, a transmission-type liquid crystal device, placed at the objective back-aperture plane, eliminates the specular reflection noise arising from all the "off" state DMD micromirrors, which is common in all DMD-based illuminations. We have demonstrated high sensitivity QPI, which has a measured spatial and temporal noise of 4.92 nm and 2.16 nm, respectively. Experiments with calibrated polystyrene beads illustrate the desired phase measurement accuracy. In addition, we have measured the dynamic height maps of red blood cell membrane fluctuations, showing the efficacy of the proposed system for live cell imaging. Most importantly, the DMD grants the system convenience in varying the interference fringe period on the camera to easily satisfy the pixel sampling conditions. This feature also alleviates the pinhole alignment complexity. We envision that the proposed DMD-based common-path QPI system will allow for system miniaturization and automation for a broader adaption.

  15. Zernike phase contrast cryo-electron tomography of sodium-driven flagellar hook-basal bodies from Vibrio alginolyticus.

    PubMed

    Hosogi, Naoki; Shigematsu, Hideki; Terashima, Hiroyuki; Homma, Michio; Nagayama, Kuniaki

    2011-01-01

    Vibrio alginolyticus use flagella to swim. A flagellum consists of a filament, hook and basal body. The basal body is made up of a rod and several ring structures. This study investigates the structure of the T ring which is a unique component of the V. alginolyticus sodium ion-driven flagellar basal body. Using Zernike phase contrast (ZPC) cryo-electron tomography, we compared the 3D structures of purified hook-basal bodies (HBB) from a wild-type strain (KK148) and a deletion mutant lacking MotX and MotY (TH3), which are thought to form the T ring. ZPC images of HBBs had highly improved signal-to-noise ratio compared to conventional phase contrast images. We observed the outline of the HBBs from strains KK148 and TH3, and the TH3 mutant was missing its T ring. In the wild-type strain, the T ring was beneath the LP ring and seemed to form a ring shape with diameter of 32 nm. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Quantitative 3D investigation of Neuronal network in mouse spinal cord model

    NASA Astrophysics Data System (ADS)

    Bukreeva, I.; Campi, G.; Fratini, M.; Spanò, R.; Bucci, D.; Battaglia, G.; Giove, F.; Bravin, A.; Uccelli, A.; Venturi, C.; Mastrogiacomo, M.; Cedola, A.

    2017-01-01

    The investigation of the neuronal network in mouse spinal cord models represents the basis for the research on neurodegenerative diseases. In this framework, the quantitative analysis of the single elements in different districts is a crucial task. However, conventional 3D imaging techniques do not have enough spatial resolution and contrast to allow for a quantitative investigation of the neuronal network. Exploiting the high coherence and the high flux of synchrotron sources, X-ray Phase-Contrast multiscale-Tomography allows for the 3D investigation of the neuronal microanatomy without any aggressive sample preparation or sectioning. We investigated healthy-mouse neuronal architecture by imaging the 3D distribution of the neuronal-network with a spatial resolution of 640 nm. The high quality of the obtained images enables a quantitative study of the neuronal structure on a subject-by-subject basis. We developed and applied a spatial statistical analysis on the motor neurons to obtain quantitative information on their 3D arrangement in the healthy-mice spinal cord. Then, we compared the obtained results with a mouse model of multiple sclerosis. Our approach paves the way to the creation of a “database” for the characterization of the neuronal network main features for a comparative investigation of neurodegenerative diseases and therapies.

  17. Contrast of slightly complex patterns: computing the perceived contrast of Gabor patches

    NASA Astrophysics Data System (ADS)

    Peli, Eli

    1996-04-01

    The local contrast in an image may be approximated by the contrast of a Gabor patch of varying phase and bandwidth. In a search for a metric for such local contrast, perceived (apparent) contrast, as indicated by matching of such patterns, were compared here to the physical contrast calculated by a number of methods. The 2 cycles/deg 1-octave Gabor patch stimuli of different phases were presented side by side separated by 4 degrees. During each session the subjects (n equals 5) were adapted to the average luminance, and four different contrast levels (0.1, 0.3, 0.6, and 0.8) were randomly interleaved. The task was repeated at four mean luminance levels between 0.75 and 37.5 cd/m2. The subject's task was to indicate which of the two patterns was lower in contrast. Equal apparent contrast was determined by fitting a psychometric function to the data from 40 to 70 presentations. There was no effect of mean luminance on the subjects settings. The matching results rejected the hypothesis that either the Michelson formula or the King-Smith & Kulikowski contrast (CKK equals (Lmax-Laverage)/Laverage) was used by the subjects to set the match. The use of the Nominal contrast (the Michelson contrast of the underlying sinusoid) as an estimate of apparent contrast could not be rejected. In a second experiment the apparent contrast of a 1-octave Gabor patch was matched to the apparent contrast of a 2-octave Gabor patch (of Nominal contrast of 0.1, 0.3, 0.6, 0.8) using the method of adjustment. The result of this experiment rejected the prediction of the Nominal contrast definition. The local band limited contrast measure (Peli, 1990), when used with the modifications suggested by Lubin (1995), as an estimate of apparent contrast could not be rejected by the results of either experiment. These results suggest that a computational contrast measure based on multi scale bandpass filtering is a better estimate of apparent perceived contrast than any of the other measures tested.

  18. Development of a Digital Control for the Phase Contrast Imaging Alignment Feedback System

    NASA Astrophysics Data System (ADS)

    Hirata, M.; Marinoni, A.; Rost, J. C.; Davis, E. M.; Porkolab, M.

    2016-10-01

    The Phase Contrast Imaging diagnostic is an internal reference interferometer that images density fluctuations on a 32-element linear detector array. Since proper operation of the system requires accurate alignment of a CO2 laser beam on a phase plate, beam motion due to vibrations of the DIII-D vessel need to be compensated up to 1 kHz. The feedback network controlling the steering mirrors currently uses a linear analog controller, but a digital controller can provide improved stability performance and flexibility. A prototype was developed using an Arduino Due, a low-cost microcontroller, to assess performance capabilities. Digital control parameters will be developed based on the measured frequency and phase response of the physical components. Finally, testing of the digital feedback system and the required revisions will be done to achieve successful performance. This upgrade to the linear analog controller is expected to be used routinely on similar diagnostics in fusion devices, especially in view of restricted access to the machine hall. Work supported in part by the US Department of Energy under DE-FG02-94ER54235, DE-FC02-04ER54698, and the Science Undergraduate Laboratory Internships Program (SULI).

  19. Single and two-shot quantitative phase imaging using Hilbert-Huang Transform based fringe pattern analysis

    NASA Astrophysics Data System (ADS)

    Trusiak, Maciej; Micó, Vicente; Patorski, Krzysztof; García-Monreal, Javier; Sluzewski, Lukasz; Ferreira, Carlos

    2016-08-01

    In this contribution we propose two Hilbert-Huang Transform based algorithms for fast and accurate single-shot and two-shot quantitative phase imaging applicable in both on-axis and off-axis configurations. In the first scheme a single fringe pattern containing information about biological phase-sample under study is adaptively pre-filtered using empirical mode decomposition based approach. Further it is phase demodulated by the Hilbert Spiral Transform aided by the Principal Component Analysis for the local fringe orientation estimation. Orientation calculation enables closed fringes efficient analysis and can be avoided using arbitrary phase-shifted two-shot Gram-Schmidt Orthonormalization scheme aided by Hilbert-Huang Transform pre-filtering. This two-shot approach is a trade-off between single-frame and temporal phase shifting demodulation. Robustness of the proposed techniques is corroborated using experimental digital holographic microscopy studies of polystyrene micro-beads and red blood cells. Both algorithms compare favorably with the temporal phase shifting scheme which is used as a reference method.

  20. Triggering of leukocytes by phase contrast in imaging cytometry with scanning fluorescence microscope (SFM)

    NASA Astrophysics Data System (ADS)

    Bocsi, József; Pierzchalski, Arkadiusz; Marecka, Monika; Malkusch, Wolf; Tárnok, Attila

    2009-02-01

    Slide-based cytometry (SBC) leads to breakthrough in cytometry of cells in tissues, culture and suspension. Carl Zeiss Imaging Solutions' new automated SFM combines imaging with cytometry. A critical step in image analysis is selection of appropriate triggering signal to detect all objects. Without correct target cell definition analysis is hampered. DNA-staining is among the most common triggering signals. However, the majority of DNA-dyes yield massive spillover into other fluorescence channels limiting their application. By microscopy objects of >5μm diameter can be easily detected by phase-contrast signal (PCS) without any staining. Aim was to establish PCS - triggering for cell identification. Axio Imager.Z1 motorized SFM was used (high-resolution digital camera, AxioCam MRm; AxioVision software: automatic multi-channel scanning, analysis). Leukocytes were stained with FITC (CD4, CD8) and APC (CD3) labelled antibodies in combinations using whole blood method. Samples were scanned in three channels (PCS/FITC/APC). Exposition-times for PCS were set as low as possible; the detection efficiency was verified by fluorescence. CD45-stained leukocytes were counted and compared to the number of PCS detected events. Leukocyte subtyping was compared with other cytometers. In focus the PCS of cells showed ring-form that was not optimal for cell definition. Out of focus PCS allows more effective qualitative and quantitative cell analyses. PCS was an accurate triggering signal for leukocytes enabling cell counting and discrimination of leukocytes from platelets. Leukocyte subpopulation frequencies were comparable to those obtained by other cytometers. In conclusion PCS is a suitable trigger-signal not interfering with fluorescence detection.

  1. Quantitative phase imaging for enhanced assessment of optomechanical cancer cell properties

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Kemper, Björn; Schnekenburger, Jürgen

    2018-02-01

    Optical cell stretching provides label-free investigations of cells by measuring their biomechanical properties based on deformability determination in a fiber optical two-beam trap. However, the stretching forces in this two-beam laser trap depend on the optical properties of the investigated specimen. Therefore, we characterized in parallel four cancer cell lines with varying degree of differentiation utilizing quantitative phase imaging (QPI) and optical cell stretching. The QPI data allowed enhanced assessment of the mechanical cell properties measured with the optical cell stretcher and demonstrates the high potential of cell phenotyping when both techniques are combined.

  2. Evaluation of computer-aided detection of lesions in mammograms obtained with a digital phase-contrast mammography system.

    PubMed

    Tanaka, Toyohiko; Nitta, Norihisa; Ohta, Shinichi; Kobayashi, Tsuyoshi; Kano, Akiko; Tsuchiya, Keiko; Murakami, Yoko; Kitahara, Sawako; Wakamiya, Makoto; Furukawa, Akira; Takahashi, Masashi; Murata, Kiyoshi

    2009-12-01

    A computer-aided detection (CAD) system was evaluated for its ability to detect microcalcifications and masses on images obtained with a digital phase-contrast mammography (PCM) system, a system characterised by the sharp images provided by phase contrast and by the high resolution of 25-μm-pixel mammograms. Fifty abnormal and 50 normal mammograms were collected from about 3,500 mammograms and printed on film for reading on a light box. Seven qualified radiologists participated in an observer study based on receiver operating characteristic (ROC) analysis. The average of the areas under ROC curve (AUC) values for the ROC analysis with and without CAD were 0.927 and 0.897 respectively (P = 0.015). The AUC values improved from 0.840 to 0.888 for microcalcifications (P = 0.034) and from 0.947 to 0.962 for masses (P = 0.025) respectively. The application of CAD to the PCM system is a promising approach for the detection of breast cancer in its early stages.

  3. Analogous on-axis interference topographic phase microscopy (AOITPM).

    PubMed

    Xiu, P; Liu, Q; Zhou, X; Xu, Y; Kuang, C; Liu, X

    2018-05-01

    The refractive index (RI) of a sample as an endogenous contrast agent plays an important role in transparent live cell imaging. In tomographic phase microscopy (TPM), 3D quantitative RI maps can be reconstructed based on the measured projections of the RI in multiple directions. The resolution of the RI maps not only depends on the numerical aperture of the employed objective lens, but also is determined by the accuracy of the quantitative phase of the sample measured at multiple scanning illumination angles. This paper reports an analogous on-axis interference TPM, where the interference angle between the sample and reference beams is kept constant for projections in multiple directions to improve the accuracy of the phase maps and the resolution of RI tomograms. The system has been validated with both silica beads and red blood cells. Compared with conventional TPM, the proposed system acquires quantitative RI maps with higher resolution (420 nm @λ = 633 nm) and signal-to-noise ratio that can be beneficial for live cell imaging in biomedical applications. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  4. Automatic and Reproducible Positioning of Phase-Contrast MRI for the Quantification of Global Cerebral Blood Flow

    PubMed Central

    Liu, Peiying; Lu, Hanzhang; Filbey, Francesca M.; Pinkham, Amy E.; McAdams, Carrie J.; Adinoff, Bryon; Daliparthi, Vamsi; Cao, Yan

    2014-01-01

    Phase-Contrast MRI (PC-MRI) is a noninvasive technique to measure blood flow. In particular, global but highly quantitative cerebral blood flow (CBF) measurement using PC-MRI complements several other CBF mapping methods such as arterial spin labeling and dynamic susceptibility contrast MRI by providing a calibration factor. The ability to estimate blood supply in physiological units also lays a foundation for assessment of brain metabolic rate. However, a major obstacle before wider applications of this method is that the slice positioning of the scan, ideally placed perpendicular to the feeding arteries, requires considerable expertise and can present a burden to the operator. In the present work, we proposed that the majority of PC-MRI scans can be positioned using an automatic algorithm, leaving only a small fraction of arteries requiring manual positioning. We implemented and evaluated an algorithm for this purpose based on feature extraction of a survey angiogram, which is of minimal operator dependence. In a comparative test-retest study with 7 subjects, the blood flow measurement using this algorithm showed an inter-session coefficient of variation (CoV) of . The Bland-Altman method showed that the automatic method differs from the manual method by between and , for of the CBF measurements. This is comparable to the variance in CBF measurement using manually-positioned PC MRI alone. In a further application of this algorithm to 157 consecutive subjects from typical clinical cohorts, the algorithm provided successful positioning in 89.7% of the arteries. In 79.6% of the subjects, all four arteries could be planned using the algorithm. Chi-square tests of independence showed that the success rate was not dependent on the age or gender, but the patients showed a trend of lower success rate (p = 0.14) compared to healthy controls. In conclusion, this automatic positioning algorithm could improve the application of PC-MRI in CBF quantification. PMID:24787742

  5. First Point-Spread Function and X-Ray Phase Contrast Imaging Results with an 88-mm Diameter Single Crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Garson, A. B.; Anastasio, M. A.

    In this study, we report initial demonstrations of the use of single crystals in indirect x-ray imaging with a benchtop implementation of propagation-based (PB) x-ray phase contrast imaging. Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point-spread function (PSF) with the 50-μm thick single crystal scintillators than with the reference polycrystalline phosphor/scintillator. Fiber-optic plate depth-of-focus and Al reflective-coating aspects are also elucidated. Guided by the results from the 25-mm diameter crystal samples, we report additionally the first results with a unique 88-mm diameter single crystal bonded to a fiber optic platemore » and coupled to the large format CCD. Both PSF and x-ray phase contrast imaging data are quantified and presented.« less

  6. A study on mastectomy samples to evaluate breast imaging quality and potential clinical relevance of differential phase contrast mammography.

    PubMed

    Hauser, Nik; Wang, Zhentian; Kubik-Huch, Rahel A; Trippel, Mafalda; Singer, Gad; Hohl, Michael K; Roessl, Ewald; Köhler, Thomas; van Stevendaal, Udo; Wieberneit, Nataly; Stampanoni, Marco

    2014-03-01

    Differential phase contrast and scattering-based x-ray mammography has the potential to provide additional and complementary clinically relevant information compared with absorption-based mammography. The purpose of our study was to provide a first statistical evaluation of the imaging capabilities of the new technique compared with digital absorption mammography. We investigated non-fixed mastectomy samples of 33 patients with invasive breast cancer, using grating-based differential phase contrast mammography (mammoDPC) with a conventional, low-brilliance x-ray tube. We simultaneously recorded absorption, differential phase contrast, and small-angle scattering signals that were combined into novel high-frequency-enhanced images with a dedicated image fusion algorithm. Six international, expert breast radiologists evaluated clinical digital and experimental mammograms in a 2-part blinded, prospective independent reader study. The results were statistically analyzed in terms of image quality and clinical relevance. The results of the comparison of mammoDPC with clinical digital mammography revealed the general quality of the images to be significantly superior (P < 0.001); sharpness, lesion delineation, as well as the general visibility of calcifications to be significantly more assessable (P < 0.001); and delineation of anatomic components of the specimens (surface structures) to be significantly sharper (P < 0.001). Spiculations were significantly better identified, and the overall clinically relevant information provided by mammoDPC was judged to be superior (P < 0.001). Our results demonstrate that complementary information provided by phase and scattering enhanced mammograms obtained with the mammoDPC approach deliver images of generally superior quality. This technique has the potential to improve radiological breast diagnostics.

  7. Phase-contrast MRI versus numerical simulation to quantify hemodynamical changes in cerebral aneurysms after flow diverter treatment

    PubMed Central

    Frolov, Sergey; Prothmann, Sascha; Liepsch, Dieter; Balasso, Andrea; Berg, Philipp; Kaczmarz, Stephan; Kirschke, Jan Stefan

    2018-01-01

    Cerebral aneurysms are a major risk factor for intracranial bleeding with devastating consequences for the patient. One recently established treatment is the implantation of flow-diverters (FD). Methods to predict their treatment success before or directly after implantation are not well investigated yet. The aim of this work was to quantitatively study hemodynamic parameters in patient-specific models of treated cerebral aneurysms and its correlation with the clinical outcome. Hemodynamics were evaluated using both computational fluid dynamics (CFD) and phase contrast (PC) MRI. CFD simulations and in vitro MRI measurements were done under similar flow conditions and results of both methods were comparatively analyzed. For preoperative and postoperative distribution of hemodynamic parameters, CFD simulations and PC-MRI velocity measurements showed similar results. In both cases where no occlusion of the aneurysm was observed after six months, a flow reduction of about 30-50% was found, while in the clinically successful case with complete occlusion of the aneurysm after 6 months, the flow reduction was about 80%. No vortex was observed in any of the three models after treatment. The results are in agreement with recent studies suggesting that CFD simulations can predict post-treatment aneurysm flow alteration already before implantation of a FD and PC-MRI could validate the predicted hemodynamic changes right after implantation of a FD. PMID:29304062

  8. Probing Dynamics in Granular Media of Contrasting Geometries via X-Ray Phase Contrast Imaging and PDV

    NASA Astrophysics Data System (ADS)

    Crum, Ryan; Pagan, Darren; Lind, Jon; Homel, Michael; Hurley, Ryan; Herbold, Eric; Akin, Minta

    Granular systems are ubiquitous in our everyday world and play a central role in many dynamic scientific problems including mine blasting, projectile penetration, astrophysical collisions, explosions, and dynamic compaction. An understanding of granular media's behavior under various loading conditions is an ongoing scientific grand challenge. This is partly due to the intricate interplay between material properties, loading conditions, grain geometry, and grain connectivity. Previous dynamic studies in granular media predominantly utilize the macro-scale analyses VISAR or PDV, diagnostics that are not sensitive to the many degrees of freedom and their interactions, focusing instead on their aggregate effect. Results of a macro-scale analysis leave the principal interactions of these degrees of freedom too entangled to elucidate. To isolate the significance of grain geometry, this study probes various geometries of granular media subjected to gas gun generated waves via in-situ X-ray analysis. Analyses include evaluating displacement fields, grain fracture, inter- and intra-granular densification, and wave front motion. Phase Contrast Imaging (PCI) and PDV analyses feed directly into our concurrent meso-scale granular media modeling efforts to enhance our predictive capabilities.

  9. Cerebral Metabolic Rate of Oxygen (CMRO2 ) Mapping by Combining Quantitative Susceptibility Mapping (QSM) and Quantitative Blood Oxygenation Level-Dependent Imaging (qBOLD).

    PubMed

    Cho, Junghun; Kee, Youngwook; Spincemaille, Pascal; Nguyen, Thanh D; Zhang, Jingwei; Gupta, Ajay; Zhang, Shun; Wang, Yi

    2018-03-07

    To map the cerebral metabolic rate of oxygen (CMRO 2 ) by estimating the oxygen extraction fraction (OEF) from gradient echo imaging (GRE) using phase and magnitude of the GRE data. 3D multi-echo gradient echo imaging and perfusion imaging with arterial spin labeling were performed in 11 healthy subjects. CMRO 2 and OEF maps were reconstructed by joint quantitative susceptibility mapping (QSM) to process GRE phases and quantitative blood oxygen level-dependent (qBOLD) modeling to process GRE magnitudes. Comparisons with QSM and qBOLD alone were performed using ROI analysis, paired t-tests, and Bland-Altman plot. The average CMRO 2 value in cortical gray matter across subjects were 140.4 ± 14.9, 134.1 ± 12.5, and 184.6 ± 17.9 μmol/100 g/min, with corresponding OEFs of 30.9 ± 3.4%, 30.0 ± 1.8%, and 40.9 ± 2.4% for methods based on QSM, qBOLD, and QSM+qBOLD, respectively. QSM+qBOLD provided the highest CMRO 2 contrast between gray and white matter, more uniform OEF than QSM, and less noisy OEF than qBOLD. Quantitative CMRO 2 mapping that fits the entire complex GRE data is feasible by combining QSM analysis of phase and qBOLD analysis of magnitude. © 2018 International Society for Magnetic Resonance in Medicine.

  10. Use of Caval Subtraction 2D Phase-Contrast MR Imaging to Measure Total Liver and Hepatic Arterial Blood Flow: Preclinical Validation and Initial Clinical Translation

    PubMed Central

    Walker-Samuel, Simon; Davies, Nathan; Halligan, Steve; Lythgoe, Mark F.

    2016-01-01

    Purpose To validate caval subtraction two-dimensional (2D) phase-contrast magnetic resonance (MR) imaging measurements of total liver blood flow (TLBF) and hepatic arterial fraction in an animal model and evaluate consistency and reproducibility in humans. Materials and Methods Approval from the institutional ethical committee for animal care and research ethics was obtained. Fifteen Sprague-Dawley rats underwent 2D phase-contrast MR imaging of the portal vein (PV) and infrahepatic and suprahepatic inferior vena cava (IVC). TLBF and hepatic arterial flow were estimated by subtracting infrahepatic from suprahepatic IVC flow and PV flow from estimated TLBF, respectively. Direct PV transit-time ultrasonography (US) and fluorescent microsphere measurements of hepatic arterial fraction were the standards of reference. Thereafter, consistency of caval subtraction phase-contrast MR imaging–derived TLBF and hepatic arterial flow was assessed in 13 volunteers (mean age, 28.3 years ± 1.4) against directly measured phase-contrast MR imaging PV and proper hepatic arterial inflow; reproducibility was measured after 7 days. Bland-Altman analysis of agreement and coefficient of variation comparisons were undertaken. Results There was good agreement between PV flow measured with phase-contrast MR imaging and that measured with transit-time US (mean difference, −3.5 mL/min/100 g; 95% limits of agreement [LOA], ±61.3 mL/min/100 g). Hepatic arterial fraction obtained with caval subtraction agreed well with those with fluorescent microspheres (mean difference, 4.2%; 95% LOA, ±20.5%). Good consistency was demonstrated between TLBF in humans measured with caval subtraction and direct inflow phase-contrast MR imaging (mean difference, −1.3 mL/min/100 g; 95% LOA, ±23.1 mL/min/100 g). TLBF reproducibility at 7 days was similar between the two methods (95% LOA, ±31.6 mL/min/100 g vs ±29.6 mL/min/100 g). Conclusion Caval subtraction phase-contrast MR imaging is a simple and

  11. SU-G-IeP4-10: Microimaging for Different Degrees of Human Cavernous Hemangioma of Liver by Using In-Line Phase-Contrast Imaging CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, J

    2016-06-15

    Purpose: Cavernous hemangioma of the liver (CHL) is the most common benign solid tumor of the liver. In this study, we quantitative assessment the different degrees of CHL from microscopic viewpoint by using in-line phase-contrast imaging CT (ILPCI-CT). Methods: The experiments were performed at x-ray imaging and biomedical application beamline (BL13W1) of Shanghai Synchrotron Radiation Facility (SSRF) in China. Three typical specimens at different stages, i.e., mild, moderate and severe human CHL were imaged using ILPCI-CT at 16keV without contrast agents. The 3D visualization of different degrees of CHL samples were presented using ILPCI-CT. Additionally, quantitative evaluation of the CHLmore » features, such as the range of hepatic sinusoid equivalent diameters in different degrees of CHL samples, the ratio of the hepatic sinusoid to the CHL tissue, were measured. Results: The planar image clearly displayed the dilated hepatic sinusoids in microns. There was no normal hepatic vascular found in the all CHL samples. Different stages of CHL samples were presented with vivid shapes and stereoscopic effects by using 3D visualization. The equivalent diameters of hepatic sinusoids in three degrees CHL were different. The equivalent diameters of the hepatic sinusoids in mild CHL, range from 60 to 120 µm. The equivalent diameters of the hepatic sinusoids in moderate CHL, range from 65 to 190 µm. The equivalent diameters of the hepatic sinusoids in severe CHL, range from 95 to 215 µm. The ratio of the hepatic sinusoid to the mild, moderate and severe CHL tissue were 3%, 16% and 21%, respectively. Conclusion: The results show that the high degree of sensitivity of the ILPCI-CT technique and demonstrate the feasibility of accurate visualization of different stage human CHL. ILPCI-CT may offers a potential use in non-invasive study and analysis of CHL.« less

  12. DMD-based quantitative phase microscopy and optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie

    2018-02-01

    Digital micromirror devices (DMDs), which offer high speed and high degree of freedoms in steering light illuminations, have been increasingly applied to optical microscopy systems in recent years. Lately, we introduced DMDs into digital holography to enable new imaging modalities and break existing imaging limitations. In this paper, we will first present our progress in using DMDs for demonstrating laser-illumination Fourier ptychographic microscopy (FPM) with shotnoise limited detection. After that, we will present a novel common-path quantitative phase microscopy (QPM) system based on using a DMD. Building on those early developments, a DMD-based high speed optical diffraction tomography (ODT) system has been recently demonstrated, and the results will also be presented. This ODT system is able to achieve video-rate 3D refractive-index imaging, which can potentially enable observations of high-speed 3D sample structural changes.

  13. Quantitative phase imaging using grating-based quadrature phase interferometer

    NASA Astrophysics Data System (ADS)

    Wu, Jigang; Yaqoob, Zahid; Heng, Xin; Cui, Xiquan; Yang, Changhuei

    2007-02-01

    In this paper, we report the use of holographic gratings, which act as the free-space equivalent of the 3x3 fiber-optic coupler, to perform full field phase imaging. By recording two harmonically-related gratings in the same holographic plate, we are able to obtain nontrivial phase shift between different output ports of the gratings-based Mach-Zehnder interferometer. The phase difference can be adjusted by changing the relative phase of the recording beams when recording the hologram. We have built a Mach-Zehnder interferometer using harmonically-related holographic gratings with 600 and 1200 lines/mm spacing. Two CCD cameras at the output ports of the gratings-based Mach-Zehnder interferometer are used to record the full-field quadrature interferograms, which are subsequently processed to reconstruct the phase image. The imaging system has ~12X magnification with ~420μmx315μm field-of-view. To demonstrate the capability of our system, we have successfully performed phase imaging of a pure phase object and a paramecium caudatum.

  14. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-08-01

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα1 line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.

  15. Ultrasonically modulated x-ray phase contrast and vibration potential imaging methods

    NASA Astrophysics Data System (ADS)

    Hamilton, Theron J.; Cao, Guohua; Wang, Shougang; Bailat, Claude J.; Nguyen, Cuong K.; Li, Shengqiong; Gehring, Stephan; Wands, Jack; Gusev, Vitalyi; Rose-Petruck, Christoph; Diebold, Gerald J.

    2006-02-01

    We show that the radiation pressure exerted by a beam of ultrasound can be used for contrast enhancement in high resolution x-ray imaging of tissue. Interfacial features of objects are highlighted as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. The potential of the method is demonstrated by imaging various tumor phantoms and tumors from mice. The directionality of the acoustic radiation force and its localization in space permits the imaging of ultrasound-selected tissue volumes. In a related effort we report progress on development of an imaging technique using and electrokinetic effect known as the ultrasonic vibration potential. The ultrasonic vibration potential refers to the voltage generated when ultrasound traverses a colloidal or ionic fluid. The theory of imaging based on the vibration potential is reviewed, and an expression given that describes the signal from an arbitrary object. The experimental apparatus consists of a pair of parallel plates connected to the irradiated body, a low noise preamplifier, a radio frequency lock-in amplifier, translation stages for the ultrasonic transducer that generates the ultrasound, and a computer for data storage and image formation. Experiments are reported where bursts of ultrasound are directed onto colloidal silica objects placed within inert bodies.

  16. Quantitative model of diffuse speckle contrast analysis for flow measurement.

    PubMed

    Liu, Jialin; Zhang, Hongchao; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua

    2017-07-01

    Diffuse speckle contrast analysis (DSCA) is a noninvasive optical technique capable of monitoring deep tissue blood flow. However, a detailed study of the speckle contrast model for DSCA has yet to be presented. We deduced the theoretical relationship between speckle contrast and exposure time and further simplified it to a linear approximation model. The feasibility of this linear model was validated by the liquid phantoms which demonstrated that the slope of this linear approximation was able to rapidly determine the Brownian diffusion coefficient of the turbid media at multiple distances using multiexposure speckle imaging. Furthermore, we have theoretically quantified the influence of optical property on the measurements of the Brownian diffusion coefficient which was a consequence of the fact that the slope of this linear approximation was demonstrated to be equal to the inverse of correlation time of the speckle.

  17. X-ray phase-contrast computed tomography visualizes the microstructure and degradation profile of implanted biodegradable scaffolds after spinal cord injury

    PubMed Central

    Takashima, Kenta; Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto; Matsuda, Shojiro; Nakahira, Atsushi; Osumi, Noriko; Kohzuki, Masahiro; Onodera, Hiroshi

    2015-01-01

    Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies. PMID:25537600

  18. Multiphase mean curvature flows with high mobility contrasts: A phase-field approach, with applications to nanowires

    NASA Astrophysics Data System (ADS)

    Bretin, Elie; Danescu, Alexandre; Penuelas, José; Masnou, Simon

    2018-07-01

    The structure of many multiphase systems is governed by an energy that penalizes the area of interfaces between phases weighted by surface tension coefficients. However, interface evolution laws depend also on interface mobility coefficients. Having in mind some applications where highly contrasted or even degenerate mobilities are involved, for which classical phase field models are inapplicable, we propose a new effective phase field approach to approximate multiphase mean curvature flows with mobilities. The key aspect of our model is to incorporate the mobilities not in the phase field energy (which is conventionally the case) but in the metric which determines the gradient flow. We show the consistency of such an approach by a formal analysis of the sharp interface limit. We also propose an efficient numerical scheme which allows us to illustrate the advantages of the model on various examples, as the wetting of droplets on solid surfaces or the simulation of nanowires growth generated by the so-called vapor-liquid-solid method.

  19. A Method to Measure and Estimate Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  20. The relationship between wave and geometrical optics models of coded aperture type x-ray phase contrast imaging systems.

    PubMed

    Munro, Peter R T; Ignatyev, Konstantin; Speller, Robert D; Olivo, Alessandro

    2010-03-01

    X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an x-ray source of high coherence. The radiation physics group at UCL is currently developing an x-ray phase contrast imaging technique which works with laboratory x-ray sources. Validation of the system requires extensive modelling of relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical optics may be employed to model the system in order to avoid the need to perform a computationally expensive wave optics calculation. In this paper, we derive the relationship between the geometrical and wave optics model for our system imaging an infinite cylinder. From this model we are able to draw conclusions regarding the general applicability of the geometrical optics approximation.