Sample records for quantitative predictions based

  1. Extending Theory-Based Quantitative Predictions to New Health Behaviors.

    PubMed

    Brick, Leslie Ann D; Velicer, Wayne F; Redding, Colleen A; Rossi, Joseph S; Prochaska, James O

    2016-04-01

    Traditional null hypothesis significance testing suffers many limitations and is poorly adapted to theory testing. A proposed alternative approach, called Testing Theory-based Quantitative Predictions, uses effect size estimates and confidence intervals to directly test predictions based on theory. This paper replicates findings from previous smoking studies and extends the approach to diet and sun protection behaviors using baseline data from a Transtheoretical Model behavioral intervention (N = 5407). Effect size predictions were developed using two methods: (1) applying refined effect size estimates from previous smoking research or (2) using predictions developed by an expert panel. Thirteen of 15 predictions were confirmed for smoking. For diet, 7 of 14 predictions were confirmed using smoking predictions and 6 of 16 using expert panel predictions. For sun protection, 3 of 11 predictions were confirmed using smoking predictions and 5 of 19 using expert panel predictions. Expert panel predictions and smoking-based predictions poorly predicted effect sizes for diet and sun protection constructs. Future studies should aim to use previous empirical data to generate predictions whenever possible. The best results occur when there have been several iterations of predictions for a behavior, such as with smoking, demonstrating that expected values begin to converge on the population effect size. Overall, the study supports necessity in strengthening and revising theory with empirical data.

  2. Quantitative prediction of drug side effects based on drug-related features.

    PubMed

    Niu, Yanqing; Zhang, Wen

    2017-09-01

    Unexpected side effects of drugs are great concern in the drug development, and the identification of side effects is an important task. Recently, machine learning methods are proposed to predict the presence or absence of interested side effects for drugs, but it is difficult to make the accurate prediction for all of them. In this paper, we transform side effect profiles of drugs as their quantitative scores, by summing up their side effects with weights. The quantitative scores may measure the dangers of drugs, and thus help to compare the risk of different drugs. Here, we attempt to predict quantitative scores of drugs, namely the quantitative prediction. Specifically, we explore a variety of drug-related features and evaluate their discriminative powers for the quantitative prediction. Then, we consider several feature combination strategies (direct combination, average scoring ensemble combination) to integrate three informative features: chemical substructures, targets, and treatment indications. Finally, the average scoring ensemble model which produces the better performances is used as the final quantitative prediction model. Since weights for side effects are empirical values, we randomly generate different weights in the simulation experiments. The experimental results show that the quantitative method is robust to different weights, and produces satisfying results. Although other state-of-the-art methods cannot make the quantitative prediction directly, the prediction results can be transformed as the quantitative scores. By indirect comparison, the proposed method produces much better results than benchmark methods in the quantitative prediction. In conclusion, the proposed method is promising for the quantitative prediction of side effects, which may work cooperatively with existing state-of-the-art methods to reveal dangers of drugs.

  3. Impact of implementation choices on quantitative predictions of cell-based computational models

    NASA Astrophysics Data System (ADS)

    Kursawe, Jochen; Baker, Ruth E.; Fletcher, Alexander G.

    2017-09-01

    'Cell-based' models provide a powerful computational tool for studying the mechanisms underlying the growth and dynamics of biological tissues in health and disease. An increasing amount of quantitative data with cellular resolution has paved the way for the quantitative parameterisation and validation of such models. However, the numerical implementation of cell-based models remains challenging, and little work has been done to understand to what extent implementation choices may influence model predictions. Here, we consider the numerical implementation of a popular class of cell-based models called vertex models, which are often used to study epithelial tissues. In two-dimensional vertex models, a tissue is approximated as a tessellation of polygons and the vertices of these polygons move due to mechanical forces originating from the cells. Such models have been used extensively to study the mechanical regulation of tissue topology in the literature. Here, we analyse how the model predictions may be affected by numerical parameters, such as the size of the time step, and non-physical model parameters, such as length thresholds for cell rearrangement. We find that vertex positions and summary statistics are sensitive to several of these implementation parameters. For example, the predicted tissue size decreases with decreasing cell cycle durations, and cell rearrangement may be suppressed by large time steps. These findings are counter-intuitive and illustrate that model predictions need to be thoroughly analysed and implementation details carefully considered when applying cell-based computational models in a quantitative setting.

  4. Quantitative self-assembly prediction yields targeted nanomedicines

    NASA Astrophysics Data System (ADS)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  5. Predictive value of EEG in postanoxic encephalopathy: A quantitative model-based approach.

    PubMed

    Efthymiou, Evdokia; Renzel, Roland; Baumann, Christian R; Poryazova, Rositsa; Imbach, Lukas L

    2017-10-01

    The majority of comatose patients after cardiac arrest do not regain consciousness due to severe postanoxic encephalopathy. Early and accurate outcome prediction is therefore essential in determining further therapeutic interventions. The electroencephalogram is a standardized and commonly available tool used to estimate prognosis in postanoxic patients. The identification of pathological EEG patterns with poor prognosis relies however primarily on visual EEG scoring by experts. We introduced a model-based approach of EEG analysis (state space model) that allows for an objective and quantitative description of spectral EEG variability. We retrospectively analyzed standard EEG recordings in 83 comatose patients after cardiac arrest between 2005 and 2013 in the intensive care unit of the University Hospital Zürich. Neurological outcome was assessed one month after cardiac arrest using the Cerebral Performance Category. For a dynamic and quantitative EEG analysis, we implemented a model-based approach (state space analysis) to quantify EEG background variability independent from visual scoring of EEG epochs. Spectral variability was compared between groups and correlated with clinical outcome parameters and visual EEG patterns. Quantitative assessment of spectral EEG variability (state space velocity) revealed significant differences between patients with poor and good outcome after cardiac arrest: Lower mean velocity in temporal electrodes (T4 and T5) was significantly associated with poor prognostic outcome (p<0.005) and correlated with independently identified visual EEG patterns such as generalized periodic discharges (p<0.02). Receiver operating characteristic (ROC) analysis confirmed the predictive value of lower state space velocity for poor clinical outcome after cardiac arrest (AUC 80.8, 70% sensitivity, 15% false positive rate). Model-based quantitative EEG analysis (state space analysis) provides a novel, complementary marker for prognosis in postanoxic

  6. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    PubMed Central

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding. PMID:28729875

  7. Applying quantitative adiposity feature analysis models to predict benefit of bevacizumab-based chemotherapy in ovarian cancer patients

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; More, Kathleen; Ding, Kai; Liu, Hong; Zheng, Bin

    2016-03-01

    How to rationally identify epithelial ovarian cancer (EOC) patients who will benefit from bevacizumab or other antiangiogenic therapies is a critical issue in EOC treatments. The motivation of this study is to quantitatively measure adiposity features from CT images and investigate the feasibility of predicting potential benefit of EOC patients with or without receiving bevacizumab-based chemotherapy treatment using multivariate statistical models built based on quantitative adiposity image features. A dataset involving CT images from 59 advanced EOC patients were included. Among them, 32 patients received maintenance bevacizumab after primary chemotherapy and the remaining 27 patients did not. We developed a computer-aided detection (CAD) scheme to automatically segment subcutaneous fat areas (VFA) and visceral fat areas (SFA) and then extracted 7 adiposity-related quantitative features. Three multivariate data analysis models (linear regression, logistic regression and Cox proportional hazards regression) were performed respectively to investigate the potential association between the model-generated prediction results and the patients' progression-free survival (PFS) and overall survival (OS). The results show that using all 3 statistical models, a statistically significant association was detected between the model-generated results and both of the two clinical outcomes in the group of patients receiving maintenance bevacizumab (p<0.01), while there were no significant association for both PFS and OS in the group of patients without receiving maintenance bevacizumab. Therefore, this study demonstrated the feasibility of using quantitative adiposity-related CT image features based statistical prediction models to generate a new clinical marker and predict the clinical outcome of EOC patients receiving maintenance bevacizumab-based chemotherapy.

  8. Genetic programming based quantitative structure-retention relationships for the prediction of Kovats retention indices.

    PubMed

    Goel, Purva; Bapat, Sanket; Vyas, Renu; Tambe, Amruta; Tambe, Sanjeev S

    2015-11-13

    The development of quantitative structure-retention relationships (QSRR) aims at constructing an appropriate linear/nonlinear model for the prediction of the retention behavior (such as Kovats retention index) of a solute on a chromatographic column. Commonly, multi-linear regression and artificial neural networks are used in the QSRR development in the gas chromatography (GC). In this study, an artificial intelligence based data-driven modeling formalism, namely genetic programming (GP), has been introduced for the development of quantitative structure based models predicting Kovats retention indices (KRI). The novelty of the GP formalism is that given an example dataset, it searches and optimizes both the form (structure) and the parameters of an appropriate linear/nonlinear data-fitting model. Thus, it is not necessary to pre-specify the form of the data-fitting model in the GP-based modeling. These models are also less complex, simple to understand, and easy to deploy. The effectiveness of GP in constructing QSRRs has been demonstrated by developing models predicting KRIs of light hydrocarbons (case study-I) and adamantane derivatives (case study-II). In each case study, two-, three- and four-descriptor models have been developed using the KRI data available in the literature. The results of these studies clearly indicate that the GP-based models possess an excellent KRI prediction accuracy and generalization capability. Specifically, the best performing four-descriptor models in both the case studies have yielded high (>0.9) values of the coefficient of determination (R(2)) and low values of root mean squared error (RMSE) and mean absolute percent error (MAPE) for training, test and validation set data. The characteristic feature of this study is that it introduces a practical and an effective GP-based method for developing QSRRs in gas chromatography that can be gainfully utilized for developing other types of data-driven models in chromatography science

  9. A novel logic-based approach for quantitative toxicology prediction.

    PubMed

    Amini, Ata; Muggleton, Stephen H; Lodhi, Huma; Sternberg, Michael J E

    2007-01-01

    There is a pressing need for accurate in silico methods to predict the toxicity of molecules that are being introduced into the environment or are being developed into new pharmaceuticals. Predictive toxicology is in the realm of structure activity relationships (SAR), and many approaches have been used to derive such SAR. Previous work has shown that inductive logic programming (ILP) is a powerful approach that circumvents several major difficulties, such as molecular superposition, faced by some other SAR methods. The ILP approach reasons with chemical substructures within a relational framework and yields chemically understandable rules. Here, we report a general new approach, support vector inductive logic programming (SVILP), which extends the essentially qualitative ILP-based SAR to quantitative modeling. First, ILP is used to learn rules, the predictions of which are then used within a novel kernel to derive a support-vector generalization model. For a highly heterogeneous dataset of 576 molecules with known fathead minnow fish toxicity, the cross-validated correlation coefficients (R2CV) from a chemical descriptor method (CHEM) and SVILP are 0.52 and 0.66, respectively. The ILP, CHEM, and SVILP approaches correctly predict 55, 58, and 73%, respectively, of toxic molecules. In a set of 165 unseen molecules, the R2 values from the commercial software TOPKAT and SVILP are 0.26 and 0.57, respectively. In all calculations, SVILP showed significant improvements in comparison with the other methods. The SVILP approach has a major advantage in that it uses ILP automatically and consistently to derive rules, mostly novel, describing fragments that are toxicity alerts. The SVILP is a general machine-learning approach and has the potential of tackling many problems relevant to chemoinformatics including in silico drug design.

  10. Quantitative prediction of phase transformations in silicon during nanoindentation

    NASA Astrophysics Data System (ADS)

    Zhang, Liangchi; Basak, Animesh

    2013-08-01

    This paper establishes the first quantitative relationship between the phases transformed in silicon and the shape characteristics of nanoindentation curves. Based on an integrated analysis using TEM and unit cell properties of phases, the volumes of the phases emerged in a nanoindentation are formulated as a function of pop-out size and depth of nanoindentation impression. This simple formula enables a fast, accurate and quantitative prediction of the phases in a nanoindentation cycle, which has been impossible before.

  11. PREDICTING TOXICOLOGICAL ENDPOINTS OF CHEMICALS USING QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSARS)

    EPA Science Inventory

    Quantitative structure-activity relationships (QSARs) are being developed to predict the toxicological endpoints for untested chemicals similar in structure to chemicals that have known experimental toxicological data. Based on a very large number of predetermined descriptors, a...

  12. Testing process predictions of models of risky choice: a quantitative model comparison approach

    PubMed Central

    Pachur, Thorsten; Hertwig, Ralph; Gigerenzer, Gerd; Brandstätter, Eduard

    2013-01-01

    This article presents a quantitative model comparison contrasting the process predictions of two prominent views on risky choice. One view assumes a trade-off between probabilities and outcomes (or non-linear functions thereof) and the separate evaluation of risky options (expectation models). Another view assumes that risky choice is based on comparative evaluation, limited search, aspiration levels, and the forgoing of trade-offs (heuristic models). We derived quantitative process predictions for a generic expectation model and for a specific heuristic model, namely the priority heuristic (Brandstätter et al., 2006), and tested them in two experiments. The focus was on two key features of the cognitive process: acquisition frequencies (i.e., how frequently individual reasons are looked up) and direction of search (i.e., gamble-wise vs. reason-wise). In Experiment 1, the priority heuristic predicted direction of search better than the expectation model (although neither model predicted the acquisition process perfectly); acquisition frequencies, however, were inconsistent with both models. Additional analyses revealed that these frequencies were primarily a function of what Rubinstein (1988) called “similarity.” In Experiment 2, the quantitative model comparison approach showed that people seemed to rely more on the priority heuristic in difficult problems, but to make more trade-offs in easy problems. This finding suggests that risky choice may be based on a mental toolbox of strategies. PMID:24151472

  13. Quantitative computed tomography-based predictions of vertebral strength in anterior bending.

    PubMed

    Buckley, Jenni M; Cheng, Liu; Loo, Kenneth; Slyfield, Craig; Xu, Zheng

    2007-04-20

    This study examined the ability of QCT-based structural assessment techniques to predict vertebral strength in anterior bending. The purpose of this study was to compare the abilities of QCT-based bone mineral density (BMD), mechanics of solids models (MOS), e.g., bending rigidity, and finite element analyses (FE) to predict the strength of isolated vertebral bodies under anterior bending boundary conditions. Although the relative performance of QCT-based structural measures is well established for uniform compression, the ability of these techniques to predict vertebral strength under nonuniform loading conditions has not yet been established. Thirty human thoracic vertebrae from 30 donors (T9-T10, 20 female, 10 male; 87 +/- 5 years of age) were QCT scanned and destructively tested in anterior bending using an industrial robot arm. The QCT scans were processed to generate specimen-specific FE models as well as trabecular bone mineral density (tBMD), integral bone mineral density (iBMD), and MOS measures, such as axial and bending rigidities. Vertebral strength in anterior bending was poorly to moderately predicted by QCT-based BMD and MOS measures (R2 = 0.14-0.22). QCT-based FE models were better strength predictors (R2 = 0.34-0.40); however, their predictive performance was not statistically different from MOS bending rigidity (P > 0.05). Our results suggest that the poor clinical performance of noninvasive structural measures may be due to their inability to predict vertebral strength under bending loads. While their performance was not statistically better than MOS bending rigidities, QCT-based FE models were moderate predictors of both compressive and bending loads at failure, suggesting that this technique has the potential for strength prediction under nonuniform loads. The current FE modeling strategy is insufficient, however, and significant modifications must be made to better mimic whole bone elastic and inelastic material behavior.

  14. Quantitative prediction of solute strengthening in aluminium alloys.

    PubMed

    Leyson, Gerard Paul M; Curtin, William A; Hector, Louis G; Woodward, Christopher F

    2010-09-01

    Despite significant advances in computational materials science, a quantitative, parameter-free prediction of the mechanical properties of alloys has been difficult to achieve from first principles. Here, we present a new analytic theory that, with input from first-principles calculations, is able to predict the strengthening of aluminium by substitutional solute atoms. Solute-dislocation interaction energies in and around the dislocation core are first calculated using density functional theory and a flexible-boundary-condition method. An analytic model for the strength, or stress to move a dislocation, owing to the random field of solutes, is then presented. The theory, which has no adjustable parameters and is extendable to other metallic alloys, predicts both the energy barriers to dislocation motion and the zero-temperature flow stress, allowing for predictions of finite-temperature flow stresses. Quantitative comparisons with experimental flow stresses at temperature T=78 K are made for Al-X alloys (X=Mg, Si, Cu, Cr) and good agreement is obtained.

  15. Quantitative prediction of oral cancer risk in patients with oral leukoplakia.

    PubMed

    Liu, Yao; Li, Yicheng; Fu, Yue; Liu, Tong; Liu, Xiaoyong; Zhang, Xinyan; Fu, Jie; Guan, Xiaobing; Chen, Tong; Chen, Xiaoxin; Sun, Zheng

    2017-07-11

    Exfoliative cytology has been widely used for early diagnosis of oral squamous cell carcinoma. We have developed an oral cancer risk index using DNA index value to quantitatively assess cancer risk in patients with oral leukoplakia, but with limited success. In order to improve the performance of the risk index, we collected exfoliative cytology, histopathology, and clinical follow-up data from two independent cohorts of normal, leukoplakia and cancer subjects (training set and validation set). Peaks were defined on the basis of first derivatives with positives, and modern machine learning techniques were utilized to build statistical prediction models on the reconstructed data. Random forest was found to be the best model with high sensitivity (100%) and specificity (99.2%). Using the Peaks-Random Forest model, we constructed an index (OCRI2) as a quantitative measurement of cancer risk. Among 11 leukoplakia patients with an OCRI2 over 0.5, 4 (36.4%) developed cancer during follow-up (23 ± 20 months), whereas 3 (5.3%) of 57 leukoplakia patients with an OCRI2 less than 0.5 developed cancer (32 ± 31 months). OCRI2 is better than other methods in predicting oral squamous cell carcinoma during follow-up. In conclusion, we have developed an exfoliative cytology-based method for quantitative prediction of cancer risk in patients with oral leukoplakia.

  16. Research on Improved Depth Belief Network-Based Prediction of Cardiovascular Diseases

    PubMed Central

    Zhang, Hongpo

    2018-01-01

    Quantitative analysis and prediction can help to reduce the risk of cardiovascular disease. Quantitative prediction based on traditional model has low accuracy. The variance of model prediction based on shallow neural network is larger. In this paper, cardiovascular disease prediction model based on improved deep belief network (DBN) is proposed. Using the reconstruction error, the network depth is determined independently, and unsupervised training and supervised optimization are combined. It ensures the accuracy of model prediction while guaranteeing stability. Thirty experiments were performed independently on the Statlog (Heart) and Heart Disease Database data sets in the UCI database. Experimental results showed that the mean of prediction accuracy was 91.26% and 89.78%, respectively. The variance of prediction accuracy was 5.78 and 4.46, respectively. PMID:29854369

  17. Universality and predictability in molecular quantitative genetics.

    PubMed

    Nourmohammad, Armita; Held, Torsten; Lässig, Michael

    2013-12-01

    Molecular traits, such as gene expression levels or protein binding affinities, are increasingly accessible to quantitative measurement by modern high-throughput techniques. Such traits measure molecular functions and, from an evolutionary point of view, are important as targets of natural selection. We review recent developments in evolutionary theory and experiments that are expected to become building blocks of a quantitative genetics of molecular traits. We focus on universal evolutionary characteristics: these are largely independent of a trait's genetic basis, which is often at least partially unknown. We show that universal measurements can be used to infer selection on a quantitative trait, which determines its evolutionary mode of conservation or adaptation. Furthermore, universality is closely linked to predictability of trait evolution across lineages. We argue that universal trait statistics extends over a range of cellular scales and opens new avenues of quantitative evolutionary systems biology. Copyright © 2013. Published by Elsevier Ltd.

  18. Can quantitative sensory testing predict responses to analgesic treatment?

    PubMed

    Grosen, K; Fischer, I W D; Olesen, A E; Drewes, A M

    2013-10-01

    The role of quantitative sensory testing (QST) in prediction of analgesic effect in humans is scarcely investigated. This updated review assesses the effectiveness in predicting analgesic effects in healthy volunteers, surgical patients and patients with chronic pain. A systematic review of English written, peer-reviewed articles was conducted using PubMed and Embase (1980-2013). Additional studies were identified by chain searching. Search terms included 'quantitative sensory testing', 'sensory testing' and 'analgesics'. Studies on the relationship between QST and response to analgesic treatment in human adults were included. Appraisal of the methodological quality of the included studies was based on evaluative criteria for prognostic studies. Fourteen studies (including 720 individuals) met the inclusion criteria. Significant correlations were observed between responses to analgesics and several QST parameters including (1) heat pain threshold in experimental human pain, (2) electrical and heat pain thresholds, pressure pain tolerance and suprathreshold heat pain in surgical patients, and (3) electrical and heat pain threshold and conditioned pain modulation in patients with chronic pain. Heterogeneity among studies was observed especially with regard to application of QST and type and use of analgesics. Although promising, the current evidence is not sufficiently robust to recommend the use of any specific QST parameter in predicting analgesic response. Future studies should focus on a range of different experimental pain modalities rather than a single static pain stimulation paradigm. © 2013 European Federation of International Association for the Study of Pain Chapters.

  19. Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome.

    PubMed

    Davatzikos, Christos; Rathore, Saima; Bakas, Spyridon; Pati, Sarthak; Bergman, Mark; Kalarot, Ratheesh; Sridharan, Patmaa; Gastounioti, Aimilia; Jahani, Nariman; Cohen, Eric; Akbari, Hamed; Tunc, Birkan; Doshi, Jimit; Parker, Drew; Hsieh, Michael; Sotiras, Aristeidis; Li, Hongming; Ou, Yangming; Doot, Robert K; Bilello, Michel; Fan, Yong; Shinohara, Russell T; Yushkevich, Paul; Verma, Ragini; Kontos, Despina

    2018-01-01

    The growth of multiparametric imaging protocols has paved the way for quantitative imaging phenotypes that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and predictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phenomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality. First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary features, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spatial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome, and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment for breast cancer.

  20. Potential usefulness of a topic model-based categorization of lung cancers as quantitative CT biomarkers for predicting the recurrence risk after curative resection

    NASA Astrophysics Data System (ADS)

    Kawata, Y.; Niki, N.; Ohmatsu, H.; Satake, M.; Kusumoto, M.; Tsuchida, T.; Aokage, K.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2014-03-01

    In this work, we investigate a potential usefulness of a topic model-based categorization of lung cancers as quantitative CT biomarkers for predicting the recurrence risk after curative resection. The elucidation of the subcategorization of a pulmonary nodule type in CT images is an important preliminary step towards developing the nodule managements that are specific to each patient. We categorize lung cancers by analyzing volumetric distributions of CT values within lung cancers via a topic model such as latent Dirichlet allocation. Through applying our scheme to 3D CT images of nonsmall- cell lung cancer (maximum lesion size of 3 cm) , we demonstrate the potential usefulness of the topic model-based categorization of lung cancers as quantitative CT biomarkers.

  1. Quantitative Sensory Testing Predicts Pregabalin Efficacy in Painful Chronic Pancreatitis

    PubMed Central

    Olesen, Søren S.; Graversen, Carina; Bouwense, Stefan A. W.; van Goor, Harry; Wilder-Smith, Oliver H. G.; Drewes, Asbjørn M.

    2013-01-01

    Background A major problem in pain medicine is the lack of knowledge about which treatment suits a specific patient. We tested the ability of quantitative sensory testing to predict the analgesic effect of pregabalin and placebo in patients with chronic pancreatitis. Methods Sixty-four patients with painful chronic pancreatitis received pregabalin (150–300 mg BID) or matching placebo for three consecutive weeks. Analgesic effect was documented in a pain diary based on a visual analogue scale. Responders were defined as patients with a reduction in clinical pain score of 30% or more after three weeks of study treatment compared to baseline recordings. Prior to study medication, pain thresholds to electric skin and pressure stimulation were measured in dermatomes T10 (pancreatic area) and C5 (control area). To eliminate inter-subject differences in absolute pain thresholds an index of sensitivity between stimulation areas was determined (ratio of pain detection thresholds in pancreatic versus control area, ePDT ratio). Pain modulation was recorded by a conditioned pain modulation paradigm. A support vector machine was used to screen sensory parameters for their predictive power of pregabalin efficacy. Results The pregabalin responders group was hypersensitive to electric tetanic stimulation of the pancreatic area (ePDT ratio 1.2 (0.9–1.3)) compared to non-responders group (ePDT ratio: 1.6 (1.5–2.0)) (P = 0.001). The electrical pain detection ratio was predictive for pregabalin effect with a classification accuracy of 83.9% (P = 0.007). The corresponding sensitivity was 87.5% and specificity was 80.0%. No other parameters were predictive of pregabalin or placebo efficacy. Conclusions The present study provides first evidence that quantitative sensory testing predicts the analgesic effect of pregabalin in patients with painful chronic pancreatitis. The method can be used to tailor pain medication based on patient’s individual sensory profile and thus

  2. Evaluation of a web based informatics system with data mining tools for predicting outcomes with quantitative imaging features in stroke rehabilitation clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Kim, Bokkyu; Park, Ji Hoon; Wang, Erik; Forsyth, Sydney; Lim, Cody; Ravi, Ragini; Karibyan, Sarkis; Sanchez, Alexander; Liu, Brent

    2017-03-01

    Quantitative imaging biomarkers are used widely in clinical trials for tracking and evaluation of medical interventions. Previously, we have presented a web based informatics system utilizing quantitative imaging features for predicting outcomes in stroke rehabilitation clinical trials. The system integrates imaging features extraction tools and a web-based statistical analysis tool. The tools include a generalized linear mixed model(GLMM) that can investigate potential significance and correlation based on features extracted from clinical data and quantitative biomarkers. The imaging features extraction tools allow the user to collect imaging features and the GLMM module allows the user to select clinical data and imaging features such as stroke lesion characteristics from the database as regressors and regressands. This paper discusses the application scenario and evaluation results of the system in a stroke rehabilitation clinical trial. The system was utilized to manage clinical data and extract imaging biomarkers including stroke lesion volume, location and ventricle/brain ratio. The GLMM module was validated and the efficiency of data analysis was also evaluated.

  3. Using metal-ligand binding characteristics to predict metal toxicity: quantitative ion character-activity relationships (QICARs).

    PubMed Central

    Newman, M C; McCloskey, J T; Tatara, C P

    1998-01-01

    Ecological risk assessment can be enhanced with predictive models for metal toxicity. Modelings of published data were done under the simplifying assumption that intermetal trends in toxicity reflect relative metal-ligand complex stabilities. This idea has been invoked successfully since 1904 but has yet to be applied widely in quantitative ecotoxicology. Intermetal trends in toxicity were successfully modeled with ion characteristics reflecting metal binding to ligands for a wide range of effects. Most models were useful for predictive purposes based on an F-ratio criterion and cross-validation, but anomalous predictions did occur if speciation was ignored. In general, models for metals with the same valence (i.e., divalent metals) were better than those combining mono-, di-, and trivalent metals. The softness parameter (sigma p) and the absolute value of the log of the first hydrolysis constant ([symbol: see text] log KOH [symbol: see text]) were especially useful in model construction. Also, delta E0 contributed substantially to several of the two-variable models. In contrast, quantitative attempts to predict metal interactions in binary mixtures based on metal-ligand complex stabilities were not successful. PMID:9860900

  4. Prediction of Coronal Mass Ejections From Vector Magnetograms: Quantitative Measures as Predictors

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We derived two quantitative measures of an active region's global nonpotentiality from the region's vector magnetogram, 1) the net current (I(sub N)), and 2) the length of strong-shear, strong-field main neutral line (Lss), and used these two measures in a pilot study of the CME productivity of 4 active regions. We compared the global nonpotentiality measures to the active regions' CME productivity determined from GOES and Yohkoh/SXT observations. We found that two of the active regions were highly globally nonpotential and were CME productive, while the other two active regions had little global nonpotentiality and produced no CMEs. At the Fall 2000 AGU, we reported on an expanded study (12 active regions and 17 magnetograms) in which we evaluated four quantitative global measures of an active region's magnetic field and compared these measures with the CME productivity. The four global measures (all derived from MSFC vector magnetograms) included our two previous measures (I(sub N) and L(sub ss)) as well as two new ones, the total magnetic flux (PHI) (a measure of an active region's size), and the normalized twist (alpha (bar)= muIN/PHI). We found that the three quantitative measures of global nonpotentiality (I(sub N), L(sub ss), alpha (bar)) were all well correlated (greater than 99% confidence level) with an active region's CME productivity within plus or minus 2 days of the day of the magnetogram. We will now report on our findings of how good our quantitative measures are as predictors of active-region CME productivity, using only CMEs that occurred after the magnetogram. We report the preliminary skill test of these quantitative measures as predictors. We compare the CME prediction success of our quantitative measures to the CME prediction success based on an active region's past CME productivity. We examine the cases of the handful of false positive and false negatives to look for improvements to our predictors. This work is funded by NSF through the Space

  5. Assessing deep and shallow learning methods for quantitative prediction of acute chemical toxicity.

    PubMed

    Liu, Ruifeng; Madore, Michael; Glover, Kyle P; Feasel, Michael G; Wallqvist, Anders

    2018-05-02

    Animal-based methods for assessing chemical toxicity are struggling to meet testing demands. In silico approaches, including machine-learning methods, are promising alternatives. Recently, deep neural networks (DNNs) were evaluated and reported to outperform other machine-learning methods for quantitative structure-activity relationship modeling of molecular properties. However, most of the reported performance evaluations relied on global performance metrics, such as the root mean squared error (RMSE) between the predicted and experimental values of all samples, without considering the impact of sample distribution across the activity spectrum. Here, we carried out an in-depth analysis of DNN performance for quantitative prediction of acute chemical toxicity using several datasets. We found that the overall performance of DNN models on datasets of up to 30,000 compounds was similar to that of random forest (RF) models, as measured by the RMSE and correlation coefficients between the predicted and experimental results. However, our detailed analyses demonstrated that global performance metrics are inappropriate for datasets with a highly uneven sample distribution, because they show a strong bias for the most populous compounds along the toxicity spectrum. For highly toxic compounds, DNN and RF models trained on all samples performed much worse than the global performance metrics indicated. Surprisingly, our variable nearest neighbor method, which utilizes only structurally similar compounds to make predictions, performed reasonably well, suggesting that information of close near neighbors in the training sets is a key determinant of acute toxicity predictions.

  6. Kernel-based whole-genome prediction of complex traits: a review.

    PubMed

    Morota, Gota; Gianola, Daniel

    2014-01-01

    Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways), thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.

  7. Quantitative chest computed tomography as a means of predicting exercise performance in severe emphysema.

    PubMed

    Crausman, R S; Ferguson, G; Irvin, C G; Make, B; Newell, J D

    1995-06-01

    We assessed the value of quantitative high-resolution computed tomography (CT) as a diagnostic and prognostic tool in smoking-related emphysema. We performed an inception cohort study of 14 patients referred with emphysema. The diagnosis of emphysema was based on a compatible history, physical examination, chest radiograph, CT scan of the lung, and pulmonary physiologic evaluation. As a group, those who underwent exercise testing were hyperinflated (percentage predicted total lung capacity +/- standard error of the mean = 133 +/- 9%), and there was evidence of air trapping (percentage predicted respiratory volume = 318 +/- 31%) and airflow limitation (forced expiratory volume in 1 sec [FEV1] = 40 +/- 7%). The exercise performance of the group was severely limited (maximum achievable workload = 43 +/- 6%) and was characterized by prominent ventilatory, gas exchange, and pulmonary vascular abnormalities. The quantitative CT index was markedly elevated in all patients (76 +/- 9; n = 14; normal < 4). There were correlations between this quantitative CT index and measures of airflow limitation (FEV1 r2 = .34, p = 09; FEV1/forced vital capacity r2 = .46, p = .04) and between maximum workload achieved (r2 = .93, p = .0001) and maximum oxygen utilization (r2 = .83, p = .0007). Quantitative chest CT assessment of disease severity is correlated with the degree of airflow limitation and exercise impairment in pulmonary emphysema.

  8. NNAlign: A Web-Based Prediction Method Allowing Non-Expert End-User Discovery of Sequence Motifs in Quantitative Peptide Data

    PubMed Central

    Andreatta, Massimo; Schafer-Nielsen, Claus; Lund, Ole; Buus, Søren; Nielsen, Morten

    2011-01-01

    Recent advances in high-throughput technologies have made it possible to generate both gene and protein sequence data at an unprecedented rate and scale thereby enabling entirely new “omics”-based approaches towards the analysis of complex biological processes. However, the amount and complexity of data that even a single experiment can produce seriously challenges researchers with limited bioinformatics expertise, who need to handle, analyze and interpret the data before it can be understood in a biological context. Thus, there is an unmet need for tools allowing non-bioinformatics users to interpret large data sets. We have recently developed a method, NNAlign, which is generally applicable to any biological problem where quantitative peptide data is available. This method efficiently identifies underlying sequence patterns by simultaneously aligning peptide sequences and identifying motifs associated with quantitative readouts. Here, we provide a web-based implementation of NNAlign allowing non-expert end-users to submit their data (optionally adjusting method parameters), and in return receive a trained method (including a visual representation of the identified motif) that subsequently can be used as prediction method and applied to unknown proteins/peptides. We have successfully applied this method to several different data sets including peptide microarray-derived sets containing more than 100,000 data points. NNAlign is available online at http://www.cbs.dtu.dk/services/NNAlign. PMID:22073191

  9. NNAlign: a web-based prediction method allowing non-expert end-user discovery of sequence motifs in quantitative peptide data.

    PubMed

    Andreatta, Massimo; Schafer-Nielsen, Claus; Lund, Ole; Buus, Søren; Nielsen, Morten

    2011-01-01

    Recent advances in high-throughput technologies have made it possible to generate both gene and protein sequence data at an unprecedented rate and scale thereby enabling entirely new "omics"-based approaches towards the analysis of complex biological processes. However, the amount and complexity of data that even a single experiment can produce seriously challenges researchers with limited bioinformatics expertise, who need to handle, analyze and interpret the data before it can be understood in a biological context. Thus, there is an unmet need for tools allowing non-bioinformatics users to interpret large data sets. We have recently developed a method, NNAlign, which is generally applicable to any biological problem where quantitative peptide data is available. This method efficiently identifies underlying sequence patterns by simultaneously aligning peptide sequences and identifying motifs associated with quantitative readouts. Here, we provide a web-based implementation of NNAlign allowing non-expert end-users to submit their data (optionally adjusting method parameters), and in return receive a trained method (including a visual representation of the identified motif) that subsequently can be used as prediction method and applied to unknown proteins/peptides. We have successfully applied this method to several different data sets including peptide microarray-derived sets containing more than 100,000 data points. NNAlign is available online at http://www.cbs.dtu.dk/services/NNAlign.

  10. A Quantitative Model for the Prediction of Sooting Tendency from Molecular Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. John, Peter C.; Kairys, Paul; Das, Dhrubajyoti D.

    Particulate matter emissions negatively affect public health and global climate, yet newer fuel-efficient gasoline direct injection engines tend to produce more soot than their port-fuel injection counterparts. Fortunately, the search for sustainable biomass-based fuel blendstocks provides an opportunity to develop fuels that suppress soot formation in more efficient engine designs. However, as emissions tests are experimentally cumbersome and the search space for potential bioblendstocks is vast, new techniques are needed to estimate the sooting tendency of a diverse range of compounds. In this study, we develop a quantitative structure-activity relationship (QSAR) model of sooting tendency based on the experimental yieldmore » sooting index (YSI), which ranks molecules on a scale from n-hexane, 0, to benzene, 100. The model includes a rigorously defined applicability domain, and the predictive performance is checked using both internal and external validation. Model predictions for compounds in the external test set had a median absolute error of ~3 YSI units. An investigation of compounds that are poorly predicted by the model lends new insight into the complex mechanisms governing soot formation. Predictive models of soot formation can therefore be expected to play an increasingly important role in the screening and development of next-generation biofuels.« less

  11. A Quantitative Model for the Prediction of Sooting Tendency from Molecular Structure

    DOE PAGES

    St. John, Peter C.; Kairys, Paul; Das, Dhrubajyoti D.; ...

    2017-07-24

    Particulate matter emissions negatively affect public health and global climate, yet newer fuel-efficient gasoline direct injection engines tend to produce more soot than their port-fuel injection counterparts. Fortunately, the search for sustainable biomass-based fuel blendstocks provides an opportunity to develop fuels that suppress soot formation in more efficient engine designs. However, as emissions tests are experimentally cumbersome and the search space for potential bioblendstocks is vast, new techniques are needed to estimate the sooting tendency of a diverse range of compounds. In this study, we develop a quantitative structure-activity relationship (QSAR) model of sooting tendency based on the experimental yieldmore » sooting index (YSI), which ranks molecules on a scale from n-hexane, 0, to benzene, 100. The model includes a rigorously defined applicability domain, and the predictive performance is checked using both internal and external validation. Model predictions for compounds in the external test set had a median absolute error of ~3 YSI units. An investigation of compounds that are poorly predicted by the model lends new insight into the complex mechanisms governing soot formation. Predictive models of soot formation can therefore be expected to play an increasingly important role in the screening and development of next-generation biofuels.« less

  12. Fragment-based quantitative structure-activity relationship (FB-QSAR) for fragment-based drug design.

    PubMed

    Du, Qi-Shi; Huang, Ri-Bo; Wei, Yu-Tuo; Pang, Zong-Wen; Du, Li-Qin; Chou, Kuo-Chen

    2009-01-30

    In cooperation with the fragment-based design a new drug design method, the so-called "fragment-based quantitative structure-activity relationship" (FB-QSAR) is proposed. The essence of the new method is that the molecular framework in a family of drug candidates are divided into several fragments according to their substitutes being investigated. The bioactivities of molecules are correlated with the physicochemical properties of the molecular fragments through two sets of coefficients in the linear free energy equations. One coefficient set is for the physicochemical properties and the other for the weight factors of the molecular fragments. Meanwhile, an iterative double least square (IDLS) technique is developed to solve the two sets of coefficients in a training data set alternately and iteratively. The IDLS technique is a feedback procedure with machine learning ability. The standard Two-dimensional quantitative structure-activity relationship (2D-QSAR) is a special case, in the FB-QSAR, when the whole molecule is treated as one entity. The FB-QSAR approach can remarkably enhance the predictive power and provide more structural insights into rational drug design. As an example, the FB-QSAR is applied to build a predictive model of neuraminidase inhibitors for drug development against H5N1 influenza virus. (c) 2008 Wiley Periodicals, Inc.

  13. Quantitative structure-activity relationship (QSAR) for insecticides: development of predictive in vivo insecticide activity models.

    PubMed

    Naik, P K; Singh, T; Singh, H

    2009-07-01

    Quantitative structure-activity relationship (QSAR) analyses were performed independently on data sets belonging to two groups of insecticides, namely the organophosphates and carbamates. Several types of descriptors including topological, spatial, thermodynamic, information content, lead likeness and E-state indices were used to derive quantitative relationships between insecticide activities and structural properties of chemicals. A systematic search approach based on missing value, zero value, simple correlation and multi-collinearity tests as well as the use of a genetic algorithm allowed the optimal selection of the descriptors used to generate the models. The QSAR models developed for both organophosphate and carbamate groups revealed good predictability with r(2) values of 0.949 and 0.838 as well as [image omitted] values of 0.890 and 0.765, respectively. In addition, a linear correlation was observed between the predicted and experimental LD(50) values for the test set data with r(2) of 0.871 and 0.788 for both the organophosphate and carbamate groups, indicating that the prediction accuracy of the QSAR models was acceptable. The models were also tested successfully from external validation criteria. QSAR models developed in this study should help further design of novel potent insecticides.

  14. Prediction of Coronal Mass Ejections from Vector Magnetograms: Quantitative Measures as Predictors

    NASA Astrophysics Data System (ADS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2001-05-01

    In a pilot study of 4 active regions (Falconer, D.A. 2001, JGR, in press), we derived two quantitative measures of an active region's global nonpotentiality from the region's vector magnetogram, 1) the net current (IN), and 2) the length of the strong-shear, strong-field main neutral line (LSS), and used these two measures of the CME productivity of the active regions. We compared the global nonpotentiality measures to the active regions' CME productivity determined from GOES and Yohkoh/SXT observations. We found that two of the active regions were highly globally nonpotential and were CME productive, while the other two active regions had little global nonpotentiality and produced no CMEs. At the Fall 2000 AGU (Falconer, Moore, & Gary, 2000, EOS 81, 48 F998), we reported on an expanded study (12 active regions and 17 magnetograms) in which we evaluated four quantitative global measures of an active region's magnetic field and compared these measures with the CME productivity. The four global measures (all derived from MSFC vector magnetograms) included our two previous measures (IN and LSS) as well as two new ones, the total magnetic flux (Φ ) (a measure of an active region's size), and the normalized twist (α =μ IN/Φ ). We found that the three measures of global nonpotentiality (IN, LSS, α ) were all well correlated (>99% confidence level) with an active region's CME productivity within (2 days of the day of the magnetogram. We will now report on our findings of how good our quantitative measures are as predictors of active-region CME productivity, using only CMEs that occurred after the magnetogram. We report the preliminary skill test of these quantitative measures as predictors. We compare the CME prediction success of our quantitative measures to the CME prediction success based on an active region's past CME productivity. We examine the cases of the handful of false positive and false negatives to look for improvements to our predictors. This work is

  15. Predicting Children's Reading and Mathematics Achievement from Early Quantitative Knowledge and Domain-General Cognitive Abilities

    PubMed Central

    Chu, Felicia W.; vanMarle, Kristy; Geary, David C.

    2016-01-01

    One hundred children (44 boys) participated in a 3-year longitudinal study of the development of basic quantitative competencies and the relation between these competencies and later mathematics and reading achievement. The children's preliteracy knowledge, intelligence, executive functions, and parental educational background were also assessed. The quantitative tasks assessed a broad range of symbolic and nonsymbolic knowledge and were administered four times across 2 years of preschool. Mathematics achievement was assessed at the end of each of 2 years of preschool, and mathematics and word reading achievement were assessed at the end of kindergarten. Our goals were to determine how domain-general abilities contribute to growth in children's quantitative knowledge and to determine how domain-general and domain-specific abilities contribute to children's preschool mathematics achievement and kindergarten mathematics and reading achievement. We first identified four core quantitative competencies (e.g., knowledge of the cardinal value of number words) that predict later mathematics achievement. The domain-general abilities were then used to predict growth in these competencies across 2 years of preschool, and the combination of domain-general abilities, preliteracy skills, and core quantitative competencies were used to predict mathematics achievement across preschool and mathematics and word reading achievement at the end of kindergarten. Both intelligence and executive functions predicted growth in the four quantitative competencies, especially across the first year of preschool. A combination of domain-general and domain-specific competencies predicted preschoolers' mathematics achievement, with a trend for domain-specific skills to be more strongly related to achievement at the beginning of preschool than at the end of preschool. Preschool preliteracy skills, sensitivity to the relative quantities of collections of objects, and cardinal knowledge predicted

  16. Predicting Children's Reading and Mathematics Achievement from Early Quantitative Knowledge and Domain-General Cognitive Abilities.

    PubMed

    Chu, Felicia W; vanMarle, Kristy; Geary, David C

    2016-01-01

    One hundred children (44 boys) participated in a 3-year longitudinal study of the development of basic quantitative competencies and the relation between these competencies and later mathematics and reading achievement. The children's preliteracy knowledge, intelligence, executive functions, and parental educational background were also assessed. The quantitative tasks assessed a broad range of symbolic and nonsymbolic knowledge and were administered four times across 2 years of preschool. Mathematics achievement was assessed at the end of each of 2 years of preschool, and mathematics and word reading achievement were assessed at the end of kindergarten. Our goals were to determine how domain-general abilities contribute to growth in children's quantitative knowledge and to determine how domain-general and domain-specific abilities contribute to children's preschool mathematics achievement and kindergarten mathematics and reading achievement. We first identified four core quantitative competencies (e.g., knowledge of the cardinal value of number words) that predict later mathematics achievement. The domain-general abilities were then used to predict growth in these competencies across 2 years of preschool, and the combination of domain-general abilities, preliteracy skills, and core quantitative competencies were used to predict mathematics achievement across preschool and mathematics and word reading achievement at the end of kindergarten. Both intelligence and executive functions predicted growth in the four quantitative competencies, especially across the first year of preschool. A combination of domain-general and domain-specific competencies predicted preschoolers' mathematics achievement, with a trend for domain-specific skills to be more strongly related to achievement at the beginning of preschool than at the end of preschool. Preschool preliteracy skills, sensitivity to the relative quantities of collections of objects, and cardinal knowledge predicted

  17. Tissue microarrays and quantitative tissue-based image analysis as a tool for oncology biomarker and diagnostic development.

    PubMed

    Dolled-Filhart, Marisa P; Gustavson, Mark D

    2012-11-01

    Translational oncology has been improved by using tissue microarrays (TMAs), which facilitate biomarker analysis of large cohorts on a single slide. This has allowed for rapid analysis and validation of potential biomarkers for prognostic and predictive value, as well as for evaluation of biomarker prevalence. Coupled with quantitative analysis of immunohistochemical (IHC) staining, objective and standardized biomarker data from tumor samples can further advance companion diagnostic approaches for the identification of drug-responsive or resistant patient subpopulations. This review covers the advantages, disadvantages and applications of TMAs for biomarker research. Research literature and reviews of TMAs and quantitative image analysis methodology have been surveyed for this review (with an AQUA® analysis focus). Applications such as multi-marker diagnostic development and pathway-based biomarker subpopulation analyses are described. Tissue microarrays are a useful tool for biomarker analyses including prevalence surveys, disease progression assessment and addressing potential prognostic or predictive value. By combining quantitative image analysis with TMAs, analyses will be more objective and reproducible, allowing for more robust IHC-based diagnostic test development. Quantitative multi-biomarker IHC diagnostic tests that can predict drug response will allow for greater success of clinical trials for targeted therapies and provide more personalized clinical decision making.

  18. The predictive value of quantitative fibronectin testing in combination with cervical length measurement in symptomatic women.

    PubMed

    Bruijn, Merel M C; Kamphuis, Esme I; Hoesli, Irene M; Martinez de Tejada, Begoña; Loccufier, Anne R; Kühnert, Maritta; Helmer, Hanns; Franz, Marie; Porath, Martina M; Oudijk, Martijn A; Jacquemyn, Yves; Schulzke, Sven M; Vetter, Grit; Hoste, Griet; Vis, Jolande Y; Kok, Marjolein; Mol, Ben W J; van Baaren, Gert-Jan

    2016-12-01

    The combination of the qualitative fetal fibronectin test and cervical length measurement has a high negative predictive value for preterm birth within 7 days; however, positive prediction is poor. A new bedside quantitative fetal fibronectin test showed potential additional value over the conventional qualitative test, but there is limited evidence on the combination with cervical length measurement. The purpose of this study was to compare quantitative fetal fibronectin and qualitative fetal fibronectin testing in the prediction of spontaneous preterm birth within 7 days in symptomatic women who undergo cervical length measurement. We performed a European multicenter cohort study in 10 perinatal centers in 5 countries. Women between 24 and 34 weeks of gestation with signs of active labor and intact membranes underwent quantitative fibronectin testing and cervical length measurement. We assessed the risk of preterm birth within 7 days in predefined strata based on fibronectin concentration and cervical length. Of 455 women who were included in the study, 48 women (11%) delivered within 7 days. A combination of cervical length and qualitative fibronectin resulted in the identification of 246 women who were at low risk: 164 women with a cervix between 15 and 30 mm and a negative fibronectin test (<50 ng/mL; preterm birth rate, 2%) and 82 women with a cervix at >30 mm (preterm birth rate, 2%). Use of quantitative fibronectin alone resulted in a predicted risk of preterm birth within 7 days that ranged from 2% in the group with the lowest fibronectin level (<10 ng/mL) to 38% in the group with the highest fibronectin level (>500 ng/mL), with similar accuracy as that of the combination of cervical length and qualitative fibronectin. Combining cervical length and quantitative fibronectin resulted in the identification of an additional 19 women at low risk (preterm birth rate, 5%), using a threshold of 10 ng/mL in women with a cervix at <15 mm, and 6 women at high risk

  19. Predicting Dissertation Methodology Choice among Doctoral Candidates at a Faith-Based University

    ERIC Educational Resources Information Center

    Lunde, Rebecca

    2017-01-01

    Limited research has investigated dissertation methodology choice and the factors that contribute to this choice. Quantitative research is based in mathematics and scientific positivism, and qualitative research is based in constructivism. These underlying philosophical differences posit the question if certain factors predict dissertation…

  20. Quantitative Protein Topography Analysis and High-Resolution Structure Prediction Using Hydroxyl Radical Labeling and Tandem-Ion Mass Spectrometry (MS)*

    PubMed Central

    Kaur, Parminder; Kiselar, Janna; Yang, Sichun; Chance, Mark R.

    2015-01-01

    Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca+2-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes. PMID:25687570

  1. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2013-11-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.

  2. Assessment of quantitative structure-activity relationship of toxicity prediction models for Korean chemical substance control legislation

    PubMed Central

    Kim, Kwang-Yon; Shin, Seong Eun; No, Kyoung Tai

    2015-01-01

    Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used

  3. A quantitative microscopic approach to predict local recurrence based on in vivo intraoperative imaging of sarcoma tumor margins

    PubMed Central

    Mueller, Jenna L.; Fu, Henry L.; Mito, Jeffrey K.; Whitley, Melodi J.; Chitalia, Rhea; Erkanli, Alaattin; Dodd, Leslie; Cardona, Diana M.; Geradts, Joseph; Willett, Rebecca M.; Kirsch, David G.; Ramanujam, Nimmi

    2015-01-01

    The goal of resection of soft tissue sarcomas located in the extremity is to preserve limb function while completely excising the tumor with a margin of normal tissue. With surgery alone, one-third of patients with soft tissue sarcoma of the extremity will have local recurrence due to microscopic residual disease in the tumor bed. Currently, a limited number of intraoperative pathology-based techniques are used to assess margin status; however, few have been widely adopted due to sampling error and time constraints. To aid in intraoperative diagnosis, we developed a quantitative optical microscopy toolbox, which includes acriflavine staining, fluorescence microscopy, and analytic techniques called sparse component analysis and circle transform to yield quantitative diagnosis of tumor margins. A series of variables were quantified from images of resected primary sarcomas and used to optimize a multivariate model. The sensitivity and specificity for differentiating positive from negative ex vivo resected tumor margins was 82% and 75%. The utility of this approach was tested by imaging the in vivo tumor cavities from 34 mice after resection of a sarcoma with local recurrence as a bench mark. When applied prospectively to images from the tumor cavity, the sensitivity and specificity for differentiating local recurrence was 78% and 82%. For comparison, if pathology was used to predict local recurrence in this data set, it would achieve a sensitivity of 29% and a specificity of 71%. These results indicate a robust approach for detecting microscopic residual disease, which is an effective predictor of local recurrence. PMID:25994353

  4. Predictive microbiology: Quantitative science delivering quantifiable benefits to the meat industry and other food industries.

    PubMed

    McMeekin, T A

    2007-09-01

    Predictive microbiology is considered in the context of the conference theme "chance, innovation and challenge", together with the impact of quantitative approaches on food microbiology, generally. The contents of four prominent texts on predictive microbiology are analysed and the major contributions of two meat microbiologists, Drs. T.A. Roberts and C.O. Gill, to the early development of predictive microbiology are highlighted. These provide a segue into R&D trends in predictive microbiology, including the Refrigeration Index, an example of science-based, outcome-focussed food safety regulation. Rapid advances in technologies and systems for application of predictive models are indicated and measures to judge the impact of predictive microbiology are suggested in terms of research outputs and outcomes. The penultimate section considers the future of predictive microbiology and advances that will become possible when data on population responses are combined with data derived from physiological and molecular studies in a systems biology approach. Whilst the emphasis is on science and technology for food safety management, it is suggested that decreases in foodborne illness will also arise from minimising human error by changing the food safety culture.

  5. Genomic Prediction for Quantitative Traits Is Improved by Mapping Variants to Gene Ontology Categories in Drosophila melanogaster

    PubMed Central

    Edwards, Stefan M.; Sørensen, Izel F.; Sarup, Pernille; Mackay, Trudy F. C.; Sørensen, Peter

    2016-01-01

    Predicting individual quantitative trait phenotypes from high-resolution genomic polymorphism data is important for personalized medicine in humans, plant and animal breeding, and adaptive evolution. However, this is difficult for populations of unrelated individuals when the number of causal variants is low relative to the total number of polymorphisms and causal variants individually have small effects on the traits. We hypothesized that mapping molecular polymorphisms to genomic features such as genes and their gene ontology categories could increase the accuracy of genomic prediction models. We developed a genomic feature best linear unbiased prediction (GFBLUP) model that implements this strategy and applied it to three quantitative traits (startle response, starvation resistance, and chill coma recovery) in the unrelated, sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel. Our results indicate that subsetting markers based on genomic features increases the predictive ability relative to the standard genomic best linear unbiased prediction (GBLUP) model. Both models use all markers, but GFBLUP allows differential weighting of the individual genetic marker relationships, whereas GBLUP weighs the genetic marker relationships equally. Simulation studies show that it is possible to further increase the accuracy of genomic prediction for complex traits using this model, provided the genomic features are enriched for causal variants. Our GFBLUP model using prior information on genomic features enriched for causal variants can increase the accuracy of genomic predictions in populations of unrelated individuals and provides a formal statistical framework for leveraging and evaluating information across multiple experimental studies to provide novel insights into the genetic architecture of complex traits. PMID:27235308

  6. Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology

    EPA Science Inventory

    A quantitative adverse outcome pathway (qAOP) consists of one or more biologically based, computational models describing key event relationships linking a molecular initiating event (MIE) to an adverse outcome. A qAOP provides quantitative, dose–response, and time-course p...

  7. Evaluation of an ensemble of genetic models for prediction of a quantitative trait.

    PubMed

    Milton, Jacqueline N; Steinberg, Martin H; Sebastiani, Paola

    2014-01-01

    Many genetic markers have been shown to be associated with common quantitative traits in genome-wide association studies. Typically these associated genetic markers have small to modest effect sizes and individually they explain only a small amount of the variability of the phenotype. In order to build a genetic prediction model without fitting a multiple linear regression model with possibly hundreds of genetic markers as predictors, researchers often summarize the joint effect of risk alleles into a genetic score that is used as a covariate in the genetic prediction model. However, the prediction accuracy can be highly variable and selecting the optimal number of markers to be included in the genetic score is challenging. In this manuscript we present a strategy to build an ensemble of genetic prediction models from data and we show that the ensemble-based method makes the challenge of choosing the number of genetic markers more amenable. Using simulated data with varying heritability and number of genetic markers, we compare the predictive accuracy and inclusion of true positive and false positive markers of a single genetic prediction model and our proposed ensemble method. The results show that the ensemble of genetic models tends to include a larger number of genetic variants than a single genetic model and it is more likely to include all of the true genetic markers. This increased sensitivity is obtained at the price of a lower specificity that appears to minimally affect the predictive accuracy of the ensemble.

  8. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound

    PubMed Central

    Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph

    2012-01-01

    Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone’s mechanical strength and structural parameters, i.e., bulk Young’s modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young’s modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone’s structural integrity. PMID:23976803

  9. Factors influencing protein tyrosine nitration--structure-based predictive models.

    PubMed

    Bayden, Alexander S; Yakovlev, Vasily A; Graves, Paul R; Mikkelsen, Ross B; Kellogg, Glen E

    2011-03-15

    Models for exploring tyrosine nitration in proteins have been created based on 3D structural features of 20 proteins for which high-resolution X-ray crystallographic or NMR data are available and for which nitration of 35 total tyrosines has been experimentally proven under oxidative stress. Factors suggested in previous work to enhance nitration were examined with quantitative structural descriptors. The role of neighboring acidic and basic residues is complex: for the majority of tyrosines that are nitrated the distance to the heteroatom of the closest charged side chain corresponds to the distance needed for suspected nitrating species to form hydrogen bond bridges between the tyrosine and that charged amino acid. This suggests that such bridges play a very important role in tyrosine nitration. Nitration is generally hindered for tyrosines that are buried and for those tyrosines for which there is insufficient space for the nitro group. For in vitro nitration, closed environments with nearby heteroatoms or unsaturated centers that can stabilize radicals are somewhat favored. Four quantitative structure-based models, depending on the conditions of nitration, have been developed for predicting site-specific tyrosine nitration. The best model, relevant for both in vitro and in vivo cases, predicts 30 of 35 tyrosine nitrations (positive predictive value) and has a sensitivity of 60/71 (11 false positives). Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Universal structural parameter to quantitatively predict metallic glass properties

    DOE PAGES

    Ding, Jun; Cheng, Yong-Qiang; Sheng, Howard; ...

    2016-12-12

    Quantitatively correlating the amorphous structure in metallic glasses (MGs) with their physical properties has been a long-sought goal. Here we introduce flexibility volume' as a universal indicator, to bridge the structural state the MG is in with its properties, on both atomic and macroscopic levels. The flexibility volume combines static atomic volume with dynamics information via atomic vibrations that probe local configurational space and interaction between neighbouring atoms. We demonstrate that flexibility volume is a physically appropriate parameter that can quantitatively predict the shear modulus, which is at the heart of many key properties of MGs. Moreover, the new parametermore » correlates strongly with atomic packing topology, and also with the activation energy for thermally activated relaxation and the propensity for stress-driven shear transformations. These correlations are expected to be robust across a very wide range of MG compositions, processing conditions and length scales.« less

  11. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer.

    PubMed

    Covarrubias-Pazaran, Giovanny

    2016-01-01

    Most traits of agronomic importance are quantitative in nature, and genetic markers have been used for decades to dissect such traits. Recently, genomic selection has earned attention as next generation sequencing technologies became feasible for major and minor crops. Mixed models have become a key tool for fitting genomic selection models, but most current genomic selection software can only include a single variance component other than the error, making hybrid prediction using additive, dominance and epistatic effects unfeasible for species displaying heterotic effects. Moreover, Likelihood-based software for fitting mixed models with multiple random effects that allows the user to specify the variance-covariance structure of random effects has not been fully exploited. A new open-source R package called sommer is presented to facilitate the use of mixed models for genomic selection and hybrid prediction purposes using more than one variance component and allowing specification of covariance structures. The use of sommer for genomic prediction is demonstrated through several examples using maize and wheat genotypic and phenotypic data. At its core, the program contains three algorithms for estimating variance components: Average information (AI), Expectation-Maximization (EM) and Efficient Mixed Model Association (EMMA). Kernels for calculating the additive, dominance and epistatic relationship matrices are included, along with other useful functions for genomic analysis. Results from sommer were comparable to other software, but the analysis was faster than Bayesian counterparts in the magnitude of hours to days. In addition, ability to deal with missing data, combined with greater flexibility and speed than other REML-based software was achieved by putting together some of the most efficient algorithms to fit models in a gentle environment such as R.

  12. Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis.

    PubMed

    Attiyeh, Marc A; Chakraborty, Jayasree; Doussot, Alexandre; Langdon-Embry, Liana; Mainarich, Shiana; Gönen, Mithat; Balachandran, Vinod P; D'Angelica, Michael I; DeMatteo, Ronald P; Jarnagin, William R; Kingham, T Peter; Allen, Peter J; Simpson, Amber L; Do, Richard K

    2018-04-01

    Pancreatic cancer is a highly lethal cancer with no established a priori markers of survival. Existing nomograms rely mainly on post-resection data and are of limited utility in directing surgical management. This study investigated the use of quantitative computed tomography (CT) features to preoperatively assess survival for pancreatic ductal adenocarcinoma (PDAC) patients. A prospectively maintained database identified consecutive chemotherapy-naive patients with CT angiography and resected PDAC between 2009 and 2012. Variation in CT enhancement patterns was extracted from the tumor region using texture analysis, a quantitative image analysis tool previously described in the literature. Two continuous survival models were constructed, with 70% of the data (training set) using Cox regression, first based only on preoperative serum cancer antigen (CA) 19-9 levels and image features (model A), and then on CA19-9, image features, and the Brennan score (composite pathology score; model B). The remaining 30% of the data (test set) were reserved for independent validation. A total of 161 patients were included in the analysis. Training and test sets contained 113 and 48 patients, respectively. Quantitative image features combined with CA19-9 achieved a c-index of 0.69 [integrated Brier score (IBS) 0.224] on the test data, while combining CA19-9, imaging, and the Brennan score achieved a c-index of 0.74 (IBS 0.200) on the test data. We present two continuous survival prediction models for resected PDAC patients. Quantitative analysis of CT texture features is associated with overall survival. Further work includes applying the model to an external dataset to increase the sample size for training and to determine its applicability.

  13. The effect of using genealogy-based haplotypes for genomic prediction.

    PubMed

    Edriss, Vahid; Fernando, Rohan L; Su, Guosheng; Lund, Mogens S; Guldbrandtsen, Bernt

    2013-03-06

    Genomic prediction uses two sources of information: linkage disequilibrium between markers and quantitative trait loci, and additive genetic relationships between individuals. One way to increase the accuracy of genomic prediction is to capture more linkage disequilibrium by regression on haplotypes instead of regression on individual markers. The aim of this study was to investigate the accuracy of genomic prediction using haplotypes based on local genealogy information. A total of 4429 Danish Holstein bulls were genotyped with the 50K SNP chip. Haplotypes were constructed using local genealogical trees. Effects of haplotype covariates were estimated with two types of prediction models: (1) assuming that effects had the same distribution for all haplotype covariates, i.e. the GBLUP method and (2) assuming that a large proportion (π) of the haplotype covariates had zero effect, i.e. a Bayesian mixture method. About 7.5 times more covariate effects were estimated when fitting haplotypes based on local genealogical trees compared to fitting individuals markers. Genealogy-based haplotype clustering slightly increased the accuracy of genomic prediction and, in some cases, decreased the bias of prediction. With the Bayesian method, accuracy of prediction was less sensitive to parameter π when fitting haplotypes compared to fitting markers. Use of haplotypes based on genealogy can slightly increase the accuracy of genomic prediction. Improved methods to cluster the haplotypes constructed from local genealogy could lead to additional gains in accuracy.

  14. Combining quantitative trait loci analysis with physiological models to predict genotype-specific transpiration rates.

    PubMed

    Reuning, Gretchen A; Bauerle, William L; Mullen, Jack L; McKay, John K

    2015-04-01

    Transpiration is controlled by evaporative demand and stomatal conductance (gs ), and there can be substantial genetic variation in gs . A key parameter in empirical models of transpiration is minimum stomatal conductance (g0 ), a trait that can be measured and has a large effect on gs and transpiration. In Arabidopsis thaliana, g0 exhibits both environmental and genetic variation, and quantitative trait loci (QTL) have been mapped. We used this information to create a genetically parameterized empirical model to predict transpiration of genotypes. For the parental lines, this worked well. However, in a recombinant inbred population, the predictions proved less accurate. When based only upon their genotype at a single g0 QTL, genotypes were less distinct than our model predicted. Follow-up experiments indicated that both genotype by environment interaction and a polygenic inheritance complicate the application of genetic effects into physiological models. The use of ecophysiological or 'crop' models for predicting transpiration of novel genetic lines will benefit from incorporating further knowledge of the genetic control and degree of independence of core traits/parameters underlying gs variation. © 2014 John Wiley & Sons Ltd.

  15. A Novel Quantitative Prediction Approach for Astringency Level of Herbs Based on an Electronic Tongue

    PubMed Central

    Han, Xue; Jiang, Hong; Zhang, Dingkun; Zhang, Yingying; Xiong, Xi; Jiao, Jiaojiao; Xu, Runchun; Yang, Ming; Han, Li; Lin, Junzhi

    2017-01-01

    Background: The current astringency evaluation for herbs has become dissatisfied with the requirement of pharmaceutical process. It needed a new method to accurately assess astringency. Methods: First, quinine, sucrose, citric acid, sodium chloride, monosodium glutamate, and tannic acid (TA) were analyzed by electronic tongue (e-tongue) to determine the approximate region of astringency in partial least square (PLS) map. Second, different concentrations of TA were detected to define the standard curve of astringency. Meanwhile, coordinate-concentration relationship could be obtained by fitting the PLS abscissa of standard curve and corresponding concentration. Third, Chebulae Fructus (CF), Yuganzi throat tablets (YGZTT), and Sanlejiang oral liquid (SLJOL) were tested to define the region in PLS map. Finally, the astringent intensities of samples were calculated combining with the standard coordinate-concentration relationship and expressed by concentrations of TA. Then, Euclidean distance (Ed) analysis and human sensory test were processed to verify the results. Results: The fitting equation between concentration and abscissa of TA was Y = 0.00498 × e(−X/0.51035) + 0.10905 (r = 0.999). The astringency of 1, 0.1 mg/mL CF was predicted at 0.28, 0.12 mg/mL TA; 2, 0.2 mg/mL YGZTTs was predicted at 0.18, 0.11 mg/mL TA; 0.002, 0.0002 mg/mL SLJOL was predicted at 0.15, 0.10 mg/mL TA. The validation results showed that the predicted astringency of e-tongue was basically consistent to human sensory and was more accuracy than Ed analysis. Conclusion: The study indicated the established method was objective and feasible. It provided a new quantitative method for astringency of herbs. SUMMARY The astringency of Chebulae Fructus, Yuganzi throat tablets, and Sanlejiang oral liquid was predicted by electronic tongueEuclidean distance analysis and human sensory test verified the resultsA new strategy which was objective, simple, and sensitive to compare astringent intensity of

  16. A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways.

    PubMed

    Dallmann, André; Ince, Ibrahim; Coboeken, Katrin; Eissing, Thomas; Hempel, Georg

    2017-09-18

    Physiologically based pharmacokinetic modeling is considered a valuable tool for predicting pharmacokinetic changes in pregnancy to subsequently guide in-vivo pharmacokinetic trials in pregnant women. The objective of this study was to extend and verify a previously developed physiologically based pharmacokinetic model for pregnant women for the prediction of pharmacokinetics of drugs metabolized via several cytochrome P450 enzymes. Quantitative information on gestation-specific changes in enzyme activity available in the literature was incorporated in a pregnancy physiologically based pharmacokinetic model and the pharmacokinetics of eight drugs metabolized via one or multiple cytochrome P450 enzymes was predicted. The tested drugs were caffeine, midazolam, nifedipine, metoprolol, ondansetron, granisetron, diazepam, and metronidazole. Pharmacokinetic predictions were evaluated by comparison with in-vivo pharmacokinetic data obtained from the literature. The pregnancy physiologically based pharmacokinetic model successfully predicted the pharmacokinetics of all tested drugs. The observed pregnancy-induced pharmacokinetic changes were qualitatively and quantitatively reasonably well predicted for all drugs. Ninety-seven percent of the mean plasma concentrations predicted in pregnant women fell within a twofold error range and 63% within a 1.25-fold error range. For all drugs, the predicted area under the concentration-time curve was within a 1.25-fold error range. The presented pregnancy physiologically based pharmacokinetic model can quantitatively predict the pharmacokinetics of drugs that are metabolized via one or multiple cytochrome P450 enzymes by integrating prior knowledge of the pregnancy-related effect on these enzymes. This pregnancy physiologically based pharmacokinetic model may thus be used to identify potential exposure changes in pregnant women a priori and to eventually support informed decision making when clinical trials are designed in this

  17. Four-hour quantitative real-time polymerase chain reaction-based comprehensive chromosome screening and accumulating evidence of accuracy, safety, predictive value, and clinical efficacy.

    PubMed

    Treff, Nathan R; Scott, Richard T

    2013-03-15

    Embryonic comprehensive chromosomal euploidy may represent a powerful biomarker to improve the success of IVF. However, there are a number of aneuploidy screening strategies to consider, including different technologic platforms with which to interrogate the embryonic DNA, and different embryonic developmental stages from which DNA can be analyzed. Although there are advantages and disadvantages associated with each strategy, a series of experiments producing evidence of accuracy, safety, clinical predictive value, and clinical efficacy indicate that trophectoderm biopsy and quantitative real-time polymerase chain reaction (qPCR)-based comprehensive chromosome screening (CCS) may represent a useful strategy to improve the success of IVF. This Biomarkers in Reproductive Medicine special issue review summarizes the accumulated experience with the development and clinical application of a 4-hour blastocyst qPCR-based CCS technology. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Semi-quantitative prediction of a multiple API solid dosage form with a combination of vibrational spectroscopy methods.

    PubMed

    Hertrampf, A; Sousa, R M; Menezes, J C; Herdling, T

    2016-05-30

    Quality control (QC) in the pharmaceutical industry is a key activity in ensuring medicines have the required quality, safety and efficacy for their intended use. QC departments at pharmaceutical companies are responsible for all release testing of final products but also all incoming raw materials. Near-infrared spectroscopy (NIRS) and Raman spectroscopy are important techniques for fast and accurate identification and qualification of pharmaceutical samples. Tablets containing two different active pharmaceutical ingredients (API) [bisoprolol, hydrochlorothiazide] in different commercially available dosages were analysed using Raman- and NIR Spectroscopy. The goal was to define multivariate models based on each vibrational spectroscopy to discriminate between different dosages (identity) and predict their dosage (semi-quantitative). Furthermore the combination of spectroscopic techniques was investigated. Therefore, two different multiblock techniques based on PLS have been applied: multiblock PLS (MB-PLS) and sequential-orthogonalised PLS (SO-PLS). NIRS showed better results compared to Raman spectroscopy for both identification and quantitation. The multiblock techniques investigated showed that each spectroscopy contains information not present or captured with the other spectroscopic technique, thus demonstrating that there is a potential benefit in their combined use for both identification and quantitation purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Applications of Microfluidics in Quantitative Biology.

    PubMed

    Bai, Yang; Gao, Meng; Wen, Lingling; He, Caiyun; Chen, Yuan; Liu, Chenli; Fu, Xiongfei; Huang, Shuqiang

    2018-05-01

    Quantitative biology is dedicated to taking advantage of quantitative reasoning and advanced engineering technologies to make biology more predictable. Microfluidics, as an emerging technique, provides new approaches to precisely control fluidic conditions on small scales and collect data in high-throughput and quantitative manners. In this review, the authors present the relevant applications of microfluidics to quantitative biology based on two major categories (channel-based microfluidics and droplet-based microfluidics), and their typical features. We also envision some other microfluidic techniques that may not be employed in quantitative biology right now, but have great potential in the near future. © 2017 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Predicting Protein Function by Genomic Context: Quantitative Evaluation and Qualitative Inferences

    PubMed Central

    Huynen, Martijn; Snel, Berend; Lathe, Warren; Bork, Peer

    2000-01-01

    Various new methods have been proposed to predict functional interactions between proteins based on the genomic context of their genes. The types of genomic context that they use are Type I: the fusion of genes; Type II: the conservation of gene-order or co-occurrence of genes in potential operons; and Type III: the co-occurrence of genes across genomes (phylogenetic profiles). Here we compare these types for their coverage, their correlations with various types of functional interaction, and their overlap with homology-based function assignment. We apply the methods to Mycoplasma genitalium, the standard benchmarking genome in computational and experimental genomics. Quantitatively, conservation of gene order is the technique with the highest coverage, applying to 37% of the genes. By combining gene order conservation with gene fusion (6%), the co-occurrence of genes in operons in absence of gene order conservation (8%), and the co-occurrence of genes across genomes (11%), significant context information can be obtained for 50% of the genes (the categories overlap). Qualitatively, we observe that the functional interactions between genes are stronger as the requirements for physical neighborhood on the genome are more stringent, while the fraction of potential false positives decreases. Moreover, only in cases in which gene order is conserved in a substantial fraction of the genomes, in this case six out of twenty-five, does a single type of functional interaction (physical interaction) clearly dominate (>80%). In other cases, complementary function information from homology searches, which is available for most of the genes with significant genomic context, is essential to predict the type of interaction. Using a combination of genomic context and homology searches, new functional features can be predicted for 10% of M. genitalium genes. PMID:10958638

  1. The effect of using genealogy-based haplotypes for genomic prediction

    PubMed Central

    2013-01-01

    Background Genomic prediction uses two sources of information: linkage disequilibrium between markers and quantitative trait loci, and additive genetic relationships between individuals. One way to increase the accuracy of genomic prediction is to capture more linkage disequilibrium by regression on haplotypes instead of regression on individual markers. The aim of this study was to investigate the accuracy of genomic prediction using haplotypes based on local genealogy information. Methods A total of 4429 Danish Holstein bulls were genotyped with the 50K SNP chip. Haplotypes were constructed using local genealogical trees. Effects of haplotype covariates were estimated with two types of prediction models: (1) assuming that effects had the same distribution for all haplotype covariates, i.e. the GBLUP method and (2) assuming that a large proportion (π) of the haplotype covariates had zero effect, i.e. a Bayesian mixture method. Results About 7.5 times more covariate effects were estimated when fitting haplotypes based on local genealogical trees compared to fitting individuals markers. Genealogy-based haplotype clustering slightly increased the accuracy of genomic prediction and, in some cases, decreased the bias of prediction. With the Bayesian method, accuracy of prediction was less sensitive to parameter π when fitting haplotypes compared to fitting markers. Conclusions Use of haplotypes based on genealogy can slightly increase the accuracy of genomic prediction. Improved methods to cluster the haplotypes constructed from local genealogy could lead to additional gains in accuracy. PMID:23496971

  2. Quantitative fetal fibronectin and cervical length to predict preterm birth in asymptomatic women with previous cervical surgery.

    PubMed

    Vandermolen, Brooke I; Hezelgrave, Natasha L; Smout, Elizabeth M; Abbott, Danielle S; Seed, Paul T; Shennan, Andrew H

    2016-10-01

    Quantitative fetal fibronectin testing has demonstrated accuracy for prediction of spontaneous preterm birth in asymptomatic women with a history of preterm birth. Predictive accuracy in women with previous cervical surgery (a potentially different risk mechanism) is not known. We sought to compare the predictive accuracy of cervicovaginal fluid quantitative fetal fibronectin and cervical length testing in asymptomatic women with previous cervical surgery to that in women with 1 previous preterm birth. We conducted a prospective blinded secondary analysis of a larger observational study of cervicovaginal fluid quantitative fetal fibronectin concentration in asymptomatic women measured with a Hologic 10Q system (Hologic, Marlborough, MA). Prediction of spontaneous preterm birth (<30, <34, and <37 weeks) with cervicovaginal fluid quantitative fetal fibronectin concentration in primiparous women who had undergone at least 1 invasive cervical procedure (n = 473) was compared with prediction in women who had previous spontaneous preterm birth, preterm prelabor rupture of membranes, or late miscarriage (n = 821). Relationship with cervical length was explored. The rate of spontaneous preterm birth <34 weeks in the cervical surgery group was 3% compared with 9% in previous spontaneous preterm birth group. Receiver operating characteristic curves comparing quantitative fetal fibronectin for prediction at all 3 gestational end points were comparable between the cervical surgery and previous spontaneous preterm birth groups (34 weeks: area under the curve, 0.78 [95% confidence interval 0.64-0.93] vs 0.71 [95% confidence interval 0.64-0.78]; P = .39). Prediction of spontaneous preterm birth using cervical length compared with quantitative fetal fibronectin for prediction of preterm birth <34 weeks of gestation offered similar prediction (area under the curve, 0.88 [95% confidence interval 0.79-0.96] vs 0.77 [95% confidence interval 0.62-0.92], P = .12 in the cervical

  3. Factors influencing protein tyrosine nitration – structure-based predictive models

    PubMed Central

    Bayden, Alexander S.; Yakovlev, Vasily A.; Graves, Paul R.; Mikkelsen, Ross B.; Kellogg, Glen E.

    2010-01-01

    Models for exploring tyrosine nitration in proteins have been created based on 3D structural features of 20 proteins for which high resolution X-ray crystallographic or NMR data are available and for which nitration of 35 total tyrosines has been experimentally proven under oxidative stress. Factors suggested in previous work to enhance nitration were examined with quantitative structural descriptors. The role of neighboring acidic and basic residues is complex: for the majority of tyrosines that are nitrated the distance to the heteroatom of the closest charged sidechain corresponds to the distance needed for suspected nitrating species to form hydrogen bond bridges between the tyrosine and that charged amino acid. This suggests that such bridges play a very important role in tyrosine nitration. Nitration is generally hindered for tyrosines that are buried and for those tyrosines where there is insufficient space for the nitro group. For in vitro nitration, closed environments with nearby heteroatoms or unsaturated centers that can stabilize radicals are somewhat favored. Four quantitative structure-based models, depending on the conditions of nitration, have been developed for predicting site-specific tyrosine nitration. The best model, relevant for both in vitro and in vivo cases predicts 30 of 35 tyrosine nitrations (positive predictive value) and has a sensitivity of 60/71 (11 false positives). PMID:21172423

  4. Quantitative insights for the design of substrate-based SIRT1 inhibitors.

    PubMed

    Kokkonen, Piia; Mellini, Paolo; Nyrhilä, Olli; Rahnasto-Rilla, Minna; Suuronen, Tiina; Kiviranta, Päivi; Huhtiniemi, Tero; Poso, Antti; Jarho, Elina; Lahtela-Kakkonen, Maija

    2014-08-01

    Sirtuin 1 (SIRT1) is the most studied human sirtuin and it catalyzes the deacetylation reaction of acetylated lysine residues of its target proteins, for example histones. It is a promising drug target in the treatment of age-related diseases, such as neurodegenerative diseases and cancer. In this study, a series of known substrate-based sirtuin inhibitors was analyzed with comparative molecular field analysis (CoMFA), which is a three-dimensional quantitative structure-activity relationships (3D-QSAR) technique. The CoMFA model was validated both internally and externally, producing the statistical values concordance correlation coefficient (CCC) of 0.88, the mean value r(2)m of 0.66 and Q(2)F3 of 0.89. Based on the CoMFA interaction contours, 13 new potential inhibitors with high predicted activity were designed, and the activities were verified by in vitro measurements. This work proposes an effective approach for the design and activity prediction of new potential substrate-based SIRT1 inhibitors. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Benchmarking B-Cell Epitope Prediction with Quantitative Dose-Response Data on Antipeptide Antibodies: Towards Novel Pharmaceutical Product Development

    PubMed Central

    Caoili, Salvador Eugenio C.

    2014-01-01

    B-cell epitope prediction can enable novel pharmaceutical product development. However, a mechanistically framed consensus has yet to emerge on benchmarking such prediction, thus presenting an opportunity to establish standards of practice that circumvent epistemic inconsistencies of casting the epitope prediction task as a binary-classification problem. As an alternative to conventional dichotomous qualitative benchmark data, quantitative dose-response data on antibody-mediated biological effects are more meaningful from an information-theoretic perspective in the sense that such effects may be expressed as probabilities (e.g., of functional inhibition by antibody) for which the Shannon information entropy (SIE) can be evaluated as a measure of informativeness. Accordingly, half-maximal biological effects (e.g., at median inhibitory concentrations of antibody) correspond to maximally informative data while undetectable and maximal biological effects correspond to minimally informative data. This applies to benchmarking B-cell epitope prediction for the design of peptide-based immunogens that elicit antipeptide antibodies with functionally relevant cross-reactivity. Presently, the Immune Epitope Database (IEDB) contains relatively few quantitative dose-response data on such cross-reactivity. Only a small fraction of these IEDB data is maximally informative, and many more of them are minimally informative (i.e., with zero SIE). Nevertheless, the numerous qualitative data in IEDB suggest how to overcome the paucity of informative benchmark data. PMID:24949474

  6. Ligand and structure-based methodologies for the prediction of the activity of G protein-coupled receptor ligands

    NASA Astrophysics Data System (ADS)

    Costanzi, Stefano; Tikhonova, Irina G.; Harden, T. Kendall; Jacobson, Kenneth A.

    2009-11-01

    Accurate in silico models for the quantitative prediction of the activity of G protein-coupled receptor (GPCR) ligands would greatly facilitate the process of drug discovery and development. Several methodologies have been developed based on the properties of the ligands, the direct study of the receptor-ligand interactions, or a combination of both approaches. Ligand-based three-dimensional quantitative structure-activity relationships (3D-QSAR) techniques, not requiring knowledge of the receptor structure, have been historically the first to be applied to the prediction of the activity of GPCR ligands. They are generally endowed with robustness and good ranking ability; however they are highly dependent on training sets. Structure-based techniques generally do not provide the level of accuracy necessary to yield meaningful rankings when applied to GPCR homology models. However, they are essentially independent from training sets and have a sufficient level of accuracy to allow an effective discrimination between binders and nonbinders, thus qualifying as viable lead discovery tools. The combination of ligand and structure-based methodologies in the form of receptor-based 3D-QSAR and ligand and structure-based consensus models results in robust and accurate quantitative predictions. The contribution of the structure-based component to these combined approaches is expected to become more substantial and effective in the future, as more sophisticated scoring functions are developed and more detailed structural information on GPCRs is gathered.

  7. Pharmacology-based toxicity assessment: towards quantitative risk prediction in humans.

    PubMed

    Sahota, Tarjinder; Danhof, Meindert; Della Pasqua, Oscar

    2016-05-01

    Despite ongoing efforts to better understand the mechanisms underlying safety and toxicity, ~30% of the attrition in drug discovery and development is still due to safety concerns. Changes in current practice regarding the assessment of safety and toxicity are required to reduce late stage attrition and enable effective development of novel medicines. This review focuses on the implications of empirical evidence generation for the evaluation of safety and toxicity during drug development. A shift in paradigm is needed to (i) ensure that pharmacological concepts are incorporated into the evaluation of safety and toxicity; (ii) facilitate the integration of historical evidence and thereby the translation of findings across species as well as between in vitro and in vivo experiments and (iii) promote the use of experimental protocols tailored to address specific safety and toxicity questions. Based on historical examples, we highlight the challenges for the early characterisation of the safety profile of a new molecule and discuss how model-based methodologies can be applied for the design and analysis of experimental protocols. Issues relative to the scientific rationale are categorised and presented as a hierarchical tree describing the decision-making process. Focus is given to four different areas, namely, optimisation, translation, analytical construct and decision criteria. From a methodological perspective, the relevance of quantitative methods for estimation and extrapolation of risk from toxicology and safety pharmacology experimental protocols, such as points of departure and potency, is discussed in light of advancements in population and Bayesian modelling techniques (e.g. non-linear mixed effects modelling). Their use in the evaluation of pharmacokinetics (PK) and pharmacokinetic-pharmacodynamic relationships (PKPD) has enabled great insight into the dose rationale for medicines in humans, both in terms of efficacy and adverse events. Comparable benefits

  8. Predicting total organic halide formation from drinking water chlorination using quantitative structure-property relationships.

    PubMed

    Luilo, G B; Cabaniss, S E

    2011-10-01

    Chlorinating water which contains dissolved organic matter (DOM) produces disinfection byproducts, the majority of unknown structure. Hence, the total organic halide (TOX) measurement is used as a surrogate for toxic disinfection byproducts. This work derives a robust quantitative structure-property relationship (QSPR) for predicting the TOX formation potential of model compounds. Literature data for 49 compounds were used to train the QSPR in moles of chlorine per mole of compound (Cp) (mol-Cl/mol-Cp). The resulting QSPR has four descriptors, calibration [Formula: see text] of 0.72 and standard deviation of estimation of 0.43 mol-Cl/mol-Cp. Internal and external validation indicate that the QSPR has good predictive power and low bias (‰<‰1%). Applying this QSPR to predict TOX formation by DOM surrogates - tannic acid, two model fulvic acids and two agent-based model assemblages - gave a predicted TOX range of 136-184 µg-Cl/mg-C, consistent with experimental data for DOM, which ranged from 78 to 192 µg-Cl/mg-C. However, the limited structural variation in the training data may limit QSPR applicability; studies of more sulfur-containing compounds, heterocyclic compounds and high molecular weight compounds could lead to a more widely applicable QSPR.

  9. Quantitative imaging features of pretreatment CT predict volumetric response to chemotherapy in patients with colorectal liver metastases.

    PubMed

    Creasy, John M; Midya, Abhishek; Chakraborty, Jayasree; Adams, Lauryn B; Gomes, Camilla; Gonen, Mithat; Seastedt, Kenneth P; Sutton, Elizabeth J; Cercek, Andrea; Kemeny, Nancy E; Shia, Jinru; Balachandran, Vinod P; Kingham, T Peter; Allen, Peter J; DeMatteo, Ronald P; Jarnagin, William R; D'Angelica, Michael I; Do, Richard K G; Simpson, Amber L

    2018-06-19

    This study investigates whether quantitative image analysis of pretreatment CT scans can predict volumetric response to chemotherapy for patients with colorectal liver metastases (CRLM). Patients treated with chemotherapy for CRLM (hepatic artery infusion (HAI) combined with systemic or systemic alone) were included in the study. Patients were imaged at baseline and approximately 8 weeks after treatment. Response was measured as the percentage change in tumour volume from baseline. Quantitative imaging features were derived from the index hepatic tumour on pretreatment CT, and features statistically significant on univariate analysis were included in a linear regression model to predict volumetric response. The regression model was constructed from 70% of data, while 30% were reserved for testing. Test data were input into the trained model. Model performance was evaluated with mean absolute prediction error (MAPE) and R 2 . Clinicopatholologic factors were assessed for correlation with response. 157 patients were included, split into training (n = 110) and validation (n = 47) sets. MAPE from the multivariate linear regression model was 16.5% (R 2 = 0.774) and 21.5% in the training and validation sets, respectively. Stratified by HAI utilisation, MAPE in the validation set was 19.6% for HAI and 25.1% for systemic chemotherapy alone. Clinical factors associated with differences in median tumour response were treatment strategy, systemic chemotherapy regimen, age and KRAS mutation status (p < 0.05). Quantitative imaging features extracted from pretreatment CT are promising predictors of volumetric response to chemotherapy in patients with CRLM. Pretreatment predictors of response have the potential to better select patients for specific therapies. • Colorectal liver metastases (CRLM) are downsized with chemotherapy but predicting the patients that will respond to chemotherapy is currently not possible. • Heterogeneity and enhancement patterns of CRLM can be

  10. Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method.

    PubMed

    Zhao, Yongsheng; Zhao, Jihong; Huang, Ying; Zhou, Qing; Zhang, Xiangping; Zhang, Suojiang

    2014-08-15

    A comprehensive database on toxicity of ionic liquids (ILs) is established. The database includes over 4000 pieces of data. Based on the database, the relationship between IL's structure and its toxicity has been analyzed qualitatively. Furthermore, Quantitative Structure-Activity relationships (QSAR) model is conducted to predict the toxicities (EC50 values) of various ILs toward the Leukemia rat cell line IPC-81. Four parameters selected by the heuristic method (HM) are used to perform the studies of multiple linear regression (MLR) and support vector machine (SVM). The squared correlation coefficient (R(2)) and the root mean square error (RMSE) of training sets by two QSAR models are 0.918 and 0.959, 0.258 and 0.179, respectively. The prediction R(2) and RMSE of QSAR test sets by MLR model are 0.892 and 0.329, by SVM model are 0.958 and 0.234, respectively. The nonlinear model developed by SVM algorithm is much outperformed MLR, which indicates that SVM model is more reliable in the prediction of toxicity of ILs. This study shows that increasing the relative number of O atoms of molecules leads to decrease in the toxicity of ILs. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. DOSIMETRY MODELING OF INHALED FORMALDEHYDE: BINNING NASAL FLUX PREDICTIONS FOR QUANTITATIVE RISK ASSESSMENT

    EPA Science Inventory

    Dosimetry Modeling of Inhaled Formaldehyde: Binning Nasal Flux Predictions for Quantitative Risk Assessment. Kimbell, J.S., Overton, J.H., Subramaniam, R.P., Schlosser, P.M., Morgan, K.T., Conolly, R.B., and Miller, F.J. (2001). Toxicol. Sci. 000, 000:000.

    Interspecies e...

  12. Effect of genetic architecture on the prediction accuracy of quantitative traits in samples of unrelated individuals.

    PubMed

    Morgante, Fabio; Huang, Wen; Maltecca, Christian; Mackay, Trudy F C

    2018-06-01

    Predicting complex phenotypes from genomic data is a fundamental aim of animal and plant breeding, where we wish to predict genetic merits of selection candidates; and of human genetics, where we wish to predict disease risk. While genomic prediction models work well with populations of related individuals and high linkage disequilibrium (LD) (e.g., livestock), comparable models perform poorly for populations of unrelated individuals and low LD (e.g., humans). We hypothesized that low prediction accuracies in the latter situation may occur when the genetics architecture of the trait departs from the infinitesimal and additive architecture assumed by most prediction models. We used simulated data for 10,000 lines based on sequence data from a population of unrelated, inbred Drosophila melanogaster lines to evaluate this hypothesis. We show that, even in very simplified scenarios meant as a stress test of the commonly used Genomic Best Linear Unbiased Predictor (G-BLUP) method, using all common variants yields low prediction accuracy regardless of the trait genetic architecture. However, prediction accuracy increases when predictions are informed by the genetic architecture inferred from mapping the top variants affecting main effects and interactions in the training data, provided there is sufficient power for mapping. When the true genetic architecture is largely or partially due to epistatic interactions, the additive model may not perform well, while models that account explicitly for interactions generally increase prediction accuracy. Our results indicate that accounting for genetic architecture can improve prediction accuracy for quantitative traits.

  13. Strong ion calculator--a practical bedside application of modern quantitative acid-base physiology.

    PubMed

    Lloyd, P

    2004-12-01

    To review acid-base balance by considering the physical effects of ions in solution and describe the use of a calculator to derive the strong ion difference and Atot and strong ion gap. A review of articles reporting on the use of strong ion difference and Atot in the interpretation of acid base balance. Tremendous progress has been made in the last decade in our understanding of acid-base physiology. We now have a quantitative understanding of the mechanisms underlying the acidity of an aqueous solution. We can now predict the acidity given information about the concentration of the various ion-forming species within it. We can predict changes in acid-base status caused by disturbance of these factors, and finally, we can detect unmeasured anions with greater sensitivity than was previously possible with the anion gap, using either arterial or venous blood sampling. Acid-base interpretation has ceased to be an intuitive and arcane art. Much of it is now an exact computation that can be automated and incorporated into an online hospital laboratory information system. All diseases and all therapies can affect a patient's acid-base status only through the final common pathway of one or more of the three independent factors. With Constable's equations we can now accurately predict the acidity of plasma. When there is a discrepancy between the observed and predicted acidity we can deduce the net concentration of unmeasured ions to account for the difference.

  14. Quantitative modelling in cognitive ergonomics: predicting signals passed at danger.

    PubMed

    Moray, Neville; Groeger, John; Stanton, Neville

    2017-02-01

    This paper shows how to combine field observations, experimental data and mathematical modelling to produce quantitative explanations and predictions of complex events in human-machine interaction. As an example, we consider a major railway accident. In 1999, a commuter train passed a red signal near Ladbroke Grove, UK, into the path of an express. We use the Public Inquiry Report, 'black box' data, and accident and engineering reports to construct a case history of the accident. We show how to combine field data with mathematical modelling to estimate the probability that the driver observed and identified the state of the signals, and checked their status. Our methodology can explain the SPAD ('Signal Passed At Danger'), generate recommendations about signal design and placement and provide quantitative guidance for the design of safer railway systems' speed limits and the location of signals. Practitioner Summary: Detailed ergonomic analysis of railway signals and rail infrastructure reveals problems of signal identification at this location. A record of driver eye movements measures attention, from which a quantitative model for out signal placement and permitted speeds can be derived. The paper is an example of how to combine field data, basic research and mathematical modelling to solve ergonomic design problems.

  15. Quantitative AOP-based predictions for two aromatase inhibitors evaluating the influence of bioaccumulation on prediction accuracy

    EPA Science Inventory

    The adverse outcome pathway (AOP) framework can be used to support the use of mechanistic toxicology data as a basis for risk assessment. For certain risk contexts this includes defining, quantitative linkages between the molecular initiating event (MIE) and subsequent key events...

  16. Quantitative Missense Variant Effect Prediction Using Large-Scale Mutagenesis Data.

    PubMed

    Gray, Vanessa E; Hause, Ronald J; Luebeck, Jens; Shendure, Jay; Fowler, Douglas M

    2018-01-24

    Large datasets describing the quantitative effects of mutations on protein function are becoming increasingly available. Here, we leverage these datasets to develop Envision, which predicts the magnitude of a missense variant's molecular effect. Envision combines 21,026 variant effect measurements from nine large-scale experimental mutagenesis datasets, a hitherto untapped training resource, with a supervised, stochastic gradient boosting learning algorithm. Envision outperforms other missense variant effect predictors both on large-scale mutagenesis data and on an independent test dataset comprising 2,312 TP53 variants whose effects were measured using a low-throughput approach. This dataset was never used for hyperparameter tuning or model training and thus serves as an independent validation set. Envision prediction accuracy is also more consistent across amino acids than other predictors. Finally, we demonstrate that Envision's performance improves as more large-scale mutagenesis data are incorporated. We precompute Envision predictions for every possible single amino acid variant in human, mouse, frog, zebrafish, fruit fly, worm, and yeast proteomes (https://envision.gs.washington.edu/). Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The Impact of Situation-Based Learning to Students’ Quantitative Literacy

    NASA Astrophysics Data System (ADS)

    Latifah, T.; Cahya, E.; Suhendra

    2017-09-01

    Nowadays, the usage of quantities can be seen almost everywhere. There has been an increase of quantitative thinking, such as quantitative reasoning and quantitative literacy, within the context of daily life. However, many people today are still not fully equipped with the knowledge of quantitative thinking. There are still a lot of individuals not having enough quantitative skills to perform well within today’s society. Based on this issue, the research aims to improve students’ quantitative literacy in junior high school. The qualitative analysis of written student work and video observations during the experiment reveal that the impact of situation-based learning affects students’ quantitative literacy.

  18. Decoding brain cancer dynamics: a quantitative histogram-based approach using temporal MRI

    NASA Astrophysics Data System (ADS)

    Zhou, Mu; Hall, Lawrence O.; Goldgof, Dmitry B.; Russo, Robin; Gillies, Robert J.; Gatenby, Robert A.

    2015-03-01

    Brain tumor heterogeneity remains a challenge for probing brain cancer evolutionary dynamics. In light of evolution, it is a priority to inspect the cancer system from a time-domain perspective since it explicitly tracks the dynamics of cancer variations. In this paper, we study the problem of exploring brain tumor heterogeneity from temporal clinical magnetic resonance imaging (MRI) data. Our goal is to discover evidence-based knowledge from such temporal imaging data, where multiple clinical MRI scans from Glioblastoma multiforme (GBM) patients are generated during therapy. In particular, we propose a quantitative histogram-based approach that builds a prediction model to measure the difference in histograms obtained from pre- and post-treatment. The study could significantly assist radiologists by providing a metric to identify distinctive patterns within each tumor, which is crucial for the goal of providing patient-specific treatments. We examine the proposed approach for a practical application - clinical survival group prediction. Experimental results show that our approach achieved 90.91% accuracy.

  19. Comparative analysis of predictive models for nongenotoxic hepatocarcinogenicity using both toxicogenomics and quantitative structure-activity relationships.

    PubMed

    Liu, Zhichao; Kelly, Reagan; Fang, Hong; Ding, Don; Tong, Weida

    2011-07-18

    The primary testing strategy to identify nongenotoxic carcinogens largely relies on the 2-year rodent bioassay, which is time-consuming and labor-intensive. There is an increasing effort to develop alternative approaches to prioritize the chemicals for, supplement, or even replace the cancer bioassay. In silico approaches based on quantitative structure-activity relationships (QSAR) are rapid and inexpensive and thus have been investigated for such purposes. A slightly more expensive approach based on short-term animal studies with toxicogenomics (TGx) represents another attractive option for this application. Thus, the primary questions are how much better predictive performance using short-term TGx models can be achieved compared to that of QSAR models, and what length of exposure is sufficient for high quality prediction based on TGx. In this study, we developed predictive models for rodent liver carcinogenicity using gene expression data generated from short-term animal models at different time points and QSAR. The study was focused on the prediction of nongenotoxic carcinogenicity since the genotoxic chemicals can be inexpensively removed from further development using various in vitro assays individually or in combination. We identified 62 chemicals whose hepatocarcinogenic potential was available from the National Center for Toxicological Research liver cancer database (NCTRlcdb). The gene expression profiles of liver tissue obtained from rats treated with these chemicals at different time points (1 day, 3 days, and 5 days) are available from the Gene Expression Omnibus (GEO) database. Both TGx and QSAR models were developed on the basis of the same set of chemicals using the same modeling approach, a nearest-centroid method with a minimum redundancy and maximum relevancy-based feature selection with performance assessed using compound-based 5-fold cross-validation. We found that the TGx models outperformed QSAR in every aspect of modeling. For example, the

  20. Novel Uses of In Vitro Data to Develop Quantitative Biological Activity Relationship Models for in Vivo Carcinogenicity Prediction.

    PubMed

    Pradeep, Prachi; Povinelli, Richard J; Merrill, Stephen J; Bozdag, Serdar; Sem, Daniel S

    2015-04-01

    The availability of large in vitro datasets enables better insight into the mode of action of chemicals and better identification of potential mechanism(s) of toxicity. Several studies have shown that not all in vitro assays can contribute as equal predictors of in vivo carcinogenicity for development of hybrid Quantitative Structure Activity Relationship (QSAR) models. We propose two novel approaches for the use of mechanistically relevant in vitro assay data in the identification of relevant biological descriptors and development of Quantitative Biological Activity Relationship (QBAR) models for carcinogenicity prediction. We demonstrate that in vitro assay data can be used to develop QBAR models for in vivo carcinogenicity prediction via two case studies corroborated with firm scientific rationale. The case studies demonstrate the similarities between QBAR and QSAR modeling in: (i) the selection of relevant descriptors to be used in the machine learning algorithm, and (ii) the development of a computational model that maps chemical or biological descriptors to a toxic endpoint. The results of both the case studies show: (i) improved accuracy and sensitivity which is especially desirable under regulatory requirements, and (ii) overall adherence with the OECD/REACH guidelines. Such mechanism based models can be used along with QSAR models for prediction of mechanistically complex toxic endpoints. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Novel quantitative pigmentation phenotyping enhances genetic association, epistasis, and prediction of human eye colour.

    PubMed

    Wollstein, Andreas; Walsh, Susan; Liu, Fan; Chakravarthy, Usha; Rahu, Mati; Seland, Johan H; Soubrane, Gisèle; Tomazzoli, Laura; Topouzis, Fotis; Vingerling, Johannes R; Vioque, Jesus; Böhringer, Stefan; Fletcher, Astrid E; Kayser, Manfred

    2017-02-27

    Success of genetic association and the prediction of phenotypic traits from DNA are known to depend on the accuracy of phenotype characterization, amongst other parameters. To overcome limitations in the characterization of human iris pigmentation, we introduce a fully automated approach that specifies the areal proportions proposed to represent differing pigmentation types, such as pheomelanin, eumelanin, and non-pigmented areas within the iris. We demonstrate the utility of this approach using high-resolution digital eye imagery and genotype data from 12 selected SNPs from over 3000 European samples of seven populations that are part of the EUREYE study. In comparison to previous quantification approaches, (1) we achieved an overall improvement in eye colour phenotyping, which provides a better separation of manually defined eye colour categories. (2) Single nucleotide polymorphisms (SNPs) known to be involved in human eye colour variation showed stronger associations with our approach. (3) We found new and confirmed previously noted SNP-SNP interactions. (4) We increased SNP-based prediction accuracy of quantitative eye colour. Our findings exemplify that precise quantification using the perceived biological basis of pigmentation leads to enhanced genetic association and prediction of eye colour. We expect our approach to deliver new pigmentation genes when applied to genome-wide association testing.

  2. Novel quantitative pigmentation phenotyping enhances genetic association, epistasis, and prediction of human eye colour

    PubMed Central

    Wollstein, Andreas; Walsh, Susan; Liu, Fan; Chakravarthy, Usha; Rahu, Mati; Seland, Johan H.; Soubrane, Gisèle; Tomazzoli, Laura; Topouzis, Fotis; Vingerling, Johannes R.; Vioque, Jesus; Böhringer, Stefan; Fletcher, Astrid E.; Kayser, Manfred

    2017-01-01

    Success of genetic association and the prediction of phenotypic traits from DNA are known to depend on the accuracy of phenotype characterization, amongst other parameters. To overcome limitations in the characterization of human iris pigmentation, we introduce a fully automated approach that specifies the areal proportions proposed to represent differing pigmentation types, such as pheomelanin, eumelanin, and non-pigmented areas within the iris. We demonstrate the utility of this approach using high-resolution digital eye imagery and genotype data from 12 selected SNPs from over 3000 European samples of seven populations that are part of the EUREYE study. In comparison to previous quantification approaches, (1) we achieved an overall improvement in eye colour phenotyping, which provides a better separation of manually defined eye colour categories. (2) Single nucleotide polymorphisms (SNPs) known to be involved in human eye colour variation showed stronger associations with our approach. (3) We found new and confirmed previously noted SNP-SNP interactions. (4) We increased SNP-based prediction accuracy of quantitative eye colour. Our findings exemplify that precise quantification using the perceived biological basis of pigmentation leads to enhanced genetic association and prediction of eye colour. We expect our approach to deliver new pigmentation genes when applied to genome-wide association testing. PMID:28240252

  3. Quantitative Prediction of Paravalvular Leak in Transcatheter Aortic Valve Replacement Based on Tissue-Mimicking 3D Printing.

    PubMed

    Qian, Zhen; Wang, Kan; Liu, Shizhen; Zhou, Xiao; Rajagopal, Vivek; Meduri, Christopher; Kauten, James R; Chang, Yung-Hang; Wu, Changsheng; Zhang, Chuck; Wang, Ben; Vannan, Mani A

    2017-07-01

    This study aimed to develop a procedure simulation platform for in vitro transcatheter aortic valve replacement (TAVR) using patient-specific 3-dimensional (3D) printed tissue-mimicking phantoms. We investigated the feasibility of using these 3D printed phantoms to quantitatively predict the occurrence, severity, and location of any degree of post-TAVR paravalvular leaks (PVL). We have previously shown that metamaterial 3D printing technique can be used to create patient-specific phantoms that mimic the mechanical properties of biological tissue. This may have applications in procedural planning for cardiovascular interventions. This retrospective study looked at 18 patients who underwent TAVR. Patient-specific aortic root phantoms were created using the tissue-mimicking 3D printing technique using pre-TAVR computed tomography. The CoreValve (self-expanding valve) prostheses were deployed in the phantoms to simulate the TAVR procedure, from which post-TAVR aortic root strain was quantified in vitro. A novel index, the annular bulge index, was measured to assess the post-TAVR annular strain unevenness in the phantoms. We tested the comparative predictive value of the bulge index and other known predictors of post-TAVR PVL. The maximum annular bulge index was significantly different among patient subgroups that had no PVL, trace-to-mild PVL, and moderate-to-severe PVL (p = 0.001). Compared with other known PVL predictors, bulge index was the only significant predictor of moderate-severe PVL (area under the curve = 95%; p < 0.0001). Also, in 12 patients with post-TAVR PVL, the annular bulge index predicted the major PVL location in 9 patients (accuracy = 75%). In this proof-of-concept study, we have demonstrated the feasibility of using 3D printed tissue-mimicking phantoms to quantitatively assess the post-TAVR aortic root strain in vitro. A novel indicator of the post-TAVR annular strain unevenness, the annular bulge index, outperformed the other

  4. Advanced 2-dimensional quantitative coronary angiographic analysis for prediction of fractional flow reserve in intermediate coronary stenoses.

    PubMed

    Opolski, Maksymilian P; Pregowski, Jerzy; Kruk, Mariusz; Kepka, Cezary; Staruch, Adam D; Witkowski, Adam

    2014-07-01

    The widespread clinical application of coronary computed tomography angiography (CCTA) has resulted in increased referral patterns of patients with intermediate coronary stenoses to invasive coronary angiography. We evaluated the application of advanced quantitative coronary angiography (A-QCA) for predicting fractional flow reserve (FFR) in intermediate coronary lesions detected on CCTA. Fifty-six patients with 66 single intermediate coronary lesions (≥ 50% to 80% stenosis) on CCTA prospectively underwent coronary angiography and FFR. A-QCA including calculation of the Poiseuille-based index defined as the ratio of lesion length to the fourth power of the minimal lumen diameter (MLD) was performed. Significant stenosis was defined as FFR ≤ 0.80. The mean FFR was 0.86 ± 0.09, and 18 lesions (27%) were functionally significant. FFR correlated with lesion length (R=-0.303, P=0.013), MLD (R=0.527, P<0.001), diameter stenosis (R=-0.404, P=0.001), minimum lumen area (MLA) (R=0.530, P<0.001), lumen stenosis (R=-0.400, P=0.001), and Poiseuille-based index (R=-0.602, P<0.001). The optimal cutoff values for MLD, MLA, diameter stenosis, and lumen stenosis were ≤ 1.3 mm, ≤ 1.5 mm, >44%, and >69%, respectively (maximum negative predictive value of 94% for MLA, maximum positive predictive value of 58% for diameter stenosis). The Poiseuille-based index was the most accurate (C statistic 0.86, sensitivity 100%, specificity 71%, positive predictive value 56%, and negative predictive value 100%) predictor of FFR ≤ 0.80, but showed the lowest interobserver agreement (intraclass correlation coefficient 0.37). A-QCA might be used to rule out significant ischemia in intermediate stenoses detected by CCTA. The diagnostic application of the Poiseuille-based angiographic index is precluded by its high interobserver variability.

  5. Quantitative computed tomography versus spirometry in predicting air leak duration after major lung resection for cancer.

    PubMed

    Ueda, Kazuhiro; Kaneda, Yoshikazu; Sudo, Manabu; Mitsutaka, Jinbo; Li, Tao-Sheng; Suga, Kazuyoshi; Tanaka, Nobuyuki; Hamano, Kimikazu

    2005-11-01

    Emphysema is a well-known risk factor for developing air leak or persistent air leak after pulmonary resection. Although quantitative computed tomography (CT) and spirometry are used to diagnose emphysema, it remains controversial whether these tests are predictive of the duration of postoperative air leak. Sixty-two consecutive patients who were scheduled to undergo major lung resection for cancer were enrolled in this prospective study to define the best predictor of postoperative air leak duration. Preoperative factors analyzed included spirometric variables and area of emphysema (proportion of the low-attenuation area) that was quantified in a three-dimensional CT lung model. Chest tubes were removed the day after disappearance of the air leak, regardless of pleural drainage. Univariate and multivariate proportional hazards analyses were used to determine the influence of preoperative factors on chest tube time (air leak duration). By univariate analysis, site of resection (upper, lower), forced expiratory volume in 1 second, predicted postoperative forced expiratory volume in 1 second, and area of emphysema (< 1%, 1% to 10%, > 10%) were significant predictors of air leak duration. By multivariate analysis, site of resection and area of emphysema were the best independent determinants of air leak duration. The results were similar for patients with a smoking history (n = 40), but neither forced expiratory volume in 1 second nor predicted postoperative forced expiratory volume in 1 second were predictive of air leak duration. Quantitative CT is superior to spirometry in predicting air leak duration after major lung resection for cancer. Quantitative CT may aid in the identification of patients, particularly among those with a smoking history, requiring additional preventive procedures against air leak.

  6. Quantitative proteome-based systematic identification of SIRT7 substrates.

    PubMed

    Zhang, Chaohua; Zhai, Zichao; Tang, Ming; Cheng, Zhongyi; Li, Tingting; Wang, Haiying; Zhu, Wei-Guo

    2017-07-01

    SIRT7 is a class III histone deacetylase that is involved in numerous cellular processes. Only six substrates of SIRT7 have been reported thus far, so we aimed to systematically identify SIRT7 substrates using stable-isotope labeling with amino acids in cell culture (SILAC) coupled with quantitative mass spectrometry (MS). Using SIRT7 +/+ and SIRT7 -/- mouse embryonic fibroblasts as our model system, we identified and quantified 1493 acetylation sites in 789 proteins, of which 261 acetylation sites in 176 proteins showed ≥2-fold change in acetylation state between SIRT7 -/- and SIRT7 +/+ cells. These proteins were considered putative SIRT7 substrates and were carried forward for further analysis. We then validated the predictive efficiency of the SILAC-MS experiment by assessing substrate acetylation status in vitro in six predicted proteins. We also performed a bioinformatic analysis of the MS data, which indicated that many of the putative protein substrates were involved in metabolic processes. Finally, we expanded our list of candidate substrates by performing a bioinformatics-based prediction analysis of putative SIRT7 substrates, using our list of putative substrates as a positive training set, and again validated a subset of the proteins in vitro. In summary, we have generated a comprehensive list of SIRT7 candidate substrates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Predicting drug hydrolysis based on moisture uptake in various packaging designs.

    PubMed

    Naversnik, Klemen; Bohanec, Simona

    2008-12-18

    An attempt was made to predict the stability of a moisture sensitive drug product based on the knowledge of the dependence of the degradation rate on tablet moisture. The moisture increase inside a HDPE bottle with the drug formulation was simulated with the sorption-desorption moisture transfer model, which, in turn, allowed an accurate prediction of the drug degradation kinetics. The stability prediction, obtained by computer simulation, was made in a considerably shorter time frame and required little resources compared to a conventional stability study. The prediction was finally upgraded to a stochastic Monte Carlo simulation, which allowed quantitative incorporation of uncertainty, stemming from various sources. The resulting distribution of the outcome of interest (amount of degradation product at expiry) is a comprehensive way of communicating the result along with its uncertainty, superior to single-value results or confidence intervals.

  8. Quantitative analysis and prediction of G-quadruplex forming sequences in double-stranded DNA

    PubMed Central

    Kim, Minji; Kreig, Alex; Lee, Chun-Ying; Rube, H. Tomas; Calvert, Jacob; Song, Jun S.; Myong, Sua

    2016-01-01

    Abstract G-quadruplex (GQ) is a four-stranded DNA structure that can be formed in guanine-rich sequences. GQ structures have been proposed to regulate diverse biological processes including transcription, replication, translation and telomere maintenance. Recent studies have demonstrated the existence of GQ DNA in live mammalian cells and a significant number of potential GQ forming sequences in the human genome. We present a systematic and quantitative analysis of GQ folding propensity on a large set of 438 GQ forming sequences in double-stranded DNA by integrating fluorescence measurement, single-molecule imaging and computational modeling. We find that short minimum loop length and the thymine base are two main factors that lead to high GQ folding propensity. Linear and Gaussian process regression models further validate that the GQ folding potential can be predicted with high accuracy based on the loop length distribution and the nucleotide content of the loop sequences. Our study provides important new parameters that can inform the evaluation and classification of putative GQ sequences in the human genome. PMID:27095201

  9. A Quantitative ADME-base Tool for Exploring Human ...

    EPA Pesticide Factsheets

    Exposure to a wide range of chemicals through our daily habits and routines is ubiquitous and largely unavoidable within modern society. The potential for human exposure, however, has not been quantified for the vast majority of chemicals with wide commercial use. Creative advances in exposure science are needed to support efficient and effective evaluation and management of chemical risks, particularly for chemicals in consumer products. The U.S. Environmental Protection Agency Office of Research and Development is developing, or collaborating in the development of, scientifically-defensible methods for making quantitative or semi-quantitative exposure predictions. The Exposure Prioritization (Ex Priori) model is a simplified, quantitative visual dashboard that provides a rank-ordered internalized dose metric to simultaneously explore exposures across chemical space (not chemical by chemical). Diverse data streams are integrated within the interface such that different exposure scenarios for “individual,” “population,” or “professional” time-use profiles can be interchanged to tailor exposure and quantitatively explore multi-chemical signatures of exposure, internalized dose (uptake), body burden, and elimination. Ex Priori has been designed as an adaptable systems framework that synthesizes knowledge from various domains and is amenable to new knowledge/information. As such, it algorithmically captures the totality of exposure across pathways. It

  10. Quantitative Lymphoscintigraphy to Predict the Possibility of Lymphedema Development After Breast Cancer Surgery: Retrospective Clinical Study.

    PubMed

    Kim, Paul; Lee, Ju Kang; Lim, Oh Kyung; Park, Heung Kyu; Park, Ki Deok

    2017-12-01

    To predict the probability of lymphedema development in breast cancer patients in the early post-operation stage, we investigated the ability of quantitative lymphoscintigraphic assessment. This retrospective study included 201 patients without lymphedema after unilateral breast cancer surgery. Lymphoscintigraphy was performed between 4 and 8 weeks after surgery to evaluate the lymphatic system in the early postoperative stage. Quantitative lymphoscintigraphy was performed using four methods: ratio of radiopharmaceutical clearance rate of the affected to normal hand; ratio of radioactivity of the affected to normal hand; ratio of radiopharmaceutical uptake rate of the affected to normal axilla (RUA); and ratio of radioactivity of the affected to normal axilla (RRA). During a 1-year follow-up, patients with a circumferential interlimb difference of 2 cm at any measurement location and a 200-mL interlimb volume difference were diagnosed with lymphedema. We investigated the difference in quantitative lymphoscintigraphic assessment between the non-lymphedema and lymphedema groups. Quantitative lymphoscintigraphic assessment revealed that the RUA and RRA were significantly lower in the lymphedema group than in the non-lymphedema group. After adjusting the model for all significant variables (body mass index, N-stage, T-stage, type of surgery, and type of lymph node surgery), RRA was associated with lymphedema (odds ratio=0.14; 95% confidence interval, 0.04-0.46; p=0.001). In patients in the early postoperative stage after unilateral breast cancer surgery, quantitative lymphoscintigraphic assessment can be used to predict the probability of developing lymphedema.

  11. Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat.

    PubMed

    Juliana, Philomin; Singh, Ravi P; Singh, Pawan K; Crossa, Jose; Huerta-Espino, Julio; Lan, Caixia; Bhavani, Sridhar; Rutkoski, Jessica E; Poland, Jesse A; Bergstrom, Gary C; Sorrells, Mark E

    2017-07-01

    Genomic prediction for seedling and adult plant resistance to wheat rusts was compared to prediction using few markers as fixed effects in a least-squares approach and pedigree-based prediction. The unceasing plant-pathogen arms race and ephemeral nature of some rust resistance genes have been challenging for wheat (Triticum aestivum L.) breeding programs and farmers. Hence, it is important to devise strategies for effective evaluation and exploitation of quantitative rust resistance. One promising approach that could accelerate gain from selection for rust resistance is 'genomic selection' which utilizes dense genome-wide markers to estimate the breeding values (BVs) for quantitative traits. Our objective was to compare three genomic prediction models including genomic best linear unbiased prediction (GBLUP), GBLUP A that was GBLUP with selected loci as fixed effects and reproducing kernel Hilbert spaces-markers (RKHS-M) with least-squares (LS) approach, RKHS-pedigree (RKHS-P), and RKHS markers and pedigree (RKHS-MP) to determine the BVs for seedling and/or adult plant resistance (APR) to leaf rust (LR), stem rust (SR), and stripe rust (YR). The 333 lines in the 45th IBWSN and the 313 lines in the 46th IBWSN were genotyped using genotyping-by-sequencing and phenotyped in replicated trials. The mean prediction accuracies ranged from 0.31-0.74 for LR seedling, 0.12-0.56 for LR APR, 0.31-0.65 for SR APR, 0.70-0.78 for YR seedling, and 0.34-0.71 for YR APR. For most datasets, the RKHS-MP model gave the highest accuracies, while LS gave the lowest. GBLUP, GBLUP A, RKHS-M, and RKHS-P models gave similar accuracies. Using genome-wide marker-based models resulted in an average of 42% increase in accuracy over LS. We conclude that GS is a promising approach for improvement of quantitative rust resistance and can be implemented in the breeding pipeline.

  12. Post-anoxic quantitative MRI changes may predict emergence from coma and functional outcomes at discharge.

    PubMed

    Reynolds, Alexandra S; Guo, Xiaotao; Matthews, Elizabeth; Brodie, Daniel; Rabbani, Leroy E; Roh, David J; Park, Soojin; Claassen, Jan; Elkind, Mitchell S V; Zhao, Binsheng; Agarwal, Sachin

    2017-08-01

    Traditional predictors of neurological prognosis after cardiac arrest are unreliable after targeted temperature management. Absence of pupillary reflexes remains a reliable predictor of poor outcome. Diffusion-weighted imaging has emerged as a potential predictor of recovery, and here we compare imaging characteristics to pupillary exam. We identified 69 patients who had MRIs within seven days of arrest and used a semi-automated algorithm to perform quantitative volumetric analysis of apparent diffusion coefficient (ADC) sequences at various thresholds. Area under receiver operating characteristic curves (ROC-AUC) were estimated to compare predictive values of quantitative MRI with pupillary exam at days 3, 5 and 7 post-arrest, for persistence of coma and functional outcomes at discharge. Cerebral Performance Category scores of 3-4 were considered poor outcome. Excluding patients where life support was withdrawn, ≥2.8% diffusion restriction of the entire brain at an ADC of ≤650×10 -6 m 2 /s was 100% specific and 68% sensitive for failure to wake up from coma before discharge. The ROC-AUC of ADC changes at ≤450×10 -6 mm 2 /s and ≤650×10 -6 mm 2 /s were significantly superior in predicting failure to wake up from coma compared to bilateral absence of pupillary reflexes. Among survivors, >0.01% of diffusion restriction of the entire brain at an ADC ≤450×10 -6 m 2 /s was 100% specific and 46% sensitive for poor functional outcome at discharge. The ROC curve predicting poor functional outcome at ADC ≤450×10 -6 mm 2 /s had an AUC of 0.737 (0.574-0.899, p=0.04). Post-anoxic diffusion changes using quantitative brain MRI may aid in predicting persistent coma and poor functional outcomes at hospital discharge. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Protein asparagine deamidation prediction based on structures with machine learning methods.

    PubMed

    Jia, Lei; Sun, Yaxiong

    2017-01-01

    Chemical stability is a major concern in the development of protein therapeutics due to its impact on both efficacy and safety. Protein "hotspots" are amino acid residues that are subject to various chemical modifications, including deamidation, isomerization, glycosylation, oxidation etc. A more accurate prediction method for potential hotspot residues would allow their elimination or reduction as early as possible in the drug discovery process. In this work, we focus on prediction models for asparagine (Asn) deamidation. Sequence-based prediction method simply identifies the NG motif (amino acid asparagine followed by a glycine) to be liable to deamidation. It still dominates deamidation evaluation process in most pharmaceutical setup due to its convenience. However, the simple sequence-based method is less accurate and often causes over-engineering a protein. We introduce structure-based prediction models by mining available experimental and structural data of deamidated proteins. Our training set contains 194 Asn residues from 25 proteins that all have available high-resolution crystal structures. Experimentally measured deamidation half-life of Asn in penta-peptides as well as 3D structure-based properties, such as solvent exposure, crystallographic B-factors, local secondary structure and dihedral angles etc., were used to train prediction models with several machine learning algorithms. The prediction tools were cross-validated as well as tested with an external test data set. The random forest model had high enrichment in ranking deamidated residues higher than non-deamidated residues while effectively eliminated false positive predictions. It is possible that such quantitative protein structure-function relationship tools can also be applied to other protein hotspot predictions. In addition, we extensively discussed metrics being used to evaluate the performance of predicting unbalanced data sets such as the deamidation case.

  14. Simulation-Based Prediction of Equivalent Continuous Noises during Construction Processes

    PubMed Central

    Zhang, Hong; Pei, Yun

    2016-01-01

    Quantitative prediction of construction noise is crucial to evaluate construction plans to help make decisions to address noise levels. Considering limitations of existing methods for measuring or predicting the construction noise and particularly the equivalent continuous noise level over a period of time, this paper presents a discrete-event simulation method for predicting the construction noise in terms of equivalent continuous level. The noise-calculating models regarding synchronization, propagation and equivalent continuous level are presented. The simulation framework for modeling the noise-affected factors and calculating the equivalent continuous noise by incorporating the noise-calculating models into simulation strategy is proposed. An application study is presented to demonstrate and justify the proposed simulation method in predicting the equivalent continuous noise during construction. The study contributes to provision of a simulation methodology to quantitatively predict the equivalent continuous noise of construction by considering the relevant uncertainties, dynamics and interactions. PMID:27529266

  15. Simulation-Based Prediction of Equivalent Continuous Noises during Construction Processes.

    PubMed

    Zhang, Hong; Pei, Yun

    2016-08-12

    Quantitative prediction of construction noise is crucial to evaluate construction plans to help make decisions to address noise levels. Considering limitations of existing methods for measuring or predicting the construction noise and particularly the equivalent continuous noise level over a period of time, this paper presents a discrete-event simulation method for predicting the construction noise in terms of equivalent continuous level. The noise-calculating models regarding synchronization, propagation and equivalent continuous level are presented. The simulation framework for modeling the noise-affected factors and calculating the equivalent continuous noise by incorporating the noise-calculating models into simulation strategy is proposed. An application study is presented to demonstrate and justify the proposed simulation method in predicting the equivalent continuous noise during construction. The study contributes to provision of a simulation methodology to quantitatively predict the equivalent continuous noise of construction by considering the relevant uncertainties, dynamics and interactions.

  16. Qualitative and quantitative prediction of volatile compounds from initial amino acid profiles in Korean rice wine (makgeolli) model.

    PubMed

    Kang, Bo-Sik; Lee, Jang-Eun; Park, Hyun-Jin

    2014-06-01

    In Korean rice wine (makgeolli) model, we tried to develop a prediction model capable of eliciting a quantitative relationship between initial amino acids in makgeolli mash and major aromatic compounds, such as fusel alcohols, their acetate esters, and ethyl esters of fatty acids, in makgeolli brewed. Mass-spectrometry-based electronic nose (MS-EN) was used to qualitatively discriminate between makgeollis made from makgeolli mashes with different amino acid compositions. Following this measurement, headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (GC-MS) combined with partial least-squares regression (PLSR) method was employed to quantitatively correlate amino acid composition of makgeolli mash with major aromatic compounds evolved during makgeolli fermentation. In qualitative prediction with MS-EN analysis, the makgeollis were well discriminated according to the volatile compounds derived from amino acids of makgeolli mash. Twenty-seven ion fragments with mass-to-charge ratio (m/z) of 55 to 98 amu were responsible for the discrimination. In GC-MS combined with PLSR method, a quantitative approach between the initial amino acids of makgeolli mash and the fusel compounds of makgeolli demonstrated that coefficient of determination (R(2)) of most of the fusel compounds ranged from 0.77 to 0.94 in good correlation, except for 2-phenylethanol (R(2) = 0.21), whereas R(2) for ethyl esters of MCFAs including ethyl caproate, ethyl caprylate, and ethyl caprate was 0.17 to 0.40 in poor correlation. The amino acids have been known to affect the aroma in alcoholic beverages. In this study, we demonstrated that an electronic nose qualitatively differentiated Korean rice wines (makgeollis) by their volatile compounds evolved from amino acids with rapidity and reproducibility and successively, a quantitative correlation with acceptable R2 between amino acids and fusel compounds could be established via HS-SPME GC-MS combined with partial least

  17. Data-Based Predictive Control with Multirate Prediction Step

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan S.

    2010-01-01

    Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.

  18. Towards cheminformatics-based estimation of drug therapeutic index: Predicting the protective index of anticonvulsants using a new quantitative structure-index relationship approach.

    PubMed

    Chen, Shangying; Zhang, Peng; Liu, Xin; Qin, Chu; Tao, Lin; Zhang, Cheng; Yang, Sheng Yong; Chen, Yu Zong; Chui, Wai Keung

    2016-06-01

    The overall efficacy and safety profile of a new drug is partially evaluated by the therapeutic index in clinical studies and by the protective index (PI) in preclinical studies. In-silico predictive methods may facilitate the assessment of these indicators. Although QSAR and QSTR models can be used for predicting PI, their predictive capability has not been evaluated. To test this capability, we developed QSAR and QSTR models for predicting the activity and toxicity of anticonvulsants at accuracy levels above the literature-reported threshold (LT) of good QSAR models as tested by both the internal 5-fold cross validation and external validation method. These models showed significantly compromised PI predictive capability due to the cumulative errors of the QSAR and QSTR models. Therefore, in this investigation a new quantitative structure-index relationship (QSIR) model was devised and it showed improved PI predictive capability that superseded the LT of good QSAR models. The QSAR, QSTR and QSIR models were developed using support vector regression (SVR) method with the parameters optimized by using the greedy search method. The molecular descriptors relevant to the prediction of anticonvulsant activities, toxicities and PIs were analyzed by a recursive feature elimination method. The selected molecular descriptors are primarily associated with the drug-like, pharmacological and toxicological features and those used in the published anticonvulsant QSAR and QSTR models. This study suggested that QSIR is useful for estimating the therapeutic index of drug candidates. Copyright © 2016. Published by Elsevier Inc.

  19. A generalised individual-based algorithm for modelling the evolution of quantitative herbicide resistance in arable weed populations.

    PubMed

    Liu, Chun; Bridges, Melissa E; Kaundun, Shiv S; Glasgow, Les; Owen, Micheal Dk; Neve, Paul

    2017-02-01

    Simulation models are useful tools for predicting and comparing the risk of herbicide resistance in weed populations under different management strategies. Most existing models assume a monogenic mechanism governing herbicide resistance evolution. However, growing evidence suggests that herbicide resistance is often inherited in a polygenic or quantitative fashion. Therefore, we constructed a generalised modelling framework to simulate the evolution of quantitative herbicide resistance in summer annual weeds. Real-field management parameters based on Amaranthus tuberculatus (Moq.) Sauer (syn. rudis) control with glyphosate and mesotrione in Midwestern US maize-soybean agroecosystems demonstrated that the model can represent evolved herbicide resistance in realistic timescales. Sensitivity analyses showed that genetic and management parameters were impactful on the rate of quantitative herbicide resistance evolution, whilst biological parameters such as emergence and seed bank mortality were less important. The simulation model provides a robust and widely applicable framework for predicting the evolution of quantitative herbicide resistance in summer annual weed populations. The sensitivity analyses identified weed characteristics that would favour herbicide resistance evolution, including high annual fecundity, large resistance phenotypic variance and pre-existing herbicide resistance. Implications for herbicide resistance management and potential use of the model are discussed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Quantitative prediction of solvation free energy in octanol of organic compounds.

    PubMed

    Delgado, Eduardo J; Jaña, Gonzalo A

    2009-03-01

    The free energy of solvation, DeltaGS0, in octanol of organic compounds is quantitatively predicted from the molecular structure. The model, involving only three molecular descriptors, is obtained by multiple linear regression analysis from a data set of 147 compounds containing diverse organic functions, namely, halogenated and non-halogenated alkanes, alkenes, alkynes, aromatics, alcohols, aldehydes, ketones, amines, ethers and esters; covering a DeltaGS0 range from about -50 to 0 kJ.mol(-1). The model predicts the free energy of solvation with a squared correlation coefficient of 0.93 and a standard deviation, 2.4 kJ.mol(-1), just marginally larger than the generally accepted value of experimental uncertainty. The involved molecular descriptors have definite physical meaning corresponding to the different intermolecular interactions occurring in the bulk liquid phase. The model is validated with an external set of 36 compounds not included in the training set.

  1. Quantitative learning strategies based on word networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yue-Tian-Yi; Jia, Zi-Yang; Tang, Yong; Xiong, Jason Jie; Zhang, Yi-Cheng

    2018-02-01

    Learning English requires a considerable effort, but the way that vocabulary is introduced in textbooks is not optimized for learning efficiency. With the increasing population of English learners, learning process optimization will have significant impact and improvement towards English learning and teaching. The recent developments of big data analysis and complex network science provide additional opportunities to design and further investigate the strategies in English learning. In this paper, quantitative English learning strategies based on word network and word usage information are proposed. The strategies integrate the words frequency with topological structural information. By analyzing the influence of connected learned words, the learning weights for the unlearned words and dynamically updating of the network are studied and analyzed. The results suggest that quantitative strategies significantly improve learning efficiency while maintaining effectiveness. Especially, the optimized-weight-first strategy and segmented strategies outperform other strategies. The results provide opportunities for researchers and practitioners to reconsider the way of English teaching and designing vocabularies quantitatively by balancing the efficiency and learning costs based on the word network.

  2. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction.

    PubMed

    Hamadache, Mabrouk; Benkortbi, Othmane; Hanini, Salah; Amrane, Abdeltif; Khaouane, Latifa; Si Moussa, Cherif

    2016-02-13

    Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q(2)ext and the root mean square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Design and prediction of new acetylcholinesterase inhibitor via quantitative structure activity relationship of huprines derivatives.

    PubMed

    Zhang, Shuqun; Hou, Bo; Yang, Huaiyu; Zuo, Zhili

    2016-05-01

    Acetylcholinesterase (AChE) is an important enzyme in the pathogenesis of Alzheimer's disease (AD). Comparative quantitative structure-activity relationship (QSAR) analyses on some huprines inhibitors against AChE were carried out using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR) methods. Three highly predictive QSAR models were constructed successfully based on the training set. The CoMFA, CoMSIA, and HQSAR models have values of r (2) = 0.988, q (2) = 0.757, ONC = 6; r (2) = 0.966, q (2) = 0.645, ONC = 5; and r (2) = 0.957, q (2) = 0.736, ONC = 6. The predictabilities were validated using an external test sets, and the predictive r (2) values obtained by the three models were 0.984, 0.973, and 0.783, respectively. The analysis was performed by combining the CoMFA and CoMSIA field distributions with the active sites of the AChE to further understand the vital interactions between huprines and the protease. On the basis of the QSAR study, 14 new potent molecules have been designed and six of them are predicted to be more active than the best active compound 24 described in the literature. The final QSAR models could be helpful in design and development of novel active AChE inhibitors.

  4. Models of Quantitative Estimations: Rule-Based and Exemplar-Based Processes Compared

    ERIC Educational Resources Information Center

    von Helversen, Bettina; Rieskamp, Jorg

    2009-01-01

    The cognitive processes underlying quantitative estimations vary. Past research has identified task-contingent changes between rule-based and exemplar-based processes (P. Juslin, L. Karlsson, & H. Olsson, 2008). B. von Helversen and J. Rieskamp (2008), however, proposed a simple rule-based model--the mapping model--that outperformed the…

  5. Classification of cassava genotypes based on qualitative and quantitative data.

    PubMed

    Oliveira, E J; Oliveira Filho, O S; Santos, V S

    2015-02-02

    We evaluated the genetic variation of cassava accessions based on qualitative (binomial and multicategorical) and quantitative traits (continuous). We characterized 95 accessions obtained from the Cassava Germplasm Bank of Embrapa Mandioca e Fruticultura; we evaluated these accessions for 13 continuous, 10 binary, and 25 multicategorical traits. First, we analyzed the accessions based only on quantitative traits; next, we conducted joint analysis (qualitative and quantitative traits) based on the Ward-MLM method, which performs clustering in two stages. According to the pseudo-F, pseudo-t2, and maximum likelihood criteria, we identified five and four groups based on quantitative trait and joint analysis, respectively. The smaller number of groups identified based on joint analysis may be related to the nature of the data. On the other hand, quantitative data are more subject to environmental effects in the phenotype expression; this results in the absence of genetic differences, thereby contributing to greater differentiation among accessions. For most of the accessions, the maximum probability of classification was >0.90, independent of the trait analyzed, indicating a good fit of the clustering method. Differences in clustering according to the type of data implied that analysis of quantitative and qualitative traits in cassava germplasm might explore different genomic regions. On the other hand, when joint analysis was used, the means and ranges of genetic distances were high, indicating that the Ward-MLM method is very useful for clustering genotypes when there are several phenotypic traits, such as in the case of genetic resources and breeding programs.

  6. PLS-based quantitative structure-activity relationship for substituted benzamides of clebopride type. Application of experimental design in drug design.

    PubMed

    Norinder, U; Högberg, T

    1992-04-01

    The advantageous approach of using an experimentally designed training set as the basis for establishing a quantitative structure-activity relationship with good predictive capability is described. The training set was selected from a fractional factorial design scheme based on a principal component description of physico-chemical parameters of aromatic substituents. The derived model successfully predicts the activities of additional substituted benzamides of 6-methoxy-N-(4-piperidyl)salicylamide type. The major influence on activity of the 3-substituent is demonstrated.

  7. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE PAGES

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    2015-12-07

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less

  8. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less

  9. Portable smartphone based quantitative phase microscope

    NASA Astrophysics Data System (ADS)

    Meng, Xin; Tian, Xiaolin; Yu, Wei; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2018-01-01

    To realize portable device with high contrast imaging capability, we designed a quantitative phase microscope using transport of intensity equation method based on a smartphone. The whole system employs an objective and an eyepiece as imaging system and a cost-effective LED as illumination source. A 3-D printed cradle is used to align these components. Images of different focal planes are captured by manual focusing, followed by calculation of sample phase via a self-developed Android application. To validate its accuracy, we first tested the device by measuring a random phase plate with known phases, and then red blood cell smear, Pap smear, broad bean epidermis sections and monocot root were also measured to show its performance. Owing to its advantages as accuracy, high-contrast, cost-effective and portability, the portable smartphone based quantitative phase microscope is a promising tool which can be future adopted in remote healthcare and medical diagnosis.

  10. The Incremental Value of Subjective and Quantitative Assessment of 18F-FDG PET for the Prediction of Pathologic Complete Response to Preoperative Chemoradiotherapy in Esophageal Cancer.

    PubMed

    van Rossum, Peter S N; Fried, David V; Zhang, Lifei; Hofstetter, Wayne L; van Vulpen, Marco; Meijer, Gert J; Court, Laurence E; Lin, Steven H

    2016-05-01

    A reliable prediction of a pathologic complete response (pathCR) to chemoradiotherapy before surgery for esophageal cancer would enable investigators to study the feasibility and outcome of an organ-preserving strategy after chemoradiotherapy. So far no clinical parameters or diagnostic studies are able to accurately predict which patients will achieve a pathCR. The aim of this study was to determine whether subjective and quantitative assessment of baseline and postchemoradiation (18)F-FDG PET can improve the accuracy of predicting pathCR to preoperative chemoradiotherapy in esophageal cancer beyond clinical predictors. This retrospective study was approved by the institutional review board, and the need for written informed consent was waived. Clinical parameters along with subjective and quantitative parameters from baseline and postchemoradiation (18)F-FDG PET were derived from 217 esophageal adenocarcinoma patients who underwent chemoradiotherapy followed by surgery. The associations between these parameters and pathCR were studied in univariable and multivariable logistic regression analysis. Four prediction models were constructed and internally validated using bootstrapping to study the incremental predictive values of subjective assessment of (18)F-FDG PET, conventional quantitative metabolic features, and comprehensive (18)F-FDG PET texture/geometry features, respectively. The clinical benefit of (18)F-FDG PET was determined using decision-curve analysis. A pathCR was found in 59 (27%) patients. A clinical prediction model (corrected c-index, 0.67) was improved by adding (18)F-FDG PET-based subjective assessment of response (corrected c-index, 0.72). This latter model was slightly improved by the addition of 1 conventional quantitative metabolic feature only (i.e., postchemoradiation total lesion glycolysis; corrected c-index, 0.73), and even more by subsequently adding 4 comprehensive (18)F-FDG PET texture/geometry features (corrected c-index, 0

  11. Quantitative Prediction of Solvation Free Energy in Octanol of Organic Compounds

    PubMed Central

    Delgado, Eduardo J.; Jaña, Gonzalo A.

    2009-01-01

    The free energy of solvation, ΔGS0, in octanol of organic compunds is quantitatively predicted from the molecular structure. The model, involving only three molecular descriptors, is obtained by multiple linear regression analysis from a data set of 147 compounds containing diverse organic functions, namely, halogenated and non-halogenated alkanes, alkenes, alkynes, aromatics, alcohols, aldehydes, ketones, amines, ethers and esters; covering a ΔGS0 range from about −50 to 0 kJ·mol−1. The model predicts the free energy of solvation with a squared correlation coefficient of 0.93 and a standard deviation, 2.4 kJ·mol−1, just marginally larger than the generally accepted value of experimental uncertainty. The involved molecular descriptors have definite physical meaning corresponding to the different intermolecular interactions occurring in the bulk liquid phase. The model is validated with an external set of 36 compounds not included in the training set. PMID:19399236

  12. The prediction of the residual life of electromechanical equipment based on the artificial neural network

    NASA Astrophysics Data System (ADS)

    Zhukovskiy, Yu L.; Korolev, N. A.; Babanova, I. S.; Boikov, A. V.

    2017-10-01

    This article is devoted to the prediction of the residual life based on an estimate of the technical state of the induction motor. The proposed system allows to increase the accuracy and completeness of diagnostics by using an artificial neural network (ANN), and also identify and predict faulty states of an electrical equipment in dynamics. The results of the proposed system for estimation the technical condition are probability technical state diagrams and a quantitative evaluation of the residual life, taking into account electrical, vibrational, indirect parameters and detected defects. Based on the evaluation of the technical condition and the prediction of the residual life, a decision is made to change the control of the operating and maintenance modes of the electric motors.

  13. Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fang; Liu, Tao; Qian, Weijun

    2011-07-22

    Liquid chromatography-mass spectrometry (LC-MS)-based quantitative proteomics has become increasingly applied for a broad range of biological applications due to growing capabilities for broad proteome coverage and good accuracy in quantification. Herein, we review the current LC-MS-based quantification methods with respect to their advantages and limitations, and highlight their potential applications.

  14. Reproducibility and quantitation of amplicon sequencing-based detection

    PubMed Central

    Zhou, Jizhong; Wu, Liyou; Deng, Ye; Zhi, Xiaoyang; Jiang, Yi-Huei; Tu, Qichao; Xie, Jianping; Van Nostrand, Joy D; He, Zhili; Yang, Yunfeng

    2011-01-01

    To determine the reproducibility and quantitation of the amplicon sequencing-based detection approach for analyzing microbial community structure, a total of 24 microbial communities from a long-term global change experimental site were examined. Genomic DNA obtained from each community was used to amplify 16S rRNA genes with two or three barcode tags as technical replicates in the presence of a small quantity (0.1% wt/wt) of genomic DNA from Shewanella oneidensis MR-1 as the control. The technical reproducibility of the amplicon sequencing-based detection approach is quite low, with an average operational taxonomic unit (OTU) overlap of 17.2%±2.3% between two technical replicates, and 8.2%±2.3% among three technical replicates, which is most likely due to problems associated with random sampling processes. Such variations in technical replicates could have substantial effects on estimating β-diversity but less on α-diversity. A high variation was also observed in the control across different samples (for example, 66.7-fold for the forward primer), suggesting that the amplicon sequencing-based detection approach could not be quantitative. In addition, various strategies were examined to improve the comparability of amplicon sequencing data, such as increasing biological replicates, and removing singleton sequences and less-representative OTUs across biological replicates. Finally, as expected, various statistical analyses with preprocessed experimental data revealed clear differences in the composition and structure of microbial communities between warming and non-warming, or between clipping and non-clipping. Taken together, these results suggest that amplicon sequencing-based detection is useful in analyzing microbial community structure even though it is not reproducible and quantitative. However, great caution should be taken in experimental design and data interpretation when the amplicon sequencing-based detection approach is used for quantitative

  15. Comparing the MRI-based Goutallier Classification to an experimental quantitative MR spectroscopic fat measurement of the supraspinatus muscle.

    PubMed

    Gilbert, Fabian; Böhm, Dirk; Eden, Lars; Schmalzl, Jonas; Meffert, Rainer H; Köstler, Herbert; Weng, Andreas M; Ziegler, Dirk

    2016-08-22

    The Goutallier Classification is a semi quantitative classification system to determine the amount of fatty degeneration in rotator cuff muscles. Although initially proposed for axial computer tomography scans it is currently applied to magnet-resonance-imaging-scans. The role for its clinical use is controversial, as the reliability of the classification has been shown to be inconsistent. The purpose of this study was to compare the semi quantitative MRI-based Goutallier Classification applied by 5 different raters to experimental MR spectroscopic quantitative fat measurement in order to determine the correlation between this classification system and the true extent of fatty degeneration shown by spectroscopy. MRI-scans of 42 patients with rotator cuff tears were examined by 5 shoulder surgeons and were graduated according to the MRI-based Goutallier Classification proposed by Fuchs et al. Additionally the fat/water ratio was measured with MR spectroscopy using the experimental SPLASH technique. The semi quantitative grading according to the Goutallier Classification was statistically correlated with the quantitative measured fat/water ratio using Spearman's rank correlation. Statistical analysis of the data revealed only fair correlation of the Goutallier Classification system and the quantitative fat/water ratio with R = 0.35 (p < 0.05). By dichotomizing the scale the correlation was 0.72. The interobserver and intraobserver reliabilities were substantial with R = 0.62 and R = 0.74 (p < 0.01). The correlation between the semi quantitative MRI based Goutallier Classification system and MR spectroscopic fat measurement is weak. As an adequate estimation of fatty degeneration based on standard MRI may not be possible, quantitative methods need to be considered in order to increase diagnostic safety and thus provide patients with ideal care in regard to the amount of fatty degeneration. Spectroscopic MR measurement may increase the accuracy of

  16. Biomarkers are used to predict quantitative metabolite concentration profiles in human red blood cells

    DOE PAGES

    Yurkovich, James T.; Yang, Laurence; Palsson, Bernhard O.; ...

    2017-03-06

    Deep-coverage metabolomic profiling has revealed a well-defined development of metabolic decay in human red blood cells (RBCs) under cold storage conditions. A set of extracellular biomarkers has been recently identified that reliably defines the qualitative state of the metabolic network throughout this metabolic decay process. Here, we extend the utility of these biomarkers by using them to quantitatively predict the concentrations of other metabolites in the red blood cell. We are able to accurately predict the concentration profile of 84 of the 91 (92%) measured metabolites ( p < 0.05) in RBC metabolism using only measurements of these five biomarkers.more » The median of prediction errors (symmetric mean absolute percent error) across all metabolites was 13%. Furthermore, the ability to predict numerous metabolite concentrations from a simple set of biomarkers offers the potential for the development of a powerful workflow that could be used to evaluate the metabolic state of a biological system using a minimal set of measurements.« less

  17. Biomarkers are used to predict quantitative metabolite concentration profiles in human red blood cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yurkovich, James T.; Yang, Laurence; Palsson, Bernhard O.

    Deep-coverage metabolomic profiling has revealed a well-defined development of metabolic decay in human red blood cells (RBCs) under cold storage conditions. A set of extracellular biomarkers has been recently identified that reliably defines the qualitative state of the metabolic network throughout this metabolic decay process. Here, we extend the utility of these biomarkers by using them to quantitatively predict the concentrations of other metabolites in the red blood cell. We are able to accurately predict the concentration profile of 84 of the 91 (92%) measured metabolites ( p < 0.05) in RBC metabolism using only measurements of these five biomarkers.more » The median of prediction errors (symmetric mean absolute percent error) across all metabolites was 13%. Furthermore, the ability to predict numerous metabolite concentrations from a simple set of biomarkers offers the potential for the development of a powerful workflow that could be used to evaluate the metabolic state of a biological system using a minimal set of measurements.« less

  18. Methods of developing core collections based on the predicted genotypic value of rice ( Oryza sativa L.).

    PubMed

    Li, C T; Shi, C H; Wu, J G; Xu, H M; Zhang, H Z; Ren, Y L

    2004-04-01

    The selection of an appropriate sampling strategy and a clustering method is important in the construction of core collections based on predicted genotypic values in order to retain the greatest degree of genetic diversity of the initial collection. In this study, methods of developing rice core collections were evaluated based on the predicted genotypic values for 992 rice varieties with 13 quantitative traits. The genotypic values of the traits were predicted by the adjusted unbiased prediction (AUP) method. Based on the predicted genotypic values, Mahalanobis distances were calculated and employed to measure the genetic similarities among the rice varieties. Six hierarchical clustering methods, including the single linkage, median linkage, centroid, unweighted pair-group average, weighted pair-group average and flexible-beta methods, were combined with random, preferred and deviation sampling to develop 18 core collections of rice germplasm. The results show that the deviation sampling strategy in combination with the unweighted pair-group average method of hierarchical clustering retains the greatest degree of genetic diversities of the initial collection. The core collections sampled using predicted genotypic values had more genetic diversity than those based on phenotypic values.

  19. Model-Based Linkage Analysis of a Quantitative Trait.

    PubMed

    Song, Yeunjoo E; Song, Sunah; Schnell, Audrey H

    2017-01-01

    Linkage Analysis is a family-based method of analysis to examine whether any typed genetic markers cosegregate with a given trait, in this case a quantitative trait. If linkage exists, this is taken as evidence in support of a genetic basis for the trait. Historically, linkage analysis was performed using a binary disease trait, but has been extended to include quantitative disease measures. Quantitative traits are desirable as they provide more information than binary traits. Linkage analysis can be performed using single-marker methods (one marker at a time) or multipoint (using multiple markers simultaneously). In model-based linkage analysis the genetic model for the trait of interest is specified. There are many software options for performing linkage analysis. Here, we use the program package Statistical Analysis for Genetic Epidemiology (S.A.G.E.). S.A.G.E. was chosen because it also includes programs to perform data cleaning procedures and to generate and test genetic models for a quantitative trait, in addition to performing linkage analysis. We demonstrate in detail the process of running the program LODLINK to perform single-marker analysis, and MLOD to perform multipoint analysis using output from SEGREG, where SEGREG was used to determine the best fitting statistical model for the trait.

  20. Predictability of depression severity based on posterior alpha oscillations.

    PubMed

    Jiang, H; Popov, T; Jylänki, P; Bi, K; Yao, Z; Lu, Q; Jensen, O; van Gerven, M A J

    2016-04-01

    We aimed to integrate neural data and an advanced machine learning technique to predict individual major depressive disorder (MDD) patient severity. MEG data was acquired from 22 MDD patients and 22 healthy controls (HC) resting awake with eyes closed. Individual power spectra were calculated by a Fourier transform. Sources were reconstructed via beamforming technique. Bayesian linear regression was applied to predict depression severity based on the spatial distribution of oscillatory power. In MDD patients, decreased theta (4-8 Hz) and alpha (8-14 Hz) power was observed in fronto-central and posterior areas respectively, whereas increased beta (14-30 Hz) power was observed in fronto-central regions. In particular, posterior alpha power was negatively related to depression severity. The Bayesian linear regression model showed significant depression severity prediction performance based on the spatial distribution of both alpha (r=0.68, p=0.0005) and beta power (r=0.56, p=0.007) respectively. Our findings point to a specific alteration of oscillatory brain activity in MDD patients during rest as characterized from MEG data in terms of spectral and spatial distribution. The proposed model yielded a quantitative and objective estimation for the depression severity, which in turn has a potential for diagnosis and monitoring of the recovery process. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Quantitative physiologically based modeling of subjective fatigue during sleep deprivation.

    PubMed

    Fulcher, B D; Phillips, A J K; Robinson, P A

    2010-05-21

    A quantitative physiologically based model of the sleep-wake switch is used to predict variations in subjective fatigue-related measures during total sleep deprivation. The model includes the mutual inhibition of the sleep-active neurons in the hypothalamic ventrolateral preoptic area (VLPO) and the wake-active monoaminergic brainstem populations (MA), as well as circadian and homeostatic drives. We simulate sleep deprivation by introducing a drive to the MA, which we call wake effort, to maintain the system in a wakeful state. Physiologically this drive is proposed to be afferent from the cortex or the orexin group of the lateral hypothalamus. It is hypothesized that the need to exert this effort to maintain wakefulness at high homeostatic sleep pressure correlates with subjective fatigue levels. The model's output indeed exhibits good agreement with existing clinical time series of subjective fatigue-related measures, supporting this hypothesis. Subjective fatigue, adrenaline, and body temperature variations during two 72h sleep deprivation protocols are reproduced by the model. By distinguishing a motivation-dependent orexinergic contribution to the wake-effort drive, the model can be extended to interpret variation in performance levels during sleep deprivation in a way that is qualitatively consistent with existing, clinically derived results. The example of sleep deprivation thus demonstrates the ability of physiologically based sleep modeling to predict psychological measures from the underlying physiological interactions that produce them. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA).

    PubMed

    Redmond, Haley; Thompson, Jonathan E

    2011-04-21

    In this work we describe and evaluate a simple scheme by which the refractive index (λ = 589 nm) of non-absorbing components common to secondary organic aerosols (SOA) may be predicted from molecular formula and density (g cm(-3)). The QSPR approach described is based on three parameters linked to refractive index-molecular polarizability, the ratio of mass density to molecular weight, and degree of unsaturation. After computing these quantities for a training set of 111 compounds common to atmospheric aerosols, multi-linear regression analysis was conducted to establish a quantitative relationship between the parameters and accepted value of refractive index. The resulting quantitative relationship can often estimate refractive index to ±0.01 when averaged across a variety of compound classes. A notable exception is for alcohols for which the model consistently underestimates refractive index. Homogenous internal mixtures can conceivably be addressed through use of either the volume or mole fraction mixing rules commonly used in the aerosol community. Predicted refractive indices reconstructed from chemical composition data presented in the literature generally agree with previous reports of SOA refractive index. Additionally, the predicted refractive indices lie near measured values we report for λ = 532 nm for SOA generated from vapors of α-pinene (R.I. 1.49-1.51) and toluene (R.I. 1.49-1.50). We envision the QSPR method may find use in reconstructing optical scattering of organic aerosols if mass composition data is known. Alternatively, the method described could be incorporated into in models of organic aerosol formation/phase partitioning to better constrain organic aerosol optical properties.

  3. Quantitative structure--property relationships for enhancing predictions of synthetic organic chemical removal from drinking water by granular activated carbon.

    PubMed

    Magnuson, Matthew L; Speth, Thomas F

    2005-10-01

    Granular activated carbon is a frequently explored technology for removing synthetic organic contaminants from drinking water sources. The success of this technology relies on a number of factors based not only on the adsorptive properties of the contaminant but also on properties of the water itself, notably the presence of substances in the water which compete for adsorption sites. Because it is impractical to perform field-scale evaluations for all possible contaminants, the pore surface diffusion model (PSDM) has been developed and used to predict activated carbon column performance using single-solute isotherm data as inputs. Many assumptions are built into this model to account for kinetics of adsorption and competition for adsorption sites. This work further evaluates and expands this model, through the use of quantitative structure-property relationships (QSPRs) to predict the effect of natural organic matter fouling on activated carbon adsorption of specific contaminants. The QSPRs developed are based on a combination of calculated topographical indices and quantum chemical parameters. The QSPRs were evaluated in terms of their statistical predictive ability,the physical significance of the descriptors, and by comparison with field data. The QSPR-enhanced PSDM was judged to give results better than what could previously be obtained.

  4. Distance-based microfluidic quantitative detection methods for point-of-care testing.

    PubMed

    Tian, Tian; Li, Jiuxing; Song, Yanling; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong James

    2016-04-07

    Equipment-free devices with quantitative readout are of great significance to point-of-care testing (POCT), which provides real-time readout to users and is especially important in low-resource settings. Among various equipment-free approaches, distance-based visual quantitative detection methods rely on reading the visual signal length for corresponding target concentrations, thus eliminating the need for sophisticated instruments. The distance-based methods are low-cost, user-friendly and can be integrated into portable analytical devices. Moreover, such methods enable quantitative detection of various targets by the naked eye. In this review, we first introduce the concept and history of distance-based visual quantitative detection methods. Then, we summarize the main methods for translation of molecular signals to distance-based readout and discuss different microfluidic platforms (glass, PDMS, paper and thread) in terms of applications in biomedical diagnostics, food safety monitoring, and environmental analysis. Finally, the potential and future perspectives are discussed.

  5. Quantitative computed tomography for the prediction of pulmonary function after lung cancer surgery: a simple method using simulation software.

    PubMed

    Ueda, Kazuhiro; Tanaka, Toshiki; Li, Tao-Sheng; Tanaka, Nobuyuki; Hamano, Kimikazu

    2009-03-01

    The prediction of pulmonary functional reserve is mandatory in therapeutic decision-making for patients with resectable lung cancer, especially those with underlying lung disease. Volumetric analysis in combination with densitometric analysis of the affected lung lobe or segment with quantitative computed tomography (CT) helps to identify residual pulmonary function, although the utility of this modality needs investigation. The subjects of this prospective study were 30 patients with resectable lung cancer. A three-dimensional CT lung model was created with voxels representing normal lung attenuation (-600 to -910 Hounsfield units). Residual pulmonary function was predicted by drawing a boundary line between the lung to be preserved and that to be resected, directly on the lung model. The predicted values were correlated with the postoperative measured values. The predicted and measured values corresponded well (r=0.89, p<0.001). Although the predicted values corresponded with values predicted by simple calculation using a segment-counting method (r=0.98), there were two outliers whose pulmonary functional reserves were predicted more accurately by CT than by segment counting. The measured pulmonary functional reserves were significantly higher than the predicted values in patients with extensive emphysematous areas (<-910 Hounsfield units), but not in patients with chronic obstructive pulmonary disease. Quantitative CT yielded accurate prediction of functional reserve after lung cancer surgery and helped to identify patients whose functional reserves are likely to be underestimated. Hence, this modality should be utilized for patients with marginal pulmonary function.

  6. Enhancing emotional-based target prediction

    NASA Astrophysics Data System (ADS)

    Gosnell, Michael; Woodley, Robert

    2008-04-01

    This work extends existing agent-based target movement prediction to include key ideas of behavioral inertia, steady states, and catastrophic change from existing psychological, sociological, and mathematical work. Existing target prediction work inherently assumes a single steady state for target behavior, and attempts to classify behavior based on a single emotional state set. The enhanced, emotional-based target prediction maintains up to three distinct steady states, or typical behaviors, based on a target's operating conditions and observed behaviors. Each steady state has an associated behavioral inertia, similar to the standard deviation of behaviors within that state. The enhanced prediction framework also allows steady state transitions through catastrophic change and individual steady states could be used in an offline analysis with additional modeling efforts to better predict anticipated target reactions.

  7. Quantitative Earthquake Prediction on Global and Regional Scales

    NASA Astrophysics Data System (ADS)

    Kossobokov, Vladimir G.

    2006-03-01

    The Earth is a hierarchy of volumes of different size. Driven by planetary convection these volumes are involved into joint and relative movement. The movement is controlled by a wide variety of processes on and around the fractal mesh of boundary zones, and does produce earthquakes. This hierarchy of movable volumes composes a large non-linear dynamical system. Prediction of such a system in a sense of extrapolation of trajectory into the future is futile. However, upon coarse-graining the integral empirical regularities emerge opening possibilities of prediction in a sense of the commonly accepted consensus definition worked out in 1976 by the US National Research Council. Implications of the understanding hierarchical nature of lithosphere and its dynamics based on systematic monitoring and evidence of its unified space-energy similarity at different scales help avoiding basic errors in earthquake prediction claims. They suggest rules and recipes of adequate earthquake prediction classification, comparison and optimization. The approach has already led to the design of reproducible intermediate-term middle-range earthquake prediction technique. Its real-time testing aimed at prediction of the largest earthquakes worldwide has proved beyond any reasonable doubt the effectiveness of practical earthquake forecasting. In the first approximation, the accuracy is about 1-5 years and 5-10 times the anticipated source dimension. Further analysis allows reducing spatial uncertainty down to 1-3 source dimensions, although at a cost of additional failures-to-predict. Despite of limited accuracy a considerable damage could be prevented by timely knowledgeable use of the existing predictions and earthquake prediction strategies. The December 26, 2004 Indian Ocean Disaster seems to be the first indication that the methodology, designed for prediction of M8.0+ earthquakes can be rescaled for prediction of both smaller magnitude earthquakes (e.g., down to M5.5+ in Italy) and

  8. Three-dimensional quantitative structure-activity relationship analysis for human pregnane X receptor for the prediction of CYP3A4 induction in human hepatocytes: structure-based comparative molecular field analysis.

    PubMed

    Handa, Koichi; Nakagome, Izumi; Yamaotsu, Noriyuki; Gouda, Hiroaki; Hirono, Shuichi

    2015-01-01

    The pregnane X receptor [PXR (NR1I2)] induces the expression of xenobiotic metabolic genes and transporter genes. In this study, we aimed to establish a computational method for quantifying the enzyme-inducing potencies of different compounds via their ability to activate PXR, for the application in drug discovery and development. To achieve this purpose, we developed a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) for predicting enzyme-inducing potencies, based on computer-ligand docking to multiple PXR protein structures sampled from the trajectory of a molecular dynamics simulation. Molecular mechanics-generalized born/surface area scores representing the ligand-protein-binding free energies were calculated for each ligand. As a result, the predicted enzyme-inducing potencies for compounds generated by the CoMFA model were in good agreement with the experimental values. Finally, we concluded that this 3D-QSAR model has the potential to predict the enzyme-inducing potencies of novel compounds with high precision and therefore has valuable applications in the early stages of the drug discovery process. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Reflectance Prediction Modelling for Residual-Based Hyperspectral Image Coding

    PubMed Central

    Xiao, Rui; Gao, Junbin; Bossomaier, Terry

    2016-01-01

    A Hyperspectral (HS) image provides observational powers beyond human vision capability but represents more than 100 times the data compared to a traditional image. To transmit and store the huge volume of an HS image, we argue that a fundamental shift is required from the existing “original pixel intensity”-based coding approaches using traditional image coders (e.g., JPEG2000) to the “residual”-based approaches using a video coder for better compression performance. A modified video coder is required to exploit spatial-spectral redundancy using pixel-level reflectance modelling due to the different characteristics of HS images in their spectral and shape domain of panchromatic imagery compared to traditional videos. In this paper a novel coding framework using Reflectance Prediction Modelling (RPM) in the latest video coding standard High Efficiency Video Coding (HEVC) for HS images is proposed. An HS image presents a wealth of data where every pixel is considered a vector for different spectral bands. By quantitative comparison and analysis of pixel vector distribution along spectral bands, we conclude that modelling can predict the distribution and correlation of the pixel vectors for different bands. To exploit distribution of the known pixel vector, we estimate a predicted current spectral band from the previous bands using Gaussian mixture-based modelling. The predicted band is used as the additional reference band together with the immediate previous band when we apply the HEVC. Every spectral band of an HS image is treated like it is an individual frame of a video. In this paper, we compare the proposed method with mainstream encoders. The experimental results are fully justified by three types of HS dataset with different wavelength ranges. The proposed method outperforms the existing mainstream HS encoders in terms of rate-distortion performance of HS image compression. PMID:27695102

  10. Quantitative analysis of glycated albumin in serum based on ATR-FTIR spectrum combined with SiPLS and SVM.

    PubMed

    Li, Yuanpeng; Li, Fucui; Yang, Xinhao; Guo, Liu; Huang, Furong; Chen, Zhenqiang; Chen, Xingdan; Zheng, Shifu

    2018-08-05

    A rapid quantitative analysis model for determining the glycated albumin (GA) content based on Attenuated total reflectance (ATR)-Fourier transform infrared spectroscopy (FTIR) combining with linear SiPLS and nonlinear SVM has been developed. Firstly, the real GA content in human serum was determined by GA enzymatic method, meanwhile, the ATR-FTIR spectra of serum samples from the population of health examination were obtained. The spectral data of the whole spectra mid-infrared region (4000-600 cm -1 ) and GA's characteristic region (1800-800 cm -1 ) were used as the research object of quantitative analysis. Secondly, several preprocessing steps including first derivative, second derivative, variable standardization and spectral normalization, were performed. Lastly, quantitative analysis regression models were established by using SiPLS and SVM respectively. The SiPLS modeling results are as follows: root mean square error of cross validation (RMSECV T ) = 0.523 g/L, calibration coefficient (R C ) = 0.937, Root Mean Square Error of Prediction (RMSEP T ) = 0.787 g/L, and prediction coefficient (R P ) = 0.938. The SVM modeling results are as follows: RMSECV T  = 0.0048 g/L, R C  = 0.998, RMSEP T  = 0.442 g/L, and R p  = 0.916. The results indicated that the model performance was improved significantly after preprocessing and optimization of characteristic regions. While modeling performance of nonlinear SVM was considerably better than that of linear SiPLS. Hence, the quantitative analysis model for GA in human serum based on ATR-FTIR combined with SiPLS and SVM is effective. And it does not need sample preprocessing while being characterized by simple operations and high time efficiency, providing a rapid and accurate method for GA content determination. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Molecular design of anticancer drug leads based on three-dimensional quantitative structure-activity relationship.

    PubMed

    Huang, Xiao Yan; Shan, Zhi Jie; Zhai, Hong Lin; Li, Li Na; Zhang, Xiao Yun

    2011-08-22

    Heat shock protein 90 (Hsp90) takes part in the developments of several cancers. Novobiocin, a typically C-terminal inhibitor for Hsp90, will probably used as an important anticancer drug in the future. In this work, we explored the valuable information and designed new novobiocin derivatives based on a three-dimensional quantitative structure-activity relationship (3D QSAR). The comparative molecular field analysis and comparative molecular similarity indices analysis models with high predictive capability were established, and their reliabilities are supported by the statistical parameters. Based on the several important influence factors obtained from these models, six new novobiocin derivatives with higher inhibitory activities were designed and confirmed by the molecular simulation with our models, which provide the potential anticancer drug leads for further research.

  12. Prediction of Emergent Heart Failure Death by Semi-Quantitative Triage Risk Stratification

    PubMed Central

    Van Spall, Harriette G. C.; Atzema, Clare; Schull, Michael J.; Newton, Gary E.; Mak, Susanna; Chong, Alice; Tu, Jack V.; Stukel, Thérèse A.; Lee, Douglas S.

    2011-01-01

    Objectives Generic triage risk assessments are widely used in the emergency department (ED), but have not been validated for prediction of short-term risk among patients with acute heart failure (HF). Our objective was to evaluate the Canadian Triage Acuity Scale (CTAS) for prediction of early death among HF patients. Methods We included patients presenting with HF to an ED in Ontario from Apr 2003 to Mar 2007. We used the National Ambulatory Care Reporting System and vital statistics databases to examine care and outcomes. Results Among 68,380 patients (76±12 years, 49.4% men), early mortality was stratified with death rates of 9.9%, 1.9%, 0.9%, and 0.5% at 1-day, and 17.2%, 5.9%, 3.8%, and 2.5% at 7-days, for CTAS 1, 2, 3, and 4–5, respectively. Compared to lower acuity (CTAS 4–5) patients, adjusted odds ratios (aOR) for 1-day death were 1.32 (95%CI; 0.93–1.88; p = 0.12) for CTAS 3, 2.41 (95%CI; 1.71–3.40; p<0.001) for CTAS 2, and highest for CTAS 1: 9.06 (95%CI; 6.28–13.06; p<0.001). Predictors of triage-critical (CTAS 1) status included oxygen saturation <90% (aOR 5.92, 95%CI; 3.09–11.81; p<0.001), respiratory rate >24 breaths/minute (aOR 1.96, 95%CI; 1.05–3.67; p = 0.034), and arrival by paramedic (aOR 3.52, 95%CI; 1.70–8.02; p = 0.001). While age/sex-adjusted CTAS score provided good discrimination for ED (c-statistic = 0.817) and 1-day (c-statistic = 0.724) death, mortality prediction was improved further after accounting for cardiac and non-cardiac co-morbidities (c-statistics 0.882 and 0.810, respectively; both p<0.001). Conclusions A semi-quantitative triage acuity scale assigned at ED presentation and based largely on respiratory factors predicted emergent death among HF patients. PMID:21853068

  13. Quantitative prediction of perceptual decisions during near-threshold fear detection

    NASA Astrophysics Data System (ADS)

    Pessoa, Luiz; Padmala, Srikanth

    2005-04-01

    A fundamental goal of cognitive neuroscience is to explain how mental decisions originate from basic neural mechanisms. The goal of the present study was to investigate the neural correlates of perceptual decisions in the context of emotional perception. To probe this question, we investigated how fluctuations in functional MRI (fMRI) signals were correlated with behavioral choice during a near-threshold fear detection task. fMRI signals predicted behavioral choice independently of stimulus properties and task accuracy in a network of brain regions linked to emotional processing: posterior cingulate cortex, medial prefrontal cortex, right inferior frontal gyrus, and left insula. We quantified the link between fMRI signals and behavioral choice in a whole-brain analysis by determining choice probabilities by means of signal-detection theory methods. Our results demonstrate that voxel-wise fMRI signals can reliably predict behavioral choice in a quantitative fashion (choice probabilities ranged from 0.63 to 0.78) at levels comparable to neuronal data. We suggest that the conscious decision that a fearful face has been seen is represented across a network of interconnected brain regions that prepare the organism to appropriately handle emotionally challenging stimuli and that regulate the associated emotional response. decision making | emotion | functional MRI

  14. Target and Tissue Selectivity Prediction by Integrated Mechanistic Pharmacokinetic-Target Binding and Quantitative Structure Activity Modeling.

    PubMed

    Vlot, Anna H C; de Witte, Wilhelmus E A; Danhof, Meindert; van der Graaf, Piet H; van Westen, Gerard J P; de Lange, Elizabeth C M

    2017-12-04

    Selectivity is an important attribute of effective and safe drugs, and prediction of in vivo target and tissue selectivity would likely improve drug development success rates. However, a lack of understanding of the underlying (pharmacological) mechanisms and availability of directly applicable predictive methods complicates the prediction of selectivity. We explore the value of combining physiologically based pharmacokinetic (PBPK) modeling with quantitative structure-activity relationship (QSAR) modeling to predict the influence of the target dissociation constant (K D ) and the target dissociation rate constant on target and tissue selectivity. The K D values of CB1 ligands in the ChEMBL database are predicted by QSAR random forest (RF) modeling for the CB1 receptor and known off-targets (TRPV1, mGlu5, 5-HT1a). Of these CB1 ligands, rimonabant, CP-55940, and Δ 8 -tetrahydrocanabinol, one of the active ingredients of cannabis, were selected for simulations of target occupancy for CB1, TRPV1, mGlu5, and 5-HT1a in three brain regions, to illustrate the principles of the combined PBPK-QSAR modeling. Our combined PBPK and target binding modeling demonstrated that the optimal values of the K D and k off for target and tissue selectivity were dependent on target concentration and tissue distribution kinetics. Interestingly, if the target concentration is high and the perfusion of the target site is low, the optimal K D value is often not the lowest K D value, suggesting that optimization towards high drug-target affinity can decrease the benefit-risk ratio. The presented integrative structure-pharmacokinetic-pharmacodynamic modeling provides an improved understanding of tissue and target selectivity.

  15. In silico prediction of nematic transition temperature for liquid crystals using quantitative structure-property relationship approaches.

    PubMed

    Fatemi, Mohammad Hossein; Ghorbanzad'e, Mehdi

    2009-11-01

    Quantitative structure-property relationship models for the prediction of the nematic transition temperature (T (N)) were developed by using multilinear regression analysis and a feedforward artificial neural network (ANN). A collection of 42 thermotropic liquid crystals was chosen as the data set. The data set was divided into three sets: for training, and an internal and external test set. Training and internal test sets were used for ANN model development, and the external test set was used for evaluation of the predictive power of the model. In order to build the models, a set of six descriptors were selected by the best multilinear regression procedure of the CODESSA program. These descriptors were: atomic charge weighted partial negatively charged surface area, relative negative charged surface area, polarity parameter/square distance, minimum most negative atomic partial charge, molecular volume, and the A component of moment of inertia, which encode geometrical and electronic characteristics of molecules. These descriptors were used as inputs to ANN. The optimized ANN model had 6:6:1 topology. The standard errors in the calculation of T (N) for the training, internal, and external test sets using the ANN model were 1.012, 4.910, and 4.070, respectively. To further evaluate the ANN model, a crossvalidation test was performed, which produced the statistic Q (2) = 0.9796 and standard deviation of 2.67 based on predicted residual sum of square. Also, the diversity test was performed to ensure the model's stability and prove its predictive capability. The obtained results reveal the suitability of ANN for the prediction of T (N) for liquid crystals using molecular structural descriptors.

  16. Methodological uncertainty in quantitative prediction of human hepatic clearance from in vitro experimental systems.

    PubMed

    Hallifax, D; Houston, J B

    2009-03-01

    Mechanistic prediction of unbound drug clearance from human hepatic microsomes and hepatocytes correlates with in vivo clearance but is both systematically low (10 - 20 % of in vivo clearance) and highly variable, based on detailed assessments of published studies. Metabolic capacity (Vmax) of commercially available human hepatic microsomes and cryopreserved hepatocytes is log-normally distributed within wide (30 - 150-fold) ranges; Km is also log-normally distributed and effectively independent of Vmax, implying considerable variability in intrinsic clearance. Despite wide overlap, average capacity is 2 - 20-fold (dependent on P450 enzyme) greater in microsomes than hepatocytes, when both are normalised (scaled to whole liver). The in vitro ranges contrast with relatively narrow ranges of clearance among clinical studies. The high in vitro variation probably reflects unresolved phenotypical variability among liver donors and practicalities in processing of human liver into in vitro systems. A significant contribution from the latter is supported by evidence of low reproducibility (several fold) of activity in cryopreserved hepatocytes and microsomes prepared from the same cells, between separate occasions of thawing of cells from the same liver. The large uncertainty which exists in human hepatic in vitro systems appears to dominate the overall uncertainty of in vitro-in vivo extrapolation, including uncertainties within scaling, modelling and drug dependent effects. As such, any notion of quantitative prediction of clearance appears severely challenged.

  17. Does Homework Really Matter for College Students in Quantitatively-Based Courses?

    ERIC Educational Resources Information Center

    Young, Nichole; Dollman, Amanda; Angel, N. Faye

    2016-01-01

    This investigation was initiated by two students in an Advanced Computer Applications course. They sought to examine the influence of graded homework on final grades in quantitatively-based business courses. They were provided with data from three quantitatively-based core business courses over a period of five years for a total of 10 semesters of…

  18. Prediction-based dynamic load-sharing heuristics

    NASA Technical Reports Server (NTRS)

    Goswami, Kumar K.; Devarakonda, Murthy; Iyer, Ravishankar K.

    1993-01-01

    The authors present dynamic load-sharing heuristics that use predicted resource requirements of processes to manage workloads in a distributed system. A previously developed statistical pattern-recognition method is employed for resource prediction. While nonprediction-based heuristics depend on a rapidly changing system status, the new heuristics depend on slowly changing program resource usage patterns. Furthermore, prediction-based heuristics can be more effective since they use future requirements rather than just the current system state. Four prediction-based heuristics, two centralized and two distributed, are presented. Using trace driven simulations, they are compared against random scheduling and two effective nonprediction based heuristics. Results show that the prediction-based centralized heuristics achieve up to 30 percent better response times than the nonprediction centralized heuristic, and that the prediction-based distributed heuristics achieve up to 50 percent improvements relative to their nonprediction counterpart.

  19. Using integrated environmental modeling to automate a process-based Quantitative Microbial Risk Assessment

    EPA Science Inventory

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, an...

  20. Approaches to developing alternative and predictive toxicology based on PBPK/PD and QSAR modeling.

    PubMed Central

    Yang, R S; Thomas, R S; Gustafson, D L; Campain, J; Benjamin, S A; Verhaar, H J; Mumtaz, M M

    1998-01-01

    Systematic toxicity testing, using conventional toxicology methodologies, of single chemicals and chemical mixtures is highly impractical because of the immense numbers of chemicals and chemical mixtures involved and the limited scientific resources. Therefore, the development of unconventional, efficient, and predictive toxicology methods is imperative. Using carcinogenicity as an end point, we present approaches for developing predictive tools for toxicologic evaluation of chemicals and chemical mixtures relevant to environmental contamination. Central to the approaches presented is the integration of physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) and quantitative structure--activity relationship (QSAR) modeling with focused mechanistically based experimental toxicology. In this development, molecular and cellular biomarkers critical to the carcinogenesis process are evaluated quantitatively between different chemicals and/or chemical mixtures. Examples presented include the integration of PBPK/PD and QSAR modeling with a time-course medium-term liver foci assay, molecular biology and cell proliferation studies. Fourier transform infrared spectroscopic analyses of DNA changes, and cancer modeling to assess and attempt to predict the carcinogenicity of the series of 12 chlorobenzene isomers. Also presented is an ongoing effort to develop and apply a similar approach to chemical mixtures using in vitro cell culture (Syrian hamster embryo cell transformation assay and human keratinocytes) methodologies and in vivo studies. The promise and pitfalls of these developments are elaborated. When successfully applied, these approaches may greatly reduce animal usage, personnel, resources, and time required to evaluate the carcinogenicity of chemicals and chemical mixtures. Images Figure 6 PMID:9860897

  1. Blinded Prospective Evaluation of Computer-Based Mechanistic Schizophrenia Disease Model for Predicting Drug Response

    PubMed Central

    Geerts, Hugo; Spiros, Athan; Roberts, Patrick; Twyman, Roy; Alphs, Larry; Grace, Anthony A.

    2012-01-01

    The tremendous advances in understanding the neurobiological circuits involved in schizophrenia have not translated into more effective treatments. An alternative strategy is to use a recently published ‘Quantitative Systems Pharmacology’ computer-based mechanistic disease model of cortical/subcortical and striatal circuits based upon preclinical physiology, human pathology and pharmacology. The physiology of 27 relevant dopamine, serotonin, acetylcholine, norepinephrine, gamma-aminobutyric acid (GABA) and glutamate-mediated targets is calibrated using retrospective clinical data on 24 different antipsychotics. The model was challenged to predict quantitatively the clinical outcome in a blinded fashion of two experimental antipsychotic drugs; JNJ37822681, a highly selective low-affinity dopamine D2 antagonist and ocaperidone, a very high affinity dopamine D2 antagonist, using only pharmacology and human positron emission tomography (PET) imaging data. The model correctly predicted the lower performance of JNJ37822681 on the positive and negative syndrome scale (PANSS) total score and the higher extra-pyramidal symptom (EPS) liability compared to olanzapine and the relative performance of ocaperidone against olanzapine, but did not predict the absolute PANSS total score outcome and EPS liability for ocaperidone, possibly due to placebo responses and EPS assessment methods. Because of its virtual nature, this modeling approach can support central nervous system research and development by accounting for unique human drug properties, such as human metabolites, exposure, genotypes and off-target effects and can be a helpful tool for drug discovery and development. PMID:23251349

  2. Exploring simple, transparent, interpretable and predictive QSAR models for classification and quantitative prediction of rat toxicity of ionic liquids using OECD recommended guidelines.

    PubMed

    Das, Rudra Narayan; Roy, Kunal; Popelier, Paul L A

    2015-11-01

    The present study explores the chemical attributes of diverse ionic liquids responsible for their cytotoxicity in a rat leukemia cell line (IPC-81) by developing predictive classification as well as regression-based mathematical models. Simple and interpretable descriptors derived from a two-dimensional representation of the chemical structures along with quantum topological molecular similarity indices have been used for model development, employing unambiguous modeling strategies that strictly obey the guidelines of the Organization for Economic Co-operation and Development (OECD) for quantitative structure-activity relationship (QSAR) analysis. The structure-toxicity relationships that emerged from both classification and regression-based models were in accordance with the findings of some previous studies. The models suggested that the cytotoxicity of ionic liquids is dependent on the cationic surfactant action, long alkyl side chains, cationic lipophilicity as well as aromaticity, the presence of a dialkylamino substituent at the 4-position of the pyridinium nucleus and a bulky anionic moiety. The models have been transparently presented in the form of equations, thus allowing their easy transferability in accordance with the OECD guidelines. The models have also been subjected to rigorous validation tests proving their predictive potential and can hence be used for designing novel and "greener" ionic liquids. The major strength of the present study lies in the use of a diverse and large dataset, use of simple reproducible descriptors and compliance with the OECD norms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Prediction based active ramp metering control strategy with mobility and safety assessment

    NASA Astrophysics Data System (ADS)

    Fang, Jie; Tu, Lili

    2018-04-01

    Ramp metering is one of the most direct and efficient motorway traffic flow management measures so as to improve traffic conditions. However, owing to short of traffic conditions prediction, in earlier studies, the impact on traffic flow dynamics of the applied RM control was not quantitatively evaluated. In this study, a RM control algorithm adopting Model Predictive Control (MPC) framework to predict and assess future traffic conditions, which taking both the current traffic conditions and the RM-controlled future traffic states into consideration, was presented. The designed RM control algorithm targets at optimizing the network mobility and safety performance. The designed algorithm is evaluated in a field-data-based simulation. Through comparing the presented algorithm controlled scenario with the uncontrolled scenario, it was proved that the proposed RM control algorithm can effectively relieve the congestion of traffic network with no significant compromises in safety aspect.

  4. Quantitative Prediction of Drug–Drug Interactions Involving Inhibitory Metabolites in Drug Development: How Can Physiologically Based Pharmacokinetic Modeling Help?

    PubMed Central

    Chen, Y; Mao, J; Lin, J; Yu, H; Peters, S; Shebley, M

    2016-01-01

    This subteam under the Drug Metabolism Leadership Group (Innovation and Quality Consortium) investigated the quantitative role of circulating inhibitory metabolites in drug–drug interactions using physiologically based pharmacokinetic (PBPK) modeling. Three drugs with major circulating inhibitory metabolites (amiodarone, gemfibrozil, and sertraline) were systematically evaluated in addition to the literature review of recent examples. The application of PBPK modeling in drug interactions by inhibitory parent–metabolite pairs is described and guidance on strategic application is provided. PMID:27642087

  5. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    PubMed

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  6. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    PubMed Central

    Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740

  7. Toxicity challenges in environmental chemicals: Prediction of human plasma protein binding through quantitative structure-activity relationship (QSAR) models

    EPA Science Inventory

    The present study explores the merit of utilizing available pharmaceutical data to construct a quantitative structure-activity relationship (QSAR) for prediction of the fraction of a chemical unbound to plasma protein (Fub) in environmentally relevant compounds. Independent model...

  8. [Reconstituting evaluation methods based on both qualitative and quantitative paradigms].

    PubMed

    Miyata, Hiroaki; Okubo, Suguru; Yoshie, Satoru; Kai, Ichiro

    2011-01-01

    Debate about the relationship between quantitative and qualitative paradigms is often muddled and confusing and the clutter of terms and arguments has resulted in the concepts becoming obscure and unrecognizable. In this study we conducted content analysis regarding evaluation methods of qualitative healthcare research. We extracted descriptions on four types of evaluation paradigm (validity/credibility, reliability/credibility, objectivity/confirmability, and generalizability/transferability), and classified them into subcategories. In quantitative research, there has been many evaluation methods based on qualitative paradigms, and vice versa. Thus, it might not be useful to consider evaluation methods of qualitative paradigm are isolated from those of quantitative methods. Choosing practical evaluation methods based on the situation and prior conditions of each study is an important approach for researchers.

  9. Computational analysis of structure-based interactions and ligand properties can predict efflux effects on antibiotics.

    PubMed

    Sarkar, Aurijit; Anderson, Kelcey C; Kellogg, Glen E

    2012-06-01

    AcrA-AcrB-TolC efflux pumps extrude drugs of multiple classes from bacterial cells and are a leading cause for antimicrobial resistance. Thus, they are of paramount interest to those engaged in antibiotic discovery. Accurate prediction of antibiotic efflux has been elusive, despite several studies aimed at this purpose. Minimum inhibitory concentration (MIC) ratios of 32 β-lactam antibiotics were collected from literature. 3-Dimensional Quantitative Structure-Activity Relationship on the β-lactam antibiotic structures revealed seemingly predictive models (q(2)=0.53), but the lack of a general superposition rule does not allow its use on antibiotics that lack the β-lactam moiety. Since MIC ratios must depend on interactions of antibiotics with lipid membranes and transport proteins during influx, capture and extrusion of antibiotics from the bacterial cell, descriptors representing these factors were calculated and used in building mathematical models that quantitatively classify antibiotics as having high/low efflux (>93% accuracy). Our models provide preliminary evidence that it is possible to predict the effects of antibiotic efflux if the passage of antibiotics into, and out of, bacterial cells is taken into account--something descriptor and field-based QSAR models cannot do. While the paucity of data in the public domain remains the limiting factor in such studies, these models show significant improvements in predictions over simple LogP-based regression models and should pave the path toward further work in this field. This method should also be extensible to other pharmacologically and biologically relevant transport proteins. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. Quantitative thickness prediction of tectonically deformed coal using Extreme Learning Machine and Principal Component Analysis: a case study

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Li, Yan; Chen, Tongjun; Yan, Qiuyan; Ma, Li

    2017-04-01

    The thickness of tectonically deformed coal (TDC) has positive correlation associations with gas outbursts. In order to predict the TDC thickness of coal beds, we propose a new quantitative predicting method using an extreme learning machine (ELM) algorithm, a principal component analysis (PCA) algorithm, and seismic attributes. At first, we build an ELM prediction model using the PCA attributes of a synthetic seismic section. The results suggest that the ELM model can produce a reliable and accurate prediction of the TDC thickness for synthetic data, preferring Sigmoid activation function and 20 hidden nodes. Then, we analyze the applicability of the ELM model on the thickness prediction of the TDC with real application data. Through the cross validation of near-well traces, the results suggest that the ELM model can produce a reliable and accurate prediction of the TDC. After that, we use 250 near-well traces from 10 wells to build an ELM predicting model and use the model to forecast the TDC thickness of the No. 15 coal in the study area using the PCA attributes as the inputs. Comparing the predicted results, it is noted that the trained ELM model with two selected PCA attributes yields better predication results than those from the other combinations of the attributes. Finally, the trained ELM model with real seismic data have a different number of hidden nodes (10) than the trained ELM model with synthetic seismic data. In summary, it is feasible to use an ELM model to predict the TDC thickness using the calculated PCA attributes as the inputs. However, the input attributes, the activation function and the number of hidden nodes in the ELM model should be selected and tested carefully based on individual application.

  11. Using integrated environmental modeling to automate a process-based Quantitative Microbial Risk Assessment

    USDA-ARS?s Scientific Manuscript database

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, and human health effect...

  12. A priori Prediction of Neoadjuvant Chemotherapy Response and Survival in Breast Cancer Patients using Quantitative Ultrasound

    PubMed Central

    Tadayyon, Hadi; Sannachi, Lakshmanan; Gangeh, Mehrdad J.; Kim, Christina; Ghandi, Sonal; Trudeau, Maureen; Pritchard, Kathleen; Tran, William T.; Slodkowska, Elzbieta; Sadeghi-Naini, Ali; Czarnota, Gregory J.

    2017-01-01

    Quantitative ultrasound (QUS) can probe tissue structure and analyze tumour characteristics. Using a 6-MHz ultrasound system, radiofrequency data were acquired from 56 locally advanced breast cancer patients prior to their neoadjuvant chemotherapy (NAC) and QUS texture features were computed from regions of interest in tumour cores and their margins as potential predictive and prognostic indicators. Breast tumour molecular features were also collected and used for analysis. A multiparametric QUS model was constructed, which demonstrated a response prediction accuracy of 88% and ability to predict patient 5-year survival rates (p = 0.01). QUS features demonstrated superior performance in comparison to molecular markers and the combination of QUS and molecular markers did not improve response prediction. This study demonstrates, for the first time, that non-invasive QUS features in the core and margin of breast tumours can indicate breast cancer response to neoadjuvant chemotherapy (NAC) and predict five-year recurrence-free survival. PMID:28401902

  13. A priori Prediction of Neoadjuvant Chemotherapy Response and Survival in Breast Cancer Patients using Quantitative Ultrasound.

    PubMed

    Tadayyon, Hadi; Sannachi, Lakshmanan; Gangeh, Mehrdad J; Kim, Christina; Ghandi, Sonal; Trudeau, Maureen; Pritchard, Kathleen; Tran, William T; Slodkowska, Elzbieta; Sadeghi-Naini, Ali; Czarnota, Gregory J

    2017-04-12

    Quantitative ultrasound (QUS) can probe tissue structure and analyze tumour characteristics. Using a 6-MHz ultrasound system, radiofrequency data were acquired from 56 locally advanced breast cancer patients prior to their neoadjuvant chemotherapy (NAC) and QUS texture features were computed from regions of interest in tumour cores and their margins as potential predictive and prognostic indicators. Breast tumour molecular features were also collected and used for analysis. A multiparametric QUS model was constructed, which demonstrated a response prediction accuracy of 88% and ability to predict patient 5-year survival rates (p = 0.01). QUS features demonstrated superior performance in comparison to molecular markers and the combination of QUS and molecular markers did not improve response prediction. This study demonstrates, for the first time, that non-invasive QUS features in the core and margin of breast tumours can indicate breast cancer response to neoadjuvant chemotherapy (NAC) and predict five-year recurrence-free survival.

  14. Biochemical interpretation of quantitative structure-activity relationships (QSAR) for biodegradation of N-heterocycles: a complementary approach to predict biodegradability.

    PubMed

    Philipp, Bodo; Hoff, Malte; Germa, Florence; Schink, Bernhard; Beimborn, Dieter; Mersch-Sundermann, Volker

    2007-02-15

    Prediction of the biodegradability of organic compounds is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. We combined quantitative structure-activity relationships (QSAR) with the systematic collection of biochemical knowledge to establish rules for the prediction of aerobic biodegradation of N-heterocycles. Validated biodegradation data of 194 N-heterocyclic compounds were analyzed using the MULTICASE-method which delivered two QSAR models based on 17 activating (OSAR 1) and on 16 inactivating molecular fragments (GSAR 2), which were statistically significantly linked to efficient or poor biodegradability, respectively. The percentages of correct classifications were over 99% for both models, and cross-validation resulted in 67.9% (GSAR 1) and 70.4% (OSAR 2) correct predictions. Biochemical interpretation of the activating and inactivating characteristics of the molecular fragments delivered plausible mechanistic interpretations and enabled us to establish the following biodegradation rules: (1) Target sites for amidohydrolases and for cytochrome P450 monooxygenases enhance biodegradation of nonaromatic N-heterocycles. (2) Target sites for molybdenum hydroxylases enhance biodegradation of aromatic N-heterocycles. (3) Target sites for hydratation by an urocanase-like mechanism enhance biodegradation of imidazoles. Our complementary approach represents a feasible strategy for generating concrete rules for the prediction of biodegradability of organic compounds.

  15. Quantitative analysis of multi-component gas mixture based on AOTF-NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hao, Huimin; Zhang, Yong; Liu, Junhua

    2007-12-01

    Near Infrared (NIR) spectroscopy analysis technology has attracted many eyes and has wide application in many domains in recent years because of its remarkable advantages. But the NIR spectrometer can only be used for liquid and solid analysis by now. In this paper, a new quantitative analysis method of gas mixture by using new generation NIR spectrometer is explored. To collect the NIR spectra of gas mixtures, a vacuumable gas cell was designed and assembled to Luminar 5030-731 Acousto-Optic Tunable Filter (AOTF)-NIR spectrometer. Standard gas samples of methane (CH 4), ethane (C IIH 6) and propane (C 3H 8) are diluted with super pure nitrogen via precision volumetric gas flow controllers to obtain gas mixture samples of different concentrations dynamically. The gas mixtures were injected into the gas cell and the spectra of wavelength between 1100nm-2300nm were collected. The feature components extracted from gas mixture spectra by using Partial Least Squares (PLS) were used as the inputs of the Support Vector Regress Machine (SVR) to establish the quantitative analysis model. The effectiveness of the model is tested by the samples of predicting set. The prediction Root Mean Square Error (RMSE) of CH 4, C IIH 6 and C 3H 8 is respectively 1.27%, 0.89%, and 1.20% when the concentrations of component gas are over 0.5%. It shows that the AOTF-NIR spectrometer with gas cell can be used for gas mixture analysis. PLS combining with SVR has a good performance in NIR spectroscopy analysis. This paper provides the bases for extending the application of NIR spectroscopy analysis to gas detection.

  16. A novel multi-walled carbon nanotube-based antibody conjugate for quantitative and semi-quantitative lateral flow assays.

    PubMed

    Sun, Wenjuan; Hu, Xiaolong; Liu, Jia; Zhang, Yurong; Lu, Jianzhong; Zeng, Libo

    2017-10-01

    In this study, the multi-walled carbon nanotubes (MWCNTs) were applied in lateral flow strips (LFS) for semi-quantitative and quantitative assays. Firstly, the solubility of MWCNTs was improved using various surfactants to enhance their biocompatibility for practical application. The dispersed MWCNTs were conjugated with the methamphetamine (MET) antibody in a non-covalent manner and then manufactured into the LFS for the quantitative detection of MET. The MWCNTs-based lateral flow assay (MWCNTs-LFA) exhibited an excellent linear relationship between the values of test line and MET when its concentration ranges from 62.5 to 1500 ng/mL. The sensitivity of the LFS was evaluated by conjugating MWCNTs with HCG antibody and the MWCNTs conjugated method is 10 times more sensitive than the one conjugated with classical colloidal gold nanoparticles. Taken together, our data demonstrate that MWCNTs-LFA is a more sensitive and reliable assay for semi-quantitative and quantitative detection which can be used in forensic analysis.

  17. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.

    PubMed

    Hattotuwagama, Channa K; Doytchinova, Irini A; Flower, Darren R

    2007-01-01

    Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method

  18. Quantitative Prediction of Systemic Toxicity Points of Departure (OpenTox USA 2017)

    EPA Science Inventory

    Human health risk assessment associated with environmental chemical exposure is limited by the tens of thousands of chemicals little or no experimental in vivo toxicity data. Data gap filling techniques, such as quantitative models based on chemical structure information, are c...

  19. Young children's core symbolic and nonsymbolic quantitative knowledge in the prediction of later mathematics achievement.

    PubMed

    Geary, David C; vanMarle, Kristy

    2016-12-01

    At the beginning of preschool (M = 46 months of age), 197 (94 boys) children were administered tasks that assessed a suite of nonsymbolic and symbolic quantitative competencies as well as their executive functions, verbal and nonverbal intelligence, preliteracy skills, and their parents' education level. The children's mathematics achievement was assessed at the end of preschool (M = 64 months). We used a series of Bayesian and standard regression analyses to winnow this broad set of competencies down to the core subset of quantitative skills that predict later mathematics achievement, controlling other factors. This knowledge included children's fluency in reciting the counting string, their understanding of the cardinal value of number words, and recognition of Arabic numerals, as well as their sensitivity to the relative quantity of 2 collections of objects. The results inform theoretical models of the foundations of children's early quantitative development and have practical implications for the design of early interventions for children at risk for poor long-term mathematics achievement. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Exploring the Sequence-based Prediction of Folding Initiation Sites in Proteins.

    PubMed

    Raimondi, Daniele; Orlando, Gabriele; Pancsa, Rita; Khan, Taushif; Vranken, Wim F

    2017-08-18

    Protein folding is a complex process that can lead to disease when it fails. Especially poorly understood are the very early stages of protein folding, which are likely defined by intrinsic local interactions between amino acids close to each other in the protein sequence. We here present EFoldMine, a method that predicts, from the primary amino acid sequence of a protein, which amino acids are likely involved in early folding events. The method is based on early folding data from hydrogen deuterium exchange (HDX) data from NMR pulsed labelling experiments, and uses backbone and sidechain dynamics as well as secondary structure propensities as features. The EFoldMine predictions give insights into the folding process, as illustrated by a qualitative comparison with independent experimental observations. Furthermore, on a quantitative proteome scale, the predicted early folding residues tend to become the residues that interact the most in the folded structure, and they are often residues that display evolutionary covariation. The connection of the EFoldMine predictions with both folding pathway data and the folded protein structure suggests that the initial statistical behavior of the protein chain with respect to local structure formation has a lasting effect on its subsequent states.

  1. Novel Application of Quantitative Single-Photon Emission Computed Tomography/Computed Tomography to Predict Early Response to Methimazole in Graves' Disease

    PubMed Central

    Kim, Hyun Joo; Bang, Ji-In; Kim, Ji-Young; Moon, Jae Hoon; So, Young

    2017-01-01

    Objective Since Graves' disease (GD) is resistant to antithyroid drugs (ATDs), an accurate quantitative thyroid function measurement is required for the prediction of early responses to ATD. Quantitative parameters derived from the novel technology, single-photon emission computed tomography/computed tomography (SPECT/CT), were investigated for the prediction of achievement of euthyroidism after methimazole (MMI) treatment in GD. Materials and Methods A total of 36 GD patients (10 males, 26 females; mean age, 45.3 ± 13.8 years) were enrolled for this study, from April 2015 to January 2016. They underwent quantitative thyroid SPECT/CT 20 minutes post-injection of 99mTc-pertechnetate (5 mCi). Association between the time to biochemical euthyroidism after MMI treatment and %uptake, standardized uptake value (SUV), functional thyroid mass (SUVmean × thyroid volume) from the SPECT/CT, and clinical/biochemical variables, were investigated. Results GD patients had a significantly greater %uptake (6.9 ± 6.4%) than historical control euthyroid patients (n = 20, 0.8 ± 0.5%, p < 0.001) from the same quantitative SPECT/CT protocol. Euthyroidism was achieved in 14 patients at 156 ± 62 days post-MMI treatment, but 22 patients had still not achieved euthyroidism by the last follow-up time-point (208 ± 80 days). In the univariate Cox regression analysis, the initial MMI dose (p = 0.014), %uptake (p = 0.015), and functional thyroid mass (p = 0.016) were significant predictors of euthyroidism in response to MMI treatment. However, only %uptake remained significant in a multivariate Cox regression analysis (p = 0.034). A %uptake cutoff of 5.0% dichotomized the faster responding versus the slower responding GD patients (p = 0.006). Conclusion A novel parameter of thyroid %uptake from quantitative SPECT/CT is a predictive indicator of an early response to MMI in GD patients. PMID:28458607

  2. Quantitative parameters of CT texture analysis as potential markersfor early prediction of spontaneous intracranial hemorrhage enlargement.

    PubMed

    Shen, Qijun; Shan, Yanna; Hu, Zhengyu; Chen, Wenhui; Yang, Bing; Han, Jing; Huang, Yanfang; Xu, Wen; Feng, Zhan

    2018-04-30

    To objectively quantify intracranial hematoma (ICH) enlargement by analysing the image texture of head CT scans and to provide objective and quantitative imaging parameters for predicting early hematoma enlargement. We retrospectively studied 108 ICH patients with baseline non-contrast computed tomography (NCCT) and 24-h follow-up CT available. Image data were assessed by a chief radiologist and a resident radiologist. Consistency analysis between observers was tested. The patients were divided into training set (75%) and validation set (25%) by stratified sampling. Patients in the training set were dichotomized according to 24-h hematoma expansion ≥ 33%. Using the Laplacian of Gaussian bandpass filter, we chose different anatomical spatial domains ranging from fine texture to coarse texture to obtain a series of derived parameters (mean grayscale intensity, variance, uniformity) in order to quantify and evaluate all data. The parameters were externally validated on validation set. Significant differences were found between the two groups of patients within variance at V 1.0 and in uniformity at U 1.0 , U 1.8 and U 2.5 . The intraclass correlation coefficients for the texture parameters were between 0.67 and 0.99. The area under the ROC curve between the two groups of ICH cases was between 0.77 and 0.92. The accuracy of validation set by CTTA was 0.59-0.85. NCCT texture analysis can objectively quantify the heterogeneity of ICH and independently predict early hematoma enlargement. • Heterogeneity is helpful in predicting ICH enlargement. • CTTA could play an important role in predicting early ICH enlargement. • After filtering, fine texture had the best diagnostic performance. • The histogram-based uniformity parameters can independently predict ICH enlargement. • CTTA is more objective, more comprehensive, more independently operable, than previous methods.

  3. Comparing quantitative values of two generations of laser-assisted indocyanine green dye angiography systems: can we predict necrosis?

    PubMed

    Phillips, Brett T; Fourman, Mitchell S; Rivara, Andrew; Dagum, Alexander B; Huston, Tara L; Ganz, Jason C; Bui, Duc T; Khan, Sami U

    2014-01-01

    Several devices exist today to assist the intraoperative determination of skin flap perfusion. Laser-Assisted Indocyanine Green Dye Angiography (LAICGA) has been shown to accurately predict mastectomy skin flap necrosis using quantitative perfusion values. The laser properties of the latest LAICGA device (SPY Elite) differ significantly from its predecessor system (SPY 2001), preventing direct translation of previous published data. The purpose of this study was to establish a mathematical relationship of perfusion values between these 2 devices. Breast reconstruction patients were prospectively enrolled into a clinical trial where skin flap evaluation and excision was based on quantitative SPY Q values previously established in the literature. Initial study patients underwent mastectomy skin flap evaluation using both SPY systems simultaneously. Absolute perfusion unit (APU) values at identical locations on the breast were then compared graphically. 210 data points were identified on the same patients (n = 4) using both SPY systems. A linear relationship (y = 2.9883x + 12.726) was identified with a high level or correlation (R(2) = 0.744). Previously published values using SPY 2001 (APU 3.7) provided a value of 23.8 APU on the SPY Elite. In addition, postoperative necrosis in these patients correlated to regions of skin identified with the SPY Elite with APU less than 23.8. Intraoperative comparison of LAICGA systems has provided direct correlation of perfusion values predictive of necrosis that were previously established in the literature. An APU value of 3.7 from the SPY 2001 correlates to a SPY Elite APU value of 23.8.

  4. Comparing Quantitative Values of Two Generations of Laser-Assisted Indocyanine Green Dye Angiography Systems: Can We Predict Necrosis?

    PubMed Central

    Fourman, Mitchell S.; Rivara, Andrew; Dagum, Alexander B.; Huston, Tara L.; Ganz, Jason C.; Bui, Duc T.; Khan, Sami U.

    2014-01-01

    Objective: Several devices exist today to assist the intraoperative determination of skin flap perfusion. Laser-Assisted Indocyanine Green Dye Angiography (LAICGA) has been shown to accurately predict mastectomy skin flap necrosis using quantitative perfusion values. The laser properties of the latest LAICGA device (SPY Elite) differ significantly from its predecessor system (SPY 2001), preventing direct translation of previous published data. The purpose of this study was to establish a mathematical relationship of perfusion values between these 2 devices. Methods: Breast reconstruction patients were prospectively enrolled into a clinical trial where skin flap evaluation and excision was based on quantitative SPY Q values previously established in the literature. Initial study patients underwent mastectomy skin flap evaluation using both SPY systems simultaneously. Absolute perfusion unit (APU) values at identical locations on the breast were then compared graphically. Results: 210 data points were identified on the same patients (n = 4) using both SPY systems. A linear relationship (y = 2.9883x + 12.726) was identified with a high level or correlation (R2 = 0.744). Previously published values using SPY 2001 (APU 3.7) provided a value of 23.8 APU on the SPY Elite. In addition, postoperative necrosis in these patients correlated to regions of skin identified with the SPY Elite with APU less than 23.8. Conclusion: Intraoperative comparison of LAICGA systems has provided direct correlation of perfusion values predictive of necrosis that were previously established in the literature. An APU value of 3.7 from the SPY 2001 correlates to a SPY Elite APU value of 23.8. PMID:25525483

  5. Affordable, automatic quantitative fall risk assessment based on clinical balance scales and Kinect data.

    PubMed

    Colagiorgio, P; Romano, F; Sardi, F; Moraschini, M; Sozzi, A; Bejor, M; Ricevuti, G; Buizza, A; Ramat, S

    2014-01-01

    The problem of a correct fall risk assessment is becoming more and more critical with the ageing of the population. In spite of the available approaches allowing a quantitative analysis of the human movement control system's performance, the clinical assessment and diagnostic approach to fall risk assessment still relies mostly on non-quantitative exams, such as clinical scales. This work documents our current effort to develop a novel method to assess balance control abilities through a system implementing an automatic evaluation of exercises drawn from balance assessment scales. Our aim is to overcome the classical limits characterizing these scales i.e. limited granularity and inter-/intra-examiner reliability, to obtain objective scores and more detailed information allowing to predict fall risk. We used Microsoft Kinect to record subjects' movements while performing challenging exercises drawn from clinical balance scales. We then computed a set of parameters quantifying the execution of the exercises and fed them to a supervised classifier to perform a classification based on the clinical score. We obtained a good accuracy (~82%) and especially a high sensitivity (~83%).

  6. Comparative Analysis of Predictive Models for Liver Toxicity Using ToxCast Assays and Quantitative Structure-Activity Relationships (MCBIOS)

    EPA Science Inventory

    Comparative Analysis of Predictive Models for Liver Toxicity Using ToxCast Assays and Quantitative Structure-Activity Relationships Jie Liu1,2, Richard Judson1, Matthew T. Martin1, Huixiao Hong3, Imran Shah1 1National Center for Computational Toxicology (NCCT), US EPA, RTP, NC...

  7. Studying Biology to Understand Risk: Dosimetry Models and Quantitative Adverse Outcome Pathways

    EPA Science Inventory

    Confidence in the quantitative prediction of risk is increased when the prediction is based to as great an extent as possible on the relevant biological factors that constitute the pathway from exposure to adverse outcome. With the first examples now over 40 years old, physiologi...

  8. Third-Kind Encounters in Biomedicine: Immunology Meets Mathematics and Informatics to Become Quantitative and Predictive.

    PubMed

    Eberhardt, Martin; Lai, Xin; Tomar, Namrata; Gupta, Shailendra; Schmeck, Bernd; Steinkasserer, Alexander; Schuler, Gerold; Vera, Julio

    2016-01-01

    The understanding of the immune response is right now at the center of biomedical research. There are growing expectations that immune-based interventions will in the midterm provide new, personalized, and targeted therapeutic options for many severe and highly prevalent diseases, from aggressive cancers to infectious and autoimmune diseases. To this end, immunology should surpass its current descriptive and phenomenological nature, and become quantitative, and thereby predictive.Immunology is an ideal field for deploying the tools, methodologies, and philosophy of systems biology, an approach that combines quantitative experimental data, computational biology, and mathematical modeling. This is because, from an organism-wide perspective, the immunity is a biological system of systems, a paradigmatic instance of a multi-scale system. At the molecular scale, the critical phenotypic responses of immune cells are governed by large biochemical networks, enriched in nested regulatory motifs such as feedback and feedforward loops. This network complexity confers them the ability of highly nonlinear behavior, including remarkable examples of homeostasis, ultra-sensitivity, hysteresis, and bistability. Moving from the cellular level, different immune cell populations communicate with each other by direct physical contact or receiving and secreting signaling molecules such as cytokines. Moreover, the interaction of the immune system with its potential targets (e.g., pathogens or tumor cells) is far from simple, as it involves a number of attack and counterattack mechanisms that ultimately constitute a tightly regulated multi-feedback loop system. From a more practical perspective, this leads to the consequence that today's immunologists are facing an ever-increasing challenge of integrating massive quantities from multi-platforms.In this chapter, we support the idea that the analysis of the immune system demands the use of systems-level approaches to ensure the success in

  9. Using Integrated Environmental Modeling to Automate a Process-Based Quantitative Microbial Risk Assessment (presentation)

    EPA Science Inventory

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, and...

  10. Quantitative structure-retention relationship models for the prediction of the reversed-phase HPLC gradient retention based on the heuristic method and support vector machine.

    PubMed

    Du, Hongying; Wang, Jie; Yao, Xiaojun; Hu, Zhide

    2009-01-01

    The heuristic method (HM) and support vector machine (SVM) were used to construct quantitative structure-retention relationship models by a series of compounds to predict the gradient retention times of reversed-phase high-performance liquid chromatography (HPLC) in three different columns. The aims of this investigation were to predict the retention times of multifarious compounds, to find the main properties of the three columns, and to indicate the theory of separation procedures. In our method, we correlated the retention times of many diverse structural analytes in three columns (Symmetry C18, Chromolith, and SG-MIX) with their representative molecular descriptors, calculated from the molecular structures alone. HM was used to select the most important molecular descriptors and build linear regression models. Furthermore, non-linear regression models were built using the SVM method; the performance of the SVM models were better than that of the HM models, and the prediction results were in good agreement with the experimental values. This paper could give some insights into the factors that were likely to govern the gradient retention process of the three investigated HPLC columns, which could theoretically supervise the practical experiment.

  11. Validation of finite element computations for the quantitative prediction of underwater noise from impact pile driving.

    PubMed

    Zampolli, Mario; Nijhof, Marten J J; de Jong, Christ A F; Ainslie, Michael A; Jansen, Erwin H W; Quesson, Benoit A J

    2013-01-01

    The acoustic radiation from a pile being driven into the sediment by a sequence of hammer strikes is studied with a linear, axisymmetric, structural acoustic frequency domain finite element model. Each hammer strike results in an impulsive sound that is emitted from the pile and then propagated in the shallow water waveguide. Measurements from accelerometers mounted on the head of a test pile and from hydrophones deployed in the water are used to validate the model results. Transfer functions between the force input at the top of the anvil and field quantities, such as acceleration components in the structure or pressure in the fluid, are computed with the model. These transfer functions are validated using accelerometer or hydrophone measurements to infer the structural forcing. A modeled hammer forcing pulse is used in the successive step to produce quantitative predictions of sound exposure at the hydrophones. The comparison between the model and the measurements shows that, although several simplifying assumptions were made, useful predictions of noise levels based on linear structural acoustic models are possible. In the final part of the paper, the model is used to characterize the pile as an acoustic radiator by analyzing the flow of acoustic energy.

  12. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity

    PubMed Central

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A.; Bradford, William D.; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S.; Li, Rong

    2015-01-01

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein−based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. PMID:25823586

  13. Conditional Toxicity Value (CTV) Predictor: An In Silico Approach for Generating Quantitative Risk Estimates for Chemicals.

    PubMed

    Wignall, Jessica A; Muratov, Eugene; Sedykh, Alexander; Guyton, Kathryn Z; Tropsha, Alexander; Rusyn, Ivan; Chiu, Weihsueh A

    2018-05-01

    Human health assessments synthesize human, animal, and mechanistic data to produce toxicity values that are key inputs to risk-based decision making. Traditional assessments are data-, time-, and resource-intensive, and they cannot be developed for most environmental chemicals owing to a lack of appropriate data. As recommended by the National Research Council, we propose a solution for predicting toxicity values for data-poor chemicals through development of quantitative structure-activity relationship (QSAR) models. We used a comprehensive database of chemicals with existing regulatory toxicity values from U.S. federal and state agencies to develop quantitative QSAR models. We compared QSAR-based model predictions to those based on high-throughput screening (HTS) assays. QSAR models for noncancer threshold-based values and cancer slope factors had cross-validation-based Q 2 of 0.25-0.45, mean model errors of 0.70-1.11 log 10 units, and applicability domains covering >80% of environmental chemicals. Toxicity values predicted from QSAR models developed in this study were more accurate and precise than those based on HTS assays or mean-based predictions. A publicly accessible web interface to make predictions for any chemical of interest is available at http://toxvalue.org. An in silico tool that can predict toxicity values with an uncertainty of an order of magnitude or less can be used to quickly and quantitatively assess risks of environmental chemicals when traditional toxicity data or human health assessments are unavailable. This tool can fill a critical gap in the risk assessment and management of data-poor chemicals. https://doi.org/10.1289/EHP2998.

  14. Statistical design of quantitative mass spectrometry-based proteomic experiments.

    PubMed

    Oberg, Ann L; Vitek, Olga

    2009-05-01

    We review the fundamental principles of statistical experimental design, and their application to quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic biases due to the experimental procedure, and help optimize our ability to detect true quantitative changes between groups. We also discuss the issues of pooling multiple biological specimens for a single mass analysis, and calculation of the number of replicates in a future study. When applicable, we emphasize the parallels between designing quantitative proteomic experiments and experiments with gene expression microarrays, and give examples from that area of research. We illustrate the discussion using theoretical considerations, and using real-data examples of profiling of disease.

  15. New MYC IHC Classifier Integrating Quantitative Architecture Parameters to Predict MYC Gene Translocation in Diffuse Large B-Cell Lymphoma

    PubMed Central

    Dong, Wei-Feng; Canil, Sarah; Lai, Raymond; Morel, Didier; Swanson, Paul E.; Izevbaye, Iyare

    2018-01-01

    A new automated MYC IHC classifier based on bivariate logistic regression is presented. The predictor relies on image analysis developed with the open-source ImageJ platform. From a histologic section immunostained for MYC protein, 2 dimensionless quantitative variables are extracted: (a) relative distance between nuclei positive for MYC IHC based on euclidean minimum spanning tree graph and (b) coefficient of variation of the MYC IHC stain intensity among MYC IHC-positive nuclei. Distance between positive nuclei is suggested to inversely correlate MYC gene rearrangement status, whereas coefficient of variation is suggested to inversely correlate physiological regulation of MYC protein expression. The bivariate classifier was compared with 2 other MYC IHC classifiers (based on percentage of MYC IHC positive nuclei), all tested on 113 lymphomas including mostly diffuse large B-cell lymphomas with known MYC fluorescent in situ hybridization (FISH) status. The bivariate classifier strongly outperformed the “percentage of MYC IHC-positive nuclei” methods to predict MYC+ FISH status with 100% sensitivity (95% confidence interval, 94-100) associated with 80% specificity. The test is rapidly performed and might at a minimum provide primary IHC screening for MYC gene rearrangement status in diffuse large B-cell lymphomas. Furthermore, as this bivariate classifier actually predicts “permanent overexpressed MYC protein status,” it might identify nontranslocation-related chromosomal anomalies missed by FISH. PMID:27093450

  16. Predictive values of semi-quantitative procalcitonin test and common biomarkers for the clinical outcomes of community-acquired pneumonia.

    PubMed

    Ugajin, Motoi; Yamaki, Kenichi; Hirasawa, Natsuko; Yagi, Takeo

    2014-04-01

    The semi-quantitative serum procalcitonin test (Brahms PCT-Q) is available conveniently in clinical practice. However, there are few data on the relationship between results for this semi-quantitative procalcitonin test and clinical outcomes of community-acquired pneumonia (CAP). We investigated the usefulness of this procalcitonin test for predicting the clinical outcomes of CAP in comparison with severity scoring systems and the blood urea nitrogen/serum albumin (B/A) ratio, which has been reported to be a simple but reliable prognostic indicator in our prior CAP study. This retrospective study included data from subjects who were hospitalized for CAP from August 2010 through October 2012 and who were administered the semi-quantitative serum procalcitonin test on admission. The demographic characteristics; laboratory biomarkers; microbiological test results; Pneumonia Severity Index scores; confusion, urea nitrogen, breathing frequency, blood pressure, ≥ 65 years of age (CURB-65) scale scores; and age, dehydration, respiratory failure, orientation disturbance, pressure (A-DROP) scale scores on hospital admission were retrieved from their medical charts. The outcomes were mortality within 28 days of hospital admission and the need for intensive care. Of the 213 subjects with CAP who were enrolled in the study, 20 died within 28 days of hospital admission, and 32 required intensive care. Mortality did not differ significantly among subjects with different semi-quantitative serum procalcitonin levels; however, subjects with serum procalcitonin levels ≥ 10.0 ng/mL were more likely to require intensive care than those with lower levels (P < .001). The elevation of semi-quantitative serum procalcitonin levels was more frequently observed in subjects with proven etiology, especially pneumococcal pneumonia. Using the receiver operating characteristic curves for mortality, the area under the curve was 0.86 for Pneumonia Severity Index class, 0.81 for B/A ratio, 0

  17. Quantitative analysis and predictive engineering of self-rolling of nanomembranes under anisotropic mismatch strain

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Song, Pengfei; Meng, Fanchao; Li, Xiao; Liu, Xinyu; Song, Jun

    2017-12-01

    The present work presents a quantitative modeling framework for investigating the self-rolling of nanomembranes under different lattice mismatch strain anisotropy. The effect of transverse mismatch strain on the roll-up direction and curvature has been systematically studied employing both analytical modeling and numerical simulations. The bidirectional nature of the self-rolling of nanomembranes and the critical role of transverse strain in affecting the rolling behaviors have been demonstrated. Two fabrication strategies, i.e., third-layer deposition and corner geometry engineering, have been proposed to predictively manipulate the bidirectional rolling competition of strained nanomembranes, so as to achieve controlled, unidirectional roll-up. In particular for the strategy of corner engineering, microfabrication experiments have been performed to showcase its practical application and effectiveness. Our study offers new mechanistic knowledge towards understanding and predictive engineering of self-rolling of nanomembranes with improved roll-up yield.

  18. Quantitative SIMS Imaging of Agar-Based Microbial Communities.

    PubMed

    Dunham, Sage J B; Ellis, Joseph F; Baig, Nameera F; Morales-Soto, Nydia; Cao, Tianyuan; Shrout, Joshua D; Bohn, Paul W; Sweedler, Jonathan V

    2018-05-01

    After several decades of widespread use for mapping elemental ions and small molecular fragments in surface science, secondary ion mass spectrometry (SIMS) has emerged as a powerful analytical tool for molecular imaging in biology. Biomolecular SIMS imaging has primarily been used as a qualitative technique; although the distribution of a single analyte can be accurately determined, it is difficult to map the absolute quantity of a compound or even to compare the relative abundance of one molecular species to that of another. We describe a method for quantitative SIMS imaging of small molecules in agar-based microbial communities. The microbes are cultivated on a thin film of agar, dried under nitrogen, and imaged directly with SIMS. By use of optical microscopy, we show that the area of the agar is reduced by 26 ± 2% (standard deviation) during dehydration, but the overall biofilm morphology and analyte distribution are largely retained. We detail a quantitative imaging methodology, in which the ion intensity of each analyte is (1) normalized to an external quadratic regression curve, (2) corrected for isomeric interference, and (3) filtered for sample-specific noise and lower and upper limits of quantitation. The end result is a two-dimensional surface density image for each analyte. The sample preparation and quantitation methods are validated by quantitatively imaging four alkyl-quinolone and alkyl-quinoline N-oxide signaling molecules (including Pseudomonas quinolone signal) in Pseudomonas aeruginosa colony biofilms. We show that the relative surface densities of the target biomolecules are substantially different from values inferred through direct intensity comparison and that the developed methodologies can be used to quantitatively compare as many ions as there are available standards.

  19. Model-based predictions for dopamine.

    PubMed

    Langdon, Angela J; Sharpe, Melissa J; Schoenbaum, Geoffrey; Niv, Yael

    2018-04-01

    Phasic dopamine responses are thought to encode a prediction-error signal consistent with model-free reinforcement learning theories. However, a number of recent findings highlight the influence of model-based computations on dopamine responses, and suggest that dopamine prediction errors reflect more dimensions of an expected outcome than scalar reward value. Here, we review a selection of these recent results and discuss the implications and complications of model-based predictions for computational theories of dopamine and learning. Copyright © 2017. Published by Elsevier Ltd.

  20. Quantitative Prediction of Computational Quality (so the S and C Folks will Accept it)

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.; Luckring, James M.; Morrison, Joseph H.

    2004-01-01

    Our choice of title may seem strange but we mean each word. In this talk, we are not going to be concerned with computations made "after the fact", i.e. those for which data are available and which are being conducted for explanation and insight. Here we are interested in preventing S&C design problems by finding them through computation before data are available. For such a computation to have any credibility with those who absorb the risk, it is necessary to quantitatively PREDICT the quality of the computational results.

  1. Base Rates, Contingencies, and Prediction Behavior

    ERIC Educational Resources Information Center

    Kareev, Yaakov; Fiedler, Klaus; Avrahami, Judith

    2009-01-01

    A skew in the base rate of upcoming events can often provide a better cue for accurate predictions than a contingency between signals and events. The authors study prediction behavior and test people's sensitivity to both base rate and contingency; they also examine people's ability to compare the benefits of both for prediction. They formalize…

  2. Predicting Retention Times of Naturally Occurring Phenolic Compounds in Reversed-Phase Liquid Chromatography: A Quantitative Structure-Retention Relationship (QSRR) Approach

    PubMed Central

    Akbar, Jamshed; Iqbal, Shahid; Batool, Fozia; Karim, Abdul; Chan, Kim Wei

    2012-01-01

    Quantitative structure-retention relationships (QSRRs) have successfully been developed for naturally occurring phenolic compounds in a reversed-phase liquid chromatographic (RPLC) system. A total of 1519 descriptors were calculated from the optimized structures of the molecules using MOPAC2009 and DRAGON softwares. The data set of 39 molecules was divided into training and external validation sets. For feature selection and mapping we used step-wise multiple linear regression (SMLR), unsupervised forward selection followed by step-wise multiple linear regression (UFS-SMLR) and artificial neural networks (ANN). Stable and robust models with significant predictive abilities in terms of validation statistics were obtained with negation of any chance correlation. ANN models were found better than remaining two approaches. HNar, IDM, Mp, GATS2v, DISP and 3D-MoRSE (signals 22, 28 and 32) descriptors based on van der Waals volume, electronegativity, mass and polarizability, at atomic level, were found to have significant effects on the retention times. The possible implications of these descriptors in RPLC have been discussed. All the models are proven to be quite able to predict the retention times of phenolic compounds and have shown remarkable validation, robustness, stability and predictive performance. PMID:23203132

  3. A novel structure-based multimode QSAR method affords predictive models for phosphodiesterase inhibitors.

    PubMed

    Dong, Xialan; Ebalunode, Jerry O; Cho, Sung Jin; Zheng, Weifan

    2010-02-22

    Quantitative structure-activity relationship (QSAR) methods aim to build quantitatively predictive models for the discovery of new molecules. It has been widely used in medicinal chemistry for drug discovery. Many QSAR techniques have been developed since Hansch's seminal work, and more are still being developed. Motivated by Hopfinger's receptor-dependent QSAR (RD-QSAR) formalism and the Lukacova-Balaz scheme to treat multimode issues, we have initiated studies that focus on a structure-based multimode QSAR (SBMM QSAR) method, where the structure of the target protein is used in characterizing the ligand, and the multimode issue of ligand binding is systematically treated with a modified Lukacova-Balaz scheme. All ligand molecules are first docked to the target binding pocket to obtain a set of aligned ligand poses. A structure-based pharmacophore concept is adopted to characterize the binding pocket. Specifically, we represent the binding pocket as a geometric grid labeled by pharmacophoric features. Each pose of the ligand is also represented as a labeled grid, where each grid point is labeled according to the atom types of nearby ligand atoms. These labeled grids or three-dimensional (3D) maps (both the receptor map (R-map) and the ligand map (L-map)) are compared to each other to derive descriptors for each pose of the ligand, resulting in a multimode structure-activity relationship (SAR) table. Iterative partial least-squares (PLS) is employed to build the QSAR models. When we applied this method to analyze PDE-4 inhibitors, predictive models have been developed, obtaining models with excellent training correlation (r(2) = 0.65-0.66), as well as test correlation (R(2) = 0.64-0.65). A comparative analysis with 4 other QSAR techniques demonstrates that this new method affords better models, in terms of the prediction power for the test set.

  4. Slow erosion of a quantitative apple resistance to Venturia inaequalis based on an isolate-specific Quantitative Trait Locus.

    PubMed

    Caffier, Valérie; Le Cam, Bruno; Al Rifaï, Mehdi; Bellanger, Marie-Noëlle; Comby, Morgane; Denancé, Caroline; Didelot, Frédérique; Expert, Pascale; Kerdraon, Tifenn; Lemarquand, Arnaud; Ravon, Elisa; Durel, Charles-Eric

    2016-10-01

    Quantitative plant resistance affects the aggressiveness of pathogens and is usually considered more durable than qualitative resistance. However, the efficiency of a quantitative resistance based on an isolate-specific Quantitative Trait Locus (QTL) is expected to decrease over time due to the selection of isolates with a high level of aggressiveness on resistant plants. To test this hypothesis, we surveyed scab incidence over an eight-year period in an orchard planted with susceptible and quantitatively resistant apple genotypes. We sampled 79 Venturia inaequalis isolates from this orchard at three dates and we tested their level of aggressiveness under controlled conditions. Isolates sampled on resistant genotypes triggered higher lesion density and exhibited a higher sporulation rate on apple carrying the resistance allele of the QTL T1 compared to isolates sampled on susceptible genotypes. Due to this ability to select aggressive isolates, we expected the QTL T1 to be non-durable. However, our results showed that the quantitative resistance based on the QTL T1 remained efficient in orchard over an eight-year period, with only a slow decrease in efficiency and no detectable increase of the aggressiveness of fungal isolates over time. We conclude that knowledge on the specificity of a QTL is not sufficient to evaluate its durability. Deciphering molecular mechanisms associated with resistance QTLs, genetic determinants of aggressiveness and putative trade-offs within pathogen populations is needed to help in understanding the erosion processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Prediction on the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase based on gene expression programming.

    PubMed

    Li, Yuqin; You, Guirong; Jia, Baoxiu; Si, Hongzong; Yao, Xiaojun

    2014-01-01

    Quantitative structure-activity relationships (QSAR) were developed to predict the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase via heuristic method (HM) and gene expression programming (GEP). The descriptors of 33 pyrrolidine derivatives were calculated by the software CODESSA, which can calculate quantum chemical, topological, geometrical, constitutional, and electrostatic descriptors. HM was also used for the preselection of 5 appropriate molecular descriptors. Linear and nonlinear QSAR models were developed based on the HM and GEP separately and two prediction models lead to a good correlation coefficient (R (2)) of 0.93 and 0.94. The two QSAR models are useful in predicting the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase during the discovery of new anticancer drugs and providing theory information for studying the new drugs.

  6. Fluorescence-based Western blotting for quantitation of protein biomarkers in clinical samples.

    PubMed

    Zellner, Maria; Babeluk, Rita; Diestinger, Michael; Pirchegger, Petra; Skeledzic, Senada; Oehler, Rudolf

    2008-09-01

    Since most high throughput techniques used in biomarker discovery are very time and cost intensive, highly specific and quantitative analytical alternative application methods are needed for the routine analysis. Conventional Western blotting allows detection of specific proteins to the level of single isotypes while its quantitative accuracy is rather limited. We report a novel and improved quantitative Western blotting method. The use of fluorescently labelled secondary antibodies strongly extends the dynamic range of the quantitation and improves the correlation with the protein amount (r=0.997). By an additional fluorescent staining of all proteins immediately after their transfer to the blot membrane, it is possible to visualise simultaneously the antibody binding and the total protein profile. This allows for an accurate correction for protein load. Applying this normalisation it could be demonstrated that fluorescence-based Western blotting is able to reproduce a quantitative analysis of two specific proteins in blood platelet samples from 44 subjects with different diseases as initially conducted by 2D-DIGE. These results show that the proposed fluorescence-based Western blotting is an adequate application technique for biomarker quantitation and suggest possibilities of employment that go far beyond.

  7. Assessment of MRI-Based Automated Fetal Cerebral Cortical Folding Measures in Prediction of Gestational Age in the Third Trimester.

    PubMed

    Wu, J; Awate, S P; Licht, D J; Clouchoux, C; du Plessis, A J; Avants, B B; Vossough, A; Gee, J C; Limperopoulos, C

    2015-07-01

    Traditional methods of dating a pregnancy based on history or sonographic assessment have a large variation in the third trimester. We aimed to assess the ability of various quantitative measures of brain cortical folding on MR imaging in determining fetal gestational age in the third trimester. We evaluated 8 different quantitative cortical folding measures to predict gestational age in 33 healthy fetuses by using T2-weighted fetal MR imaging. We compared the accuracy of the prediction of gestational age by these cortical folding measures with the accuracy of prediction by brain volume measurement and by a previously reported semiquantitative visual scale of brain maturity. Regression models were constructed, and measurement biases and variances were determined via a cross-validation procedure. The cortical folding measures are accurate in the estimation and prediction of gestational age (mean of the absolute error, 0.43 ± 0.45 weeks) and perform better than (P = .024) brain volume (mean of the absolute error, 0.72 ± 0.61 weeks) or sonography measures (SDs approximately 1.5 weeks, as reported in literature). Prediction accuracy is comparable with that of the semiquantitative visual assessment score (mean, 0.57 ± 0.41 weeks). Quantitative cortical folding measures such as global average curvedness can be an accurate and reliable estimator of gestational age and brain maturity for healthy fetuses in the third trimester and have the potential to be an indicator of brain-growth delays for at-risk fetuses and preterm neonates. © 2015 by American Journal of Neuroradiology.

  8. The role of quantitative estrogen receptor status in predicting tumor response at surgery in breast cancer patients treated with neoadjuvant chemotherapy.

    PubMed

    Raphael, Jacques; Gandhi, Sonal; Li, Nim; Lu, Fang-I; Trudeau, Maureen

    2017-07-01

    Estrogen receptor (ER) negative (-) breast cancer (BC) patients have better tumor response rates than ER-positive (+) patients after neoadjuvant chemotherapy (NCT). We conducted a retrospective review using the institutional database "Biomatrix" to assess the value of quantitative ER status in predicting tumor response at surgery and to identify potential predictors of survival outcomes. Univariate followed by multivariable regression analyses were conducted to assess the association between quantitative ER and tumor response assessed as tumor size reduction and pathologic complete response (pCR). Predictors of recurrence-free survival (RFS) were identified using a cox proportional hazards model (CPH). A log-rank test was used to compare RFS between groups if a significant predictor was identified. 304 patients were included with a median follow-up of 43.3 months (Q1-Q3 28.7-61.1) and a mean age of 49.7 years (SD 10.9). Quantitative ER was inversely associated with tumor size reduction and pCR (OR 0.99, 95% CI 0.99-1.00, p = 0.027 and 0.98 95% CI 0.97-0.99, p < 0.0001, respectively). A cut-off of 60 and 80% predicted best the association with tumor size reduction and pCR, respectively. pCR was shown to be an independent predictor of RFS (HR 0.17, 95% CI 0.07-0.43, p = 0.0002) in all patients. At 5 years, 93% of patients with pCR and 72% of patients with residual tumor were recurrence-free, respectively (p = 0.0012). Quantitative ER status is inversely associated with tumor response in BC patients treated with NCT. A cut-off of 60 and 80% predicts best the association with tumor size reduction and pCR, respectively. Therefore, patients with an ER status higher than the cut-off might benefit from a neoadjuvant endocrine therapy approach. Patients with pCR had better survival outcomes independently of their tumor phenotype. Further prospective studies are needed to validate the clinical utility of quantitative ER as a predictive marker of tumor response.

  9. Single-Cell Based Quantitative Assay of Chromosome Transmission Fidelity.

    PubMed

    Zhu, Jin; Heinecke, Dominic; Mulla, Wahid A; Bradford, William D; Rubinstein, Boris; Box, Andrew; Haug, Jeffrey S; Li, Rong

    2015-03-30

    Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein-based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis. Using the qCTF assay, we performed genome-wide quantitative profiling of genes that affect CIN in a dosage-dependent manner and identified genes that elevate CIN when either increased (icCIN) or decreased in copy number (dcCIN). Unexpectedly, qCTF screening also revealed genes whose change in copy number quantitatively suppress CIN, suggesting that the basal error rate of the wild-type genome is not minimized, but rather, may have evolved toward an optimal level that balances both stability and low-level karyotype variation for evolutionary adaptation. Copyright © 2015 Zhu et al.

  10. Prediction of anticancer property of bowsellic acid derivatives by quantitative structure activity relationship analysis and molecular docking study.

    PubMed

    Satpathy, Raghunath; Guru, R K; Behera, R; Nayak, B

    2015-01-01

    Boswellic acid consists of a series of pentacyclic triterpene molecules that are produced by the plant Boswellia serrata. The potential applications of Bowsellic acid for treatment of cancer have been focused here. To predict the property of the bowsellic acid derivatives as anticancer compounds by various computational approaches. In this work, all total 65 derivatives of bowsellic acids from the PubChem database were considered for the study. After energy minimization of the ligands various types of molecular descriptors were computed and corresponding two-dimensional quantitative structure activity relationship (QSAR) models were obtained by taking Andrews coefficient as the dependent variable. Different types of comparative analysis were used for QSAR study are multiple linear regression, partial least squares, support vector machines and artificial neural network. From the study geometrical descriptors shows the highest correlation coefficient, which indicates the binding factor of the compound. To evaluate the anticancer property molecular docking study of six selected ligands based on Andrews affinity were performed with nuclear factor-kappa protein kinase (Protein Data Bank ID 4G3D), which is an established therapeutic target for cancers. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound.

  11. A semi-quantitative World Health Organization grading scheme evaluating worst tumor differentiation predicts disease-free survival in oral squamous carcinoma patients.

    PubMed

    Jain, Dhruv; Tikku, Gargi; Bhadana, Pallavi; Dravid, Chandrashekhar; Grover, Rajesh Kumar

    2017-08-01

    We investigated World Health Organization (WHO) grading and pattern of invasion based histological schemes as independent predictors of disease-free survival, in oral squamous carcinoma patients. Tumor resection slides of eighty-seven oral squamous carcinoma patients [pTNM: I&II/III&IV-32/55] were evaluated. Besides examining various patterns of invasion, invasive front grade, predominant and worst (highest) WHO grade were recorded. For worst WHO grading, poor-undifferentiated component was estimated semi-quantitatively at advancing tumor edge (invasive growth front) in histology sections. Tumor recurrence was observed in 31 (35.6%) cases. The 2-year disease-free survival was 47% [Median: 656; follow-up: 14-1450] days. Using receiver operating characteristic curves, we defined poor-undifferentiated component exceeding 5% of tumor as the cutoff to assign an oral squamous carcinoma as grade-3, when following worst WHO grading. Kaplan-Meier curves for disease-free survival revealed prognostic association with nodal involvement, tumor size, worst WHO grading; most common pattern of invasion and invasive pattern grading score (sum of two most predominant patterns of invasion). In further multivariate analysis, tumor size (>2.5cm) and worst WHO grading (grade-3 tumors) independently predicted reduced disease-free survival [HR, 2.85; P=0.028 and HR, 3.37; P=0.031 respectively]. The inter-observer agreement was moderate for observers who semi-quantitatively estimated percentage of poor-undifferentiated morphology in oral squamous carcinomas. Our results support the value of semi-quantitative method to assign tumors as grade-3 with worst WHO grading for predicting reduced disease-free survival. Despite limitations, of the various histological tumor stratification schemes, WHO grading holds adjunctive value for its prognostic role, ease and universal familiarity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Ensemble-based prediction of RNA secondary structures.

    PubMed

    Aghaeepour, Nima; Hoos, Holger H

    2013-04-24

    Accurate structure prediction methods play an important role for the understanding of RNA function. Energy-based, pseudoknot-free secondary structure prediction is one of the most widely used and versatile approaches, and improved methods for this task have received much attention over the past five years. Despite the impressive progress that as been achieved in this area, existing evaluations of the prediction accuracy achieved by various algorithms do not provide a comprehensive, statistically sound assessment. Furthermore, while there is increasing evidence that no prediction algorithm consistently outperforms all others, no work has been done to exploit the complementary strengths of multiple approaches. In this work, we present two contributions to the area of RNA secondary structure prediction. Firstly, we use state-of-the-art, resampling-based statistical methods together with a previously published and increasingly widely used dataset of high-quality RNA structures to conduct a comprehensive evaluation of existing RNA secondary structure prediction procedures. The results from this evaluation clarify the performance relationship between ten well-known existing energy-based pseudoknot-free RNA secondary structure prediction methods and clearly demonstrate the progress that has been achieved in recent years. Secondly, we introduce AveRNA, a generic and powerful method for combining a set of existing secondary structure prediction procedures into an ensemble-based method that achieves significantly higher prediction accuracies than obtained from any of its component procedures. Our new, ensemble-based method, AveRNA, improves the state of the art for energy-based, pseudoknot-free RNA secondary structure prediction by exploiting the complementary strengths of multiple existing prediction procedures, as demonstrated using a state-of-the-art statistical resampling approach. In addition, AveRNA allows an intuitive and effective control of the trade-off between

  13. Prediction of pKa Values for Neutral and Basic Drugs based on Hybrid Artificial Intelligence Methods.

    PubMed

    Li, Mengshan; Zhang, Huaijing; Chen, Bingsheng; Wu, Yan; Guan, Lixin

    2018-03-05

    The pKa value of drugs is an important parameter in drug design and pharmacology. In this paper, an improved particle swarm optimization (PSO) algorithm was proposed based on the population entropy diversity. In the improved algorithm, when the population entropy was higher than the set maximum threshold, the convergence strategy was adopted; when the population entropy was lower than the set minimum threshold the divergence strategy was adopted; when the population entropy was between the maximum and minimum threshold, the self-adaptive adjustment strategy was maintained. The improved PSO algorithm was applied in the training of radial basis function artificial neural network (RBF ANN) model and the selection of molecular descriptors. A quantitative structure-activity relationship model based on RBF ANN trained by the improved PSO algorithm was proposed to predict the pKa values of 74 kinds of neutral and basic drugs and then validated by another database containing 20 molecules. The validation results showed that the model had a good prediction performance. The absolute average relative error, root mean square error, and squared correlation coefficient were 0.3105, 0.0411, and 0.9685, respectively. The model can be used as a reference for exploring other quantitative structure-activity relationships.

  14. Preoperative Cerebral Oxygen Extraction Fraction Imaging Generated from 7T MR Quantitative Susceptibility Mapping Predicts Development of Cerebral Hyperperfusion following Carotid Endarterectomy.

    PubMed

    Nomura, J-I; Uwano, I; Sasaki, M; Kudo, K; Yamashita, F; Ito, K; Fujiwara, S; Kobayashi, M; Ogasawara, K

    2017-12-01

    Preoperative hemodynamic impairment in the affected cerebral hemisphere is associated with the development of cerebral hyperperfusion following carotid endarterectomy. Cerebral oxygen extraction fraction images generated from 7T MR quantitative susceptibility mapping correlate with oxygen extraction fraction images on positron-emission tomography. The present study aimed to determine whether preoperative oxygen extraction fraction imaging generated from 7T MR quantitative susceptibility mapping could identify patients at risk for cerebral hyperperfusion following carotid endarterectomy. Seventy-seven patients with unilateral internal carotid artery stenosis (≥70%) underwent preoperative 3D T2*-weighted imaging using a multiple dipole-inversion algorithm with a 7T MR imager. Quantitative susceptibility mapping images were then obtained, and oxygen extraction fraction maps were generated. Quantitative brain perfusion single-photon emission CT was also performed before and immediately after carotid endarterectomy. ROIs were automatically placed in the bilateral middle cerebral artery territories in all images using a 3D stereotactic ROI template, and affected-to-contralateral ratios in the ROIs were calculated on quantitative susceptibility mapping-oxygen extraction fraction images. Ten patients (13%) showed post-carotid endarterectomy hyperperfusion (cerebral blood flow increases of ≥100% compared with preoperative values in the ROIs on brain perfusion SPECT). Multivariate analysis showed that a high quantitative susceptibility mapping-oxygen extraction fraction ratio was significantly associated with the development of post-carotid endarterectomy hyperperfusion (95% confidence interval, 33.5-249.7; P = .002). Sensitivity, specificity, and positive- and negative-predictive values of the quantitative susceptibility mapping-oxygen extraction fraction ratio for the prediction of the development of post-carotid endarterectomy hyperperfusion were 90%, 84%, 45%, and 98

  15. Quantitative Predictive Models for Systemic Toxicity (SOT)

    EPA Science Inventory

    Models to identify systemic and specific target organ toxicity were developed to help transition the field of toxicology towards computational models. By leveraging multiple data sources to incorporate read-across and machine learning approaches, a quantitative model of systemic ...

  16. Learning linear transformations between counting-based and prediction-based word embeddings

    PubMed Central

    Hayashi, Kohei; Kawarabayashi, Ken-ichi

    2017-01-01

    Despite the growing interest in prediction-based word embedding learning methods, it remains unclear as to how the vector spaces learnt by the prediction-based methods differ from that of the counting-based methods, or whether one can be transformed into the other. To study the relationship between counting-based and prediction-based embeddings, we propose a method for learning a linear transformation between two given sets of word embeddings. Our proposal contributes to the word embedding learning research in three ways: (a) we propose an efficient method to learn a linear transformation between two sets of word embeddings, (b) using the transformation learnt in (a), we empirically show that it is possible to predict distributed word embeddings for novel unseen words, and (c) empirically it is possible to linearly transform counting-based embeddings to prediction-based embeddings, for frequent words, different POS categories, and varying degrees of ambiguities. PMID:28926629

  17. Quantitative signal intensity alteration in infrapatellar fat pad predict incident radiographic osteoarthritis: the Osteoarthritis Initiative.

    PubMed

    Wang, Kang; Ding, Changhai; Hannon, Michael J; Chen, Zhongshan; Kwoh, C Kent; Hunter, David J

    2018-04-12

    To determine if infrapatellar fat pad (IPFP) signal intensity (SI) measures are predictive of incident radiographic osteoarthritis (iROA) over 4 years in the OA Initiative (OAI) study. Case knees (n=355) defined by iROA were matched one-to-one by gender, age and radiographic status with control knees. T2-weighted MR images were assessed at P0 (the visit when iROA was found on radiograph), P-1 (1 year prior to P0) and baseline, and utilized to assess IPFP SI semi-automatically using MATLAB. Conditional logistic regression analyses were used to assess risk of iROA associated with IPFP SI alteration after adjustment for covariates. Participants were on average 60.2 years old, predominantly female (66.7%) and overweight (mean BMI: 28.3). Baseline IPFP measures including mean value and standard deviation of IPFP SI [Mean(IPFP), sDev(IPFP)] (HR, 95%CI: 5.2, 1.1 to 23.6 and 5.7, 2.2 to 14.5, respectively), mean value and standard deviation of IPFP high SI [Mean(H), sDev(H)] (HR, 95%CI: 3.3, 1.7 to 6.4 and 3.1, 1.3 to 7.7, respectively), median value and upper quartile value of IPFP high SI [Median(H), UQ(H)], and clustering effect of high SI [Clustering factor(H)] were associated with iROA during 4 years. All P-1 IPFP measures were associated with iROA after 12 months. P-0 IPFP SI measures were all associated with ROA. The quantitative segmentation of high signal in IPFP is confirming previous work based on semiquantitative assessment suggesting its predictive validity. The IPFP high SI alteration could be an important imaging biomarker to predict the occurrence of radiographic OA. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Extensions and evaluations of a general quantitative theory of forest structure and dynamics

    PubMed Central

    Enquist, Brian J.; West, Geoffrey B.; Brown, James H.

    2009-01-01

    Here, we present the second part of a quantitative theory for the structure and dynamics of forests under demographic and resource steady state. The theory is based on individual-level allometric scaling relations for how trees use resources, fill space, and grow. These scale up to determine emergent properties of diverse forests, including size–frequency distributions, spacing relations, canopy configurations, mortality rates, population dynamics, successional dynamics, and resource flux rates. The theory uniquely makes quantitative predictions for both stand-level scaling exponents and normalizations. We evaluate these predictions by compiling and analyzing macroecological datasets from several tropical forests. The close match between theoretical predictions and data suggests that forests are organized by a set of very general scaling rules. Our mechanistic theory is based on allometric scaling relations, is complementary to “demographic theory,” but is fundamentally different in approach. It provides a quantitative baseline for understanding deviations from predictions due to other factors, including disturbance, variation in branching architecture, asymmetric competition, resource limitation, and other sources of mortality, which are not included in the deliberately simplified theory. The theory should apply to a wide range of forests despite large differences in abiotic environment, species diversity, and taxonomic and functional composition. PMID:19363161

  19. Prediction of neonatal respiratory morbidity by quantitative ultrasound lung texture analysis: a multicenter study.

    PubMed

    Palacio, Montse; Bonet-Carne, Elisenda; Cobo, Teresa; Perez-Moreno, Alvaro; Sabrià, Joan; Richter, Jute; Kacerovsky, Marian; Jacobsson, Bo; García-Posada, Raúl A; Bugatto, Fernando; Santisteve, Ramon; Vives, Àngels; Parra-Cordero, Mauro; Hernandez-Andrade, Edgar; Bartha, José Luis; Carretero-Lucena, Pilar; Tan, Kai Lit; Cruz-Martínez, Rogelio; Burke, Minke; Vavilala, Suseela; Iruretagoyena, Igor; Delgado, Juan Luis; Schenone, Mauro; Vilanova, Josep; Botet, Francesc; Yeo, George S H; Hyett, Jon; Deprest, Jan; Romero, Roberto; Gratacos, Eduard

    2017-08-01

    Prediction of neonatal respiratory morbidity may be useful to plan delivery in complicated pregnancies. The limited predictive performance of the current diagnostic tests together with the risks of an invasive procedure restricts the use of fetal lung maturity assessment. The objective of the study was to evaluate the performance of quantitative ultrasound texture analysis of the fetal lung (quantusFLM) to predict neonatal respiratory morbidity in preterm and early-term (<39.0 weeks) deliveries. This was a prospective multicenter study conducted in 20 centers worldwide. Fetal lung ultrasound images were obtained at 25.0-38.6 weeks of gestation within 48 hours of delivery, stored in Digital Imaging and Communication in Medicine format, and analyzed with quantusFLM. Physicians were blinded to the analysis. At delivery, perinatal outcomes and the occurrence of neonatal respiratory morbidity, defined as either respiratory distress syndrome or transient tachypnea of the newborn, were registered. The performance of the ultrasound texture analysis test to predict neonatal respiratory morbidity was evaluated. A total of 883 images were collected, but 17.3% were discarded because of poor image quality or exclusion criteria, leaving 730 observations for the final analysis. The prevalence of neonatal respiratory morbidity was 13.8% (101 of 730). The quantusFLM predicted neonatal respiratory morbidity with a sensitivity, specificity, positive and negative predictive values of 74.3% (75 of 101), 88.6% (557 of 629), 51.0% (75 of 147), and 95.5% (557 of 583), respectively. Accuracy was 86.5% (632 of 730) and positive and negative likelihood ratios were 6.5 and 0.3, respectively. The quantusFLM predicted neonatal respiratory morbidity with an accuracy similar to that previously reported for other tests with the advantage of being a noninvasive technique. Copyright © 2017. Published by Elsevier Inc.

  20. Quantitative systems toxicology

    PubMed Central

    Bloomingdale, Peter; Housand, Conrad; Apgar, Joshua F.; Millard, Bjorn L.; Mager, Donald E.; Burke, John M.; Shah, Dhaval K.

    2017-01-01

    The overarching goal of modern drug development is to optimize therapeutic benefits while minimizing adverse effects. However, inadequate efficacy and safety concerns remain to be the major causes of drug attrition in clinical development. For the past 80 years, toxicity testing has consisted of evaluating the adverse effects of drugs in animals to predict human health risks. The U.S. Environmental Protection Agency recognized the need to develop innovative toxicity testing strategies and asked the National Research Council to develop a long-range vision and strategy for toxicity testing in the 21st century. The vision aims to reduce the use of animals and drug development costs through the integration of computational modeling and in vitro experimental methods that evaluates the perturbation of toxicity-related pathways. Towards this vision, collaborative quantitative systems pharmacology and toxicology modeling endeavors (QSP/QST) have been initiated amongst numerous organizations worldwide. In this article, we discuss how quantitative structure-activity relationship (QSAR), network-based, and pharmacokinetic/pharmacodynamic modeling approaches can be integrated into the framework of QST models. Additionally, we review the application of QST models to predict cardiotoxicity and hepatotoxicity of drugs throughout their development. Cell and organ specific QST models are likely to become an essential component of modern toxicity testing, and provides a solid foundation towards determining individualized therapeutic windows to improve patient safety. PMID:29308440

  1. Molecular Structure-Based Large-Scale Prediction of Chemical-Induced Gene Expression Changes.

    PubMed

    Liu, Ruifeng; AbdulHameed, Mohamed Diwan M; Wallqvist, Anders

    2017-09-25

    The quantitative structure-activity relationship (QSAR) approach has been used to model a wide range of chemical-induced biological responses. However, it had not been utilized to model chemical-induced genomewide gene expression changes until very recently, owing to the complexity of training and evaluating a very large number of models. To address this issue, we examined the performance of a variable nearest neighbor (v-NN) method that uses information on near neighbors conforming to the principle that similar structures have similar activities. Using a data set of gene expression signatures of 13 150 compounds derived from cell-based measurements in the NIH Library of Integrated Network-based Cellular Signatures program, we were able to make predictions for 62% of the compounds in a 10-fold cross validation test, with a correlation coefficient of 0.61 between the predicted and experimentally derived signatures-a reproducibility rivaling that of high-throughput gene expression measurements. To evaluate the utility of the predicted gene expression signatures, we compared the predicted and experimentally derived signatures in their ability to identify drugs known to cause specific liver, kidney, and heart injuries. Overall, the predicted and experimentally derived signatures had similar receiver operating characteristics, whose areas under the curve ranged from 0.71 to 0.77 and 0.70 to 0.73, respectively, across the three organ injury models. However, detailed analyses of enrichment curves indicate that signatures predicted from multiple near neighbors outperformed those derived from experiments, suggesting that averaging information from near neighbors may help improve the signal from gene expression measurements. Our results demonstrate that the v-NN method can serve as a practical approach for modeling large-scale, genomewide, chemical-induced, gene expression changes.

  2. Laboratory evolution of the migratory polymorphism in the sand cricket: combining physiology with quantitative genetics.

    PubMed

    Roff, Derek A; Fairbairn, Daphne J

    2007-01-01

    Predicting evolutionary change is the central goal of evolutionary biology because it is the primary means by which we can test evolutionary hypotheses. In this article, we analyze the pattern of evolutionary change in a laboratory population of the wing-dimorphic sand cricket Gryllus firmus resulting from relaxation of selection favoring the migratory (long-winged) morph. Based on a well-characterized trade-off between fecundity and flight capability, we predict that evolution in the laboratory environment should result in a reduction in the proportion of long-winged morphs. We also predict increased fecundity and reduced functionality and weight of the major flight muscles in long-winged females but little change in short-winged (flightless) females. Based on quantitative genetic theory, we predict that the regression equation describing the trade-off between ovary weight and weight of the major flight muscles will show a change in its intercept but not in its slope. Comparisons across generations verify all of these predictions. Further, using values of genetic parameters estimated from previous studies, we show that a quantitative genetic simulation model can account for not only the qualitative changes but also the evolutionary trajectory. These results demonstrate the power of combining quantitative genetic and physiological approaches for understanding the evolution of complex traits.

  3. An evidential link prediction method and link predictability based on Shannon entropy

    NASA Astrophysics Data System (ADS)

    Yin, Likang; Zheng, Haoyang; Bian, Tian; Deng, Yong

    2017-09-01

    Predicting missing links is of both theoretical value and practical interest in network science. In this paper, we empirically investigate a new link prediction method base on similarity and compare nine well-known local similarity measures on nine real networks. Most of the previous studies focus on the accuracy, however, it is crucial to consider the link predictability as an initial property of networks itself. Hence, this paper has proposed a new link prediction approach called evidential measure (EM) based on Dempster-Shafer theory. Moreover, this paper proposed a new method to measure link predictability via local information and Shannon entropy.

  4. Qualitative and quantitative comparison of geostatistical techniques of porosity prediction from the seismic and logging data: a case study from the Blackfoot Field, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Maurya, S. P.; Singh, K. H.; Singh, N. P.

    2018-05-01

    In present study, three recently developed geostatistical methods, single attribute analysis, multi-attribute analysis and probabilistic neural network algorithm have been used to predict porosity in inter well region for Blackfoot field, Alberta, Canada, an offshore oil field. These techniques make use of seismic attributes, generated by model based inversion and colored inversion techniques. The principle objective of the study is to find the suitable combination of seismic inversion and geostatistical techniques to predict porosity and identification of prospective zones in 3D seismic volume. The porosity estimated from these geostatistical approaches is corroborated with the well log porosity. The results suggest that all the three implemented geostatistical methods are efficient and reliable to predict the porosity but the multi-attribute and probabilistic neural network analysis provide more accurate and high resolution porosity sections. A low impedance (6000-8000 m/s g/cc) and high porosity (> 15%) zone is interpreted from inverted impedance and porosity sections respectively between 1060 and 1075 ms time interval and is characterized as reservoir. The qualitative and quantitative results demonstrate that of all the employed geostatistical methods, the probabilistic neural network along with model based inversion is the most efficient method for predicting porosity in inter well region.

  5. Quantitative Outline-based Shape Analysis and Classification of Planetary Craterforms using Supervised Learning Models

    NASA Astrophysics Data System (ADS)

    Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric

    2017-10-01

    The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.

  6. Testing 40 Predictions from the Transtheoretical Model Again, with Confidence

    ERIC Educational Resources Information Center

    Velicer, Wayne F.; Brick, Leslie Ann D.; Fava, Joseph L.; Prochaska, James O.

    2013-01-01

    Testing Theory-based Quantitative Predictions (TTQP) represents an alternative to traditional Null Hypothesis Significance Testing (NHST) procedures and is more appropriate for theory testing. The theory generates explicit effect size predictions and these effect size estimates, with related confidence intervals, are used to test the predictions.…

  7. Knowledge-based fragment binding prediction.

    PubMed

    Tang, Grace W; Altman, Russ B

    2014-04-01

    Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening.

  8. Knowledge-based Fragment Binding Prediction

    PubMed Central

    Tang, Grace W.; Altman, Russ B.

    2014-01-01

    Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening. PMID:24762971

  9. Predicting plant biomass accumulation from image-derived parameters

    PubMed Central

    Chen, Dijun; Shi, Rongli; Pape, Jean-Michel; Neumann, Kerstin; Graner, Andreas; Chen, Ming; Klukas, Christian

    2018-01-01

    Abstract Background Image-based high-throughput phenotyping technologies have been rapidly developed in plant science recently, and they provide a great potential to gain more valuable information than traditionally destructive methods. Predicting plant biomass is regarded as a key purpose for plant breeders and ecologists. However, it is a great challenge to find a predictive biomass model across experiments. Results In the present study, we constructed 4 predictive models to examine the quantitative relationship between image-based features and plant biomass accumulation. Our methodology has been applied to 3 consecutive barley (Hordeum vulgare) experiments with control and stress treatments. The results proved that plant biomass can be accurately predicted from image-based parameters using a random forest model. The high prediction accuracy based on this model will contribute to relieving the phenotyping bottleneck in biomass measurement in breeding applications. The prediction performance is still relatively high across experiments under similar conditions. The relative contribution of individual features for predicting biomass was further quantified, revealing new insights into the phenotypic determinants of the plant biomass outcome. Furthermore, methods could also be used to determine the most important image-based features related to plant biomass accumulation, which would be promising for subsequent genetic mapping to uncover the genetic basis of biomass. Conclusions We have developed quantitative models to accurately predict plant biomass accumulation from image data. We anticipate that the analysis results will be useful to advance our views of the phenotypic determinants of plant biomass outcome, and the statistical methods can be broadly used for other plant species. PMID:29346559

  10. MR Imaging-based Semi-quantitative Methods for Knee Osteoarthritis

    PubMed Central

    JARRAYA, Mohamed; HAYASHI, Daichi; ROEMER, Frank Wolfgang; GUERMAZI, Ali

    2016-01-01

    Magnetic resonance imaging (MRI)-based semi-quantitative (SQ) methods applied to knee osteoarthritis (OA) have been introduced during the last decade and have fundamentally changed our understanding of knee OA pathology since then. Several epidemiological studies and clinical trials have used MRI-based SQ methods to evaluate different outcome measures. Interest in MRI-based SQ scoring system has led to continuous update and refinement. This article reviews the different SQ approaches for MRI-based whole organ assessment of knee OA and also discuss practical aspects of whole joint assessment. PMID:26632537

  11. Biomacromolecular quantitative structure-activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein-protein binding affinity.

    PubMed

    Zhou, Peng; Wang, Congcong; Tian, Feifei; Ren, Yanrong; Yang, Chao; Huang, Jian

    2013-01-01

    Quantitative structure-activity relationship (QSAR), a regression modeling methodology that establishes statistical correlation between structure feature and apparent behavior for a series of congeneric molecules quantitatively, has been widely used to evaluate the activity, toxicity and property of various small-molecule compounds such as drugs, toxicants and surfactants. However, it is surprising to see that such useful technique has only very limited applications to biomacromolecules, albeit the solved 3D atom-resolution structures of proteins, nucleic acids and their complexes have accumulated rapidly in past decades. Here, we present a proof-of-concept paradigm for the modeling, prediction and interpretation of the binding affinity of 144 sequence-nonredundant, structure-available and affinity-known protein complexes (Kastritis et al. Protein Sci 20:482-491, 2011) using a biomacromolecular QSAR (BioQSAR) scheme. We demonstrate that the modeling performance and predictive power of BioQSAR are comparable to or even better than that of traditional knowledge-based strategies, mechanism-type methods and empirical scoring algorithms, while BioQSAR possesses certain additional features compared to the traditional methods, such as adaptability, interpretability, deep-validation and high-efficiency. The BioQSAR scheme could be readily modified to infer the biological behavior and functions of other biomacromolecules, if their X-ray crystal structures, NMR conformation assemblies or computationally modeled structures are available.

  12. AlzhCPI: A knowledge base for predicting chemical-protein interactions towards Alzheimer's disease.

    PubMed

    Fang, Jiansong; Wang, Ling; Li, Yecheng; Lian, Wenwen; Pang, Xiaocong; Wang, Hong; Yuan, Dongsheng; Wang, Qi; Liu, Ai-Lin; Du, Guan-Hua

    2017-01-01

    Alzheimer's disease (AD) is a complicated progressive neurodegeneration disorder. To confront AD, scientists are searching for multi-target-directed ligands (MTDLs) to delay disease progression. The in silico prediction of chemical-protein interactions (CPI) can accelerate target identification and drug discovery. Previously, we developed 100 binary classifiers to predict the CPI for 25 key targets against AD using the multi-target quantitative structure-activity relationship (mt-QSAR) method. In this investigation, we aimed to apply the mt-QSAR method to enlarge the model library to predict CPI towards AD. Another 104 binary classifiers were further constructed to predict the CPI for 26 preclinical AD targets based on the naive Bayesian (NB) and recursive partitioning (RP) algorithms. The internal 5-fold cross-validation and external test set validation were applied to evaluate the performance of the training sets and test set, respectively. The area under the receiver operating characteristic curve (ROC) for the test sets ranged from 0.629 to 1.0, with an average of 0.903. In addition, we developed a web server named AlzhCPI to integrate the comprehensive information of approximately 204 binary classifiers, which has potential applications in network pharmacology and drug repositioning. AlzhCPI is available online at http://rcidm.org/AlzhCPI/index.html. To illustrate the applicability of AlzhCPI, the developed system was employed for the systems pharmacology-based investigation of shichangpu against AD to enhance the understanding of the mechanisms of action of shichangpu from a holistic perspective.

  13. Proof-test-based life prediction of high-toughness pressure vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panontin, T.L.; Hill, M.R.

    1996-02-01

    The paper examines the problems associated with applying proof-test-based life prediction to vessels made of high-toughness metals. Two A106 Gr B pipe specimens containing long, through-wall circumferential flaws were tested. One failed during hydrostatic testing and the other during tension-tension cycling following a hydrostatic test. Quantitative fractography was used to verify experimentally obtained fatigue crack growth rates and a variety of LEFM and EPFM techniques were used to analyze the experimental results. The results show that: plastic collapse analysis provides accurate predictions of screened (initial) crack size when the flow stress is determined experimentally; LEFM analysis underestimates the crack sizemore » screened by the proof test and overpredicts the subsequent fatigue life of the vessel when retardation effects are small (i.e., low proof levels); and, at a high proof-test level (2.4 {times} operating pressure), the large retardation effect on fatigue crack growth due to the overload overwhelmed the deleterious effect on fatigue life from stable tearing during the proof test and alleviated the problem of screening only long cracks due to the high toughness of the metal.« less

  14. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures.

    PubMed

    Larue, Ruben T H M; Defraene, Gilles; De Ruysscher, Dirk; Lambin, Philippe; van Elmpt, Wouter

    2017-02-01

    Quantitative analysis of tumour characteristics based on medical imaging is an emerging field of research. In recent years, quantitative imaging features derived from CT, positron emission tomography and MR scans were shown to be of added value in the prediction of outcome parameters in oncology, in what is called the radiomics field. However, results might be difficult to compare owing to a lack of standardized methodologies to conduct quantitative image analyses. In this review, we aim to present an overview of the current challenges, technical routines and protocols that are involved in quantitative imaging studies. The first issue that should be overcome is the dependency of several features on the scan acquisition and image reconstruction parameters. Adopting consistent methods in the subsequent target segmentation step is evenly crucial. To further establish robust quantitative image analyses, standardization or at least calibration of imaging features based on different feature extraction settings is required, especially for texture- and filter-based features. Several open-source and commercial software packages to perform feature extraction are currently available, all with slightly different functionalities, which makes benchmarking quite challenging. The number of imaging features calculated is typically larger than the number of patients studied, which emphasizes the importance of proper feature selection and prediction model-building routines to prevent overfitting. Even though many of these challenges still need to be addressed before quantitative imaging can be brought into daily clinical practice, radiomics is expected to be a critical component for the integration of image-derived information to personalize treatment in the future.

  15. New approach to predict photoallergic potentials of chemicals based on murine local lymph node assay.

    PubMed

    Maeda, Yosuke; Hirosaki, Haruka; Yamanaka, Hidenori; Takeyoshi, Masahiro

    2018-05-23

    Photoallergic dermatitis, caused by pharmaceuticals and other consumer products, is a very important issue in human health. However, S10 guidelines of the International Conference on Harmonization do not recommend the existing prediction methods for photoallergy because of their low predictability in human cases. We applied local lymph node assay (LLNA), a reliable, quantitative skin sensitization prediction test, to develop a new photoallergy prediction method. This method involves a three-step approach: (1) ultraviolet (UV) absorption analysis; (2) determination of no observed adverse effect level for skin phototoxicity based on LLNA; and (3) photoallergy evaluation based on LLNA. Photoallergic potential of chemicals was evaluated by comparing lymph node cell proliferation among groups treated with chemicals with minimal effect levels of skin sensitization and skin phototoxicity under UV irradiation (UV+) or non-UV irradiation (UV-). A case showing significant difference (P < .05) in lymph node cell proliferation rates between UV- and UV+ groups was considered positive for photoallergic reaction. After testing 13 chemicals, seven human photoallergens tested positive and the other six, with no evidence of causing photoallergic dermatitis or UV absorption, tested negative. Among these chemicals, both doxycycline hydrochloride and minocycline hydrochloride were tetracycline antibiotics with different photoallergic properties, and the new method clearly distinguished between the photoallergic properties of these chemicals. These findings suggested high predictability of our method; therefore, it is promising and effective in predicting human photoallergens. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Validation of Greyscale-Based Quantitative Ultrasound in Manual Wheelchair Users

    PubMed Central

    Collinger, Jennifer L.; Fullerton, Bradley; Impink, Bradley G.; Koontz, Alicia M.; Boninger, Michael L.

    2010-01-01

    Objective The primary aim of this study is to establish the validity of greyscale-based quantitative ultrasound (QUS) measures of the biceps and supraspinatus tendons. Design Nine QUS measures of the biceps and supraspinatus tendons were computed from ultrasound images collected from sixty-seven manual wheelchair users. Shoulder pathology was measured using questionnaires, physical examination maneuvers, and a clinical ultrasound grading scale. Results Increased age, duration of wheelchair use, and body mass correlated with a darker, more homogenous tendon appearance. Subjects with pain during physical examination tests for biceps tenderness and acromioclavicular joint tenderness exhibited significantly different supraspinatus QUS values. Even when controlling for tendon depth, QUS measures of the biceps tendon differed significantly between subjects with healthy tendons, mild tendinosis, and severe tendinosis. Clinical grading of supraspinatus tendon health was correlated with QUS measures of the supraspinatus tendon. Conclusions Quantitative ultrasound is valid method to quantify tendinopathy and may allow for early detection of tendinosis. Manual wheelchair users are at a high risk for developing shoulder tendon pathology and may benefit from quantitative ultrasound-based research that focuses on identifying interventions designed to reduce this risk. PMID:20407304

  17. Quantitative prediction of shrimp disease incidence via the profiles of gut eukaryotic microbiota.

    PubMed

    Xiong, Jinbo; Yu, Weina; Dai, Wenfang; Zhang, Jinjie; Qiu, Qiongfen; Ou, Changrong

    2018-04-01

    One common notion is emerging that gut eukaryotes are commensal or beneficial, rather than detrimental. To date, however, surprisingly few studies have been taken to discern the factors that govern the assembly of gut eukaryotes, despite growing interest in the dysbiosis of gut microbiota-disease relationship. Herein, we firstly explored how the gut eukaryotic microbiotas were assembled over shrimp postlarval to adult stages and a disease progression. The gut eukaryotic communities changed markedly as healthy shrimp aged, and converged toward an adult-microbiota configuration. However, the adult-like stability was distorted by disease exacerbation. A null model untangled that the deterministic processes that governed the gut eukaryotic assembly tended to be more important over healthy shrimp development, whereas this trend was inverted as the disease progressed. After ruling out the baseline of gut eukaryotes over shrimp ages, we identified disease-discriminatory taxa (species level afforded the highest accuracy of prediction) that characteristic of shrimp health status. The profiles of these taxa contributed an overall 92.4% accuracy in predicting shrimp health status. Notably, this model can accurately diagnose the onset of shrimp disease. Interspecies interaction analysis depicted how the disease-discriminatory taxa interacted with one another in sustaining shrimp health. Taken together, our findings offer novel insights into the underlying ecological processes that govern the assembly of gut eukaryotes over shrimp postlarval to adult stages and a disease progression. Intriguingly, the established model can quantitatively and accurately predict the incidences of shrimp disease.

  18. Prediction of Safety Margin and Optimization of Dosing Protocol for a Novel Antibiotic using Quantitative Systems Pharmacology Modeling.

    PubMed

    Woodhead, Jeffrey L; Paech, Franziska; Maurer, Martina; Engelhardt, Marc; Schmitt-Hoffmann, Anne H; Spickermann, Jochen; Messner, Simon; Wind, Mathias; Witschi, Anne-Therese; Krähenbühl, Stephan; Siler, Scott Q; Watkins, Paul B; Howell, Brett A

    2018-06-07

    Elevations of liver enzymes have been observed in clinical trials with BAL30072, a novel antibiotic. In vitro assays have identified potential mechanisms for the observed hepatotoxicity, including electron transport chain (ETC) inhibition and reactive oxygen species (ROS) generation. DILIsym, a quantitative systems pharmacology (QSP) model of drug-induced liver injury, has been used to predict the likelihood that each mechanism explains the observed toxicity. DILIsym was also used to predict the safety margin for a novel BAL30072 dosing scheme; it was predicted to be low. DILIsym was then used to recommend potential modifications to this dosing scheme; weight-adjusted dosing and a requirement to assay plasma alanine aminotransferase (ALT) daily and stop dosing as soon as ALT increases were observed improved the predicted safety margin of BAL30072 and decreased the predicted likelihood of severe injury. This research demonstrates a potential application for QSP modeling in improving the safety profile of candidate drugs. © 2018 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  19. Quantitative power Doppler ultrasound measures of peripheral joint synovitis in poor prognosis early rheumatoid arthritis predict radiographic progression.

    PubMed

    Sreerangaiah, Dee; Grayer, Michael; Fisher, Benjamin A; Ho, Meilien; Abraham, Sonya; Taylor, Peter C

    2016-01-01

    To assess the value of quantitative vascular imaging by power Doppler US (PDUS) as a tool that can be used to stratify patient risk of joint damage in early seropositive RA while still biologic naive but on synthetic DMARD treatment. Eighty-five patients with seropositive RA of <3 years duration had clinical, laboratory and imaging assessments at 0 and 12 months. Imaging assessments consisted of radiographs of the hands and feet, two-dimensional (2D) high-frequency and PDUS imaging of 10 MCP joints that were scored for erosions and vascularity and three-dimensional (3D) PDUS of MCP joints and wrists that were scored for vascularity. Severe deterioration on radiographs and ultrasonography was seen in 45 and 28% of patients, respectively. The 3D power Doppler volume and 2D vascularity scores were the most useful US predictors of deterioration. These variables were modelled in two equations that estimate structural damage over 12 months. The equations had a sensitivity of 63.2% and specificity of 80.9% for predicting radiographic structural damage and a sensitivity of 54.2% and specificity of 96.7% for predicting structural damage on ultrasonography. In seropositive early RA, quantitative vascular imaging by PDUS has clinical utility in predicting which patients will derive benefit from early use of biologic therapy. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow

    NASA Technical Reports Server (NTRS)

    Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.

    1999-01-01

    The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.

  1. A Novel Two-Step Hierarchical Quantitative Structure–Activity Relationship Modeling Work Flow for Predicting Acute Toxicity of Chemicals in Rodents

    PubMed Central

    Zhu, Hao; Ye, Lin; Richard, Ann; Golbraikh, Alexander; Wright, Fred A.; Rusyn, Ivan; Tropsha, Alexander

    2009-01-01

    Background Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public–private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. Objective A wealth of available biological data requires new computational approaches to link chemical structure, in vitro data, and potential adverse health effects. Methods and results A database containing experimental cytotoxicity values for in vitro half-maximal inhibitory concentration (IC50) and in vivo rodent median lethal dose (LD50) for more than 300 chemicals was compiled by Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergaenzungsmethoden zum Tierversuch (ZEBET; National Center for Documentation and Evaluation of Alternative Methods to Animal Experiments). The application of conventional quantitative structure–activity relationship (QSAR) modeling approaches to predict mouse or rat acute LD50 values from chemical descriptors of ZEBET compounds yielded no statistically significant models. The analysis of these data showed no significant correlation between IC50 and LD50. However, a linear IC50 versus LD50 correlation could be established for a fraction of compounds. To capitalize on this observation, we developed a novel two-step modeling approach as follows. First, all chemicals are partitioned into two groups based on the relationship between IC50 and LD50 values: One group comprises compounds with linear IC50 versus LD50 relationships, and another group comprises the remaining compounds. Second, we built conventional binary classification QSAR models to predict the group affiliation based on chemical descriptors only. Third, we developed k-nearest neighbor continuous QSAR models for each subclass to predict LD50 values from chemical descriptors. All models were extensively validated using special protocols. Conclusions The novelty of this modeling approach is that it uses the relationships

  2. A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents.

    PubMed

    Zhu, Hao; Ye, Lin; Richard, Ann; Golbraikh, Alexander; Wright, Fred A; Rusyn, Ivan; Tropsha, Alexander

    2009-08-01

    Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public-private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. A wealth of available biological data requires new computational approaches to link chemical structure, in vitro data, and potential adverse health effects. A database containing experimental cytotoxicity values for in vitro half-maximal inhibitory concentration (IC(50)) and in vivo rodent median lethal dose (LD(50)) for more than 300 chemicals was compiled by Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergaenzungsmethoden zum Tierversuch (ZEBET; National Center for Documentation and Evaluation of Alternative Methods to Animal Experiments). The application of conventional quantitative structure-activity relationship (QSAR) modeling approaches to predict mouse or rat acute LD(50) values from chemical descriptors of ZEBET compounds yielded no statistically significant models. The analysis of these data showed no significant correlation between IC(50) and LD(50). However, a linear IC(50) versus LD(50) correlation could be established for a fraction of compounds. To capitalize on this observation, we developed a novel two-step modeling approach as follows. First, all chemicals are partitioned into two groups based on the relationship between IC(50) and LD(50) values: One group comprises compounds with linear IC(50) versus LD(50) relationships, and another group comprises the remaining compounds. Second, we built conventional binary classification QSAR models to predict the group affiliation based on chemical descriptors only. Third, we developed k-nearest neighbor continuous QSAR models for each subclass to predict LD(50) values from chemical descriptors. All models were extensively validated using special protocols. The novelty of this modeling approach is that it uses the relationships between in vivo and in vitro data only

  3. Molecular surface area based predictive models for the adsorption and diffusion of disperse dyes in polylactic acid matrix.

    PubMed

    Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi

    2015-11-15

    Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Differential contribution of genomic regions to marked genetic variation and prediction of quantitative traits in broiler chickens.

    PubMed

    Abdollahi-Arpanahi, Rostam; Morota, Gota; Valente, Bruno D; Kranis, Andreas; Rosa, Guilherme J M; Gianola, Daniel

    2016-02-03

    Genome-wide association studies in humans have found enrichment of trait-associated single nucleotide polymorphisms (SNPs) in coding regions of the genome and depletion of these in intergenic regions. However, a recent release of the ENCyclopedia of DNA elements showed that ~80 % of the human genome has a biochemical function. Similar studies on the chicken genome are lacking, thus assessing the relative contribution of its genic and non-genic regions to variation is relevant for biological studies and genetic improvement of chicken populations. A dataset including 1351 birds that were genotyped with the 600K Affymetrix platform was used. We partitioned SNPs according to genome annotation data into six classes to characterize the relative contribution of genic and non-genic regions to genetic variation as well as their predictive power using all available quality-filtered SNPs. Target traits were body weight, ultrasound measurement of breast muscle and hen house egg production in broiler chickens. Six genomic regions were considered: intergenic regions, introns, missense, synonymous, 5' and 3' untranslated regions, and regions that are located 5 kb upstream and downstream of coding genes. Genomic relationship matrices were constructed for each genomic region and fitted in the models, separately or simultaneously. Kernel-based ridge regression was used to estimate variance components and assess predictive ability. Contribution of each class of genomic regions to dominance variance was also considered. Variance component estimates indicated that all genomic regions contributed to marked additive genetic variation and that the class of synonymous regions tended to have the greatest contribution. The marked dominance genetic variation explained by each class of genomic regions was similar and negligible (~0.05). In terms of prediction mean-square error, the whole-genome approach showed the best predictive ability. All genic and non-genic regions contributed to

  5. Continuously growing rodent molars result from a predictable quantitative evolutionary change over 50 million years

    PubMed Central

    Mushegyan, Vagan; Eronen, Jussi T.; Lawing, A. Michelle; Sharir, Amnon; Janis, Christine; Jernvall, Jukka; Klein, Ophir D.

    2015-01-01

    Summary The fossil record is widely informative about evolution, but fossils are not systematically used to study the evolution of stem cell-driven renewal. Here, we examined evolution of the continuous growth (hypselodonty) of rodent molar teeth, which is fuelled by the presence of dental stem cells. We studied occurrences of 3500 North American rodent fossils, ranging from 50 million years ago (mya) to 2 mya. We examined changes in molar height to determine if evolution of hypselodonty shows distinct patterns in the fossil record, and we found that hypselodont taxa emerged through intermediate forms of increasing crown height. Next, we designed a Markov simulation model, which replicated molar height increases throughout the Cenozoic, and, moreover, evolution of hypselodonty. Thus, by extension, the retention of the adult stem-cell niche appears to be a predictable quantitative rather than a stochastic qualitative process. Our analyses predict that hypselodonty will eventually become the dominant phenotype. PMID:25921530

  6. PredPsych: A toolbox for predictive machine learning-based approach in experimental psychology research.

    PubMed

    Koul, Atesh; Becchio, Cristina; Cavallo, Andrea

    2017-12-12

    Recent years have seen an increased interest in machine learning-based predictive methods for analyzing quantitative behavioral data in experimental psychology. While these methods can achieve relatively greater sensitivity compared to conventional univariate techniques, they still lack an established and accessible implementation. The aim of current work was to build an open-source R toolbox - "PredPsych" - that could make these methods readily available to all psychologists. PredPsych is a user-friendly, R toolbox based on machine-learning predictive algorithms. In this paper, we present the framework of PredPsych via the analysis of a recently published multiple-subject motion capture dataset. In addition, we discuss examples of possible research questions that can be addressed with the machine-learning algorithms implemented in PredPsych and cannot be easily addressed with univariate statistical analysis. We anticipate that PredPsych will be of use to researchers with limited programming experience not only in the field of psychology, but also in that of clinical neuroscience, enabling computational assessment of putative bio-behavioral markers for both prognosis and diagnosis.

  7. Target-based drug discovery for [Formula: see text]-globin disorders: drug target prediction using quantitative modeling with hybrid functional Petri nets.

    PubMed

    Mehraei, Mani; Bashirov, Rza; Tüzmen, Şükrü

    2016-10-01

    Recent molecular studies provide important clues into treatment of [Formula: see text]-thalassemia, sickle-cell anaemia and other [Formula: see text]-globin disorders revealing that increased production of fetal hemoglobin, that is normally suppressed in adulthood, can ameliorate the severity of these diseases. In this paper, we present a novel approach for drug prediction for [Formula: see text]-globin disorders. Our approach is centered upon quantitative modeling of interactions in human fetal-to-adult hemoglobin switch network using hybrid functional Petri nets. In accordance with the reverse pharmacology approach, we pose a hypothesis regarding modulation of specific protein targets that induce [Formula: see text]-globin and consequently fetal hemoglobin. Comparison of simulation results for the proposed strategy with the ones obtained for already existing drugs shows that our strategy is the optimal as it leads to highest level of [Formula: see text]-globin induction and thereby has potential beneficial therapeutic effects on [Formula: see text]-globin disorders. Simulation results enable verification of model coherence demonstrating that it is consistent with qPCR data available for known strategies and/or drugs.

  8. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.

    PubMed

    Dearden, John C

    2003-08-01

    Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

  9. Reliability prediction of ontology-based service compositions using Petri net and time series models.

    PubMed

    Li, Jia; Xia, Yunni; Luo, Xin

    2014-01-01

    OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy.

  10. Reliability Prediction of Ontology-Based Service Compositions Using Petri Net and Time Series Models

    PubMed Central

    Li, Jia; Xia, Yunni; Luo, Xin

    2014-01-01

    OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy. PMID:24688429

  11. Quantitative fetal fibronectin testing in combination with cervical length measurement in the prediction of spontaneous preterm delivery in symptomatic women.

    PubMed

    Bruijn, Mmc; Vis, J Y; Wilms, F F; Oudijk, M A; Kwee, A; Porath, M M; Oei, G; Scheepers, Hcj; Spaanderman, Mea; Bloemenkamp, Kwm; Haak, M C; Bolte, A C; Vandenbussche, Fpha; Woiski, M D; Bax, C J; Cornette, Jmj; Duvekot, J J; Nij Bijvanck, Bwa; van Eyck, J; Franssen, Mtm; Sollie, K M; van der Post, Jam; Bossuyt, Pmm; Opmeer, B C; Kok, M; Mol, Bwj; van Baaren, G-J

    2016-11-01

    To evaluate whether in symptomatic women, the combination of quantitative fetal fibronectin (fFN) testing and cervical length (CL) improves the prediction of preterm delivery (PTD) within 7 days compared with qualitative fFN and CL. Post hoc analysis of frozen fFN samples of a nationwide cohort study. Ten perinatal centres in the Netherlands. Symptomatic women between 24 and 34 weeks of gestation. The risk of PTD <7 days was estimated in predefined CL and fFN strata. We used logistic regression to develop a model including quantitative fFN and CL, and one including qualitative fFN (threshold 50 ng/ml) and CL. We compared the models' capacity to identify women at low risk (<5%) for delivery within 7 days using a reclassification table. Spontaneous delivery within 7 days after study entry. We studied 350 women, of whom 69 (20%) delivered within 7 days. The risk of PTD in <7 days ranged from 2% in the lowest fFN group (<10 ng/ml) to 71% in the highest group (>500 ng/ml). Multivariable logistic regression showed an increasing risk of PTD in <7 days with rising fFN concentration [10-49 ng/ml: odds ratio (OR) 1.3, 95% confidence interval (95% CI) 0.23-7.0; 50-199 ng/ml: OR 3.2, 95% CI 0.79-13; 200-499 ng/ml: OR 9.0, 95% CI 2.3-35; >500 ng/ml: OR 39, 95% CI 9.4-164] and shortening of the CL (OR 0.86 per mm, 95% CI 0.82-0.90). Use of quantitative fFN instead of qualitative fFN resulted in reclassification of 18 (5%) women from high to low risk, of whom one (6%) woman delivered within 7 days. In symptomatic women, quantitative fFN testing does not improve the prediction of PTD within 7 days compared with qualitative fFN testing in combination with CL measurement in terms of reclassification from high to low (<5%) risk, but it adds value across the risk range. Quantitative fFN testing adds value to qualitative fFN testing with CL measurement in the prediction of PTD. © 2015 Royal College of Obstetricians and Gynaecologists.

  12. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite.

    PubMed

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.

  13. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite

    PubMed Central

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN usingimages of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN. PMID:26447470

  14. Modeling and prediction of peptide drift times in ion mobility spectrometry using sequence-based and structure-based approaches.

    PubMed

    Zhang, Yiming; Jin, Quan; Wang, Shuting; Ren, Ren

    2011-05-01

    The mobile behavior of 1481 peptides in ion mobility spectrometry (IMS), which are generated by protease digestion of the Drosophila melanogaster proteome, is modeled and predicted based on two different types of characterization methods, i.e. sequence-based approach and structure-based approach. In this procedure, the sequence-based approach considers both the amino acid composition of a peptide and the local environment profile of each amino acid in the peptide; the structure-based approach is performed with the CODESSA protocol, which regards a peptide as a common organic compound and generates more than 200 statistically significant variables to characterize the whole structure profile of a peptide molecule. Subsequently, the nonlinear support vector machine (SVM) and Gaussian process (GP) as well as linear partial least squares (PLS) regression is employed to correlate the structural parameters of the characterizations with the IMS drift times of these peptides. The obtained quantitative structure-spectrum relationship (QSSR) models are evaluated rigorously and investigated systematically via both one-deep and two-deep cross-validations as well as the rigorous Monte Carlo cross-validation (MCCV). We also give a comprehensive comparison on the resulting statistics arising from the different combinations of variable types with modeling methods and find that the sequence-based approach can give the QSSR models with better fitting ability and predictive power but worse interpretability than the structure-based approach. In addition, though the QSSR modeling using sequence-based approach is not needed for the preparation of the minimization structures of peptides before the modeling, it would be considerably efficient as compared to that using structure-based approach. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. BiPPred: Combined sequence- and structure-based prediction of peptide binding to the Hsp70 chaperone BiP.

    PubMed

    Schneider, Markus; Rosam, Mathias; Glaser, Manuel; Patronov, Atanas; Shah, Harpreet; Back, Katrin Christiane; Daake, Marina Angelika; Buchner, Johannes; Antes, Iris

    2016-10-01

    Substrate binding to Hsp70 chaperones is involved in many biological processes, and the identification of potential substrates is important for a comprehensive understanding of these events. We present a multi-scale pipeline for an accurate, yet efficient prediction of peptides binding to the Hsp70 chaperone BiP by combining sequence-based prediction with molecular docking and MMPBSA calculations. First, we measured the binding of 15mer peptides from known substrate proteins of BiP by peptide array (PA) experiments and performed an accuracy assessment of the PA data by fluorescence anisotropy studies. Several sequence-based prediction models were fitted using this and other peptide binding data. A structure-based position-specific scoring matrix (SB-PSSM) derived solely from structural modeling data forms the core of all models. The matrix elements are based on a combination of binding energy estimations, molecular dynamics simulations, and analysis of the BiP binding site, which led to new insights into the peptide binding specificities of the chaperone. Using this SB-PSSM, peptide binders could be predicted with high selectivity even without training of the model on experimental data. Additional training further increased the prediction accuracies. Subsequent molecular docking (DynaDock) and MMGBSA/MMPBSA-based binding affinity estimations for predicted binders allowed the identification of the correct binding mode of the peptides as well as the calculation of nearly quantitative binding affinities. The general concept behind the developed multi-scale pipeline can readily be applied to other protein-peptide complexes with linearly bound peptides, for which sufficient experimental binding data for the training of classical sequence-based prediction models is not available. Proteins 2016; 84:1390-1407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Quantitative Assessment of Thermodynamic Constraints on the Solution Space of Genome-Scale Metabolic Models

    PubMed Central

    Hamilton, Joshua J.; Dwivedi, Vivek; Reed, Jennifer L.

    2013-01-01

    Constraint-based methods provide powerful computational techniques to allow understanding and prediction of cellular behavior. These methods rely on physiochemical constraints to eliminate infeasible behaviors from the space of available behaviors. One such constraint is thermodynamic feasibility, the requirement that intracellular flux distributions obey the laws of thermodynamics. The past decade has seen several constraint-based methods that interpret this constraint in different ways, including those that are limited to small networks, rely on predefined reaction directions, and/or neglect the relationship between reaction free energies and metabolite concentrations. In this work, we utilize one such approach, thermodynamics-based metabolic flux analysis (TMFA), to make genome-scale, quantitative predictions about metabolite concentrations and reaction free energies in the absence of prior knowledge of reaction directions, while accounting for uncertainties in thermodynamic estimates. We applied TMFA to a genome-scale network reconstruction of Escherichia coli and examined the effect of thermodynamic constraints on the flux space. We also assessed the predictive performance of TMFA against gene essentiality and quantitative metabolomics data, under both aerobic and anaerobic, and optimal and suboptimal growth conditions. Based on these results, we propose that TMFA is a useful tool for validating phenotypes and generating hypotheses, and that additional types of data and constraints can improve predictions of metabolite concentrations. PMID:23870272

  17. WPC Quantitative Precipitation Forecasts - Day 1

    Science.gov Websites

    to all federal, state, and local government web resources and services. Quantitative Precipitation Prediction Center 5830 University Research Court College Park, Maryland 20740 Weather Prediction Center Web

  18. Structural parameterization and functional prediction of antigenic polypeptome sequences with biological activity through quantitative sequence-activity models (QSAM) by molecular electronegativity edge-distance vector (VMED).

    PubMed

    Li, ZhiLiang; Wu, ShiRong; Chen, ZeCong; Ye, Nancy; Yang, ShengXi; Liao, ChunYang; Zhang, MengJun; Yang, Li; Mei, Hu; Yang, Yan; Zhao, Na; Zhou, Yuan; Zhou, Ping; Xiong, Qing; Xu, Hong; Liu, ShuShen; Ling, ZiHua; Chen, Gang; Li, GenRong

    2007-10-01

    Only from the primary structures of peptides, a new set of descriptors called the molecular electronegativity edge-distance vector (VMED) was proposed and applied to describing and characterizing the molecular structures of oligopeptides and polypeptides, based on the electronegativity of each atom or electronic charge index (ECI) of atomic clusters and the bonding distance between atom-pairs. Here, the molecular structures of antigenic polypeptides were well expressed in order to propose the automated technique for the computerized identification of helper T lymphocyte (Th) epitopes. Furthermore, a modified MED vector was proposed from the primary structures of polypeptides, based on the ECI and the relative bonding distance of the fundamental skeleton groups. The side-chains of each amino acid were here treated as a pseudo-atom. The developed VMED was easy to calculate and able to work. Some quantitative model was established for 28 immunogenic or antigenic polypeptides (AGPP) with 14 (1-14) A(d) and 14 other restricted activities assigned as "1"(+) and "0"(-), respectively. The latter comprised 6 A(b)(15-20), 3 A(k)(21-23), 2 E(k)(24-26), 2 H-2(k)(27 and 28) restricted sequences. Good results were obtained with 90% correct classification (only 2 wrong ones for 20 training samples) and 100% correct prediction (none wrong for 8 testing samples); while contrastively 100% correct classification (none wrong for 20 training samples) and 88% correct classification (1 wrong for 8 testing samples). Both stochastic samplings and cross validations were performed to demonstrate good performance. The described method may also be suitable for estimation and prediction of classes I and II for major histocompatibility antigen (MHC) epitope of human. It will be useful in immune identification and recognition of proteins and genes and in the design and development of subunit vaccines. Several quantitative structure activity relationship (QSAR) models were developed for various

  19. Near infrared spectroscopy as an on-line method to quantitatively determine glycogen and predict ultimate pH in pre rigor bovine M. longissimus dorsi.

    PubMed

    Lomiwes, D; Reis, M M; Wiklund, E; Young, O A; North, M

    2010-12-01

    The potential of near infrared (NIR) spectroscopy as an on-line method to quantify glycogen and predict ultimate pH (pH(u)) of pre rigor beef M. longissimus dorsi (LD) was assessed. NIR spectra (538 to 1677 nm) of pre rigor LD from steers, cows and bulls were collected early post mortem and measurements were made for pre rigor glycogen concentration and pH(u). Spectral and measured data were combined to develop models to quantify glycogen and predict the pH(u) of pre rigor LD. NIR spectra and pre rigor predicted values obtained from quantitative models were shown to be poorly correlated against glycogen and pH(u) (r(2)=0.23 and 0.20, respectively). Qualitative models developed to categorize each muscle according to their pH(u) were able to correctly categorize 42% of high pH(u) samples. Optimum qualitative and quantitative models derived from NIR spectra found low correlation between predicted values and reference measurements. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd.. All rights reserved.

  20. Quantitative Adverse Outcome Pathways and Their ...

    EPA Pesticide Factsheets

    A quantitative adverse outcome pathway (qAOP) consists of one or more biologically based, computational models describing key event relationships linking a molecular initiating event (MIE) to an adverse outcome. A qAOP provides quantitative, dose–response, and time-course predictions that can support regulatory decision-making. Herein we describe several facets of qAOPs, including (a) motivation for development, (b) technical considerations, (c) evaluation of confidence, and (d) potential applications. The qAOP used as an illustrative example for these points describes the linkage between inhibition of cytochrome P450 19A aromatase (the MIE) and population-level decreases in the fathead minnow (FHM; Pimephales promelas). The qAOP consists of three linked computational models for the following: (a) the hypothalamic-pitutitary-gonadal axis in female FHMs, where aromatase inhibition decreases the conversion of testosterone to 17β-estradiol (E2), thereby reducing E2-dependent vitellogenin (VTG; egg yolk protein precursor) synthesis, (b) VTG-dependent egg development and spawning (fecundity), and (c) fecundity-dependent population trajectory. While development of the example qAOP was based on experiments with FHMs exposed to the aromatase inhibitor fadrozole, we also show how a toxic equivalence (TEQ) calculation allows use of the qAOP to predict effects of another, untested aromatase inhibitor, iprodione. While qAOP development can be resource-intensive, the quan

  1. Towards in vivo focal cortical dysplasia phenotyping using quantitative MRI.

    PubMed

    Adler, Sophie; Lorio, Sara; Jacques, Thomas S; Benova, Barbora; Gunny, Roxana; Cross, J Helen; Baldeweg, Torsten; Carmichael, David W

    2017-01-01

    Focal cortical dysplasias (FCDs) are a range of malformations of cortical development each with specific histopathological features. Conventional radiological assessment of standard structural MRI is useful for the localization of lesions but is unable to accurately predict the histopathological features. Quantitative MRI offers the possibility to probe tissue biophysical properties in vivo and may bridge the gap between radiological assessment and ex-vivo histology. This review will cover histological, genetic and radiological features of FCD following the ILAE classification and will explain how quantitative voxel- and surface-based techniques can characterise these features. We will provide an overview of the quantitative MRI measures available, their link with biophysical properties and finally the potential application of quantitative MRI to the problem of FCD subtyping. Future research linking quantitative MRI to FCD histological properties should improve clinical protocols, allow better characterisation of lesions in vivo and tailored surgical planning to the individual.

  2. Nonesterified fatty acid determination for functional lipidomics: comprehensive ultrahigh performance liquid chromatography-tandem mass spectrometry quantitation, qualification, and parameter prediction.

    PubMed

    Hellmuth, Christian; Weber, Martina; Koletzko, Berthold; Peissner, Wolfgang

    2012-02-07

    Despite their central importance for lipid metabolism, straightforward quantitative methods for determination of nonesterified fatty acid (NEFA) species are still missing. The protocol presented here provides unbiased quantitation of plasma NEFA species by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Simple deproteination of plasma in organic solvent solution yields high accuracy, including both the unbound and initially protein-bound fractions, while avoiding interferences from hydrolysis of esterified fatty acids from other lipid classes. Sample preparation is fast and nonexpensive, hence well suited for automation and high-throughput applications. Separation of isotopologic NEFA is achieved using ultrahigh-performance liquid chromatography (UPLC) coupled to triple quadrupole LC-MS/MS detection. In combination with automated liquid handling, total assay time per sample is less than 15 min. The analytical spectrum extends beyond readily available NEFA standard compounds by a regression model predicting all the relevant analytical parameters (retention time, ion path settings, and response factor) of NEFA species based on chain length and number of double bonds. Detection of 50 NEFA species and accurate quantification of 36 NEFA species in human plasma is described, the highest numbers ever reported for a LC-MS application. Accuracy and precision are within widely accepted limits. The use of qualifier ions supports unequivocal analyte verification. © 2012 American Chemical Society

  3. Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches

    PubMed Central

    Guedich, Sondés; Puffer-Enders, Barbara; Baltzinger, Mireille; Hoffmann, Guillaume; Da Veiga, Cyrielle; Jossinet, Fabrice; Thore, Stéphane; Bec, Guillaume; Ennifar, Eric; Burnouf, Dominique; Dumas, Philippe

    2016-01-01

    ABSTRACT Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations. PMID:26932506

  4. Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches.

    PubMed

    Guedich, Sondés; Puffer-Enders, Barbara; Baltzinger, Mireille; Hoffmann, Guillaume; Da Veiga, Cyrielle; Jossinet, Fabrice; Thore, Stéphane; Bec, Guillaume; Ennifar, Eric; Burnouf, Dominique; Dumas, Philippe

    2016-01-01

    Riboswitches are non-coding elements upstream or downstream of mRNAs that, upon binding of a specific ligand, regulate transcription and/or translation initiation in bacteria, or alternative splicing in plants and fungi. We have studied thiamine pyrophosphate (TPP) riboswitches regulating translation of thiM operon and transcription and translation of thiC operon in E. coli, and that of THIC in the plant A. thaliana. For all, we ascertained an induced-fit mechanism involving initial binding of the TPP followed by a conformational change leading to a higher-affinity complex. The experimental values obtained for all kinetic and thermodynamic parameters of TPP binding imply that the regulation by A. thaliana riboswitch is governed by mass-action law, whereas it is of kinetic nature for the two bacterial riboswitches. Kinetic regulation requires that the RNA polymerase pauses after synthesis of each riboswitch aptamer to leave time for TPP binding, but only when its concentration is sufficient. A quantitative model of regulation highlighted how the pausing time has to be linked to the kinetic rates of initial TPP binding to obtain an ON/OFF switch in the correct concentration range of TPP. We verified the existence of these pauses and the model prediction on their duration. Our analysis also led to quantitative estimates of the respective efficiency of kinetic and thermodynamic regulations, which shows that kinetically regulated riboswitches react more sharply to concentration variation of their ligand than thermodynamically regulated riboswitches. This rationalizes the interest of kinetic regulation and confirms empirical observations that were obtained by numerical simulations.

  5. Size-adjusted Quantitative Gleason Score as a Predictor of Biochemical Recurrence after Radical Prostatectomy.

    PubMed

    Deng, Fang-Ming; Donin, Nicholas M; Pe Benito, Ruth; Melamed, Jonathan; Le Nobin, Julien; Zhou, Ming; Ma, Sisi; Wang, Jinhua; Lepor, Herbert

    2016-08-01

    The risk of biochemical recurrence (BCR) following radical prostatectomy for pathologic Gleason 7 prostate cancer varies according to the proportion of Gleason 4 component. We sought to explore the value of several novel quantitative metrics of Gleason 4 disease for the prediction of BCR in men with Gleason 7 disease. We analyzed a cohort of 2630 radical prostatectomy cases from 1990-2007. All pathologic Gleason 7 cases were identified and assessed for quantity of Gleason pattern 4. Three methods were used to quantify the extent of Gleason 4: a quantitative Gleason score (qGS) based on the proportion of tumor composed of Gleason pattern 4, a size-weighted score (swGS) incorporating the overall quantity of Gleason 4, and a size index (siGS) incorporating the quantity of Gleason 4 based on the index lesion. Associations between the above metrics and BCR were evaluated using Cox proportional hazards regression analysis. qGS, swGS, and siGS were significantly associated with BCR on multivariate analysis when adjusted for traditional Gleason score, age, prostate specific antigen, surgical margin, and stage. Using Harrell's c-index to compare the scoring systems, qGS (0.83), swGS (0.84), and siGS (0.84) all performed better than the traditional Gleason score (0.82). Quantitative measures of Gleason pattern 4 predict BCR better than the traditional Gleason score. In men with Gleason 7 prostate cancer, quantitative analysis of the proportion of Gleason pattern 4 (quantitative Gleason score), as well as size-weighted measurement of Gleason 4 (size-weighted Gleason score), and a size-weighted measurement of Gleason 4 based on the largest tumor nodule significantly improve the predicted risk of biochemical recurrence compared with the traditional Gleason score. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  6. Quantitative PET/CT scanner performance characterization based upon the society of nuclear medicine and molecular imaging clinical trials network oncology clinical simulator phantom.

    PubMed

    Sunderland, John J; Christian, Paul E

    2015-01-01

    trial sites to use their preferred reconstruction methodologies. Predictably, time-of-flight-enabled scanners exhibited less size-based partial-volume bias than non-time-of-flight scanners. The CTN scanner validation experience over the past 5 y has generated a rich, well-curated phantom dataset from which PET/CT make-and-model and reconstruction-dependent quantitative behaviors were characterized for the purposes of understanding and estimating scanner-based variances in clinical trials. These results should make it possible to identify and recommend make-and-model-specific reconstruction strategies to minimize measurement variability in cancer clinical trials. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. Microfluidics-based digital quantitative PCR for single-cell small RNA quantification.

    PubMed

    Yu, Tian; Tang, Chong; Zhang, Ying; Zhang, Ruirui; Yan, Wei

    2017-09-01

    Quantitative analyses of small RNAs at the single-cell level have been challenging because of limited sensitivity and specificity of conventional real-time quantitative PCR methods. A digital quantitative PCR (dqPCR) method for miRNA quantification has been developed, but it requires the use of proprietary stem-loop primers and only applies to miRNA quantification. Here, we report a microfluidics-based dqPCR (mdqPCR) method, which takes advantage of the Fluidigm BioMark HD system for both template partition and the subsequent high-throughput dqPCR. Our mdqPCR method demonstrated excellent sensitivity and reproducibility suitable for quantitative analyses of not only miRNAs but also all other small RNA species at the single-cell level. Using this method, we discovered that each sperm has a unique miRNA profile. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Early prediction of cerebral palsy by computer-based video analysis of general movements: a feasibility study.

    PubMed

    Adde, Lars; Helbostad, Jorunn L; Jensenius, Alexander R; Taraldsen, Gunnar; Grunewaldt, Kristine H; Støen, Ragnhild

    2010-08-01

    The aim of this study was to investigate the predictive value of a computer-based video analysis of the development of cerebral palsy (CP) in young infants. A prospective study of general movements used recordings from 30 high-risk infants (13 males, 17 females; mean gestational age 31wks, SD 6wks; range 23-42wks) between 10 and 15 weeks post term when fidgety movements should be present. Recordings were analysed using computer vision software. Movement variables, derived from differences between subsequent video frames, were used for quantitative analyses. CP status was reported at 5 years. Thirteen infants developed CP (eight hemiparetic, four quadriparetic, one dyskinetic; seven ambulatory, three non-ambulatory, and three unknown function), of whom one had fidgety movements. Variability of the centroid of motion had a sensitivity of 85% and a specificity of 71% in identifying CP. By combining this with variables reflecting the amount of motion, specificity increased to 88%. Nine out of 10 children with CP, and for whom information about functional level was available, were correctly predicted with regard to ambulatory and non-ambulatory function. Prediction of CP can be provided by computer-based video analysis in young infants. The method may serve as an objective and feasible tool for early prediction of CP in high-risk infants.

  9. Investigation of a redox-sensitive predictive model of mouse embryonic stem cells differentiation using quantitative nuclease protection assays and glutathione redox status

    EPA Science Inventory

    Investigation of a redox-sensitive predictive model of mouse embryonic stem cell differentiation via quantitative nuclease protection assays and glutathione redox status Chandler KJ,Hansen JM, Knudsen T,and Hunter ES 1. U.S. Environmental Protection Agency, Research Triangl...

  10. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Treesearch

    Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...

  11. Physiologically Based Pharmacokinetic Modeling in Lead Optimization. 1. Evaluation and Adaptation of GastroPlus To Predict Bioavailability of Medchem Series.

    PubMed

    Daga, Pankaj R; Bolger, Michael B; Haworth, Ian S; Clark, Robert D; Martin, Eric J

    2018-03-05

    When medicinal chemists need to improve bioavailability (%F) within a chemical series during lead optimization, they synthesize new series members with systematically modified properties mainly by following experience and general rules of thumb. More quantitative models that predict %F of proposed compounds from chemical structure alone have proven elusive. Global empirical %F quantitative structure-property (QSPR) models perform poorly, and projects have too little data to train local %F QSPR models. Mechanistic oral absorption and physiologically based pharmacokinetic (PBPK) models simulate the dissolution, absorption, systemic distribution, and clearance of a drug in preclinical species and humans. Attempts to build global PBPK models based purely on calculated inputs have not achieved the <2-fold average error needed to guide lead optimization. In this work, local GastroPlus PBPK models are instead customized for individual medchem series. The key innovation was building a local QSPR for a numerically fitted effective intrinsic clearance (CL loc ). All inputs are subsequently computed from structure alone, so the models can be applied in advance of synthesis. Training CL loc on the first 15-18 rat %F measurements gave adequate predictions, with clear improvements up to about 30 measurements, and incremental improvements beyond that.

  12. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0

    PubMed Central

    Schellenberger, Jan; Que, Richard; Fleming, Ronan M. T.; Thiele, Ines; Orth, Jeffrey D.; Feist, Adam M.; Zielinski, Daniel C.; Bordbar, Aarash; Lewis, Nathan E.; Rahmanian, Sorena; Kang, Joseph; Hyduke, Daniel R.; Palsson, Bernhard Ø.

    2012-01-01

    Over the past decade, a growing community of researchers has emerged around the use of COnstraint-Based Reconstruction and Analysis (COBRA) methods to simulate, analyze and predict a variety of metabolic phenotypes using genome-scale models. The COBRA Toolbox, a MATLAB package for implementing COBRA methods, was presented earlier. Here we present a significant update of this in silico ToolBox. Version 2.0 of the COBRA Toolbox expands the scope of computations by including in silico analysis methods developed since its original release. New functions include: (1) network gap filling, (2) 13C analysis, (3) metabolic engineering, (4) omics-guided analysis, and (5) visualization. As with the first version, the COBRA Toolbox reads and writes Systems Biology Markup Language formatted models. In version 2.0, we improved performance, usability, and the level of documentation. A suite of test scripts can now be used to learn the core functionality of the Toolbox and validate results. This Toolbox lowers the barrier of entry to use powerful COBRA methods. PMID:21886097

  13. A data-driven SVR model for long-term runoff prediction and uncertainty analysis based on the Bayesian framework

    NASA Astrophysics Data System (ADS)

    Liang, Zhongmin; Li, Yujie; Hu, Yiming; Li, Binquan; Wang, Jun

    2017-06-01

    Accurate and reliable long-term forecasting plays an important role in water resources management and utilization. In this paper, a hybrid model called SVR-HUP is presented to predict long-term runoff and quantify the prediction uncertainty. The model is created based on three steps. First, appropriate predictors are selected according to the correlations between meteorological factors and runoff. Second, a support vector regression (SVR) model is structured and optimized based on the LibSVM toolbox and a genetic algorithm. Finally, using forecasted and observed runoff, a hydrologic uncertainty processor (HUP) based on a Bayesian framework is used to estimate the posterior probability distribution of the simulated values, and the associated uncertainty of prediction was quantitatively analyzed. Six precision evaluation indexes, including the correlation coefficient (CC), relative root mean square error (RRMSE), relative error (RE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE), and qualification rate (QR), are used to measure the prediction accuracy. As a case study, the proposed approach is applied in the Han River basin, South Central China. Three types of SVR models are established to forecast the monthly, flood season and annual runoff volumes. The results indicate that SVR yields satisfactory accuracy and reliability at all three scales. In addition, the results suggest that the HUP cannot only quantify the uncertainty of prediction based on a confidence interval but also provide a more accurate single value prediction than the initial SVR forecasting result. Thus, the SVR-HUP model provides an alternative method for long-term runoff forecasting.

  14. Quantitative evaluation methods of skin condition based on texture feature parameters.

    PubMed

    Pang, Hui; Chen, Tianhua; Wang, Xiaoyi; Chang, Zhineng; Shao, Siqi; Zhao, Jing

    2017-03-01

    In order to quantitatively evaluate the improvement of the skin condition after using skin care products and beauty, a quantitative evaluation method for skin surface state and texture is presented, which is convenient, fast and non-destructive. Human skin images were collected by image sensors. Firstly, the median filter of the 3 × 3 window is used and then the location of the hairy pixels on the skin is accurately detected according to the gray mean value and color information. The bilinear interpolation is used to modify the gray value of the hairy pixels in order to eliminate the negative effect of noise and tiny hairs on the texture. After the above pretreatment, the gray level co-occurrence matrix (GLCM) is calculated. On the basis of this, the four characteristic parameters, including the second moment, contrast, entropy and correlation, and their mean value are calculated at 45 ° intervals. The quantitative evaluation model of skin texture based on GLCM is established, which can calculate the comprehensive parameters of skin condition. Experiments show that using this method evaluates the skin condition, both based on biochemical indicators of skin evaluation methods in line, but also fully consistent with the human visual experience. This method overcomes the shortcomings of the biochemical evaluation method of skin damage and long waiting time, also the subjectivity and fuzziness of the visual evaluation, which achieves the non-destructive, rapid and quantitative evaluation of skin condition. It can be used for health assessment or classification of the skin condition, also can quantitatively evaluate the subtle improvement of skin condition after using skin care products or stage beauty.

  15. A Compressed Sensing-Based Wearable Sensor Network for Quantitative Assessment of Stroke Patients

    PubMed Central

    Yu, Lei; Xiong, Daxi; Guo, Liquan; Wang, Jiping

    2016-01-01

    Clinical rehabilitation assessment is an important part of the therapy process because it is the premise for prescribing suitable rehabilitation interventions. However, the commonly used assessment scales have the following two drawbacks: (1) they are susceptible to subjective factors; (2) they only have several rating levels and are influenced by a ceiling effect, making it impossible to exactly detect any further improvement in the movement. Meanwhile, energy constraints are a primary design consideration in wearable sensor network systems since they are often battery-operated. Traditionally, for wearable sensor network systems that follow the Shannon/Nyquist sampling theorem, there are many data that need to be sampled and transmitted. This paper proposes a novel wearable sensor network system to monitor and quantitatively assess the upper limb motion function, based on compressed sensing technology. With the sparse representation model, less data is transmitted to the computer than with traditional systems. The experimental results show that the accelerometer signals of Bobath handshake and shoulder touch exercises can be compressed, and the length of the compressed signal is less than 1/3 of the raw signal length. More importantly, the reconstruction errors have no influence on the predictive accuracy of the Brunnstrom stage classification model. It also indicated that the proposed system can not only reduce the amount of data during the sampling and transmission processes, but also, the reconstructed accelerometer signals can be used for quantitative assessment without any loss of useful information. PMID:26861337

  16. A Compressed Sensing-Based Wearable Sensor Network for Quantitative Assessment of Stroke Patients.

    PubMed

    Yu, Lei; Xiong, Daxi; Guo, Liquan; Wang, Jiping

    2016-02-05

    Clinical rehabilitation assessment is an important part of the therapy process because it is the premise for prescribing suitable rehabilitation interventions. However, the commonly used assessment scales have the following two drawbacks: (1) they are susceptible to subjective factors; (2) they only have several rating levels and are influenced by a ceiling effect, making it impossible to exactly detect any further improvement in the movement. Meanwhile, energy constraints are a primary design consideration in wearable sensor network systems since they are often battery-operated. Traditionally, for wearable sensor network systems that follow the Shannon/Nyquist sampling theorem, there are many data that need to be sampled and transmitted. This paper proposes a novel wearable sensor network system to monitor and quantitatively assess the upper limb motion function, based on compressed sensing technology. With the sparse representation model, less data is transmitted to the computer than with traditional systems. The experimental results show that the accelerometer signals of Bobath handshake and shoulder touch exercises can be compressed, and the length of the compressed signal is less than 1/3 of the raw signal length. More importantly, the reconstruction errors have no influence on the predictive accuracy of the Brunnstrom stage classification model. It also indicated that the proposed system can not only reduce the amount of data during the sampling and transmission processes, but also, the reconstructed accelerometer signals can be used for quantitative assessment without any loss of useful information.

  17. Prediction of quantitative intrathoracic fluid volume to diagnose pulmonary oedema using LabVIEW.

    PubMed

    Urooj, Shabana; Khan, M; Ansari, A Q; Lay-Ekuakille, Aimé; Salhan, Ashok K

    2012-01-01

    Pulmonary oedema is a life-threatening disease that requires special attention in the area of research and clinical diagnosis. Computer-based techniques are rarely used to quantify the intrathoracic fluid volume (IFV) for diagnostic purposes. This paper discusses a software program developed to detect and diagnose pulmonary oedema using LabVIEW. The software runs on anthropometric dimensions and physiological parameters, mainly transthoracic electrical impedance (TEI). This technique is accurate and faster than existing manual techniques. The LabVIEW software was used to compute the parameters required to quantify IFV. An equation relating per cent control and IFV was obtained. The results of predicted TEI and measured TEI were compared with previously reported data to validate the developed program. It was found that the predicted values of TEI obtained from the computer-based technique were much closer to the measured values of TEI. Six new subjects were enrolled to measure and predict transthoracic impedance and hence to quantify IFV. A similar difference was also observed in the measured and predicted values of TEI for the new subjects.

  18. Predicting the Emplacement of Improvised Explosive Devices: An Innovative Solution

    ERIC Educational Resources Information Center

    Lerner, Warren D.

    2013-01-01

    In this quantitative correlational study, simulated data were employed to examine artificial-intelligence techniques or, more specifically, artificial neural networks, as they relate to the location prediction of improvised explosive devices (IEDs). An ANN model was developed to predict IED placement, based upon terrain features and objects…

  19. 3D-quantitative structure-activity relationship studies on benzothiadiazepine hydroxamates as inhibitors of tumor necrosis factor-alpha converting enzyme.

    PubMed

    Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram

    2008-04-01

    A set of 29 benzothiadiazepine hydroxamates having selective tumor necrosis factor-alpha converting enzyme inhibitory activity were used to compare the quality and predictive power of 3D-quantitative structure-activity relationship, comparative molecular field analysis, and comparative molecular similarity indices models for the atom-based, centroid/atom-based, data-based, and docked conformer-based alignment. Removal of two outliers from the initial training set of molecules improved the predictivity of models. Among the 3D-quantitative structure-activity relationship models developed using the above four alignments, the database alignment provided the optimal predictive comparative molecular field analysis model for the training set with cross-validated r(2) (q(2)) = 0.510, non-cross-validated r(2) = 0.972, standard error of estimates (s) = 0.098, and F = 215.44 and the optimal comparative molecular similarity indices model with cross-validated r(2) (q(2)) = 0.556, non-cross-validated r(2) = 0.946, standard error of estimates (s) = 0.163, and F = 99.785. These models also showed the best test set prediction for six compounds with predictive r(2) values of 0.460 and 0.535, respectively. The contour maps obtained from 3D-quantitative structure-activity relationship studies were appraised for activity trends for the molecules analyzed. The comparative molecular similarity indices models exhibited good external predictivity as compared with that of comparative molecular field analysis models. The data generated from the present study helped us to further design and report some novel and potent tumor necrosis factor-alpha converting enzyme inhibitors.

  20. Modelling of occupational respirable crystalline silica exposure for quantitative exposure assessment in community-based case-control studies.

    PubMed

    Peters, Susan; Vermeulen, Roel; Portengen, Lützen; Olsson, Ann; Kendzia, Benjamin; Vincent, Raymond; Savary, Barbara; Lavoué, Jérôme; Cavallo, Domenico; Cattaneo, Andrea; Mirabelli, Dario; Plato, Nils; Fevotte, Joelle; Pesch, Beate; Brüning, Thomas; Straif, Kurt; Kromhout, Hans

    2011-11-01

    We describe an empirical model for exposure to respirable crystalline silica (RCS) to create a quantitative job-exposure matrix (JEM) for community-based studies. Personal measurements of exposure to RCS from Europe and Canada were obtained for exposure modelling. A mixed-effects model was elaborated, with region/country and job titles as random effect terms. The fixed effect terms included year of measurement, measurement strategy (representative or worst-case), sampling duration (minutes) and a priori exposure intensity rating for each job from an independently developed JEM (none, low, high). 23,640 personal RCS exposure measurements, covering a time period from 1976 to 2009, were available for modelling. The model indicated an overall downward time trend in RCS exposure levels of -6% per year. Exposure levels were higher in the UK and Canada, and lower in Northern Europe and Germany. Worst-case sampling was associated with higher reported exposure levels and an increase in sampling duration was associated with lower reported exposure levels. Highest predicted RCS exposure levels in the reference year (1998) were for chimney bricklayers (geometric mean 0.11 mg m(-3)), monument carvers and other stone cutters and carvers (0.10 mg m(-3)). The resulting model enables us to predict time-, job-, and region/country-specific exposure levels of RCS. These predictions will be used in the SYNERGY study, an ongoing pooled multinational community-based case-control study on lung cancer.

  1. Monitoring with Trackers Based on Semi-Quantitative Models

    NASA Technical Reports Server (NTRS)

    Kuipers, Benjamin

    1997-01-01

    In three years of NASA-sponsored research preceding this project, we successfully developed a technology for: (1) building qualitative and semi-quantitative models from libraries of model-fragments, (2) simulating these models to predict future behaviors with the guarantee that all possible behaviors are covered, (3) assimilating observations into behaviors, shrinking uncertainty so that incorrect models are eventually refuted and correct models make stronger predictions for the future. In our object-oriented framework, a tracker is an object which embodies the hypothesis that the available observation stream is consistent with a particular behavior of a particular model. The tracker maintains its own status (consistent, superceded, or refuted), and answers questions about its explanation for past observations and its predictions for the future. In the MIMIC approach to monitoring of continuous systems, a number of trackers are active in parallel, representing alternate hypotheses about the behavior of a system. This approach is motivated by the need to avoid 'system accidents' [Perrow, 1985] due to operator fixation on a single hypothesis, as for example at Three Mile Island. As we began to address these issues, we focused on three major research directions that we planned to pursue over a three-year project: (1) tractable qualitative simulation, (2) semiquantitative inference, and (3) tracking set management. Unfortunately, funding limitations made it impossible to continue past year one. Nonetheless, we made major progress in the first two of these areas. Progress in the third area as slower because the graduate student working on that aspect of the project decided to leave school and take a job in industry. I enclosed a set of abstract of selected papers on the work describe below. Several papers that draw on the research supported during this period appeared in print after the grant period ended.

  2. A computational approach to predicting ligand selectivity for the size-based separation of trivalent lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Alexander S.; Bryantsev, Vyacheslav S.

    An accurate description of solvation effects for trivalent lanthanide ions is a main stumbling block to the qualitative prediction of selectivity trends along the lanthanide series. In this work, we propose a simple model to describe the differential effect of solvation in the competitive binding of a ligand by lanthanide ions by including weakly co-ordinated counterions in the complexes of more than a +1 charge. The success of the approach to quantitatively reproduce selectivities obtained from aqueous phase complexation studies demonstrates its potential for the design and screening of new ligands for efficient size-based separation.

  3. A computational approach to predicting ligand selectivity for the size-based separation of trivalent lanthanides

    DOE PAGES

    Ivanov, Alexander S.; Bryantsev, Vyacheslav S.

    2016-06-20

    An accurate description of solvation effects for trivalent lanthanide ions is a main stumbling block to the qualitative prediction of selectivity trends along the lanthanide series. In this work, we propose a simple model to describe the differential effect of solvation in the competitive binding of a ligand by lanthanide ions by including weakly co-ordinated counterions in the complexes of more than a +1 charge. The success of the approach to quantitatively reproduce selectivities obtained from aqueous phase complexation studies demonstrates its potential for the design and screening of new ligands for efficient size-based separation.

  4. Assessing the performance of quantitative image features on early stage prediction of treatment effectiveness for ovary cancer patients: a preliminary investigation

    NASA Astrophysics Data System (ADS)

    Zargari, Abolfazl; Du, Yue; Thai, Theresa C.; Gunderson, Camille C.; Moore, Kathleen; Mannel, Robert S.; Liu, Hong; Zheng, Bin; Qiu, Yuchen

    2018-02-01

    The objective of this study is to investigate the performance of global and local features to better estimate the characteristics of highly heterogeneous metastatic tumours, for accurately predicting the treatment effectiveness of the advanced stage ovarian cancer patients. In order to achieve this , a quantitative image analysis scheme was developed to estimate a total of 103 features from three different groups including shape and density, Wavelet, and Gray Level Difference Method (GLDM) features. Shape and density features are global features, which are directly applied on the entire target image; wavelet and GLDM features are local features, which are applied on the divided blocks of the target image. To assess the performance, the new scheme was applied on a retrospective dataset containing 120 recurrent and high grade ovary cancer patients. The results indicate that the three best performed features are skewness, root-mean-square (rms) and mean of local GLDM texture, indicating the importance of integrating local features. In addition, the averaged predicting performance are comparable among the three different categories. This investigation concluded that the local features contains at least as copious tumour heterogeneity information as the global features, which may be meaningful on improving the predicting performance of the quantitative image markers for the diagnosis and prognosis of ovary cancer patients.

  5. Quantitative detection of bovine and porcine gelatin difference using surface plasmon resonance based biosensor

    NASA Astrophysics Data System (ADS)

    Wardani, Devy P.; Arifin, Muhammad; Suharyadi, Edi; Abraha, Kamsul

    2015-05-01

    Gelatin is a biopolymer derived from collagen that is widely used in food and pharmaceutical products. Due to some religion restrictions and health issues regarding the gelatin consumption which is extracted from certain species, it is necessary to establish a robust, reliable, sensitive and simple quantitative method to detect gelatin from different parent collagen species. To the best of our knowledge, there has not been a gelatin differentiation method based on optical sensor that could detect gelatin from different species quantitatively. Surface plasmon resonance (SPR) based biosensor is known to be a sensitive, simple and label free optical method for detecting biomaterials that is able to do quantitative detection. Therefore, we have utilized SPR-based biosensor to detect the differentiation between bovine and porcine gelatin in various concentration, from 0% to 10% (w/w). Here, we report the ability of SPR-based biosensor to detect difference between both gelatins, its sensitivity toward the gelatin concentration change, its reliability and limit of detection (LOD) and limit of quantification (LOQ) of the sensor. The sensor's LOD and LOQ towards bovine gelatin concentration are 0.38% and 1.26% (w/w), while towards porcine gelatin concentration are 0.66% and 2.20% (w/w), respectively. The results show that SPR-based biosensor is a promising tool for detecting gelatin from different raw materials quantitatively.

  6. Quantitative Correlation of in Vivo Properties with in Vitro Assay Results: The in Vitro Binding of a Biotin–DNA Analogue Modifier with Streptavidin Predicts the in Vivo Avidin-Induced Clearability of the Analogue-Modified Antibody

    PubMed Central

    Dou, Shuping; Virostko, John; Greiner, Dale L.; Powers, Alvin C.; Liu, Guozheng

    2016-01-01

    Quantitative prediction of in vivo behavior using an in vitro assay would dramatically accelerate pharmaceutical development. However, studies quantitatively correlating in vivo properties with in vitro assay results are rare because of the difficulty in quantitatively understanding the in vivo behavior of an agent. We now demonstrate such a correlation as a case study based on our quantitative understanding of the in vivo chemistry. In an ongoing pretargeting project, we designed a trifunctional antibody (Ab) that concomitantly carried a biotin and a DNA analogue (hereafter termed MORF). The biotin and the MORF were fused into one structure prior to conjugation to the Ab for the concomitant attachment. Because it was known that avidin-bound Ab molecules leave the circulation rapidly, this design would theoretically allow complete clearance by avidin. The clearability of the trifunctional Ab was determined by calculating the blood MORF concentration ratio of avidin-treated Ab to non-avidin-treated Ab using mice injected with these compounds. In theory, any compromised clearability should be due to the presence of impurities. In vitro, we measured the biotinylated percentage of the Ab-reacting (MORF-biotin)⊃-NH2 modifier, by addition of streptavidin to the radiolabeled (MORF-biotin)⊃-NH2 samples and subsequent high-performance liquid chromatography (HPLC) analysis. On the basis of our previous quantitative understanding, we predicted that the clearability of the Ab would be equal to the biotinylation percentage measured via HPLC. We validated this prediction within a 3% difference. In addition to the high avidin-induced clearability of the trifunctional Ab (up to ~95%) achieved by the design, we were able to predict the required quality of the (MORF-biotin)⊃-NH2 modifier for any given in vivo clearability. This approach may greatly reduce the steps and time currently required in pharmaceutical development in the process of synthesis, chemical analysis, in

  7. Predicting epidermal growth factor receptor gene amplification status in glioblastoma multiforme by quantitative enhancement and necrosis features deriving from conventional magnetic resonance imaging.

    PubMed

    Dong, Fei; Zeng, Qiang; Jiang, Biao; Yu, Xinfeng; Wang, Weiwei; Xu, Jingjing; Yu, Jinna; Li, Qian; Zhang, Minming

    2018-05-01

    To study whether some of the quantitative enhancement and necrosis features in preoperative conventional MRI (cMRI) had a predictive value for epidermal growth factor receptor (EGFR) gene amplification status in glioblastoma multiforme (GBM).Fifty-five patients with pathologically determined GBMs who underwent cMRI were retrospectively reviewed. The following cMRI features were quantitatively measured and recorded: long and short diameters of the enhanced portion (LDE and SDE), maximum and minimum thickness of the enhanced portion (MaxTE and MinTE), and long and short diameters of the necrotic portion (LDN and SDN). Univariate analysis of each feature and a decision tree model fed with all the features were performed. Area under the receiver operating characteristic (ROC) curve (AUC) was used to assess the performance of features, and predictive accuracy was used to assess the performance of the model.For single feature, MinTE showed the best performance in differentiating EGFR gene amplification negative (wild-type) (nEGFR) GBM from EGFR gene amplification positive (pEGFR) GBM, and it got an AUC of 0.68 with a cut-off value of 2.6 mm. The decision tree model included 2 features MinTE and SDN, and got an accuracy of 0.83 in validation dataset.Our results suggest that quantitative measurement of the features MinTE and SDN in preoperative cMRI had a high accuracy for predicting EGFR gene amplification status in GBM.

  8. A systematic review of quantitative burn wound microbiology in the management of burns patients.

    PubMed

    Halstead, Fenella D; Lee, Kwang Chear; Kwei, Johnny; Dretzke, Janine; Oppenheim, Beryl A; Moiemen, Naiem S

    2018-02-01

    The early diagnosis of infection or sepsis in burns are important for patient care. Globally, a large number of burn centres advocate quantitative cultures of wound biopsies for patient management, since there is assumed to be a direct link between the bioburden of a burn wound and the risk of microbial invasion. Given the conflicting study findings in this area, a systematic review was warranted. Bibliographic databases were searched with no language restrictions to August 2015. Study selection, data extraction and risk of bias assessment were performed in duplicate using pre-defined criteria. Substantial heterogeneity precluded quantitative synthesis, and findings were described narratively, sub-grouped by clinical question. Twenty six laboratory and/or clinical studies were included. Substantial heterogeneity hampered comparisons across studies and interpretation of findings. Limited evidence suggests that (i) more than one quantitative microbiology sample is required to obtain reliable estimates of bacterial load; (ii) biopsies are more sensitive than swabs in diagnosing or predicting sepsis; (iii) high bacterial loads may predict worse clinical outcomes, and (iv) both quantitative and semi-quantitative culture reports need to be interpreted with caution and in the context of other clinical risk factors. The evidence base for the utility and reliability of quantitative microbiology for diagnosing or predicting clinical outcomes in burns patients is limited and often poorly reported. Consequently future research is warranted. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Earthquake prediction in seismogenic areas of the Iberian Peninsula based on computational intelligence

    NASA Astrophysics Data System (ADS)

    Morales-Esteban, A.; Martínez-Álvarez, F.; Reyes, J.

    2013-05-01

    A method to predict earthquakes in two of the seismogenic areas of the Iberian Peninsula, based on Artificial Neural Networks (ANNs), is presented in this paper. ANNs have been widely used in many fields but only very few and very recent studies have been conducted on earthquake prediction. Two kinds of predictions are provided in this study: a) the probability of an earthquake, of magnitude equal or larger than a preset threshold magnitude, within the next 7 days, to happen; b) the probability of an earthquake of a limited magnitude interval to happen, during the next 7 days. First, the physical fundamentals related to earthquake occurrence are explained. Second, the mathematical model underlying ANNs is explained and the configuration chosen is justified. Then, the ANNs have been trained in both areas: The Alborán Sea and the Western Azores-Gibraltar fault. Later, the ANNs have been tested in both areas for a period of time immediately subsequent to the training period. Statistical tests are provided showing meaningful results. Finally, ANNs were compared to other well known classifiers showing quantitatively and qualitatively better results. The authors expect that the results obtained will encourage researchers to conduct further research on this topic. Development of a system capable of predicting earthquakes for the next seven days Application of ANN is particularly reliable to earthquake prediction. Use of geophysical information modeling the soil behavior as ANN's input data Successful analysis of one region with large seismic activity

  10. Nonparametric method for genomics-based prediction of performance of quantitative traits involving epistasis in plant breeding.

    PubMed

    Sun, Xiaochun; Ma, Ping; Mumm, Rita H

    2012-01-01

    Genomic selection (GS) procedures have proven useful in estimating breeding value and predicting phenotype with genome-wide molecular marker information. However, issues of high dimensionality, multicollinearity, and the inability to deal effectively with epistasis can jeopardize accuracy and predictive ability. We, therefore, propose a new nonparametric method, pRKHS, which combines the features of supervised principal component analysis (SPCA) and reproducing kernel Hilbert spaces (RKHS) regression, with versions for traits with no/low epistasis, pRKHS-NE, to high epistasis, pRKHS-E. Instead of assigning a specific relationship to represent the underlying epistasis, the method maps genotype to phenotype in a nonparametric way, thus requiring fewer genetic assumptions. SPCA decreases the number of markers needed for prediction by filtering out low-signal markers with the optimal marker set determined by cross-validation. Principal components are computed from reduced marker matrix (called supervised principal components, SPC) and included in the smoothing spline ANOVA model as independent variables to fit the data. The new method was evaluated in comparison with current popular methods for practicing GS, specifically RR-BLUP, BayesA, BayesB, as well as a newer method by Crossa et al., RKHS-M, using both simulated and real data. Results demonstrate that pRKHS generally delivers greater predictive ability, particularly when epistasis impacts trait expression. Beyond prediction, the new method also facilitates inferences about the extent to which epistasis influences trait expression.

  11. Nonparametric Method for Genomics-Based Prediction of Performance of Quantitative Traits Involving Epistasis in Plant Breeding

    PubMed Central

    Sun, Xiaochun; Ma, Ping; Mumm, Rita H.

    2012-01-01

    Genomic selection (GS) procedures have proven useful in estimating breeding value and predicting phenotype with genome-wide molecular marker information. However, issues of high dimensionality, multicollinearity, and the inability to deal effectively with epistasis can jeopardize accuracy and predictive ability. We, therefore, propose a new nonparametric method, pRKHS, which combines the features of supervised principal component analysis (SPCA) and reproducing kernel Hilbert spaces (RKHS) regression, with versions for traits with no/low epistasis, pRKHS-NE, to high epistasis, pRKHS-E. Instead of assigning a specific relationship to represent the underlying epistasis, the method maps genotype to phenotype in a nonparametric way, thus requiring fewer genetic assumptions. SPCA decreases the number of markers needed for prediction by filtering out low-signal markers with the optimal marker set determined by cross-validation. Principal components are computed from reduced marker matrix (called supervised principal components, SPC) and included in the smoothing spline ANOVA model as independent variables to fit the data. The new method was evaluated in comparison with current popular methods for practicing GS, specifically RR-BLUP, BayesA, BayesB, as well as a newer method by Crossa et al., RKHS-M, using both simulated and real data. Results demonstrate that pRKHS generally delivers greater predictive ability, particularly when epistasis impacts trait expression. Beyond prediction, the new method also facilitates inferences about the extent to which epistasis influences trait expression. PMID:23226325

  12. Quantitative assessment of thermodynamic constraints on the solution space of genome-scale metabolic models.

    PubMed

    Hamilton, Joshua J; Dwivedi, Vivek; Reed, Jennifer L

    2013-07-16

    Constraint-based methods provide powerful computational techniques to allow understanding and prediction of cellular behavior. These methods rely on physiochemical constraints to eliminate infeasible behaviors from the space of available behaviors. One such constraint is thermodynamic feasibility, the requirement that intracellular flux distributions obey the laws of thermodynamics. The past decade has seen several constraint-based methods that interpret this constraint in different ways, including those that are limited to small networks, rely on predefined reaction directions, and/or neglect the relationship between reaction free energies and metabolite concentrations. In this work, we utilize one such approach, thermodynamics-based metabolic flux analysis (TMFA), to make genome-scale, quantitative predictions about metabolite concentrations and reaction free energies in the absence of prior knowledge of reaction directions, while accounting for uncertainties in thermodynamic estimates. We applied TMFA to a genome-scale network reconstruction of Escherichia coli and examined the effect of thermodynamic constraints on the flux space. We also assessed the predictive performance of TMFA against gene essentiality and quantitative metabolomics data, under both aerobic and anaerobic, and optimal and suboptimal growth conditions. Based on these results, we propose that TMFA is a useful tool for validating phenotypes and generating hypotheses, and that additional types of data and constraints can improve predictions of metabolite concentrations. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Performance of Machine Learning Algorithms for Qualitative and Quantitative Prediction Drug Blockade of hERG1 channel.

    PubMed

    Wacker, Soren; Noskov, Sergei Yu

    2018-05-01

    Drug-induced abnormal heart rhythm known as Torsades de Pointes (TdP) is a potential lethal ventricular tachycardia found in many patients. Even newly released anti-arrhythmic drugs, like ivabradine with HCN channel as a primary target, block the hERG potassium current in overlapping concentration interval. Promiscuous drug block to hERG channel may potentially lead to perturbation of the action potential duration (APD) and TdP, especially when with combined with polypharmacy and/or electrolyte disturbances. The example of novel anti-arrhythmic ivabradine illustrates clinically important and ongoing deficit in drug design and warrants for better screening methods. There is an urgent need to develop new approaches for rapid and accurate assessment of how drugs with complex interactions and multiple subcellular targets can predispose or protect from drug-induced TdP. One of the unexpected outcomes of compulsory hERG screening implemented in USA and European Union resulted in large datasets of IC 50 values for various molecules entering the market. The abundant data allows now to construct predictive machine-learning (ML) models. Novel ML algorithms and techniques promise better accuracy in determining IC 50 values of hERG blockade that is comparable or surpassing that of the earlier QSAR or molecular modeling technique. To test the performance of modern ML techniques, we have developed a computational platform integrating various workflows for quantitative structure activity relationship (QSAR) models using data from the ChEMBL database. To establish predictive powers of ML-based algorithms we computed IC 50 values for large dataset of molecules and compared it to automated patch clamp system for a large dataset of hERG blocking and non-blocking drugs, an industry gold standard in studies of cardiotoxicity. The optimal protocol with high sensitivity and predictive power is based on the novel eXtreme gradient boosting (XGBoost) algorithm. The ML-platform with XGBoost

  14. Association of pain ratings with the prediction of early physical recovery after general and orthopaedic surgery-A quantitative study with repeated measures.

    PubMed

    Eriksson, Kerstin; Wikström, Lotta; Fridlund, Bengt; Årestedt, Kristofer; Broström, Anders

    2017-11-01

    To compare different levels of self-rated pain and determine if they predict anticipated early physical recovery in patients undergoing general and orthopaedic surgery. Previous research has indicated that average self-rated pain reflects patients' ability to recover the same day. However, there is a knowledge gap about the feasibility of using average pain ratings to predict patients' physical recovery for the next day. Descriptive, quantitative repeated measures. General and orthopaedic inpatients (n = 479) completed a questionnaire (October 2012-January 2015) about pain and recovery. Average pain intensity at rest and during activity was based on the Numeric Rating Scale and divided into three levels (0-3, 4-6, 7-10). Three out of five dimensions from the tool "Postoperative Recovery Profile" were used. Because few suffered severe pain, general and orthopaedic patients were analysed together. Binary logistic regression analysis showed that average pain intensity postoperative day 1 significantly predicted the impact on recovery day 2, except nausea, gastrointestinal function and bladder function when pain at rest and also nausea, appetite changes, and bladder function when pain during activity. High pain ratings (NRS 7-10) demonstrated to be a better predictor for recovery compared with moderate ratings (NRS 4-6), day 2, as it significantly predicted more items in recovery. Pain intensity reflected general and orthopaedic patients' physical recovery postoperative day 1 and predicted recovery for day 2. By monitoring patients' pain and impact on recovery, patients' need for support becomes visible which is valuable during hospital stays. © 2017 John Wiley & Sons Ltd.

  15. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis--data from the Osteoarthritis Initiative.

    PubMed

    Emmanuel, K; Quinn, E; Niu, J; Guermazi, A; Roemer, F; Wirth, W; Eckstein, F; Felson, D

    2016-02-01

    To test the hypothesis that quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis (KOA), prior to the advent of radiographic disease. 206 knees with incident radiographic KOA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline, developing KLG 2 or greater with a definite osteophyte and joint space narrowing (JSN) grade ≥1 by year 4) were matched to 232 control knees not developing incident KOA. Manual segmentation of the central five slices of the medial and lateral meniscus was performed on coronal 3T DESS MRI and quantitative meniscus position was determined. Cases and controls were compared using conditional logistic regression adjusting for age, sex, BMI, race and clinical site. Sensitivity analyses of early (year [Y] 1/2) and late (Y3/4) incidence was performed. Mean medial extrusion distance was significantly greater for incident compared to non-incident knees (1.56 mean ± 1.12 mm SD vs 1.29 ± 0.99 mm; +21%, P < 0.01), so was the percent extrusion area of the medial meniscus (25.8 ± 15.8% vs 22.0 ± 13.5%; +17%, P < 0.05). This finding was consistent for knees restricted to medial incidence. No significant differences were observed for the lateral meniscus in incident medial KOA, or for the tibial plateau coverage between incident and non-incident knees. Restricting the analysis to medial incident KOA at Y1/2 differences were attenuated, but reached significance for extrusion distance, whereas no significant differences were observed at incident KOA in Y3/4. Greater medial meniscus extrusion predicts incident radiographic KOA. Early onset KOA showed greater differences for meniscus position between incident and non-incident knees than late onset KOA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Quantitative approaches to energy and glucose homeostasis: machine learning and modelling for precision understanding and prediction

    PubMed Central

    Murphy, Kevin G.; Jones, Nick S.

    2018-01-01

    Obesity is a major global public health problem. Understanding how energy homeostasis is regulated, and can become dysregulated, is crucial for developing new treatments for obesity. Detailed recording of individual behaviour and new imaging modalities offer the prospect of medically relevant models of energy homeostasis that are both understandable and individually predictive. The profusion of data from these sources has led to an interest in applying machine learning techniques to gain insight from these large, relatively unstructured datasets. We review both physiological models and machine learning results across a diverse range of applications in energy homeostasis, and highlight how modelling and machine learning can work together to improve predictive ability. We collect quantitative details in a comprehensive mathematical supplement. We also discuss the prospects of forecasting homeostatic behaviour and stress the importance of characterizing stochasticity within and between individuals in order to provide practical, tailored forecasts and guidance to combat the spread of obesity. PMID:29367240

  17. A quantitative risk-based model for reasoning over critical system properties

    NASA Technical Reports Server (NTRS)

    Feather, M. S.

    2002-01-01

    This position paper suggests the use of a quantitative risk-based model to help support reeasoning and decision making that spans many of the critical properties such as security, safety, survivability, fault tolerance, and real-time.

  18. Quantitative Analysis of Complex Drug-Drug Interactions Between Repaglinide and Cyclosporin A/Gemfibrozil Using Physiologically Based Pharmacokinetic Models With In Vitro Transporter/Enzyme Inhibition Data.

    PubMed

    Kim, Soo-Jin; Toshimoto, Kota; Yao, Yoshiaki; Yoshikado, Takashi; Sugiyama, Yuichi

    2017-09-01

    Quantitative analysis of transporter- and enzyme-mediated complex drug-drug interactions (DDIs) is challenging. Repaglinide (RPG) is transported into the liver by OATP1B1 and then is metabolized by CYP2C8 and CYP3A4. The purpose of this study was to describe the complex DDIs of RPG quantitatively based on unified physiologically based pharmacokinetic (PBPK) models using in vitro K i values for OATP1B1, CYP3A4, and CYP2C8. Cyclosporin A (CsA) or gemfibrozil (GEM) increased the blood concentrations of RPG. The time profiles of RPG and the inhibitors were analyzed by PBPK models, considering the inhibition of OATP1B1 and CYP3A4 by CsA or OATP1B1 inhibition by GEM and its glucuronide and the mechanism-based inhibition of CYP2C8 by GEM glucuronide. RPG-CsA interaction was closely predicted using a reported in vitro K i,OATP1B1 value in the presence of CsA preincubation. RPG-GEM interaction was underestimated compared with observed data, but the simulation was improved with the increase of f m,CYP2C8 . These results based on in vitro K i values for transport and metabolism suggest the possibility of a bottom-up approach with in vitro inhibition data for the prediction of complex DDIs using unified PBPK models and in vitro f m value of a substrate for multiple enzymes should be considered carefully for the prediction. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Quantitative Prediction of the Effect of CYP3A Inhibitors and Inducers on Venetoclax Pharmacokinetics Using a Physiologically Based Pharmacokinetic Model.

    PubMed

    Freise, Kevin J; Shebley, Mohamad; Salem, Ahmed Hamed

    2017-06-01

    The objectives of the analysis were to develop and verify a venetoclax physiologically based pharmacokinetic (PBPK) model to predict the effects of cytochrome P450 3A (CYP3A) inhibitors and inducers on the PK of venetoclax and inform dosing recommendations. A minimal PBPK model was developed based on prior in vitro and in vivo clinical data using a "middle-out" approach. The PBPK model was independently verified against clinical studies of the strong CYP3A inhibitor ketoconazole, the strong CYP3A inducer, multiple-dose rifampin, and the steady-state venetoclax PK in chronic lymphocytic leukemia (CLL) subjects by comparing predicted to observed ratios of the venetoclax maximum concentration (C max R) and area under the curve from time 0 to infinity (AUC ∞ R) from these studies. The verified PBPK model was then used to simulate the effects of different CYP3A inhibitors and inducers on the venetoclax PK. Comparison of the PBPK model predicted to the observed PK parameters indicated good agreement. Verification of the PBPK model demonstrated that the ratios of the predicted:observed C max R and AUC ∞ R of venetoclax were within 0.8- to 1.25-fold range for strong CYP3A inhibitors and inducers. Model simulations indicated no effect of weak CYP3A inhibitors or inducers on C max or AUC ∞ , while both moderate and strong CYP3A inducers were estimated to decrease venetoclax exposure. Moderate and strong CYP3A inhibitors were estimated to increase venetoclax AUC ∞ , by 100% to 390% and 480% to 680%, respectively. The recommended venetoclax dose reductions of at least 50% and 75% when coadministered with moderate and strong CYP3A inhibitors, respectively, maintain venetoclax exposures between therapeutic and maximally administered safe doses. © 2017, The American College of Clinical Pharmacology.

  20. Predictive models of safety based on audit findings: Part 1: Model development and reliability.

    PubMed

    Hsiao, Yu-Lin; Drury, Colin; Wu, Changxu; Paquet, Victor

    2013-03-01

    This consecutive study was aimed at the quantitative validation of safety audit tools as predictors of safety performance, as we were unable to find prior studies that tested audit validity against safety outcomes. An aviation maintenance domain was chosen for this work as both audits and safety outcomes are currently prescribed and regulated. In Part 1, we developed a Human Factors/Ergonomics classification framework based on HFACS model (Shappell and Wiegmann, 2001a,b), for the human errors detected by audits, because merely counting audit findings did not predict future safety. The framework was tested for measurement reliability using four participants, two of whom classified errors on 1238 audit reports. Kappa values leveled out after about 200 audits at between 0.5 and 0.8 for different tiers of errors categories. This showed sufficient reliability to proceed with prediction validity testing in Part 2. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. Usefulness of a semi-quantitative procalcitonin test and the A-DROP Japanese prognostic scale for predicting mortality among adults hospitalized with community-acquired pneumonia.

    PubMed

    Kasamatsu, Yu; Yamaguchi, Toshimasa; Kawaguchi, Takashi; Tanaka, Nagaaki; Oka, Hiroko; Nakamura, Tomoyuki; Yamagami, Keiko; Yoshioka, Katsunobu; Imanishi, Masahito

    2012-02-01

    The solid-phase immunoassay, semi-quantitative procalcitonin (PCT) test (B R A H M S PCT-Q) can be used to rapidly categorize PCT levels into four grades. However, the usefulness of this kit for determining the prognosis of adult patients with community-acquired pneumonia (CAP) is unclear. A prospective study was conducted in two Japanese hospitals to evaluate the usefulness of this PCT test in determining the prognosis of adult patients with CAP. The accuracy of the age, dehydration, respiratory failure, orientation disturbance, pressure (A-DROP) scale proposed by the Japanese Respiratory Society for prediction of mortality due to CAP was also investigated. Hospitalized CAP patients (n = 226) were enrolled in the study. Comprehensive examinations were performed to determine PCT and CRP concentrations, disease severity based on the A-DROP, pneumonia severity index (PSI) and confusion, urea, respiratory rate, blood pressure, age ≥65 (CURB-65) scales and the causative pathogens. The usefulness of the biomarkers and prognostic scales for predicting each outcome were then examined. Twenty of the 170 eligible patients died. PCT levels were strongly positively correlated with PSI (ρ = 0.56, P < 0.0001), A-DROP (ρ = 0.61, P < 0.0001) and CURB-65 scores (ρ = 0.58, P < 0.0001). The areas under the receiver operating characteristic curves (95% CI) for prediction of survival, for CRP, PCT, A-DROP, CURB-65, and PSI were 0.54 (0.42-0.67), 0.80 (0.70-0.90), 0.88 (0.82-0.94), 0.88 (0.82-0.94), and 0.89 (0.85-0.94), respectively. The 30-day mortality among patients who were PCT-positive (≥0.5 ng/mL) was significantly higher than that among PCT-negative patients (log-rank test, P < 0.001). The semi-quantitative PCT test and the A-DROP scale were found to be useful for predicting mortality in adult patients with CAP. © 2011 The Authors. Respirology © 2011 Asian Pacific Society of Respirology.

  2. Quantitative Residual Strain Analyses on Strain Hardened Nickel Based Alloy

    NASA Astrophysics Data System (ADS)

    Yonezawa, Toshio; Maeguchi, Takaharu; Goto, Toru; Juan, Hou

    Many papers have reported about the effects of strain hardening by cold rolling, grinding, welding, etc. on stress corrosion cracking susceptibility of nickel based alloys and austenitic stainless steels for LWR pipings and components. But, the residual strain value due to cold rolling, grinding, welding, etc. is not so quantitatively evaluated.

  3. A strategy to improve the identification reliability of the chemical constituents by high-resolution mass spectrometry-based isomer structure prediction combined with a quantitative structure retention relationship analysis: Phthalide compounds in Chuanxiong as a test case.

    PubMed

    Zhang, Qingqing; Huo, Mengqi; Zhang, Yanling; Qiao, Yanjiang; Gao, Xiaoyan

    2018-06-01

    High-resolution mass spectrometry (HRMS) provides a powerful tool for the rapid analysis and identification of compounds in herbs. However, the diversity and large differences in the content of the chemical constituents in herbal medicines, especially isomerisms, are a great challenge for mass spectrometry-based structural identification. In the current study, a new strategy for the structural characterization of potential new phthalide compounds was proposed by isomer structure predictions combined with a quantitative structure-retention relationship (QSRR) analysis using phthalide compounds in Chuanxiong as an example. This strategy consists of three steps. First, the structures of phthalide compounds were reasonably predicted on the basis of the structure features and MS/MS fragmentation patterns: (1) the collected raw HRMS data were preliminarily screened by an in-house database; (2) the MS/MS fragmentation patterns of the analogous compounds were summarized; (3) the reported phthalide compounds were identified, and the structures of the isomers were reasonably predicted. Second, the QSRR model was established and verified using representative phthalide compound standards. Finally, the retention times of the predicted isomers were calculated by the QSRR model, and the structures of these peaks were rationally characterized by matching retention times of the detected chromatographic peaks and the predicted isomers. A multiple linear regression QSRR model in which 6 physicochemical variables were screened was built using 23 phthalide standards. The retention times of the phthalide isomers in Chuanxiong were well predicted by the QSRR model combined with reasonable structure predictions (R 2 =0.955). A total of 81 peaks were detected from Chuanxiong and assigned to reasonable structures, and 26 potential new phthalide compounds were structurally characterized. This strategy can improve the identification efficiency and reliability of homologues in complex

  4. MilQuant: a free, generic software tool for isobaric tagging-based quantitation.

    PubMed

    Zou, Xiao; Zhao, Minzhi; Shen, Hongyan; Zhao, Xuyang; Tong, Yuanpeng; Wang, Qingsong; Wei, Shicheng; Ji, Jianguo

    2012-09-18

    Isobaric tagging techniques such as iTRAQ and TMT are widely used in quantitative proteomics and especially useful for samples that demand in vitro labeling. Due to diversity in choices of MS acquisition approaches, identification algorithms, and relative abundance deduction strategies, researchers are faced with a plethora of possibilities when it comes to data analysis. However, the lack of generic and flexible software tool often makes it cumbersome for researchers to perform the analysis entirely as desired. In this paper, we present MilQuant, mzXML-based isobaric labeling quantitator, a pipeline of freely available programs that supports native acquisition files produced by all mass spectrometer types and collection approaches currently used in isobaric tagging based MS data collection. Moreover, aside from effective normalization and abundance ratio deduction algorithms, MilQuant exports various intermediate results along each step of the pipeline, making it easy for researchers to customize the analysis. The functionality of MilQuant was demonstrated by four distinct datasets from different laboratories. The compatibility and extendibility of MilQuant makes it a generic and flexible tool that can serve as a full solution to data analysis of isobaric tagging-based quantitation. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Exploring a new bilateral focal density asymmetry based image marker to predict breast cancer risk

    NASA Astrophysics Data System (ADS)

    Aghaei, Faranak; Mirniaharikandehei, Seyedehnafiseh; Hollingsworth, Alan B.; Wang, Yunzhi; Qiu, Yuchen; Liu, Hong; Zheng, Bin

    2017-03-01

    Although breast density has been widely considered an important breast cancer risk factor, it is not very effective to predict risk of developing breast cancer in a short-term or harboring cancer in mammograms. Based on our recent studies to build short-term breast cancer risk stratification models based on bilateral mammographic density asymmetry, we in this study explored a new quantitative image marker based on bilateral focal density asymmetry to predict the risk of harboring cancers in mammograms. For this purpose, we assembled a testing dataset involving 100 positive and 100 negative cases. In each of positive case, no any solid masses are visible on mammograms. We developed a computer-aided detection (CAD) scheme to automatically detect focal dense regions depicting on two bilateral mammograms of left and right breasts. CAD selects one focal dense region with the maximum size on each image and computes its asymmetrical ratio. We used this focal density asymmetry as a new imaging marker to divide testing cases into two groups of higher and lower focal density asymmetry. The first group included 70 cases in which 62.9% are positive, while the second group included 130 cases in which 43.1% are positive. The odds ratio is 2.24. As a result, this preliminary study supported the feasibility of applying a new focal density asymmetry based imaging marker to predict the risk of having mammography-occult cancers. The goal is to assist radiologists more effectively and accurately detect early subtle cancers using mammography and/or other adjunctive imaging modalities in the future.

  6. A Statistical Framework for Protein Quantitation in Bottom-Up MS-Based Proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpievitch, Yuliya; Stanley, Jeffrey R.; Taverner, Thomas

    2009-08-15

    Motivation: Quantitative mass spectrometry-based proteomics requires protein-level estimates and associated confidence measures. Challenges include the presence of low quality or incorrectly identified peptides and informative missingness. Furthermore, models are required for rolling peptide-level information up to the protein level. Results: We present a statistical model that carefully accounts for informative missingness in peak intensities and allows unbiased, model-based, protein-level estimation and inference. The model is applicable to both label-based and label-free quantitation experiments. We also provide automated, model-based, algorithms for filtering of proteins and peptides as well as imputation of missing values. Two LC/MS datasets are used to illustrate themore » methods. In simulation studies, our methods are shown to achieve substantially more discoveries than standard alternatives. Availability: The software has been made available in the opensource proteomics platform DAnTE (http://omics.pnl.gov/software/). Contact: adabney@stat.tamu.edu Supplementary information: Supplementary data are available at Bioinformatics online.« less

  7. A quantitative framework for the forward design of synthetic miRNA circuits.

    PubMed

    Bloom, Ryan J; Winkler, Sally M; Smolke, Christina D

    2014-11-01

    Synthetic genetic circuits incorporating regulatory components based on RNA interference (RNAi) have been used in a variety of systems. A comprehensive understanding of the parameters that determine the relationship between microRNA (miRNA) and target expression levels is lacking. We describe a quantitative framework supporting the forward engineering of gene circuits that incorporate RNAi-based regulatory components in mammalian cells. We developed a model that captures the quantitative relationship between miRNA and target gene expression levels as a function of parameters, including mRNA half-life and miRNA target-site number. We extended the model to synthetic circuits that incorporate protein-responsive miRNA switches and designed an optimized miRNA-based protein concentration detector circuit that noninvasively measures small changes in the nuclear concentration of β-catenin owing to induction of the Wnt signaling pathway. Our results highlight the importance of methods for guiding the quantitative design of genetic circuits to achieve robust, reliable and predictable behaviors in mammalian cells.

  8. Predictive equation of state method for heavy materials based on the Dirac equation and density functional theory

    NASA Astrophysics Data System (ADS)

    Wills, John M.; Mattsson, Ann E.

    2012-02-01

    Density functional theory (DFT) provides a formally predictive base for equation of state properties. Available approximations to the exchange/correlation functional provide accurate predictions for many materials in the periodic table. For heavy materials however, DFT calculations, using available functionals, fail to provide quantitative predictions, and often fail to be even qualitative. This deficiency is due both to the lack of the appropriate confinement physics in the exchange/correlation functional and to approximations used to evaluate the underlying equations. In order to assess and develop accurate functionals, it is essential to eliminate all other sources of error. In this talk we describe an efficient first-principles electronic structure method based on the Dirac equation and compare the results obtained with this method with other methods generally used. Implications for high-pressure equation of state of relativistic materials are demonstrated in application to Ce and the light actinides. Sandia National Laboratories is a multi-program laboratory managed andoperated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Predicting Loss-of-Control Boundaries Toward a Piloting Aid

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.

  10. A Study of Subseasonal Predictability of the Atmospheric Circulation Low-frequency Modes based on SL-AV forecasts

    NASA Astrophysics Data System (ADS)

    Kruglova, Ekaterina; Kulikova, Irina; Khan, Valentina; Tischenko, Vladimir

    2017-04-01

    The subseasonal predictability of low-frequency modes and the atmospheric circulation regimes is investigated based on the using of outputs from global Semi-Lagrangian (SL-AV) model of the Hydrometcentre of Russia and Institute of Numerical Mathematics of Russian Academy of Science. Teleconnection indices (AO, WA, EA, NAO, EU, WP, PNA) are used as the quantitative characteristics of low-frequency variability to identify zonal and meridional flow regimes with focus on control distribution of high impact weather patterns in the Northern Eurasia. The predictability of weekly and monthly averaged indices is estimated by the methods of diagnostic verification of forecast and reanalysis data covering the hindcast period, and also with the use of the recommended WMO quantitative criteria. Characteristics of the low frequency variability have been discussed. Particularly, it is revealed that the meridional flow regimes are reproduced by SL-AV for summer season better comparing to winter period. It is shown that the model's deterministic forecast (ensemble mean) skill at week 1 (days 1-7) is noticeably better than that of climatic forecasts. The decrease of skill scores at week 2 (days 8-14) and week 3( days 15-21) is explained by deficiencies in the modeling system and inaccurate initial conditions. It was noticed the slightly improvement of the skill of model at week 4 (days 22-28), when the condition of atmosphere is more determined by the flow of energy from the outside. The reliability of forecasts of monthly (days 1-30) averaged indices is comparable to that at week 1 (days 1-7). Numerical experiments demonstrated that the forecast accuracy can be improved (thus the limit of practical predictability can be extended) through the using of probabilistic approach based on ensemble forecasts. It is shown that the quality of forecasts of the regimes of circulation like blocking is higher, than that of zonal flow.

  11. Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study.

    PubMed

    Fournier-Level, Alexandre; Le Cunff, Loïc; Gomez, Camila; Doligez, Agnès; Ageorges, Agnès; Roux, Catherine; Bertrand, Yves; Souquet, Jean-Marc; Cheynier, Véronique; This, Patrice

    2009-11-01

    The combination of QTL mapping studies of synthetic lines and association mapping studies of natural diversity represents an opportunity to throw light on the genetically based variation of quantitative traits. With the positional information provided through quantitative trait locus (QTL) mapping, which often leads to wide intervals encompassing numerous genes, it is now feasible to directly target candidate genes that are likely to be responsible for the observed variation in completely sequenced genomes and to test their effects through association genetics. This approach was performed in grape, a newly sequenced genome, to decipher the genetic architecture of anthocyanin content. Grapes may be either white or colored, ranging from the lightest pink to the darkest purple tones according to the amount of anthocyanin accumulated in the berry skin, which is a crucial trait for both wine quality and human nutrition. Although the determinism of the white phenotype has been fully identified, the genetic bases of the quantitative variation of anthocyanin content in berry skin remain unclear. A single QTL responsible for up to 62% of the variation in the anthocyanin content was mapped on a Syrah x Grenache F(1) pseudo-testcross. Among the 68 unigenes identified in the grape genome within the QTL interval, a cluster of four Myb-type genes was selected on the basis of physiological evidence (VvMybA1, VvMybA2, VvMybA3, and VvMybA4). From a core collection of natural resources (141 individuals), 32 polymorphisms revealed significant association, and extended linkage disequilibrium was observed. Using a multivariate regression method, we demonstrated that five polymorphisms in VvMybA genes except VvMybA4 (one retrotransposon, three single nucleotide polymorphisms and one 2-bp insertion/deletion) accounted for 84% of the observed variation. All these polymorphisms led to either structural changes in the MYB proteins or differences in the VvMybAs promoters. We concluded that

  12. The role of imaging based prostate biopsy morphology in a data fusion paradigm for transducing prognostic predictions

    NASA Astrophysics Data System (ADS)

    Khan, Faisal M.; Kulikowski, Casimir A.

    2016-03-01

    A major focus area for precision medicine is in managing the treatment of newly diagnosed prostate cancer patients. For patients with a positive biopsy, clinicians aim to develop an individualized treatment plan based on a mechanistic understanding of the disease factors unique to each patient. Recently, there has been a movement towards a multi-modal view of the cancer through the fusion of quantitative information from multiple sources, imaging and otherwise. Simultaneously, there have been significant advances in machine learning methods for medical prognostics which integrate a multitude of predictive factors to develop an individualized risk assessment and prognosis for patients. An emerging area of research is in semi-supervised approaches which transduce the appropriate survival time for censored patients. In this work, we apply a novel semi-supervised approach for support vector regression to predict the prognosis for newly diagnosed prostate cancer patients. We integrate clinical characteristics of a patient's disease with imaging derived metrics for biomarker expression as well as glandular and nuclear morphology. In particular, our goal was to explore the performance of nuclear and glandular architecture within the transduction algorithm and assess their predictive power when compared with the Gleason score manually assigned by a pathologist. Our analysis in a multi-institutional cohort of 1027 patients indicates that not only do glandular and morphometric characteristics improve the predictive power of the semi-supervised transduction algorithm; they perform better when the pathological Gleason is absent. This work represents one of the first assessments of quantitative prostate biopsy architecture versus the Gleason grade in the context of a data fusion paradigm which leverages a semi-supervised approach for risk prognosis.

  13. Understanding the Molecular Determinant of Reversible Human Monoamine Oxidase B Inhibitors Containing 2H-Chromen-2-One Core: Structure-Based and Ligand-Based Derived Three-Dimensional Quantitative Structure-Activity Relationships Predictive Models.

    PubMed

    Mladenović, Milan; Patsilinakos, Alexandros; Pirolli, Adele; Sabatino, Manuela; Ragno, Rino

    2017-04-24

    Monoamine oxidase B (MAO B) catalyzes the oxidative deamination of aryalkylamines neurotransmitters with concomitant reduction of oxygen to hydrogen peroxide. Consequently, the enzyme's malfunction can induce oxidative damage to mitochondrial DNA and mediates development of Parkinson's disease. Thus, MAO B emerges as a promising target for developing pharmaceuticals potentially useful to treat this vicious neurodegenerative condition. Aiming to contribute to the development of drugs with the reversible mechanism of MAO B inhibition only, herein, an extended in silico-in vitro procedure for the selection of novel MAO B inhibitors is demonstrated, including the following: (1) definition of optimized and validated structure-based three-dimensional (3-D) quantitative structure-activity relationships (QSAR) models derived from available cocrystallized inhibitor-MAO B complexes; (2) elaboration of SAR features for either irreversible or reversible MAO B inhibitors to characterize and improve coumarin-based inhibitor activity (Protein Data Bank ID: 2V61 ) as the most potent reversible lead compound; (3) definition of structure-based (SB) and ligand-based (LB) alignment rule assessments by which virtually any untested potential MAO B inhibitor might be evaluated; (4) predictive ability validation of the best 3-D QSAR model through SB/LB modeling of four coumarin-based external test sets (267 compounds); (5) design and SB/LB alignment of novel coumarin-based scaffolds experimentally validated through synthesis and biological evaluation in vitro. Due to the wide range of molecular diversity within the 3-D QSAR training set and derived features, the selected N probe-derived 3-D QSAR model proves to be a valuable tool for virtual screening (VS) of novel MAO B inhibitors and a platform for design, synthesis and evaluation of novel active structures. Accordingly, six highly active and selective MAO B inhibitors (picomolar to low nanomolar range of activity) were disclosed as a

  14. A simple approach to quantitative analysis using three-dimensional spectra based on selected Zernike moments.

    PubMed

    Zhai, Hong Lin; Zhai, Yue Yuan; Li, Pei Zhen; Tian, Yue Li

    2013-01-21

    A very simple approach to quantitative analysis is proposed based on the technology of digital image processing using three-dimensional (3D) spectra obtained by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). As the region-based shape features of a grayscale image, Zernike moments with inherently invariance property were employed to establish the linear quantitative models. This approach was applied to the quantitative analysis of three compounds in mixed samples using 3D HPLC-DAD spectra, and three linear models were obtained, respectively. The correlation coefficients (R(2)) for training and test sets were more than 0.999, and the statistical parameters and strict validation supported the reliability of established models. The analytical results suggest that the Zernike moment selected by stepwise regression can be used in the quantitative analysis of target compounds. Our study provides a new idea for quantitative analysis using 3D spectra, which can be extended to the analysis of other 3D spectra obtained by different methods or instruments.

  15. Quantitative transmission Raman spectroscopy of pharmaceutical tablets and capsules.

    PubMed

    Johansson, Jonas; Sparén, Anders; Svensson, Olof; Folestad, Staffan; Claybourn, Mike

    2007-11-01

    Quantitative analysis of pharmaceutical formulations using the new approach of transmission Raman spectroscopy has been investigated. For comparison, measurements were also made in conventional backscatter mode. The experimental setup consisted of a Raman probe-based spectrometer with 785 nm excitation for measurements in backscatter mode. In transmission mode the same system was used to detect the Raman scattered light, while an external diode laser of the same type was used as excitation source. Quantitative partial least squares models were developed for both measurement modes. The results for tablets show that the prediction error for an independent test set was lower for the transmission measurements with a relative root mean square error of about 2.2% as compared with 2.9% for the backscatter mode. Furthermore, the models were simpler in the transmission case, for which only a single partial least squares (PLS) component was required to explain the variation. The main reason for the improvement using the transmission mode is a more representative sampling of the tablets compared with the backscatter mode. Capsules containing mixtures of pharmaceutical powders were also assessed by transmission only. The quantitative results for the capsules' contents were good, with a prediction error of 3.6% w/w for an independent test set. The advantage of transmission Raman over backscatter Raman spectroscopy has been demonstrated for quantitative analysis of pharmaceutical formulations, and the prospects for reliable, lean calibrations for pharmaceutical analysis is discussed.

  16. Identification of fidgety movements and prediction of CP by the use of computer-based video analysis is more accurate when based on two video recordings.

    PubMed

    Adde, Lars; Helbostad, Jorunn; Jensenius, Alexander R; Langaas, Mette; Støen, Ragnhild

    2013-08-01

    This study evaluates the role of postterm age at assessment and the use of one or two video recordings for the detection of fidgety movements (FMs) and prediction of cerebral palsy (CP) using computer vision software. Recordings between 9 and 17 weeks postterm age from 52 preterm and term infants (24 boys, 28 girls; 26 born preterm) were used. Recordings were analyzed using computer vision software. Movement variables, derived from differences between subsequent video frames, were used for quantitative analysis. Sensitivities, specificities, and area under curve were estimated for the first and second recording, or a mean of both. FMs were classified based on the Prechtl approach of general movement assessment. CP status was reported at 2 years. Nine children developed CP of whom all recordings had absent FMs. The mean variability of the centroid of motion (CSD) from two recordings was more accurate than using only one recording, and identified all children who were diagnosed with CP at 2 years. Age at assessment did not influence the detection of FMs or prediction of CP. The accuracy of computer vision techniques in identifying FMs and predicting CP based on two recordings should be confirmed in future studies.

  17. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong

    PubMed Central

    Zhang, Jiangshe; Ding, Weifu

    2017-01-01

    With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The extreme learning machine for single hidden layer feed-forward neural networks tends to provide good generalization performance at an extremely fast learning speed. The major sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We propose predicting the concentration of air pollutants by the use of trained extreme learning machines based on the data obtained from eight air quality parameters in two monitoring stations, including Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively. Particularly, our algorithm shows better predictive ability, with R2 increased and root mean square error values decreased respectively. PMID:28125034

  18. Wavelength Selection Method Based on Differential Evolution for Precise Quantitative Analysis Using Terahertz Time-Domain Spectroscopy.

    PubMed

    Li, Zhi; Chen, Weidong; Lian, Feiyu; Ge, Hongyi; Guan, Aihong

    2017-12-01

    Quantitative analysis of component mixtures is an important application of terahertz time-domain spectroscopy (THz-TDS) and has attracted broad interest in recent research. Although the accuracy of quantitative analysis using THz-TDS is affected by a host of factors, wavelength selection from the sample's THz absorption spectrum is the most crucial component. The raw spectrum consists of signals from the sample and scattering and other random disturbances that can critically influence the quantitative accuracy. For precise quantitative analysis using THz-TDS, the signal from the sample needs to be retained while the scattering and other noise sources are eliminated. In this paper, a novel wavelength selection method based on differential evolution (DE) is investigated. By performing quantitative experiments on a series of binary amino acid mixtures using THz-TDS, we demonstrate the efficacy of the DE-based wavelength selection method, which yields an error rate below 5%.

  19. PAUSE: Predictive Analytics Using SPARQL-Endpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar, Sreenivas R; Ainsworth, Keela; Bond, Nathaniel

    2014-07-11

    This invention relates to the medical industry and more specifically to methods of predicting risks. With the impetus towards personalized and evidence-based medicine, the need for a framework to analyze/interpret quantitative measurements (blood work, toxicology, etc.) with qualitative descriptions (specialist reports after reading images, bio-medical knowledgebase, etc.) to predict diagnostic risks is fast emerging. We describe a software solution that leverages hardware for scalable in-memory analytics and applies next-generation semantic query tools on medical data.

  20. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.

    PubMed

    Park, Soo Hyun; Talebi, Mohammad; Amos, Ruth I J; Tyteca, Eva; Haddad, Paul R; Szucs, Roman; Pohl, Christopher A; Dolan, John W

    2017-11-10

    Quantitative Structure-Retention Relationships (QSRR) are used to predict retention times of compounds based only on their chemical structures encoded by molecular descriptors. The main concern in QSRR modelling is to build models with high predictive power, allowing reliable retention prediction for the unknown compounds across the chromatographic space. With the aim of enhancing the prediction power of the models, in this work, our previously proposed QSRR modelling approach called "federation of local models" is extended in ion chromatography to predict retention times of unknown ions, where a local model for each target ion (unknown) is created using only structurally similar ions from the dataset. A Tanimoto similarity (TS) score was utilised as a measure of structural similarity and training sets were developed by including ions that were similar to the target ion, as defined by a threshold value. The prediction of retention parameters (a- and b-values) in the linear solvent strength (LSS) model in ion chromatography, log k=a - blog[eluent], allows the prediction of retention times under all eluent concentrations. The QSRR models for a- and b-values were developed by a genetic algorithm-partial least squares method using the retention data of inorganic and small organic anions and larger organic cations (molecular mass up to 507) on four Thermo Fisher Scientific columns (AS20, AS19, AS11HC and CS17). The corresponding predicted retention times were calculated by fitting the predicted a- and b-values of the models into the LSS model equation. The predicted retention times were also plotted against the experimental values to evaluate the goodness of fit and the predictive power of the models. The application of a TS threshold of 0.6 was found to successfully produce predictive and reliable QSRR models (Q ext(F2) 2 >0.8 and Mean Absolute Error<0.1), and hence accurate retention time predictions with an average Mean Absolute Error of 0.2min. Crown Copyright

  1. Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.

    PubMed

    Rakvongthai, Yothin; El Fakhri, Georges

    2017-07-01

    Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors: development and validation of predictive 3-D QSAR models through extensive ligand- and structure-based approaches

    NASA Astrophysics Data System (ADS)

    Ragno, Rino; Ballante, Flavio; Pirolli, Adele; Wickersham, Richard B.; Patsilinakos, Alexandros; Hesse, Stéphanie; Perspicace, Enrico; Kirsch, Gilbert

    2015-08-01

    Vascular endothelial growth factor receptor-2, (VEGFR-2), is a key element in angiogenesis, the process by which new blood vessels are formed, and is thus an important pharmaceutical target. Here, 3-D quantitative structure-activity relationship (3-D QSAR) were used to build a quantitative screening and pharmacophore model of the VEGFR-2 receptors for design of inhibitors with improved activities. Most of available experimental data information has been used as training set to derive optimized and fully cross-validated eight mono-probe and a multi-probe quantitative models. Notable is the use of 262 molecules, aligned following both structure-based and ligand-based protocols, as external test set confirming the 3-D QSAR models' predictive capability and their usefulness in design new VEGFR-2 inhibitors. From a survey on literature, this is the first generation of a wide-ranging computational medicinal chemistry application on VEGFR2 inhibitors.

  3. Multicomponent quantitative spectroscopic analysis without reference substances based on ICA modelling.

    PubMed

    Monakhova, Yulia B; Mushtakova, Svetlana P

    2017-05-01

    A fast and reliable spectroscopic method for multicomponent quantitative analysis of targeted compounds with overlapping signals in complex mixtures has been established. The innovative analytical approach is based on the preliminary chemometric extraction of qualitative and quantitative information from UV-vis and IR spectral profiles of a calibration system using independent component analysis (ICA). Using this quantitative model and ICA resolution results of spectral profiling of "unknown" model mixtures, the absolute analyte concentrations in multicomponent mixtures and authentic samples were then calculated without reference solutions. Good recoveries generally between 95% and 105% were obtained. The method can be applied to any spectroscopic data that obey the Beer-Lambert-Bouguer law. The proposed method was tested on analysis of vitamins and caffeine in energy drinks and aromatic hydrocarbons in motor fuel with 10% error. The results demonstrated that the proposed method is a promising tool for rapid simultaneous multicomponent analysis in the case of spectral overlap and the absence/inaccessibility of reference materials.

  4. Quantitative Analysis of Defects in Silicon. [to predict energy conversion efficiency of silicon samples for solar cells

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Smith, J. M.; Qidwai, H. A.; Bruce, T.

    1979-01-01

    The evaluation and prediction of the conversion efficiency for a variety of silicon samples with differences in structural defects, such as grain boundaries, twin boundaries, precipitate particles, dislocations, etc. are discussed. Quantitative characterization of these structural defects, which were revealed by etching the surface of silicon samples, is performed by using an image analyzer. Due to different crystal growth and fabrication techniques the various types of silicon contain a variety of trace impurity elements and structural defects. The two most important criteria in evaluating the various silicon types for solar cell applications are cost and conversion efficiency.

  5. Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease

    PubMed Central

    Plant, Claudia; Teipel, Stefan J.; Oswald, Annahita; Böhm, Christian; Meindl, Thomas; Mourao-Miranda, Janaina; Bokde, Arun W.; Hampel, Harald; Ewers, Michael

    2010-01-01

    Subjects with mild cognitive impairment (MCI) have an increased risk to develop Alzheimer's disease (AD). Voxel-based MRI studies have demonstrated that widely distributed cortical and subcortical brain areas show atrophic changes in MCI, preceding the onset of AD-type dementia. Here we developed a novel data mining framework in combination with three different classifiers including support vector machine (SVM), Bayes statistics, and voting feature intervals (VFI) to derive a quantitative index of pattern matching for the prediction of the conversion from MCI to AD. MRI was collected in 32 AD patients, 24 MCI subjects and 18 healthy controls (HC). Nine out of 24 MCI subjects converted to AD after an average follow-up interval of 2.5 years. Using feature selection algorithms, brain regions showing the highest accuracy for the discrimination between AD and HC were identified, reaching a classification accuracy of up to 92%. The extracted AD clusters were used as a search region to extract those brain areas that are predictive of conversion to AD within MCI subjects. The most predictive brain areas included the anterior cingulate gyrus and orbitofrontal cortex. The best prediction accuracy, which was cross-validated via train-and-test, was 75% for the prediction of the conversion from MCI to AD. The present results suggest that novel multivariate methods of pattern matching reach a clinically relevant accuracy for the a priori prediction of the progression from MCI to AD. PMID:19961938

  6. Sieve-based device for MALDI sample preparation. III. Its power for quantitative measurements.

    PubMed

    Molin, Laura; Cristoni, Simone; Seraglia, Roberta; Traldi, Pietro

    2011-02-01

    The solid sample inhomogeneity is a weak point of traditional MALDI deposition techniques that reflects negatively on quantitative analysis. The recently developed sieve-based device (SBD) sample deposition method, based on the electrospraying of matrix/analyte solutions through a grounded sieve, allows the homogeneous deposition of microcrystals with dimensions smaller than that of the laser spot. In each microcrystal the matrix/analyte molar ratio can be considered constant. Then, by irradiating different portions of the microcrystal distribution an identical response is obtained. This result suggests the employment of SBD in the development of quantitative procedures. For this aim, mixtures of different proteins of known molarity were analyzed, showing a good relationship between molarity and intensity ratios. This behaviour was also observed in the case of proteins with quite different ionic yields. The power of the developed method for quantitative evaluation was also tested by the measurement of the abundance of IGPP[Oxi]GPP[Oxi]GLMGPP (m/z 1219) present in the collagen-α-5(IV) chain precursor, differently expressed in urines from healthy subjects and diabetic-nephropathic patients, confirming its overexpression in the presence of nephropathy. The data obtained indicate that SBD is a particularly effective method for quantitative analysis also in biological fluids of interest. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Quantitative PET Imaging with Novel HER3 Targeted Peptides Selected by Phage Display to Predict Androgen Independent Prostate Cancer Progression

    DTIC Science & Technology

    2017-08-01

    9 4 1. Introduction The subject of this research is the design and testing of a PET imaging agent for the detection and...AWARD NUMBER: W81XWH-16-1-0447 TITLE: Quantitative PET Imaging with Novel HER3-Targeted Peptides Selected by Phage Display to Predict Androgen...MA 02114 REPORT DATE: August 2017 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

  8. SU-F-J-207: Non-Small Cell Lung Cancer Patient Survival Prediction with Quantitative Tumor Textures Analysis in Baseline CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Y; Zou, J; Murillo, P

    Purpose: Chemo-radiation therapy (CRT) is widely used in treating patients with locally advanced non-small cell lung cancer (NSCLC). Determination of the likelihood of patient response to treatment and optimization of treatment regime is of clinical significance. Up to date, no imaging biomarker has reliably correlated to NSCLC patient survival rate. This pilot study is to extract CT texture information from tumor regions for patient survival prediction. Methods: Thirteen patients with stage II-III NSCLC were treated using CRT with a median dose of 6210 cGy. Non-contrast-enhanced CT images were acquired for treatment planning and retrospectively collected for this study. Texture analysismore » was applied in segmented tumor regions using the Local Binary Pattern method (LBP). By comparing its HU with neighboring voxels, the LBPs of a voxel were measured in multiple scales with different group radiuses and numbers of neighbors. The LBP histograms formed a multi-dimensional texture vector for each patient, which was then used to establish and test a Support Vector Machine (SVM) model to predict patients’ one year survival. The leave-one-out cross validation strategy was used recursively to enlarge the training set and derive a reliable predictor. The predictions were compared with the true clinical outcomes. Results: A 10-dimensional LBP histogram was extracted from 3D segmented tumor region for each of the 13 patients. Using the SVM model with the leave-one-out strategy, only 1 out of 13 patients was misclassified. The experiments showed an accuracy of 93%, sensitivity of 100%, and specificity of 86%. Conclusion: Within the framework of a Support Vector Machine based model, the Local Binary Pattern method is able to extract a quantitative imaging biomarker in the prediction of NSCLC patient survival. More patients are to be included in the study.« less

  9. A Bayesian network model for predicting type 2 diabetes risk based on electronic health records

    NASA Astrophysics Data System (ADS)

    Xie, Jiang; Liu, Yan; Zeng, Xu; Zhang, Wu; Mei, Zhen

    2017-07-01

    An extensive, in-depth study of diabetes risk factors (DBRF) is of crucial importance to prevent (or reduce) the chance of suffering from type 2 diabetes (T2D). Accumulation of electronic health records (EHRs) makes it possible to build nonlinear relationships between risk factors and diabetes. However, the current DBRF researches mainly focus on qualitative analyses, and the inconformity of physical examination items makes the risk factors likely to be lost, which drives us to study the novel machine learning approach for risk model development. In this paper, we use Bayesian networks (BNs) to analyze the relationship between physical examination information and T2D, and to quantify the link between risk factors and T2D. Furthermore, with the quantitative analyses of DBRF, we adopt EHR and propose a machine learning approach based on BNs to predict the risk of T2D. The experiments demonstrate that our approach can lead to better predictive performance than the classical risk model.

  10. FAST TRACK COMMUNICATION: Reinterpreting the Cu Pd phase diagram based on new ground-state predictions

    NASA Astrophysics Data System (ADS)

    Bärthlein, S.; Hart, G. L. W.; Zunger, A.; Müller, S.

    2007-01-01

    Our notions of the phase stability of compounds rest to a large extent on the experimentally assessed phase diagrams. Long ago, it was assumed that in the Cu-Pd system for xPd<=25% there are at least two phases at high temperature (L12 and a L12-based superstructure), which evolve into a single L12-ordered phase at low temperature. By constructing a first-principles Hamiltonian, we predict a yet undiscovered Cu7Pd ground state at xPd = 12.5% (referred to as S1 below) and an L12-like Cu9Pd3 superstructure at 25% (referred to as S2). We find that in the low-temperature regime, a single L12 phase cannot be stable, even with the addition of anti-sites. Instead we find that an S2-phase with S1-like ordering tendency will form. Previous short-range order diffraction data are quantitatively consistent with these new predictions.

  11. Synthesising quantitative and qualitative research in evidence-based patient information.

    PubMed

    Goldsmith, Megan R; Bankhead, Clare R; Austoker, Joan

    2007-03-01

    Systematic reviews have, in the past, focused on quantitative studies and clinical effectiveness, while excluding qualitative evidence. Qualitative research can inform evidence-based practice independently of other research methodologies but methods for the synthesis of such data are currently evolving. Synthesising quantitative and qualitative research in a single review is an important methodological challenge. This paper describes the review methods developed and the difficulties encountered during the process of updating a systematic review of evidence to inform guidelines for the content of patient information related to cervical screening. Systematic searches of 12 electronic databases (January 1996 to July 2004) were conducted. Studies that evaluated the content of information provided to women about cervical screening or that addressed women's information needs were assessed for inclusion. A data extraction form and quality assessment criteria were developed from published resources. A non-quantitative synthesis was conducted and a tabular evidence profile for each important outcome (eg "explain what the test involves") was prepared. The overall quality of evidence for each outcome was then assessed using an approach published by the GRADE working group, which was adapted to suit the review questions and modified to include qualitative research evidence. Quantitative and qualitative studies were considered separately for every outcome. 32 papers were included in the systematic review following data extraction and assessment of methodological quality. The review questions were best answered by evidence from a range of data sources. The inclusion of qualitative research, which was often highly relevant and specific to many components of the screening information materials, enabled the production of a set of recommendations that will directly affect policy within the NHS Cervical Screening Programme. A practical example is provided of how quantitative and

  12. Synthesising quantitative and qualitative research in evidence‐based patient information

    PubMed Central

    Goldsmith, Megan R; Bankhead, Clare R; Austoker, Joan

    2007-01-01

    Background Systematic reviews have, in the past, focused on quantitative studies and clinical effectiveness, while excluding qualitative evidence. Qualitative research can inform evidence‐based practice independently of other research methodologies but methods for the synthesis of such data are currently evolving. Synthesising quantitative and qualitative research in a single review is an important methodological challenge. Aims This paper describes the review methods developed and the difficulties encountered during the process of updating a systematic review of evidence to inform guidelines for the content of patient information related to cervical screening. Methods Systematic searches of 12 electronic databases (January 1996 to July 2004) were conducted. Studies that evaluated the content of information provided to women about cervical screening or that addressed women's information needs were assessed for inclusion. A data extraction form and quality assessment criteria were developed from published resources. A non‐quantitative synthesis was conducted and a tabular evidence profile for each important outcome (eg “explain what the test involves”) was prepared. The overall quality of evidence for each outcome was then assessed using an approach published by the GRADE working group, which was adapted to suit the review questions and modified to include qualitative research evidence. Quantitative and qualitative studies were considered separately for every outcome. Results 32 papers were included in the systematic review following data extraction and assessment of methodological quality. The review questions were best answered by evidence from a range of data sources. The inclusion of qualitative research, which was often highly relevant and specific to many components of the screening information materials, enabled the production of a set of recommendations that will directly affect policy within the NHS Cervical Screening Programme. Conclusions A

  13. Quantitative detection of melamine based on terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaojing; Wang, Cuicui; Liu, Shangjian; Zuo, Jian; Zhou, Zihan; Zhang, Cunlin

    2018-01-01

    Melamine is an organic base and a trimer of cyanamide, with a 1, 3, 5-triazine skeleton. It is usually used for the production of plastics, glue and flame retardants. Melamine combines with acid and related compounds to form melamine cyanurate and related crystal structures, which have been implicated as contaminants or biomarkers in protein adulterations by lawbreakers, especially in milk powder. This paper is focused on developing an available method for quantitative detection of melamine in the fields of security inspection and nondestructive testing based on THz-TDS. Terahertz (THz) technology has promising applications for the detection and identification of materials because it exhibits the properties of spectroscopy, good penetration and safety. Terahertz time-domain spectroscopy (THz-TDS) is a key technique that is applied to spectroscopic measurement of materials based on ultrafast femtosecond laser. In this study, the melamine and its mixture with polyethylene powder in different consistence are measured using the transmission THz-TDS. And we obtained the refractive index spectra and the absorption spectrum of different concentrations of melamine on 0.2-2.8THz. In the refractive index spectra, it is obvious to see that decline trend with the decrease of concentration; and in the absorption spectrum, two peaks of melamine at 1.98THz and 2.28THz can be obtained. Based on the experimental result, the absorption coefficient and the consistence of the melamine in the mixture are determined. Finally, methods for quantitative detection of materials in the fields of nondestructive testing and quality control based on THz-TDS have been studied.

  14. Quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis – data from the Osteoarthritis Initiative

    PubMed Central

    Emmanuel, K.; Quinn, E.; Niu, J.; Guermazi, A.; Roemer, F.; Wirth, W.; Eckstein, F.; Felson, D.

    2017-01-01

    SUMMARY Objective To test the hypothesis that quantitative measures of meniscus extrusion predict incident radiographic knee osteoarthritis (KOA), prior to the advent of radiographic disease. Methods 206 knees with incident radiographic KOA (Kellgren Lawrence Grade (KLG) 0 or 1 at baseline, developing KLG 2 or greater with a definite osteophyte and joint space narrowing (JSN) grade ≥1 by year 4) were matched to 232 control knees not developing incident KOA. Manual segmentation of the central five slices of the medial and lateral meniscus was performed on coronal 3T DESS MRI and quantitative meniscus position was determined. Cases and controls were compared using conditional logistic regression adjusting for age, sex, BMI, race and clinical site. Sensitivity analyses of early (year [Y] 1/2) and late (Y3/4) incidence was performed. Results Mean medial extrusion distance was significantly greater for incident compared to non-incident knees (1.56 mean ± 1.12 mm SD vs 1.29 ± 0.99 mm; +21%, P < 0.01), so was the percent extrusion area of the medial meniscus (25.8 ± 15.8% vs 22.0 ± 13.5%; +17%, P < 0.05). This finding was consistent for knees restricted to medial incidence. No significant differences were observed for the lateral meniscus in incident medial KOA, or for the tibial plateau coverage between incident and non-incident knees. Restricting the analysis to medial incident KOA at Y1/2 differences were attenuated, but reached significance for extrusion distance, whereas no significant differences were observed at incident KOA in Y3/4. Conclusion Greater medial meniscus extrusion predicts incident radiographic KOA. Early onset KOA showed greater differences for meniscus position between incident and non-incident knees than late onset KOA. PMID:26318658

  15. Predicting links based on knowledge dissemination in complex network

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Jia, Yifan

    2017-04-01

    Link prediction is the task of mining the missing links in networks or predicting the next vertex pair to be connected by a link. A lot of link prediction methods were inspired by evolutionary processes of networks. In this paper, a new mechanism for the formation of complex networks called knowledge dissemination (KD) is proposed with the assumption of knowledge disseminating through the paths of a network. Accordingly, a new link prediction method-knowledge dissemination based link prediction (KDLP)-is proposed to test KD. KDLP characterizes vertex similarity based on knowledge quantity (KQ) which measures the importance of a vertex through H-index. Extensive numerical simulations on six real-world networks demonstrate that KDLP is a strong link prediction method which performs at a higher prediction accuracy than four well-known similarity measures including common neighbors, local path index, average commute time and matrix forest index. Furthermore, based on the common conclusion that an excellent link prediction method reveals a good evolving mechanism, the experiment results suggest that KD is a considerable network evolving mechanism for the formation of complex networks.

  16. Towards quantitative mass spectrometry-based metabolomics in microbial and mammalian systems.

    PubMed

    Kapoore, Rahul Vijay; Vaidyanathan, Seetharaman

    2016-10-28

    Metabolome analyses are a suite of analytical approaches that enable us to capture changes in the metabolome (small molecular weight components, typically less than 1500 Da) in biological systems. Mass spectrometry (MS) has been widely used for this purpose. The key challenge here is to be able to capture changes in a reproducible and reliant manner that is representative of the events that take place in vivo Typically, the analysis is carried out in vitro, by isolating the system and extracting the metabolome. MS-based approaches enable us to capture metabolomic changes with high sensitivity and resolution. When developing the technique for different biological systems, there are similarities in challenges and differences that are specific to the system under investigation. Here, we review some of the challenges in capturing quantitative changes in the metabolome with MS based approaches, primarily in microbial and mammalian systems.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Author(s).

  17. Simultaneous construction of PCR-DGGE-based predictive models of Listeria monocytogenes and Vibrio parahaemolyticus on cooked shrimps.

    PubMed

    Liao, C; Peng, Z Y; Li, J B; Cui, X W; Zhang, Z H; Malakar, P K; Zhang, W J; Pan, Y J; Zhao, Y

    2015-03-01

    The aim of this study was to simultaneously construct PCR-DGGE-based predictive models of Listeria monocytogenes and Vibrio parahaemolyticus on cooked shrimps at 4 and 10°C. Calibration curves were established to correlate peak density of DGGE bands with microbial counts. Microbial counts derived from PCR-DGGE and plate methods were fitted by Baranyi model to obtain molecular and traditional predictive models. For L. monocytogenes, growing at 4 and 10°C, molecular predictive models were constructed. It showed good evaluations of correlation coefficients (R(2) > 0.92), bias factors (Bf ) and accuracy factors (Af ) (1.0 ≤ Bf ≤ Af ≤ 1.1). Moreover, no significant difference was found between molecular and traditional predictive models when analysed on lag phase (λ), maximum growth rate (μmax ) and growth data (P > 0.05). But for V. parahaemolyticus, inactivated at 4 and 10°C, molecular models show significant difference when compared with traditional models. Taken together, these results suggest that PCR-DGGE based on DNA can be used to construct growth models, but it is inappropriate for inactivation models yet. This is the first report of developing PCR-DGGE to simultaneously construct multiple molecular models. It has been known for a long time that microbial predictive models based on traditional plate methods are time-consuming and labour-intensive. Denaturing gradient gel electrophoresis (DGGE) has been widely used as a semiquantitative method to describe complex microbial community. In our study, we developed DGGE to quantify bacterial counts and simultaneously established two molecular predictive models to describe the growth and survival of two bacteria (Listeria monocytogenes and Vibrio parahaemolyticus) at 4 and 10°C. We demonstrated that PCR-DGGE could be used to construct growth models. This work provides a new approach to construct molecular predictive models and thereby facilitates predictive microbiology and QMRA (Quantitative Microbial

  18. Quantitative data standardization of X-ray based densitometry methods

    NASA Astrophysics Data System (ADS)

    Sergunova, K. A.; Petraikin, A. V.; Petrjajkin, F. A.; Akhmad, K. S.; Semenov, D. S.; Potrakhov, N. N.

    2018-02-01

    In the present work is proposed the design of special liquid phantom for assessing the accuracy of quantitative densitometric data. Also are represented the dependencies between the measured bone mineral density values and the given values for different X-ray based densitometry techniques. Shown linear graphs make it possible to introduce correction factors to increase the accuracy of BMD measurement by QCT, DXA and DECT methods, and to use them for standardization and comparison of measurements.

  19. Predicting hepatic steatosis and liver fat content in obese children based on biochemical parameters and anthropometry.

    PubMed

    Zhang, H-X; Xu, X-Q; Fu, J-F; Lai, C; Chen, X-F

    2015-04-01

    Predictors of quantitative evaluation of hepatic steatosis and liver fat content (LFC) using clinical and laboratory variables available in the general practice in the obese children are poorly identified. To build predictive models of hepatic steatosis and LFC in obese children based on biochemical parameters and anthropometry. Hepatic steatosis and LFC were determined using proton magnetic resonance spectroscopy in 171 obese children aged 5.5-18.0 years. Routine clinical and laboratory parameters were also measured in all subjects. Group analysis, univariable correlation analysis, and multivariate logistic and linear regression analysis were used to develop a liver fat score to identify hepatic steatosis and a liver fat equation to predict LFC in each subject. The predictive model of hepatic steatosis in our participants based on waist circumference and alanine aminotransferase had an area under the receiver operating characteristic curve of 0.959 (95% confidence interval: 0.927-0.990). The optimal cut-off value of 0.525 for determining hepatic steatosis had sensitivity of 93% and specificity of 90%. A liver fat equation was also developed based on the same parameters of hepatic steatosis liver fat score, which would be used to calculate the LFC in each individual. The liver fat score and liver fat equation, consisting of routinely available variables, may help paediatricians to accurately determine hepatic steatosis and LFC in clinical practice, but external validation is needed before it can be employed for this purpose. © 2014 The Authors. Pediatric Obesity © 2014 World Obesity.

  20. Perceived Attributes Predict Course Management System Adopter Status

    ERIC Educational Resources Information Center

    Keesee, Gayla S.; Shepard, MaryFriend

    2011-01-01

    This quantitative, nonexperimental study utilized Rogers's diffusion of innovation theory as the theoretical base to determine instructors' perceptions of the attributes (relative advantage, compatibility, complexity, trialability, observability) of the course management system used in order to predict adopter status. The study used a convenience…

  1. Quantitative Assessment of Commutability for Clinical Viral Load Testing Using a Digital PCR-Based Reference Standard

    PubMed Central

    Tang, L.; Sun, Y.; Buelow, D.; Gu, Z.; Caliendo, A. M.; Pounds, S.

    2016-01-01

    Given recent advances in the development of quantitative standards, particularly WHO international standards, efforts to better understand the commutability of reference materials have been made. Existing approaches in evaluating commutability include prediction intervals and correspondence analysis; however, the results obtained from existing approaches may be ambiguous. We have developed a “deviation-from-ideal” (DFI) approach to evaluate commutability of standards and applied it to the assessment of Epstein-Bar virus (EBV) load testing in four quantitative PCR assays, treating digital PCR as a reference assay. We then discuss advantages and limitations of the DFI approach as well as experimental design to best evaluate the commutability of an assay in practice. PMID:27076654

  2. Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment.

    PubMed

    Breska, Assaf; Deouell, Leon Y

    2017-02-01

    Predicting the timing of upcoming events enables efficient resource allocation and action preparation. Rhythmic streams, such as music, speech, and biological motion, constitute a pervasive source for temporal predictions. Widely accepted entrainment theories postulate that rhythm-based predictions are mediated by synchronizing low-frequency neural oscillations to the rhythm, as indicated by increased phase concentration (PC) of low-frequency neural activity for rhythmic compared to random streams. However, we show here that PC enhancement in scalp recordings is not specific to rhythms but is observed to the same extent in less periodic streams if they enable memory-based prediction. This is inconsistent with the predictions of a computational entrainment model of stronger PC for rhythmic streams. Anticipatory change in alpha activity and facilitation of electroencephalogram (EEG) manifestations of response selection are also comparable between rhythm- and memory-based predictions. However, rhythmic sequences uniquely result in obligatory depression of preparation-related premotor brain activity when an on-beat event is omitted, even when it is strategically beneficial to maintain preparation, leading to larger behavioral costs for violation of prediction. Thus, while our findings undermine the validity of PC as a sign of rhythmic entrainment, they constitute the first electrophysiological dissociation, to our knowledge, between mechanisms of rhythmic predictions and of memory-based predictions: the former obligatorily lead to resonance-like preparation patterns (that are in line with entrainment), while the latter allow flexible resource allocation in time regardless of periodicity in the input. Taken together, they delineate the neural mechanisms of three distinct modes of preparation: continuous vigilance, interval-timing-based prediction and rhythm-based prediction.

  3. Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment

    PubMed Central

    Deouell, Leon Y.

    2017-01-01

    Predicting the timing of upcoming events enables efficient resource allocation and action preparation. Rhythmic streams, such as music, speech, and biological motion, constitute a pervasive source for temporal predictions. Widely accepted entrainment theories postulate that rhythm-based predictions are mediated by synchronizing low-frequency neural oscillations to the rhythm, as indicated by increased phase concentration (PC) of low-frequency neural activity for rhythmic compared to random streams. However, we show here that PC enhancement in scalp recordings is not specific to rhythms but is observed to the same extent in less periodic streams if they enable memory-based prediction. This is inconsistent with the predictions of a computational entrainment model of stronger PC for rhythmic streams. Anticipatory change in alpha activity and facilitation of electroencephalogram (EEG) manifestations of response selection are also comparable between rhythm- and memory-based predictions. However, rhythmic sequences uniquely result in obligatory depression of preparation-related premotor brain activity when an on-beat event is omitted, even when it is strategically beneficial to maintain preparation, leading to larger behavioral costs for violation of prediction. Thus, while our findings undermine the validity of PC as a sign of rhythmic entrainment, they constitute the first electrophysiological dissociation, to our knowledge, between mechanisms of rhythmic predictions and of memory-based predictions: the former obligatorily lead to resonance-like preparation patterns (that are in line with entrainment), while the latter allow flexible resource allocation in time regardless of periodicity in the input. Taken together, they delineate the neural mechanisms of three distinct modes of preparation: continuous vigilance, interval-timing-based prediction and rhythm-based prediction. PMID:28187128

  4. Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks.

    PubMed

    León-Roque, Noemí; Abderrahim, Mohamed; Nuñez-Alejos, Luis; Arribas, Silvia M; Condezo-Hoyos, Luis

    2016-12-01

    Several procedures are currently used to assess fermentation index (FI) of cocoa beans (Theobroma cacao L.) for quality control. However, all of them present several drawbacks. The aim of the present work was to develop and validate a simple image based quantitative procedure, using color measurement and artificial neural network (ANNs). ANN models based on color measurements were tested to predict fermentation index (FI) of fermented cocoa beans. The RGB values were measured from surface and center region of fermented beans in images obtained by camera and desktop scanner. The FI was defined as the ratio of total free amino acids in fermented versus non-fermented samples. The ANN model that included RGB color measurement of fermented cocoa surface and R/G ratio in cocoa bean of alkaline extracts was able to predict FI with no statistical difference compared with the experimental values. Performance of the ANN model was evaluated by the coefficient of determination, Bland-Altman plot and Passing-Bablok regression analyses. Moreover, in fermented beans, total sugar content and titratable acidity showed a similar pattern to the total free amino acid predicted through the color based ANN model. The results of the present work demonstrate that the proposed ANN model can be adopted as a low-cost and in situ procedure to predict FI in fermented cocoa beans through apps developed for mobile device. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Quantitative modeling of reservoir-triggered seismicity

    NASA Astrophysics Data System (ADS)

    Hainzl, S.; Catalli, F.; Dahm, T.; Heinicke, J.; Woith, H.

    2017-12-01

    Reservoir-triggered seismicity might occur as the response to the crustal stress caused by the poroelastic response to the weight of the water volume and fluid diffusion. Several cases of high correlations have been found in the past decades. However, crustal stresses might be altered by many other processes such as continuous tectonic stressing and coseismic stress changes. Because reservoir-triggered stresses decay quickly with distance, even tidal or rainfall-triggered stresses might be of similar size at depth. To account for simultaneous stress sources in a physically meaningful way, we apply a seismicity model based on calculated stress changes in the crust and laboratory-derived friction laws. Based on the observed seismicity, the model parameters can be determined by maximum likelihood method. The model leads to quantitative predictions of the variations of seismicity rate in space and time which can be used for hypothesis testing and forecasting. For case studies in Talala (India), Val d'Agri (Italy) and Novy Kostel (Czech Republic), we show the comparison of predicted and observed seismicity, demonstrating the potential and limitations of the approach.

  6. Prediction of genotoxic potential of cosmetic ingredients by an in silico battery system consisting of a combination of an expert rule-based system and a statistics-based system.

    PubMed

    Aiba née Kaneko, Maki; Hirota, Morihiko; Kouzuki, Hirokazu; Mori, Masaaki

    2015-02-01

    Genotoxicity is the most commonly used endpoint to predict the carcinogenicity of chemicals. The International Conference on Harmonization (ICH) M7 Guideline on Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk offers guidance on (quantitative) structure-activity relationship ((Q)SAR) methodologies that predict the outcome of bacterial mutagenicity assay for actual and potential impurities. We examined the effectiveness of the (Q)SAR approach with the combination of DEREK NEXUS as an expert rule-based system and ADMEWorks as a statistics-based system for the prediction of not only mutagenic potential in the Ames test, but also genotoxic potential in mutagenicity and clastogenicity tests, using a data set of 342 chemicals extracted from the literature. The prediction of mutagenic potential or genotoxic potential by DEREK NEXUS or ADMEWorks showed high values of sensitivity and concordance, while prediction by the combination of DEREK NEXUS and ADMEWorks (battery system) showed the highest values of sensitivity and concordance among the three methods, but the lowest value of specificity. The number of false negatives was reduced with the battery system. We also separately predicted the mutagenic potential and genotoxic potential of 41 cosmetic ingredients listed in the International Nomenclature of Cosmetic Ingredients (INCI) among the 342 chemicals. Although specificity was low with the battery system, sensitivity and concordance were high. These results suggest that the battery system consisting of DEREK NEXUS and ADMEWorks is useful for prediction of genotoxic potential of chemicals, including cosmetic ingredients.

  7. Model-based prediction of myelosuppression and recovery based on frequent neutrophil monitoring.

    PubMed

    Netterberg, Ida; Nielsen, Elisabet I; Friberg, Lena E; Karlsson, Mats O

    2017-08-01

    To investigate whether a more frequent monitoring of the absolute neutrophil counts (ANC) during myelosuppressive chemotherapy, together with model-based predictions, can improve therapy management, compared to the limited clinical monitoring typically applied today. Daily ANC in chemotherapy-treated cancer patients were simulated from a previously published population model describing docetaxel-induced myelosuppression. The simulated values were used to generate predictions of the individual ANC time-courses, given the myelosuppression model. The accuracy of the predicted ANC was evaluated under a range of conditions with reduced amount of ANC measurements. The predictions were most accurate when more data were available for generating the predictions and when making short forecasts. The inaccuracy of ANC predictions was highest around nadir, although a high sensitivity (≥90%) was demonstrated to forecast Grade 4 neutropenia before it occurred. The time for a patient to recover to baseline could be well forecasted 6 days (±1 day) before the typical value occurred on day 17. Daily monitoring of the ANC, together with model-based predictions, could improve anticancer drug treatment by identifying patients at risk for severe neutropenia and predicting when the next cycle could be initiated.

  8. [Prediction method of rural landscape pattern evolution based on life cycle: a case study of Jinjing Town, Hunan Province, China].

    PubMed

    Ji, Xiang; Liu, Li-Ming; Li, Hong-Qing

    2014-11-01

    Taking Jinjing Town in Dongting Lake area as a case, this paper analyzed the evolution of rural landscape patterns by means of life cycle theory, simulated the evolution cycle curve, and calculated its evolution period, then combining CA-Markov model, a complete prediction model was built based on the rule of rural landscape change. The results showed that rural settlement and paddy landscapes of Jinjing Town would change most in 2020, with the rural settlement landscape increased to 1194.01 hm2 and paddy landscape greatly reduced to 3090.24 hm2. The quantitative and spatial prediction accuracies of the model were up to 99.3% and 96.4%, respectively, being more explicit than single CA-Markov model. The prediction model of rural landscape patterns change proposed in this paper would be helpful for rural landscape planning in future.

  9. Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives.

    PubMed

    Gao, Jia-Suo; Tong, Xu-Peng; Chang, Yi-Qun; He, Yu-Xuan; Mei, Yu-Dan; Tan, Pei-Hong; Guo, Jia-Liang; Liao, Guo-Chao; Xiao, Gao-Keng; Chen, Wei-Min; Zhou, Shu-Feng; Sun, Ping-Hua

    2015-01-01

    Factor IXa (FIXa), a blood coagulation factor, is specifically inhibited at the initiation stage of the coagulation cascade, promising an excellent approach for developing selective and safe anticoagulants. Eighty-four amidinobenzothiophene antithrombotic derivatives targeting FIXa were selected to establish three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models using comparative molecular field analysis and comparative similarity indices analysis methods. Internal and external cross-validation techniques were investigated as well as region focusing and bootstrapping. The satisfactory q (2) values of 0.753 and 0.770, and r (2) values of 0.940 and 0.965 for 3D-QSAR and 3D-QSSR, respectively, indicated that the models are available to predict both the inhibitory activity and selectivity on FIXa against Factor Xa, the activated status of Factor X. This work revealed that the steric, hydrophobic, and H-bond factors should appropriately be taken into account in future rational design, especially the modifications at the 2'-position of the benzene and the 6-position of the benzothiophene in the R group, providing helpful clues to design more active and selective FIXa inhibitors for the treatment of thrombosis. On the basis of the three-dimensional quantitative structure-property relationships, 16 new potent molecules have been designed and are predicted to be more active and selective than Compound 33, which has the best activity as reported in the literature.

  10. Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives

    PubMed Central

    Gao, Jia-Suo; Tong, Xu-Peng; Chang, Yi-Qun; He, Yu-Xuan; Mei, Yu-Dan; Tan, Pei-Hong; Guo, Jia-Liang; Liao, Guo-Chao; Xiao, Gao-Keng; Chen, Wei-Min; Zhou, Shu-Feng; Sun, Ping-Hua

    2015-01-01

    Factor IXa (FIXa), a blood coagulation factor, is specifically inhibited at the initiation stage of the coagulation cascade, promising an excellent approach for developing selective and safe anticoagulants. Eighty-four amidinobenzothiophene antithrombotic derivatives targeting FIXa were selected to establish three-dimensional quantitative structure–activity relationship (3D-QSAR) and three-dimensional quantitative structure–selectivity relationship (3D-QSSR) models using comparative molecular field analysis and comparative similarity indices analysis methods. Internal and external cross-validation techniques were investigated as well as region focusing and bootstrapping. The satisfactory q2 values of 0.753 and 0.770, and r2 values of 0.940 and 0.965 for 3D-QSAR and 3D-QSSR, respectively, indicated that the models are available to predict both the inhibitory activity and selectivity on FIXa against Factor Xa, the activated status of Factor X. This work revealed that the steric, hydrophobic, and H-bond factors should appropriately be taken into account in future rational design, especially the modifications at the 2′-position of the benzene and the 6-position of the benzothiophene in the R group, providing helpful clues to design more active and selective FIXa inhibitors for the treatment of thrombosis. On the basis of the three-dimensional quantitative structure–property relationships, 16 new potent molecules have been designed and are predicted to be more active and selective than Compound 33, which has the best activity as reported in the literature. PMID:25848211

  11. Qualification Testing Versus Quantitative Reliability Testing of PV - Gaining Confidence in a Rapidly Changing Technology: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah; Repins, Ingrid L; Hacke, Peter L

    Continued growth of PV system deployment would be enhanced by quantitative, low-uncertainty predictions of the degradation and failure rates of PV modules and systems. The intended product lifetime (decades) far exceeds the product development cycle (months), limiting our ability to reduce the uncertainty of the predictions for this rapidly changing technology. Yet, business decisions (setting insurance rates, analyzing return on investment, etc.) require quantitative risk assessment. Moving toward more quantitative assessments requires consideration of many factors, including the intended application, consequence of a possible failure, variability in the manufacturing, installation, and operation, as well as uncertainty in the measured accelerationmore » factors, which provide the basis for predictions based on accelerated tests. As the industry matures, it is useful to periodically assess the overall strategy for standards development and prioritization of research to provide a technical basis both for the standards and the analysis related to the application of those. To this end, this paper suggests a tiered approach to creating risk assessments. Recent and planned potential improvements in international standards are also summarized.« less

  12. Evaluation of New Zealand's high-seas bottom trawl closures using predictive habitat models and quantitative risk assessment.

    PubMed

    Penney, Andrew J; Guinotte, John M

    2013-01-01

    United Nations General Assembly Resolution 61/105 on sustainable fisheries (UNGA 2007) establishes three difficult questions for participants in high-seas bottom fisheries to answer: 1) Where are vulnerable marine systems (VMEs) likely to occur?; 2) What is the likelihood of fisheries interaction with these VMEs?; and 3) What might qualify as adequate conservation and management measures to prevent significant adverse impacts? This paper develops an approach to answering these questions for bottom trawling activities in the Convention Area of the South Pacific Regional Fisheries Management Organisation (SPRFMO) within a quantitative risk assessment and cost : benefit analysis framework. The predicted distribution of deep-sea corals from habitat suitability models is used to answer the first question. Distribution of historical bottom trawl effort is used to answer the second, with estimates of seabed areas swept by bottom trawlers being used to develop discounting factors for reduced biodiversity in previously fished areas. These are used in a quantitative ecological risk assessment approach to guide spatial protection planning to address the third question. The coral VME likelihood (average, discounted, predicted coral habitat suitability) of existing spatial closures implemented by New Zealand within the SPRFMO area is evaluated. Historical catch is used as a measure of cost to industry in a cost : benefit analysis of alternative spatial closure scenarios. Results indicate that current closures within the New Zealand SPRFMO area bottom trawl footprint are suboptimal for protection of VMEs. Examples of alternative trawl closure scenarios are provided to illustrate how the approach could be used to optimise protection of VMEs under chosen management objectives, balancing protection of VMEs against economic loss to commercial fishers from closure of historically fished areas.

  13. Using PSEA-Quant for Protein Set Enrichment Analysis of Quantitative Mass Spectrometry-Based Proteomics

    PubMed Central

    Lavallée-Adam, Mathieu

    2017-01-01

    PSEA-Quant analyzes quantitative mass spectrometry-based proteomics datasets to identify enrichments of annotations contained in repositories such as the Gene Ontology and Molecular Signature databases. It allows users to identify the annotations that are significantly enriched for reproducibly quantified high abundance proteins. PSEA-Quant is available on the web and as a command-line tool. It is compatible with all label-free and isotopic labeling-based quantitative proteomics methods. This protocol describes how to use PSEA-Quant and interpret its output. The importance of each parameter as well as troubleshooting approaches are also discussed. PMID:27010334

  14. Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Tian, Xiaolin; He, Xiaoliang; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-08-01

    Microscopy based on transport of intensity equation provides quantitative phase distributions which opens another perspective for cellular observations. However, it requires multi-focal image capturing while mechanical and electrical scanning limits its real time capacity in sample detections. Here, in order to break through this restriction, real time quantitative phase microscopy based on single-shot transport of the intensity equation method is proposed. A programmed phase mask is designed to realize simultaneous multi-focal image recording without any scanning; thus, phase distributions can be quantitatively retrieved in real time. It is believed the proposed method can be potentially applied in various biological and medical applications, especially for live cell imaging.

  15. Metastatic brain cancer: prediction of response to whole-brain helical tomotherapy with simultaneous intralesional boost for metastatic disease using quantitative MR imaging features

    NASA Astrophysics Data System (ADS)

    Sharma, Harish; Bauman, Glenn; Rodrigues, George; Bartha, Robert; Ward, Aaron

    2014-03-01

    The sequential application of whole brain radiotherapy (WBRT) and more targeted stereotactic radiosurgery (SRS) is frequently used to treat metastatic brain tumors. However, SRS has side effects related to necrosis and edema, and requires separate and relatively invasive localization procedures. Helical tomotherapy (HT) allows for a SRS-type simultaneous infield boost (SIB) of multiple brain metastases, synchronously with WBRT and without separate stereotactic procedures. However, some patients' tumors may not respond to HT+SIB, and would be more appropriately treated with radiosurgery or conventional surgery despite the additional risks and side effects. As a first step toward a broader objective of developing a means for response prediction to HT+SIB, the goal of this study was to investigate whether quantitative measurements of tumor size and appearance (including first- and second-order texture features) on a magnetic resonance imaging (MRI) scan acquired prior to treatment could be used to differentiate responder and nonresponder patient groups after HT+SIB treatment of metastatic disease of the brain. Our results demonstrated that smaller lesions may respond better to this form of therapy; measures of appearance provided limited added value over measures of size for response prediction. With further validation on a larger data set, this approach may lead to a means for prediction of individual patient response based on pre-treatment MRI, supporting appropriate therapy selection for patients with metastatic brain cancer.

  16. Quantitative structure-activity relationships for predicting potential ecological hazard of organic chemicals for use in regulatory risk assessments.

    PubMed

    Comber, Mike H I; Walker, John D; Watts, Chris; Hermens, Joop

    2003-08-01

    The use of quantitative structure-activity relationships (QSARs) for deriving the predicted no-effect concentration of discrete organic chemicals for the purposes of conducting a regulatory risk assessment in Europe and the United States is described. In the United States, under the Toxic Substances Control Act (TSCA), the TSCA Interagency Testing Committee and the U.S. Environmental Protection Agency (U.S. EPA) use SARs to estimate the hazards of existing and new chemicals. Within the Existing Substances Regulation in Europe, QSARs may be used for data evaluation, test strategy indications, and the identification and filling of data gaps. To illustrate where and when QSARs may be useful and when their use is more problematic, an example, methyl tertiary-butyl ether (MTBE), is given and the predicted and experimental data are compared. Improvements needed for new QSARs and tools for developing and using QSARs are discussed.

  17. Predicting Monoamine Oxidase Inhibitory Activity through Ligand-Based Models

    PubMed Central

    Vilar, Santiago; Ferino, Giulio; Quezada, Elias; Santana, Lourdes; Friedman, Carol

    2013-01-01

    The evolution of bio- and cheminformatics associated with the development of specialized software and increasing computer power has produced a great interest in theoretical in silico methods applied in drug rational design. These techniques apply the concept that “similar molecules have similar biological properties” that has been exploited in Medicinal Chemistry for years to design new molecules with desirable pharmacological profiles. Ligand-based methods are not dependent on receptor structural data and take into account two and three-dimensional molecular properties to assess similarity of new compounds in regards to the set of molecules with the biological property under study. Depending on the complexity of the calculation, there are different types of ligand-based methods, such as QSAR (Quantitative Structure-Activity Relationship) with 2D and 3D descriptors, CoMFA (Comparative Molecular Field Analysis) or pharmacophoric approaches. This work provides a description of a series of ligand-based models applied in the prediction of the inhibitory activity of monoamine oxidase (MAO) enzymes. The controlled regulation of the enzymes’ function through the use of MAO inhibitors is used as a treatment in many psychiatric and neurological disorders, such as depression, anxiety, Alzheimer’s and Parkinson’s disease. For this reason, multiple scaffolds, such as substituted coumarins, indolylmethylamine or pyridazine derivatives were synthesized and assayed toward MAO-A and MAO-B inhibition. Our intention is to focus on the description of ligand-based models to provide new insights in the relationship between the MAO inhibitory activity and the molecular structure of the different inhibitors, and further study enzyme selectivity and possible mechanisms of action. PMID:23231398

  18. Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction.

    PubMed

    Brøndum, R F; Su, G; Janss, L; Sahana, G; Guldbrandtsen, B; Boichard, D; Lund, M S

    2015-06-01

    This study investigated the effect on the reliability of genomic prediction when a small number of significant variants from single marker analysis based on whole genome sequence data were added to the regular 54k single nucleotide polymorphism (SNP) array data. The extra markers were selected with the aim of augmenting the custom low-density Illumina BovineLD SNP chip (San Diego, CA) used in the Nordic countries. The single-marker analysis was done breed-wise on all 16 index traits included in the breeding goals for Nordic Holstein, Danish Jersey, and Nordic Red cattle plus the total merit index itself. Depending on the trait's economic weight, 15, 10, or 5 quantitative trait loci (QTL) were selected per trait per breed and 3 to 5 markers were selected to tag each QTL. After removing duplicate markers (same marker selected for more than one trait or breed) and filtering for high pairwise linkage disequilibrium and assaying performance on the array, a total of 1,623 QTL markers were selected for inclusion on the custom chip. Genomic prediction analyses were performed for Nordic and French Holstein and Nordic Red animals using either a genomic BLUP or a Bayesian variable selection model. When using the genomic BLUP model including the QTL markers in the analysis, reliability was increased by up to 4 percentage points for production traits in Nordic Holstein animals, up to 3 percentage points for Nordic Reds, and up to 5 percentage points for French Holstein. Smaller gains of up to 1 percentage point was observed for mastitis, but only a 0.5 percentage point increase was seen for fertility. When using a Bayesian model accuracies were generally higher with only 54k data compared with the genomic BLUP approach, but increases in reliability were relatively smaller when QTL markers were included. Results from this study indicate that the reliability of genomic prediction can be increased by including markers significant in genome-wide association studies on whole genome

  19. Method and platform standardization in MRM-based quantitative plasma proteomics.

    PubMed

    Percy, Andrew J; Chambers, Andrew G; Yang, Juncong; Jackson, Angela M; Domanski, Dominik; Burkhart, Julia; Sickmann, Albert; Borchers, Christoph H

    2013-12-16

    There exists a growing demand in the proteomics community to standardize experimental methods and liquid chromatography-mass spectrometry (LC/MS) platforms in order to enable the acquisition of more precise and accurate quantitative data. This necessity is heightened by the evolving trend of verifying and validating candidate disease biomarkers in complex biofluids, such as blood plasma, through targeted multiple reaction monitoring (MRM)-based approaches with stable isotope-labeled standards (SIS). Considering the lack of performance standards for quantitative plasma proteomics, we previously developed two reference kits to evaluate the MRM with SIS peptide approach using undepleted and non-enriched human plasma. The first kit tests the effectiveness of the LC/MRM-MS platform (kit #1), while the second evaluates the performance of an entire analytical workflow (kit #2). Here, these kits have been refined for practical use and then evaluated through intra- and inter-laboratory testing on 6 common LC/MS platforms. For an identical panel of 22 plasma proteins, similar concentrations were determined, regardless of the kit, instrument platform, and laboratory of analysis. These results demonstrate the value of the kit and reinforce the utility of standardized methods and protocols. The proteomics community needs standardized experimental protocols and quality control methods in order to improve the reproducibility of MS-based quantitative data. This need is heightened by the evolving trend for MRM-based validation of proposed disease biomarkers in complex biofluids such as blood plasma. We have developed two kits to assist in the inter- and intra-laboratory quality control of MRM experiments: the first kit tests the effectiveness of the LC/MRM-MS platform (kit #1), while the second evaluates the performance of an entire analytical workflow (kit #2). In this paper, we report the use of these kits in intra- and inter-laboratory testing on 6 common LC/MS platforms. This

  20. THE FUTURE OF COMPUTER-BASED TOXICITY PREDICTION: MECHANISM-BASED MODELS VS. INFORMATION MINING APPROACHES

    EPA Science Inventory


    The Future of Computer-Based Toxicity Prediction:
    Mechanism-Based
    Models vs. Information Mining Approaches

    When we speak of computer-based toxicity prediction, we are generally referring to a broad array of approaches which rely primarily upon chemical structure ...

  1. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-11-01

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (r

  2. Model-free and model-based reward prediction errors in EEG.

    PubMed

    Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy

    2018-05-24

    Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Experiencing Teaching and Learning Quantitative Reasoning in a Project-Based Context

    ERIC Educational Resources Information Center

    Muir, Tracey; Beswick, Kim; Callingham, Rosemary; Jade, Katara

    2016-01-01

    This paper presents the findings of a small-scale study that investigated the issues and challenges of teaching and learning about quantitative reasoning (QR) within a project-based learning (PjBL) context. Students and teachers were surveyed and interviewed about their experiences of learning and teaching QR in that context in contrast to…

  4. A quantitative model of optimal data selection in Wason's selection task.

    PubMed

    Hattori, Masasi

    2002-10-01

    The optimal data selection model proposed by Oaksford and Chater (1994) successfully formalized Wason's selection task (Wason, 1966). The model, however, involved some questionable assumptions and was also not sufficient as a model of the task because it could not provide quantitative predictions of the card selection frequencies. In this paper, the model was revised to provide quantitative fits to the data. The model can predict the selection frequencies of cards based on a selection tendency function (STF), or conversely, it enables the estimation of subjective probabilities from data. Past experimental data were first re-analysed based on the model. In Experiment 1, the superiority of the revised model was shown. However, when the relationship between antecedent and consequent was forced to deviate from the biconditional form, the model was not supported. In Experiment 2, it was shown that sufficient emphasis on probabilistic information can affect participants' performance. A detailed experimental method to sort participants by probabilistic strategies was introduced. Here, the model was supported by a subgroup of participants who used the probabilistic strategy. Finally, the results were discussed from the viewpoint of adaptive rationality.

  5. Quantitative fibrosis parameters highly predict esophageal-gastro varices in primary biliary cirrhosis.

    PubMed

    Wu, Q-M; Zhao, X-Y; You, H

    2016-01-01

    Esophageal-gastro Varices (EGV) may develop in any histological stages of primary biliary cirrhosis (PBC). We aim to establish and validate quantitative fibrosis (qFibrosis) parameters in portal, septal and fibrillar areas as ideal predictors of EGV in PBC patients. PBC patients with liver biopsy, esophagogastroscopy and Second Harmonic Generation (SHG)/Two-photon Excited Fluorescence (TPEF) microscopy images were retrospectively enrolled in this study. qFibrosis parameters in portal, septal and fibrillar areas were acquired by computer-assisted SHG/TPEF imaging system. Independent predictor was identified using multivariate logistic regression analysis. PBC patients with liver biopsy, esophagogastroscopy and Second Harmonic Generation (SHG)/Two-photon Excited Fluorescence (TPEF) microscopy images were retrospectively enrolled in this study. qFibrosis parameters in portal, septal and fibrillar areas were acquired by computer-assisted SHG/TPEF imaging system. Independent predictor was identified using multivariate logistic regression analysis. Among the forty-nine PBC patients with qFibrosis images, twenty-nine PBC patients with both esophagogastroscopy data and qFibrosis data were selected out for EGV prognosis analysis and 44.8% (13/29) of them had EGV. The qFibrosis parameters of collagen percentage and number of crosslink in fibrillar area, short/long/thin strings number and length/width of the strings in septa area were associated with EGV (p < 0.05). Multivariate logistic analysis showed that the collagen percentage in fibrillar area ≥ 3.6% was an independent factor to predict EGV (odds ratio 6.9; 95% confidence interval 1.6-27.4). The area under receiver operating characteristic (ROC), diagnostic sensitivity and specificity was 0.9, 100% and 75% respectively. Collagen percentage in Collagen percentage in the fibrillar area as an independent predictor can highly predict EGV in PBC patients.

  6. Application of quantitative structure activity relationship (QSAR) models to predict ozone toxicity in the lung.

    PubMed

    Kafoury, Ramzi M; Huang, Ming-Ju

    2005-08-01

    The sequence of events leading to ozone-induced airway inflammation is not well known. To elucidate the molecular and cellular events underlying ozone toxicity in the lung, we hypothesized that lipid ozonation products (LOPs) generated by the reaction of ozone with unsaturated fatty acids in the epithelial lining fluid and cell membranes play a key role in mediating ozone-induced airway inflammation. To test our hypothesis, we ozonized 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) and generated LOPs. Confluent human bronchial epithelial cells were exposed to the derivatives of ozonized POPC-9-oxononanoyl, 9-hydroxy-9-hydroperoxynonanoyl, and 8-(5-octyl-1,2,4-trioxolan-3-yl-)octanoyl-at a concentration of 10 muM, and the activity of phospholipases A2 (PLA2), C (PLC), and D (PLD) was measured (1, 0.5, and 1 h, respectively). Quantitative structure-activity relationship (QSAR) models were utilized to predict the biological activity of LOPs in airway epithelial cells. The QSAR results showed a strong correlation between experimental and computed activity (r = 0.97, 0.98, 0.99, for PLA2, PLC, and PLD, respectively). The results indicate that QSAR models can be utilized to predict the biological activity of the various ozone-derived LOP species in the lung. Copyright 2005 Wiley Periodicals, Inc.

  7. HIVprotI: an integrated web based platform for prediction and design of HIV proteins inhibitors.

    PubMed

    Qureshi, Abid; Rajput, Akanksha; Kaur, Gazaldeep; Kumar, Manoj

    2018-03-09

    A number of anti-retroviral drugs are being used for treating Human Immunodeficiency Virus (HIV) infection. Due to emergence of drug resistant strains, there is a constant quest to discover more effective anti-HIV compounds. In this endeavor, computational tools have proven useful in accelerating drug discovery. Although methods were published to design a class of compounds against a specific HIV protein, but an integrated web server for the same is lacking. Therefore, we have developed support vector machine based regression models using experimentally validated data from ChEMBL repository. Quantitative structure activity relationship based features were selected for predicting inhibition activity of a compound against HIV proteins namely protease (PR), reverse transcriptase (RT) and integrase (IN). The models presented a maximum Pearson correlation coefficient of 0.78, 0.76, 0.74 and 0.76, 0.68, 0.72 during tenfold cross-validation on IC 50 and percent inhibition datasets of PR, RT, IN respectively. These models performed equally well on the independent datasets. Chemical space mapping, applicability domain analyses and other statistical tests further support robustness of the predictive models. Currently, we have identified a number of chemical descriptors that are imperative in predicting the compound inhibition potential. HIVprotI platform ( http://bioinfo.imtech.res.in/manojk/hivproti ) would be useful in virtual screening of inhibitors as well as designing of new molecules against the important HIV proteins for therapeutics development.

  8. The salt marsh vegetation spread dynamics simulation and prediction based on conditions optimized CA

    NASA Astrophysics Data System (ADS)

    Guan, Yujuan; Zhang, Liquan

    2006-10-01

    The biodiversity conservation and management of the salt marsh vegetation relies on processing their spatial information. Nowadays, more attentions are focused on their classification surveying and describing qualitatively dynamics based on RS images interpreted, rather than on simulating and predicting their dynamics quantitatively, which is of greater importance for managing and planning the salt marsh vegetation. In this paper, our notion is to make a dynamic model on large-scale and to provide a virtual laboratory in which researchers can run it according requirements. Firstly, the characteristic of the cellular automata was analyzed and a conclusion indicated that it was necessary for a CA model to be extended geographically under varying conditions of space-time circumstance in order to make results matched the facts accurately. Based on the conventional cellular automata model, the author introduced several new conditions to optimize it for simulating the vegetation objectively, such as elevation, growth speed, invading ability, variation and inheriting and so on. Hence the CA cells and remote sensing image pixels, cell neighbors and pixel neighbors, cell rules and nature of the plants were unified respectively. Taking JiuDuanSha as the test site, where holds mainly Phragmites australis (P.australis) community, Scirpus mariqueter (S.mariqueter) community and Spartina alterniflora (S.alterniflora) community. The paper explored the process of making simulation and predictions about these salt marsh vegetable changing with the conditions optimized CA (COCA) model, and examined the links among data, statistical models, and ecological predictions. This study exploited the potential of applying Conditioned Optimized CA model technique to solve this problem.

  9. Quantitative magnetic resonance imaging in traumatic brain injury.

    PubMed

    Bigler, E D

    2001-04-01

    Quantitative neuroimaging has now become a well-established method for analyzing magnetic resonance imaging in traumatic brain injury (TBI). A general review of studies that have examined quantitative changes following TBI is presented. The consensus of quantitative neuroimaging studies is that most brain structures demonstrate changes in volume or surface area after injury. The patterns of atrophy are consistent with the generalized nature of brain injury and diffuse axonal injury. Various clinical caveats are provided including how quantitative neuroimaging findings can be used clinically and in predicting rehabilitation outcome. The future of quantitative neuroimaging also is discussed.

  10. Quantitative accuracy of the simplified strong ion equation to predict serum pH in dogs.

    PubMed

    Cave, N J; Koo, S T

    2015-01-01

    Electrochemical approach to the assessment of acid-base states should provide a better mechanistic explanation of the metabolic component than methods that consider only pH and carbon dioxide. Simplified strong ion equation (SSIE), using published dog-specific values, would predict the measured serum pH of diseased dogs. Ten dogs, hospitalized for various reasons. Prospective study of a convenience sample of a consecutive series of dogs admitted to the Massey University Veterinary Teaching Hospital (MUVTH), from which serum biochemistry and blood gas analyses were performed at the same time. Serum pH was calculated (Hcal+) using the SSIE, and published values for the concentration and dissociation constant for the nonvolatile weak acids (Atot and Ka ), and subsequently Hcal+ was compared with the dog's actual pH (Hmeasured+). To determine the source of discordance between Hcal+ and Hmeasured+, the calculations were repeated using a series of substituted values for Atot and Ka . The Hcal+ did not approximate the Hmeasured+ for any dog (P = 0.499, r(2) = 0.068), and was consistently more basic. Substituted values Atot and Ka did not significantly improve the accuracy (r(2) = 0.169 to <0.001). Substituting the effective SID (Atot-[HCO3-]) produced a strong association between Hcal+ and Hmeasured+ (r(2) = 0.977). Using the simplified strong ion equation and the published values for Atot and Ka does not appear to provide a quantitative explanation for the acid-base status of dogs. Efficacy of substituting the effective SID in the simplified strong ion equation suggests the error lies in calculating the SID. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  11. A new rapid quantitative test for fecal calprotectin predicts endoscopic activity in ulcerative colitis.

    PubMed

    Lobatón, Triana; Rodríguez-Moranta, Francisco; Lopez, Alicia; Sánchez, Elena; Rodríguez-Alonso, Lorena; Guardiola, Jordi

    2013-04-01

    Fecal calprotectin (FC) determined by the enzyme-linked immunosorbent assay (ELISA) test has been proposed as a promising biomarker of endoscopic activity in ulcerative colitis (UC). However, data on its accuracy in predicting endoscopic activity is scarce. Besides, FC determined by the quantitative-point-of-care test (FC-QPOCT) that provides rapid and individual results could optimize its use in clinical practice. The aims of our study were to evaluate the ability of FC to predict endoscopic activity according to the Mayo score in patients with UC when determined by FC-QPOCT and to compare it with the ELISA test (FC-ELISA). FC was determined simultaneously by FC-ELISA and FC-QPOCT in patients with UC undergoing colonoscopy. Clinical disease activity and endoscopy were assessed according to the Mayo score. Blood tests were taken to analyze serological biomarkers. A total of 146 colonoscopies were performed on 123 patients with UC. FC-QPOCT correlated more closely with the Mayo endoscopic subscore (Spearman's correlation coefficient rank r = 0.727, P < 0.001) than clinical activity (r = 0.636, P < 0.001), platelets (r = 0.381, P < 0.001), leucocytes (r = 0.300, P < 0.001), and C-reactive protein (r = 0.291, P = 0.002). The prediction of "endoscopic remission" (Mayo endoscopic subscore ≤1) with FC-QPOCT (280 µg/g) and FC-ELISA (250 µg/g) presented an area under the curve of 0.906 and 0.924, respectively. The interclass correlation index between both tests was 0.904 (95% confidence interval, 0.864-0.932; P < 0.001). FC determined by QPOCT was an accurate surrogate marker of "endoscopic remission" in UC and presented a good correlation with the FC-ELISA test.

  12. Quantitative and qualitative 5-aminolevulinic acid–induced protoporphyrin IX fluorescence in skull base meningiomas

    PubMed Central

    Bekelis, Kimon; Valdés, Pablo A.; Erkmen, Kadir; Leblond, Frederic; Kim, Anthony; Wilson, Brian C.; Harris, Brent T.; Paulsen, Keith D.; Roberts, David W.

    2011-01-01

    Object Complete resection of skull base meningiomas provides patients with the best chance for a cure; however, surgery is frequently difficult given the proximity of lesions to vital structures, such as cranial nerves, major vessels, and venous sinuses. Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative assessment of protoporphyrin IX (PpIX) fluorescence following the exogenous administration of 5-aminolevulinic acid (ALA) has demonstrated utility in malignant glioma resection but limited use in meningiomas. Here the authors demonstrate the use of ALA-induced PpIX fluorescence guidance in resecting a skull base meningioma and elaborate on the advantages and disadvantages provided by both quantitative and qualitative fluorescence methodologies in skull base meningioma resection. Methods A 52-year-old patient with a sphenoid wing WHO Grade I meningioma underwent tumor resection as part of an institutional review board–approved prospective study of fluorescence-guided resection. A surgical microscope modified for fluorescence imaging was used for the qualitative assessment of visible fluorescence, and an intraoperative probe for in situ fluorescence detection was utilized for quantitative measurements of PpIX. The authors assessed the detection capabilities of both the qualitative and quantitative fluorescence approaches. Results The patient harboring a sphenoid wing meningioma with intraorbital extension underwent radical resection of the tumor with both visibly and nonvisibly fluorescent regions. The patient underwent a complete resection without any complications. Some areas of the tumor demonstrated visible fluorescence. The quantitative probe detected neoplastic tissue better than the qualitative modified surgical microscope. The intraoperative probe was particularly useful in areas that did not reveal visible fluorescence, and tissue from these areas was confirmed as tumor following histopathological

  13. Predicting Ideological Prejudice

    PubMed Central

    Brandt, Mark J.

    2017-01-01

    A major shortcoming of current models of ideological prejudice is that although they can anticipate the direction of the association between participants’ ideology and their prejudice against a range of target groups, they cannot predict the size of this association. I developed and tested models that can make specific size predictions for this association. A quantitative model that used the perceived ideology of the target group as the primary predictor of the ideology-prejudice relationship was developed with a representative sample of Americans (N = 4,940) and tested against models using the perceived status of and choice to belong to the target group as predictors. In four studies (total N = 2,093), ideology-prejudice associations were estimated, and these observed estimates were compared with the models’ predictions. The model that was based only on perceived ideology was the most parsimonious with the smallest errors. PMID:28394693

  14. PCA-based groupwise image registration for quantitative MRI.

    PubMed

    Huizinga, W; Poot, D H J; Guyader, J-M; Klaassen, R; Coolen, B F; van Kranenburg, M; van Geuns, R J M; Uitterdijk, A; Polfliet, M; Vandemeulebroucke, J; Leemans, A; Niessen, W J; Klein, S

    2016-04-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to the image intensities. Image registration is often necessary to compensate for misalignments due to subject motion and/or geometric distortions caused by the acquisition. However, large differences in image appearance make accurate image registration challenging. In this work, we propose a groupwise image registration method for compensating misalignment in qMRI. The groupwise formulation of the method eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowledge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1 and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain, and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acquisition model. The method is compared to a mutual information-based pairwise registration method and four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of the precision of the estimated qMRI parameters, overlap of segmented structures, distance between corresponding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method performed better than or equally well as

  15. Alignment-Based Prediction of Sites of Metabolism.

    PubMed

    de Bruyn Kops, Christina; Friedrich, Nils-Ole; Kirchmair, Johannes

    2017-06-26

    Prediction of metabolically labile atom positions in a molecule (sites of metabolism) is a key component of the simulation of xenobiotic metabolism as a whole, providing crucial information for the development of safe and effective drugs. In 2008, an exploratory study was published in which sites of metabolism were derived based on molecular shape- and chemical feature-based alignment to a molecule whose site of metabolism (SoM) had been determined by experiments. We present a detailed analysis of the breadth of applicability of alignment-based SoM prediction, including transfer of the approach from a structure- to ligand-based method and extension of the applicability of the models from cytochrome P450 2C9 to all cytochrome P450 isozymes involved in drug metabolism. We evaluate the effect of molecular similarity of the query and reference molecules on the ability of this approach to accurately predict SoMs. In addition, we combine the alignment-based method with a leading chemical reactivity model to take reactivity into account. The combined model yielded superior performance in comparison to the alignment-based approach and the reactivity models with an average area under the receiver operating characteristic curve of 0.85 in cross-validation experiments. In particular, early enrichment was improved, as evidenced by higher BEDROC scores (mean BEDROC = 0.59 for α = 20.0, mean BEDROC = 0.73 for α = 80.5).

  16. A statistical framework for protein quantitation in bottom-up MS-based proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpievitch, Yuliya; Stanley, Jeffrey R.; Taverner, Thomas

    2009-08-15

    ABSTRACT Motivation: Quantitative mass spectrometry-based proteomics requires protein-level estimates and confidence measures. Challenges include the presence of low-quality or incorrectly identified peptides and widespread, informative, missing data. Furthermore, models are required for rolling peptide-level information up to the protein level. Results: We present a statistical model for protein abundance in terms of peptide peak intensities, applicable to both label-based and label-free quantitation experiments. The model allows for both random and censoring missingness mechanisms and provides naturally for protein-level estimates and confidence measures. The model is also used to derive automated filtering and imputation routines. Three LC-MS datasets are used tomore » illustrate the methods. Availability: The software has been made available in the open-source proteomics platform DAnTE (Polpitiya et al. (2008)) (http://omics.pnl.gov/software/). Contact: adabney@stat.tamu.edu« less

  17. Using PSEA-Quant for Protein Set Enrichment Analysis of Quantitative Mass Spectrometry-Based Proteomics.

    PubMed

    Lavallée-Adam, Mathieu; Yates, John R

    2016-03-24

    PSEA-Quant analyzes quantitative mass spectrometry-based proteomics datasets to identify enrichments of annotations contained in repositories such as the Gene Ontology and Molecular Signature databases. It allows users to identify the annotations that are significantly enriched for reproducibly quantified high abundance proteins. PSEA-Quant is available on the Web and as a command-line tool. It is compatible with all label-free and isotopic labeling-based quantitative proteomics methods. This protocol describes how to use PSEA-Quant and interpret its output. The importance of each parameter as well as troubleshooting approaches are also discussed. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  18. Quantitative methods to direct exploration based on hydrogeologic information

    USGS Publications Warehouse

    Graettinger, A.J.; Lee, J.; Reeves, H.W.; Dethan, D.

    2006-01-01

    Quantitatively Directed Exploration (QDE) approaches based on information such as model sensitivity, input data covariance and model output covariance are presented. Seven approaches for directing exploration are developed, applied, and evaluated on a synthetic hydrogeologic site. The QDE approaches evaluate input information uncertainty, subsurface model sensitivity and, most importantly, output covariance to identify the next location to sample. Spatial input parameter values and covariances are calculated with the multivariate conditional probability calculation from a limited number of samples. A variogram structure is used during data extrapolation to describe the spatial continuity, or correlation, of subsurface information. Model sensitivity can be determined by perturbing input data and evaluating output response or, as in this work, sensitivities can be programmed directly into an analysis model. Output covariance is calculated by the First-Order Second Moment (FOSM) method, which combines the covariance of input information with model sensitivity. A groundwater flow example, modeled in MODFLOW-2000, is chosen to demonstrate the seven QDE approaches. MODFLOW-2000 is used to obtain the piezometric head and the model sensitivity simultaneously. The seven QDE approaches are evaluated based on the accuracy of the modeled piezometric head after information from a QDE sample is added. For the synthetic site used in this study, the QDE approach that identifies the location of hydraulic conductivity that contributes the most to the overall piezometric head variance proved to be the best method to quantitatively direct exploration. ?? IWA Publishing 2006.

  19. Ultra-fast quantitative imaging using ptychographic iterative engine based digital micro-mirror device

    NASA Astrophysics Data System (ADS)

    Sun, Aihui; Tian, Xiaolin; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-01-01

    As a lensfree imaging technique, ptychographic iterative engine (PIE) method can provide both quantitative sample amplitude and phase distributions avoiding aberration. However, it requires field of view (FoV) scanning often relying on mechanical translation, which not only slows down measuring speed, but also introduces mechanical errors decreasing both resolution and accuracy in retrieved information. In order to achieve high-accurate quantitative imaging with fast speed, digital micromirror device (DMD) is adopted in PIE for large FoV scanning controlled by on/off state coding by DMD. Measurements were implemented using biological samples as well as USAF resolution target, proving high resolution in quantitative imaging using the proposed system. Considering its fast and accurate imaging capability, it is believed the DMD based PIE technique provides a potential solution for medical observation and measurements.

  20. A New Material Mapping Procedure for Quantitative Computed Tomography-Based, Continuum Finite Element Analyses of the Vertebra

    PubMed Central

    Unnikrishnan, Ginu U.; Morgan, Elise F.

    2011-01-01

    Inaccuracies in the estimation of material properties and errors in the assignment of these properties into finite element models limit the reliability, accuracy, and precision of quantitative computed tomography (QCT)-based finite element analyses of the vertebra. In this work, a new mesh-independent, material mapping procedure was developed to improve the quality of predictions of vertebral mechanical behavior from QCT-based finite element models. In this procedure, an intermediate step, called the material block model, was introduced to determine the distribution of material properties based on bone mineral density, and these properties were then mapped onto the finite element mesh. A sensitivity study was first conducted on a calibration phantom to understand the influence of the size of the material blocks on the computed bone mineral density. It was observed that varying the material block size produced only marginal changes in the predictions of mineral density. Finite element (FE) analyses were then conducted on a square column-shaped region of the vertebra and also on the entire vertebra in order to study the effect of material block size on the FE-derived outcomes. The predicted values of stiffness for the column and the vertebra decreased with decreasing block size. When these results were compared to those of a mesh convergence analysis, it was found that the influence of element size on vertebral stiffness was less than that of the material block size. This mapping procedure allows the material properties in a finite element study to be determined based on the block size required for an accurate representation of the material field, while the size of the finite elements can be selected independently and based on the required numerical accuracy of the finite element solution. The mesh-independent, material mapping procedure developed in this study could be particularly helpful in improving the accuracy of finite element analyses of

  1. Severe rainfall prediction systems for civil protection purposes

    NASA Astrophysics Data System (ADS)

    Comellas, A.; Llasat, M. C.; Molini, L.; Parodi, A.; Siccardi, F.

    2010-09-01

    One of the most common natural hazards impending on Mediterranean regions is the occurrence of severe weather structures able to produce heavy rainfall. Floods have killed about 1000 people across all Europe in last 10 years. With the aim of mitigating this kind of risk, quantitative precipitation forecasts (QPF) and rain probability forecasts are two tools nowadays available for national meteorological services and institutions responsible for weather forecasting in order to and predict rainfall, by using either the deterministic or the probabilistic approach. This study provides an insight of the different approaches used by Italian (DPC) and Catalonian (SMC) Civil Protection and the results they achieved with their peculiar issuing-system for early warnings. For the former, the analysis considers the period between 2006-2009 in which the predictive ability of the forecasting system, based on the numerical weather prediction model COSMO-I7, has been put into comparison with ground based observations (composed by more than 2000 raingauge stations, Molini et al., 2009). Italian system is mainly focused on regional-scale warnings providing forecasts for periods never shorter than 18 hours and very often have a 36-hour maximum duration . The information contained in severe weather bulletins is not quantitative and usually is referred to a specific meteorological phenomena (thunderstorms, wind gales et c.). Updates and refining have a usual refresh time of 24 hours. SMC operates within the Catalonian boundaries and uses a warning system that mixes both quantitative and probabilistic information. For each administrative region ("comarca") Catalonia is divided into, forecasters give an approximate value of the average predicted rainfall and the probability of overcoming that threshold. Usually warnings are re-issued every 6 hours and their duration depends on the predicted time extent of the storm. In order to provide a comprehensive QPF verification, the rainfall

  2. Chemical structure-based predictive model for the oxidation of trace organic contaminants by sulfate radical.

    PubMed

    Ye, Tiantian; Wei, Zongsu; Spinney, Richard; Tang, Chong-Jian; Luo, Shuang; Xiao, Ruiyang; Dionysiou, Dionysios D

    2017-06-01

    Second-order rate constants [Formula: see text] for the reaction of sulfate radical anion (SO 4 •- ) with trace organic contaminants (TrOCs) are of scientific and practical importance for assessing their environmental fate and removal efficiency in water treatment systems. Here, we developed a chemical structure-based model for predicting [Formula: see text] using 32 molecular fragment descriptors, as this type of model provides a quick estimate at low computational cost. The model was constructed using the multiple linear regression (MLR) and artificial neural network (ANN) methods. The MLR method yielded adequate fit for the training set (R training 2 =0.88,n=75) and reasonable predictability for the validation set (R validation 2 =0.62,n=38). In contrast, the ANN method produced a more statistical robustness but rather poor predictability (R training 2 =0.99andR validation 2 =0.42). The reaction mechanisms of SO 4 •- reactivity with TrOCs were elucidated. Our result shows that the coefficients of functional groups reflect their electron donating/withdrawing characters. For example, electron donating groups typically exhibit positive coefficients, indicating enhanced SO 4 •- reactivity. Electron withdrawing groups exhibit negative values, indicating reduced reactivity. With its quick and accurate features, we applied this structure-based model to 55 discrete TrOCs culled from the Contaminant Candidate List 4, and quantitatively compared their removal efficiency with SO 4 •- and OH in the presence of environmental matrices. This high-throughput model helps prioritize TrOCs that are persistent to SO 4 •- based oxidation technologies at the screening level, and provide diagnostics of SO 4 •- reaction mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Multivariate linear regression analysis to identify general factors for quantitative predictions of implant stability quotient values

    PubMed Central

    Huang, Hairong; Xu, Zanzan; Shao, Xianhong; Wismeijer, Daniel; Sun, Ping; Wang, Jingxiao

    2017-01-01

    Objectives This study identified potential general influencing factors for a mathematical prediction of implant stability quotient (ISQ) values in clinical practice. Methods We collected the ISQ values of 557 implants from 2 different brands (SICace and Osstem) placed by 2 surgeons in 336 patients. Surgeon 1 placed 329 SICace implants, and surgeon 2 placed 113 SICace implants and 115 Osstem implants. ISQ measurements were taken at T1 (immediately after implant placement) and T2 (before dental restoration). A multivariate linear regression model was used to analyze the influence of the following 11 candidate factors for stability prediction: sex, age, maxillary/mandibular location, bone type, immediate/delayed implantation, bone grafting, insertion torque, I-stage or II-stage healing pattern, implant diameter, implant length and T1-T2 time interval. Results The need for bone grafting as a predictor significantly influenced ISQ values in all three groups at T1 (weight coefficients ranging from -4 to -5). In contrast, implant diameter consistently influenced the ISQ values in all three groups at T2 (weight coefficients ranging from 3.4 to 4.2). Other factors, such as sex, age, I/II-stage implantation and bone type, did not significantly influence ISQ values at T2, and implant length did not significantly influence ISQ values at T1 or T2. Conclusions These findings provide a rational basis for mathematical models to quantitatively predict the ISQ values of implants in clinical practice. PMID:29084260

  4. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.

    PubMed

    Mohsin, Mohd; Ahmad, Altaf; Iqbal, Muhammad

    2015-10-01

    Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.

  5. Smartphone based visual and quantitative assays on upconversional paper sensor.

    PubMed

    Mei, Qingsong; Jing, Huarong; Li, You; Yisibashaer, Wuerzha; Chen, Jian; Nan Li, Bing; Zhang, Yong

    2016-01-15

    The integration of smartphone with paper sensors recently has been gain increasing attentions because of the achievement of quantitative and rapid analysis. However, smartphone based upconversional paper sensors have been restricted by the lack of effective methods to acquire luminescence signals on test paper. Herein, by the virtue of 3D printing technology, we exploited an auxiliary reusable device, which orderly assembled a 980nm mini-laser, optical filter and mini-cavity together, for digitally imaging the luminescence variations on test paper and quantitative analyzing pesticide thiram by smartphone. In detail, copper ions decorated NaYF4:Yb/Tm upconversion nanoparticles were fixed onto filter paper to form test paper, and the blue luminescence on it would be quenched after additions of thiram through luminescence resonance energy transfer mechanism. These variations could be monitored by the smartphone camera, and then the blue channel intensities of obtained colored images were calculated to quantify amounts of thiram through a self-written Android program installed on the smartphone, offering a reliable and accurate detection limit of 0.1μM for the system. This work provides an initial demonstration of integrating upconversion nanosensors with smartphone digital imaging for point-of-care analysis on a paper-based platform. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Entropy-based link prediction in weighted networks

    NASA Astrophysics Data System (ADS)

    Xu, Zhongqi; Pu, Cunlai; Ramiz Sharafat, Rajput; Li, Lunbo; Yang, Jian

    2017-01-01

    Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks. In the previous work (Xu et al, 2016 \\cite{xu2016}), we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight, and propose a weighted prediction index based on the contributions of paths, namely Weighted Path Entropy (WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three typical weighted indices.

  7. Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization.

    PubMed

    Wen, Ping-Ping; Shi, Shao-Ping; Xu, Hao-Dong; Wang, Li-Na; Qiu, Jian-Ding

    2016-10-15

    As one of the most important reversible types of post-translational modification, protein methylation catalyzed by methyltransferases carries many pivotal biological functions as well as many essential biological processes. Identification of methylation sites is prerequisite for decoding methylation regulatory networks in living cells and understanding their physiological roles. Experimental methods are limitations of labor-intensive and time-consuming. While in silicon approaches are cost-effective and high-throughput manner to predict potential methylation sites, but those previous predictors only have a mixed model and their prediction performances are not fully satisfactory now. Recently, with increasing availability of quantitative methylation datasets in diverse species (especially in eukaryotes), there is a growing need to develop a species-specific predictor. Here, we designed a tool named PSSMe based on information gain (IG) feature optimization method for species-specific methylation site prediction. The IG method was adopted to analyze the importance and contribution of each feature, then select the valuable dimension feature vectors to reconstitute a new orderly feature, which was applied to build the finally prediction model. Finally, our method improves prediction performance of accuracy about 15% comparing with single features. Furthermore, our species-specific model significantly improves the predictive performance compare with other general methylation prediction tools. Hence, our prediction results serve as useful resources to elucidate the mechanism of arginine or lysine methylation and facilitate hypothesis-driven experimental design and validation. The tool online service is implemented by C# language and freely available at http://bioinfo.ncu.edu.cn/PSSMe.aspx CONTACT: jdqiu@ncu.edu.cnSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights

  8. Databases applicable to quantitative hazard/risk assessment-Towards a predictive systems toxicology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, Michael; Jackson, Marcus

    2008-11-15

    The Workshop on The Power of Aggregated Toxicity Data addressed the requirement for distributed databases to support quantitative hazard and risk assessment. The authors have conceived and constructed with federal support several databases that have been used in hazard identification and risk assessment. The first of these databases, the EPA Gene-Tox Database was developed for the EPA Office of Toxic Substances by the Oak Ridge National Laboratory, and is currently hosted by the National Library of Medicine. This public resource is based on the collaborative evaluation, by government, academia, and industry, of short-term tests for the detection of mutagens andmore » presumptive carcinogens. The two-phased evaluation process resulted in more than 50 peer-reviewed publications on test system performance and a qualitative database on thousands of chemicals. Subsequently, the graphic and quantitative EPA/IARC Genetic Activity Profile (GAP) Database was developed in collaboration with the International Agency for Research on Cancer (IARC). A chemical database driven by consideration of the lowest effective dose, GAP has served IARC for many years in support of hazard classification of potential human carcinogens. The Toxicological Activity Profile (TAP) prototype database was patterned after GAP and utilized acute, subchronic, and chronic data from the Office of Air Quality Planning and Standards. TAP demonstrated the flexibility of the GAP format for air toxics, water pollutants and other environmental agents. The GAP format was also applied to developmental toxicants and was modified to represent quantitative results from the rodent carcinogen bioassay. More recently, the authors have constructed: 1) the NIEHS Genetic Alterations in Cancer (GAC) Database which quantifies specific mutations found in cancers induced by environmental agents, and 2) the NIEHS Chemical Effects in Biological Systems (CEBS) Knowledgebase that integrates genomic and other biological data

  9. Sequence-based predictive modeling to identify cancerlectins

    PubMed Central

    Lai, Hong-Yan; Chen, Xin-Xin; Chen, Wei; Tang, Hua; Lin, Hao

    2017-01-01

    Lectins are a diverse type of glycoproteins or carbohydrate-binding proteins that have a wide distribution to various species. They can specially identify and exclusively bind to a certain kind of saccharide groups. Cancerlectins are a group of lectins that are closely related to cancer and play a major role in the initiation, survival, growth, metastasis and spread of tumor. Several computational methods have emerged to discriminate cancerlectins from non-cancerlectins, which promote the study on pathogenic mechanisms and clinical treatment of cancer. However, the predictive accuracies of most of these techniques are very limited. In this work, by constructing a benchmark dataset based on the CancerLectinDB database, a new amino acid sequence-based strategy for feature description was developed, and then the binomial distribution was applied to screen the optimal feature set. Ultimately, an SVM-based predictor was performed to distinguish cancerlectins from non-cancerlectins, and achieved an accuracy of 77.48% with AUC of 85.52% in jackknife cross-validation. The results revealed that our prediction model could perform better comparing with published predictive tools. PMID:28423655

  10. Evaluation of empirical rule of linearly correlated peptide selection (ERLPS) for proteotypic peptide-based quantitative proteomics.

    PubMed

    Liu, Kehui; Zhang, Jiyang; Fu, Bin; Xie, Hongwei; Wang, Yingchun; Qian, Xiaohong

    2014-07-01

    Precise protein quantification is essential in comparative proteomics. Currently, quantification bias is inevitable when using proteotypic peptide-based quantitative proteomics strategy for the differences in peptides measurability. To improve quantification accuracy, we proposed an "empirical rule for linearly correlated peptide selection (ERLPS)" in quantitative proteomics in our previous work. However, a systematic evaluation on general application of ERLPS in quantitative proteomics under diverse experimental conditions needs to be conducted. In this study, the practice workflow of ERLPS was explicitly illustrated; different experimental variables, such as, different MS systems, sample complexities, sample preparations, elution gradients, matrix effects, loading amounts, and other factors were comprehensively investigated to evaluate the applicability, reproducibility, and transferability of ERPLS. The results demonstrated that ERLPS was highly reproducible and transferable within appropriate loading amounts and linearly correlated response peptides should be selected for each specific experiment. ERLPS was used to proteome samples from yeast to mouse and human, and in quantitative methods from label-free to O18/O16-labeled and SILAC analysis, and enabled accurate measurements for all proteotypic peptide-based quantitative proteomics over a large dynamic range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quantitative variability of renewable energy resources in Norway

    NASA Astrophysics Data System (ADS)

    Christakos, Konstantinos; Varlas, George; Cheliotis, Ioannis; Aalstad, Kristoffer; Papadopoulos, Anastasios; Katsafados, Petros; Steeneveld, Gert-Jan

    2017-04-01

    Based on European Union (EU) targets for 2030, the share of renewable energy (RE) consumption should be increased at 27%. RE resources such as hydropower, wind, wave power and solar power are strongly depending on the chaotic behavior of the weather conditions and climate. Due to this dependency, the prediction of the spatiotemporal variability of the RE resources is more crucial factor than in other energy resources (i.e. carbon based energy). The fluctuation of the RE resources can affect the development of the RE technologies, the energy grid, supply and prices. This study investigates the variability of the potential RE resources in Norway. More specifically, hydropower, wind, wave, and solar power are quantitatively analyzed and correlated with respect to various spatial and temporal scales. In order to analyze the diversities and their interrelationships, reanalysis and observational data of wind, precipitation, wave, and solar radiation are used for a quantitative assessment. The results indicate a high variability of marine RE resources in the North Sea and the Norwegian Sea.

  12. Quantitative structure-property relationship (correlation analysis) of phosphonic acid-based chelates in design of MRI contrast agent.

    PubMed

    Tiwari, Anjani K; Ojha, Himanshu; Kaul, Ankur; Dutta, Anupama; Srivastava, Pooja; Shukla, Gauri; Srivastava, Rakesh; Mishra, Anil K

    2009-07-01

    Nuclear magnetic resonance imaging is a very useful tool in modern medical diagnostics, especially when gadolinium (III)-based contrast agents are administered to the patient with the aim of increasing the image contrast between normal and diseased tissues. With the use of soft modelling techniques such as quantitative structure-activity relationship/quantitative structure-property relationship after a suitable description of their molecular structure, we have studied a series of phosphonic acid for designing new MRI contrast agent. Quantitative structure-property relationship studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors of the phosphonic acid-based chelating agent and their stability constants. The final quantitative structure-property relationship mathematical models were found as--quantitative structure-property relationship Model for phosphonic acid series (Model 1)--log K(ML) = {5.00243(+/-0.7102)}- MR {0.0263(+/-0.540)}n = 12 l r l = 0.942 s = 0.183 F = 99.165 quantitative structure-property relationship Model for phosphonic acid series (Model 2)--log K(ML) = {5.06280(+/-0.3418)}- MR {0.0252(+/- .198)}n = 12 l r l = 0.956 s = 0.186 F = 99.256.

  13. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients.

    PubMed

    Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat

    2015-01-01

    Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.

  14. Portable paper-based device for quantitative colorimetric assays relying on light reflectance principle.

    PubMed

    Li, Bowei; Fu, Longwen; Zhang, Wei; Feng, Weiwei; Chen, Lingxin

    2014-04-01

    This paper presents a novel paper-based analytical device based on the colorimetric paper assays through its light reflectance. The device is portable, low cost (<20 dollars), and lightweight (only 176 g) that is available to assess the cost-effectiveness and appropriateness of the original health care or on-site detection information. Based on the light reflectance principle, the signal can be obtained directly, stably and user-friendly in our device. We demonstrated the utility and broad applicability of this technique with measurements of different biological and pollution target samples (BSA, glucose, Fe, and nitrite). Moreover, the real samples of Fe (II) and nitrite in the local tap water were successfully analyzed, and compared with the standard UV absorption method, the quantitative results showed good performance, reproducibility, and reliability. This device could provide quantitative information very conveniently and show great potential to broad fields of resource-limited analysis, medical diagnostics, and on-site environmental detection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Evaluation of chemotherapy response in ovarian cancer treatment using quantitative CT image biomarkers: a preliminary study

    NASA Astrophysics Data System (ADS)

    Qiu, Yuchen; Tan, Maxine; McMeekin, Scott; Thai, Theresa; Moore, Kathleen; Ding, Kai; Liu, Hong; Zheng, Bin

    2015-03-01

    The purpose of this study is to identify and apply quantitative image biomarkers for early prediction of the tumor response to the chemotherapy among the ovarian cancer patients participated in the clinical trials of testing new drugs. In the experiment, we retrospectively selected 30 cases from the patients who participated in Phase I clinical trials of new drug or drug agents for ovarian cancer treatment. Each case is composed of two sets of CT images acquired pre- and post-treatment (4-6 weeks after starting treatment). A computer-aided detection (CAD) scheme was developed to extract and analyze the quantitative image features of the metastatic tumors previously tracked by the radiologists using the standard Response Evaluation Criteria in Solid Tumors (RECIST) guideline. The CAD scheme first segmented 3-D tumor volumes from the background using a hybrid tumor segmentation scheme. Then, for each segmented tumor, CAD computed three quantitative image features including the change of tumor volume, tumor CT number (density) and density variance. The feature changes were calculated between the matched tumors tracked on the CT images acquired pre- and post-treatments. Finally, CAD predicted patient's 6-month progression-free survival (PFS) using a decision-tree based classifier. The performance of the CAD scheme was compared with the RECIST category. The result shows that the CAD scheme achieved a prediction accuracy of 76.7% (23/30 cases) with a Kappa coefficient of 0.493, which is significantly higher than the performance of RECIST prediction with a prediction accuracy and Kappa coefficient of 60% (17/30) and 0.062, respectively. This study demonstrated the feasibility of analyzing quantitative image features to improve the early predicting accuracy of the tumor response to the new testing drugs or therapeutic methods for the ovarian cancer patients.

  16. A component prediction method for flue gas of natural gas combustion based on nonlinear partial least squares method.

    PubMed

    Cao, Hui; Yan, Xingyu; Li, Yaojiang; Wang, Yanxia; Zhou, Yan; Yang, Sanchun

    2014-01-01

    Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.

  17. Using a Prediction Model to Manage Cyber Security Threats.

    PubMed

    Jaganathan, Venkatesh; Cherurveettil, Priyesh; Muthu Sivashanmugam, Premapriya

    2015-01-01

    Cyber-attacks are an important issue faced by all organizations. Securing information systems is critical. Organizations should be able to understand the ecosystem and predict attacks. Predicting attacks quantitatively should be part of risk management. The cost impact due to worms, viruses, or other malicious software is significant. This paper proposes a mathematical model to predict the impact of an attack based on significant factors that influence cyber security. This model also considers the environmental information required. It is generalized and can be customized to the needs of the individual organization.

  18. Using a Prediction Model to Manage Cyber Security Threats

    PubMed Central

    Muthu Sivashanmugam, Premapriya

    2015-01-01

    Cyber-attacks are an important issue faced by all organizations. Securing information systems is critical. Organizations should be able to understand the ecosystem and predict attacks. Predicting attacks quantitatively should be part of risk management. The cost impact due to worms, viruses, or other malicious software is significant. This paper proposes a mathematical model to predict the impact of an attack based on significant factors that influence cyber security. This model also considers the environmental information required. It is generalized and can be customized to the needs of the individual organization. PMID:26065024

  19. Meta-path based heterogeneous combat network link prediction

    NASA Astrophysics Data System (ADS)

    Li, Jichao; Ge, Bingfeng; Yang, Kewei; Chen, Yingwu; Tan, Yuejin

    2017-09-01

    The combat system-of-systems in high-tech informative warfare, composed of many interconnected combat systems of different types, can be regarded as a type of complex heterogeneous network. Link prediction for heterogeneous combat networks (HCNs) is of significant military value, as it facilitates reconfiguring combat networks to represent the complex real-world network topology as appropriate with observed information. This paper proposes a novel integrated methodology framework called HCNMP (HCN link prediction based on meta-path) to predict multiple types of links simultaneously for an HCN. More specifically, the concept of HCN meta-paths is introduced, through which the HCNMP can accumulate information by extracting different features of HCN links for all the six defined types. Next, an HCN link prediction model, based on meta-path features, is built to predict all types of links of the HCN simultaneously. Then, the solution algorithm for the HCN link prediction model is proposed, in which the prediction results are obtained by iteratively updating with the newly predicted results until the results in the HCN converge or reach a certain maximum iteration number. Finally, numerical experiments on the dataset of a real HCN are conducted to demonstrate the feasibility and effectiveness of the proposed HCNMP, in comparison with 30 baseline methods. The results show that the performance of the HCNMP is superior to those of the baseline methods.

  20. Relevance of genetic relationship in GWAS and genomic prediction.

    PubMed

    Pereira, Helcio Duarte; Soriano Viana, José Marcelo; Andrade, Andréa Carla Bastos; Fonseca E Silva, Fabyano; Paes, Geísa Pinheiro

    2018-02-01

    The objective of this study was to analyze the relevance of relationship information on the identification of low heritability quantitative trait loci (QTLs) from a genome-wide association study (GWAS) and on the genomic prediction of complex traits in human, animal and cross-pollinating populations. The simulation-based data sets included 50 samples of 1000 individuals of seven populations derived from a common population with linkage disequilibrium. The populations had non-inbred and inbred progeny structure (50 to 200) with varying number of members (5 to 20). The individuals were genotyped for 10,000 single nucleotide polymorphisms (SNPs) and phenotyped for a quantitative trait controlled by 10 QTLs and 90 minor genes showing dominance. The SNP density was 0.1 cM and the narrow sense heritability was 25%. The QTL heritabilities ranged from 1.1 to 2.9%. We applied mixed model approaches for both GWAS and genomic prediction using pedigree-based and genomic relationship matrices. For GWAS, the observed false discovery rate was kept below the significance level of 5%, the power of detection for the low heritability QTLs ranged from 14 to 50%, and the average bias between significant SNPs and a QTL ranged from less than 0.01 to 0.23 cM. The QTL detection power was consistently higher using genomic relationship matrix. Regardless of population and training set size, genomic prediction provided higher prediction accuracy of complex trait when compared to pedigree-based prediction. The accuracy of genomic prediction when there is relatedness between individuals in the training set and the reference population is much higher than the value for unrelated individuals.

  1. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform.

    PubMed

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-12-14

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.

  2. The value of assessing pulmonary venous flow velocity for predicting severity of mitral regurgitation: A quantitative assessment integrating left ventricular function

    NASA Technical Reports Server (NTRS)

    Pu, M.; Griffin, B. P.; Vandervoort, P. M.; Stewart, W. J.; Fan, X.; Cosgrove, D. M.; Thomas, J. D.

    1999-01-01

    Although alteration in pulmonary venous flow has been reported to relate to mitral regurgitant severity, it is also known to vary with left ventricular (LV) systolic and diastolic dysfunction. There are few data relating pulmonary venous flow to quantitative indexes of mitral regurgitation (MR). The object of this study was to assess quantitatively the accuracy of pulmonary venous flow for predicting MR severity by using transesophageal echocardiographic measurement in patients with variable LV dysfunction. This study consisted of 73 patients undergoing heart surgery with mild to severe MR. Regurgitant orifice area (ROA), regurgitant stroke volume (RSV), and regurgitant fraction (RF) were obtained by quantitative transesophageal echocardiography and proximal isovelocity surface area. Both left and right upper pulmonary venous flow velocities were recorded and their patterns classified by the ratio of systolic to diastolic velocity: normal (>/=1), blunted (<1), and systolic reversal (<0). Twenty-three percent of patients had discordant patterns between the left and right veins. When the most abnormal patterns either in the left or right vein were used for analysis, the ratio of peak systolic to diastolic flow velocity was negatively correlated with ROA (r = -0.74, P <.001), RSV (r = -0.70, P <.001), and RF (r = -0.66, P <.001) calculated by the Doppler thermodilution method; values were r = -0.70, r = -0.67, and r = -0.57, respectively (all P <.001), for indexes calculated by the proximal isovelocity surface area method. The sensitivity, specificity, and predictive values of the reversed pulmonary venous flow pattern for detecting a large ROA (>0.3 cm(2)) were 69%, 98%, and 97%, respectively. The sensitivity, specificity, and predictive values of the normal pulmonary venous flow pattern for detecting a small ROA (<0.3 cm(2)) were 60%, 96%, and 94%, respectively. However, the blunted pattern had low sensitivity (22%), specificity (61%), and predictive values (30

  3. Assessing genomic selection prediction accuracy in a dynamic barley breeding

    USDA-ARS?s Scientific Manuscript database

    Genomic selection is a method to improve quantitative traits in crops and livestock by estimating breeding values of selection candidates using phenotype and genome-wide marker data sets. Prediction accuracy has been evaluated through simulation and cross-validation, however validation based on prog...

  4. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs

    PubMed Central

    2017-01-01

    Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package. PMID:29107980

  5. Evaluation of New Zealand’s High-Seas Bottom Trawl Closures Using Predictive Habitat Models and Quantitative Risk Assessment

    PubMed Central

    Penney, Andrew J.; Guinotte, John M.

    2013-01-01

    United Nations General Assembly Resolution 61/105 on sustainable fisheries (UNGA 2007) establishes three difficult questions for participants in high-seas bottom fisheries to answer: 1) Where are vulnerable marine systems (VMEs) likely to occur?; 2) What is the likelihood of fisheries interaction with these VMEs?; and 3) What might qualify as adequate conservation and management measures to prevent significant adverse impacts? This paper develops an approach to answering these questions for bottom trawling activities in the Convention Area of the South Pacific Regional Fisheries Management Organisation (SPRFMO) within a quantitative risk assessment and cost : benefit analysis framework. The predicted distribution of deep-sea corals from habitat suitability models is used to answer the first question. Distribution of historical bottom trawl effort is used to answer the second, with estimates of seabed areas swept by bottom trawlers being used to develop discounting factors for reduced biodiversity in previously fished areas. These are used in a quantitative ecological risk assessment approach to guide spatial protection planning to address the third question. The coral VME likelihood (average, discounted, predicted coral habitat suitability) of existing spatial closures implemented by New Zealand within the SPRFMO area is evaluated. Historical catch is used as a measure of cost to industry in a cost : benefit analysis of alternative spatial closure scenarios. Results indicate that current closures within the New Zealand SPRFMO area bottom trawl footprint are suboptimal for protection of VMEs. Examples of alternative trawl closure scenarios are provided to illustrate how the approach could be used to optimise protection of VMEs under chosen management objectives, balancing protection of VMEs against economic loss to commercial fishers from closure of historically fished areas. PMID:24358162

  6. Comparison of in silico models for prediction of mutagenicity.

    PubMed

    Bakhtyari, Nazanin G; Raitano, Giuseppa; Benfenati, Emilio; Martin, Todd; Young, Douglas

    2013-01-01

    Using a dataset with more than 6000 compounds, the performance of eight quantitative structure activity relationships (QSAR) models was evaluated: ACD/Tox Suite, Absorption, Distribution, Metabolism, Elimination, and Toxicity of chemical substances (ADMET) predictor, Derek, Toxicity Estimation Software Tool (T.E.S.T.), TOxicity Prediction by Komputer Assisted Technology (TOPKAT), Toxtree, CEASAR, and SARpy (SAR in python). In general, the results showed a high level of performance. To have a realistic estimate of the predictive ability, the results for chemicals inside and outside the training set for each model were considered. The effect of applicability domain tools (when available) on the prediction accuracy was also evaluated. The predictive tools included QSAR models, knowledge-based systems, and a combination of both methods. Models based on statistical QSAR methods gave better results.

  7. Machine learning-based methods for prediction of linear B-cell epitopes.

    PubMed

    Wang, Hsin-Wei; Pai, Tun-Wen

    2014-01-01

    B-cell epitope prediction facilitates immunologists in designing peptide-based vaccine, diagnostic test, disease prevention, treatment, and antibody production. In comparison with T-cell epitope prediction, the performance of variable length B-cell epitope prediction is still yet to be satisfied. Fortunately, due to increasingly available verified epitope databases, bioinformaticians could adopt machine learning-based algorithms on all curated data to design an improved prediction tool for biomedical researchers. Here, we have reviewed related epitope prediction papers, especially those for linear B-cell epitope prediction. It should be noticed that a combination of selected propensity scales and statistics of epitope residues with machine learning-based tools formulated a general way for constructing linear B-cell epitope prediction systems. It is also observed from most of the comparison results that the kernel method of support vector machine (SVM) classifier outperformed other machine learning-based approaches. Hence, in this chapter, except reviewing recently published papers, we have introduced the fundamentals of B-cell epitope and SVM techniques. In addition, an example of linear B-cell prediction system based on physicochemical features and amino acid combinations is illustrated in details.

  8. An effective approach to quantitative analysis of ternary amino acids in foxtail millet substrate based on terahertz spectroscopy.

    PubMed

    Lu, Shao Hua; Li, Bao Qiong; Zhai, Hong Lin; Zhang, Xin; Zhang, Zhuo Yong

    2018-04-25

    Terahertz time-domain spectroscopy has been applied to many fields, however, it still encounters drawbacks in multicomponent mixtures analysis due to serious spectral overlapping. Here, an effective approach to quantitative analysis was proposed, and applied on the determination of the ternary amino acids in foxtail millet substrate. Utilizing three parameters derived from the THz-TDS, the images were constructed and the Tchebichef image moments were used to extract the information of target components. Then the quantitative models were obtained by stepwise regression. The correlation coefficients of leave-one-out cross-validation (R loo-cv 2 ) were more than 0.9595. As for external test set, the predictive correlation coefficients (R p 2 ) were more than 0.8026 and the root mean square error of prediction (RMSE p ) were less than 1.2601. Compared with the traditional methods (PLS and N-PLS methods), our approach is more accurate, robust and reliable, and can be a potential excellent approach to quantify multicomponent with THz-TDS spectroscopy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Predicting outcome of Internet-based treatment for depressive symptoms.

    PubMed

    Warmerdam, Lisanne; Van Straten, Annemieke; Twisk, Jos; Cuijpers, Pim

    2013-01-01

    In this study we explored predictors and moderators of response to Internet-based cognitive behavioral therapy (CBT) and Internet-based problem-solving therapy (PST) for depressive symptoms. The sample consisted of 263 participants with moderate to severe depressive symptoms. Of those, 88 were randomized to CBT, 88 to PST and 87 to a waiting list control condition. Outcomes were improvement and clinically significant change in depressive symptoms after 8 weeks. Higher baseline depression and higher education predicted improvement, while higher education, less avoidance behavior and decreased rational problem-solving skills predicted clinically significant change across all groups. No variables were found that differentially predicted outcome between Internet-based CBT and Internet-based PST. More research is needed with sufficient power to investigate predictors and moderators of response to reveal for whom Internet-based therapy is best suited.

  10. ShinyGPAS: interactive genomic prediction accuracy simulator based on deterministic formulas.

    PubMed

    Morota, Gota

    2017-12-20

    Deterministic formulas for the accuracy of genomic predictions highlight the relationships among prediction accuracy and potential factors influencing prediction accuracy prior to performing computationally intensive cross-validation. Visualizing such deterministic formulas in an interactive manner may lead to a better understanding of how genetic factors control prediction accuracy. The software to simulate deterministic formulas for genomic prediction accuracy was implemented in R and encapsulated as a web-based Shiny application. Shiny genomic prediction accuracy simulator (ShinyGPAS) simulates various deterministic formulas and delivers dynamic scatter plots of prediction accuracy versus genetic factors impacting prediction accuracy, while requiring only mouse navigation in a web browser. ShinyGPAS is available at: https://chikudaisei.shinyapps.io/shinygpas/ . ShinyGPAS is a shiny-based interactive genomic prediction accuracy simulator using deterministic formulas. It can be used for interactively exploring potential factors that influence prediction accuracy in genome-enabled prediction, simulating achievable prediction accuracy prior to genotyping individuals, or supporting in-class teaching. ShinyGPAS is open source software and it is hosted online as a freely available web-based resource with an intuitive graphical user interface.

  11. Making predictions of mangrove deforestation: a comparison of two methods in Kenya.

    PubMed

    Rideout, Alasdair J R; Joshi, Neha P; Viergever, Karin M; Huxham, Mark; Briers, Robert A

    2013-11-01

    Deforestation of mangroves is of global concern given their importance for carbon storage, biogeochemical cycling and the provision of other ecosystem services, but the links between rates of loss and potential drivers or risk factors are rarely evaluated. Here, we identified key drivers of mangrove loss in Kenya and compared two different approaches to predicting risk. Risk factors tested included various possible predictors of anthropogenic deforestation, related to population, suitability for land use change and accessibility. Two approaches were taken to modelling risk; a quantitative statistical approach and a qualitative categorical ranking approach. A quantitative model linking rates of loss to risk factors was constructed based on generalized least squares regression and using mangrove loss data from 1992 to 2000. Population density, soil type and proximity to roads were the most important predictors. In order to validate this model it was used to generate a map of losses of Kenyan mangroves predicted to have occurred between 2000 and 2010. The qualitative categorical model was constructed using data from the same selection of variables, with the coincidence of different risk factors in particular mangrove areas used in an additive manner to create a relative risk index which was then mapped. Quantitative predictions of loss were significantly correlated with the actual loss of mangroves between 2000 and 2010 and the categorical risk index values were also highly correlated with the quantitative predictions. Hence, in this case the relatively simple categorical modelling approach was of similar predictive value to the more complex quantitative model of mangrove deforestation. The advantages and disadvantages of each approach are discussed, and the implications for mangroves are outlined. © 2013 Blackwell Publishing Ltd.

  12. Quantitative phase microscopy for cellular dynamics based on transport of intensity equation.

    PubMed

    Li, Ying; Di, Jianglei; Ma, Chaojie; Zhang, Jiwei; Zhong, Jinzhan; Wang, Kaiqiang; Xi, Teli; Zhao, Jianlin

    2018-01-08

    We demonstrate a simple method for quantitative phase imaging of tiny transparent objects such as living cells based on the transport of intensity equation. The experiments are performed using an inverted bright field microscope upgraded with a flipping imaging module, which enables to simultaneously create two laterally separated images with unequal defocus distances. This add-on module does not include any lenses or gratings and is cost-effective and easy-to-alignment. The validity of this method is confirmed by the measurement of microlens array and human osteoblastic cells in culture, indicating its potential in the applications of dynamically measuring living cells and other transparent specimens in a quantitative, non-invasive and label-free manner.

  13. Toxicity prediction of ionic liquids based on Daphnia magna by using density functional theory

    NASA Astrophysics Data System (ADS)

    Nu’aim, M. N.; Bustam, M. A.

    2018-04-01

    By using a model called density functional theory, the toxicity of ionic liquids can be predicted and forecast. It is a theory that allowing the researcher to have a substantial tool for computation of the quantum state of atoms, molecules and solids, and molecular dynamics which also known as computer simulation method. It can be done by using structural feature based quantum chemical reactivity descriptor. The identification of ionic liquids and its Log[EC50] data are from literature data that available in Ismail Hossain thesis entitled “Synthesis, Characterization and Quantitative Structure Toxicity Relationship of Imidazolium, Pyridinium and Ammonium Based Ionic Liquids”. Each cation and anion of the ionic liquids were optimized and calculated. The geometry optimization and calculation from the software, produce the value of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). From the value of HOMO and LUMO, the value for other toxicity descriptors were obtained according to their formulas. The toxicity descriptor that involves are electrophilicity index, HOMO, LUMO, energy gap, chemical potential, hardness and electronegativity. The interrelation between the descriptors are being determined by using a multiple linear regression (MLR). From this MLR, all descriptors being analyzed and the descriptors that are significant were chosen. In order to develop the finest model equation for toxicity prediction of ionic liquids, the selected descriptors that are significant were used. The validation of model equation was performed with the Log[EC50] data from the literature and the final model equation was developed. A bigger range of ionic liquids which nearly 108 of ionic liquids can be predicted from this model equation.

  14. Liquid crystal-based biosensor with backscattering interferometry: A quantitative approach.

    PubMed

    Khan, Mashooq; Park, Soo-Young

    2017-01-15

    We developed a new technology that uses backscattering interferometry (BSI) to quantitatively measure nematic liquid crystal (NLC)-based biosensors, those usually relied on texture reading for on/off signals. The LC-based BSI comprised an octadecyltrichlorosilane (OTS)-coated square capillary filled with 4-cyano-4'-pentylbiphenyl (5CB, a nematic LC at room temperature). The LC/water interface in the capillary was functionalized by a coating of poly(acrylicacid-b-4-cyanobiphenyl-4'-oxyundecylacrylate) (PAA-b-LCP) and immobilized with the enzymes glucose oxidase (GOx) and horseradish peroxidase (HRP) through covalent linkage to the PAA chains (5CB PAA-GOx:HRP ) for glucose detection. Laser irradiation of the LC near the LC/water interface resulted in backscattered fringes with high contrast. The change in the spatial position of the fringes (because of the change in the orientation of the LC caused by the GOx:HRP enzymatic reaction of glucose) altered the output voltage of the photodetector when its active area was aligned with the edge of one of the fringes. The change in the intensity at the photodetector allowed the detection limit of the instrument to be as low as 0.008mM with a linear range of 0.02-9mM in a short response time (~60s). This LC-based BSI technique allows for quantitative, sensitive, selective, reproducible, easily obtainable, and interference-free detection in a large linear dynamic range and for practical applications with human serum. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Quantitative body fluid proteomics in medicine - A focus on minimal invasiveness.

    PubMed

    Csősz, Éva; Kalló, Gergő; Márkus, Bernadett; Deák, Eszter; Csutak, Adrienne; Tőzsér, József

    2017-02-05

    Identification of new biomarkers specific for various pathological conditions is an important field in medical sciences. Body fluids have emerging potential in biomarker studies especially those which are continuously available and can be collected by non-invasive means. Changes in the protein composition of body fluids such as tears, saliva, sweat, etc. may provide information on both local and systemic conditions of medical relevance. In this review, our aim is to discuss the quantitative proteomics techniques used in biomarker studies, and to present advances in quantitative body fluid proteomics of non-invasively collectable body fluids with relevance to biomarker identification. The advantages and limitations of the widely used quantitative proteomics techniques are also presented. Based on the reviewed literature, we suggest an ideal pipeline for body fluid analyses aiming at biomarkers discoveries: starting from identification of biomarker candidates by shotgun quantitative proteomics or protein arrays, through verification of potential biomarkers by targeted mass spectrometry, to the antibody-based validation of biomarkers. The importance of body fluids as a rich source of biomarkers is discussed. Quantitative proteomics is a challenging part of proteomics applications. The body fluids collected by non-invasive means have high relevance in medicine; they are good sources for biomarkers used in establishing the diagnosis, follow up of disease progression and predicting high risk groups. The review presents the most widely used quantitative proteomics techniques in body fluid analysis and lists the potential biomarkers identified in tears, saliva, sweat, nasal mucus and urine for local and systemic diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Pharmacological mechanism-based drug safety assessment and prediction.

    PubMed

    Abernethy, D R; Woodcock, J; Lesko, L J

    2011-06-01

    Advances in cheminformatics, bioinformatics, and pharmacology in the context of biological systems are now at a point that these tools can be applied to mechanism-based drug safety assessment and prediction. The development of such predictive tools at the US Food and Drug Administration (FDA) will complement ongoing efforts in drug safety that are focused on spontaneous adverse event reporting and active surveillance to monitor drug safety. This effort will require the active collaboration of scientists in the pharmaceutical industry, academe, and the National Institutes of Health, as well as those at the FDA, to reach its full potential. Here, we describe the approaches and goals for the mechanism-based drug safety assessment and prediction program.

  17. A CZT-based blood counter for quantitative molecular imaging.

    PubMed

    Espagnet, Romain; Frezza, Andrea; Martin, Jean-Pierre; Hamel, Louis-André; Lechippey, Laëtitia; Beauregard, Jean-Mathieu; Després, Philippe

    2017-12-01

    Robust quantitative analysis in positron emission tomography (PET) and in single-photon emission computed tomography (SPECT) typically requires the time-activity curve as an input function for the pharmacokinetic modeling of tracer uptake. For this purpose, a new automated tool for the determination of blood activity as a function of time is presented. The device, compact enough to be used on the patient bed, relies on a peristaltic pump for continuous blood withdrawal at user-defined rates. Gamma detection is based on a 20 × 20 × 15 mm 3 cadmium zinc telluride (CZT) detector, read by custom-made electronics and a field-programmable gate array-based signal processing unit. A graphical user interface (GUI) allows users to select parameters and easily perform acquisitions. This paper presents the overall design of the device as well as the results related to the detector performance in terms of stability, sensitivity and energy resolution. Results from a patient study are also reported. The device achieved a sensitivity of 7.1 cps/(kBq/mL) and a minimum detectable activity of 2.5 kBq/ml for 18 F. The gamma counter also demonstrated an excellent stability with a deviation in count rates inferior to 0.05% over 6 h. An energy resolution of 8% was achieved at 662 keV. The patient study was conclusive and demonstrated that the compact gamma blood counter developed has the sensitivity and the stability required to conduct quantitative molecular imaging studies in PET and SPECT.

  18. Genetic-based prediction of disease traits: prediction is very difficult, especially about the future†

    PubMed Central

    Schrodi, Steven J.; Mukherjee, Shubhabrata; Shan, Ying; Tromp, Gerard; Sninsky, John J.; Callear, Amy P.; Carter, Tonia C.; Ye, Zhan; Haines, Jonathan L.; Brilliant, Murray H.; Crane, Paul K.; Smelser, Diane T.; Elston, Robert C.; Weeks, Daniel E.

    2014-01-01

    Translation of results from genetic findings to inform medical practice is a highly anticipated goal of human genetics. The aim of this paper is to review and discuss the role of genetics in medically-relevant prediction. Germline genetics presages disease onset and therefore can contribute prognostic signals that augment laboratory tests and clinical features. As such, the impact of genetic-based predictive models on clinical decisions and therapy choice could be profound. However, given that (i) medical traits result from a complex interplay between genetic and environmental factors, (ii) the underlying genetic architectures for susceptibility to common diseases are not well-understood, and (iii) replicable susceptibility alleles, in combination, account for only a moderate amount of disease heritability, there are substantial challenges to constructing and implementing genetic risk prediction models with high utility. In spite of these challenges, concerted progress has continued in this area with an ongoing accumulation of studies that identify disease predisposing genotypes. Several statistical approaches with the aim of predicting disease have been published. Here we summarize the current state of disease susceptibility mapping and pharmacogenetics efforts for risk prediction, describe methods used to construct and evaluate genetic-based predictive models, and discuss applications. PMID:24917882

  19. Quantitative model analysis with diverse biological data: applications in developmental pattern formation.

    PubMed

    Pargett, Michael; Umulis, David M

    2013-07-15

    Mathematical modeling of transcription factor and signaling networks is widely used to understand if and how a mechanism works, and to infer regulatory interactions that produce a model consistent with the observed data. Both of these approaches to modeling are informed by experimental data, however, much of the data available or even acquirable are not quantitative. Data that is not strictly quantitative cannot be used by classical, quantitative, model-based analyses that measure a difference between the measured observation and the model prediction for that observation. To bridge the model-to-data gap, a variety of techniques have been developed to measure model "fitness" and provide numerical values that can subsequently be used in model optimization or model inference studies. Here, we discuss a selection of traditional and novel techniques to transform data of varied quality and enable quantitative comparison with mathematical models. This review is intended to both inform the use of these model analysis methods, focused on parameter estimation, and to help guide the choice of method to use for a given study based on the type of data available. Applying techniques such as normalization or optimal scaling may significantly improve the utility of current biological data in model-based study and allow greater integration between disparate types of data. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Problem-based learning on quantitative analytical chemistry course

    NASA Astrophysics Data System (ADS)

    Fitri, Noor

    2017-12-01

    This research applies problem-based learning method on chemical quantitative analytical chemistry, so called as "Analytical Chemistry II" course, especially related to essential oil analysis. The learning outcomes of this course include aspects of understanding of lectures, the skills of applying course materials, and the ability to identify, formulate and solve chemical analysis problems. The role of study groups is quite important in improving students' learning ability and in completing independent tasks and group tasks. Thus, students are not only aware of the basic concepts of Analytical Chemistry II, but also able to understand and apply analytical concepts that have been studied to solve given analytical chemistry problems, and have the attitude and ability to work together to solve the problems. Based on the learning outcome, it can be concluded that the problem-based learning method in Analytical Chemistry II course has been proven to improve students' knowledge, skill, ability and attitude. Students are not only skilled at solving problems in analytical chemistry especially in essential oil analysis in accordance with local genius of Chemistry Department, Universitas Islam Indonesia, but also have skilled work with computer program and able to understand material and problem in English.

  1. The Development of Mathematical Knowledge for Teaching for Quantitative Reasoning Using Video-Based Instruction

    NASA Astrophysics Data System (ADS)

    Walters, Charles David

    Quantitative reasoning (P. W. Thompson, 1990, 1994) is a powerful mathematical tool that enables students to engage in rich problem solving across the curriculum. One way to support students' quantitative reasoning is to develop prospective secondary teachers' (PSTs) mathematical knowledge for teaching (MKT; Ball, Thames, & Phelps, 2008) related to quantitative reasoning. However, this may prove challenging, as prior to entering the classroom, PSTs often have few opportunities to develop MKT by examining and reflecting on students' thinking. Videos offer one avenue through which such opportunities are possible. In this study, I report on the design of a mini-course for PSTs that featured a series of videos created as part of a proof-of-concept NSF-funded project. These MathTalk videos highlight the ways in which the quantitative reasoning of two high school students developed over time. Using a mixed approach to grounded theory, I analyzed pre- and postinterviews using an extant coding scheme based on the Silverman and Thompson (2008) framework for the development of MKT. This analysis revealed a shift in participants' affect as well as three distinct shifts in their MKT around quantitative reasoning with distances, including shifts in: (a) quantitative reasoning; (b) point of view (decentering); and (c) orientation toward problem solving. Using the four-part focusing framework (Lobato, Hohensee, & Rhodehamel, 2013), I analyzed classroom data to account for how participants' noticing was linked with the shifts in MKT. Notably, their increased noticing of aspects of MKT around quantitative reasoning with distances, which features prominently in the MathTalk videos, seemed to contribute to the emergence of the shifts in MKT. Results from this study link elements of the learning environment to the development of specific facets of MKT around quantitative reasoning with distances. These connections suggest that vicarious experiences with two students' quantitative

  2. NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction.

    PubMed

    Pardoe, Heath R; Kuzniecky, Ruben

    2018-01-01

    The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named "NAPR" (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6-89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.

  3. A Quantitative Comparative Study Measuring Consumer Satisfaction Based on Health Record Format

    ERIC Educational Resources Information Center

    Moore, Vivianne E.

    2013-01-01

    This research study used a quantitative comparative method to investigate the relationship between consumer satisfaction and communication based on the format of health record. The central problem investigated in this research study related to the format of health record used and consumer satisfaction with care provided and effect on communication…

  4. A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors

    PubMed Central

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467

  5. A theoretical model to predict both horizontal displacement and vertical displacement for electromagnetic induction-based deep displacement sensors.

    PubMed

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.

  6. Quantitative Stratification of Diffuse Parenchymal Lung Diseases

    PubMed Central

    Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Maldonado, Fabien; Peikert, Tobias; Moua, Teng; Ryu, Jay H.; Bartholmai, Brian J.; Robb, Richard A.

    2014-01-01

    Diffuse parenchymal lung diseases (DPLDs) are characterized by widespread pathological changes within the pulmonary tissue that impair the elasticity and gas exchange properties of the lungs. Clinical-radiological diagnosis of these diseases remains challenging and their clinical course is characterized by variable disease progression. These challenges have hindered the introduction of robust objective biomarkers for patient-specific prediction based on specific phenotypes in clinical practice for patients with DPLD. Therefore, strategies facilitating individualized clinical management, staging and identification of specific phenotypes linked to clinical disease outcomes or therapeutic responses are urgently needed. A classification schema consistently reflecting the radiological, clinical (lung function and clinical outcomes) and pathological features of a disease represents a critical need in modern pulmonary medicine. Herein, we report a quantitative stratification paradigm to identify subsets of DPLD patients with characteristic radiologic patterns in an unsupervised manner and demonstrate significant correlation of these self-organized disease groups with clinically accepted surrogate endpoints. The proposed consistent and reproducible technique could potentially transform diagnostic staging, clinical management and prognostication of DPLD patients as well as facilitate patient selection for clinical trials beyond the ability of current radiological tools. In addition, the sequential quantitative stratification of the type and extent of parenchymal process may allow standardized and objective monitoring of disease, early assessment of treatment response and mortality prediction for DPLD patients. PMID:24676019

  7. Conventional liquid chromatography/triple quadrupole mass spectrometer-based metabolite identification and semi-quantitative estimation approach in the investigation of dabigatran etexilate in vitro metabolism

    PubMed Central

    Hu, Zhe-Yi; Parker, Robert B.; Herring, Vanessa L.; Laizure, S. Casey

    2012-01-01

    Dabigatran etexilate (DABE) is an oral prodrug that is rapidly converted by esterases to dabigatran (DAB), a direct inhibitor of thrombin. To elucidate the esterase-mediated metabolic pathway of DABE, a high-performance liquid chromatography/mass spectrometer (LC-MS/MS)-based metabolite identification and semi-quantitative estimation approach was developed. To overcome the poor full-scan sensitivity of conventional triple quadrupole mass spectrometry, precursor-product ion pairs were predicted, to search for the potential in vitro metabolites. The detected metabolites were confirmed by the product ion scan. A dilution method was introduced to evaluate the matrix effects of tentatively identified metabolites without chemical standards. Quantitative information on detected metabolites was obtained using ‘metabolite standards’ generated from incubation samples that contain a high concentration of metabolite in combination with a correction factor for mass spectrometry response. Two in vitro metabolites of DABE (M1 and M2) were identified, and quantified by the semi-quantitative estimation approach. It is noteworthy that CES1 convert DABE to M1 while CES2 mediates the conversion of DABE to M2. M1 (or M2) was further metabolized to DAB by CES2 (or CES1). The approach presented here provides a solution to a bioanalytical need for fast identification and semi-quantitative estimation of CES metabolites in preclinical samples. PMID:23239178

  8. Programmable Nucleic Acid Based Polygons with Controlled Neuroimmunomodulatory Properties for Predictive QSAR Modeling.

    PubMed

    Johnson, Morgan Brittany; Halman, Justin R; Satterwhite, Emily; Zakharov, Alexey V; Bui, My N; Benkato, Kheiria; Goldsworthy, Victoria; Kim, Taejin; Hong, Enping; Dobrovolskaia, Marina A; Khisamutdinov, Emil F; Marriott, Ian; Afonin, Kirill A

    2017-11-01

    In the past few years, the study of therapeutic RNA nanotechnology has expanded tremendously to encompass a large group of interdisciplinary sciences. It is now evident that rationally designed programmable RNA nanostructures offer unique advantages in addressing contemporary therapeutic challenges such as distinguishing target cell types and ameliorating disease. However, to maximize the therapeutic benefit of these nanostructures, it is essential to understand the immunostimulatory aptitude of such tools and identify potential complications. This paper presents a set of 16 nanoparticle platforms that are highly configurable. These novel nucleic acid based polygonal platforms are programmed for controllable self-assembly from RNA and/or DNA strands via canonical Watson-Crick interactions. It is demonstrated that the immunostimulatory properties of these particular designs can be tuned to elicit the desired immune response or lack thereof. To advance the current understanding of the nanoparticle properties that contribute to the observed immunomodulatory activity and establish corresponding designing principles, quantitative structure-activity relationship modeling is conducted. The results demonstrate that molecular weight, together with melting temperature and half-life, strongly predicts the observed immunomodulatory activity. This framework provides the fundamental guidelines necessary for the development of a new library of nanoparticles with predictable immunomodulatory activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Multivariate Radiological-Based Models for the Prediction of Future Knee Pain: Data from the OAI

    PubMed Central

    Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Treviño, Victor; Tamez-Peña, José G.

    2015-01-01

    In this work, the potential of X-ray based multivariate prognostic models to predict the onset of chronic knee pain is presented. Using X-rays quantitative image assessments of joint-space-width (JSW) and paired semiquantitative central X-ray scores from the Osteoarthritis Initiative (OAI), a case-control study is presented. The pain assessments of the right knee at the baseline and the 60-month visits were used to screen for case/control subjects. Scores were analyzed at the time of pain incidence (T-0), the year prior incidence (T-1), and two years before pain incidence (T-2). Multivariate models were created by a cross validated elastic-net regularized generalized linear models feature selection tool. Univariate differences between cases and controls were reported by AUC, C-statistics, and ODDs ratios. Univariate analysis indicated that the medial osteophytes were significantly more prevalent in cases than controls: C-stat 0.62, 0.62, and 0.61, at T-0, T-1, and T-2, respectively. The multivariate JSW models significantly predicted pain: AUC = 0.695, 0.623, and 0.620, at T-0, T-1, and T-2, respectively. Semiquantitative multivariate models predicted paint with C-stat = 0.671, 0.648, and 0.645 at T-0, T-1, and T-2, respectively. Multivariate models derived from plain X-ray radiography assessments may be used to predict subjects that are at risk of developing knee pain. PMID:26504490

  10. Quantitative structure-activity relationships for primary aerobic biodegradation of organic chemicals in pristine surface waters: starting points for predicting biodegradation under acclimatization.

    PubMed

    Nolte, Tom M; Pinto-Gil, Kevin; Hendriks, A Jan; Ragas, Ad M J; Pastor, Manuel

    2018-01-24

    Microbial biomass and acclimation can affect the removal of organic chemicals in natural surface waters. In order to account for these effects and develop more robust models for biodegradation, we have compiled and curated removal data for un-acclimated (pristine) surface waters on which we developed quantitative structure-activity relationships (QSARs). Global analysis of the very heterogeneous dataset including neutral, anionic, cationic and zwitterionic chemicals (N = 233) using a random forest algorithm showed that useful predictions were possible (Q ext 2 = 0.4-0.5) though relatively large standard errors were associated (SDEP ∼0.7). Classification of the chemicals based on speciation state and metabolic pathway showed that biodegradation is influenced by the two, and that the dependence of biodegradation on chemical characteristics is non-linear. Class-specific QSAR analysis indicated that shape and charge distribution determine the biodegradation of neutral chemicals (R 2 ∼ 0.6), e.g. through membrane permeation or binding to P450 enzymes, whereas the average biodegradation of charged chemicals is 1 to 2 orders of magnitude lower, for which degradation depends more directly on cellular uptake (R 2 ∼ 0.6). Further analysis showed that specific chemical classes such as peptides and organic halogens are relatively less biodegradable in pristine surface waters, resulting in the need for the microbial consortia to acclimate. Additional literature data was used to verify an acclimation model (based on Monod-type kinetics) capable of extrapolating QSAR predictions to acclimating conditions such as in water treatment, downstream lakes and large rivers under μg L -1 to mg L -1 concentrations. The framework developed, despite being based on multiple assumptions, is promising and needs further validation using experimentation with more standardised and homogenised conditions as well as adequate characterization of the inoculum used.

  11. A Quantitative Model of Expert Transcription Typing

    DTIC Science & Technology

    1993-03-08

    side of pure psychology, several researchers have argued that transcription typing is a particularly good activity for the study of human skilled...phenomenon with a quantitative METT prediction. The first, quick and dirty analysis gives a good prediction of the copy span, in fact, it is even...typing, it should be demonstrated that the mechanism of the model does not get in the way of good predictions. If situations occur where the entire

  12. Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects.

    PubMed

    Ziegler, G; Ridgway, G R; Dahnke, R; Gaser, C

    2014-08-15

    Structural imaging based on MRI is an integral component of the clinical assessment of patients with potential dementia. We here propose an individualized Gaussian process-based inference scheme for clinical decision support in healthy and pathological aging elderly subjects using MRI. The approach aims at quantitative and transparent support for clinicians who aim to detect structural abnormalities in patients at risk of Alzheimer's disease or other types of dementia. Firstly, we introduce a generative model incorporating our knowledge about normative decline of local and global gray matter volume across the brain in elderly. By supposing smooth structural trajectories the models account for the general course of age-related structural decline as well as late-life accelerated loss. Considering healthy subjects' demography and global brain parameters as informative about normal brain aging variability affords individualized predictions in single cases. Using Gaussian process models as a normative reference, we predict new subjects' brain scans and quantify the local gray matter abnormalities in terms of Normative Probability Maps (NPM) and global z-scores. By integrating the observed expectation error and the predictive uncertainty, the local maps and global scores exploit the advantages of Bayesian inference for clinical decisions and provide a valuable extension of diagnostic information about pathological aging. We validate the approach in simulated data and real MRI data. We train the GP framework using 1238 healthy subjects with ages 18-94 years, and predict in 415 independent test subjects diagnosed as healthy controls, Mild Cognitive Impairment and Alzheimer's disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects

    PubMed Central

    Ziegler, G.; Ridgway, G.R.; Dahnke, R.; Gaser, C.

    2014-01-01

    Structural imaging based on MRI is an integral component of the clinical assessment of patients with potential dementia. We here propose an individualized Gaussian process-based inference scheme for clinical decision support in healthy and pathological aging elderly subjects using MRI. The approach aims at quantitative and transparent support for clinicians who aim to detect structural abnormalities in patients at risk of Alzheimer's disease or other types of dementia. Firstly, we introduce a generative model incorporating our knowledge about normative decline of local and global gray matter volume across the brain in elderly. By supposing smooth structural trajectories the models account for the general course of age-related structural decline as well as late-life accelerated loss. Considering healthy subjects' demography and global brain parameters as informative about normal brain aging variability affords individualized predictions in single cases. Using Gaussian process models as a normative reference, we predict new subjects' brain scans and quantify the local gray matter abnormalities in terms of Normative Probability Maps (NPM) and global z-scores. By integrating the observed expectation error and the predictive uncertainty, the local maps and global scores exploit the advantages of Bayesian inference for clinical decisions and provide a valuable extension of diagnostic information about pathological aging. We validate the approach in simulated data and real MRI data. We train the GP framework using 1238 healthy subjects with ages 18–94 years, and predict in 415 independent test subjects diagnosed as healthy controls, Mild Cognitive Impairment and Alzheimer's disease. PMID:24742919

  14. Prediction of in vivo drug-drug interactions based on mechanism-based inhibition from in vitro data: inhibition of 5-fluorouracil metabolism by (E)-5-(2-Bromovinyl)uracil.

    PubMed

    Kanamitsu, S I; Ito, K; Okuda, H; Ogura, K; Watabe, T; Muro, K; Sugiyama, Y

    2000-04-01

    The fatal drug-drug interaction between sorivudine, an antiviral drug, and 5-fluorouracil (5-FU) has been shown to be caused by a mechanism-based inhibition. In this interaction, sorivudine is converted by gut flora to (E)-5-(2-bromovinyl)uracil (BVU), which is metabolically activated by dihydropyrimidine dehydrogenase (DPD), and the activated BVU irreversibly binds to DPD itself, thereby inactivating it. In an attempt to predict this interaction in vivo from in vitro data, inhibition of 5-FU metabolism by BVU was investigated by using rat and human hepatic cytosol and human recombinant DPD. Whichever enzyme was used, increased inhibition was observed that depended on the preincubation time of BVU and enzyme in the presence of NADPH and BVU concentration. The kinetic parameters obtained for inactivation represented by k(inact) and K'(app) were 2.05 +/- 1.52 min(-1), 69.2 +/- 60.8 microM (rat hepatic cytosol), 2.39 +/- 0.13 min(-1), 48.6 +/- 11.8 microM (human hepatic cytosol), and 0.574 +/- 0.121 min(-1), 2.20 +/- 0.57 microM (human recombinant DPD). The drug-drug interaction in vivo was predicted quantitatively based on a physiologically based pharmacokinetic model, using pharmacokinetic parameters obtained from the literature and kinetic parameters for the enzyme inactivation obtained in the in vitro studies. In rats, DPD was predicted to be completely inactivated by administration of BVU and the area under the curve of 5-FU was predicted to increase 11-fold, which agreed well with the reported data. In humans, a 5-fold increase in the area under the curve of 5-FU was predicted after administration of sorivudine, 150 mg/day for 5 days. Mechanism-based inhibition of drug metabolism is supposed to be very dangerous. We propose that such in vitro studies should be carried out during the drug-developing phase so that in vivo drug-drug interactions can be predicted.

  15. Highly predictive and interpretable models for PAMPA permeability.

    PubMed

    Sun, Hongmao; Nguyen, Kimloan; Kerns, Edward; Yan, Zhengyin; Yu, Kyeong Ri; Shah, Pranav; Jadhav, Ajit; Xu, Xin

    2017-02-01

    Cell membrane permeability is an important determinant for oral absorption and bioavailability of a drug molecule. An in silico model predicting drug permeability is described, which is built based on a large permeability dataset of 7488 compound entries or 5435 structurally unique molecules measured by the same lab using parallel artificial membrane permeability assay (PAMPA). On the basis of customized molecular descriptors, the support vector regression (SVR) model trained with 4071 compounds with quantitative data is able to predict the remaining 1364 compounds with the qualitative data with an area under the curve of receiver operating characteristic (AUC-ROC) of 0.90. The support vector classification (SVC) model trained with half of the whole dataset comprised of both the quantitative and the qualitative data produced accurate predictions to the remaining data with the AUC-ROC of 0.88. The results suggest that the developed SVR model is highly predictive and provides medicinal chemists a useful in silico tool to facilitate design and synthesis of novel compounds with optimal drug-like properties, and thus accelerate the lead optimization in drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Link prediction based on local community properties

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Hua; Zhang, Hai-Feng; Ling, Fei; Cheng, Zhi; Weng, Guo-Qing; Huang, Yu-Jiao

    2016-09-01

    The link prediction algorithm is one of the key technologies to reveal the inherent rule of network evolution. This paper proposes a novel link prediction algorithm based on the properties of the local community, which is composed of the common neighbor nodes of any two nodes in the network and the links between these nodes. By referring to the node degree and the condition of assortativity or disassortativity in a network, we comprehensively consider the effect of the shortest path and edge clustering coefficient within the local community on node similarity. We numerically show the proposed method provide good link prediction results.

  17. Teachers' Perceptions of Their Working Conditions: How Predictive of Policy-Relevant Outcomes? Working Paper 33

    ERIC Educational Resources Information Center

    Ladd, Helen F.

    2009-01-01

    This quantitative study uses data from North Carolina to examine the extent to which survey based perceptions of working conditions are predictive of policy-relevant outcomes, independent of other school characteristics such as the demographic mix of the school's students. Working conditions emerge as highly predictive of teachers' stated…

  18. Local-search based prediction of medical image registration error

    NASA Astrophysics Data System (ADS)

    Saygili, Görkem

    2018-03-01

    Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.

  19. Direct comparison of low- and mid-frequency Raman spectroscopy for quantitative solid-state pharmaceutical analysis.

    PubMed

    Lipiäinen, Tiina; Fraser-Miller, Sara J; Gordon, Keith C; Strachan, Clare J

    2018-02-05

    This study considers the potential of low-frequency (terahertz) Raman spectroscopy in the quantitative analysis of ternary mixtures of solid-state forms. Direct comparison between low-frequency and mid-frequency spectral regions for quantitative analysis of crystal form mixtures, without confounding sampling and instrumental variations, is reported for the first time. Piroxicam was used as a model drug, and the low-frequency spectra of piroxicam forms β, α2 and monohydrate are presented for the first time. These forms show clear spectral differences in both the low- and mid-frequency regions. Both spectral regions provided quantitative models suitable for predicting the mixture compositions using partial least squares regression (PLSR), but the low-frequency data gave better models, based on lower errors of prediction (2.7, 3.1 and 3.2% root-mean-square errors of prediction [RMSEP] values for the β, α2 and monohydrate forms, respectively) than the mid-frequency data (6.3, 5.4 and 4.8%, for the β, α2 and monohydrate forms, respectively). The better performance of low-frequency Raman analysis was attributed to larger spectral differences between the solid-state forms, combined with a higher signal-to-noise ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins

    NASA Astrophysics Data System (ADS)

    Kong, Dezhao; Liu, Liqiang; Song, Shanshan; Suryoprabowo, Steven; Li, Aike; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2016-02-01

    A semi-quantitative and quantitative multi-immunochromatographic (ICA) strip detection assay was developed for the simultaneous detection of twenty types of mycotoxins from five classes, including zearalenones (ZEAs), deoxynivalenols (DONs), T-2 toxins (T-2s), aflatoxins (AFs), and fumonisins (FBs), in cereal food samples. Sensitive and specific monoclonal antibodies were selected for this assay. The semi-quantitative results were obtained within 20 min by the naked eye, with visual limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.1-0.5, 2.5-250, 0.5-1, 0.25-1 and 2.5-10 μg kg-1, and cut-off values of 0.25-1, 5-500, 1-10, 0.5-2.5 and 5-25 μg kg-1, respectively. The quantitative results were obtained using a hand-held strip scan reader, with the calculated limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.04-0.17, 0.06-49, 0.15-0.22, 0.056-0.49 and 0.53-1.05 μg kg-1, respectively. The analytical results of spiked samples were in accordance with the accurate content in the simultaneous detection analysis. This newly developed ICA strip assay is suitable for the on-site detection and rapid initial screening of mycotoxins in cereal samples, facilitating both semi-quantitative and quantitative determination.A semi-quantitative and quantitative multi-immunochromatographic (ICA) strip detection assay was developed for the simultaneous detection of twenty types of mycotoxins from five classes, including zearalenones (ZEAs), deoxynivalenols (DONs), T-2 toxins (T-2s), aflatoxins (AFs), and fumonisins (FBs), in cereal food samples. Sensitive and specific monoclonal antibodies were selected for this assay. The semi-quantitative results were obtained within 20 min by the naked eye, with visual limits of detection for ZEAs, DONs, T-2s, AFs and FBs of 0.1-0.5, 2.5-250, 0.5-1, 0.25-1 and 2.5-10 μg kg-1, and cut-off values of 0.25-1, 5-500, 1-10, 0.5-2.5 and 5-25 μg kg-1, respectively. The quantitative results were obtained using a hand-held strip scan

  1. Towards assessing cortical bone porosity using low-frequency quantitative acoustics: A phantom-based study.

    PubMed

    Vogl, Florian; Bernet, Benjamin; Bolognesi, Daniele; Taylor, William R

    2017-01-01

    Cortical porosity is a key characteristic governing the structural properties and mechanical behaviour of bone, and its quantification is therefore critical for understanding and monitoring the development of various bone pathologies such as osteoporosis. Axial transmission quantitative acoustics has shown to be a promising technique for assessing bone health in a fast, non-invasive, and radiation-free manner. One major hurdle in bringing this approach to clinical application is the entanglement of the effects of individual characteristics (e.g. geometry, porosity, anisotropy etc.) on the measured wave propagation. In order to address this entanglement problem, we therefore propose a systematic bottom-up approach, in which only one bone property is varied, before addressing interaction effects. This work therefore investigated the sensitivity of low-frequency quantitative acoustics to changes in porosity as well as individual pore characteristics using specifically designed cortical bone phantoms. 14 bone phantoms were designed with varying pore size, axial-, and radial pore number, resulting in porosities (bone volume fraction) between 0% and 15%, similar to porosity values found in human cortical bone. All phantoms were manufactured using laser sintering, measured using axial-transmission acoustics and analysed using a full-wave approach. Experimental results were compared to theoretical predictions based on a modified Timoshenko theory. A clear dependence of phase velocity on frequency and porosity produced by increasing pore size or radial pore number was demonstrated, with the velocity decreasing by between 2-5 m/s per percent of additional porosity, which corresponds to -0.5% to -1.0% of wave speed. While the change in phase velocity due to axial pore number was consistent with the results due to pore size and radial pore number, the relative uncertainties for the estimates were too high to draw any conclusions for this parameter. This work has shown the

  2. Towards assessing cortical bone porosity using low-frequency quantitative acoustics: A phantom-based study

    PubMed Central

    Vogl, Florian; Bernet, Benjamin; Bolognesi, Daniele; Taylor, William R.

    2017-01-01

    Purpose Cortical porosity is a key characteristic governing the structural properties and mechanical behaviour of bone, and its quantification is therefore critical for understanding and monitoring the development of various bone pathologies such as osteoporosis. Axial transmission quantitative acoustics has shown to be a promising technique for assessing bone health in a fast, non-invasive, and radiation-free manner. One major hurdle in bringing this approach to clinical application is the entanglement of the effects of individual characteristics (e.g. geometry, porosity, anisotropy etc.) on the measured wave propagation. In order to address this entanglement problem, we therefore propose a systematic bottom-up approach, in which only one bone property is varied, before addressing interaction effects. This work therefore investigated the sensitivity of low-frequency quantitative acoustics to changes in porosity as well as individual pore characteristics using specifically designed cortical bone phantoms. Materials and methods 14 bone phantoms were designed with varying pore size, axial-, and radial pore number, resulting in porosities (bone volume fraction) between 0% and 15%, similar to porosity values found in human cortical bone. All phantoms were manufactured using laser sintering, measured using axial-transmission acoustics and analysed using a full-wave approach. Experimental results were compared to theoretical predictions based on a modified Timoshenko theory. Results A clear dependence of phase velocity on frequency and porosity produced by increasing pore size or radial pore number was demonstrated, with the velocity decreasing by between 2–5 m/s per percent of additional porosity, which corresponds to -0.5% to -1.0% of wave speed. While the change in phase velocity due to axial pore number was consistent with the results due to pore size and radial pore number, the relative uncertainties for the estimates were too high to draw any conclusions for this

  3. Small RNA-based prediction of hybrid performance in maize.

    PubMed

    Seifert, Felix; Thiemann, Alexander; Schrag, Tobias A; Rybka, Dominika; Melchinger, Albrecht E; Frisch, Matthias; Scholten, Stefan

    2018-05-21

    Small RNA (sRNA) sequences are known to have a broad impact on gene regulation by various mechanisms. Their performance for the prediction of hybrid traits has not yet been analyzed. Our objective was to analyze the relation of parental sRNA expression with the performance of their hybrids, to develop a sRNA-based prediction approach, and to compare it to more common SNP and mRNA transcript based predictions using a factorial mating scheme of a maize hybrid breeding program. Correlation of genomic differences and messenger RNA (mRNA) or sRNA expression differences between parental lines with hybrid performance of their hybrids revealed that sRNAs showed an inverse relationship in contrast to the other two data types. We associated differences for SNPs, mRNA and sRNA expression between parental inbred lines with the performance of their hybrid combinations and developed two prediction approaches using distance measures based on associated markers. Cross-validations revealed parental differences in sRNA expression to be strong predictors for hybrid performance for grain yield in maize, comparable to genomic and mRNA data. The integration of both positively and negatively associated markers in the prediction approaches enhanced the prediction accurary. The associated sRNAs belong predominantly to the canonical size classes of 22- and 24-nt that show specific genomic mapping characteristics. Expression profiles of sRNA are a promising alternative to SNPs or mRNA expression profiles for hybrid prediction, especially for plant species without reference genome or transcriptome information. The characteristics of the sRNAs we identified suggest that association studies based on breeding populations facilitate the identification of sRNAs involved in hybrid performance.

  4. Predicting Southern Appalachian overstory vegetation with digital terrain data

    Treesearch

    Paul V. Bolstad; Wayne Swank; James Vose

    1998-01-01

    Vegetation in mountainous regions responds to small-scale variation in terrain, largely due to effects on both temperature and soil moisture. However, there are few studies of quantitative, terrain-based methods for predicting vegetation composition. This study investigated relationships between forest composition, elevation, and a derived index of terrain shape, and...

  5. Quantitative molecular analysis in mantle cell lymphoma.

    PubMed

    Brízová, H; Hilská, I; Mrhalová, M; Kodet, R

    2011-07-01

    A molecular analysis has three major roles in modern oncopathology--as an aid in the differential diagnosis, in molecular monitoring of diseases, and in estimation of the potential prognosis. In this report we review the application of the molecular analysis in a group of patients with mantle cell lymphoma (MCL). We demonstrate that detection of the cyclin D1 mRNA level is a molecular marker in 98% of patients with MCL. Cyclin D1 quantitative monitoring is specific and sensitive for the differential diagnosis and for the molecular monitoring of the disease in the bone marrow. Moreover, the dynamics of cyclin D1 in bone marrow reflects the disease development and it predicts the clinical course. We employed the molecular analysis for a precise quantitative detection of proliferation markers, Ki-67, topoisomerase IIalpha, and TPX2, that are described as effective prognostic factors. Using the molecular approach it is possible to measure the proliferation rate in a reproducible, standard way which is an essential prerequisite for using the proliferation activity as a routine clinical tool. Comparing with immunophenotyping we may conclude that the quantitative PCR-based analysis is a useful, reliable, rapid, reproducible, sensitive and specific method broadening our diagnostic tools in hematopathology. In comparison to interphase FISH in paraffin sections quantitative PCR is less technically demanding and less time-consuming and furthermore it is more sensitive in detecting small changes in the mRNA level. Moreover, quantitative PCR is the only technology which provides precise and reproducible quantitative information about the expression level. Therefore it may be used to demonstrate the decrease or increase of a tumor-specific marker in bone marrow in comparison with a previously aspirated specimen. Thus, it has a powerful potential to monitor the course of the disease in correlation with clinical data.

  6. DMD-based quantitative phase microscopy and optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie

    2018-02-01

    Digital micromirror devices (DMDs), which offer high speed and high degree of freedoms in steering light illuminations, have been increasingly applied to optical microscopy systems in recent years. Lately, we introduced DMDs into digital holography to enable new imaging modalities and break existing imaging limitations. In this paper, we will first present our progress in using DMDs for demonstrating laser-illumination Fourier ptychographic microscopy (FPM) with shotnoise limited detection. After that, we will present a novel common-path quantitative phase microscopy (QPM) system based on using a DMD. Building on those early developments, a DMD-based high speed optical diffraction tomography (ODT) system has been recently demonstrated, and the results will also be presented. This ODT system is able to achieve video-rate 3D refractive-index imaging, which can potentially enable observations of high-speed 3D sample structural changes.

  7. The quantitative lung index and the prediction of survival in fetuses with congenital diaphragmatic hernia.

    PubMed

    Illescas, Tamara; Rodó, Carlota; Arévalo, Silvia; Giné, Carles; Peiró, José L; Carreras, Elena

    2016-03-01

    The lung-to-head ratio (LHR) is routinely used to select the best candidates for prenatal surgery and to follow-up the fetuses with congenital diaphragmatic hernia (CDH). Since this index is gestation-dependent, the quantitative lung index (QLI) was proposed as an alternative parameter that stays constant throughout pregnancy. Our objective was to study the performance of QLI to predict survival in fetuses with CDH. Observational retrospective study of fetuses with isolated CDH, referred to our center. LHR was originally used for the prenatal surgery evaluation. We calculated the QLI and compared the performance of both indexes (QLI and LHR) to predict survival. From January-2009 to February-2015 we followed 31 fetuses with isolated CDH. The mean QLI was 0.66 (95% CI: 0.57-0.75) for survivors and 0.41 (95% CI: 0.25-0.58) for non-survivors (p<0.01) and the mean LHR was 1.38 (95% CI: 1.17-1.60) for survivors and 0.91 (95% CI: 0.57-1.25) for non-survivors (p<0.02). All operated fetuses (n=12) had a LHR <1 and a QLI <0.5 and none of them survived when the QLI was <0.32. When separately considering the prenatal surgery status, the mean values of the QLI (but not those of the LHR) were still significantly different between survivors and non-survivors. The comparative ROC curves showed a better performance of the QLI with respect to the LHR for the prediction of survival, especially in the group of operated fetuses, although differences were not statistically significant. The QLI seems to be a better predictor for survival than the LHR, especially for the group of fetuses undergoing prenatal surgery. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Chemical Sensor Array Response Modeling Using Quantitative Structure-Activity Relationships Technique

    NASA Astrophysics Data System (ADS)

    Shevade, Abhijit V.; Ryan, Margaret A.; Homer, Margie L.; Zhou, Hanying; Manfreda, Allison M.; Lara, Liana M.; Yen, Shiao-Pin S.; Jewell, April D.; Manatt, Kenneth S.; Kisor, Adam K.

    We have developed a Quantitative Structure-Activity Relationships (QSAR) based approach to correlate the response of chemical sensors in an array with molecular descriptors. A novel molecular descriptor set has been developed; this set combines descriptors of sensing film-analyte interactions, representing sensor response, with a basic analyte descriptor set commonly used in QSAR studies. The descriptors are obtained using a combination of molecular modeling tools and empirical and semi-empirical Quantitative Structure-Property Relationships (QSPR) methods. The sensors under investigation are polymer-carbon sensing films which have been exposed to analyte vapors at parts-per-million (ppm) concentrations; response is measured as change in film resistance. Statistically validated QSAR models have been developed using Genetic Function Approximations (GFA) for a sensor array for a given training data set. The applicability of the sensor response models has been tested by using it to predict the sensor activities for test analytes not considered in the training set for the model development. The validated QSAR sensor response models show good predictive ability. The QSAR approach is a promising computational tool for sensing materials evaluation and selection. It can also be used to predict response of an existing sensing film to new target analytes.

  9. Mechanistic modeling to predict the transporter- and enzyme-mediated drug-drug interactions of repaglinide.

    PubMed

    Varma, Manthena V S; Lai, Yurong; Kimoto, Emi; Goosen, Theunis C; El-Kattan, Ayman F; Kumar, Vikas

    2013-04-01

    Quantitative prediction of complex drug-drug interactions (DDIs) is challenging. Repaglinide is mainly metabolized by cytochrome-P-450 (CYP)2C8 and CYP3A4, and is also a substrate of organic anion transporting polypeptide (OATP)1B1. The purpose is to develop a physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics and DDIs of repaglinide. In vitro hepatic transport of repaglinide, gemfibrozil and gemfibrozil 1-O-β-glucuronide was characterized using sandwich-culture human hepatocytes. A PBPK model, implemented in Simcyp (Sheffield, UK), was developed utilizing in vitro transport and metabolic clearance data. In vitro studies suggested significant active hepatic uptake of repaglinide. Mechanistic model adequately described repaglinide pharmacokinetics, and successfully predicted DDIs with several OATP1B1 and CYP3A4 inhibitors (<10% error). Furthermore, repaglinide-gemfibrozil interaction at therapeutic dose was closely predicted using in vitro fraction metabolism for CYP2C8 (0.71), when primarily considering reversible inhibition of OATP1B1 and mechanism-based inactivation of CYP2C8 by gemfibrozil and gemfibrozil 1-O-β-glucuronide. This study demonstrated that hepatic uptake is rate-determining in the systemic clearance of repaglinide. The model quantitatively predicted several repaglinide DDIs, including the complex interactions with gemfibrozil. Both OATP1B1 and CYP2C8 inhibition contribute significantly to repaglinide-gemfibrozil interaction, and need to be considered for quantitative rationalization of DDIs with either drug.

  10. A versatile quantitation platform based on platinum nanoparticles incorporated volumetric bar-chart chip for highly sensitive assays.

    PubMed

    Wang, Yuzhen; Zhu, Guixian; Qi, Wenjin; Li, Ying; Song, Yujun

    2016-11-15

    Platinum nanoparticles incorporated volumetric bar-chart chip (PtNPs-V-Chip) is able to be used for point-of-care tests by providing quantitative and visualized readout without any assistance from instruments, data processing, or graphic plotting. To improve the sensitivity of PtNPs-V-Chip, hybridization chain reaction was employed in this quantitation platform for highly sensitive assays that can detect as low as 16 pM Ebola Virus DNA, 0.01ng/mL carcinoembryonic antigen (CEA), and the 10 HER2-expressing cancer cells. Based on this amplified strategy, a 100-fold decrease of detection limit was achieved for DNA by improving the number of platinum nanoparticle catalyst for the captured analyte. This quantitation platform can also distinguish single base mismatch of DNA hybridization and observe the concentration threshold of CEA. The new strategy lays the foundation for this quantitation platform to be applied in forensic analysis, biothreat detection, clinical diagnostics and drug screening. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Copula based prediction models: an application to an aortic regurgitation study

    PubMed Central

    Kumar, Pranesh; Shoukri, Mohamed M

    2007-01-01

    Background: An important issue in prediction modeling of multivariate data is the measure of dependence structure. The use of Pearson's correlation as a dependence measure has several pitfalls and hence application of regression prediction models based on this correlation may not be an appropriate methodology. As an alternative, a copula based methodology for prediction modeling and an algorithm to simulate data are proposed. Methods: The method consists of introducing copulas as an alternative to the correlation coefficient commonly used as a measure of dependence. An algorithm based on the marginal distributions of random variables is applied to construct the Archimedean copulas. Monte Carlo simulations are carried out to replicate datasets, estimate prediction model parameters and validate them using Lin's concordance measure. Results: We have carried out a correlation-based regression analysis on data from 20 patients aged 17–82 years on pre-operative and post-operative ejection fractions after surgery and estimated the prediction model: Post-operative ejection fraction = - 0.0658 + 0.8403 (Pre-operative ejection fraction); p = 0.0008; 95% confidence interval of the slope coefficient (0.3998, 1.2808). From the exploratory data analysis, it is noted that both the pre-operative and post-operative ejection fractions measurements have slight departures from symmetry and are skewed to the left. It is also noted that the measurements tend to be widely spread and have shorter tails compared to normal distribution. Therefore predictions made from the correlation-based model corresponding to the pre-operative ejection fraction measurements in the lower range may not be accurate. Further it is found that the best approximated marginal distributions of pre-operative and post-operative ejection fractions (using q-q plots) are gamma distributions. The copula based prediction model is estimated as: Post -operative ejection fraction = - 0.0933 + 0.8907 × (Pre

  12. Prospective evaluation of risk of vertebral fractures using quantitative ultrasound measurements and bone mineral density in a population-based sample of postmenopausal women: results of the Basel Osteoporosis Study.

    PubMed

    Hollaender, R; Hartl, F; Krieg, M-A; Tyndall, A; Geuckel, C; Buitrago-Tellez, C; Manghani, M; Kraenzlin, M; Theiler, R; Hans, D

    2009-03-01

    Prospective studies have shown that quantitative ultrasound (QUS) techniques predict the risk of fracture of the proximal femur with similar standardised risk ratios to dual-energy x-ray absorptiometry (DXA). Few studies have investigated these devices for the prediction of vertebral fractures. The Basel Osteoporosis Study (BOS) is a population-based prospective study to assess the performance of QUS devices and DXA in predicting incident vertebral fractures. 432 women aged 60-80 years were followed-up for 3 years. Incident vertebral fractures were assessed radiologically. Bone measurements using DXA (spine and hip) and QUS measurements (calcaneus and proximal phalanges) were performed. Measurements were assessed for their value in predicting incident vertebral fractures using logistic regression. QUS measurements at the calcaneus and DXA measurements discriminated between women with and without incident vertebral fracture, (20% height reduction). The relative risks (RRs) for vertebral fracture, adjusted for age, were 2.3 for the Stiffness Index (SI) and 2.8 for the Quantitative Ultrasound Index (QUI) at the calcaneus and 2.0 for bone mineral density at the lumbar spine. The predictive value (AUC (95% CI)) of QUS measurements at the calcaneus remained highly significant (0.70 for SI, 0.72 for the QUI, and 0.67 for DXA at the lumbar spine) even after adjustment for other confounding variables. QUS of the calcaneus and bone mineral density measurements were shown to be significant predictors of incident vertebral fracture. The RRs for QUS measurements at the calcaneus are of similar magnitude as for DXA measurements.

  13. Weather Prediction Center (WPC) Home Page

    Science.gov Websites

    grids, quantitative precipitation, and winter weather outlook probabilities can be found at: http Short Range Products » More Medium Range Products Quantitative Precipitation Forecasts Legacy Page Discussion (Day 1-3) Quantitative Precipitation Forecast Discussion NWS Weather Prediction Center College

  14. The mathematics of cancer: integrating quantitative models.

    PubMed

    Altrock, Philipp M; Liu, Lin L; Michor, Franziska

    2015-12-01

    Mathematical modelling approaches have become increasingly abundant in cancer research. The complexity of cancer is well suited to quantitative approaches as it provides challenges and opportunities for new developments. In turn, mathematical modelling contributes to cancer research by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. The recent expansion of quantitative models addresses many questions regarding tumour initiation, progression and metastases as well as intra-tumour heterogeneity, treatment responses and resistance. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving tumorigenesis and shape future research in cancer biology.

  15. Multi-allelic haplotype model based on genetic partition for genomic prediction and variance component estimation using SNP markers.

    PubMed

    Da, Yang

    2015-12-18

    method based on the quantitative genetics model towards the utilization of functional and structural genomic information for genomic prediction and estimation.

  16. An object programming based environment for protein secondary structure prediction.

    PubMed

    Giacomini, M; Ruggiero, C; Sacile, R

    1996-01-01

    The most frequently used methods for protein secondary structure prediction are empirical statistical methods and rule based methods. A consensus system based on object-oriented programming is presented, which integrates the two approaches with the aim of improving the prediction quality. This system uses an object-oriented knowledge representation based on the concepts of conformation, residue and protein, where the conformation class is the basis, the residue class derives from it and the protein class derives from the residue class. The system has been tested with satisfactory results on several proteins of the Brookhaven Protein Data Bank. Its results have been compared with the results of the most widely used prediction methods, and they show a higher prediction capability and greater stability. Moreover, the system itself provides an index of the reliability of its current prediction. This system can also be regarded as a basis structure for programs of this kind.

  17. Structure-Based Predictions of Activity Cliffs

    PubMed Central

    Husby, Jarmila; Bottegoni, Giovanni; Kufareva, Irina; Abagyan, Ruben; Cavalli, Andrea

    2015-01-01

    In drug discovery, it is generally accepted that neighboring molecules in a given descriptors' space display similar activities. However, even in regions that provide strong predictability, structurally similar molecules can occasionally display large differences in potency. In QSAR jargon, these discontinuities in the activity landscape are known as ‘activity cliffs’. In this study, we assessed the reliability of ligand docking and virtual ligand screening schemes in predicting activity cliffs. We performed our calculations on a diverse, independently collected database of cliff-forming co-crystals. Starting from ideal situations, which allowed us to establish our baseline, we progressively moved toward simulating more realistic scenarios. Ensemble- and template-docking achieved a significant level of accuracy, suggesting that, despite the well-known limitations of empirical scoring schemes, activity cliffs can be accurately predicted by advanced structure-based methods. PMID:25918827

  18. An Alu-based, MGB Eclipse real-time PCR method for quantitation of human DNA in forensic samples.

    PubMed

    Nicklas, Janice A; Buel, Eric

    2005-09-01

    The forensic community needs quick, reliable methods to quantitate human DNA in crime scene samples to replace the laborious and imprecise slot blot method. A real-time PCR based method has the possibility of allowing development of a faster and more quantitative assay. Alu sequences are primate-specific and are found in many copies in the human genome, making these sequences an excellent target or marker for human DNA. This paper describes the development of a real-time Alu sequence-based assay using MGB Eclipse primers and probes. The advantages of this assay are simplicity, speed, less hands-on-time and automated quantitation, as well as a large dynamic range (128 ng/microL to 0.5 pg/microL).

  19. Optimized protocol for quantitative multiple reaction monitoring-based proteomic analysis of formalin-fixed, paraffin embedded tissues

    PubMed Central

    Kennedy, Jacob J.; Whiteaker, Jeffrey R.; Schoenherr, Regine M.; Yan, Ping; Allison, Kimberly; Shipley, Melissa; Lerch, Melissa; Hoofnagle, Andrew N.; Baird, Geoffrey Stuart; Paulovich, Amanda G.

    2016-01-01

    Despite a clinical, economic, and regulatory imperative to develop companion diagnostics, precious few new biomarkers have been successfully translated into clinical use, due in part to inadequate protein assay technologies to support large-scale testing of hundreds of candidate biomarkers in formalin-fixed paraffin embedded (FFPE) tissues. While the feasibility of using targeted, multiple reaction monitoring-mass spectrometry (MRM-MS) for quantitative analyses of FFPE tissues has been demonstrated, protocols have not been systematically optimized for robust quantification across a large number of analytes, nor has the performance of peptide immuno-MRM been evaluated. To address this gap, we used a test battery approach coupled to MRM-MS with the addition of stable isotope labeled standard peptides (targeting 512 analytes) to quantitatively evaluate the performance of three extraction protocols in combination with three trypsin digestion protocols (i.e. 9 processes). A process based on RapiGest buffer extraction and urea-based digestion was identified to enable similar quantitation results from FFPE and frozen tissues. Using the optimized protocols for MRM-based analysis of FFPE tissues, median precision was 11.4% (across 249 analytes). There was excellent correlation between measurements made on matched FFPE and frozen tissues, both for direct MRM analysis (R2 = 0.94) and immuno-MRM (R2 = 0.89). The optimized process enables highly reproducible, multiplex, standardizable, quantitative MRM in archival tissue specimens. PMID:27462933

  20. Improving membrane based multiplex immunoassays for semi-quantitative detection of multiple cytokines in a single sample

    PubMed Central

    2014-01-01

    Background Inflammatory mediators can serve as biomarkers for the monitoring of the disease progression or prognosis in many conditions. In the present study we introduce an adaptation of a membrane-based technique in which the level of up to 40 cytokines and chemokines can be determined in both human and rodent blood in a semi-quantitative way. The planar assay was modified using the LI-COR (R) detection system (fluorescence based) rather than chemiluminescence and semi-quantitative outcomes were achieved by normalizing the outcomes using the automated exposure settings of the Odyssey readout device. The results were compared to the gold standard assay, namely ELISA. Results The improved planar assay allowed the detection of a considerably higher number of analytes (n = 30 and n = 5 for fluorescent and chemiluminescent detection, respectively). The improved planar method showed high sensitivity up to 17 pg/ml and a linear correlation of the normalized fluorescence intensity with the results from the ELISA (r = 0.91). Conclusions The results show that the membrane-based technique is a semi-quantitative assay that correlates satisfactorily to the gold standard when enhanced by the use of fluorescence and subsequent semi-quantitative analysis. This promising technique can be used to investigate inflammatory profiles in multiple conditions, particularly in studies with constraints in sample sizes and/or budget. PMID:25022797

  1. Omics AnalySIs System for PRecision Oncology (OASISPRO): A Web-based Omics Analysis Tool for Clinical Phenotype Prediction.

    PubMed

    Yu, Kun-Hsing; Fitzpatrick, Michael R; Pappas, Luke; Chan, Warren; Kung, Jessica; Snyder, Michael

    2017-09-12

    Precision oncology is an approach that accounts for individual differences to guide cancer management. Omics signatures have been shown to predict clinical traits for cancer patients. However, the vast amount of omics information poses an informatics challenge in systematically identifying patterns associated with health outcomes, and no general-purpose data-mining tool exists for physicians, medical researchers, and citizen scientists without significant training in programming and bioinformatics. To bridge this gap, we built the Omics AnalySIs System for PRecision Oncology (OASISPRO), a web-based system to mine the quantitative omics information from The Cancer Genome Atlas (TCGA). This system effectively visualizes patients' clinical profiles, executes machine-learning algorithms of choice on the omics data, and evaluates the prediction performance using held-out test sets. With this tool, we successfully identified genes strongly associated with tumor stage, and accurately predicted patients' survival outcomes in many cancer types, including mesothelioma and adrenocortical carcinoma. By identifying the links between omics and clinical phenotypes, this system will facilitate omics studies on precision cancer medicine and contribute to establishing personalized cancer treatment plans. This web-based tool is available at http://tinyurl.com/oasispro ;source codes are available at http://tinyurl.com/oasisproSourceCode . © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. Selecting the minimum prediction base of historical data to perform 5-year predictions of the cancer burden: The GoF-optimal method.

    PubMed

    Valls, Joan; Castellà, Gerard; Dyba, Tadeusz; Clèries, Ramon

    2015-06-01

    Predicting the future burden of cancer is a key issue for health services planning, where a method for selecting the predictive model and the prediction base is a challenge. A method, named here Goodness-of-Fit optimal (GoF-optimal), is presented to determine the minimum prediction base of historical data to perform 5-year predictions of the number of new cancer cases or deaths. An empirical ex-post evaluation exercise for cancer mortality data in Spain and cancer incidence in Finland using simple linear and log-linear Poisson models was performed. Prediction bases were considered within the time periods 1951-2006 in Spain and 1975-2007 in Finland, and then predictions were made for 37 and 33 single years in these periods, respectively. The performance of three fixed different prediction bases (last 5, 10, and 20 years of historical data) was compared to that of the prediction base determined by the GoF-optimal method. The coverage (COV) of the 95% prediction interval and the discrepancy ratio (DR) were calculated to assess the success of the prediction. The results showed that (i) models using the prediction base selected through GoF-optimal method reached the highest COV and the lowest DR and (ii) the best alternative strategy to GoF-optimal was the one using the base of prediction of 5-years. The GoF-optimal approach can be used as a selection criterion in order to find an adequate base of prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. "Standards"-Based Mathematics Curricula and the Promotion of Quantitative Literacy in Elementary School

    ERIC Educational Resources Information Center

    Wilkins, Jesse L. M.

    2015-01-01

    Background: Prior research has shown that students taught using "Standards"-based mathematics curricula tend to outperform students on measures of mathematics achievement. However, little research has focused particularly on the promotion of student quantitative literacy (QLT). In this study, the potential influence of the…

  4. Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Muldoon, Timothy J.; Thekkek, Nadhi; Roblyer, Darren; Maru, Dipen; Harpaz, Noam; Potack, Jonathan; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2010-03-01

    Early detection of neoplasia in patients with Barrett's esophagus is essential to improve outcomes. The aim of this ex vivo study was to evaluate the ability of high-resolution microendoscopic imaging and quantitative image analysis to identify neoplastic lesions in patients with Barrett's esophagus. Nine patients with pathologically confirmed Barrett's esophagus underwent endoscopic examination with biopsies or endoscopic mucosal resection. Resected fresh tissue was imaged with fiber bundle microendoscopy; images were analyzed by visual interpretation or by quantitative image analysis to predict whether the imaged sites were non-neoplastic or neoplastic. The best performing pair of quantitative features were chosen based on their ability to correctly classify the data into the two groups. Predictions were compared to the gold standard of histopathology. Subjective analysis of the images by expert clinicians achieved average sensitivity and specificity of 87% and 61%, respectively. The best performing quantitative classification algorithm relied on two image textural features and achieved a sensitivity and specificity of 87% and 85%, respectively. This ex vivo pilot trial demonstrates that quantitative analysis of images obtained with a simple microendoscope system can distinguish neoplasia in Barrett's esophagus with good sensitivity and specificity when compared to histopathology and to subjective image interpretation.

  5. Empirical Prediction of Aircraft Landing Gear Noise

    NASA Technical Reports Server (NTRS)

    Golub, Robert A. (Technical Monitor); Guo, Yue-Ping

    2005-01-01

    This report documents a semi-empirical/semi-analytical method for landing gear noise prediction. The method is based on scaling laws of the theory of aerodynamic noise generation and correlation of these scaling laws with current available test data. The former gives the method a sound theoretical foundation and the latter quantitatively determines the relations between the parameters of the landing gear assembly and the far field noise, enabling practical predictions of aircraft landing gear noise, both for parametric trends and for absolute noise levels. The prediction model is validated by wind tunnel test data for an isolated Boeing 737 landing gear and by flight data for the Boeing 777 airplane. In both cases, the predictions agree well with data, both in parametric trends and in absolute noise levels.

  6. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers.

    PubMed

    Crossa, José; Campos, Gustavo de Los; Pérez, Paulino; Gianola, Daniel; Burgueño, Juan; Araus, José Luis; Makumbi, Dan; Singh, Ravi P; Dreisigacker, Susanne; Yan, Jianbing; Arief, Vivi; Banziger, Marianne; Braun, Hans-Joachim

    2010-10-01

    The availability of dense molecular markers has made possible the use of genomic selection (GS) for plant breeding. However, the evaluation of models for GS in real plant populations is very limited. This article evaluates the performance of parametric and semiparametric models for GS using wheat (Triticum aestivum L.) and maize (Zea mays) data in which different traits were measured in several environmental conditions. The findings, based on extensive cross-validations, indicate that models including marker information had higher predictive ability than pedigree-based models. In the wheat data set, and relative to a pedigree model, gains in predictive ability due to inclusion of markers ranged from 7.7 to 35.7%. Correlation between observed and predictive values in the maize data set achieved values up to 0.79. Estimates of marker effects were different across environmental conditions, indicating that genotype × environment interaction is an important component of genetic variability. These results indicate that GS in plant breeding can be an effective strategy for selecting among lines whose phenotypes have yet to be observed.

  7. PREDICTING SUBSURFACE CONTAMINANT TRANSPORT AND TRANSFORMATION: CONSIDERATIONS FOR MODEL SELECTION AND FIELD VALIDATION

    EPA Science Inventory

    Predicting subsurface contaminant transport and transformation requires mathematical models based on a variety of physical, chemical, and biological processes. The mathematical model is an attempt to quantitatively describe observed processes in order to permit systematic forecas...

  8. Quantitative characterization of genetic parts and circuits for plant synthetic biology.

    PubMed

    Schaumberg, Katherine A; Antunes, Mauricio S; Kassaw, Tessema K; Xu, Wenlong; Zalewski, Christopher S; Medford, June I; Prasad, Ashok

    2016-01-01

    Plant synthetic biology promises immense technological benefits, including the potential development of a sustainable bio-based economy through the predictive design of synthetic gene circuits. Such circuits are built from quantitatively characterized genetic parts; however, this characterization is a significant obstacle in work with plants because of the time required for stable transformation. We describe a method for rapid quantitative characterization of genetic plant parts using transient expression in protoplasts and dual luciferase outputs. We observed experimental variability in transient-expression assays and developed a mathematical model to describe, as well as statistical normalization methods to account for, this variability, which allowed us to extract quantitative parameters. We characterized >120 synthetic parts in Arabidopsis and validated our method by comparing transient expression with expression in stably transformed plants. We also tested >100 synthetic parts in sorghum (Sorghum bicolor) protoplasts, and the results showed that our method works in diverse plant groups. Our approach enables the construction of tunable gene circuits in complex eukaryotic organisms.

  9. Development and application of absolute quantitative detection by duplex chamber-based digital PCR of genetically modified maize events without pretreatment steps.

    PubMed

    Zhu, Pengyu; Fu, Wei; Wang, Chenguang; Du, Zhixin; Huang, Kunlun; Zhu, Shuifang; Xu, Wentao

    2016-04-15

    The possibility of the absolute quantitation of GMO events by digital PCR was recently reported. However, most absolute quantitation methods based on the digital PCR required pretreatment steps. Meanwhile, singleplex detection could not meet the demand of the absolute quantitation of GMO events that is based on the ratio of foreign fragments and reference genes. Thus, to promote the absolute quantitative detection of different GMO events by digital PCR, we developed a quantitative detection method based on duplex digital PCR without pretreatment. Moreover, we tested 7 GMO events in our study to evaluate the fitness of our method. The optimized combination of foreign and reference primers, limit of quantitation (LOQ), limit of detection (LOD) and specificity were validated. The results showed that the LOQ of our method for different GMO events was 0.5%, while the LOD is 0.1%. Additionally, we found that duplex digital PCR could achieve the detection results with lower RSD compared with singleplex digital PCR. In summary, the duplex digital PCR detection system is a simple and stable way to achieve the absolute quantitation of different GMO events. Moreover, the LOQ and LOD indicated that this method is suitable for the daily detection and quantitation of GMO events. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Trainee and Instructor Task Quantification: Development of Quantitative Indices and a Predictive Methodology.

    ERIC Educational Resources Information Center

    Whaton, George R.; And Others

    As the first step in a program to develop quantitative techniques for prescribing the design and use of training systems, the present study attempted: to compile an initial set of quantitative indices, to determine whether these indices could be used to describe a sample of trainee tasks and differentiate among them, to develop a predictive…

  11. An augmented classical least squares method for quantitative Raman spectral analysis against component information loss.

    PubMed

    Zhou, Yan; Cao, Hui

    2013-01-01

    We propose an augmented classical least squares (ACLS) calibration method for quantitative Raman spectral analysis against component information loss. The Raman spectral signals with low analyte concentration correlations were selected and used as the substitutes for unknown quantitative component information during the CLS calibration procedure. The number of selected signals was determined by using the leave-one-out root-mean-square error of cross-validation (RMSECV) curve. An ACLS model was built based on the augmented concentration matrix and the reference spectral signal matrix. The proposed method was compared with partial least squares (PLS) and principal component regression (PCR) using one example: a data set recorded from an experiment of analyte concentration determination using Raman spectroscopy. A 2-fold cross-validation with Venetian blinds strategy was exploited to evaluate the predictive power of the proposed method. The one-way variance analysis (ANOVA) was used to access the predictive power difference between the proposed method and existing methods. Results indicated that the proposed method is effective at increasing the robust predictive power of traditional CLS model against component information loss and its predictive power is comparable to that of PLS or PCR.

  12. Effect of experimental design on the prediction performance of calibration models based on near-infrared spectroscopy for pharmaceutical applications.

    PubMed

    Bondi, Robert W; Igne, Benoît; Drennen, James K; Anderson, Carl A

    2012-12-01

    Near-infrared spectroscopy (NIRS) is a valuable tool in the pharmaceutical industry, presenting opportunities for online analyses to achieve real-time assessment of intermediates and finished dosage forms. The purpose of this work was to investigate the effect of experimental designs on prediction performance of quantitative models based on NIRS using a five-component formulation as a model system. The following experimental designs were evaluated: five-level, full factorial (5-L FF); three-level, full factorial (3-L FF); central composite; I-optimal; and D-optimal. The factors for all designs were acetaminophen content and the ratio of microcrystalline cellulose to lactose monohydrate. Other constituents included croscarmellose sodium and magnesium stearate (content remained constant). Partial least squares-based models were generated using data from individual experimental designs that related acetaminophen content to spectral data. The effect of each experimental design was evaluated by determining the statistical significance of the difference in bias and standard error of the prediction for that model's prediction performance. The calibration model derived from the I-optimal design had similar prediction performance as did the model derived from the 5-L FF design, despite containing 16 fewer design points. It also outperformed all other models estimated from designs with similar or fewer numbers of samples. This suggested that experimental-design selection for calibration-model development is critical, and optimum performance can be achieved with efficient experimental designs (i.e., optimal designs).

  13. A High Performance Cloud-Based Protein-Ligand Docking Prediction Algorithm

    PubMed Central

    Chen, Jui-Le; Yang, Chu-Sing

    2013-01-01

    The potential of predicting druggability for a particular disease by integrating biological and computer science technologies has witnessed success in recent years. Although the computer science technologies can be used to reduce the costs of the pharmaceutical research, the computation time of the structure-based protein-ligand docking prediction is still unsatisfied until now. Hence, in this paper, a novel docking prediction algorithm, named fast cloud-based protein-ligand docking prediction algorithm (FCPLDPA), is presented to accelerate the docking prediction algorithm. The proposed algorithm works by leveraging two high-performance operators: (1) the novel migration (information exchange) operator is designed specially for cloud-based environments to reduce the computation time; (2) the efficient operator is aimed at filtering out the worst search directions. Our simulation results illustrate that the proposed method outperforms the other docking algorithms compared in this paper in terms of both the computation time and the quality of the end result. PMID:23762864

  14. A general framework for multivariate multi-index drought prediction based on Multivariate Ensemble Streamflow Prediction (MESP)

    NASA Astrophysics Data System (ADS)

    Hao, Zengchao; Hao, Fanghua; Singh, Vijay P.

    2016-08-01

    Drought is among the costliest natural hazards worldwide and extreme drought events in recent years have caused huge losses to various sectors. Drought prediction is therefore critically important for providing early warning information to aid decision making to cope with drought. Due to the complicated nature of drought, it has been recognized that the univariate drought indicator may not be sufficient for drought characterization and hence multivariate drought indices have been developed for drought monitoring. Alongside the substantial effort in drought monitoring with multivariate drought indices, it is of equal importance to develop a drought prediction method with multivariate drought indices to integrate drought information from various sources. This study proposes a general framework for multivariate multi-index drought prediction that is capable of integrating complementary prediction skills from multiple drought indices. The Multivariate Ensemble Streamflow Prediction (MESP) is employed to sample from historical records for obtaining statistical prediction of multiple variables, which is then used as inputs to achieve multivariate prediction. The framework is illustrated with a linearly combined drought index (LDI), which is a commonly used multivariate drought index, based on climate division data in California and New York in the United States with different seasonality of precipitation. The predictive skill of LDI (represented with persistence) is assessed by comparison with the univariate drought index and results show that the LDI prediction skill is less affected by seasonality than the meteorological drought prediction based on SPI. Prediction results from the case study show that the proposed multivariate drought prediction outperforms the persistence prediction, implying a satisfactory performance of multivariate drought prediction. The proposed method would be useful for drought prediction to integrate drought information from various sources

  15. Highly Reproducible Label Free Quantitative Proteomic Analysis of RNA Polymerase Complexes*

    PubMed Central

    Mosley, Amber L.; Sardiu, Mihaela E.; Pattenden, Samantha G.; Workman, Jerry L.; Florens, Laurence; Washburn, Michael P.

    2011-01-01

    The use of quantitative proteomics methods to study protein complexes has the potential to provide in-depth information on the abundance of different protein components as well as their modification state in various cellular conditions. To interrogate protein complex quantitation using shotgun proteomic methods, we have focused on the analysis of protein complexes using label-free multidimensional protein identification technology and studied the reproducibility of biological replicates. For these studies, we focused on three highly related and essential multi-protein enzymes, RNA polymerase I, II, and III from Saccharomyces cerevisiae. We found that label-free quantitation using spectral counting is highly reproducible at the protein and peptide level when analyzing RNA polymerase I, II, and III. In addition, we show that peptide sampling does not follow a random sampling model, and we show the need for advanced computational models to predict peptide detection probabilities. In order to address these issues, we used the APEX protocol to model the expected peptide detectability based on whole cell lysate acquired using the same multidimensional protein identification technology analysis used for the protein complexes. Neither method was able to predict the peptide sampling levels that we observed using replicate multidimensional protein identification technology analyses. In addition to the analysis of the RNA polymerase complexes, our analysis provides quantitative information about several RNAP associated proteins including the RNAPII elongation factor complexes DSIF and TFIIF. Our data shows that DSIF and TFIIF are the most highly enriched RNAP accessory factors in Rpb3-TAP purifications and demonstrate our ability to measure low level associated protein abundance across biological replicates. In addition, our quantitative data supports a model in which DSIF and TFIIF interact with RNAPII in a dynamic fashion in agreement with previously published reports. PMID

  16. Prediction-based Dynamic Energy Management in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei

    2007-01-01

    Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.

  17. A Pilot Comparative Study of Quantitative Ultrasound, Conventional Ultrasound, and MRI for Predicting Histology-Determined Steatosis Grade in Adult Nonalcoholic Fatty Liver Disease

    PubMed Central

    Paige, Jeremy S.; Bernstein, Gregory S.; Heba, Elhamy; Costa, Eduardo A. C.; Fereirra, Marilia; Wolfson, Tanya; Gamst, Anthony C.; Valasek, Mark A.; Lin, Grace Y.; Han, Aiguo; Erdman, John W.; O’Brien, William D.; Andre, Michael P.; Loomba, Rohit; Sirlin, Claude B.

    2017-01-01

    OBJECTIVE The purpose of this study is to explore the diagnostic performance of two investigational quantitative ultrasound (QUS) parameters, attenuation coefficient and backscatter coefficient, in comparison with conventional ultrasound (CUS) and MRI-estimated proton density fat fraction (PDFF) for predicting histology-confirmed steatosis grade in adults with nonalcoholic fatty liver disease (NAFLD). SUBJECTS AND METHODS In this prospectively designed pilot study, 61 adults with histology-confirmed NAFLD were enrolled from September 2012 to February 2014. Subjects underwent QUS, CUS, and MRI examinations within 100 days of clinical-care liver biopsy. QUS parameters (attenuation coefficient and backscatter coefficient) were estimated using a reference phantom technique by two analysts independently. Three-point ordinal CUS scores intended to predict steatosis grade (1, 2, or 3) were generated independently by two radiologists on the basis of QUS features. PDFF was estimated using an advanced chemical shift–based MRI technique. Using histologic examination as the reference standard, ROC analysis was performed. Optimal attenuation coefficient, backscatter coefficient, and PDFF cutoff thresholds were identified, and the accuracy of attenuation coefficient, backscatter coefficient, PDFF, and CUS to predict steatosis grade was determined. Interobserver agreement for attenuation coefficient, backscatter coefficient, and CUS was analyzed. RESULTS CUS had 51.7% grading accuracy. The raw and cross-validated steatosis grading accuracies were 61.7% and 55.0%, respectively, for attenuation coefficient, 68.3% and 68.3% for backscatter coefficient, and 76.7% and 71.3% for MRI-estimated PDFF. Interobserver agreements were 53.3% for CUS (κ = 0.61), 90.0% for attenuation coefficient (κ = 0.87), and 71.7% for backscatter coefficient (κ = 0.82) (p < 0.0001 for all). CONCLUSION Preliminary observations suggest that QUS parameters may be more accurate and provide higher

  18. A Pilot Comparative Study of Quantitative Ultrasound, Conventional Ultrasound, and MRI for Predicting Histology-Determined Steatosis Grade in Adult Nonalcoholic Fatty Liver Disease.

    PubMed

    Paige, Jeremy S; Bernstein, Gregory S; Heba, Elhamy; Costa, Eduardo A C; Fereirra, Marilia; Wolfson, Tanya; Gamst, Anthony C; Valasek, Mark A; Lin, Grace Y; Han, Aiguo; Erdman, John W; O'Brien, William D; Andre, Michael P; Loomba, Rohit; Sirlin, Claude B

    2017-05-01

    The purpose of this study is to explore the diagnostic performance of two investigational quantitative ultrasound (QUS) parameters, attenuation coefficient and backscatter coefficient, in comparison with conventional ultrasound (CUS) and MRI-estimated proton density fat fraction (PDFF) for predicting histology-confirmed steatosis grade in adults with nonalcoholic fatty liver disease (NAFLD). In this prospectively designed pilot study, 61 adults with histology-confirmed NAFLD were enrolled from September 2012 to February 2014. Subjects underwent QUS, CUS, and MRI examinations within 100 days of clinical-care liver biopsy. QUS parameters (attenuation coefficient and backscatter coefficient) were estimated using a reference phantom technique by two analysts independently. Three-point ordinal CUS scores intended to predict steatosis grade (1, 2, or 3) were generated independently by two radiologists on the basis of QUS features. PDFF was estimated using an advanced chemical shift-based MRI technique. Using histologic examination as the reference standard, ROC analysis was performed. Optimal attenuation coefficient, backscatter coefficient, and PDFF cutoff thresholds were identified, and the accuracy of attenuation coefficient, backscatter coefficient, PDFF, and CUS to predict steatosis grade was determined. Interobserver agreement for attenuation coefficient, backscatter coefficient, and CUS was analyzed. CUS had 51.7% grading accuracy. The raw and cross-validated steatosis grading accuracies were 61.7% and 55.0%, respectively, for attenuation coefficient, 68.3% and 68.3% for backscatter coefficient, and 76.7% and 71.3% for MRI-estimated PDFF. Interobserver agreements were 53.3% for CUS (κ = 0.61), 90.0% for attenuation coefficient (κ = 0.87), and 71.7% for backscatter coefficient (κ = 0.82) (p < 0.0001 for all). Preliminary observations suggest that QUS parameters may be more accurate and provide higher interobserver agreement than CUS for predicting hepatic

  19. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology.

    PubMed

    Rao, Rohit T; Scherholz, Megerle L; Hartmanshenn, Clara; Bae, Seul-A; Androulakis, Ioannis P

    2017-12-05

    The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.

  20. Fusing Quantitative Requirements Analysis with Model-based Systems Engineering

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven

    2006-01-01

    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.

  1. Predicting the activity of drugs for a group of imidazopyridine anticoccidial compounds.

    PubMed

    Si, Hongzong; Lian, Ning; Yuan, Shuping; Fu, Aiping; Duan, Yun-Bo; Zhang, Kejun; Yao, Xiaojun

    2009-10-01

    Gene expression programming (GEP) is a novel machine learning technique. The GEP is used to build nonlinear quantitative structure-activity relationship model for the prediction of the IC(50) for the imidazopyridine anticoccidial compounds. This model is based on descriptors which are calculated from the molecular structure. Four descriptors are selected from the descriptors' pool by heuristic method (HM) to build multivariable linear model. The GEP method produced a nonlinear quantitative model with a correlation coefficient and a mean error of 0.96 and 0.24 for the training set, 0.91 and 0.52 for the test set, respectively. It is shown that the GEP predicted results are in good agreement with experimental ones.

  2. Comparison of culture-based, vital stain and PMA-qPCR methods for the quantitative detection of viable hookworm ova.

    PubMed

    Gyawali, P; Sidhu, J P S; Ahmed, W; Jagals, P; Toze, S

    2017-06-01

    Accurate quantitative measurement of viable hookworm ova from environmental samples is the key to controlling hookworm re-infections in the endemic regions. In this study, the accuracy of three quantitative detection methods [culture-based, vital stain and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR)] was evaluated by enumerating 1,000 ± 50 Ancylostoma caninum ova in the laboratory. The culture-based method was able to quantify an average of 397 ± 59 viable hookworm ova. Similarly, vital stain and PMA-qPCR methods quantified 644 ± 87 and 587 ± 91 viable ova, respectively. The numbers of viable ova estimated by the culture-based method were significantly (P < 0.05) lower than vital stain and PMA-qPCR methods. Therefore, both PMA-qPCR and vital stain methods appear to be suitable for the quantitative detection of viable hookworm ova. However, PMA-qPCR would be preferable over the vital stain method in scenarios where ova speciation is needed.

  3. Conformal Regression for Quantitative Structure-Activity Relationship Modeling-Quantifying Prediction Uncertainty.

    PubMed

    Svensson, Fredrik; Aniceto, Natalia; Norinder, Ulf; Cortes-Ciriano, Isidro; Spjuth, Ola; Carlsson, Lars; Bender, Andreas

    2018-05-29

    Making predictions with an associated confidence is highly desirable as it facilitates decision making and resource prioritization. Conformal regression is a machine learning framework that allows the user to define the required confidence and delivers predictions that are guaranteed to be correct to the selected extent. In this study, we apply conformal regression to model molecular properties and bioactivity values and investigate different ways to scale the resultant prediction intervals to create as efficient (i.e., narrow) regressors as possible. Different algorithms to estimate the prediction uncertainty were used to normalize the prediction ranges, and the different approaches were evaluated on 29 publicly available data sets. Our results show that the most efficient conformal regressors are obtained when using the natural exponential of the ensemble standard deviation from the underlying random forest to scale the prediction intervals, but other approaches were almost as efficient. This approach afforded an average prediction range of 1.65 pIC50 units at the 80% confidence level when applied to bioactivity modeling. The choice of nonconformity function has a pronounced impact on the average prediction range with a difference of close to one log unit in bioactivity between the tightest and widest prediction range. Overall, conformal regression is a robust approach to generate bioactivity predictions with associated confidence.

  4. A micromechanics-based strength prediction methodology for notched metal matrix composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1992-01-01

    An analytical micromechanics based strength prediction methodology was developed to predict failure of notched metal matrix composites. The stress-strain behavior and notched strength of two metal matrix composites, boron/aluminum (B/Al) and silicon-carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three dimensional finite element analysis of a notched specimen to a micromechanical model of a single fiber. In the B/Al laminates, a fiber failure criteria based on the axial and shear stress in the fiber accurately predicted laminate failure for a variety of layups and notch-length to specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fiber failure based on the axial stress in the fiber correlated well with experimental results for static and post fatigue residual strengths when fiber matrix debonding and matrix cracking were included in the analysis. The micromechanics based strength prediction methodology offers a direct approach to strength prediction by modeling behavior and damage on a constituent level, thus, explicitly including matrix nonlinearity, fiber matrix debonding, and matrix cracking.

  5. A micromechanics-based strength prediction methodology for notched metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1993-01-01

    An analytical micromechanics-based strength prediction methodology was developed to predict failure of notched metal matrix composites. The stress-strain behavior and notched strength of two metal matrix composites, boron/aluminum (B/Al) and silicon-carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three-dimensional finite element analysis of a notched specimen to a micromechanical model of a single fiber. In the B/Al laminates, a fiber failure criteria based on the axial and shear stress in the fiber accurately predicted laminate failure for a variety of layups and notch-length to specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fiber failure based on the axial stress in the fiber correlated well with experimental results for static and postfatigue residual strengths when fiber matrix debonding and matrix cracking were included in the analysis. The micromechanics-based strength prediction methodology offers a direct approach to strength prediction by modeling behavior and damage on a constituent level, thus, explicitly including matrix nonlinearity, fiber matrix debonding, and matrix cracking.

  6. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure-activity relationship.

    PubMed

    Wang, Hui; Jiang, Mingyue; Li, Shujun; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo

    2017-09-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure-activity relationships (QSARs) for CAAS compounds against Aspergillus niger ( A. niger ) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models ( R 2  = 0.9346 for A. niger , R 2  = 0.9590 for P. citrinum, ) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi.

  7. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    PubMed Central

    Wang, Hui; Jiang, Mingyue; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models (R2 = 0.9346 for A. niger, R2 = 0.9590 for P. citrinum,) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi. PMID:28989758

  8. Quantitative assessment of background parenchymal enhancement in breast magnetic resonance images predicts the risk of breast cancer.

    PubMed

    Hu, Xiaoxin; Jiang, Luan; Li, Qiang; Gu, Yajia

    2017-02-07

    The objective of this study was to evaluate the association betweenthe quantitative assessment of background parenchymal enhancement rate (BPER) and breast cancer. From 14,033 consecutive patients who underwent breast MRI in our center, we randomly selected 101 normal controls. Then, we selected 101 women with benign breast lesions and 101 women with breast cancer who were matched for age and menstruation status. We evaluated BPER at early (2 minutes), medium (4 minutes) and late (6 minutes) enhanced time phases of breast MRI for quantitative assessment. Odds ratios (ORs) for risk of breast cancer were calculated using the receiver operating curve. The BPER increased in a time-dependent manner after enhancement in both premenopausal and postmenopausal women. Premenopausal women had higher BPER than postmenopausal women at early, medium and late enhanced phases. In the normal population, the OR for probability of breast cancer for premenopausal women with high BPER was 4.1 (95% CI: 1.7-9.7) and 4.6 (95% CI: 1.7-12.0) for postmenopausal women. The OR of breast cancer morbidity in premenopausal women with high BPER was 2.6 (95% CI: 1.1-6.4) and 2.8 (95% CI: 1.2-6.1) for postmenopausal women. The BPER was found to be a predictive factor of breast cancer morbidity. Different time phases should be used to assess BPER in premenopausal and postmenopausal women.

  9. Contrast-enhanced spectral mammography based on a photon-counting detector: quantitative accuracy and radiation dose

    NASA Astrophysics Data System (ADS)

    Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Contrast-enhanced mammography has been used to demonstrate functional information about a breast tumor by injecting contrast agents. However, a conventional technique with a single exposure degrades the efficiency of tumor detection due to structure overlapping. Dual-energy techniques with energy-integrating detectors (EIDs) also cause an increase of radiation dose and an inaccuracy of material decomposition due to the limitations of EIDs. On the other hands, spectral mammography with photon-counting detectors (PCDs) is able to resolve the issues induced by the conventional technique and EIDs using their energy-discrimination capabilities. In this study, the contrast-enhanced spectral mammography based on a PCD was implemented by using a polychromatic dual-energy model, and the proposed technique was compared with the dual-energy technique with an EID in terms of quantitative accuracy and radiation dose. The results showed that the proposed technique improved the quantitative accuracy as well as reduced radiation dose comparing to the dual-energy technique with an EID. The quantitative accuracy of the contrast-enhanced spectral mammography based on a PCD was slightly improved as a function of radiation dose. Therefore, the contrast-enhanced spectral mammography based on a PCD is able to provide useful information for detecting breast tumors and improving diagnostic accuracy.

  10. Magnetic resonance imaging-based measures predictive of short-term surgical outcome in patients with Chiari malformation Type I: a pilot study.

    PubMed

    Alperin, Noam; Loftus, James Ryan; Bagci, Ahmet M; Lee, Sang H; Oliu, Carlos J; Shah, Ashish H; Green, Barth A

    2017-01-01

    OBJECTIVE This study identifies quantitative imaging-based measures in patients with Chiari malformation Type I (CM-I) that are associated with positive outcomes after suboccipital decompression with duraplasty. METHODS Fifteen patients in whom CM-I was newly diagnosed underwent MRI preoperatively and 3 months postoperatively. More than 20 previously described morphological and physiological parameters were derived to assess quantitatively the impact of surgery. Postsurgical clinical outcomes were assessed in 2 ways, based on resolution of the patient's chief complaint and using a modified Chicago Chiari Outcome Scale (CCOS). Statistical analyses were performed to identify measures that were different between the unfavorable- and favorable-outcome cohorts. Multivariate analysis was used to identify the strongest predictors of outcome. RESULTS The strongest physiological parameter predictive of outcome was the preoperative maximal cord displacement in the upper cervical region during the cardiac cycle, which was significantly larger in the favorable-outcome subcohorts for both outcome types (p < 0.05). Several hydrodynamic measures revealed significantly larger preoperative-to-postoperative changes in the favorable-outcome subcohort. Predictor sets for the chief-complaint classification included the cord displacement, percent venous drainage through the jugular veins, and normalized cerebral blood flow with 93.3% accuracy. Maximal cord displacement combined with intracranial volume change predicted outcome based on the modified CCOS classification with similar accuracy. CONCLUSIONS Tested physiological measures were stronger predictors of outcome than the morphological measures in patients with CM-I. Maximal cord displacement and intracranial volume change during the cardiac cycle together with a measure that reflects the cerebral venous drainage pathway emerged as likely predictors of decompression outcome in patients with CM-I.

  11. Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy

    PubMed Central

    Mani, Subramani; Chen, Yukun; Li, Xia; Arlinghaus, Lori; Chakravarthy, A Bapsi; Abramson, Vandana; Bhave, Sandeep R; Levy, Mia A; Xu, Hua; Yankeelov, Thomas E

    2013-01-01

    Objective To employ machine learning methods to predict the eventual therapeutic response of breast cancer patients after a single cycle of neoadjuvant chemotherapy (NAC). Materials and methods Quantitative dynamic contrast-enhanced MRI and diffusion-weighted MRI data were acquired on 28 patients before and after one cycle of NAC. A total of 118 semiquantitative and quantitative parameters were derived from these data and combined with 11 clinical variables. We used Bayesian logistic regression in combination with feature selection using a machine learning framework for predictive model building. Results The best predictive models using feature selection obtained an area under the curve of 0.86 and an accuracy of 0.86, with a sensitivity of 0.88 and a specificity of 0.82. Discussion With the numerous options for NAC available, development of a method to predict response early in the course of therapy is needed. Unfortunately, by the time most patients are found not to be responding, their disease may no longer be surgically resectable, and this situation could be avoided by the development of techniques to assess response earlier in the treatment regimen. The method outlined here is one possible solution to this important clinical problem. Conclusions Predictive modeling approaches based on machine learning using readily available clinical and quantitative MRI data show promise in distinguishing breast cancer responders from non-responders after the first cycle of NAC. PMID:23616206

  12. Rate-Based Model Predictive Control of Turbofan Engine Clearance

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.

    2006-01-01

    An innovative model predictive control strategy is developed for control of nonlinear aircraft propulsion systems and sub-systems. At the heart of the controller is a rate-based linear parameter-varying model that propagates the state derivatives across the prediction horizon, extending prediction fidelity to transient regimes where conventional models begin to lose validity. The new control law is applied to a demanding active clearance control application, where the objectives are to tightly regulate blade tip clearances and also anticipate and avoid detrimental blade-shroud rub occurrences by optimally maintaining a predefined minimum clearance. Simulation results verify that the rate-based controller is capable of satisfying the objectives during realistic flight scenarios where both a conventional Jacobian-based model predictive control law and an unconstrained linear-quadratic optimal controller are incapable of doing so. The controller is evaluated using a variety of different actuators, illustrating the efficacy and versatility of the control approach. It is concluded that the new strategy has promise for this and other nonlinear aerospace applications that place high importance on the attainment of control objectives during transient regimes.

  13. Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors.

    PubMed

    Nandi, Sisir; Monesi, Alessandro; Drgan, Viktor; Merzel, Franci; Novič, Marjana

    2013-10-30

    In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation.

  14. Drug-target interaction prediction from PSSM based evolutionary information.

    PubMed

    Mousavian, Zaynab; Khakabimamaghani, Sahand; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-01-01

    The labor-intensive and expensive experimental process of drug-target interaction prediction has motivated many researchers to focus on in silico prediction, which leads to the helpful information in supporting the experimental interaction data. Therefore, they have proposed several computational approaches for discovering new drug-target interactions. Several learning-based methods have been increasingly developed which can be categorized into two main groups: similarity-based and feature-based. In this paper, we firstly use the bi-gram features extracted from the Position Specific Scoring Matrix (PSSM) of proteins in predicting drug-target interactions. Our results demonstrate the high-confidence prediction ability of the Bigram-PSSM model in terms of several performance indicators specifically for enzymes and ion channels. Moreover, we investigate the impact of negative selection strategy on the performance of the prediction, which is not widely taken into account in the other relevant studies. This is important, as the number of non-interacting drug-target pairs are usually extremely large in comparison with the number of interacting ones in existing drug-target interaction data. An interesting observation is that different levels of performance reduction have been attained for four datasets when we change the sampling method from the random sampling to the balanced sampling. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Riometer based Neural Network Prediction of Kp

    NASA Astrophysics Data System (ADS)

    Arnason, K. M.; Spanswick, E.; Chaddock, D.; Tabrizi, A. F.; Behjat, L.

    2017-12-01

    The Canadian Geospace Observatory Riometer Array is a network of 11 wide-beam riometers deployed across Central and Northern Canada. The geographic coverage of the network affords a near continent scale view of high energy (>30keV) electron precipitation at a very course spatial resolution. In this paper we present the first results from a neural network based analysis of riometer data. Trained on decades of riometer data, the neural network is tuned to predict a simple index of global geomagnetic activity (Kp) based solely on the information provided by the high energy electron precipitation over Canada. We present results from various configurations of training and discuss the applicability of this technique for short term prediction of geomagnetic activity.

  16. A burnout prediction model based around char morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao Wu; Edward Lester; Michael Cloke

    Several combustion models have been developed that can make predictions about coal burnout and burnout potential. Most of these kinetic models require standard parameters such as volatile content and particle size to make a burnout prediction. This article presents a new model called the char burnout (ChB) model, which also uses detailed information about char morphology in its prediction. The input data to the model is based on information derived from two different image analysis techniques. One technique generates characterization data from real char samples, and the other predicts char types based on characterization data from image analysis of coalmore » particles. The pyrolyzed chars in this study were created in a drop tube furnace operating at 1300{sup o}C, 200 ms, and 1% oxygen. Modeling results were compared with a different carbon burnout kinetic model as well as the actual burnout data from refiring the same chars in a drop tube furnace operating at 1300{sup o}C, 5% oxygen, and residence times of 200, 400, and 600 ms. A good agreement between ChB model and experimental data indicates that the inclusion of char morphology in combustion models could well improve model predictions. 38 refs., 5 figs., 6 tabs.« less

  17. Quantitative DNA Methylation Analysis Identifies a Single CpG Dinucleotide Important for ZAP-70 Expression and Predictive of Prognosis in Chronic Lymphocytic Leukemia

    PubMed Central

    Claus, Rainer; Lucas, David M.; Stilgenbauer, Stephan; Ruppert, Amy S.; Yu, Lianbo; Zucknick, Manuela; Mertens, Daniel; Bühler, Andreas; Oakes, Christopher C.; Larson, Richard A.; Kay, Neil E.; Jelinek, Diane F.; Kipps, Thomas J.; Rassenti, Laura Z.; Gribben, John G.; Döhner, Hartmut; Heerema, Nyla A.; Marcucci, Guido; Plass, Christoph; Byrd, John C.

    2012-01-01

    Purpose Increased ZAP-70 expression predicts poor prognosis in chronic lymphocytic leukemia (CLL). Current methods for accurately measuring ZAP-70 expression are problematic, preventing widespread application of these tests in clinical decision making. We therefore used comprehensive DNA methylation profiling of the ZAP-70 regulatory region to identify sites important for transcriptional control. Patients and Methods High-resolution quantitative DNA methylation analysis of the entire ZAP-70 gene regulatory regions was conducted on 247 samples from patients with CLL from four independent clinical studies. Results Through this comprehensive analysis, we identified a small area in the 5′ regulatory region of ZAP-70 that showed large variability in methylation in CLL samples but was universally methylated in normal B cells. High correlation with mRNA and protein expression, as well as activity in promoter reporter assays, revealed that within this differentially methylated region, a single CpG dinucleotide and neighboring nucleotides are particularly important in ZAP-70 transcriptional regulation. Furthermore, by using clustering approaches, we identified a prognostic role for this site in four independent data sets of patients with CLL using time to treatment, progression-free survival, and overall survival as clinical end points. Conclusion Comprehensive quantitative DNA methylation analysis of the ZAP-70 gene in CLL identified important regions responsible for transcriptional regulation. In addition, loss of methylation at a specific single CpG dinucleotide in the ZAP-70 5′ regulatory sequence is a highly predictive and reproducible biomarker of poor prognosis in this disease. This work demonstrates the feasibility of using quantitative specific ZAP-70 methylation analysis as a relevant clinically applicable prognostic test in CLL. PMID:22564988

  18. SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating

    PubMed Central

    Lee, Young-Joo; Cho, Soojin

    2016-01-01

    Fatigue life prediction for a bridge should be based on the current condition of the bridge, and various sources of uncertainty, such as material properties, anticipated vehicle loads and environmental conditions, make the prediction very challenging. This paper presents a new approach for probabilistic fatigue life prediction for bridges using finite element (FE) model updating based on structural health monitoring (SHM) data. Recently, various types of SHM systems have been used to monitor and evaluate the long-term structural performance of bridges. For example, SHM data can be used to estimate the degradation of an in-service bridge, which makes it possible to update the initial FE model. The proposed method consists of three steps: (1) identifying the modal properties of a bridge, such as mode shapes and natural frequencies, based on the ambient vibration under passing vehicles; (2) updating the structural parameters of an initial FE model using the identified modal properties; and (3) predicting the probabilistic fatigue life using the updated FE model. The proposed method is demonstrated by application to a numerical model of a bridge, and the impact of FE model updating on the bridge fatigue life is discussed. PMID:26950125

  19. [Quantitative classification-based occupational health management for electroplating enterprises in Baoan District of Shenzhen, China].

    PubMed

    Zhang, Sheng; Huang, Jinsheng; Yang, Baigbing; Lin, Binjie; Xu, Xinyun; Chen, Jinru; Zhao, Zhuandi; Tu, Xiaozhi; Bin, Haihua

    2014-04-01

    To improve the occupational health management levels in electroplating enterprises with quantitative classification measures and to provide a scientific basis for the prevention and control of occupational hazards in electroplating enterprises and the protection of workers' health. A quantitative classification table was created for the occupational health management in electroplating enterprises. The evaluation indicators included 6 items and 27 sub-items, with a total score of 100 points. Forty electroplating enterprises were selected and scored according to the quantitative classification table. These electroplating enterprises were classified into grades A, B, and C based on the scores. Among 40 electroplating enterprises, 11 (27.5%) had scores of >85 points (grade A), 23 (57.5%) had scores of 60∼85 points (grade B), and 6 (15.0%) had scores of <60 points (grade C). Quantitative classification management for electroplating enterprises is a valuable attempt, which is helpful for the supervision and management by the health department and provides an effective method for the self-management of enterprises.

  20. Precise Quantitation of MicroRNA in a Single Cell with Droplet Digital PCR Based on Ligation Reaction.

    PubMed

    Tian, Hui; Sun, Yuanyuan; Liu, Chenghui; Duan, Xinrui; Tang, Wei; Li, Zhengping

    2016-12-06

    MicroRNA (miRNA) analysis in a single cell is extremely important because it allows deep understanding of the exact correlation between the miRNAs and cell functions. Herein, we wish to report a highly sensitive and precisely quantitative assay for miRNA detection based on ligation-based droplet digital polymerase chain reaction (ddPCR), which permits the quantitation of miRNA in a single cell. In this ligation-based ddPCR assay, two target-specific oligonucleotide probes can be simply designed to be complementary to the half-sequence of the target miRNA, respectively, which avoids the sophisticated design of reverse transcription and provides high specificity to discriminate a single-base difference among miRNAs with simple operations. After the miRNA-templated ligation, the ddPCR partitions individual ligated products into a water-in-oil droplet and digitally counts the fluorescence-positive and negative droplets after PCR amplification for quantification of the target molecules, which possesses the power of precise quantitation and robustness to variation in PCR efficiency. By integrating the advantages of the precise quantification of ddPCR and the simplicity of the ligation-based PCR, the proposed method can sensitively measure let-7a miRNA with a detection limit of 20 aM (12 copies per microliter), and even a single-base difference can be discriminated in let-7 family members. More importantly, due to its high selectivity and sensitivity, the proposed method can achieve precise quantitation of miRNAs in single-cell lysate. Therefore, the ligation-based ddPCR assay may serve as a useful tool to exactly reveal the miRNAs' actions in a single cell, which is of great importance for the study of miRNAs' biofunction as well as for the related biomedical studies.

  1. Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe.

    PubMed

    Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2016-12-09

    Accurate quantitation of intracellular pH (pH i ) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pH i sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pH i . Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pH i , in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF 4 :Yb 3+ , Tm 3+ UCNPs were used as pH i response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pH i value 3.0-7.0 with deviation less than 0.43. This approach shall facilitate the researches in pH i related areas and development of the intracellular drug delivery systems.

  2. Accurate Quantitative Sensing of Intracellular pH based on Self-ratiometric Upconversion Luminescent Nanoprobe

    NASA Astrophysics Data System (ADS)

    Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2016-12-01

    Accurate quantitation of intracellular pH (pHi) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pHi sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pHi. Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pHi, in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF4:Yb3+, Tm3+ UCNPs were used as pHi response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pHi value 3.0-7.0 with deviation less than 0.43. This approach shall facilitate the researches in pHi related areas and development of the intracellular drug delivery systems.

  3. A web-based quantitative signal detection system on adverse drug reaction in China.

    PubMed

    Li, Chanjuan; Xia, Jielai; Deng, Jianxiong; Chen, Wenge; Wang, Suzhen; Jiang, Jing; Chen, Guanquan

    2009-07-01

    To establish a web-based quantitative signal detection system for adverse drug reactions (ADRs) based on spontaneous reporting to the Guangdong province drug-monitoring database in China. Using Microsoft Visual Basic and Active Server Pages programming languages and SQL Server 2000, a web-based system with three software modules was programmed to perform data preparation and association detection, and to generate reports. Information component (IC), the internationally recognized measure of disproportionality for quantitative signal detection, was integrated into the system, and its capacity for signal detection was tested with ADR reports collected from 1 January 2002 to 30 June 2007 in Guangdong. A total of 2,496 associations including known signals were mined from the test database. Signals (e.g., cefradine-induced hematuria) were found early by using the IC analysis. In addition, 291 drug-ADR associations were alerted for the first time in the second quarter of 2007. The system can be used for the detection of significant associations from the Guangdong drug-monitoring database and could be an extremely useful adjunct to the expert assessment of very large numbers of spontaneously reported ADRs for the first time in China.

  4. Deep-Learning-Based Drug-Target Interaction Prediction.

    PubMed

    Wen, Ming; Zhang, Zhimin; Niu, Shaoyu; Sha, Haozhi; Yang, Ruihan; Yun, Yonghuan; Lu, Hongmei

    2017-04-07

    Identifying interactions between known drugs and targets is a major challenge in drug repositioning. In silico prediction of drug-target interaction (DTI) can speed up the expensive and time-consuming experimental work by providing the most potent DTIs. In silico prediction of DTI can also provide insights about the potential drug-drug interaction and promote the exploration of drug side effects. Traditionally, the performance of DTI prediction depends heavily on the descriptors used to represent the drugs and the target proteins. In this paper, to accurately predict new DTIs between approved drugs and targets without separating the targets into different classes, we developed a deep-learning-based algorithmic framework named DeepDTIs. It first abstracts representations from raw input descriptors using unsupervised pretraining and then applies known label pairs of interaction to build a classification model. Compared with other methods, it is found that DeepDTIs reaches or outperforms other state-of-the-art methods. The DeepDTIs can be further used to predict whether a new drug targets to some existing targets or whether a new target interacts with some existing drugs.

  5. Influence factors and prediction of stormwater runoff of urban green space in Tianjin, China: laboratory experiment and quantitative theory model.

    PubMed

    Yang, Xu; You, Xue-Yi; Ji, Min; Nima, Ciren

    2013-01-01

    The effects of limiting factors such as rainfall intensity, rainfall duration, grass type and vegetation coverage on the stormwater runoff of urban green space was investigated in Tianjin. The prediction equation of stormwater runoff was established by the quantitative theory with the lab experimental data of soil columns. It was validated by three field experiments and the relative errors between predicted and measured stormwater runoff are 1.41, 1.52 and 7.35%, respectively. The results implied that the prediction equation could be used to forecast the stormwater runoff of urban green space. The results of range and variance analysis indicated the sequence order of limiting factors is rainfall intensity > grass type > rainfall duration > vegetation coverage. The least runoff of green land in the present study is the combination of rainfall intensity 60.0 mm/h, duration 60.0 min, grass Festuca arundinacea and vegetation coverage 90.0%. When the intensity and duration of rainfall are 60.0 mm/h and 90.0 min, the predicted volumetric runoff coefficient is 0.23 with Festuca arundinacea of 90.0% vegetation coverage. The present approach indicated that green space is an effective method to reduce stormwater runoff and the conclusions are mainly applicable to Tianjin and the semi-arid areas with main summer precipitation and long-time interval rainfalls.

  6. Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography

    PubMed Central

    Li, Shengfu; Montcel, Bruno; Yuan, Zhen; Liu, Wanyu; Vray, Didier

    2015-01-01

    This paper proposes a multigrid inversion framework for quantitative photoacoustic tomography reconstruction. The forward model of optical fluence distribution and the inverse problem are solved at multiple resolutions. A fixed-point iteration scheme is formulated for each resolution and used as a cost function. The simulated and experimental results for quantitative photoacoustic tomography reconstruction show that the proposed multigrid inversion can dramatically reduce the required number of iterations for the optimization process without loss of reliability in the results. PMID:26203371

  7. Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks

    PubMed Central

    Ypsilantis, Petros-Pavlos; Siddique, Musib; Sohn, Hyon-Mok; Davies, Andrew; Cook, Gary; Goh, Vicky; Montana, Giovanni

    2015-01-01

    Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient’s response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a “radiomics” approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models. PMID:26355298

  8. Predicting Learned Helplessness Based on Personality

    ERIC Educational Resources Information Center

    Maadikhah, Elham; Erfani, Nasrollah

    2014-01-01

    Learned helplessness as a negative motivational state can latently underlie repeated failures and create negative feelings toward the education as well as depression in students and other members of a society. The purpose of this paper is to predict learned helplessness based on students' personality traits. The research is a predictive…

  9. Global Quantitative Modeling of Chromatin Factor Interactions

    PubMed Central

    Zhou, Jian; Troyanskaya, Olga G.

    2014-01-01

    Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the “chromatin codes”) remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles — we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions. PMID:24675896

  10. Quantitative ESD Guidelines for Charged Spacecraft Derived from the Physics of Discharges

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.

    1992-01-01

    Quantitative guidelines are proposed for Electrostatic Discharge (ESD) pulse shape on charged spacecraft. The guidelines are based on existing ground test data, and on a physical description of the pulsed discharge process. The guidelines are designed to predict pulse shape for surface charging and internal charging on a wide variety of spacecraft structures. The pulses depend on the area of the sample, its capacitance to ground, and the strength of the electric field in the vacuum adjacent to the charged surface. By knowing the pulse shape, current vs. time, one can determine if nearby circuits are threatened by the pulse. The quantitative guidelines might be used to estimate the level of threat to an existing spacecraft, or to redesign a spacecraft to reduce its pulses to a known safe level. The experiments which provide the data and the physics that allow one to interpret the data will be discussed, culminating in examples of how to predict pulse shape/size. This method has been used, but not confirmed, on several spacecraft.

  11. Anthropometric measures in cardiovascular disease prediction: comparison of laboratory-based versus non-laboratory-based model.

    PubMed

    Dhana, Klodian; Ikram, M Arfan; Hofman, Albert; Franco, Oscar H; Kavousi, Maryam

    2015-03-01

    Body mass index (BMI) has been used to simplify cardiovascular risk prediction models by substituting total cholesterol and high-density lipoprotein cholesterol. In the elderly, the ability of BMI as a predictor of cardiovascular disease (CVD) declines. We aimed to find the most predictive anthropometric measure for CVD risk to construct a non-laboratory-based model and to compare it with the model including laboratory measurements. The study included 2675 women and 1902 men aged 55-79 years from the prospective population-based Rotterdam Study. We used Cox proportional hazard regression analysis to evaluate the association of BMI, waist circumference, waist-to-hip ratio and a body shape index (ABSI) with CVD, including coronary heart disease and stroke. The performance of the laboratory-based and non-laboratory-based models was evaluated by studying the discrimination, calibration, correlation and risk agreement. Among men, ABSI was the most informative measure associated with CVD, therefore ABSI was used to construct the non-laboratory-based model. Discrimination of the non-laboratory-based model was not different than laboratory-based model (c-statistic: 0.680-vs-0.683, p=0.71); both models were well calibrated (15.3% observed CVD risk vs 16.9% and 17.0% predicted CVD risks by the non-laboratory-based and laboratory-based models, respectively) and Spearman rank correlation and the agreement between non-laboratory-based and laboratory-based models were 0.89 and 91.7%, respectively. Among women, none of the anthropometric measures were independently associated with CVD. Among middle-aged and elderly where the ability of BMI to predict CVD declines, the non-laboratory-based model, based on ABSI, could predict CVD risk as accurately as the laboratory-based model among men. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Retinal status analysis method based on feature extraction and quantitative grading in OCT images.

    PubMed

    Fu, Dongmei; Tong, Hejun; Zheng, Shuang; Luo, Ling; Gao, Fulin; Minar, Jiri

    2016-07-22

    Optical coherence tomography (OCT) is widely used in ophthalmology for viewing the morphology of the retina, which is important for disease detection and assessing therapeutic effect. The diagnosis of retinal diseases is based primarily on the subjective analysis of OCT images by trained ophthalmologists. This paper describes an OCT images automatic analysis method for computer-aided disease diagnosis and it is a critical part of the eye fundus diagnosis. This study analyzed 300 OCT images acquired by Optovue Avanti RTVue XR (Optovue Corp., Fremont, CA). Firstly, the normal retinal reference model based on retinal boundaries was presented. Subsequently, two kinds of quantitative methods based on geometric features and morphological features were proposed. This paper put forward a retinal abnormal grading decision-making method which was used in actual analysis and evaluation of multiple OCT images. This paper showed detailed analysis process by four retinal OCT images with different abnormal degrees. The final grading results verified that the analysis method can distinguish abnormal severity and lesion regions. This paper presented the simulation of the 150 test images, where the results of analysis of retinal status showed that the sensitivity was 0.94 and specificity was 0.92.The proposed method can speed up diagnostic process and objectively evaluate the retinal status. This paper aims on studies of retinal status automatic analysis method based on feature extraction and quantitative grading in OCT images. The proposed method can obtain the parameters and the features that are associated with retinal morphology. Quantitative analysis and evaluation of these features are combined with reference model which can realize the target image abnormal judgment and provide a reference for disease diagnosis.

  13. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  14. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    PubMed

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  15. Blind test of physics-based prediction of protein structures.

    PubMed

    Shell, M Scott; Ozkan, S Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A

    2009-02-01

    We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences.

  16. Blind Test of Physics-Based Prediction of Protein Structures

    PubMed Central

    Shell, M. Scott; Ozkan, S. Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A.

    2009-01-01

    We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences. PMID:19186130

  17. Using connectome-based predictive modeling to predict individual behavior from brain connectivity

    PubMed Central

    Shen, Xilin; Finn, Emily S.; Scheinost, Dustin; Rosenberg, Monica D.; Chun, Marvin M.; Papademetris, Xenophon; Constable, R Todd

    2017-01-01

    Neuroimaging is a fast developing research area where anatomical and functional images of human brains are collected using techniques such as functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and electroencephalography (EEG). Technical advances and large-scale datasets have allowed for the development of models capable of predicting individual differences in traits and behavior using brain connectivity measures derived from neuroimaging data. Here, we present connectome-based predictive modeling (CPM), a data-driven protocol for developing predictive models of brain-behavior relationships from connectivity data using cross-validation. This protocol includes the following steps: 1) feature selection, 2) feature summarization, 3) model building, and 4) assessment of prediction significance. We also include suggestions for visualizing the most predictive features (i.e., brain connections). The final result should be a generalizable model that takes brain connectivity data as input and generates predictions of behavioral measures in novel subjects, accounting for a significant amount of the variance in these measures. It has been demonstrated that the CPM protocol performs equivalently or better than most of the existing approaches in brain-behavior prediction. However, because CPM focuses on linear modeling and a purely data-driven driven approach, neuroscientists with limited or no experience in machine learning or optimization would find it easy to implement the protocols. Depending on the volume of data to be processed, the protocol can take 10–100 minutes for model building, 1–48 hours for permutation testing, and 10–20 minutes for visualization of results. PMID:28182017

  18. CD-Based Indices for Link Prediction in Complex Network.

    PubMed

    Wang, Tao; Wang, Hongjue; Wang, Xiaoxia

    2016-01-01

    Lots of similarity-based algorithms have been designed to deal with the problem of link prediction in the past decade. In order to improve prediction accuracy, a novel cosine similarity index CD based on distance between nodes and cosine value between vectors is proposed in this paper. Firstly, node coordinate matrix can be obtained by node distances which are different from distance matrix and row vectors of the matrix are regarded as coordinates of nodes. Then, cosine value between node coordinates is used as their similarity index. A local community density index LD is also proposed. Then, a series of CD-based indices include CD-LD-k, CD*LD-k, CD-k and CDI are presented and applied in ten real networks. Experimental results demonstrate the effectiveness of CD-based indices. The effects of network clustering coefficient and assortative coefficient on prediction accuracy of indices are analyzed. CD-LD-k and CD*LD-k can improve prediction accuracy without considering the assortative coefficient of network is negative or positive. According to analysis of relative precision of each method on each network, CD-LD-k and CD*LD-k indices have excellent average performance and robustness. CD and CD-k indices perform better on positive assortative networks than on negative assortative networks. For negative assortative networks, we improve and refine CD index, referred as CDI index, combining the advantages of CD index and evolutionary mechanism of the network model BA. Experimental results reveal that CDI index can increase prediction accuracy of CD on negative assortative networks.

  19. CD-Based Indices for Link Prediction in Complex Network

    PubMed Central

    Wang, Tao; Wang, Hongjue; Wang, Xiaoxia

    2016-01-01

    Lots of similarity-based algorithms have been designed to deal with the problem of link prediction in the past decade. In order to improve prediction accuracy, a novel cosine similarity index CD based on distance between nodes and cosine value between vectors is proposed in this paper. Firstly, node coordinate matrix can be obtained by node distances which are different from distance matrix and row vectors of the matrix are regarded as coordinates of nodes. Then, cosine value between node coordinates is used as their similarity index. A local community density index LD is also proposed. Then, a series of CD-based indices include CD-LD-k, CD*LD-k, CD-k and CDI are presented and applied in ten real networks. Experimental results demonstrate the effectiveness of CD-based indices. The effects of network clustering coefficient and assortative coefficient on prediction accuracy of indices are analyzed. CD-LD-k and CD*LD-k can improve prediction accuracy without considering the assortative coefficient of network is negative or positive. According to analysis of relative precision of each method on each network, CD-LD-k and CD*LD-k indices have excellent average performance and robustness. CD and CD-k indices perform better on positive assortative networks than on negative assortative networks. For negative assortative networks, we improve and refine CD index, referred as CDI index, combining the advantages of CD index and evolutionary mechanism of the network model BA. Experimental results reveal that CDI index can increase prediction accuracy of CD on negative assortative networks. PMID:26752405

  20. Genomic Prediction Accounting for Residual Heteroskedasticity.

    PubMed

    Ou, Zhining; Tempelman, Robert J; Steibel, Juan P; Ernst, Catherine W; Bates, Ronald O; Bello, Nora M

    2015-11-12

    Whole-genome prediction (WGP) models that use single-nucleotide polymorphism marker information to predict genetic merit of animals and plants typically assume homogeneous residual variance. However, variability is often heterogeneous across agricultural production systems and may subsequently bias WGP-based inferences. This study extends classical WGP models based on normality, heavy-tailed specifications and variable selection to explicitly account for environmentally-driven residual heteroskedasticity under a hierarchical Bayesian mixed-models framework. WGP models assuming homogeneous or heterogeneous residual variances were fitted to training data generated under simulation scenarios reflecting a gradient of increasing heteroskedasticity. Model fit was based on pseudo-Bayes factors and also on prediction accuracy of genomic breeding values computed on a validation data subset one generation removed from the simulated training dataset. Homogeneous vs. heterogeneous residual variance WGP models were also fitted to two quantitative traits, namely 45-min postmortem carcass temperature and loin muscle pH, recorded in a swine resource population dataset prescreened for high and mild residual heteroskedasticity, respectively. Fit of competing WGP models was compared using pseudo-Bayes factors. Predictive ability, defined as the correlation between predicted and observed phenotypes in validation sets of a five-fold cross-validation was also computed. Heteroskedastic error WGP models showed improved model fit and enhanced prediction accuracy compared to homoskedastic error WGP models although the magnitude of the improvement was small (less than two percentage points net gain in prediction accuracy). Nevertheless, accounting for residual heteroskedasticity did improve accuracy of selection, especially on individuals of extreme genetic merit. Copyright © 2016 Ou et al.