Sample records for quantitative predictions based

  1. Quantitative self-assembly prediction yields targeted nanomedicines

    NASA Astrophysics Data System (ADS)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  2. Research on Improved Depth Belief Network-Based Prediction of Cardiovascular Diseases

    PubMed Central

    Zhang, Hongpo

    2018-01-01

    Quantitative analysis and prediction can help to reduce the risk of cardiovascular disease. Quantitative prediction based on traditional model has low accuracy. The variance of model prediction based on shallow neural network is larger. In this paper, cardiovascular disease prediction model based on improved deep belief network (DBN) is proposed. Using the reconstruction error, the network depth is determined independently, and unsupervised training and supervised optimization are combined. It ensures the accuracy of model prediction while guaranteeing stability. Thirty experiments were performed independently on the Statlog (Heart) and Heart Disease Database data sets in the UCI database. Experimental results showed that the mean of prediction accuracy was 91.26% and 89.78%, respectively. The variance of prediction accuracy was 5.78 and 4.46, respectively. PMID:29854369

  3. Quantitative prediction of drug side effects based on drug-related features.

    PubMed

    Niu, Yanqing; Zhang, Wen

    2017-09-01

    Unexpected side effects of drugs are great concern in the drug development, and the identification of side effects is an important task. Recently, machine learning methods are proposed to predict the presence or absence of interested side effects for drugs, but it is difficult to make the accurate prediction for all of them. In this paper, we transform side effect profiles of drugs as their quantitative scores, by summing up their side effects with weights. The quantitative scores may measure the dangers of drugs, and thus help to compare the risk of different drugs. Here, we attempt to predict quantitative scores of drugs, namely the quantitative prediction. Specifically, we explore a variety of drug-related features and evaluate their discriminative powers for the quantitative prediction. Then, we consider several feature combination strategies (direct combination, average scoring ensemble combination) to integrate three informative features: chemical substructures, targets, and treatment indications. Finally, the average scoring ensemble model which produces the better performances is used as the final quantitative prediction model. Since weights for side effects are empirical values, we randomly generate different weights in the simulation experiments. The experimental results show that the quantitative method is robust to different weights, and produces satisfying results. Although other state-of-the-art methods cannot make the quantitative prediction directly, the prediction results can be transformed as the quantitative scores. By indirect comparison, the proposed method produces much better results than benchmark methods in the quantitative prediction. In conclusion, the proposed method is promising for the quantitative prediction of side effects, which may work cooperatively with existing state-of-the-art methods to reveal dangers of drugs.

  4. Conditional Toxicity Value (CTV) Predictor: An In Silico Approach for Generating Quantitative Risk Estimates for Chemicals.

    PubMed

    Wignall, Jessica A; Muratov, Eugene; Sedykh, Alexander; Guyton, Kathryn Z; Tropsha, Alexander; Rusyn, Ivan; Chiu, Weihsueh A

    2018-05-01

    Human health assessments synthesize human, animal, and mechanistic data to produce toxicity values that are key inputs to risk-based decision making. Traditional assessments are data-, time-, and resource-intensive, and they cannot be developed for most environmental chemicals owing to a lack of appropriate data. As recommended by the National Research Council, we propose a solution for predicting toxicity values for data-poor chemicals through development of quantitative structure-activity relationship (QSAR) models. We used a comprehensive database of chemicals with existing regulatory toxicity values from U.S. federal and state agencies to develop quantitative QSAR models. We compared QSAR-based model predictions to those based on high-throughput screening (HTS) assays. QSAR models for noncancer threshold-based values and cancer slope factors had cross-validation-based Q 2 of 0.25-0.45, mean model errors of 0.70-1.11 log 10 units, and applicability domains covering >80% of environmental chemicals. Toxicity values predicted from QSAR models developed in this study were more accurate and precise than those based on HTS assays or mean-based predictions. A publicly accessible web interface to make predictions for any chemical of interest is available at http://toxvalue.org. An in silico tool that can predict toxicity values with an uncertainty of an order of magnitude or less can be used to quickly and quantitatively assess risks of environmental chemicals when traditional toxicity data or human health assessments are unavailable. This tool can fill a critical gap in the risk assessment and management of data-poor chemicals. https://doi.org/10.1289/EHP2998.

  5. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    PubMed Central

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding. PMID:28729875

  6. Applying quantitative adiposity feature analysis models to predict benefit of bevacizumab-based chemotherapy in ovarian cancer patients

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; More, Kathleen; Ding, Kai; Liu, Hong; Zheng, Bin

    2016-03-01

    How to rationally identify epithelial ovarian cancer (EOC) patients who will benefit from bevacizumab or other antiangiogenic therapies is a critical issue in EOC treatments. The motivation of this study is to quantitatively measure adiposity features from CT images and investigate the feasibility of predicting potential benefit of EOC patients with or without receiving bevacizumab-based chemotherapy treatment using multivariate statistical models built based on quantitative adiposity image features. A dataset involving CT images from 59 advanced EOC patients were included. Among them, 32 patients received maintenance bevacizumab after primary chemotherapy and the remaining 27 patients did not. We developed a computer-aided detection (CAD) scheme to automatically segment subcutaneous fat areas (VFA) and visceral fat areas (SFA) and then extracted 7 adiposity-related quantitative features. Three multivariate data analysis models (linear regression, logistic regression and Cox proportional hazards regression) were performed respectively to investigate the potential association between the model-generated prediction results and the patients' progression-free survival (PFS) and overall survival (OS). The results show that using all 3 statistical models, a statistically significant association was detected between the model-generated results and both of the two clinical outcomes in the group of patients receiving maintenance bevacizumab (p<0.01), while there were no significant association for both PFS and OS in the group of patients without receiving maintenance bevacizumab. Therefore, this study demonstrated the feasibility of using quantitative adiposity-related CT image features based statistical prediction models to generate a new clinical marker and predict the clinical outcome of EOC patients receiving maintenance bevacizumab-based chemotherapy.

  7. PREDICTING TOXICOLOGICAL ENDPOINTS OF CHEMICALS USING QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSARS)

    EPA Science Inventory

    Quantitative structure-activity relationships (QSARs) are being developed to predict the toxicological endpoints for untested chemicals similar in structure to chemicals that have known experimental toxicological data. Based on a very large number of predetermined descriptors, a...

  8. A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways.

    PubMed

    Dallmann, André; Ince, Ibrahim; Coboeken, Katrin; Eissing, Thomas; Hempel, Georg

    2017-09-18

    Physiologically based pharmacokinetic modeling is considered a valuable tool for predicting pharmacokinetic changes in pregnancy to subsequently guide in-vivo pharmacokinetic trials in pregnant women. The objective of this study was to extend and verify a previously developed physiologically based pharmacokinetic model for pregnant women for the prediction of pharmacokinetics of drugs metabolized via several cytochrome P450 enzymes. Quantitative information on gestation-specific changes in enzyme activity available in the literature was incorporated in a pregnancy physiologically based pharmacokinetic model and the pharmacokinetics of eight drugs metabolized via one or multiple cytochrome P450 enzymes was predicted. The tested drugs were caffeine, midazolam, nifedipine, metoprolol, ondansetron, granisetron, diazepam, and metronidazole. Pharmacokinetic predictions were evaluated by comparison with in-vivo pharmacokinetic data obtained from the literature. The pregnancy physiologically based pharmacokinetic model successfully predicted the pharmacokinetics of all tested drugs. The observed pregnancy-induced pharmacokinetic changes were qualitatively and quantitatively reasonably well predicted for all drugs. Ninety-seven percent of the mean plasma concentrations predicted in pregnant women fell within a twofold error range and 63% within a 1.25-fold error range. For all drugs, the predicted area under the concentration-time curve was within a 1.25-fold error range. The presented pregnancy physiologically based pharmacokinetic model can quantitatively predict the pharmacokinetics of drugs that are metabolized via one or multiple cytochrome P450 enzymes by integrating prior knowledge of the pregnancy-related effect on these enzymes. This pregnancy physiologically based pharmacokinetic model may thus be used to identify potential exposure changes in pregnant women a priori and to eventually support informed decision making when clinical trials are designed in this special population.

  9. Impact of implementation choices on quantitative predictions of cell-based computational models

    NASA Astrophysics Data System (ADS)

    Kursawe, Jochen; Baker, Ruth E.; Fletcher, Alexander G.

    2017-09-01

    'Cell-based' models provide a powerful computational tool for studying the mechanisms underlying the growth and dynamics of biological tissues in health and disease. An increasing amount of quantitative data with cellular resolution has paved the way for the quantitative parameterisation and validation of such models. However, the numerical implementation of cell-based models remains challenging, and little work has been done to understand to what extent implementation choices may influence model predictions. Here, we consider the numerical implementation of a popular class of cell-based models called vertex models, which are often used to study epithelial tissues. In two-dimensional vertex models, a tissue is approximated as a tessellation of polygons and the vertices of these polygons move due to mechanical forces originating from the cells. Such models have been used extensively to study the mechanical regulation of tissue topology in the literature. Here, we analyse how the model predictions may be affected by numerical parameters, such as the size of the time step, and non-physical model parameters, such as length thresholds for cell rearrangement. We find that vertex positions and summary statistics are sensitive to several of these implementation parameters. For example, the predicted tissue size decreases with decreasing cell cycle durations, and cell rearrangement may be suppressed by large time steps. These findings are counter-intuitive and illustrate that model predictions need to be thoroughly analysed and implementation details carefully considered when applying cell-based computational models in a quantitative setting.

  10. Quantitative AOP-based predictions for two aromatase inhibitors evaluating the influence of bioaccumulation on prediction accuracy

    EPA Science Inventory

    The adverse outcome pathway (AOP) framework can be used to support the use of mechanistic toxicology data as a basis for risk assessment. For certain risk contexts this includes defining, quantitative linkages between the molecular initiating event (MIE) and subsequent key events...

  11. Studying Biology to Understand Risk: Dosimetry Models and Quantitative Adverse Outcome Pathways

    EPA Science Inventory

    Confidence in the quantitative prediction of risk is increased when the prediction is based to as great an extent as possible on the relevant biological factors that constitute the pathway from exposure to adverse outcome. With the first examples now over 40 years old, physiologi...

  12. 3D-quantitative structure-activity relationship studies on benzothiadiazepine hydroxamates as inhibitors of tumor necrosis factor-alpha converting enzyme.

    PubMed

    Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram

    2008-04-01

    A set of 29 benzothiadiazepine hydroxamates having selective tumor necrosis factor-alpha converting enzyme inhibitory activity were used to compare the quality and predictive power of 3D-quantitative structure-activity relationship, comparative molecular field analysis, and comparative molecular similarity indices models for the atom-based, centroid/atom-based, data-based, and docked conformer-based alignment. Removal of two outliers from the initial training set of molecules improved the predictivity of models. Among the 3D-quantitative structure-activity relationship models developed using the above four alignments, the database alignment provided the optimal predictive comparative molecular field analysis model for the training set with cross-validated r(2) (q(2)) = 0.510, non-cross-validated r(2) = 0.972, standard error of estimates (s) = 0.098, and F = 215.44 and the optimal comparative molecular similarity indices model with cross-validated r(2) (q(2)) = 0.556, non-cross-validated r(2) = 0.946, standard error of estimates (s) = 0.163, and F = 99.785. These models also showed the best test set prediction for six compounds with predictive r(2) values of 0.460 and 0.535, respectively. The contour maps obtained from 3D-quantitative structure-activity relationship studies were appraised for activity trends for the molecules analyzed. The comparative molecular similarity indices models exhibited good external predictivity as compared with that of comparative molecular field analysis models. The data generated from the present study helped us to further design and report some novel and potent tumor necrosis factor-alpha converting enzyme inhibitors.

  13. Extending Theory-Based Quantitative Predictions to New Health Behaviors.

    PubMed

    Brick, Leslie Ann D; Velicer, Wayne F; Redding, Colleen A; Rossi, Joseph S; Prochaska, James O

    2016-04-01

    Traditional null hypothesis significance testing suffers many limitations and is poorly adapted to theory testing. A proposed alternative approach, called Testing Theory-based Quantitative Predictions, uses effect size estimates and confidence intervals to directly test predictions based on theory. This paper replicates findings from previous smoking studies and extends the approach to diet and sun protection behaviors using baseline data from a Transtheoretical Model behavioral intervention (N = 5407). Effect size predictions were developed using two methods: (1) applying refined effect size estimates from previous smoking research or (2) using predictions developed by an expert panel. Thirteen of 15 predictions were confirmed for smoking. For diet, 7 of 14 predictions were confirmed using smoking predictions and 6 of 16 using expert panel predictions. For sun protection, 3 of 11 predictions were confirmed using smoking predictions and 5 of 19 using expert panel predictions. Expert panel predictions and smoking-based predictions poorly predicted effect sizes for diet and sun protection constructs. Future studies should aim to use previous empirical data to generate predictions whenever possible. The best results occur when there have been several iterations of predictions for a behavior, such as with smoking, demonstrating that expected values begin to converge on the population effect size. Overall, the study supports necessity in strengthening and revising theory with empirical data.

  14. Quantitative prediction of phase transformations in silicon during nanoindentation

    NASA Astrophysics Data System (ADS)

    Zhang, Liangchi; Basak, Animesh

    2013-08-01

    This paper establishes the first quantitative relationship between the phases transformed in silicon and the shape characteristics of nanoindentation curves. Based on an integrated analysis using TEM and unit cell properties of phases, the volumes of the phases emerged in a nanoindentation are formulated as a function of pop-out size and depth of nanoindentation impression. This simple formula enables a fast, accurate and quantitative prediction of the phases in a nanoindentation cycle, which has been impossible before.

  15. Quantitative Adverse Outcome Pathways and Their Application to Predictive Toxicology

    EPA Science Inventory

    A quantitative adverse outcome pathway (qAOP) consists of one or more biologically based, computational models describing key event relationships linking a molecular initiating event (MIE) to an adverse outcome. A qAOP provides quantitative, dose–response, and time-course p...

  16. Tissue microarrays and quantitative tissue-based image analysis as a tool for oncology biomarker and diagnostic development.

    PubMed

    Dolled-Filhart, Marisa P; Gustavson, Mark D

    2012-11-01

    Translational oncology has been improved by using tissue microarrays (TMAs), which facilitate biomarker analysis of large cohorts on a single slide. This has allowed for rapid analysis and validation of potential biomarkers for prognostic and predictive value, as well as for evaluation of biomarker prevalence. Coupled with quantitative analysis of immunohistochemical (IHC) staining, objective and standardized biomarker data from tumor samples can further advance companion diagnostic approaches for the identification of drug-responsive or resistant patient subpopulations. This review covers the advantages, disadvantages and applications of TMAs for biomarker research. Research literature and reviews of TMAs and quantitative image analysis methodology have been surveyed for this review (with an AQUA® analysis focus). Applications such as multi-marker diagnostic development and pathway-based biomarker subpopulation analyses are described. Tissue microarrays are a useful tool for biomarker analyses including prevalence surveys, disease progression assessment and addressing potential prognostic or predictive value. By combining quantitative image analysis with TMAs, analyses will be more objective and reproducible, allowing for more robust IHC-based diagnostic test development. Quantitative multi-biomarker IHC diagnostic tests that can predict drug response will allow for greater success of clinical trials for targeted therapies and provide more personalized clinical decision making.

  17. Ligand and structure-based methodologies for the prediction of the activity of G protein-coupled receptor ligands

    NASA Astrophysics Data System (ADS)

    Costanzi, Stefano; Tikhonova, Irina G.; Harden, T. Kendall; Jacobson, Kenneth A.

    2009-11-01

    Accurate in silico models for the quantitative prediction of the activity of G protein-coupled receptor (GPCR) ligands would greatly facilitate the process of drug discovery and development. Several methodologies have been developed based on the properties of the ligands, the direct study of the receptor-ligand interactions, or a combination of both approaches. Ligand-based three-dimensional quantitative structure-activity relationships (3D-QSAR) techniques, not requiring knowledge of the receptor structure, have been historically the first to be applied to the prediction of the activity of GPCR ligands. They are generally endowed with robustness and good ranking ability; however they are highly dependent on training sets. Structure-based techniques generally do not provide the level of accuracy necessary to yield meaningful rankings when applied to GPCR homology models. However, they are essentially independent from training sets and have a sufficient level of accuracy to allow an effective discrimination between binders and nonbinders, thus qualifying as viable lead discovery tools. The combination of ligand and structure-based methodologies in the form of receptor-based 3D-QSAR and ligand and structure-based consensus models results in robust and accurate quantitative predictions. The contribution of the structure-based component to these combined approaches is expected to become more substantial and effective in the future, as more sophisticated scoring functions are developed and more detailed structural information on GPCRs is gathered.

  18. Nanoparticle surface characterization and clustering through concentration-dependent surface adsorption modeling.

    PubMed

    Chen, Ran; Zhang, Yuntao; Sahneh, Faryad Darabi; Scoglio, Caterina M; Wohlleben, Wendel; Haase, Andrea; Monteiro-Riviere, Nancy A; Riviere, Jim E

    2014-09-23

    Quantitative characterization of nanoparticle interactions with their surrounding environment is vital for safe nanotechnological development and standardization. A recent quantitative measure, the biological surface adsorption index (BSAI), has demonstrated promising applications in nanomaterial surface characterization and biological/environmental prediction. This paper further advances the approach beyond the application of five descriptors in the original BSAI to address the concentration dependence of the descriptors, enabling better prediction of the adsorption profile and more accurate categorization of nanomaterials based on their surface properties. Statistical analysis on the obtained adsorption data was performed based on three different models: the original BSAI, a concentration-dependent polynomial model, and an infinite dilution model. These advancements in BSAI modeling showed a promising development in the application of quantitative predictive modeling in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.

  19. Laboratory evolution of the migratory polymorphism in the sand cricket: combining physiology with quantitative genetics.

    PubMed

    Roff, Derek A; Fairbairn, Daphne J

    2007-01-01

    Predicting evolutionary change is the central goal of evolutionary biology because it is the primary means by which we can test evolutionary hypotheses. In this article, we analyze the pattern of evolutionary change in a laboratory population of the wing-dimorphic sand cricket Gryllus firmus resulting from relaxation of selection favoring the migratory (long-winged) morph. Based on a well-characterized trade-off between fecundity and flight capability, we predict that evolution in the laboratory environment should result in a reduction in the proportion of long-winged morphs. We also predict increased fecundity and reduced functionality and weight of the major flight muscles in long-winged females but little change in short-winged (flightless) females. Based on quantitative genetic theory, we predict that the regression equation describing the trade-off between ovary weight and weight of the major flight muscles will show a change in its intercept but not in its slope. Comparisons across generations verify all of these predictions. Further, using values of genetic parameters estimated from previous studies, we show that a quantitative genetic simulation model can account for not only the qualitative changes but also the evolutionary trajectory. These results demonstrate the power of combining quantitative genetic and physiological approaches for understanding the evolution of complex traits.

  20. Kernel-based whole-genome prediction of complex traits: a review.

    PubMed

    Morota, Gota; Gianola, Daniel

    2014-01-01

    Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways), thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.

  1. Potential usefulness of a topic model-based categorization of lung cancers as quantitative CT biomarkers for predicting the recurrence risk after curative resection

    NASA Astrophysics Data System (ADS)

    Kawata, Y.; Niki, N.; Ohmatsu, H.; Satake, M.; Kusumoto, M.; Tsuchida, T.; Aokage, K.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2014-03-01

    In this work, we investigate a potential usefulness of a topic model-based categorization of lung cancers as quantitative CT biomarkers for predicting the recurrence risk after curative resection. The elucidation of the subcategorization of a pulmonary nodule type in CT images is an important preliminary step towards developing the nodule managements that are specific to each patient. We categorize lung cancers by analyzing volumetric distributions of CT values within lung cancers via a topic model such as latent Dirichlet allocation. Through applying our scheme to 3D CT images of nonsmall- cell lung cancer (maximum lesion size of 3 cm) , we demonstrate the potential usefulness of the topic model-based categorization of lung cancers as quantitative CT biomarkers.

  2. Predicting Dissertation Methodology Choice among Doctoral Candidates at a Faith-Based University

    ERIC Educational Resources Information Center

    Lunde, Rebecca

    2017-01-01

    Limited research has investigated dissertation methodology choice and the factors that contribute to this choice. Quantitative research is based in mathematics and scientific positivism, and qualitative research is based in constructivism. These underlying philosophical differences posit the question if certain factors predict dissertation…

  3. Applications of Microfluidics in Quantitative Biology.

    PubMed

    Bai, Yang; Gao, Meng; Wen, Lingling; He, Caiyun; Chen, Yuan; Liu, Chenli; Fu, Xiongfei; Huang, Shuqiang

    2018-05-01

    Quantitative biology is dedicated to taking advantage of quantitative reasoning and advanced engineering technologies to make biology more predictable. Microfluidics, as an emerging technique, provides new approaches to precisely control fluidic conditions on small scales and collect data in high-throughput and quantitative manners. In this review, the authors present the relevant applications of microfluidics to quantitative biology based on two major categories (channel-based microfluidics and droplet-based microfluidics), and their typical features. We also envision some other microfluidic techniques that may not be employed in quantitative biology right now, but have great potential in the near future. © 2017 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Relative Chemical Binding Affinities for Trout and Human Estrogen Receptor Using Different Competitive Binding Assays

    EPA Science Inventory

    Rainbow trout-based assays for estrogenicity are currently being used for development of predictive models based upon quantitative structure activity relationships. A predictive model based on a single species raises the question of whether this information is valid for other spe...

  5. Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome.

    PubMed

    Davatzikos, Christos; Rathore, Saima; Bakas, Spyridon; Pati, Sarthak; Bergman, Mark; Kalarot, Ratheesh; Sridharan, Patmaa; Gastounioti, Aimilia; Jahani, Nariman; Cohen, Eric; Akbari, Hamed; Tunc, Birkan; Doshi, Jimit; Parker, Drew; Hsieh, Michael; Sotiras, Aristeidis; Li, Hongming; Ou, Yangming; Doot, Robert K; Bilello, Michel; Fan, Yong; Shinohara, Russell T; Yushkevich, Paul; Verma, Ragini; Kontos, Despina

    2018-01-01

    The growth of multiparametric imaging protocols has paved the way for quantitative imaging phenotypes that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and predictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phenomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality. First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary features, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spatial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome, and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment for breast cancer.

  6. PLS-based quantitative structure-activity relationship for substituted benzamides of clebopride type. Application of experimental design in drug design.

    PubMed

    Norinder, U; Högberg, T

    1992-04-01

    The advantageous approach of using an experimentally designed training set as the basis for establishing a quantitative structure-activity relationship with good predictive capability is described. The training set was selected from a fractional factorial design scheme based on a principal component description of physico-chemical parameters of aromatic substituents. The derived model successfully predicts the activities of additional substituted benzamides of 6-methoxy-N-(4-piperidyl)salicylamide type. The major influence on activity of the 3-substituent is demonstrated.

  7. Quantitative Assessment of Thermodynamic Constraints on the Solution Space of Genome-Scale Metabolic Models

    PubMed Central

    Hamilton, Joshua J.; Dwivedi, Vivek; Reed, Jennifer L.

    2013-01-01

    Constraint-based methods provide powerful computational techniques to allow understanding and prediction of cellular behavior. These methods rely on physiochemical constraints to eliminate infeasible behaviors from the space of available behaviors. One such constraint is thermodynamic feasibility, the requirement that intracellular flux distributions obey the laws of thermodynamics. The past decade has seen several constraint-based methods that interpret this constraint in different ways, including those that are limited to small networks, rely on predefined reaction directions, and/or neglect the relationship between reaction free energies and metabolite concentrations. In this work, we utilize one such approach, thermodynamics-based metabolic flux analysis (TMFA), to make genome-scale, quantitative predictions about metabolite concentrations and reaction free energies in the absence of prior knowledge of reaction directions, while accounting for uncertainties in thermodynamic estimates. We applied TMFA to a genome-scale network reconstruction of Escherichia coli and examined the effect of thermodynamic constraints on the flux space. We also assessed the predictive performance of TMFA against gene essentiality and quantitative metabolomics data, under both aerobic and anaerobic, and optimal and suboptimal growth conditions. Based on these results, we propose that TMFA is a useful tool for validating phenotypes and generating hypotheses, and that additional types of data and constraints can improve predictions of metabolite concentrations. PMID:23870272

  8. Testing process predictions of models of risky choice: a quantitative model comparison approach

    PubMed Central

    Pachur, Thorsten; Hertwig, Ralph; Gigerenzer, Gerd; Brandstätter, Eduard

    2013-01-01

    This article presents a quantitative model comparison contrasting the process predictions of two prominent views on risky choice. One view assumes a trade-off between probabilities and outcomes (or non-linear functions thereof) and the separate evaluation of risky options (expectation models). Another view assumes that risky choice is based on comparative evaluation, limited search, aspiration levels, and the forgoing of trade-offs (heuristic models). We derived quantitative process predictions for a generic expectation model and for a specific heuristic model, namely the priority heuristic (Brandstätter et al., 2006), and tested them in two experiments. The focus was on two key features of the cognitive process: acquisition frequencies (i.e., how frequently individual reasons are looked up) and direction of search (i.e., gamble-wise vs. reason-wise). In Experiment 1, the priority heuristic predicted direction of search better than the expectation model (although neither model predicted the acquisition process perfectly); acquisition frequencies, however, were inconsistent with both models. Additional analyses revealed that these frequencies were primarily a function of what Rubinstein (1988) called “similarity.” In Experiment 2, the quantitative model comparison approach showed that people seemed to rely more on the priority heuristic in difficult problems, but to make more trade-offs in easy problems. This finding suggests that risky choice may be based on a mental toolbox of strategies. PMID:24151472

  9. Modeling Students' Problem Solving Performance in the Computer-Based Mathematics Learning Environment

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2017-01-01

    Purpose: The purpose of this paper is to develop a quantitative model of problem solving performance of students in the computer-based mathematics learning environment. Design/methodology/approach: Regularized logistic regression was used to create a quantitative model of problem solving performance of students that predicts whether students can…

  10. Evaluation of a web based informatics system with data mining tools for predicting outcomes with quantitative imaging features in stroke rehabilitation clinical trials

    NASA Astrophysics Data System (ADS)

    Wang, Ximing; Kim, Bokkyu; Park, Ji Hoon; Wang, Erik; Forsyth, Sydney; Lim, Cody; Ravi, Ragini; Karibyan, Sarkis; Sanchez, Alexander; Liu, Brent

    2017-03-01

    Quantitative imaging biomarkers are used widely in clinical trials for tracking and evaluation of medical interventions. Previously, we have presented a web based informatics system utilizing quantitative imaging features for predicting outcomes in stroke rehabilitation clinical trials. The system integrates imaging features extraction tools and a web-based statistical analysis tool. The tools include a generalized linear mixed model(GLMM) that can investigate potential significance and correlation based on features extracted from clinical data and quantitative biomarkers. The imaging features extraction tools allow the user to collect imaging features and the GLMM module allows the user to select clinical data and imaging features such as stroke lesion characteristics from the database as regressors and regressands. This paper discusses the application scenario and evaluation results of the system in a stroke rehabilitation clinical trial. The system was utilized to manage clinical data and extract imaging biomarkers including stroke lesion volume, location and ventricle/brain ratio. The GLMM module was validated and the efficiency of data analysis was also evaluated.

  11. Examining Gender Differences toward the Adoption of Online Learning and Predicting the Readiness of Faculty Members in a Middle-Eastern Recently Established Public University

    ERIC Educational Resources Information Center

    Abahussain, Mohammed Mansour

    2017-01-01

    This quantitative study examined the gender-based difference toward the adoption of online learning based on constructs of the Theory of Planned Behavior (TPB). It is also aimed to predict the Behavioral Intention of the adoption of online learning based on the predicting variables of the TPB, Attitude, Subjective Norm, and Perceived Behavioral…

  12. Extensions and evaluations of a general quantitative theory of forest structure and dynamics

    PubMed Central

    Enquist, Brian J.; West, Geoffrey B.; Brown, James H.

    2009-01-01

    Here, we present the second part of a quantitative theory for the structure and dynamics of forests under demographic and resource steady state. The theory is based on individual-level allometric scaling relations for how trees use resources, fill space, and grow. These scale up to determine emergent properties of diverse forests, including size–frequency distributions, spacing relations, canopy configurations, mortality rates, population dynamics, successional dynamics, and resource flux rates. The theory uniquely makes quantitative predictions for both stand-level scaling exponents and normalizations. We evaluate these predictions by compiling and analyzing macroecological datasets from several tropical forests. The close match between theoretical predictions and data suggests that forests are organized by a set of very general scaling rules. Our mechanistic theory is based on allometric scaling relations, is complementary to “demographic theory,” but is fundamentally different in approach. It provides a quantitative baseline for understanding deviations from predictions due to other factors, including disturbance, variation in branching architecture, asymmetric competition, resource limitation, and other sources of mortality, which are not included in the deliberately simplified theory. The theory should apply to a wide range of forests despite large differences in abiotic environment, species diversity, and taxonomic and functional composition. PMID:19363161

  13. Testing 40 Predictions from the Transtheoretical Model Again, with Confidence

    ERIC Educational Resources Information Center

    Velicer, Wayne F.; Brick, Leslie Ann D.; Fava, Joseph L.; Prochaska, James O.

    2013-01-01

    Testing Theory-based Quantitative Predictions (TTQP) represents an alternative to traditional Null Hypothesis Significance Testing (NHST) procedures and is more appropriate for theory testing. The theory generates explicit effect size predictions and these effect size estimates, with related confidence intervals, are used to test the predictions.…

  14. Using metal-ligand binding characteristics to predict metal toxicity: quantitative ion character-activity relationships (QICARs).

    PubMed Central

    Newman, M C; McCloskey, J T; Tatara, C P

    1998-01-01

    Ecological risk assessment can be enhanced with predictive models for metal toxicity. Modelings of published data were done under the simplifying assumption that intermetal trends in toxicity reflect relative metal-ligand complex stabilities. This idea has been invoked successfully since 1904 but has yet to be applied widely in quantitative ecotoxicology. Intermetal trends in toxicity were successfully modeled with ion characteristics reflecting metal binding to ligands for a wide range of effects. Most models were useful for predictive purposes based on an F-ratio criterion and cross-validation, but anomalous predictions did occur if speciation was ignored. In general, models for metals with the same valence (i.e., divalent metals) were better than those combining mono-, di-, and trivalent metals. The softness parameter (sigma p) and the absolute value of the log of the first hydrolysis constant ([symbol: see text] log KOH [symbol: see text]) were especially useful in model construction. Also, delta E0 contributed substantially to several of the two-variable models. In contrast, quantitative attempts to predict metal interactions in binary mixtures based on metal-ligand complex stabilities were not successful. PMID:9860900

  15. Using integrated environmental modeling to automate a process-based Quantitative Microbial Risk Assessment

    EPA Science Inventory

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, an...

  16. Using Integrated Environmental Modeling to Automate a Process-Based Quantitative Microbial Risk Assessment (presentation)

    EPA Science Inventory

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, and...

  17. Quantitative assessment of thermodynamic constraints on the solution space of genome-scale metabolic models.

    PubMed

    Hamilton, Joshua J; Dwivedi, Vivek; Reed, Jennifer L

    2013-07-16

    Constraint-based methods provide powerful computational techniques to allow understanding and prediction of cellular behavior. These methods rely on physiochemical constraints to eliminate infeasible behaviors from the space of available behaviors. One such constraint is thermodynamic feasibility, the requirement that intracellular flux distributions obey the laws of thermodynamics. The past decade has seen several constraint-based methods that interpret this constraint in different ways, including those that are limited to small networks, rely on predefined reaction directions, and/or neglect the relationship between reaction free energies and metabolite concentrations. In this work, we utilize one such approach, thermodynamics-based metabolic flux analysis (TMFA), to make genome-scale, quantitative predictions about metabolite concentrations and reaction free energies in the absence of prior knowledge of reaction directions, while accounting for uncertainties in thermodynamic estimates. We applied TMFA to a genome-scale network reconstruction of Escherichia coli and examined the effect of thermodynamic constraints on the flux space. We also assessed the predictive performance of TMFA against gene essentiality and quantitative metabolomics data, under both aerobic and anaerobic, and optimal and suboptimal growth conditions. Based on these results, we propose that TMFA is a useful tool for validating phenotypes and generating hypotheses, and that additional types of data and constraints can improve predictions of metabolite concentrations. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Quantitative Protein Topography Analysis and High-Resolution Structure Prediction Using Hydroxyl Radical Labeling and Tandem-Ion Mass Spectrometry (MS)*

    PubMed Central

    Kaur, Parminder; Kiselar, Janna; Yang, Sichun; Chance, Mark R.

    2015-01-01

    Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca+2-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes. PMID:25687570

  19. New horizons in mouse immunoinformatics: reliable in silico prediction of mouse class I histocompatibility major complex peptide binding affinity.

    PubMed

    Hattotuwagama, Channa K; Guan, Pingping; Doytchinova, Irini A; Flower, Darren R

    2004-11-21

    Quantitative structure-activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex (MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. Historically, such approaches have been built around semi-qualitative, classification methods, but these are now giving way to quantitative regression methods. The additive method, an established immunoinformatics technique for the quantitative prediction of peptide-protein affinity, was used here to identify the sequence dependence of peptide binding specificity for three mouse class I MHC alleles: H2-D(b), H2-K(b) and H2-K(k). As we show, in terms of reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate prediction of T-cell epitopes and are freely available online ( http://www.jenner.ac.uk/MHCPred).

  20. Using integrated environmental modeling to automate a process-based Quantitative Microbial Risk Assessment

    USDA-ARS?s Scientific Manuscript database

    Integrated Environmental Modeling (IEM) organizes multidisciplinary knowledge that explains and predicts environmental-system response to stressors. A Quantitative Microbial Risk Assessment (QMRA) is an approach integrating a range of disparate data (fate/transport, exposure, and human health effect...

  1. RNA-based determination of ESR1 and HER2 expression and response to neoadjuvant chemotherapy.

    PubMed

    Denkert, C; Loibl, S; Kronenwett, R; Budczies, J; von Törne, C; Nekljudova, V; Darb-Esfahani, S; Solbach, C; Sinn, B V; Petry, C; Müller, B M; Hilfrich, J; Altmann, G; Staebler, A; Roth, C; Ataseven, B; Kirchner, T; Dietel, M; Untch, M; von Minckwitz, G

    2013-03-01

    Hormone and human epidermal growth factor receptor 2 (HER2) receptors are the most important breast cancer biomarkers, and additional objective and quantitative test methods such as messenger RNA (mRNA)-based quantitative analysis are urgently needed. In this study, we investigated the clinical validity of RT-PCR-based evaluation of estrogen receptor (ESR1) and HER2 mRNA expression. A total of 1050 core biopsies from two retrospective (GeparTrio, GeparQuattro) and one prospective (PREDICT) neoadjuvant studies were evaluated by quantitative RT-PCR for ESR1 and HER2. ESR1 mRNA was significantly predictive for reduced response to neoadjuvant chemotherapy in univariate and multivariate analysis in all three cohorts. The complete pathologically documented response (pathological complete response, pCR) rate for ESR1+/HER2- tumors was 7.3%, 8.0% and 8.6%; for ESR1-/HER2- tumors it was 34.4%, 33.7% and 37.3% in GeparTrio, GeparQuattro and PREDICT, respectively (P < 0.001 in each cohort). In the Kaplan-Meier analysis in GeparTrio patients with ESR1+/HER2- tumors had the best prognosis, compared with ESR1-/HER2- and ESR1-/HER2+ tumors [disease-free survival (DFS): P < 0.0005, overall survival (OS): P < 0.0005]. Our results suggest that mRNA levels of ESR1 and HER2 predict response to neoadjuvant chemotherapy and are significantly associated with long-term outcome. As an additional option to standard immunohistochemistry and gene-array-based analysis, quantitative RT-PCR analysis might be useful for determination of the receptor status in breast cancer.

  2. Predictive value of EEG in postanoxic encephalopathy: A quantitative model-based approach.

    PubMed

    Efthymiou, Evdokia; Renzel, Roland; Baumann, Christian R; Poryazova, Rositsa; Imbach, Lukas L

    2017-10-01

    The majority of comatose patients after cardiac arrest do not regain consciousness due to severe postanoxic encephalopathy. Early and accurate outcome prediction is therefore essential in determining further therapeutic interventions. The electroencephalogram is a standardized and commonly available tool used to estimate prognosis in postanoxic patients. The identification of pathological EEG patterns with poor prognosis relies however primarily on visual EEG scoring by experts. We introduced a model-based approach of EEG analysis (state space model) that allows for an objective and quantitative description of spectral EEG variability. We retrospectively analyzed standard EEG recordings in 83 comatose patients after cardiac arrest between 2005 and 2013 in the intensive care unit of the University Hospital Zürich. Neurological outcome was assessed one month after cardiac arrest using the Cerebral Performance Category. For a dynamic and quantitative EEG analysis, we implemented a model-based approach (state space analysis) to quantify EEG background variability independent from visual scoring of EEG epochs. Spectral variability was compared between groups and correlated with clinical outcome parameters and visual EEG patterns. Quantitative assessment of spectral EEG variability (state space velocity) revealed significant differences between patients with poor and good outcome after cardiac arrest: Lower mean velocity in temporal electrodes (T4 and T5) was significantly associated with poor prognostic outcome (p<0.005) and correlated with independently identified visual EEG patterns such as generalized periodic discharges (p<0.02). Receiver operating characteristic (ROC) analysis confirmed the predictive value of lower state space velocity for poor clinical outcome after cardiac arrest (AUC 80.8, 70% sensitivity, 15% false positive rate). Model-based quantitative EEG analysis (state space analysis) provides a novel, complementary marker for prognosis in postanoxic encephalopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Predicting the Emplacement of Improvised Explosive Devices: An Innovative Solution

    ERIC Educational Resources Information Center

    Lerner, Warren D.

    2013-01-01

    In this quantitative correlational study, simulated data were employed to examine artificial-intelligence techniques or, more specifically, artificial neural networks, as they relate to the location prediction of improvised explosive devices (IEDs). An ANN model was developed to predict IED placement, based upon terrain features and objects…

  4. Quantitative Prediction of Systemic Toxicity Points of Departure (OpenTox USA 2017)

    EPA Science Inventory

    Human health risk assessment associated with environmental chemical exposure is limited by the tens of thousands of chemicals little or no experimental in vivo toxicity data. Data gap filling techniques, such as quantitative models based on chemical structure information, are c...

  5. Predicting plant biomass accumulation from image-derived parameters

    PubMed Central

    Chen, Dijun; Shi, Rongli; Pape, Jean-Michel; Neumann, Kerstin; Graner, Andreas; Chen, Ming; Klukas, Christian

    2018-01-01

    Abstract Background Image-based high-throughput phenotyping technologies have been rapidly developed in plant science recently, and they provide a great potential to gain more valuable information than traditionally destructive methods. Predicting plant biomass is regarded as a key purpose for plant breeders and ecologists. However, it is a great challenge to find a predictive biomass model across experiments. Results In the present study, we constructed 4 predictive models to examine the quantitative relationship between image-based features and plant biomass accumulation. Our methodology has been applied to 3 consecutive barley (Hordeum vulgare) experiments with control and stress treatments. The results proved that plant biomass can be accurately predicted from image-based parameters using a random forest model. The high prediction accuracy based on this model will contribute to relieving the phenotyping bottleneck in biomass measurement in breeding applications. The prediction performance is still relatively high across experiments under similar conditions. The relative contribution of individual features for predicting biomass was further quantified, revealing new insights into the phenotypic determinants of the plant biomass outcome. Furthermore, methods could also be used to determine the most important image-based features related to plant biomass accumulation, which would be promising for subsequent genetic mapping to uncover the genetic basis of biomass. Conclusions We have developed quantitative models to accurately predict plant biomass accumulation from image data. We anticipate that the analysis results will be useful to advance our views of the phenotypic determinants of plant biomass outcome, and the statistical methods can be broadly used for other plant species. PMID:29346559

  6. Vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors: development and validation of predictive 3-D QSAR models through extensive ligand- and structure-based approaches

    NASA Astrophysics Data System (ADS)

    Ragno, Rino; Ballante, Flavio; Pirolli, Adele; Wickersham, Richard B.; Patsilinakos, Alexandros; Hesse, Stéphanie; Perspicace, Enrico; Kirsch, Gilbert

    2015-08-01

    Vascular endothelial growth factor receptor-2, (VEGFR-2), is a key element in angiogenesis, the process by which new blood vessels are formed, and is thus an important pharmaceutical target. Here, 3-D quantitative structure-activity relationship (3-D QSAR) were used to build a quantitative screening and pharmacophore model of the VEGFR-2 receptors for design of inhibitors with improved activities. Most of available experimental data information has been used as training set to derive optimized and fully cross-validated eight mono-probe and a multi-probe quantitative models. Notable is the use of 262 molecules, aligned following both structure-based and ligand-based protocols, as external test set confirming the 3-D QSAR models' predictive capability and their usefulness in design new VEGFR-2 inhibitors. From a survey on literature, this is the first generation of a wide-ranging computational medicinal chemistry application on VEGFR2 inhibitors.

  7. PREDICTING SUBSURFACE CONTAMINANT TRANSPORT AND TRANSFORMATION: CONSIDERATIONS FOR MODEL SELECTION AND FIELD VALIDATION

    EPA Science Inventory

    Predicting subsurface contaminant transport and transformation requires mathematical models based on a variety of physical, chemical, and biological processes. The mathematical model is an attempt to quantitatively describe observed processes in order to permit systematic forecas...

  8. Accurate experimental and theoretical comparisons between superconductor-insulator-superconductor mixers showing weak and strong quantum effects

    NASA Technical Reports Server (NTRS)

    Mcgrath, W. R.; Richards, P. L.; Face, D. W.; Prober, D. E.; Lloyd, F. L.

    1988-01-01

    A systematic study of the gain and noise in superconductor-insulator-superconductor mixers employing Ta based, Nb based, and Pb-alloy based tunnel junctions was made. These junctions displayed both weak and strong quantum effects at a signal frequency of 33 GHz. The effects of energy gap sharpness and subgap current were investigated and are quantitatively related to mixer performance. Detailed comparisons are made of the mixing results with the predictions of a three-port model approximation to the Tucker theory. Mixer performance was measured with a novel test apparatus which is accurate enough to allow for the first quantitative tests of theoretical noise predictions. It is found that the three-port model of the Tucker theory underestimates the mixer noise temperature by a factor of about 2 for all of the mixers. In addition, predicted values of available mixer gain are in reasonable agreement with experiment when quantum effects are weak. However, as quantum effects become strong, the predicted available gain diverges to infinity, which is in sharp contrast to the experimental results. Predictions of coupled gain do not always show such divergences.

  9. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures.

    PubMed

    Larue, Ruben T H M; Defraene, Gilles; De Ruysscher, Dirk; Lambin, Philippe; van Elmpt, Wouter

    2017-02-01

    Quantitative analysis of tumour characteristics based on medical imaging is an emerging field of research. In recent years, quantitative imaging features derived from CT, positron emission tomography and MR scans were shown to be of added value in the prediction of outcome parameters in oncology, in what is called the radiomics field. However, results might be difficult to compare owing to a lack of standardized methodologies to conduct quantitative image analyses. In this review, we aim to present an overview of the current challenges, technical routines and protocols that are involved in quantitative imaging studies. The first issue that should be overcome is the dependency of several features on the scan acquisition and image reconstruction parameters. Adopting consistent methods in the subsequent target segmentation step is evenly crucial. To further establish robust quantitative image analyses, standardization or at least calibration of imaging features based on different feature extraction settings is required, especially for texture- and filter-based features. Several open-source and commercial software packages to perform feature extraction are currently available, all with slightly different functionalities, which makes benchmarking quite challenging. The number of imaging features calculated is typically larger than the number of patients studied, which emphasizes the importance of proper feature selection and prediction model-building routines to prevent overfitting. Even though many of these challenges still need to be addressed before quantitative imaging can be brought into daily clinical practice, radiomics is expected to be a critical component for the integration of image-derived information to personalize treatment in the future.

  10. Mechanistic modeling to predict the transporter- and enzyme-mediated drug-drug interactions of repaglinide.

    PubMed

    Varma, Manthena V S; Lai, Yurong; Kimoto, Emi; Goosen, Theunis C; El-Kattan, Ayman F; Kumar, Vikas

    2013-04-01

    Quantitative prediction of complex drug-drug interactions (DDIs) is challenging. Repaglinide is mainly metabolized by cytochrome-P-450 (CYP)2C8 and CYP3A4, and is also a substrate of organic anion transporting polypeptide (OATP)1B1. The purpose is to develop a physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics and DDIs of repaglinide. In vitro hepatic transport of repaglinide, gemfibrozil and gemfibrozil 1-O-β-glucuronide was characterized using sandwich-culture human hepatocytes. A PBPK model, implemented in Simcyp (Sheffield, UK), was developed utilizing in vitro transport and metabolic clearance data. In vitro studies suggested significant active hepatic uptake of repaglinide. Mechanistic model adequately described repaglinide pharmacokinetics, and successfully predicted DDIs with several OATP1B1 and CYP3A4 inhibitors (<10% error). Furthermore, repaglinide-gemfibrozil interaction at therapeutic dose was closely predicted using in vitro fraction metabolism for CYP2C8 (0.71), when primarily considering reversible inhibition of OATP1B1 and mechanism-based inactivation of CYP2C8 by gemfibrozil and gemfibrozil 1-O-β-glucuronide. This study demonstrated that hepatic uptake is rate-determining in the systemic clearance of repaglinide. The model quantitatively predicted several repaglinide DDIs, including the complex interactions with gemfibrozil. Both OATP1B1 and CYP2C8 inhibition contribute significantly to repaglinide-gemfibrozil interaction, and need to be considered for quantitative rationalization of DDIs with either drug.

  11. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE PAGES

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    2015-12-07

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less

  12. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less

  13. Teachers' Perceptions of Their Working Conditions: How Predictive of Policy-Relevant Outcomes? Working Paper 33

    ERIC Educational Resources Information Center

    Ladd, Helen F.

    2009-01-01

    This quantitative study uses data from North Carolina to examine the extent to which survey based perceptions of working conditions are predictive of policy-relevant outcomes, independent of other school characteristics such as the demographic mix of the school's students. Working conditions emerge as highly predictive of teachers' stated…

  14. Simulation-Based Prediction of Equivalent Continuous Noises during Construction Processes

    PubMed Central

    Zhang, Hong; Pei, Yun

    2016-01-01

    Quantitative prediction of construction noise is crucial to evaluate construction plans to help make decisions to address noise levels. Considering limitations of existing methods for measuring or predicting the construction noise and particularly the equivalent continuous noise level over a period of time, this paper presents a discrete-event simulation method for predicting the construction noise in terms of equivalent continuous level. The noise-calculating models regarding synchronization, propagation and equivalent continuous level are presented. The simulation framework for modeling the noise-affected factors and calculating the equivalent continuous noise by incorporating the noise-calculating models into simulation strategy is proposed. An application study is presented to demonstrate and justify the proposed simulation method in predicting the equivalent continuous noise during construction. The study contributes to provision of a simulation methodology to quantitatively predict the equivalent continuous noise of construction by considering the relevant uncertainties, dynamics and interactions. PMID:27529266

  15. Simulation-Based Prediction of Equivalent Continuous Noises during Construction Processes.

    PubMed

    Zhang, Hong; Pei, Yun

    2016-08-12

    Quantitative prediction of construction noise is crucial to evaluate construction plans to help make decisions to address noise levels. Considering limitations of existing methods for measuring or predicting the construction noise and particularly the equivalent continuous noise level over a period of time, this paper presents a discrete-event simulation method for predicting the construction noise in terms of equivalent continuous level. The noise-calculating models regarding synchronization, propagation and equivalent continuous level are presented. The simulation framework for modeling the noise-affected factors and calculating the equivalent continuous noise by incorporating the noise-calculating models into simulation strategy is proposed. An application study is presented to demonstrate and justify the proposed simulation method in predicting the equivalent continuous noise during construction. The study contributes to provision of a simulation methodology to quantitatively predict the equivalent continuous noise of construction by considering the relevant uncertainties, dynamics and interactions.

  16. Genetic programming based quantitative structure-retention relationships for the prediction of Kovats retention indices.

    PubMed

    Goel, Purva; Bapat, Sanket; Vyas, Renu; Tambe, Amruta; Tambe, Sanjeev S

    2015-11-13

    The development of quantitative structure-retention relationships (QSRR) aims at constructing an appropriate linear/nonlinear model for the prediction of the retention behavior (such as Kovats retention index) of a solute on a chromatographic column. Commonly, multi-linear regression and artificial neural networks are used in the QSRR development in the gas chromatography (GC). In this study, an artificial intelligence based data-driven modeling formalism, namely genetic programming (GP), has been introduced for the development of quantitative structure based models predicting Kovats retention indices (KRI). The novelty of the GP formalism is that given an example dataset, it searches and optimizes both the form (structure) and the parameters of an appropriate linear/nonlinear data-fitting model. Thus, it is not necessary to pre-specify the form of the data-fitting model in the GP-based modeling. These models are also less complex, simple to understand, and easy to deploy. The effectiveness of GP in constructing QSRRs has been demonstrated by developing models predicting KRIs of light hydrocarbons (case study-I) and adamantane derivatives (case study-II). In each case study, two-, three- and four-descriptor models have been developed using the KRI data available in the literature. The results of these studies clearly indicate that the GP-based models possess an excellent KRI prediction accuracy and generalization capability. Specifically, the best performing four-descriptor models in both the case studies have yielded high (>0.9) values of the coefficient of determination (R(2)) and low values of root mean squared error (RMSE) and mean absolute percent error (MAPE) for training, test and validation set data. The characteristic feature of this study is that it introduces a practical and an effective GP-based method for developing QSRRs in gas chromatography that can be gainfully utilized for developing other types of data-driven models in chromatography science. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Toxicity challenges in environmental chemicals: Prediction of human plasma protein binding through quantitative structure-activity relationship (QSAR) models (2016 IVIVE Workshop Proceedings)

    EPA Science Inventory

    Physiologically based pharmacokinetic (PBPK) models bridge the gap between in vitro assays and in vivo effects by accounting for the adsorption, distribution, metabolism, and excretion of xenobiotics, which is especially useful in the assessment of human toxicity. Quantitative st...

  18. Assessing genomic selection prediction accuracy in a dynamic barley breeding

    USDA-ARS?s Scientific Manuscript database

    Genomic selection is a method to improve quantitative traits in crops and livestock by estimating breeding values of selection candidates using phenotype and genome-wide marker data sets. Prediction accuracy has been evaluated through simulation and cross-validation, however validation based on prog...

  19. Perceived Attributes Predict Course Management System Adopter Status

    ERIC Educational Resources Information Center

    Keesee, Gayla S.; Shepard, MaryFriend

    2011-01-01

    This quantitative, nonexperimental study utilized Rogers's diffusion of innovation theory as the theoretical base to determine instructors' perceptions of the attributes (relative advantage, compatibility, complexity, trialability, observability) of the course management system used in order to predict adopter status. The study used a convenience…

  20. Size-adjusted Quantitative Gleason Score as a Predictor of Biochemical Recurrence after Radical Prostatectomy.

    PubMed

    Deng, Fang-Ming; Donin, Nicholas M; Pe Benito, Ruth; Melamed, Jonathan; Le Nobin, Julien; Zhou, Ming; Ma, Sisi; Wang, Jinhua; Lepor, Herbert

    2016-08-01

    The risk of biochemical recurrence (BCR) following radical prostatectomy for pathologic Gleason 7 prostate cancer varies according to the proportion of Gleason 4 component. We sought to explore the value of several novel quantitative metrics of Gleason 4 disease for the prediction of BCR in men with Gleason 7 disease. We analyzed a cohort of 2630 radical prostatectomy cases from 1990-2007. All pathologic Gleason 7 cases were identified and assessed for quantity of Gleason pattern 4. Three methods were used to quantify the extent of Gleason 4: a quantitative Gleason score (qGS) based on the proportion of tumor composed of Gleason pattern 4, a size-weighted score (swGS) incorporating the overall quantity of Gleason 4, and a size index (siGS) incorporating the quantity of Gleason 4 based on the index lesion. Associations between the above metrics and BCR were evaluated using Cox proportional hazards regression analysis. qGS, swGS, and siGS were significantly associated with BCR on multivariate analysis when adjusted for traditional Gleason score, age, prostate specific antigen, surgical margin, and stage. Using Harrell's c-index to compare the scoring systems, qGS (0.83), swGS (0.84), and siGS (0.84) all performed better than the traditional Gleason score (0.82). Quantitative measures of Gleason pattern 4 predict BCR better than the traditional Gleason score. In men with Gleason 7 prostate cancer, quantitative analysis of the proportion of Gleason pattern 4 (quantitative Gleason score), as well as size-weighted measurement of Gleason 4 (size-weighted Gleason score), and a size-weighted measurement of Gleason 4 based on the largest tumor nodule significantly improve the predicted risk of biochemical recurrence compared with the traditional Gleason score. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  1. Predicting the activity of drugs for a group of imidazopyridine anticoccidial compounds.

    PubMed

    Si, Hongzong; Lian, Ning; Yuan, Shuping; Fu, Aiping; Duan, Yun-Bo; Zhang, Kejun; Yao, Xiaojun

    2009-10-01

    Gene expression programming (GEP) is a novel machine learning technique. The GEP is used to build nonlinear quantitative structure-activity relationship model for the prediction of the IC(50) for the imidazopyridine anticoccidial compounds. This model is based on descriptors which are calculated from the molecular structure. Four descriptors are selected from the descriptors' pool by heuristic method (HM) to build multivariable linear model. The GEP method produced a nonlinear quantitative model with a correlation coefficient and a mean error of 0.96 and 0.24 for the training set, 0.91 and 0.52 for the test set, respectively. It is shown that the GEP predicted results are in good agreement with experimental ones.

  2. Qualification Testing Versus Quantitative Reliability Testing of PV - Gaining Confidence in a Rapidly Changing Technology: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah; Repins, Ingrid L; Hacke, Peter L

    Continued growth of PV system deployment would be enhanced by quantitative, low-uncertainty predictions of the degradation and failure rates of PV modules and systems. The intended product lifetime (decades) far exceeds the product development cycle (months), limiting our ability to reduce the uncertainty of the predictions for this rapidly changing technology. Yet, business decisions (setting insurance rates, analyzing return on investment, etc.) require quantitative risk assessment. Moving toward more quantitative assessments requires consideration of many factors, including the intended application, consequence of a possible failure, variability in the manufacturing, installation, and operation, as well as uncertainty in the measured accelerationmore » factors, which provide the basis for predictions based on accelerated tests. As the industry matures, it is useful to periodically assess the overall strategy for standards development and prioritization of research to provide a technical basis both for the standards and the analysis related to the application of those. To this end, this paper suggests a tiered approach to creating risk assessments. Recent and planned potential improvements in international standards are also summarized.« less

  3. Evaluation of chemotherapy response in ovarian cancer treatment using quantitative CT image biomarkers: a preliminary study

    NASA Astrophysics Data System (ADS)

    Qiu, Yuchen; Tan, Maxine; McMeekin, Scott; Thai, Theresa; Moore, Kathleen; Ding, Kai; Liu, Hong; Zheng, Bin

    2015-03-01

    The purpose of this study is to identify and apply quantitative image biomarkers for early prediction of the tumor response to the chemotherapy among the ovarian cancer patients participated in the clinical trials of testing new drugs. In the experiment, we retrospectively selected 30 cases from the patients who participated in Phase I clinical trials of new drug or drug agents for ovarian cancer treatment. Each case is composed of two sets of CT images acquired pre- and post-treatment (4-6 weeks after starting treatment). A computer-aided detection (CAD) scheme was developed to extract and analyze the quantitative image features of the metastatic tumors previously tracked by the radiologists using the standard Response Evaluation Criteria in Solid Tumors (RECIST) guideline. The CAD scheme first segmented 3-D tumor volumes from the background using a hybrid tumor segmentation scheme. Then, for each segmented tumor, CAD computed three quantitative image features including the change of tumor volume, tumor CT number (density) and density variance. The feature changes were calculated between the matched tumors tracked on the CT images acquired pre- and post-treatments. Finally, CAD predicted patient's 6-month progression-free survival (PFS) using a decision-tree based classifier. The performance of the CAD scheme was compared with the RECIST category. The result shows that the CAD scheme achieved a prediction accuracy of 76.7% (23/30 cases) with a Kappa coefficient of 0.493, which is significantly higher than the performance of RECIST prediction with a prediction accuracy and Kappa coefficient of 60% (17/30) and 0.062, respectively. This study demonstrated the feasibility of analyzing quantitative image features to improve the early predicting accuracy of the tumor response to the new testing drugs or therapeutic methods for the ovarian cancer patients.

  4. Making predictions of mangrove deforestation: a comparison of two methods in Kenya.

    PubMed

    Rideout, Alasdair J R; Joshi, Neha P; Viergever, Karin M; Huxham, Mark; Briers, Robert A

    2013-11-01

    Deforestation of mangroves is of global concern given their importance for carbon storage, biogeochemical cycling and the provision of other ecosystem services, but the links between rates of loss and potential drivers or risk factors are rarely evaluated. Here, we identified key drivers of mangrove loss in Kenya and compared two different approaches to predicting risk. Risk factors tested included various possible predictors of anthropogenic deforestation, related to population, suitability for land use change and accessibility. Two approaches were taken to modelling risk; a quantitative statistical approach and a qualitative categorical ranking approach. A quantitative model linking rates of loss to risk factors was constructed based on generalized least squares regression and using mangrove loss data from 1992 to 2000. Population density, soil type and proximity to roads were the most important predictors. In order to validate this model it was used to generate a map of losses of Kenyan mangroves predicted to have occurred between 2000 and 2010. The qualitative categorical model was constructed using data from the same selection of variables, with the coincidence of different risk factors in particular mangrove areas used in an additive manner to create a relative risk index which was then mapped. Quantitative predictions of loss were significantly correlated with the actual loss of mangroves between 2000 and 2010 and the categorical risk index values were also highly correlated with the quantitative predictions. Hence, in this case the relatively simple categorical modelling approach was of similar predictive value to the more complex quantitative model of mangrove deforestation. The advantages and disadvantages of each approach are discussed, and the implications for mangroves are outlined. © 2013 Blackwell Publishing Ltd.

  5. Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification.

    PubMed

    Wang, Shouyi; Bowen, Stephen R; Chaovalitwongse, W Art; Sandison, George A; Grabowski, Thomas J; Kinahan, Paul E

    2014-02-21

    The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUV(peak)) over lesions of interest. Relative differences in SUV(peak) between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUV(peak) values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion compensation when clinicians quantitatively assess PET/CT for therapy target definition and response assessment.

  6. Respiratory trace feature analysis for the prediction of respiratory-gated PET quantification

    NASA Astrophysics Data System (ADS)

    Wang, Shouyi; Bowen, Stephen R.; Chaovalitwongse, W. Art; Sandison, George A.; Grabowski, Thomas J.; Kinahan, Paul E.

    2014-02-01

    The benefits of respiratory gating in quantitative PET/CT vary tremendously between individual patients. Respiratory pattern is among many patient-specific characteristics that are thought to play an important role in gating-induced imaging improvements. However, the quantitative relationship between patient-specific characteristics of respiratory pattern and improvements in quantitative accuracy from respiratory-gated PET/CT has not been well established. If such a relationship could be estimated, then patient-specific respiratory patterns could be used to prospectively select appropriate motion compensation during image acquisition on a per-patient basis. This study was undertaken to develop a novel statistical model that predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-breathing static FDG-PET images without gating and respiratory-gated FDG-PET images were collected from 22 lung and liver cancer patients on a PET/CT scanner. PET imaging quality was quantified with peak standardized uptake value (SUVpeak) over lesions of interest. Relative differences in SUVpeak between static and gated PET images were calculated to indicate quantitative imaging changes due to gating. A comprehensive multidimensional extraction of the morphological and statistical characteristics of respiratory patterns was conducted, resulting in 16 features that characterize representative patterns of a single respiratory trace. The six most informative features were subsequently extracted using a stepwise feature selection approach. The multiple-regression model was trained and tested based on a leave-one-subject-out cross-validation. The predicted quantitative improvements in PET imaging achieved an accuracy higher than 90% using a criterion with a dynamic error-tolerance range for SUVpeak values. The results of this study suggest that our prediction framework could be applied to determine which patients would likely benefit from respiratory motion compensation when clinicians quantitatively assess PET/CT for therapy target definition and response assessment.

  7. Trimethylation enhancement using diazomethane (TrEnDi): rapid on-column quaternization of peptide amino groups via reaction with diazomethane significantly enhances sensitivity in mass spectrometry analyses via a fixed, permanent positive charge.

    PubMed

    Wasslen, Karl V; Tan, Le Hoa; Manthorpe, Jeffrey M; Smith, Jeffrey C

    2014-04-01

    Defining cellular processes relies heavily on elucidating the temporal dynamics of proteins. To this end, mass spectrometry (MS) is an extremely valuable tool; different MS-based quantitative proteomics strategies have emerged to map protein dynamics over the course of stimuli. Herein, we disclose our novel MS-based quantitative proteomics strategy with unique analytical characteristics. By passing ethereal diazomethane over peptides on strong cation exchange resin within a microfluidic device, peptides react to contain fixed, permanent positive charges. Modified peptides display improved ionization characteristics and dissociate via tandem mass spectrometry (MS(2)) to form strong a2 fragment ion peaks. Process optimization and determination of reactive functional groups enabled a priori prediction of MS(2) fragmentation patterns for modified peptides. The strategy was tested on digested bovine serum albumin (BSA) and successfully quantified a peptide that was not observable prior to modification. Our method ionizes peptides regardless of proton affinity, thus decreasing ion suppression and permitting predictable multiple reaction monitoring (MRM)-based quantitation with improved sensitivity.

  8. MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development (SETAC abstract)

    EPA Science Inventory

    The mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity and as an alternative to chemical class-based predictive toxicity modeling. However, the development of quantitative structure activity relationship (QSAR) and other models has been limit...

  9. Assessment of MRI-Based Automated Fetal Cerebral Cortical Folding Measures in Prediction of Gestational Age in the Third Trimester.

    PubMed

    Wu, J; Awate, S P; Licht, D J; Clouchoux, C; du Plessis, A J; Avants, B B; Vossough, A; Gee, J C; Limperopoulos, C

    2015-07-01

    Traditional methods of dating a pregnancy based on history or sonographic assessment have a large variation in the third trimester. We aimed to assess the ability of various quantitative measures of brain cortical folding on MR imaging in determining fetal gestational age in the third trimester. We evaluated 8 different quantitative cortical folding measures to predict gestational age in 33 healthy fetuses by using T2-weighted fetal MR imaging. We compared the accuracy of the prediction of gestational age by these cortical folding measures with the accuracy of prediction by brain volume measurement and by a previously reported semiquantitative visual scale of brain maturity. Regression models were constructed, and measurement biases and variances were determined via a cross-validation procedure. The cortical folding measures are accurate in the estimation and prediction of gestational age (mean of the absolute error, 0.43 ± 0.45 weeks) and perform better than (P = .024) brain volume (mean of the absolute error, 0.72 ± 0.61 weeks) or sonography measures (SDs approximately 1.5 weeks, as reported in literature). Prediction accuracy is comparable with that of the semiquantitative visual assessment score (mean, 0.57 ± 0.41 weeks). Quantitative cortical folding measures such as global average curvedness can be an accurate and reliable estimator of gestational age and brain maturity for healthy fetuses in the third trimester and have the potential to be an indicator of brain-growth delays for at-risk fetuses and preterm neonates. © 2015 by American Journal of Neuroradiology.

  10. A generalised individual-based algorithm for modelling the evolution of quantitative herbicide resistance in arable weed populations.

    PubMed

    Liu, Chun; Bridges, Melissa E; Kaundun, Shiv S; Glasgow, Les; Owen, Micheal Dk; Neve, Paul

    2017-02-01

    Simulation models are useful tools for predicting and comparing the risk of herbicide resistance in weed populations under different management strategies. Most existing models assume a monogenic mechanism governing herbicide resistance evolution. However, growing evidence suggests that herbicide resistance is often inherited in a polygenic or quantitative fashion. Therefore, we constructed a generalised modelling framework to simulate the evolution of quantitative herbicide resistance in summer annual weeds. Real-field management parameters based on Amaranthus tuberculatus (Moq.) Sauer (syn. rudis) control with glyphosate and mesotrione in Midwestern US maize-soybean agroecosystems demonstrated that the model can represent evolved herbicide resistance in realistic timescales. Sensitivity analyses showed that genetic and management parameters were impactful on the rate of quantitative herbicide resistance evolution, whilst biological parameters such as emergence and seed bank mortality were less important. The simulation model provides a robust and widely applicable framework for predicting the evolution of quantitative herbicide resistance in summer annual weed populations. The sensitivity analyses identified weed characteristics that would favour herbicide resistance evolution, including high annual fecundity, large resistance phenotypic variance and pre-existing herbicide resistance. Implications for herbicide resistance management and potential use of the model are discussed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat.

    PubMed

    Juliana, Philomin; Singh, Ravi P; Singh, Pawan K; Crossa, Jose; Huerta-Espino, Julio; Lan, Caixia; Bhavani, Sridhar; Rutkoski, Jessica E; Poland, Jesse A; Bergstrom, Gary C; Sorrells, Mark E

    2017-07-01

    Genomic prediction for seedling and adult plant resistance to wheat rusts was compared to prediction using few markers as fixed effects in a least-squares approach and pedigree-based prediction. The unceasing plant-pathogen arms race and ephemeral nature of some rust resistance genes have been challenging for wheat (Triticum aestivum L.) breeding programs and farmers. Hence, it is important to devise strategies for effective evaluation and exploitation of quantitative rust resistance. One promising approach that could accelerate gain from selection for rust resistance is 'genomic selection' which utilizes dense genome-wide markers to estimate the breeding values (BVs) for quantitative traits. Our objective was to compare three genomic prediction models including genomic best linear unbiased prediction (GBLUP), GBLUP A that was GBLUP with selected loci as fixed effects and reproducing kernel Hilbert spaces-markers (RKHS-M) with least-squares (LS) approach, RKHS-pedigree (RKHS-P), and RKHS markers and pedigree (RKHS-MP) to determine the BVs for seedling and/or adult plant resistance (APR) to leaf rust (LR), stem rust (SR), and stripe rust (YR). The 333 lines in the 45th IBWSN and the 313 lines in the 46th IBWSN were genotyped using genotyping-by-sequencing and phenotyped in replicated trials. The mean prediction accuracies ranged from 0.31-0.74 for LR seedling, 0.12-0.56 for LR APR, 0.31-0.65 for SR APR, 0.70-0.78 for YR seedling, and 0.34-0.71 for YR APR. For most datasets, the RKHS-MP model gave the highest accuracies, while LS gave the lowest. GBLUP, GBLUP A, RKHS-M, and RKHS-P models gave similar accuracies. Using genome-wide marker-based models resulted in an average of 42% increase in accuracy over LS. We conclude that GS is a promising approach for improvement of quantitative rust resistance and can be implemented in the breeding pipeline.

  12. Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks

    PubMed Central

    Ypsilantis, Petros-Pavlos; Siddique, Musib; Sohn, Hyon-Mok; Davies, Andrew; Cook, Gary; Goh, Vicky; Montana, Giovanni

    2015-01-01

    Imaging of cancer with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has become a standard component of diagnosis and staging in oncology, and is becoming more important as a quantitative monitor of individual response to therapy. In this article we investigate the challenging problem of predicting a patient’s response to neoadjuvant chemotherapy from a single 18F-FDG PET scan taken prior to treatment. We take a “radiomics” approach whereby a large amount of quantitative features is automatically extracted from pretherapy PET images in order to build a comprehensive quantification of the tumor phenotype. While the dominant methodology relies on hand-crafted texture features, we explore the potential of automatically learning low- to high-level features directly from PET scans. We report on a study that compares the performance of two competing radiomics strategies: an approach based on state-of-the-art statistical classifiers using over 100 quantitative imaging descriptors, including texture features as well as standardized uptake values, and a convolutional neural network, 3S-CNN, trained directly from PET scans by taking sets of adjacent intra-tumor slices. Our experimental results, based on a sample of 107 patients with esophageal cancer, provide initial evidence that convolutional neural networks have the potential to extract PET imaging representations that are highly predictive of response to therapy. On this dataset, 3S-CNN achieves an average 80.7% sensitivity and 81.6% specificity in predicting non-responders, and outperforms other competing predictive models. PMID:26355298

  13. A systematic review of quantitative burn wound microbiology in the management of burns patients.

    PubMed

    Halstead, Fenella D; Lee, Kwang Chear; Kwei, Johnny; Dretzke, Janine; Oppenheim, Beryl A; Moiemen, Naiem S

    2018-02-01

    The early diagnosis of infection or sepsis in burns are important for patient care. Globally, a large number of burn centres advocate quantitative cultures of wound biopsies for patient management, since there is assumed to be a direct link between the bioburden of a burn wound and the risk of microbial invasion. Given the conflicting study findings in this area, a systematic review was warranted. Bibliographic databases were searched with no language restrictions to August 2015. Study selection, data extraction and risk of bias assessment were performed in duplicate using pre-defined criteria. Substantial heterogeneity precluded quantitative synthesis, and findings were described narratively, sub-grouped by clinical question. Twenty six laboratory and/or clinical studies were included. Substantial heterogeneity hampered comparisons across studies and interpretation of findings. Limited evidence suggests that (i) more than one quantitative microbiology sample is required to obtain reliable estimates of bacterial load; (ii) biopsies are more sensitive than swabs in diagnosing or predicting sepsis; (iii) high bacterial loads may predict worse clinical outcomes, and (iv) both quantitative and semi-quantitative culture reports need to be interpreted with caution and in the context of other clinical risk factors. The evidence base for the utility and reliability of quantitative microbiology for diagnosing or predicting clinical outcomes in burns patients is limited and often poorly reported. Consequently future research is warranted. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. Quantitative prediction of oral cancer risk in patients with oral leukoplakia.

    PubMed

    Liu, Yao; Li, Yicheng; Fu, Yue; Liu, Tong; Liu, Xiaoyong; Zhang, Xinyan; Fu, Jie; Guan, Xiaobing; Chen, Tong; Chen, Xiaoxin; Sun, Zheng

    2017-07-11

    Exfoliative cytology has been widely used for early diagnosis of oral squamous cell carcinoma. We have developed an oral cancer risk index using DNA index value to quantitatively assess cancer risk in patients with oral leukoplakia, but with limited success. In order to improve the performance of the risk index, we collected exfoliative cytology, histopathology, and clinical follow-up data from two independent cohorts of normal, leukoplakia and cancer subjects (training set and validation set). Peaks were defined on the basis of first derivatives with positives, and modern machine learning techniques were utilized to build statistical prediction models on the reconstructed data. Random forest was found to be the best model with high sensitivity (100%) and specificity (99.2%). Using the Peaks-Random Forest model, we constructed an index (OCRI2) as a quantitative measurement of cancer risk. Among 11 leukoplakia patients with an OCRI2 over 0.5, 4 (36.4%) developed cancer during follow-up (23 ± 20 months), whereas 3 (5.3%) of 57 leukoplakia patients with an OCRI2 less than 0.5 developed cancer (32 ± 31 months). OCRI2 is better than other methods in predicting oral squamous cell carcinoma during follow-up. In conclusion, we have developed an exfoliative cytology-based method for quantitative prediction of cancer risk in patients with oral leukoplakia.

  15. Quantitative chest computed tomography as a means of predicting exercise performance in severe emphysema.

    PubMed

    Crausman, R S; Ferguson, G; Irvin, C G; Make, B; Newell, J D

    1995-06-01

    We assessed the value of quantitative high-resolution computed tomography (CT) as a diagnostic and prognostic tool in smoking-related emphysema. We performed an inception cohort study of 14 patients referred with emphysema. The diagnosis of emphysema was based on a compatible history, physical examination, chest radiograph, CT scan of the lung, and pulmonary physiologic evaluation. As a group, those who underwent exercise testing were hyperinflated (percentage predicted total lung capacity +/- standard error of the mean = 133 +/- 9%), and there was evidence of air trapping (percentage predicted respiratory volume = 318 +/- 31%) and airflow limitation (forced expiratory volume in 1 sec [FEV1] = 40 +/- 7%). The exercise performance of the group was severely limited (maximum achievable workload = 43 +/- 6%) and was characterized by prominent ventilatory, gas exchange, and pulmonary vascular abnormalities. The quantitative CT index was markedly elevated in all patients (76 +/- 9; n = 14; normal < 4). There were correlations between this quantitative CT index and measures of airflow limitation (FEV1 r2 = .34, p = 09; FEV1/forced vital capacity r2 = .46, p = .04) and between maximum workload achieved (r2 = .93, p = .0001) and maximum oxygen utilization (r2 = .83, p = .0007). Quantitative chest CT assessment of disease severity is correlated with the degree of airflow limitation and exercise impairment in pulmonary emphysema.

  16. Predicting Loss-of-Control Boundaries Toward a Piloting Aid

    NASA Technical Reports Server (NTRS)

    Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.

  17. Novel images extraction model using improved delay vector variance feature extraction and multi-kernel neural network for EEG detection and prediction.

    PubMed

    Ge, Jing; Zhang, Guoping

    2015-01-01

    Advanced intelligent methodologies could help detect and predict diseases from the EEG signals in cases the manual analysis is inefficient available, for instance, the epileptic seizures detection and prediction. This is because the diversity and the evolution of the epileptic seizures make it very difficult in detecting and identifying the undergoing disease. Fortunately, the determinism and nonlinearity in a time series could characterize the state changes. Literature review indicates that the Delay Vector Variance (DVV) could examine the nonlinearity to gain insight into the EEG signals but very limited work has been done to address the quantitative DVV approach. Hence, the outcomes of the quantitative DVV should be evaluated to detect the epileptic seizures. To develop a new epileptic seizure detection method based on quantitative DVV. This new epileptic seizure detection method employed an improved delay vector variance (IDVV) to extract the nonlinearity value as a distinct feature. Then a multi-kernel functions strategy was proposed in the extreme learning machine (ELM) network to provide precise disease detection and prediction. The nonlinearity is more sensitive than the energy and entropy. 87.5% overall accuracy of recognition and 75.0% overall accuracy of forecasting were achieved. The proposed IDVV and multi-kernel ELM based method was feasible and effective for epileptic EEG detection. Hence, the newly proposed method has importance for practical applications.

  18. Quantitative Estimation of Plasma Free Drug Fraction in Patients With Varying Degrees of Hepatic Impairment: A Methodological Evaluation.

    PubMed

    Li, Guo-Fu; Yu, Guo; Li, Yanfei; Zheng, Yi; Zheng, Qing-Shan; Derendorf, Hartmut

    2018-07-01

    Quantitative prediction of unbound drug fraction (f u ) is essential for scaling pharmacokinetics through physiologically based approaches. However, few attempts have been made to evaluate the projection of f u values under pathological conditions. The primary objective of this study was to predict f u values (n = 105) of 56 compounds with or without the information of predominant binding protein in patients with varying degrees of hepatic insufficiency by accounting for quantitative changes in molar concentrations of either the major binding protein or albumin plus alpha 1-acid glycoprotein associated with differing levels of hepatic dysfunction. For the purpose of scaling, data pertaining to albumin and α1-acid glycoprotein levels in response to differing degrees of hepatic impairment were systematically collected from 919 adult donors. The results of the present study demonstrate for the first time the feasibility of physiologically based scaling f u in hepatic dysfunction after verifying with experimentally measured data of a wide variety of compounds from individuals with varying degrees of hepatic insufficiency. Furthermore, the high level of predictive accuracy indicates that the inter-relation between the severity of hepatic impairment and these plasma protein levels are physiologically accurate. The present study enhances the confidence in predicting f u in hepatic insufficiency, particularly for albumin-bound drugs. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Fire frequency in the Interior Columbia River Basin: Building regional models from fire history data

    USGS Publications Warehouse

    McKenzie, D.; Peterson, D.L.; Agee, James K.

    2000-01-01

    Fire frequency affects vegetation composition and successional pathways; thus it is essential to understand fire regimes in order to manage natural resources at broad spatial scales. Fire history data are lacking for many regions for which fire management decisions are being made, so models are needed to estimate past fire frequency where local data are not yet available. We developed multiple regression models and tree-based (classification and regression tree, or CART) models to predict fire return intervals across the interior Columbia River basin at 1-km resolution, using georeferenced fire history, potential vegetation, cover type, and precipitation databases. The models combined semiqualitative methods and rigorous statistics. The fire history data are of uneven quality; some estimates are based on only one tree, and many are not cross-dated. Therefore, we weighted the models based on data quality and performed a sensitivity analysis of the effects on the models of estimation errors that are due to lack of cross-dating. The regression models predict fire return intervals from 1 to 375 yr for forested areas, whereas the tree-based models predict a range of 8 to 150 yr. Both types of models predict latitudinal and elevational gradients of increasing fire return intervals. Examination of regional-scale output suggests that, although the tree-based models explain more of the variation in the original data, the regression models are less likely to produce extrapolation errors. Thus, the models serve complementary purposes in elucidating the relationships among fire frequency, the predictor variables, and spatial scale. The models can provide local managers with quantitative information and provide data to initialize coarse-scale fire-effects models, although predictions for individual sites should be treated with caution because of the varying quality and uneven spatial coverage of the fire history database. The models also demonstrate the integration of qualitative and quantitative methods when requisite data for fully quantitative models are unavailable. They can be tested by comparing new, independent fire history reconstructions against their predictions and can be continually updated, as better fire history data become available.

  20. The Incremental Value of Subjective and Quantitative Assessment of 18F-FDG PET for the Prediction of Pathologic Complete Response to Preoperative Chemoradiotherapy in Esophageal Cancer.

    PubMed

    van Rossum, Peter S N; Fried, David V; Zhang, Lifei; Hofstetter, Wayne L; van Vulpen, Marco; Meijer, Gert J; Court, Laurence E; Lin, Steven H

    2016-05-01

    A reliable prediction of a pathologic complete response (pathCR) to chemoradiotherapy before surgery for esophageal cancer would enable investigators to study the feasibility and outcome of an organ-preserving strategy after chemoradiotherapy. So far no clinical parameters or diagnostic studies are able to accurately predict which patients will achieve a pathCR. The aim of this study was to determine whether subjective and quantitative assessment of baseline and postchemoradiation (18)F-FDG PET can improve the accuracy of predicting pathCR to preoperative chemoradiotherapy in esophageal cancer beyond clinical predictors. This retrospective study was approved by the institutional review board, and the need for written informed consent was waived. Clinical parameters along with subjective and quantitative parameters from baseline and postchemoradiation (18)F-FDG PET were derived from 217 esophageal adenocarcinoma patients who underwent chemoradiotherapy followed by surgery. The associations between these parameters and pathCR were studied in univariable and multivariable logistic regression analysis. Four prediction models were constructed and internally validated using bootstrapping to study the incremental predictive values of subjective assessment of (18)F-FDG PET, conventional quantitative metabolic features, and comprehensive (18)F-FDG PET texture/geometry features, respectively. The clinical benefit of (18)F-FDG PET was determined using decision-curve analysis. A pathCR was found in 59 (27%) patients. A clinical prediction model (corrected c-index, 0.67) was improved by adding (18)F-FDG PET-based subjective assessment of response (corrected c-index, 0.72). This latter model was slightly improved by the addition of 1 conventional quantitative metabolic feature only (i.e., postchemoradiation total lesion glycolysis; corrected c-index, 0.73), and even more by subsequently adding 4 comprehensive (18)F-FDG PET texture/geometry features (corrected c-index, 0.77). However, at a decision threshold of 0.9 or higher, representing a clinically relevant predictive value for pathCR at which one may be willing to omit surgery, there was no clear incremental value. Subjective and quantitative assessment of (18)F-FDG PET provides statistical incremental value for predicting pathCR after preoperative chemoradiotherapy in esophageal cancer. However, the discriminatory improvement beyond clinical predictors does not translate into a clinically relevant benefit that could change decision making. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  1. Cognitive Predictors of Achievement Growth in Mathematics: A Five Year Longitudinal Study

    PubMed Central

    Geary, David C.

    2011-01-01

    The study's goal was to identify the beginning of first grade quantitative competencies that predict mathematics achievement start point and growth through fifth grade. Measures of number, counting, and arithmetic competencies were administered in early first grade and used to predict mathematics achievement through fifth (n = 177), while controlling for intelligence, working memory, and processing speed. Multilevel models revealed intelligence, processing speed, and the central executive component of working memory predicted achievement or achievement growth in mathematics and, as a contrast domain, word reading. The phonological loop was uniquely predictive of word reading and the visuospatial sketch pad of mathematics. Early fluency in processing and manipulating numerical set size and Arabic numerals, accurate use of sophisticated counting procedures for solving addition problems, and accuracy in making placements on a mathematical number line were uniquely predictive of mathematics achievement. Use of memory-based processes to solve addition problems predicted mathematics and reading achievement but in different ways. The results identify the early quantitative competencies that uniquely contribute to mathematics learning. PMID:21942667

  2. Assessment of quantitative structure-activity relationship of toxicity prediction models for Korean chemical substance control legislation

    PubMed Central

    Kim, Kwang-Yon; Shin, Seong Eun; No, Kyoung Tai

    2015-01-01

    Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used with predicted toxicity results. Furthermore, by presenting the suitability of individual predicted results, we aimed to provide a foundation that could be used in actual assessments and regulations. PMID:26206368

  3. Predicting Southern Appalachian overstory vegetation with digital terrain data

    Treesearch

    Paul V. Bolstad; Wayne Swank; James Vose

    1998-01-01

    Vegetation in mountainous regions responds to small-scale variation in terrain, largely due to effects on both temperature and soil moisture. However, there are few studies of quantitative, terrain-based methods for predicting vegetation composition. This study investigated relationships between forest composition, elevation, and a derived index of terrain shape, and...

  4. DEVELOPMENT OF QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIPS (QSARS) TO PREDICT TOXICITY FOR A VARIETY OF HUMAN AND ECOLOGICAL ENDPOINTS

    EPA Science Inventory

    In general, the accuracy of a predicted toxicity value increases with increase in similarity between the query chemical and the chemicals used to develop a QSAR model. A toxicity estimation methodology employing this finding has been developed. A hierarchical based clustering t...

  5. Quantitative spatiotemporal analysis of antibody fragment diffusion and endocytic consumption in tumor spheroids.

    PubMed

    Thurber, Greg M; Wittrup, K Dane

    2008-05-01

    Antibody-based cancer treatment depends upon distribution of the targeting macromolecule throughout tumor tissue, and spatial heterogeneity could significantly limit efficacy in many cases. Antibody distribution in tumor tissue is a function of drug dosage, antigen concentration, binding affinity, antigen internalization, drug extravasation from blood vessels, diffusion in the tumor extracellular matrix, and systemic clearance rates. We have isolated the effects of a subset of these variables by live-cell microscopic imaging of single-chain antibody fragments against carcinoembryonic antigen in LS174T tumor spheroids. The measured rates of scFv penetration and retention were compared with theoretical predictions based on simple scaling criteria. The theory predicts that antibody dose must be large enough to drive a sufficient diffusive flux of antibody to overcome cellular internalization, and exposure time must be long enough to allow penetration to the spheroid center. The experimental results in spheroids are quantitatively consistent with these predictions. Therefore, simple scaling criteria can be applied to accurately predict antibody and antibody fragment penetration distance in tumor tissue.

  6. Quantitative Spatiotemporal Analysis of Antibody Fragment Diffusion and Endocytic Consumption in Tumor Spheroids

    PubMed Central

    Thurber, Greg M.; Wittrup, K. Dane

    2010-01-01

    Antibody-based cancer treatment depends upon distribution of the targeting macromolecule throughout tumor tissue, and spatial heterogeneity could significantly limit efficacy in many cases. Antibody distribution in tumor tissue is a function of drug dosage, antigen concentration, binding affinity, antigen internalization, drug extravasation from blood vessels, diffusion in the tumor extracellular matrix, and systemic clearance rates. We have isolated the effects of a subset of these variables by live-cell microscopic imaging of single-chain antibody fragments against carcinoembryonic antigen in LS174T tumor spheroids. The measured rates of scFv penetration and retention were compared with theoretical predictions based on simple scaling criteria. The theory predicts that antibody dose must be large enough to drive a sufficient diffusive flux of antibody to overcome cellular internalization, and exposure time must be long enough to allow penetration to the spheroid center. The experimental results in spheroids are quantitatively consistent with these predictions. Therefore, simple scaling criteria can be applied to accurately predict antibody and antibody fragment penetration distance in tumor tissue. PMID:18451160

  7. Strong ion calculator--a practical bedside application of modern quantitative acid-base physiology.

    PubMed

    Lloyd, P

    2004-12-01

    To review acid-base balance by considering the physical effects of ions in solution and describe the use of a calculator to derive the strong ion difference and Atot and strong ion gap. A review of articles reporting on the use of strong ion difference and Atot in the interpretation of acid base balance. Tremendous progress has been made in the last decade in our understanding of acid-base physiology. We now have a quantitative understanding of the mechanisms underlying the acidity of an aqueous solution. We can now predict the acidity given information about the concentration of the various ion-forming species within it. We can predict changes in acid-base status caused by disturbance of these factors, and finally, we can detect unmeasured anions with greater sensitivity than was previously possible with the anion gap, using either arterial or venous blood sampling. Acid-base interpretation has ceased to be an intuitive and arcane art. Much of it is now an exact computation that can be automated and incorporated into an online hospital laboratory information system. All diseases and all therapies can affect a patient's acid-base status only through the final common pathway of one or more of the three independent factors. With Constable's equations we can now accurately predict the acidity of plasma. When there is a discrepancy between the observed and predicted acidity we can deduce the net concentration of unmeasured ions to account for the difference.

  8. Agent-Based Computational Modeling to Examine How Individual Cell Morphology Affects Dosimetry

    EPA Science Inventory

    Cell-based models utilizing high-content screening (HCS) data have applications for predictive toxicology. Evaluating concentration-dependent effects on cell fate and state response is a fundamental utilization of HCS data.Although HCS assays may capture quantitative readouts at ...

  9. Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors.

    PubMed

    Nandi, Sisir; Monesi, Alessandro; Drgan, Viktor; Merzel, Franci; Novič, Marjana

    2013-10-30

    In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation.

  10. 20180312 - Structure-based QSAR Models to Predict Systemic Toxicity Points of Departure (SOT)

    EPA Science Inventory

    Human health risk assessment associated with environmental chemical exposure is limited by the tens of thousands of chemicals with little or no experimental in vivo toxicity data. Data gap filling techniques, such as quantitative structure activity relationship (QSAR) models base...

  11. Quantitative insights for the design of substrate-based SIRT1 inhibitors.

    PubMed

    Kokkonen, Piia; Mellini, Paolo; Nyrhilä, Olli; Rahnasto-Rilla, Minna; Suuronen, Tiina; Kiviranta, Päivi; Huhtiniemi, Tero; Poso, Antti; Jarho, Elina; Lahtela-Kakkonen, Maija

    2014-08-01

    Sirtuin 1 (SIRT1) is the most studied human sirtuin and it catalyzes the deacetylation reaction of acetylated lysine residues of its target proteins, for example histones. It is a promising drug target in the treatment of age-related diseases, such as neurodegenerative diseases and cancer. In this study, a series of known substrate-based sirtuin inhibitors was analyzed with comparative molecular field analysis (CoMFA), which is a three-dimensional quantitative structure-activity relationships (3D-QSAR) technique. The CoMFA model was validated both internally and externally, producing the statistical values concordance correlation coefficient (CCC) of 0.88, the mean value r(2)m of 0.66 and Q(2)F3 of 0.89. Based on the CoMFA interaction contours, 13 new potential inhibitors with high predicted activity were designed, and the activities were verified by in vitro measurements. This work proposes an effective approach for the design and activity prediction of new potential substrate-based SIRT1 inhibitors. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Reverse engineering systems models of regulation: discovery, prediction and mechanisms.

    PubMed

    Ashworth, Justin; Wurtmann, Elisabeth J; Baliga, Nitin S

    2012-08-01

    Biological systems can now be understood in comprehensive and quantitative detail using systems biology approaches. Putative genome-scale models can be built rapidly based upon biological inventories and strategic system-wide molecular measurements. Current models combine statistical associations, causative abstractions, and known molecular mechanisms to explain and predict quantitative and complex phenotypes. This top-down 'reverse engineering' approach generates useful organism-scale models despite noise and incompleteness in data and knowledge. Here we review and discuss the reverse engineering of biological systems using top-down data-driven approaches, in order to improve discovery, hypothesis generation, and the inference of biological properties. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Fragment-based quantitative structure-activity relationship (FB-QSAR) for fragment-based drug design.

    PubMed

    Du, Qi-Shi; Huang, Ri-Bo; Wei, Yu-Tuo; Pang, Zong-Wen; Du, Li-Qin; Chou, Kuo-Chen

    2009-01-30

    In cooperation with the fragment-based design a new drug design method, the so-called "fragment-based quantitative structure-activity relationship" (FB-QSAR) is proposed. The essence of the new method is that the molecular framework in a family of drug candidates are divided into several fragments according to their substitutes being investigated. The bioactivities of molecules are correlated with the physicochemical properties of the molecular fragments through two sets of coefficients in the linear free energy equations. One coefficient set is for the physicochemical properties and the other for the weight factors of the molecular fragments. Meanwhile, an iterative double least square (IDLS) technique is developed to solve the two sets of coefficients in a training data set alternately and iteratively. The IDLS technique is a feedback procedure with machine learning ability. The standard Two-dimensional quantitative structure-activity relationship (2D-QSAR) is a special case, in the FB-QSAR, when the whole molecule is treated as one entity. The FB-QSAR approach can remarkably enhance the predictive power and provide more structural insights into rational drug design. As an example, the FB-QSAR is applied to build a predictive model of neuraminidase inhibitors for drug development against H5N1 influenza virus. (c) 2008 Wiley Periodicals, Inc.

  14. Vesicular stomatitis forecasting based on Google Trends

    PubMed Central

    Lu, Yi; Zhou, GuangYa; Chen, Qin

    2018-01-01

    Background Vesicular stomatitis (VS) is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends. Methods American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression. Results For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity), SP (specificity) and ACC (prediction accuracy) values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively. Conclusion This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast. PMID:29385198

  15. Testing and Extending VSEPR with WebMO and MOPAC or GAMESS

    ERIC Educational Resources Information Center

    McNaught, Ian J.

    2011-01-01

    VSEPR is a topic that is commonly taught in undergraduate chemistry courses. The readily available Web-based program WebMO, in conjunction with the computational chemistry programs MOPAC and GAMESS, is used to quantitatively test a wide range of predictions of VSEPR. These predictions refer to the point group of the molecule, including the…

  16. Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy

    PubMed Central

    Mani, Subramani; Chen, Yukun; Li, Xia; Arlinghaus, Lori; Chakravarthy, A Bapsi; Abramson, Vandana; Bhave, Sandeep R; Levy, Mia A; Xu, Hua; Yankeelov, Thomas E

    2013-01-01

    Objective To employ machine learning methods to predict the eventual therapeutic response of breast cancer patients after a single cycle of neoadjuvant chemotherapy (NAC). Materials and methods Quantitative dynamic contrast-enhanced MRI and diffusion-weighted MRI data were acquired on 28 patients before and after one cycle of NAC. A total of 118 semiquantitative and quantitative parameters were derived from these data and combined with 11 clinical variables. We used Bayesian logistic regression in combination with feature selection using a machine learning framework for predictive model building. Results The best predictive models using feature selection obtained an area under the curve of 0.86 and an accuracy of 0.86, with a sensitivity of 0.88 and a specificity of 0.82. Discussion With the numerous options for NAC available, development of a method to predict response early in the course of therapy is needed. Unfortunately, by the time most patients are found not to be responding, their disease may no longer be surgically resectable, and this situation could be avoided by the development of techniques to assess response earlier in the treatment regimen. The method outlined here is one possible solution to this important clinical problem. Conclusions Predictive modeling approaches based on machine learning using readily available clinical and quantitative MRI data show promise in distinguishing breast cancer responders from non-responders after the first cycle of NAC. PMID:23616206

  17. Quantitative structure-activity relationship (QSAR) for insecticides: development of predictive in vivo insecticide activity models.

    PubMed

    Naik, P K; Singh, T; Singh, H

    2009-07-01

    Quantitative structure-activity relationship (QSAR) analyses were performed independently on data sets belonging to two groups of insecticides, namely the organophosphates and carbamates. Several types of descriptors including topological, spatial, thermodynamic, information content, lead likeness and E-state indices were used to derive quantitative relationships between insecticide activities and structural properties of chemicals. A systematic search approach based on missing value, zero value, simple correlation and multi-collinearity tests as well as the use of a genetic algorithm allowed the optimal selection of the descriptors used to generate the models. The QSAR models developed for both organophosphate and carbamate groups revealed good predictability with r(2) values of 0.949 and 0.838 as well as [image omitted] values of 0.890 and 0.765, respectively. In addition, a linear correlation was observed between the predicted and experimental LD(50) values for the test set data with r(2) of 0.871 and 0.788 for both the organophosphate and carbamate groups, indicating that the prediction accuracy of the QSAR models was acceptable. The models were also tested successfully from external validation criteria. QSAR models developed in this study should help further design of novel potent insecticides.

  18. An augmented classical least squares method for quantitative Raman spectral analysis against component information loss.

    PubMed

    Zhou, Yan; Cao, Hui

    2013-01-01

    We propose an augmented classical least squares (ACLS) calibration method for quantitative Raman spectral analysis against component information loss. The Raman spectral signals with low analyte concentration correlations were selected and used as the substitutes for unknown quantitative component information during the CLS calibration procedure. The number of selected signals was determined by using the leave-one-out root-mean-square error of cross-validation (RMSECV) curve. An ACLS model was built based on the augmented concentration matrix and the reference spectral signal matrix. The proposed method was compared with partial least squares (PLS) and principal component regression (PCR) using one example: a data set recorded from an experiment of analyte concentration determination using Raman spectroscopy. A 2-fold cross-validation with Venetian blinds strategy was exploited to evaluate the predictive power of the proposed method. The one-way variance analysis (ANOVA) was used to access the predictive power difference between the proposed method and existing methods. Results indicated that the proposed method is effective at increasing the robust predictive power of traditional CLS model against component information loss and its predictive power is comparable to that of PLS or PCR.

  19. Factors influencing protein tyrosine nitration – structure-based predictive models

    PubMed Central

    Bayden, Alexander S.; Yakovlev, Vasily A.; Graves, Paul R.; Mikkelsen, Ross B.; Kellogg, Glen E.

    2010-01-01

    Models for exploring tyrosine nitration in proteins have been created based on 3D structural features of 20 proteins for which high resolution X-ray crystallographic or NMR data are available and for which nitration of 35 total tyrosines has been experimentally proven under oxidative stress. Factors suggested in previous work to enhance nitration were examined with quantitative structural descriptors. The role of neighboring acidic and basic residues is complex: for the majority of tyrosines that are nitrated the distance to the heteroatom of the closest charged sidechain corresponds to the distance needed for suspected nitrating species to form hydrogen bond bridges between the tyrosine and that charged amino acid. This suggests that such bridges play a very important role in tyrosine nitration. Nitration is generally hindered for tyrosines that are buried and for those tyrosines where there is insufficient space for the nitro group. For in vitro nitration, closed environments with nearby heteroatoms or unsaturated centers that can stabilize radicals are somewhat favored. Four quantitative structure-based models, depending on the conditions of nitration, have been developed for predicting site-specific tyrosine nitration. The best model, relevant for both in vitro and in vivo cases predicts 30 of 35 tyrosine nitrations (positive predictive value) and has a sensitivity of 60/71 (11 false positives). PMID:21172423

  20. Simulation Of Combat With An Expert System

    NASA Technical Reports Server (NTRS)

    Provenzano, J. P.

    1989-01-01

    Proposed expert system predicts outcomes of combat situations. Called "COBRA", combat outcome based on rules for attrition, system selects rules for mathematical modeling of losses and discrete events in combat according to previous experiences. Used with another software module known as the "Game". Game/COBRA software system, consisting of Game and COBRA modules, provides for both quantitative aspects and qualitative aspects in simulations of battles. COBRA intended for simulation of large-scale military exercises, concepts embodied in it have much broader applicability. In industrial research, knowledge-based system enables qualitative as well as quantitative simulations.

  1. Quantitative Prediction of Drug–Drug Interactions Involving Inhibitory Metabolites in Drug Development: How Can Physiologically Based Pharmacokinetic Modeling Help?

    PubMed Central

    Chen, Y; Mao, J; Lin, J; Yu, H; Peters, S; Shebley, M

    2016-01-01

    This subteam under the Drug Metabolism Leadership Group (Innovation and Quality Consortium) investigated the quantitative role of circulating inhibitory metabolites in drug–drug interactions using physiologically based pharmacokinetic (PBPK) modeling. Three drugs with major circulating inhibitory metabolites (amiodarone, gemfibrozil, and sertraline) were systematically evaluated in addition to the literature review of recent examples. The application of PBPK modeling in drug interactions by inhibitory parent–metabolite pairs is described and guidance on strategic application is provided. PMID:27642087

  2. Relevance of genetic relationship in GWAS and genomic prediction.

    PubMed

    Pereira, Helcio Duarte; Soriano Viana, José Marcelo; Andrade, Andréa Carla Bastos; Fonseca E Silva, Fabyano; Paes, Geísa Pinheiro

    2018-02-01

    The objective of this study was to analyze the relevance of relationship information on the identification of low heritability quantitative trait loci (QTLs) from a genome-wide association study (GWAS) and on the genomic prediction of complex traits in human, animal and cross-pollinating populations. The simulation-based data sets included 50 samples of 1000 individuals of seven populations derived from a common population with linkage disequilibrium. The populations had non-inbred and inbred progeny structure (50 to 200) with varying number of members (5 to 20). The individuals were genotyped for 10,000 single nucleotide polymorphisms (SNPs) and phenotyped for a quantitative trait controlled by 10 QTLs and 90 minor genes showing dominance. The SNP density was 0.1 cM and the narrow sense heritability was 25%. The QTL heritabilities ranged from 1.1 to 2.9%. We applied mixed model approaches for both GWAS and genomic prediction using pedigree-based and genomic relationship matrices. For GWAS, the observed false discovery rate was kept below the significance level of 5%, the power of detection for the low heritability QTLs ranged from 14 to 50%, and the average bias between significant SNPs and a QTL ranged from less than 0.01 to 0.23 cM. The QTL detection power was consistently higher using genomic relationship matrix. Regardless of population and training set size, genomic prediction provided higher prediction accuracy of complex trait when compared to pedigree-based prediction. The accuracy of genomic prediction when there is relatedness between individuals in the training set and the reference population is much higher than the value for unrelated individuals.

  3. Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models-The European Fracture Study (EFFECT).

    PubMed

    Pottecher, Pierre; Engelke, Klaus; Duchemin, Laure; Museyko, Oleg; Moser, Thomas; Mitton, David; Vicaut, Eric; Adams, Judith; Skalli, Wafa; Laredo, Jean Denis; Bousson, Valérie

    2016-09-01

    Purpose To evaluate the performance of three imaging methods (radiography, dual-energy x-ray absorptiometry [DXA], and quantitative computed tomography [CT]) and that of a numerical analysis with finite element modeling (FEM) in the prediction of failure load of the proximal femur and to identify the best densitometric or geometric predictors of hip failure load. Materials and Methods Institutional review board approval was obtained. A total of 40 pairs of excised cadaver femurs (mean patient age at time of death, 82 years ± 12 [standard deviation]) were examined with (a) radiography to measure geometric parameters (lengths, angles, and cortical thicknesses), (b) DXA (reference standard) to determine areal bone mineral densities (BMDs), and (c) quantitative CT with dedicated three-dimensional analysis software to determine volumetric BMDs and geometric parameters (neck axis length, cortical thicknesses, volumes, and moments of inertia), and (d) quantitative CT-based FEM to calculate a numerical value of failure load. The 80 femurs were fractured via mechanical testing, with random assignment of one femur from each pair to the single-limb stance configuration (hereafter, stance configuration) and assignment of the paired femur to the sideways fall configuration (hereafter, side configuration). Descriptive statistics, univariate correlations, and stepwise regression models were obtained for each imaging method and for FEM to enable us to predict failure load in both configurations. Results Statistics reported are for stance and side configurations, respectively. For radiography, the strongest correlation with mechanical failure load was obtained by using a geometric parameter combined with a cortical thickness (r(2) = 0.66, P < .001; r(2) = 0.65, P < .001). For DXA, the strongest correlation with mechanical failure load was obtained by using total BMD (r(2) = 0.73, P < .001) and trochanteric BMD (r(2) = 0.80, P < .001). For quantitative CT, in both configurations, the best model combined volumetric BMD and a moment of inertia (r(2) = 0.78, P < .001; r(2) = 0.85, P < .001). FEM explained 87% (P < .001) and 83% (P < .001) of bone strength, respectively. By combining (a) radiography and DXA and (b) quantitative CT and DXA, correlations with mechanical failure load increased to 0.82 (P < .001) and 0.84 (P < .001), respectively, for radiography and DXA and to 0.80 (P < .001) and 0.86 (P < .001) , respectively, for quantitative CT and DXA. Conclusion Quantitative CT-based FEM was the best method with which to predict the experimental failure load; however, combining quantitative CT and DXA yielded a performance as good as that attained with FEM. The quantitative CT DXA combination may be easier to use in fracture prediction, provided standardized software is developed. These findings also highlight the major influence on femoral failure load, particularly in the trochanteric region, of a densitometric parameter combined with a geometric parameter. (©) RSNA, 2016 Online supplemental material is available for this article.

  4. A quantitative model of optimal data selection in Wason's selection task.

    PubMed

    Hattori, Masasi

    2002-10-01

    The optimal data selection model proposed by Oaksford and Chater (1994) successfully formalized Wason's selection task (Wason, 1966). The model, however, involved some questionable assumptions and was also not sufficient as a model of the task because it could not provide quantitative predictions of the card selection frequencies. In this paper, the model was revised to provide quantitative fits to the data. The model can predict the selection frequencies of cards based on a selection tendency function (STF), or conversely, it enables the estimation of subjective probabilities from data. Past experimental data were first re-analysed based on the model. In Experiment 1, the superiority of the revised model was shown. However, when the relationship between antecedent and consequent was forced to deviate from the biconditional form, the model was not supported. In Experiment 2, it was shown that sufficient emphasis on probabilistic information can affect participants' performance. A detailed experimental method to sort participants by probabilistic strategies was introduced. Here, the model was supported by a subgroup of participants who used the probabilistic strategy. Finally, the results were discussed from the viewpoint of adaptive rationality.

  5. Quantitative Analysis of Complex Drug-Drug Interactions Between Repaglinide and Cyclosporin A/Gemfibrozil Using Physiologically Based Pharmacokinetic Models With In Vitro Transporter/Enzyme Inhibition Data.

    PubMed

    Kim, Soo-Jin; Toshimoto, Kota; Yao, Yoshiaki; Yoshikado, Takashi; Sugiyama, Yuichi

    2017-09-01

    Quantitative analysis of transporter- and enzyme-mediated complex drug-drug interactions (DDIs) is challenging. Repaglinide (RPG) is transported into the liver by OATP1B1 and then is metabolized by CYP2C8 and CYP3A4. The purpose of this study was to describe the complex DDIs of RPG quantitatively based on unified physiologically based pharmacokinetic (PBPK) models using in vitro K i values for OATP1B1, CYP3A4, and CYP2C8. Cyclosporin A (CsA) or gemfibrozil (GEM) increased the blood concentrations of RPG. The time profiles of RPG and the inhibitors were analyzed by PBPK models, considering the inhibition of OATP1B1 and CYP3A4 by CsA or OATP1B1 inhibition by GEM and its glucuronide and the mechanism-based inhibition of CYP2C8 by GEM glucuronide. RPG-CsA interaction was closely predicted using a reported in vitro K i,OATP1B1 value in the presence of CsA preincubation. RPG-GEM interaction was underestimated compared with observed data, but the simulation was improved with the increase of f m,CYP2C8 . These results based on in vitro K i values for transport and metabolism suggest the possibility of a bottom-up approach with in vitro inhibition data for the prediction of complex DDIs using unified PBPK models and in vitro f m value of a substrate for multiple enzymes should be considered carefully for the prediction. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Semi-quantitative prediction of a multiple API solid dosage form with a combination of vibrational spectroscopy methods.

    PubMed

    Hertrampf, A; Sousa, R M; Menezes, J C; Herdling, T

    2016-05-30

    Quality control (QC) in the pharmaceutical industry is a key activity in ensuring medicines have the required quality, safety and efficacy for their intended use. QC departments at pharmaceutical companies are responsible for all release testing of final products but also all incoming raw materials. Near-infrared spectroscopy (NIRS) and Raman spectroscopy are important techniques for fast and accurate identification and qualification of pharmaceutical samples. Tablets containing two different active pharmaceutical ingredients (API) [bisoprolol, hydrochlorothiazide] in different commercially available dosages were analysed using Raman- and NIR Spectroscopy. The goal was to define multivariate models based on each vibrational spectroscopy to discriminate between different dosages (identity) and predict their dosage (semi-quantitative). Furthermore the combination of spectroscopic techniques was investigated. Therefore, two different multiblock techniques based on PLS have been applied: multiblock PLS (MB-PLS) and sequential-orthogonalised PLS (SO-PLS). NIRS showed better results compared to Raman spectroscopy for both identification and quantitation. The multiblock techniques investigated showed that each spectroscopy contains information not present or captured with the other spectroscopic technique, thus demonstrating that there is a potential benefit in their combined use for both identification and quantitation purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The predictive value of quantitative fibronectin testing in combination with cervical length measurement in symptomatic women.

    PubMed

    Bruijn, Merel M C; Kamphuis, Esme I; Hoesli, Irene M; Martinez de Tejada, Begoña; Loccufier, Anne R; Kühnert, Maritta; Helmer, Hanns; Franz, Marie; Porath, Martina M; Oudijk, Martijn A; Jacquemyn, Yves; Schulzke, Sven M; Vetter, Grit; Hoste, Griet; Vis, Jolande Y; Kok, Marjolein; Mol, Ben W J; van Baaren, Gert-Jan

    2016-12-01

    The combination of the qualitative fetal fibronectin test and cervical length measurement has a high negative predictive value for preterm birth within 7 days; however, positive prediction is poor. A new bedside quantitative fetal fibronectin test showed potential additional value over the conventional qualitative test, but there is limited evidence on the combination with cervical length measurement. The purpose of this study was to compare quantitative fetal fibronectin and qualitative fetal fibronectin testing in the prediction of spontaneous preterm birth within 7 days in symptomatic women who undergo cervical length measurement. We performed a European multicenter cohort study in 10 perinatal centers in 5 countries. Women between 24 and 34 weeks of gestation with signs of active labor and intact membranes underwent quantitative fibronectin testing and cervical length measurement. We assessed the risk of preterm birth within 7 days in predefined strata based on fibronectin concentration and cervical length. Of 455 women who were included in the study, 48 women (11%) delivered within 7 days. A combination of cervical length and qualitative fibronectin resulted in the identification of 246 women who were at low risk: 164 women with a cervix between 15 and 30 mm and a negative fibronectin test (<50 ng/mL; preterm birth rate, 2%) and 82 women with a cervix at >30 mm (preterm birth rate, 2%). Use of quantitative fibronectin alone resulted in a predicted risk of preterm birth within 7 days that ranged from 2% in the group with the lowest fibronectin level (<10 ng/mL) to 38% in the group with the highest fibronectin level (>500 ng/mL), with similar accuracy as that of the combination of cervical length and qualitative fibronectin. Combining cervical length and quantitative fibronectin resulted in the identification of an additional 19 women at low risk (preterm birth rate, 5%), using a threshold of 10 ng/mL in women with a cervix at <15 mm, and 6 women at high risk (preterm birth rate, 33%) using a threshold of >500 ng/mL in women with a cervix at >30 mm. In women with threatened preterm birth, quantitative fibronectin testing alone performs equal to the combination of cervical length and qualitative fibronectin. Possibly, the combination of quantitative fibronectin testing and cervical length increases this predictive capacity. Cost-effectiveness analysis and the availability of these tests in a local setting should determine the final choice. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Predictive microbiology: Quantitative science delivering quantifiable benefits to the meat industry and other food industries.

    PubMed

    McMeekin, T A

    2007-09-01

    Predictive microbiology is considered in the context of the conference theme "chance, innovation and challenge", together with the impact of quantitative approaches on food microbiology, generally. The contents of four prominent texts on predictive microbiology are analysed and the major contributions of two meat microbiologists, Drs. T.A. Roberts and C.O. Gill, to the early development of predictive microbiology are highlighted. These provide a segue into R&D trends in predictive microbiology, including the Refrigeration Index, an example of science-based, outcome-focussed food safety regulation. Rapid advances in technologies and systems for application of predictive models are indicated and measures to judge the impact of predictive microbiology are suggested in terms of research outputs and outcomes. The penultimate section considers the future of predictive microbiology and advances that will become possible when data on population responses are combined with data derived from physiological and molecular studies in a systems biology approach. Whilst the emphasis is on science and technology for food safety management, it is suggested that decreases in foodborne illness will also arise from minimising human error by changing the food safety culture.

  9. 68Ga-PSMA-617 PET/CT: a promising new technique for predicting risk stratification and metastatic risk of prostate cancer patients.

    PubMed

    Liu, Chen; Liu, Teli; Zhang, Ning; Liu, Yiqiang; Li, Nan; Du, Peng; Yang, Yong; Liu, Ming; Gong, Kan; Yang, Xing; Zhu, Hua; Yan, Kun; Yang, Zhi

    2018-05-02

    The purpose of this study was to investigate the performance of 68 Ga-PSMA-617 PET/CT in predicting risk stratification and metastatic risk of prostate cancer. Fifty newly diagnosed patients with prostate cancer as confirmed by needle biopsy were continuously included, 40 in a train set and ten in a test set. 68 Ga-PSMA-617 PET/CT and clinical data of all patients were retrospectively analyzed. Semi-quantitative analysis of PET images provided maximum standardized uptake (SUVmax) of primary prostate cancer and volumetric parameters including intraprostatic PSMA-derived tumor volume (iPSMA-TV) and intraprostatic total lesion PSMA (iTL-PSMA). According to prostate cancer risk stratification criteria of the NCCN Guideline, all patients were simplified into a low-intermediate risk group or a high-risk group. The semi-quantitative parameters of 68 Ga-PSMA-617 PET/CT were used to establish a univariate logistic regression model for high-risk prostate cancer and its metastatic risk, and to evaluate the diagnostic efficacy of the predictive model. In the train set, 30/40 (75%) patients had high-risk prostate cancer and 10/40 (25%) patients had low-to-moderate-risk prostate cancer; in the test set, 8/10 (80%) patients had high-risk prostate cancer while 2/10 (20%) had low-intermediate risk prostate cancer. The univariate logistic regression model established with SUVmax, iPSMA-TV and iTL-PSMA could all effectively predict high-risk prostate cancer; the AUC of ROC were 0.843, 0.802 and 0.900, respectively. Based on the test set, the sensitivity and specificity of each model were 87.5% and 50% for SUVmax, 62.5% and 100% for iPSMA-TV, and 87.5% and 100% for iTL-PSMA, respectively. The iPSMA-TV and iTL-PSMA-based predictive model could predict the metastatic risk of prostate cancer, the AUC of ROC was 0.863 and 0.848, respectively, but the SUVmax-based prediction model could not predict metastatic risk. Semi-quantitative analysis indexes of 68 Ga-PSMA-617 PET/CT imaging can be used as "imaging biomarkers" to predict risk stratification and metastatic risk of prostate cancer.

  10. Qualitative and quantitative comparison of geostatistical techniques of porosity prediction from the seismic and logging data: a case study from the Blackfoot Field, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Maurya, S. P.; Singh, K. H.; Singh, N. P.

    2018-05-01

    In present study, three recently developed geostatistical methods, single attribute analysis, multi-attribute analysis and probabilistic neural network algorithm have been used to predict porosity in inter well region for Blackfoot field, Alberta, Canada, an offshore oil field. These techniques make use of seismic attributes, generated by model based inversion and colored inversion techniques. The principle objective of the study is to find the suitable combination of seismic inversion and geostatistical techniques to predict porosity and identification of prospective zones in 3D seismic volume. The porosity estimated from these geostatistical approaches is corroborated with the well log porosity. The results suggest that all the three implemented geostatistical methods are efficient and reliable to predict the porosity but the multi-attribute and probabilistic neural network analysis provide more accurate and high resolution porosity sections. A low impedance (6000-8000 m/s g/cc) and high porosity (> 15%) zone is interpreted from inverted impedance and porosity sections respectively between 1060 and 1075 ms time interval and is characterized as reservoir. The qualitative and quantitative results demonstrate that of all the employed geostatistical methods, the probabilistic neural network along with model based inversion is the most efficient method for predicting porosity in inter well region.

  11. A Quantitative Model for the Prediction of Sooting Tendency from Molecular Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. John, Peter C.; Kairys, Paul; Das, Dhrubajyoti D.

    Particulate matter emissions negatively affect public health and global climate, yet newer fuel-efficient gasoline direct injection engines tend to produce more soot than their port-fuel injection counterparts. Fortunately, the search for sustainable biomass-based fuel blendstocks provides an opportunity to develop fuels that suppress soot formation in more efficient engine designs. However, as emissions tests are experimentally cumbersome and the search space for potential bioblendstocks is vast, new techniques are needed to estimate the sooting tendency of a diverse range of compounds. In this study, we develop a quantitative structure-activity relationship (QSAR) model of sooting tendency based on the experimental yieldmore » sooting index (YSI), which ranks molecules on a scale from n-hexane, 0, to benzene, 100. The model includes a rigorously defined applicability domain, and the predictive performance is checked using both internal and external validation. Model predictions for compounds in the external test set had a median absolute error of ~3 YSI units. An investigation of compounds that are poorly predicted by the model lends new insight into the complex mechanisms governing soot formation. Predictive models of soot formation can therefore be expected to play an increasingly important role in the screening and development of next-generation biofuels.« less

  12. A Quantitative Model for the Prediction of Sooting Tendency from Molecular Structure

    DOE PAGES

    St. John, Peter C.; Kairys, Paul; Das, Dhrubajyoti D.; ...

    2017-07-24

    Particulate matter emissions negatively affect public health and global climate, yet newer fuel-efficient gasoline direct injection engines tend to produce more soot than their port-fuel injection counterparts. Fortunately, the search for sustainable biomass-based fuel blendstocks provides an opportunity to develop fuels that suppress soot formation in more efficient engine designs. However, as emissions tests are experimentally cumbersome and the search space for potential bioblendstocks is vast, new techniques are needed to estimate the sooting tendency of a diverse range of compounds. In this study, we develop a quantitative structure-activity relationship (QSAR) model of sooting tendency based on the experimental yieldmore » sooting index (YSI), which ranks molecules on a scale from n-hexane, 0, to benzene, 100. The model includes a rigorously defined applicability domain, and the predictive performance is checked using both internal and external validation. Model predictions for compounds in the external test set had a median absolute error of ~3 YSI units. An investigation of compounds that are poorly predicted by the model lends new insight into the complex mechanisms governing soot formation. Predictive models of soot formation can therefore be expected to play an increasingly important role in the screening and development of next-generation biofuels.« less

  13. A quantitative framework for the forward design of synthetic miRNA circuits.

    PubMed

    Bloom, Ryan J; Winkler, Sally M; Smolke, Christina D

    2014-11-01

    Synthetic genetic circuits incorporating regulatory components based on RNA interference (RNAi) have been used in a variety of systems. A comprehensive understanding of the parameters that determine the relationship between microRNA (miRNA) and target expression levels is lacking. We describe a quantitative framework supporting the forward engineering of gene circuits that incorporate RNAi-based regulatory components in mammalian cells. We developed a model that captures the quantitative relationship between miRNA and target gene expression levels as a function of parameters, including mRNA half-life and miRNA target-site number. We extended the model to synthetic circuits that incorporate protein-responsive miRNA switches and designed an optimized miRNA-based protein concentration detector circuit that noninvasively measures small changes in the nuclear concentration of β-catenin owing to induction of the Wnt signaling pathway. Our results highlight the importance of methods for guiding the quantitative design of genetic circuits to achieve robust, reliable and predictable behaviors in mammalian cells.

  14. Issues in Quantitative Analysis of Ultraviolet Imager (UV) Data: Airglow

    NASA Technical Reports Server (NTRS)

    Germany, G. A.; Richards, P. G.; Spann, J. F.; Brittnacher, M. J.; Parks, G. K.

    1999-01-01

    The GGS Ultraviolet Imager (UVI) has proven to be especially valuable in correlative substorm, auroral morphology, and extended statistical studies of the auroral regions. Such studies are based on knowledge of the location, spatial, and temporal behavior of auroral emissions. More quantitative studies, based on absolute radiometric intensities from UVI images, require a more intimate knowledge of the instrument behavior and data processing requirements and are inherently more difficult than studies based on relative knowledge of the oval location. In this study, UVI airglow observations are analyzed and compared with model predictions to illustrate issues that arise in quantitative analysis of UVI images. These issues include instrument calibration, long term changes in sensitivity, and imager flat field response as well as proper background correction. Airglow emissions are chosen for this study because of their relatively straightforward modeling requirements and because of their implications for thermospheric compositional studies. The analysis issues discussed here, however, are identical to those faced in quantitative auroral studies.

  15. Genomic Prediction for Quantitative Traits Is Improved by Mapping Variants to Gene Ontology Categories in Drosophila melanogaster

    PubMed Central

    Edwards, Stefan M.; Sørensen, Izel F.; Sarup, Pernille; Mackay, Trudy F. C.; Sørensen, Peter

    2016-01-01

    Predicting individual quantitative trait phenotypes from high-resolution genomic polymorphism data is important for personalized medicine in humans, plant and animal breeding, and adaptive evolution. However, this is difficult for populations of unrelated individuals when the number of causal variants is low relative to the total number of polymorphisms and causal variants individually have small effects on the traits. We hypothesized that mapping molecular polymorphisms to genomic features such as genes and their gene ontology categories could increase the accuracy of genomic prediction models. We developed a genomic feature best linear unbiased prediction (GFBLUP) model that implements this strategy and applied it to three quantitative traits (startle response, starvation resistance, and chill coma recovery) in the unrelated, sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel. Our results indicate that subsetting markers based on genomic features increases the predictive ability relative to the standard genomic best linear unbiased prediction (GBLUP) model. Both models use all markers, but GFBLUP allows differential weighting of the individual genetic marker relationships, whereas GBLUP weighs the genetic marker relationships equally. Simulation studies show that it is possible to further increase the accuracy of genomic prediction for complex traits using this model, provided the genomic features are enriched for causal variants. Our GFBLUP model using prior information on genomic features enriched for causal variants can increase the accuracy of genomic predictions in populations of unrelated individuals and provides a formal statistical framework for leveraging and evaluating information across multiple experimental studies to provide novel insights into the genetic architecture of complex traits. PMID:27235308

  16. Predicting the Probability for Faculty Adopting an Audience Response System in Higher Education

    ERIC Educational Resources Information Center

    Chan, Tan Fung Ivan; Borja, Marianne; Welch, Brett; Batiuk, Mary Ellen

    2016-01-01

    Instructional technologies can be effective tools to foster student engagement, but university faculty may be reluctant to integrate innovative and evidence-based modern learning technologies into instruction. Based on Rogers' diffusion of innovation theory, this quantitative, nonexperimental, one-shot cross-sectional survey determined what…

  17. Direct comparison of low- and mid-frequency Raman spectroscopy for quantitative solid-state pharmaceutical analysis.

    PubMed

    Lipiäinen, Tiina; Fraser-Miller, Sara J; Gordon, Keith C; Strachan, Clare J

    2018-02-05

    This study considers the potential of low-frequency (terahertz) Raman spectroscopy in the quantitative analysis of ternary mixtures of solid-state forms. Direct comparison between low-frequency and mid-frequency spectral regions for quantitative analysis of crystal form mixtures, without confounding sampling and instrumental variations, is reported for the first time. Piroxicam was used as a model drug, and the low-frequency spectra of piroxicam forms β, α2 and monohydrate are presented for the first time. These forms show clear spectral differences in both the low- and mid-frequency regions. Both spectral regions provided quantitative models suitable for predicting the mixture compositions using partial least squares regression (PLSR), but the low-frequency data gave better models, based on lower errors of prediction (2.7, 3.1 and 3.2% root-mean-square errors of prediction [RMSEP] values for the β, α2 and monohydrate forms, respectively) than the mid-frequency data (6.3, 5.4 and 4.8%, for the β, α2 and monohydrate forms, respectively). The better performance of low-frequency Raman analysis was attributed to larger spectral differences between the solid-state forms, combined with a higher signal-to-noise ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The prediction of the residual life of electromechanical equipment based on the artificial neural network

    NASA Astrophysics Data System (ADS)

    Zhukovskiy, Yu L.; Korolev, N. A.; Babanova, I. S.; Boikov, A. V.

    2017-10-01

    This article is devoted to the prediction of the residual life based on an estimate of the technical state of the induction motor. The proposed system allows to increase the accuracy and completeness of diagnostics by using an artificial neural network (ANN), and also identify and predict faulty states of an electrical equipment in dynamics. The results of the proposed system for estimation the technical condition are probability technical state diagrams and a quantitative evaluation of the residual life, taking into account electrical, vibrational, indirect parameters and detected defects. Based on the evaluation of the technical condition and the prediction of the residual life, a decision is made to change the control of the operating and maintenance modes of the electric motors.

  19. Linking hydrodynamic complexity to delta smelt (Hypomesus transpacificus) distribution in the San Francisco Estuary, USA

    USGS Publications Warehouse

    Bever, Aaron J.; MacWilliams, Michael L.; Herbold, Bruce; Brown, Larry R.; Feyrer, Frederick V.

    2016-01-01

    Long-term fish sampling data from the San Francisco Estuary were combined with detailed three dimensional hydrodynamic modeling to investigate the relationship between historical fish catch and hydrodynamic complexity. Delta Smelt catch data at 45 stations from the Fall Midwater Trawl (FMWT) survey in the vicinity of Suisun Bay were used to develop a quantitative catch-based station index. This index was used to rank stations based on historical Delta Smelt catch. The correlations between historical Delta Smelt catch and 35 quantitative metrics of environmental complexity were evaluated at each station. Eight metrics of environmental conditions were derived from FMWT data and 27 metrics were derived from model predictions at each FMWT station. To relate the station index to conceptual models of Delta Smelt habitat, the metrics were used to predict the station ranking based on the quantified environmental conditions. Salinity, current speed, and turbidity metrics were used to predict the relative ranking of each station for Delta Smelt catch. Including a measure of the current speed at each station improved predictions of the historical ranking for Delta Smelt catch relative to similar predictions made using only salinity and turbidity. Current speed was also found to be a better predictor of historical Delta Smelt catch than water depth. The quantitative approach developed using the FMWT data was validated using the Delta Smelt catch data from the San Francisco Bay Study. Complexity metrics in Suisun Bay were-evaluated during 2010 and 2011. This analysis indicated that a key to historical Delta Smelt catch is the overlap of low salinity, low maximum velocity, and low Secchi depth regions. This overlap occurred in Suisun Bay during 2011, and may have contributed to higher Delta Smelt abundance in 2011 than in 2010 when the favorable ranges of the metrics did not overlap in Suisun Bay.

  20. Pattern Search in Multi-structure Data: A Framework for the Next-Generation Evidence-based Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar, Sreenivas R; Ainsworth, Keela C

    With the advent of personalized and evidence-based medicine, the need for a framework to analyze/interpret quantitative measurements (blood work, toxicology, etc.) with qualitative descriptions (specialist reports after reading images, bio-medical knowledge-bases) to predict diagnostic risks is fast emerging. Addressing this need, we pose and address the following questions (i) How can we jointly analyze both qualitative and quantitative data ? (ii) Is the fusion of multi-structure data expected to provide better insights than either of them individually ? We present experiments on two bio-medical data sets - mammography and traumatic brain studies to demonstrate architectures and tools for evidence-pattern search.

  1. Prospective evaluation of risk of vertebral fractures using quantitative ultrasound measurements and bone mineral density in a population-based sample of postmenopausal women: results of the Basel Osteoporosis Study.

    PubMed

    Hollaender, R; Hartl, F; Krieg, M-A; Tyndall, A; Geuckel, C; Buitrago-Tellez, C; Manghani, M; Kraenzlin, M; Theiler, R; Hans, D

    2009-03-01

    Prospective studies have shown that quantitative ultrasound (QUS) techniques predict the risk of fracture of the proximal femur with similar standardised risk ratios to dual-energy x-ray absorptiometry (DXA). Few studies have investigated these devices for the prediction of vertebral fractures. The Basel Osteoporosis Study (BOS) is a population-based prospective study to assess the performance of QUS devices and DXA in predicting incident vertebral fractures. 432 women aged 60-80 years were followed-up for 3 years. Incident vertebral fractures were assessed radiologically. Bone measurements using DXA (spine and hip) and QUS measurements (calcaneus and proximal phalanges) were performed. Measurements were assessed for their value in predicting incident vertebral fractures using logistic regression. QUS measurements at the calcaneus and DXA measurements discriminated between women with and without incident vertebral fracture, (20% height reduction). The relative risks (RRs) for vertebral fracture, adjusted for age, were 2.3 for the Stiffness Index (SI) and 2.8 for the Quantitative Ultrasound Index (QUI) at the calcaneus and 2.0 for bone mineral density at the lumbar spine. The predictive value (AUC (95% CI)) of QUS measurements at the calcaneus remained highly significant (0.70 for SI, 0.72 for the QUI, and 0.67 for DXA at the lumbar spine) even after adjustment for other confounding variables. QUS of the calcaneus and bone mineral density measurements were shown to be significant predictors of incident vertebral fracture. The RRs for QUS measurements at the calcaneus are of similar magnitude as for DXA measurements.

  2. Evolutionary Game Theory Analysis of Tumor Progression

    NASA Astrophysics Data System (ADS)

    Wu, Amy; Liao, David; Sturm, James; Austin, Robert

    2014-03-01

    Evolutionary game theory applied to two interacting cell populations can yield quantitative prediction of the future densities of the two cell populations based on the initial interaction terms. We will discuss how in a complex ecology that evolutionary game theory successfully predicts the future densities of strains of stromal and cancer cells (multiple myeloma), and discuss the possible clinical use of such analysis for predicting cancer progression. Supported by the National Science Foundation and the National Cancer Institute.

  3. PAUSE: Predictive Analytics Using SPARQL-Endpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar, Sreenivas R; Ainsworth, Keela; Bond, Nathaniel

    2014-07-11

    This invention relates to the medical industry and more specifically to methods of predicting risks. With the impetus towards personalized and evidence-based medicine, the need for a framework to analyze/interpret quantitative measurements (blood work, toxicology, etc.) with qualitative descriptions (specialist reports after reading images, bio-medical knowledgebase, etc.) to predict diagnostic risks is fast emerging. We describe a software solution that leverages hardware for scalable in-memory analytics and applies next-generation semantic query tools on medical data.

  4. Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Muldoon, Timothy J.; Thekkek, Nadhi; Roblyer, Darren; Maru, Dipen; Harpaz, Noam; Potack, Jonathan; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2010-03-01

    Early detection of neoplasia in patients with Barrett's esophagus is essential to improve outcomes. The aim of this ex vivo study was to evaluate the ability of high-resolution microendoscopic imaging and quantitative image analysis to identify neoplastic lesions in patients with Barrett's esophagus. Nine patients with pathologically confirmed Barrett's esophagus underwent endoscopic examination with biopsies or endoscopic mucosal resection. Resected fresh tissue was imaged with fiber bundle microendoscopy; images were analyzed by visual interpretation or by quantitative image analysis to predict whether the imaged sites were non-neoplastic or neoplastic. The best performing pair of quantitative features were chosen based on their ability to correctly classify the data into the two groups. Predictions were compared to the gold standard of histopathology. Subjective analysis of the images by expert clinicians achieved average sensitivity and specificity of 87% and 61%, respectively. The best performing quantitative classification algorithm relied on two image textural features and achieved a sensitivity and specificity of 87% and 85%, respectively. This ex vivo pilot trial demonstrates that quantitative analysis of images obtained with a simple microendoscope system can distinguish neoplasia in Barrett's esophagus with good sensitivity and specificity when compared to histopathology and to subjective image interpretation.

  5. Handling of computational in vitro/in vivo correlation problems by Microsoft Excel: V. Predictive absorbability models.

    PubMed

    Langenbucher, Frieder

    2007-08-01

    This paper discusses Excel applications related to the prediction of drug absorbability from physicochemical constants. PHDISSOC provides a generalized model for pH profiles of electrolytic dissociation, water solubility, and partition coefficient. SKMODEL predicts drug absorbability, based on a log-log plot of water solubility and O/W partitioning; augmented by additional features such as electrolytic dissociation, melting point, and the dose administered. GIABS presents a mechanistic model of g.i. drug absorption. BIODATCO presents a database compiling relevant drug data to be used for quantitative predictions.

  6. A New Approach to Predict the Fish Fillet Shelf-Life in Presence of Natural Preservative Agents.

    PubMed

    Giuffrida, Alessandro; Giarratana, Filippo; Valenti, Davide; Muscolino, Daniele; Parisi, Roberta; Parco, Alessio; Marotta, Stefania; Ziino, Graziella; Panebianco, Antonio

    2017-04-13

    Three data sets concerning the behaviour of spoilage flora of fillets treated with natural preservative substances (NPS) were used to construct a new kind of mathematical predictive model. This model, unlike other ones, allows expressing the antibacterial effect of the NPS separately from the prediction of the growth rate. This approach, based on the introduction of a parameter into the predictive primary model, produced a good fitting of observed data and allowed characterising quantitatively the increase of shelf-life of fillets.

  7. Using a Prediction Model to Manage Cyber Security Threats.

    PubMed

    Jaganathan, Venkatesh; Cherurveettil, Priyesh; Muthu Sivashanmugam, Premapriya

    2015-01-01

    Cyber-attacks are an important issue faced by all organizations. Securing information systems is critical. Organizations should be able to understand the ecosystem and predict attacks. Predicting attacks quantitatively should be part of risk management. The cost impact due to worms, viruses, or other malicious software is significant. This paper proposes a mathematical model to predict the impact of an attack based on significant factors that influence cyber security. This model also considers the environmental information required. It is generalized and can be customized to the needs of the individual organization.

  8. Using a Prediction Model to Manage Cyber Security Threats

    PubMed Central

    Muthu Sivashanmugam, Premapriya

    2015-01-01

    Cyber-attacks are an important issue faced by all organizations. Securing information systems is critical. Organizations should be able to understand the ecosystem and predict attacks. Predicting attacks quantitatively should be part of risk management. The cost impact due to worms, viruses, or other malicious software is significant. This paper proposes a mathematical model to predict the impact of an attack based on significant factors that influence cyber security. This model also considers the environmental information required. It is generalized and can be customized to the needs of the individual organization. PMID:26065024

  9. Four-hour quantitative real-time polymerase chain reaction-based comprehensive chromosome screening and accumulating evidence of accuracy, safety, predictive value, and clinical efficacy.

    PubMed

    Treff, Nathan R; Scott, Richard T

    2013-03-15

    Embryonic comprehensive chromosomal euploidy may represent a powerful biomarker to improve the success of IVF. However, there are a number of aneuploidy screening strategies to consider, including different technologic platforms with which to interrogate the embryonic DNA, and different embryonic developmental stages from which DNA can be analyzed. Although there are advantages and disadvantages associated with each strategy, a series of experiments producing evidence of accuracy, safety, clinical predictive value, and clinical efficacy indicate that trophectoderm biopsy and quantitative real-time polymerase chain reaction (qPCR)-based comprehensive chromosome screening (CCS) may represent a useful strategy to improve the success of IVF. This Biomarkers in Reproductive Medicine special issue review summarizes the accumulated experience with the development and clinical application of a 4-hour blastocyst qPCR-based CCS technology. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Decoding brain cancer dynamics: a quantitative histogram-based approach using temporal MRI

    NASA Astrophysics Data System (ADS)

    Zhou, Mu; Hall, Lawrence O.; Goldgof, Dmitry B.; Russo, Robin; Gillies, Robert J.; Gatenby, Robert A.

    2015-03-01

    Brain tumor heterogeneity remains a challenge for probing brain cancer evolutionary dynamics. In light of evolution, it is a priority to inspect the cancer system from a time-domain perspective since it explicitly tracks the dynamics of cancer variations. In this paper, we study the problem of exploring brain tumor heterogeneity from temporal clinical magnetic resonance imaging (MRI) data. Our goal is to discover evidence-based knowledge from such temporal imaging data, where multiple clinical MRI scans from Glioblastoma multiforme (GBM) patients are generated during therapy. In particular, we propose a quantitative histogram-based approach that builds a prediction model to measure the difference in histograms obtained from pre- and post-treatment. The study could significantly assist radiologists by providing a metric to identify distinctive patterns within each tumor, which is crucial for the goal of providing patient-specific treatments. We examine the proposed approach for a practical application - clinical survival group prediction. Experimental results show that our approach achieved 90.91% accuracy.

  11. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.

    PubMed

    Hattotuwagama, Channa K; Doytchinova, Irini A; Flower, Darren R

    2007-01-01

    Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.

  12. Severe rainfall prediction systems for civil protection purposes

    NASA Astrophysics Data System (ADS)

    Comellas, A.; Llasat, M. C.; Molini, L.; Parodi, A.; Siccardi, F.

    2010-09-01

    One of the most common natural hazards impending on Mediterranean regions is the occurrence of severe weather structures able to produce heavy rainfall. Floods have killed about 1000 people across all Europe in last 10 years. With the aim of mitigating this kind of risk, quantitative precipitation forecasts (QPF) and rain probability forecasts are two tools nowadays available for national meteorological services and institutions responsible for weather forecasting in order to and predict rainfall, by using either the deterministic or the probabilistic approach. This study provides an insight of the different approaches used by Italian (DPC) and Catalonian (SMC) Civil Protection and the results they achieved with their peculiar issuing-system for early warnings. For the former, the analysis considers the period between 2006-2009 in which the predictive ability of the forecasting system, based on the numerical weather prediction model COSMO-I7, has been put into comparison with ground based observations (composed by more than 2000 raingauge stations, Molini et al., 2009). Italian system is mainly focused on regional-scale warnings providing forecasts for periods never shorter than 18 hours and very often have a 36-hour maximum duration . The information contained in severe weather bulletins is not quantitative and usually is referred to a specific meteorological phenomena (thunderstorms, wind gales et c.). Updates and refining have a usual refresh time of 24 hours. SMC operates within the Catalonian boundaries and uses a warning system that mixes both quantitative and probabilistic information. For each administrative region ("comarca") Catalonia is divided into, forecasters give an approximate value of the average predicted rainfall and the probability of overcoming that threshold. Usually warnings are re-issued every 6 hours and their duration depends on the predicted time extent of the storm. In order to provide a comprehensive QPF verification, the rainfall predicted by Mesoscale Model 5 (MM5), the SMC forecast operational model, is compared with the local rain gauge network for year 2008 (Comellas et al., 2010). This study presents benefits and drawbacks of both Italian and Catalonian systems. Moreover, a particular attention is paid on the link between system's predictive ability and the predicted severe weather type as a function of its space-time development.

  13. Benchmarking B-Cell Epitope Prediction with Quantitative Dose-Response Data on Antipeptide Antibodies: Towards Novel Pharmaceutical Product Development

    PubMed Central

    Caoili, Salvador Eugenio C.

    2014-01-01

    B-cell epitope prediction can enable novel pharmaceutical product development. However, a mechanistically framed consensus has yet to emerge on benchmarking such prediction, thus presenting an opportunity to establish standards of practice that circumvent epistemic inconsistencies of casting the epitope prediction task as a binary-classification problem. As an alternative to conventional dichotomous qualitative benchmark data, quantitative dose-response data on antibody-mediated biological effects are more meaningful from an information-theoretic perspective in the sense that such effects may be expressed as probabilities (e.g., of functional inhibition by antibody) for which the Shannon information entropy (SIE) can be evaluated as a measure of informativeness. Accordingly, half-maximal biological effects (e.g., at median inhibitory concentrations of antibody) correspond to maximally informative data while undetectable and maximal biological effects correspond to minimally informative data. This applies to benchmarking B-cell epitope prediction for the design of peptide-based immunogens that elicit antipeptide antibodies with functionally relevant cross-reactivity. Presently, the Immune Epitope Database (IEDB) contains relatively few quantitative dose-response data on such cross-reactivity. Only a small fraction of these IEDB data is maximally informative, and many more of them are minimally informative (i.e., with zero SIE). Nevertheless, the numerous qualitative data in IEDB suggest how to overcome the paucity of informative benchmark data. PMID:24949474

  14. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology.

    PubMed

    Rao, Rohit T; Scherholz, Megerle L; Hartmanshenn, Clara; Bae, Seul-A; Androulakis, Ioannis P

    2017-12-05

    The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.

  15. Assessing deep and shallow learning methods for quantitative prediction of acute chemical toxicity.

    PubMed

    Liu, Ruifeng; Madore, Michael; Glover, Kyle P; Feasel, Michael G; Wallqvist, Anders

    2018-05-02

    Animal-based methods for assessing chemical toxicity are struggling to meet testing demands. In silico approaches, including machine-learning methods, are promising alternatives. Recently, deep neural networks (DNNs) were evaluated and reported to outperform other machine-learning methods for quantitative structure-activity relationship modeling of molecular properties. However, most of the reported performance evaluations relied on global performance metrics, such as the root mean squared error (RMSE) between the predicted and experimental values of all samples, without considering the impact of sample distribution across the activity spectrum. Here, we carried out an in-depth analysis of DNN performance for quantitative prediction of acute chemical toxicity using several datasets. We found that the overall performance of DNN models on datasets of up to 30,000 compounds was similar to that of random forest (RF) models, as measured by the RMSE and correlation coefficients between the predicted and experimental results. However, our detailed analyses demonstrated that global performance metrics are inappropriate for datasets with a highly uneven sample distribution, because they show a strong bias for the most populous compounds along the toxicity spectrum. For highly toxic compounds, DNN and RF models trained on all samples performed much worse than the global performance metrics indicated. Surprisingly, our variable nearest neighbor method, which utilizes only structurally similar compounds to make predictions, performed reasonably well, suggesting that information of close near neighbors in the training sets is a key determinant of acute toxicity predictions.

  16. Combining molecular docking and QSAR studies for modeling the anti-tyrosinase activity of aromatic heterocycle thiosemicarbazone analogues

    NASA Astrophysics Data System (ADS)

    Dong, Huanhuan; Liu, Jing; Liu, Xiaoru; Yu, Yanying; Cao, Shuwen

    2018-01-01

    A collection of thirty-six aromatic heterocycle thiosemicarbazone analogues presented a broad span of anti-tyrosinase activities were designed and obtained. A robust and reliable two-dimensional quantitative structure-activity relationship model, as evidenced by the high q2 and r2 values (0.848 and 0.893, respectively), was gained based on the analogues to predict the quantitative chemical-biological relationship and the new modifier direction. Inhibitory activities of the compounds were found to greatly depend on molecular shape and orbital energy. Substituents brought out large ovality and high highest-occupied molecular orbital energy values helped to improve the activity of these analogues. The molecular docking results provided visual evidence for QSAR analysis and inhibition mechanism. Based on these, two novel tyrosinase inhibitors O04 and O05 with predicted IC50 of 0.5384 and 0.8752 nM were designed and suggested for further research.

  17. Conformational equilibria of alkanes in aqueous solution: relationship to water structure near hydrophobic solutes.

    PubMed Central

    Ashbaugh, H S; Garde, S; Hummer, G; Kaler, E W; Paulaitis, M E

    1999-01-01

    Conformational free energies of butane, pentane, and hexane in water are calculated from molecular simulations with explicit waters and from a simple molecular theory in which the local hydration structure is estimated based on a proximity approximation. This proximity approximation uses only the two nearest carbon atoms on the alkane to predict the local water density at a given point in space. Conformational free energies of hydration are subsequently calculated using a free energy perturbation method. Quantitative agreement is found between the free energies obtained from simulations and theory. Moreover, free energy calculations using this proximity approximation are approximately four orders of magnitude faster than those based on explicit water simulations. Our results demonstrate the accuracy and utility of the proximity approximation for predicting water structure as the basis for a quantitative description of n-alkane conformational equilibria in water. In addition, the proximity approximation provides a molecular foundation for extending predictions of water structure and hydration thermodynamic properties of simple hydrophobic solutes to larger clusters or assemblies of hydrophobic solutes. PMID:10423414

  18. Comparison of in silico models for prediction of mutagenicity.

    PubMed

    Bakhtyari, Nazanin G; Raitano, Giuseppa; Benfenati, Emilio; Martin, Todd; Young, Douglas

    2013-01-01

    Using a dataset with more than 6000 compounds, the performance of eight quantitative structure activity relationships (QSAR) models was evaluated: ACD/Tox Suite, Absorption, Distribution, Metabolism, Elimination, and Toxicity of chemical substances (ADMET) predictor, Derek, Toxicity Estimation Software Tool (T.E.S.T.), TOxicity Prediction by Komputer Assisted Technology (TOPKAT), Toxtree, CEASAR, and SARpy (SAR in python). In general, the results showed a high level of performance. To have a realistic estimate of the predictive ability, the results for chemicals inside and outside the training set for each model were considered. The effect of applicability domain tools (when available) on the prediction accuracy was also evaluated. The predictive tools included QSAR models, knowledge-based systems, and a combination of both methods. Models based on statistical QSAR methods gave better results.

  19. The Interrelationship between Promoter Strength, Gene Expression, and Growth Rate

    PubMed Central

    Klesmith, Justin R.; Detwiler, Emily E.; Tomek, Kyle J.; Whitehead, Timothy A.

    2014-01-01

    In exponentially growing bacteria, expression of heterologous protein impedes cellular growth rates. Quantitative understanding of the relationship between expression and growth rate will advance our ability to forward engineer bacteria, important for metabolic engineering and synthetic biology applications. Recently, a work described a scaling model based on optimal allocation of ribosomes for protein translation. This model quantitatively predicts a linear relationship between microbial growth rate and heterologous protein expression with no free parameters. With the aim of validating this model, we have rigorously quantified the fitness cost of gene expression by using a library of synthetic constitutive promoters to drive expression of two separate proteins (eGFP and amiE) in E. coli in different strains and growth media. In all cases, we demonstrate that the fitness cost is consistent with the previous findings. We expand upon the previous theory by introducing a simple promoter activity model to quantitatively predict how basal promoter strength relates to growth rate and protein expression. We then estimate the amount of protein expression needed to support high flux through a heterologous metabolic pathway and predict the sizable fitness cost associated with enzyme production. This work has broad implications across applied biological sciences because it allows for prediction of the interplay between promoter strength, protein expression, and the resulting cost to microbial growth rates. PMID:25286161

  20. Quantitative Correlation of in Vivo Properties with in Vitro Assay Results: The in Vitro Binding of a Biotin–DNA Analogue Modifier with Streptavidin Predicts the in Vivo Avidin-Induced Clearability of the Analogue-Modified Antibody

    PubMed Central

    Dou, Shuping; Virostko, John; Greiner, Dale L.; Powers, Alvin C.; Liu, Guozheng

    2016-01-01

    Quantitative prediction of in vivo behavior using an in vitro assay would dramatically accelerate pharmaceutical development. However, studies quantitatively correlating in vivo properties with in vitro assay results are rare because of the difficulty in quantitatively understanding the in vivo behavior of an agent. We now demonstrate such a correlation as a case study based on our quantitative understanding of the in vivo chemistry. In an ongoing pretargeting project, we designed a trifunctional antibody (Ab) that concomitantly carried a biotin and a DNA analogue (hereafter termed MORF). The biotin and the MORF were fused into one structure prior to conjugation to the Ab for the concomitant attachment. Because it was known that avidin-bound Ab molecules leave the circulation rapidly, this design would theoretically allow complete clearance by avidin. The clearability of the trifunctional Ab was determined by calculating the blood MORF concentration ratio of avidin-treated Ab to non-avidin-treated Ab using mice injected with these compounds. In theory, any compromised clearability should be due to the presence of impurities. In vitro, we measured the biotinylated percentage of the Ab-reacting (MORF-biotin)⊃-NH2 modifier, by addition of streptavidin to the radiolabeled (MORF-biotin)⊃-NH2 samples and subsequent high-performance liquid chromatography (HPLC) analysis. On the basis of our previous quantitative understanding, we predicted that the clearability of the Ab would be equal to the biotinylation percentage measured via HPLC. We validated this prediction within a 3% difference. In addition to the high avidin-induced clearability of the trifunctional Ab (up to ~95%) achieved by the design, we were able to predict the required quality of the (MORF-biotin)⊃-NH2 modifier for any given in vivo clearability. This approach may greatly reduce the steps and time currently required in pharmaceutical development in the process of synthesis, chemical analysis, in vitro cell study, and in vivo validation. PMID:26103429

  1. Factors influencing protein tyrosine nitration--structure-based predictive models.

    PubMed

    Bayden, Alexander S; Yakovlev, Vasily A; Graves, Paul R; Mikkelsen, Ross B; Kellogg, Glen E

    2011-03-15

    Models for exploring tyrosine nitration in proteins have been created based on 3D structural features of 20 proteins for which high-resolution X-ray crystallographic or NMR data are available and for which nitration of 35 total tyrosines has been experimentally proven under oxidative stress. Factors suggested in previous work to enhance nitration were examined with quantitative structural descriptors. The role of neighboring acidic and basic residues is complex: for the majority of tyrosines that are nitrated the distance to the heteroatom of the closest charged side chain corresponds to the distance needed for suspected nitrating species to form hydrogen bond bridges between the tyrosine and that charged amino acid. This suggests that such bridges play a very important role in tyrosine nitration. Nitration is generally hindered for tyrosines that are buried and for those tyrosines for which there is insufficient space for the nitro group. For in vitro nitration, closed environments with nearby heteroatoms or unsaturated centers that can stabilize radicals are somewhat favored. Four quantitative structure-based models, depending on the conditions of nitration, have been developed for predicting site-specific tyrosine nitration. The best model, relevant for both in vitro and in vivo cases, predicts 30 of 35 tyrosine nitrations (positive predictive value) and has a sensitivity of 60/71 (11 false positives). Copyright © 2010 Elsevier Inc. All rights reserved.

  2. QSAR models for predicting octanol/water and organic carbon/water partition coefficients of polychlorinated biphenyls.

    PubMed

    Yu, S; Gao, S; Gan, Y; Zhang, Y; Ruan, X; Wang, Y; Yang, L; Shi, J

    2016-04-01

    Quantitative structure-property relationship modelling can be a valuable alternative method to replace or reduce experimental testing. In particular, some endpoints such as octanol-water (KOW) and organic carbon-water (KOC) partition coefficients of polychlorinated biphenyls (PCBs) are easier to predict and various models have been already developed. In this paper, two different methods, which are multiple linear regression based on the descriptors generated using Dragon software and hologram quantitative structure-activity relationships, were employed to predict suspended particulate matter (SPM) derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of 209 PCBs. The predictive ability of the derived models was validated using a test set. The performances of all these models were compared with EPI Suite™ software. The results indicated that the proposed models were robust and satisfactory, and could provide feasible and promising tools for the rapid assessment of the SPM derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of PCBs.

  3. Individualized Prediction of Heat Stress in Firefighters: A Data-Driven Approach Using Classification and Regression Trees.

    PubMed

    Mani, Ashutosh; Rao, Marepalli; James, Kelley; Bhattacharya, Amit

    2015-01-01

    The purpose of this study was to explore data-driven models, based on decision trees, to develop practical and easy to use predictive models for early identification of firefighters who are likely to cross the threshold of hyperthermia during live-fire training. Predictive models were created for three consecutive live-fire training scenarios. The final predicted outcome was a categorical variable: will a firefighter cross the upper threshold of hyperthermia - Yes/No. Two tiers of models were built, one with and one without taking into account the outcome (whether a firefighter crossed hyperthermia or not) from the previous training scenario. First tier of models included age, baseline heart rate and core body temperature, body mass index, and duration of training scenario as predictors. The second tier of models included the outcome of the previous scenario in the prediction space, in addition to all the predictors from the first tier of models. Classification and regression trees were used independently for prediction. The response variable for the regression tree was the quantitative variable: core body temperature at the end of each scenario. The predicted quantitative variable from regression trees was compared to the upper threshold of hyperthermia (38°C) to predict whether a firefighter would enter hyperthermia. The performance of classification and regression tree models was satisfactory for the second (success rate = 79%) and third (success rate = 89%) training scenarios but not for the first (success rate = 43%). Data-driven models based on decision trees can be a useful tool for predicting physiological response without modeling the underlying physiological systems. Early prediction of heat stress coupled with proactive interventions, such as pre-cooling, can help reduce heat stress in firefighters.

  4. Highly predictive and interpretable models for PAMPA permeability.

    PubMed

    Sun, Hongmao; Nguyen, Kimloan; Kerns, Edward; Yan, Zhengyin; Yu, Kyeong Ri; Shah, Pranav; Jadhav, Ajit; Xu, Xin

    2017-02-01

    Cell membrane permeability is an important determinant for oral absorption and bioavailability of a drug molecule. An in silico model predicting drug permeability is described, which is built based on a large permeability dataset of 7488 compound entries or 5435 structurally unique molecules measured by the same lab using parallel artificial membrane permeability assay (PAMPA). On the basis of customized molecular descriptors, the support vector regression (SVR) model trained with 4071 compounds with quantitative data is able to predict the remaining 1364 compounds with the qualitative data with an area under the curve of receiver operating characteristic (AUC-ROC) of 0.90. The support vector classification (SVC) model trained with half of the whole dataset comprised of both the quantitative and the qualitative data produced accurate predictions to the remaining data with the AUC-ROC of 0.88. The results suggest that the developed SVR model is highly predictive and provides medicinal chemists a useful in silico tool to facilitate design and synthesis of novel compounds with optimal drug-like properties, and thus accelerate the lead optimization in drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Rapid prediction of single green coffee bean moisture and lipid content by hyperspectral imaging.

    PubMed

    Caporaso, Nicola; Whitworth, Martin B; Grebby, Stephen; Fisk, Ian D

    2018-06-01

    Hyperspectral imaging (1000-2500 nm) was used for rapid prediction of moisture and total lipid content in intact green coffee beans on a single bean basis. Arabica and Robusta samples from several growing locations were scanned using a "push-broom" system. Hypercubes were segmented to select single beans, and average spectra were measured for each bean. Partial Least Squares regression was used to build quantitative prediction models on single beans (n = 320-350). The models exhibited good performance and acceptable prediction errors of ∼0.28% for moisture and ∼0.89% for lipids. This study represents the first time that HSI-based quantitative prediction models have been developed for coffee, and specifically green coffee beans. In addition, this is the first attempt to build such models using single intact coffee beans. The composition variability between beans was studied, and fat and moisture distribution were visualized within individual coffee beans. This rapid, non-destructive approach could have important applications for research laboratories, breeding programmes, and for rapid screening for industry.

  6. Combining quantitative trait loci analysis with physiological models to predict genotype-specific transpiration rates.

    PubMed

    Reuning, Gretchen A; Bauerle, William L; Mullen, Jack L; McKay, John K

    2015-04-01

    Transpiration is controlled by evaporative demand and stomatal conductance (gs ), and there can be substantial genetic variation in gs . A key parameter in empirical models of transpiration is minimum stomatal conductance (g0 ), a trait that can be measured and has a large effect on gs and transpiration. In Arabidopsis thaliana, g0 exhibits both environmental and genetic variation, and quantitative trait loci (QTL) have been mapped. We used this information to create a genetically parameterized empirical model to predict transpiration of genotypes. For the parental lines, this worked well. However, in a recombinant inbred population, the predictions proved less accurate. When based only upon their genotype at a single g0 QTL, genotypes were less distinct than our model predicted. Follow-up experiments indicated that both genotype by environment interaction and a polygenic inheritance complicate the application of genetic effects into physiological models. The use of ecophysiological or 'crop' models for predicting transpiration of novel genetic lines will benefit from incorporating further knowledge of the genetic control and degree of independence of core traits/parameters underlying gs variation. © 2014 John Wiley & Sons Ltd.

  7. A Hierarchical Clustering Methodology for the Estimation of Toxicity

    EPA Science Inventory

    A Quantitative Structure Activity Relationship (QSAR) methodology based on hierarchical clustering was developed to predict toxicological endpoints. This methodology utilizes Ward's method to divide a training set into a series of structurally similar clusters. The structural sim...

  8. Quantitative Sensory Testing Predicts Pregabalin Efficacy in Painful Chronic Pancreatitis

    PubMed Central

    Olesen, Søren S.; Graversen, Carina; Bouwense, Stefan A. W.; van Goor, Harry; Wilder-Smith, Oliver H. G.; Drewes, Asbjørn M.

    2013-01-01

    Background A major problem in pain medicine is the lack of knowledge about which treatment suits a specific patient. We tested the ability of quantitative sensory testing to predict the analgesic effect of pregabalin and placebo in patients with chronic pancreatitis. Methods Sixty-four patients with painful chronic pancreatitis received pregabalin (150–300 mg BID) or matching placebo for three consecutive weeks. Analgesic effect was documented in a pain diary based on a visual analogue scale. Responders were defined as patients with a reduction in clinical pain score of 30% or more after three weeks of study treatment compared to baseline recordings. Prior to study medication, pain thresholds to electric skin and pressure stimulation were measured in dermatomes T10 (pancreatic area) and C5 (control area). To eliminate inter-subject differences in absolute pain thresholds an index of sensitivity between stimulation areas was determined (ratio of pain detection thresholds in pancreatic versus control area, ePDT ratio). Pain modulation was recorded by a conditioned pain modulation paradigm. A support vector machine was used to screen sensory parameters for their predictive power of pregabalin efficacy. Results The pregabalin responders group was hypersensitive to electric tetanic stimulation of the pancreatic area (ePDT ratio 1.2 (0.9–1.3)) compared to non-responders group (ePDT ratio: 1.6 (1.5–2.0)) (P = 0.001). The electrical pain detection ratio was predictive for pregabalin effect with a classification accuracy of 83.9% (P = 0.007). The corresponding sensitivity was 87.5% and specificity was 80.0%. No other parameters were predictive of pregabalin or placebo efficacy. Conclusions The present study provides first evidence that quantitative sensory testing predicts the analgesic effect of pregabalin in patients with painful chronic pancreatitis. The method can be used to tailor pain medication based on patient’s individual sensory profile and thus comprises a significant step towards personalized pain medicine. PMID:23469256

  9. QSAR study of anthranilic acid sulfonamides as inhibitors of methionine aminopeptidase-2 using LS-SVM and GRNN based on principal components.

    PubMed

    Shahlaei, Mohsen; Sabet, Razieh; Ziari, Maryam Bahman; Moeinifard, Behzad; Fassihi, Afshin; Karbakhsh, Reza

    2010-10-01

    Quantitative relationships between molecular structure and methionine aminopeptidase-2 inhibitory activity of a series of cytotoxic anthranilic acid sulfonamide derivatives were discovered. We have demonstrated the detailed application of two efficient nonlinear methods for evaluation of quantitative structure-activity relationships of the studied compounds. Components produced by principal component analysis as input of developed nonlinear models were used. The performance of the developed models namely PC-GRNN and PC-LS-SVM were tested by several validation methods. The resulted PC-LS-SVM model had a high statistical quality (R(2)=0.91 and R(CV)(2)=0.81) for predicting the cytotoxic activity of the compounds. Comparison between predictability of PC-GRNN and PC-LS-SVM indicates that later method has higher ability to predict the activity of the studied molecules. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  10. Investigation of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian A.

    2005-01-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical model. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. Excellent agreement is achieved between the predicted and measured results, thereby quantitatively validating the numerical tool.

  11. Towards in vivo focal cortical dysplasia phenotyping using quantitative MRI.

    PubMed

    Adler, Sophie; Lorio, Sara; Jacques, Thomas S; Benova, Barbora; Gunny, Roxana; Cross, J Helen; Baldeweg, Torsten; Carmichael, David W

    2017-01-01

    Focal cortical dysplasias (FCDs) are a range of malformations of cortical development each with specific histopathological features. Conventional radiological assessment of standard structural MRI is useful for the localization of lesions but is unable to accurately predict the histopathological features. Quantitative MRI offers the possibility to probe tissue biophysical properties in vivo and may bridge the gap between radiological assessment and ex-vivo histology. This review will cover histological, genetic and radiological features of FCD following the ILAE classification and will explain how quantitative voxel- and surface-based techniques can characterise these features. We will provide an overview of the quantitative MRI measures available, their link with biophysical properties and finally the potential application of quantitative MRI to the problem of FCD subtyping. Future research linking quantitative MRI to FCD histological properties should improve clinical protocols, allow better characterisation of lesions in vivo and tailored surgical planning to the individual.

  12. Methods of developing core collections based on the predicted genotypic value of rice ( Oryza sativa L.).

    PubMed

    Li, C T; Shi, C H; Wu, J G; Xu, H M; Zhang, H Z; Ren, Y L

    2004-04-01

    The selection of an appropriate sampling strategy and a clustering method is important in the construction of core collections based on predicted genotypic values in order to retain the greatest degree of genetic diversity of the initial collection. In this study, methods of developing rice core collections were evaluated based on the predicted genotypic values for 992 rice varieties with 13 quantitative traits. The genotypic values of the traits were predicted by the adjusted unbiased prediction (AUP) method. Based on the predicted genotypic values, Mahalanobis distances were calculated and employed to measure the genetic similarities among the rice varieties. Six hierarchical clustering methods, including the single linkage, median linkage, centroid, unweighted pair-group average, weighted pair-group average and flexible-beta methods, were combined with random, preferred and deviation sampling to develop 18 core collections of rice germplasm. The results show that the deviation sampling strategy in combination with the unweighted pair-group average method of hierarchical clustering retains the greatest degree of genetic diversities of the initial collection. The core collections sampled using predicted genotypic values had more genetic diversity than those based on phenotypic values.

  13. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction.

    PubMed

    Hamadache, Mabrouk; Benkortbi, Othmane; Hanini, Salah; Amrane, Abdeltif; Khaouane, Latifa; Si Moussa, Cherif

    2016-02-13

    Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q(2)ext and the root mean square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Precipitation forecasts for rainfall runoff predictions. A case study in poorly gauged Ribb and Gumara catchments, upper Blue Nile, Ethiopia

    NASA Astrophysics Data System (ADS)

    Seyoum, Mesgana; van Andel, Schalk Jan; Xuan, Yunqing; Amare, Kibreab

    Flow forecasting in poorly gauged, flood-prone Ribb and Gumara sub-catchments of the Blue Nile was studied with the aim of testing the performance of Quantitative Precipitation Forecasts (QPFs). Four types of QPFs namely MM5 forecasts with a spatial resolution of 2 km; the Maximum, Mean and Minimum members (MaxEPS, MeanEPS and MinEPS where EPS stands for Ensemble Prediction System) of the fixed, low resolution (2.5 by 2.5 degrees) National Oceanic and Atmospheric Administration Global Forecast System (NOAA GFS) ensemble forecasts were used. Both the MM5 and the EPS were not calibrated (bias correction, downscaling (for EPS), etc.). In addition, zero forecasts assuming no rainfall in the coming days, and monthly average forecasts assuming average monthly rainfall in the coming days, were used. These rainfall forecasts were then used to drive the Hydrologic Engineering Center’s-Hydrologic Modeling System, HEC-HMS, hydrologic model for flow predictions. The results show that flow predictions using MaxEPS and MM5 precipitation forecasts over-predicted the peak flow for most of the seven events analyzed, whereas under-predicted peak flow was found using zero- and monthly average rainfall. The comparison of observed and predicted flow hydrographs shows that MM5, MaxEPS and MeanEPS precipitation forecasts were able to capture the rainfall signal that caused peak flows. Flow predictions based on MaxEPS and MeanEPS gave results that were quantitatively close to the observed flow for most events, whereas flow predictions based on MM5 resulted in large overestimations for some events. In follow-up research for this particular case study, calibration of the MM5 model will be performed. The overall analysis shows that freely available atmospheric forecasting products can provide additional information on upcoming rainfall and peak flow events in areas where only base-line forecasts such as no-rainfall or climatology are available.

  15. Evaluating Rapid Models for High-Throughput Exposure Forecasting (SOT)

    EPA Science Inventory

    High throughput exposure screening models can provide quantitative predictions for thousands of chemicals; however these predictions must be systematically evaluated for predictive ability. Without the capability to make quantitative, albeit uncertain, forecasts of exposure, the ...

  16. Dynamics of the CRRES barium releases in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Mende, S. B.; Geller, S. P.; Miller, M.; Hoffman, R. A.; Wygant, J. R.; Pongratz, M.; Meredith, N. P.; Anderson, R. R.

    1994-01-01

    The Combined Release and Radiation Effects Satellite (CRRES) G-2, G-3, and G-4 ionized and neutral barium cloud positions are triangulated from ground-based optical data. From the time history of the ionized cloud motion perpendicular to the magnetic field, the late time coupling of the ionized cloud with the collisionless ambient plasma in the magnetosphere is investigated for each of the releases. The coupling of the ionized clouds with the ambient medium is quantitatively consistent with predictions from theory in that the coupling time increases with increasing distance from the Earth. Quantitative comparison with simple theory for the couping time also yields reasonable agreement. Other effects not predicted by the theory are discussed in the context of the observations.

  17. Predicting ESI/MS Signal Change for Anions in Different Solvents.

    PubMed

    Kruve, Anneli; Kaupmees, Karl

    2017-05-02

    LC/ESI/MS is a technique widely used for qualitative and quantitative analysis in various fields. However, quantification is currently possible only for compounds for which the standard substances are available, as the ionization efficiency of different compounds in ESI source differs by orders of magnitude. In this paper we present an approach for quantitative LC/ESI/MS analysis without standard substances. This approach relies on accurately predicting the ionization efficiencies in ESI source based on a model, which uses physicochemical parameters of analytes. Furthermore, the model has been made transferable between different mobile phases and instrument setups by using a suitable set of calibration compounds. This approach has been validated both in flow injection and chromatographic mode with gradient elution.

  18. Bio-activity of aminosulfonyl ureas in the light of nucleic acid bases and DNA base pair interaction.

    PubMed

    Mondal Roy, Sutapa

    2018-08-01

    The quantum chemical descriptors based on density functional theory (DFT) are applied to predict the biological activity (log IC 50 ) of one class of acyl-CoA: cholesterol O-acyltransferase (ACAT) inhibitors, viz. aminosulfonyl ureas. ACAT are very effective agents for reduction of triglyceride and cholesterol levels in human body. Successful two parameter quantitative structure-activity relationship (QSAR) models are developed with a combination of relevant global and local DFT based descriptors for prediction of biological activity of aminosulfonyl ureas. The global descriptors, electron affinity of the ACAT inhibitors (EA) and/or charge transfer (ΔN) between inhibitors and model biosystems (NA bases and DNA base pairs) along with the local group atomic charge on sulfonyl moiety (∑Q Sul ) of the inhibitors reveals more than 90% efficacy of the selected descriptors for predicting the experimental log (IC 50 ) values. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Predictive modeling: Solubility of C60 and C70 fullerenes in diverse solvents.

    PubMed

    Gupta, Shikha; Basant, Nikita

    2018-06-01

    Solubility of fullerenes imposes a major limitation to further advanced research and technological development using these novel materials. There have been continued efforts to discover better solvents and their properties that influence the solubility of fullerenes. Here, we have developed QSPR (quantitative structure-property relationship) models based on structural features of diverse solvents and large experimental data for predicting the solubility of C 60 and C 70 fullerenes. The developed models identified most relevant features of the solvents that encode the polarizability, polarity and lipophilicity properties which largely influence the solubilizing potential of the solvent for the fullerenes. We also established Inter-moieties solubility correlations (IMSC) based quantitative property-property relationship (QPPR) models for predicting solubility of C 60 and C 70 fullerenes. The QSPR and QPPR models were internally and externally validated deriving the most stringent statistical criteria and predicted C 60 and C 70 solubility values in different solvents were in close agreement with the experimental values. In test sets, the QSPR models yielded high correlations (R 2  > 0.964) and low root mean squared error of prediction errors (RMSEP< 0.25). Results of comparison with other studies indicated that the proposed models could effectively improve the accuracy and ability for predicting solubility of C 60 and C 70 fullerenes in solvents with diverse structures and would be useful in development of more effective solvents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

    PubMed Central

    Morris, Melody K.; Saez-Rodriguez, Julio; Clarke, David C.; Sorger, Peter K.; Lauffenburger, Douglas A.

    2011-01-01

    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone. PMID:21408212

  1. CBB Portal @ PNNL

    Science.gov Websites

    Search PNNL Home About Research Publications Jobs News Contacts Computational Biology and Bioinformatics , and engineering to transform the data into knowledge. This new quantitative, predictive biology is to empirical modeling and physics-based simulations. CBB research seeks to: Understand. Understanding

  2. ESTIMATION OF CHEMICAL SPECIFIC PARAMETERS WITHIN PHYSIOLOGICALLY BASED PHARMACOKINETIC/PHARMACODYNAMIC MODELS

    EPA Science Inventory

    While relationships between chemical structure and observed properties or activities (QSAR - quantitative structure activity relationship) can be used to predict the behavior of unknown chemicals, this method is semiempirical in nature relying on high quality experimental data to...

  3. New High Throughput Methods to Estimate Chemical Exposure

    EPA Science Inventory

    EPA has made many recent advances in high throughput bioactivity testing. However, concurrent advances in rapid, quantitative prediction of human and ecological exposures have been lacking, despite the clear importance of both measures for a risk-based approach to prioritizing an...

  4. Using a process-based model (3-PG) to predict and map hybrid poplar biomass productivity in Minnesota and Wisconsin, USA

    Treesearch

    William L. Headlee; Ronald S. Jr. Zalesny; Deahn M. Donner; Richard B. Hall

    2013-01-01

    Hybrid poplars have demonstrated high biomass productivity in the North Central USA as short rotation woody crops (SRWCs). However, our ability to quantitatively predict productivity for sites that are not currently in SRWCs is limited. As a result, stakeholders are also limited in their ability to evaluate different areas within the region as potential supply sheds...

  5. Quantitative structure--property relationships for enhancing predictions of synthetic organic chemical removal from drinking water by granular activated carbon.

    PubMed

    Magnuson, Matthew L; Speth, Thomas F

    2005-10-01

    Granular activated carbon is a frequently explored technology for removing synthetic organic contaminants from drinking water sources. The success of this technology relies on a number of factors based not only on the adsorptive properties of the contaminant but also on properties of the water itself, notably the presence of substances in the water which compete for adsorption sites. Because it is impractical to perform field-scale evaluations for all possible contaminants, the pore surface diffusion model (PSDM) has been developed and used to predict activated carbon column performance using single-solute isotherm data as inputs. Many assumptions are built into this model to account for kinetics of adsorption and competition for adsorption sites. This work further evaluates and expands this model, through the use of quantitative structure-property relationships (QSPRs) to predict the effect of natural organic matter fouling on activated carbon adsorption of specific contaminants. The QSPRs developed are based on a combination of calculated topographical indices and quantum chemical parameters. The QSPRs were evaluated in terms of their statistical predictive ability,the physical significance of the descriptors, and by comparison with field data. The QSPR-enhanced PSDM was judged to give results better than what could previously be obtained.

  6. Three-dimensional quantitative structure-activity relationship analysis for human pregnane X receptor for the prediction of CYP3A4 induction in human hepatocytes: structure-based comparative molecular field analysis.

    PubMed

    Handa, Koichi; Nakagome, Izumi; Yamaotsu, Noriyuki; Gouda, Hiroaki; Hirono, Shuichi

    2015-01-01

    The pregnane X receptor [PXR (NR1I2)] induces the expression of xenobiotic metabolic genes and transporter genes. In this study, we aimed to establish a computational method for quantifying the enzyme-inducing potencies of different compounds via their ability to activate PXR, for the application in drug discovery and development. To achieve this purpose, we developed a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) for predicting enzyme-inducing potencies, based on computer-ligand docking to multiple PXR protein structures sampled from the trajectory of a molecular dynamics simulation. Molecular mechanics-generalized born/surface area scores representing the ligand-protein-binding free energies were calculated for each ligand. As a result, the predicted enzyme-inducing potencies for compounds generated by the CoMFA model were in good agreement with the experimental values. Finally, we concluded that this 3D-QSAR model has the potential to predict the enzyme-inducing potencies of novel compounds with high precision and therefore has valuable applications in the early stages of the drug discovery process. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Chemical Sensor Array Response Modeling Using Quantitative Structure-Activity Relationships Technique

    NASA Astrophysics Data System (ADS)

    Shevade, Abhijit V.; Ryan, Margaret A.; Homer, Margie L.; Zhou, Hanying; Manfreda, Allison M.; Lara, Liana M.; Yen, Shiao-Pin S.; Jewell, April D.; Manatt, Kenneth S.; Kisor, Adam K.

    We have developed a Quantitative Structure-Activity Relationships (QSAR) based approach to correlate the response of chemical sensors in an array with molecular descriptors. A novel molecular descriptor set has been developed; this set combines descriptors of sensing film-analyte interactions, representing sensor response, with a basic analyte descriptor set commonly used in QSAR studies. The descriptors are obtained using a combination of molecular modeling tools and empirical and semi-empirical Quantitative Structure-Property Relationships (QSPR) methods. The sensors under investigation are polymer-carbon sensing films which have been exposed to analyte vapors at parts-per-million (ppm) concentrations; response is measured as change in film resistance. Statistically validated QSAR models have been developed using Genetic Function Approximations (GFA) for a sensor array for a given training data set. The applicability of the sensor response models has been tested by using it to predict the sensor activities for test analytes not considered in the training set for the model development. The validated QSAR sensor response models show good predictive ability. The QSAR approach is a promising computational tool for sensing materials evaluation and selection. It can also be used to predict response of an existing sensing film to new target analytes.

  8. X-Ray and UV Photoelectron Spectroscopy | Materials Science | NREL

    Science.gov Websites

    backsheet material, showing excellent quantitative agreement between measured and predicted peak area ratios quantitative agreement between measured and predicted peak area ratios. Subtle differences in polymer functionality are assessed by deviations from stoichiometry. Elemental Analysis Uses quantitative identification

  9. Weather Prediction Center (WPC) Home Page

    Science.gov Websites

    grids, quantitative precipitation, and winter weather outlook probabilities can be found at: http Short Range Products » More Medium Range Products Quantitative Precipitation Forecasts Legacy Page Discussion (Day 1-3) Quantitative Precipitation Forecast Discussion NWS Weather Prediction Center College

  10. Predicting drug hydrolysis based on moisture uptake in various packaging designs.

    PubMed

    Naversnik, Klemen; Bohanec, Simona

    2008-12-18

    An attempt was made to predict the stability of a moisture sensitive drug product based on the knowledge of the dependence of the degradation rate on tablet moisture. The moisture increase inside a HDPE bottle with the drug formulation was simulated with the sorption-desorption moisture transfer model, which, in turn, allowed an accurate prediction of the drug degradation kinetics. The stability prediction, obtained by computer simulation, was made in a considerably shorter time frame and required little resources compared to a conventional stability study. The prediction was finally upgraded to a stochastic Monte Carlo simulation, which allowed quantitative incorporation of uncertainty, stemming from various sources. The resulting distribution of the outcome of interest (amount of degradation product at expiry) is a comprehensive way of communicating the result along with its uncertainty, superior to single-value results or confidence intervals.

  11. Prediction of pKa Values for Neutral and Basic Drugs based on Hybrid Artificial Intelligence Methods.

    PubMed

    Li, Mengshan; Zhang, Huaijing; Chen, Bingsheng; Wu, Yan; Guan, Lixin

    2018-03-05

    The pKa value of drugs is an important parameter in drug design and pharmacology. In this paper, an improved particle swarm optimization (PSO) algorithm was proposed based on the population entropy diversity. In the improved algorithm, when the population entropy was higher than the set maximum threshold, the convergence strategy was adopted; when the population entropy was lower than the set minimum threshold the divergence strategy was adopted; when the population entropy was between the maximum and minimum threshold, the self-adaptive adjustment strategy was maintained. The improved PSO algorithm was applied in the training of radial basis function artificial neural network (RBF ANN) model and the selection of molecular descriptors. A quantitative structure-activity relationship model based on RBF ANN trained by the improved PSO algorithm was proposed to predict the pKa values of 74 kinds of neutral and basic drugs and then validated by another database containing 20 molecules. The validation results showed that the model had a good prediction performance. The absolute average relative error, root mean square error, and squared correlation coefficient were 0.3105, 0.0411, and 0.9685, respectively. The model can be used as a reference for exploring other quantitative structure-activity relationships.

  12. Physiologically Based Pharmacokinetic Modeling in Lead Optimization. 1. Evaluation and Adaptation of GastroPlus To Predict Bioavailability of Medchem Series.

    PubMed

    Daga, Pankaj R; Bolger, Michael B; Haworth, Ian S; Clark, Robert D; Martin, Eric J

    2018-03-05

    When medicinal chemists need to improve bioavailability (%F) within a chemical series during lead optimization, they synthesize new series members with systematically modified properties mainly by following experience and general rules of thumb. More quantitative models that predict %F of proposed compounds from chemical structure alone have proven elusive. Global empirical %F quantitative structure-property (QSPR) models perform poorly, and projects have too little data to train local %F QSPR models. Mechanistic oral absorption and physiologically based pharmacokinetic (PBPK) models simulate the dissolution, absorption, systemic distribution, and clearance of a drug in preclinical species and humans. Attempts to build global PBPK models based purely on calculated inputs have not achieved the <2-fold average error needed to guide lead optimization. In this work, local GastroPlus PBPK models are instead customized for individual medchem series. The key innovation was building a local QSPR for a numerically fitted effective intrinsic clearance (CL loc ). All inputs are subsequently computed from structure alone, so the models can be applied in advance of synthesis. Training CL loc on the first 15-18 rat %F measurements gave adequate predictions, with clear improvements up to about 30 measurements, and incremental improvements beyond that.

  13. From QSAR to QSIIR: Searching for Enhanced Computational Toxicology Models

    PubMed Central

    Zhu, Hao

    2017-01-01

    Quantitative Structure Activity Relationship (QSAR) is the most frequently used modeling approach to explore the dependency of biological, toxicological, or other types of activities/properties of chemicals on their molecular features. In the past two decades, QSAR modeling has been used extensively in drug discovery process. However, the predictive models resulted from QSAR studies have limited use for chemical risk assessment, especially for animal and human toxicity evaluations, due to the low predictivity of new compounds. To develop enhanced toxicity models with independently validated external prediction power, novel modeling protocols were pursued by computational toxicologists based on rapidly increasing toxicity testing data in recent years. This chapter reviews the recent effort in our laboratory to incorporate the biological testing results as descriptors in the toxicity modeling process. This effort extended the concept of QSAR to Quantitative Structure In vitro-In vivo Relationship (QSIIR). The QSIIR study examples provided in this chapter indicate that the QSIIR models that based on the hybrid (biological and chemical) descriptors are indeed superior to the conventional QSAR models that only based on chemical descriptors for several animal toxicity endpoints. We believe that the applications introduced in this review will be of interest and value to researchers working in the field of computational drug discovery and environmental chemical risk assessment. PMID:23086837

  14. Investigation of the influence of protein corona composition on gold nanoparticle bioactivity using machine learning approaches.

    PubMed

    Papa, E; Doucet, J P; Sangion, A; Doucet-Panaye, A

    2016-07-01

    The understanding of the mechanisms and interactions that occur when nanomaterials enter biological systems is important to improve their future use. The adsorption of proteins from biological fluids in a physiological environment to form a corona on the surface of nanoparticles represents a key step that influences nanoparticle behaviour. In this study, the quantitative description of the composition of the protein corona was used to study the effect on cell association induced by 84 surface-modified gold nanoparticles of different sizes. Quantitative relationships between the protein corona and the activity of the gold nanoparticles were modelled by using several machine learning-based linear and non-linear approaches. Models based on a selection of only six serum proteins had robust and predictive results. The Projection Pursuit Regression method had the best performances (r(2) = 0.91; Q(2)loo = 0.81; r(2)ext = 0.79). The present study confirmed the utility of protein corona composition to predict the bioactivity of gold nanoparticles and identified the main proteins that act as promoters or inhibitors of cell association. In addition, the comparison of several techniques showed which strategies offer the best results in prediction and could be used to support new toxicological studies on gold-based nanomaterials.

  15. Computational analysis of structure-based interactions and ligand properties can predict efflux effects on antibiotics.

    PubMed

    Sarkar, Aurijit; Anderson, Kelcey C; Kellogg, Glen E

    2012-06-01

    AcrA-AcrB-TolC efflux pumps extrude drugs of multiple classes from bacterial cells and are a leading cause for antimicrobial resistance. Thus, they are of paramount interest to those engaged in antibiotic discovery. Accurate prediction of antibiotic efflux has been elusive, despite several studies aimed at this purpose. Minimum inhibitory concentration (MIC) ratios of 32 β-lactam antibiotics were collected from literature. 3-Dimensional Quantitative Structure-Activity Relationship on the β-lactam antibiotic structures revealed seemingly predictive models (q(2)=0.53), but the lack of a general superposition rule does not allow its use on antibiotics that lack the β-lactam moiety. Since MIC ratios must depend on interactions of antibiotics with lipid membranes and transport proteins during influx, capture and extrusion of antibiotics from the bacterial cell, descriptors representing these factors were calculated and used in building mathematical models that quantitatively classify antibiotics as having high/low efflux (>93% accuracy). Our models provide preliminary evidence that it is possible to predict the effects of antibiotic efflux if the passage of antibiotics into, and out of, bacterial cells is taken into account--something descriptor and field-based QSAR models cannot do. While the paucity of data in the public domain remains the limiting factor in such studies, these models show significant improvements in predictions over simple LogP-based regression models and should pave the path toward further work in this field. This method should also be extensible to other pharmacologically and biologically relevant transport proteins. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  16. P53 Mutation Analysis to Predict Tumor Response in Patients Undergoing Neoadjuvant Treatment for Locally Advanced Breast Cancer

    DTIC Science & Technology

    2006-10-01

    then sequenced (for GeneChip- positiv SSCP (for GeneChip-negative). We have received a total of 43 core breast biopsy DNA samples from the UNC... quantitative luciferase reporter. Both reporters exploit a “rheostatable” promoter for p53 expression and utilize the “delitto perfetto” in vivo... quantitative luciferase-based assay is also being used to characterize the altered function sistent an tion T mutants in greater detail. Preliminary

  17. Pitch control margin at high angle of attack - Quantitative requirements (flight test correlation with simulation predictions)

    NASA Technical Reports Server (NTRS)

    Lackey, J.; Hadfield, C.

    1992-01-01

    Recent mishaps and incidents on Class IV aircraft have shown a need for establishing quantitative longitudinal high angle of attack (AOA) pitch control margin design guidelines for future aircraft. NASA Langley Research Center has conducted a series of simulation tests to define these design guidelines. Flight test results have confirmed the simulation studies in that pilot rating of high AOA nose-down recoveries were based on the short-term response interval in the forms of pitch acceleration and rate.

  18. Quantitative ESD Guidelines for Charged Spacecraft Derived from the Physics of Discharges

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.

    1992-01-01

    Quantitative guidelines are proposed for Electrostatic Discharge (ESD) pulse shape on charged spacecraft. The guidelines are based on existing ground test data, and on a physical description of the pulsed discharge process. The guidelines are designed to predict pulse shape for surface charging and internal charging on a wide variety of spacecraft structures. The pulses depend on the area of the sample, its capacitance to ground, and the strength of the electric field in the vacuum adjacent to the charged surface. By knowing the pulse shape, current vs. time, one can determine if nearby circuits are threatened by the pulse. The quantitative guidelines might be used to estimate the level of threat to an existing spacecraft, or to redesign a spacecraft to reduce its pulses to a known safe level. The experiments which provide the data and the physics that allow one to interpret the data will be discussed, culminating in examples of how to predict pulse shape/size. This method has been used, but not confirmed, on several spacecraft.

  19. Quantitative Reappraisal of the Helmholtz-Guyton Resonance Theory of Frequency Tuning in the Cochlea

    PubMed Central

    Babbs, Charles F.

    2011-01-01

    To explore the fundamental biomechanics of sound frequency transduction in the cochlea, a two-dimensional analytical model of the basilar membrane was constructed from first principles. Quantitative analysis showed that axial forces along the membrane are negligible, condensing the problem to a set of ordered one-dimensional models in the radial dimension, for which all parameters can be specified from experimental data. Solutions of the radial models for asymmetrical boundary conditions produce realistic deformation patterns. The resulting second-order differential equations, based on the original concepts of Helmholtz and Guyton, and including viscoelastic restoring forces, predict a frequency map and amplitudes of deflections that are consistent with classical observations. They also predict the effects of an observation hole drilled in the surrounding bone, the effects of curvature of the cochlear spiral, as well as apparent traveling waves under a variety of experimental conditions. A quantitative rendition of the classical Helmholtz-Guyton model captures the essence of cochlear mechanics and unifies the competing resonance and traveling wave theories. PMID:22028708

  20. Applying a radiomics approach to predict prognosis of lung cancer patients

    NASA Astrophysics Data System (ADS)

    Emaminejad, Nastaran; Yan, Shiju; Wang, Yunzhi; Qian, Wei; Guan, Yubao; Zheng, Bin

    2016-03-01

    Radiomics is an emerging technology to decode tumor phenotype based on quantitative analysis of image features computed from radiographic images. In this study, we applied Radiomics concept to investigate the association among the CT image features of lung tumors, which are either quantitatively computed or subjectively rated by radiologists, and two genomic biomarkers namely, protein expression of the excision repair cross-complementing 1 (ERCC1) genes and a regulatory subunit of ribonucleotide reductase (RRM1), in predicting disease-free survival (DFS) of lung cancer patients after surgery. An image dataset involving 94 patients was used. Among them, 20 had cancer recurrence within 3 years, while 74 patients remained DFS. After tumor segmentation, 35 image features were computed from CT images. Using the Weka data mining software package, we selected 10 non-redundant image features. Applying a SMOTE algorithm to generate synthetic data to balance case numbers in two DFS ("yes" and "no") groups and a leave-one-case-out training/testing method, we optimized and compared a number of machine learning classifiers using (1) quantitative image (QI) features, (2) subjective rated (SR) features, and (3) genomic biomarkers (GB). Data analyses showed relatively lower correlation among the QI, SR and GB prediction results (with Pearson correlation coefficients < 0.5 including between ERCC1 and RRM1 biomarkers). By using area under ROC curve as an assessment index, the QI, SR and GB based classifiers yielded AUC = 0.89+/-0.04, 0.73+/-0.06 and 0.76+/-0.07, respectively, which showed that all three types of features had prediction power (AUC>0.5). Among them, using QI yielded the highest performance.

  1. Effect of genetic architecture on the prediction accuracy of quantitative traits in samples of unrelated individuals.

    PubMed

    Morgante, Fabio; Huang, Wen; Maltecca, Christian; Mackay, Trudy F C

    2018-06-01

    Predicting complex phenotypes from genomic data is a fundamental aim of animal and plant breeding, where we wish to predict genetic merits of selection candidates; and of human genetics, where we wish to predict disease risk. While genomic prediction models work well with populations of related individuals and high linkage disequilibrium (LD) (e.g., livestock), comparable models perform poorly for populations of unrelated individuals and low LD (e.g., humans). We hypothesized that low prediction accuracies in the latter situation may occur when the genetics architecture of the trait departs from the infinitesimal and additive architecture assumed by most prediction models. We used simulated data for 10,000 lines based on sequence data from a population of unrelated, inbred Drosophila melanogaster lines to evaluate this hypothesis. We show that, even in very simplified scenarios meant as a stress test of the commonly used Genomic Best Linear Unbiased Predictor (G-BLUP) method, using all common variants yields low prediction accuracy regardless of the trait genetic architecture. However, prediction accuracy increases when predictions are informed by the genetic architecture inferred from mapping the top variants affecting main effects and interactions in the training data, provided there is sufficient power for mapping. When the true genetic architecture is largely or partially due to epistatic interactions, the additive model may not perform well, while models that account explicitly for interactions generally increase prediction accuracy. Our results indicate that accounting for genetic architecture can improve prediction accuracy for quantitative traits.

  2. Comparing the MRI-based Goutallier Classification to an experimental quantitative MR spectroscopic fat measurement of the supraspinatus muscle.

    PubMed

    Gilbert, Fabian; Böhm, Dirk; Eden, Lars; Schmalzl, Jonas; Meffert, Rainer H; Köstler, Herbert; Weng, Andreas M; Ziegler, Dirk

    2016-08-22

    The Goutallier Classification is a semi quantitative classification system to determine the amount of fatty degeneration in rotator cuff muscles. Although initially proposed for axial computer tomography scans it is currently applied to magnet-resonance-imaging-scans. The role for its clinical use is controversial, as the reliability of the classification has been shown to be inconsistent. The purpose of this study was to compare the semi quantitative MRI-based Goutallier Classification applied by 5 different raters to experimental MR spectroscopic quantitative fat measurement in order to determine the correlation between this classification system and the true extent of fatty degeneration shown by spectroscopy. MRI-scans of 42 patients with rotator cuff tears were examined by 5 shoulder surgeons and were graduated according to the MRI-based Goutallier Classification proposed by Fuchs et al. Additionally the fat/water ratio was measured with MR spectroscopy using the experimental SPLASH technique. The semi quantitative grading according to the Goutallier Classification was statistically correlated with the quantitative measured fat/water ratio using Spearman's rank correlation. Statistical analysis of the data revealed only fair correlation of the Goutallier Classification system and the quantitative fat/water ratio with R = 0.35 (p < 0.05). By dichotomizing the scale the correlation was 0.72. The interobserver and intraobserver reliabilities were substantial with R = 0.62 and R = 0.74 (p < 0.01). The correlation between the semi quantitative MRI based Goutallier Classification system and MR spectroscopic fat measurement is weak. As an adequate estimation of fatty degeneration based on standard MRI may not be possible, quantitative methods need to be considered in order to increase diagnostic safety and thus provide patients with ideal care in regard to the amount of fatty degeneration. Spectroscopic MR measurement may increase the accuracy of the Goutallier classification and thus improve the prediction of clinical results after rotator cuff repair. However, these techniques are currently only available in an experimental setting.

  3. Quantitative Precipitation Nowcasting: A Lagrangian Pixel-Based Approach

    DTIC Science & Technology

    2012-01-01

    Sorooshian, T. Bellerby, and G. Huffman, 2010: REFAME: Rain Estimation Using Forward-Adjusted Advection of Microwave Estimates. J. of Hydromet ., 11...precipitation forecasting using information from radar and Numerical Weather Prediction models. J. of Hydromet ., 4(6):1168-1180. Germann, U., and I

  4. Prediction on the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase based on gene expression programming.

    PubMed

    Li, Yuqin; You, Guirong; Jia, Baoxiu; Si, Hongzong; Yao, Xiaojun

    2014-01-01

    Quantitative structure-activity relationships (QSAR) were developed to predict the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase via heuristic method (HM) and gene expression programming (GEP). The descriptors of 33 pyrrolidine derivatives were calculated by the software CODESSA, which can calculate quantum chemical, topological, geometrical, constitutional, and electrostatic descriptors. HM was also used for the preselection of 5 appropriate molecular descriptors. Linear and nonlinear QSAR models were developed based on the HM and GEP separately and two prediction models lead to a good correlation coefficient (R (2)) of 0.93 and 0.94. The two QSAR models are useful in predicting the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase during the discovery of new anticancer drugs and providing theory information for studying the new drugs.

  5. Computational Prediction of Metabolism: Sites, Products, SAR, P450 Enzyme Dynamics, and Mechanisms

    PubMed Central

    2012-01-01

    Metabolism of xenobiotics remains a central challenge for the discovery and development of drugs, cosmetics, nutritional supplements, and agrochemicals. Metabolic transformations are frequently related to the incidence of toxic effects that may result from the emergence of reactive species, the systemic accumulation of metabolites, or by induction of metabolic pathways. Experimental investigation of the metabolism of small organic molecules is particularly resource demanding; hence, computational methods are of considerable interest to complement experimental approaches. This review provides a broad overview of structure- and ligand-based computational methods for the prediction of xenobiotic metabolism. Current computational approaches to address xenobiotic metabolism are discussed from three major perspectives: (i) prediction of sites of metabolism (SOMs), (ii) elucidation of potential metabolites and their chemical structures, and (iii) prediction of direct and indirect effects of xenobiotics on metabolizing enzymes, where the focus is on the cytochrome P450 (CYP) superfamily of enzymes, the cardinal xenobiotics metabolizing enzymes. For each of these domains, a variety of approaches and their applications are systematically reviewed, including expert systems, data mining approaches, quantitative structure–activity relationships (QSARs), and machine learning-based methods, pharmacophore-based algorithms, shape-focused techniques, molecular interaction fields (MIFs), reactivity-focused techniques, protein–ligand docking, molecular dynamics (MD) simulations, and combinations of methods. Predictive metabolism is a developing area, and there is still enormous potential for improvement. However, it is clear that the combination of rapidly increasing amounts of available ligand- and structure-related experimental data (in particular, quantitative data) with novel and diverse simulation and modeling approaches is accelerating the development of effective tools for prediction of in vivo metabolism, which is reflected by the diverse and comprehensive data sources and methods for metabolism prediction reviewed here. This review attempts to survey the range and scope of computational methods applied to metabolism prediction and also to compare and contrast their applicability and performance. PMID:22339582

  6. NNAlign: A Web-Based Prediction Method Allowing Non-Expert End-User Discovery of Sequence Motifs in Quantitative Peptide Data

    PubMed Central

    Andreatta, Massimo; Schafer-Nielsen, Claus; Lund, Ole; Buus, Søren; Nielsen, Morten

    2011-01-01

    Recent advances in high-throughput technologies have made it possible to generate both gene and protein sequence data at an unprecedented rate and scale thereby enabling entirely new “omics”-based approaches towards the analysis of complex biological processes. However, the amount and complexity of data that even a single experiment can produce seriously challenges researchers with limited bioinformatics expertise, who need to handle, analyze and interpret the data before it can be understood in a biological context. Thus, there is an unmet need for tools allowing non-bioinformatics users to interpret large data sets. We have recently developed a method, NNAlign, which is generally applicable to any biological problem where quantitative peptide data is available. This method efficiently identifies underlying sequence patterns by simultaneously aligning peptide sequences and identifying motifs associated with quantitative readouts. Here, we provide a web-based implementation of NNAlign allowing non-expert end-users to submit their data (optionally adjusting method parameters), and in return receive a trained method (including a visual representation of the identified motif) that subsequently can be used as prediction method and applied to unknown proteins/peptides. We have successfully applied this method to several different data sets including peptide microarray-derived sets containing more than 100,000 data points. NNAlign is available online at http://www.cbs.dtu.dk/services/NNAlign. PMID:22073191

  7. NNAlign: a web-based prediction method allowing non-expert end-user discovery of sequence motifs in quantitative peptide data.

    PubMed

    Andreatta, Massimo; Schafer-Nielsen, Claus; Lund, Ole; Buus, Søren; Nielsen, Morten

    2011-01-01

    Recent advances in high-throughput technologies have made it possible to generate both gene and protein sequence data at an unprecedented rate and scale thereby enabling entirely new "omics"-based approaches towards the analysis of complex biological processes. However, the amount and complexity of data that even a single experiment can produce seriously challenges researchers with limited bioinformatics expertise, who need to handle, analyze and interpret the data before it can be understood in a biological context. Thus, there is an unmet need for tools allowing non-bioinformatics users to interpret large data sets. We have recently developed a method, NNAlign, which is generally applicable to any biological problem where quantitative peptide data is available. This method efficiently identifies underlying sequence patterns by simultaneously aligning peptide sequences and identifying motifs associated with quantitative readouts. Here, we provide a web-based implementation of NNAlign allowing non-expert end-users to submit their data (optionally adjusting method parameters), and in return receive a trained method (including a visual representation of the identified motif) that subsequently can be used as prediction method and applied to unknown proteins/peptides. We have successfully applied this method to several different data sets including peptide microarray-derived sets containing more than 100,000 data points. NNAlign is available online at http://www.cbs.dtu.dk/services/NNAlign.

  8. Biomechanics-based in silico medicine: the manifesto of a new science.

    PubMed

    Viceconti, Marco

    2015-01-21

    In this perspective article we discuss the role of contemporary biomechanics in the light of recent applications such as the development of the so-called Virtual Physiological Human technologies for physiology-based in silico medicine. In order to build Virtual Physiological Human (VPH) models, computer models that capture and integrate the complex systemic dynamics of living organisms across radically different space-time scales, we need to re-formulate a vast body of existing biology and physiology knowledge so that it is formulated as a quantitative hypothesis, which can be expressed in mathematical terms. Once the predictive accuracy of these models is confirmed against controlled experiments and against clinical observations, we will have VPH model that can reliably predict certain quantitative changes in health status of a given patient, but also, more important, we will have a theory, in the true meaning this word has in the scientific method. In this scenario, biomechanics plays a very important role, biomechanics is one of the few areas of life sciences where we attempt to build full mechanistic explanations based on quantitative observations, in other words, we investigate living organisms like physical systems. This is in our opinion a Copernican revolution, around which the scope of biomechanics should be re-defined. Thus, we propose a new definition for our research domain "Biomechanics is the study of living organisms as mechanistic systems". Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Diffusion rate limitations in actin-based propulsion of hard and deformable particles.

    PubMed

    Dickinson, Richard B; Purich, Daniel L

    2006-08-15

    The mechanism by which actin polymerization propels intracellular vesicles and invasive microorganisms remains an open question. Several recent quantitative studies have examined propulsion of biomimetic particles such as polystyrene microspheres, phospholipid vesicles, and oil droplets. In addition to allowing quantitative measurement of parameters such as the dependence of particle speed on its size, these systems have also revealed characteristic behaviors such a saltatory motion of hard particles and oscillatory deformation of soft particles. Such measurements and observations provide tests for proposed mechanisms of actin-based motility. In the actoclampin filament end-tracking motor model, particle-surface-bound filament end-tracking proteins are involved in load-insensitive processive insertion of actin subunits onto elongating filament plus-ends that are persistently tethered to the surface. In contrast, the tethered-ratchet model assumes working filaments are untethered and the free-ended filaments grow as thermal ratchets in a load-sensitive manner. This article presents a model for the diffusion and consumption of actin monomers during actin-based particle propulsion to predict the monomer concentration field around motile particles. The results suggest that the various behaviors of biomimetic particles, including dynamic saltatory motion of hard particles and oscillatory vesicle deformations, can be quantitatively and self-consistently explained by load-insensitive, diffusion-limited elongation of (+)-end-tethered actin filaments, consistent with predictions of the actoclampin filament-end tracking mechanism.

  10. Quantitative fetal fibronectin and cervical length to predict preterm birth in asymptomatic women with previous cervical surgery.

    PubMed

    Vandermolen, Brooke I; Hezelgrave, Natasha L; Smout, Elizabeth M; Abbott, Danielle S; Seed, Paul T; Shennan, Andrew H

    2016-10-01

    Quantitative fetal fibronectin testing has demonstrated accuracy for prediction of spontaneous preterm birth in asymptomatic women with a history of preterm birth. Predictive accuracy in women with previous cervical surgery (a potentially different risk mechanism) is not known. We sought to compare the predictive accuracy of cervicovaginal fluid quantitative fetal fibronectin and cervical length testing in asymptomatic women with previous cervical surgery to that in women with 1 previous preterm birth. We conducted a prospective blinded secondary analysis of a larger observational study of cervicovaginal fluid quantitative fetal fibronectin concentration in asymptomatic women measured with a Hologic 10Q system (Hologic, Marlborough, MA). Prediction of spontaneous preterm birth (<30, <34, and <37 weeks) with cervicovaginal fluid quantitative fetal fibronectin concentration in primiparous women who had undergone at least 1 invasive cervical procedure (n = 473) was compared with prediction in women who had previous spontaneous preterm birth, preterm prelabor rupture of membranes, or late miscarriage (n = 821). Relationship with cervical length was explored. The rate of spontaneous preterm birth <34 weeks in the cervical surgery group was 3% compared with 9% in previous spontaneous preterm birth group. Receiver operating characteristic curves comparing quantitative fetal fibronectin for prediction at all 3 gestational end points were comparable between the cervical surgery and previous spontaneous preterm birth groups (34 weeks: area under the curve, 0.78 [95% confidence interval 0.64-0.93] vs 0.71 [95% confidence interval 0.64-0.78]; P = .39). Prediction of spontaneous preterm birth using cervical length compared with quantitative fetal fibronectin for prediction of preterm birth <34 weeks of gestation offered similar prediction (area under the curve, 0.88 [95% confidence interval 0.79-0.96] vs 0.77 [95% confidence interval 0.62-0.92], P = .12 in the cervical surgery group; and 0.77 [95% confidence interval 0.70-0.84] vs 0.74 [95% confidence interval 0.67-0.81], P = .32 in the previous spontaneous preterm birth group). Prediction of spontaneous preterm birth using cervicovaginal fluid quantitative fetal fibronectin in asymptomatic women with cervical surgery is valid, and has comparative accuracy to that in women with a history of spontaneous preterm birth. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. New Equation for Prediction of Martensite Start Temperature in High Carbon Ferrous Alloys

    NASA Astrophysics Data System (ADS)

    Park, Jihye; Shim, Jae-Hyeok; Lee, Seok-Jae

    2018-02-01

    Since previous equations fail to predict M S temperature of high carbon ferrous alloys, we first propose an equation for prediction of M S temperature of ferrous alloys containing > 2 wt pct C. The presence of carbides (Fe3C and Cr-rich M 7C3) is thermodynamically considered to estimate the C concentration in austenite. Especially, equations individually specialized for lean and high Cr alloys very accurately reproduce experimental results. The chemical driving force for martensitic transformation is quantitatively analyzed based on the calculation of T 0 temperature.

  12. Novel Uses of In Vitro Data to Develop Quantitative Biological Activity Relationship Models for in Vivo Carcinogenicity Prediction.

    PubMed

    Pradeep, Prachi; Povinelli, Richard J; Merrill, Stephen J; Bozdag, Serdar; Sem, Daniel S

    2015-04-01

    The availability of large in vitro datasets enables better insight into the mode of action of chemicals and better identification of potential mechanism(s) of toxicity. Several studies have shown that not all in vitro assays can contribute as equal predictors of in vivo carcinogenicity for development of hybrid Quantitative Structure Activity Relationship (QSAR) models. We propose two novel approaches for the use of mechanistically relevant in vitro assay data in the identification of relevant biological descriptors and development of Quantitative Biological Activity Relationship (QBAR) models for carcinogenicity prediction. We demonstrate that in vitro assay data can be used to develop QBAR models for in vivo carcinogenicity prediction via two case studies corroborated with firm scientific rationale. The case studies demonstrate the similarities between QBAR and QSAR modeling in: (i) the selection of relevant descriptors to be used in the machine learning algorithm, and (ii) the development of a computational model that maps chemical or biological descriptors to a toxic endpoint. The results of both the case studies show: (i) improved accuracy and sensitivity which is especially desirable under regulatory requirements, and (ii) overall adherence with the OECD/REACH guidelines. Such mechanism based models can be used along with QSAR models for prediction of mechanistically complex toxic endpoints. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Approaches to developing alternative and predictive toxicology based on PBPK/PD and QSAR modeling.

    PubMed Central

    Yang, R S; Thomas, R S; Gustafson, D L; Campain, J; Benjamin, S A; Verhaar, H J; Mumtaz, M M

    1998-01-01

    Systematic toxicity testing, using conventional toxicology methodologies, of single chemicals and chemical mixtures is highly impractical because of the immense numbers of chemicals and chemical mixtures involved and the limited scientific resources. Therefore, the development of unconventional, efficient, and predictive toxicology methods is imperative. Using carcinogenicity as an end point, we present approaches for developing predictive tools for toxicologic evaluation of chemicals and chemical mixtures relevant to environmental contamination. Central to the approaches presented is the integration of physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) and quantitative structure--activity relationship (QSAR) modeling with focused mechanistically based experimental toxicology. In this development, molecular and cellular biomarkers critical to the carcinogenesis process are evaluated quantitatively between different chemicals and/or chemical mixtures. Examples presented include the integration of PBPK/PD and QSAR modeling with a time-course medium-term liver foci assay, molecular biology and cell proliferation studies. Fourier transform infrared spectroscopic analyses of DNA changes, and cancer modeling to assess and attempt to predict the carcinogenicity of the series of 12 chlorobenzene isomers. Also presented is an ongoing effort to develop and apply a similar approach to chemical mixtures using in vitro cell culture (Syrian hamster embryo cell transformation assay and human keratinocytes) methodologies and in vivo studies. The promise and pitfalls of these developments are elaborated. When successfully applied, these approaches may greatly reduce animal usage, personnel, resources, and time required to evaluate the carcinogenicity of chemicals and chemical mixtures. Images Figure 6 PMID:9860897

  14. Blinded Prospective Evaluation of Computer-Based Mechanistic Schizophrenia Disease Model for Predicting Drug Response

    PubMed Central

    Geerts, Hugo; Spiros, Athan; Roberts, Patrick; Twyman, Roy; Alphs, Larry; Grace, Anthony A.

    2012-01-01

    The tremendous advances in understanding the neurobiological circuits involved in schizophrenia have not translated into more effective treatments. An alternative strategy is to use a recently published ‘Quantitative Systems Pharmacology’ computer-based mechanistic disease model of cortical/subcortical and striatal circuits based upon preclinical physiology, human pathology and pharmacology. The physiology of 27 relevant dopamine, serotonin, acetylcholine, norepinephrine, gamma-aminobutyric acid (GABA) and glutamate-mediated targets is calibrated using retrospective clinical data on 24 different antipsychotics. The model was challenged to predict quantitatively the clinical outcome in a blinded fashion of two experimental antipsychotic drugs; JNJ37822681, a highly selective low-affinity dopamine D2 antagonist and ocaperidone, a very high affinity dopamine D2 antagonist, using only pharmacology and human positron emission tomography (PET) imaging data. The model correctly predicted the lower performance of JNJ37822681 on the positive and negative syndrome scale (PANSS) total score and the higher extra-pyramidal symptom (EPS) liability compared to olanzapine and the relative performance of ocaperidone against olanzapine, but did not predict the absolute PANSS total score outcome and EPS liability for ocaperidone, possibly due to placebo responses and EPS assessment methods. Because of its virtual nature, this modeling approach can support central nervous system research and development by accounting for unique human drug properties, such as human metabolites, exposure, genotypes and off-target effects and can be a helpful tool for drug discovery and development. PMID:23251349

  15. Planner-Based Control of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  16. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.

    PubMed

    Mohr, Johannes A; Jain, Brijnesh J; Obermayer, Klaus

    2008-09-01

    Quantitative structure activity relationship (QSAR) analysis is traditionally based on extracting a set of molecular descriptors and using them to build a predictive model. In this work, we propose a QSAR approach based directly on the similarity between the 3D structures of a set of molecules measured by a so-called molecule kernel, which is independent of the spatial prealignment of the compounds. Predictors can be build using the molecule kernel in conjunction with the potential support vector machine (P-SVM), a recently proposed machine learning method for dyadic data. The resulting models make direct use of the structural similarities between the compounds in the test set and a subset of the training set and do not require an explicit descriptor construction. We evaluated the predictive performance of the proposed method on one classification and four regression QSAR datasets and compared its results to the results reported in the literature for several state-of-the-art descriptor-based and 3D QSAR approaches. In this comparison, the proposed molecule kernel method performed better than the other QSAR methods.

  17. Radiomics-based Prognosis Analysis for Non-Small Cell Lung Cancer

    NASA Astrophysics Data System (ADS)

    Zhang, Yucheng; Oikonomou, Anastasia; Wong, Alexander; Haider, Masoom A.; Khalvati, Farzad

    2017-04-01

    Radiomics characterizes tumor phenotypes by extracting large numbers of quantitative features from radiological images. Radiomic features have been shown to provide prognostic value in predicting clinical outcomes in several studies. However, several challenges including feature redundancy, unbalanced data, and small sample sizes have led to relatively low predictive accuracy. In this study, we explore different strategies for overcoming these challenges and improving predictive performance of radiomics-based prognosis for non-small cell lung cancer (NSCLC). CT images of 112 patients (mean age 75 years) with NSCLC who underwent stereotactic body radiotherapy were used to predict recurrence, death, and recurrence-free survival using a comprehensive radiomics analysis. Different feature selection and predictive modeling techniques were used to determine the optimal configuration of prognosis analysis. To address feature redundancy, comprehensive analysis indicated that Random Forest models and Principal Component Analysis were optimum predictive modeling and feature selection methods, respectively, for achieving high prognosis performance. To address unbalanced data, Synthetic Minority Over-sampling technique was found to significantly increase predictive accuracy. A full analysis of variance showed that data endpoints, feature selection techniques, and classifiers were significant factors in affecting predictive accuracy, suggesting that these factors must be investigated when building radiomics-based predictive models for cancer prognosis.

  18. Demonstrating the validity of three general scores of PET in predicting higher education achievement in Israel.

    PubMed

    Oren, Carmel; Kennet-Cohen, Tamar; Turvall, Elliot; Allalouf, Avi

    2014-01-01

    The Psychometric Entrance Test (PET), used for admission to higher education in Israel together with the Matriculation (Bagrut), had in the past one general (total) score in which the weights for its domains: Verbal, Quantitative and English, were 2:2:1, respectively. In 2011, two additional total scores were introduced, with different weights for the Verbal and the Quantitative domains. This study compares the predictive validity of the three general scores of PET, and demonstrates validity in terms of utility. 100,863 freshmen students of all Israeli universities over the classes of 2005-2009. Regression weights and correlations of the predictors with FYGPA were computed. Simulations based on these results supplied the utility estimates. On average, PET is slightly more predictive than the Bagrut; using them both yields a better tool than either of them alone. Assigning differential weights to the components in the respective schools further improves the validity. The introduction of the new general scores of PET is validated by gathering and analyzing evidence based on relations of test scores to other variables. The utility of using the test can be demonstrated in ways different from correlations.

  19. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping.

    PubMed

    Pound, Michael P; Atkinson, Jonathan A; Townsend, Alexandra J; Wilson, Michael H; Griffiths, Marcus; Jackson, Aaron S; Bulat, Adrian; Tzimiropoulos, Georgios; Wells, Darren M; Murchie, Erik H; Pridmore, Tony P; French, Andrew P

    2017-10-01

    In plant phenotyping, it has become important to be able to measure many features on large image sets in order to aid genetic discovery. The size of the datasets, now often captured robotically, often precludes manual inspection, hence the motivation for finding a fully automated approach. Deep learning is an emerging field that promises unparalleled results on many data analysis problems. Building on artificial neural networks, deep approaches have many more hidden layers in the network, and hence have greater discriminative and predictive power. We demonstrate the use of such approaches as part of a plant phenotyping pipeline. We show the success offered by such techniques when applied to the challenging problem of image-based plant phenotyping and demonstrate state-of-the-art results (>97% accuracy) for root and shoot feature identification and localization. We use fully automated trait identification using deep learning to identify quantitative trait loci in root architecture datasets. The majority (12 out of 14) of manually identified quantitative trait loci were also discovered using our automated approach based on deep learning detection to locate plant features. We have shown deep learning-based phenotyping to have very good detection and localization accuracy in validation and testing image sets. We have shown that such features can be used to derive meaningful biological traits, which in turn can be used in quantitative trait loci discovery pipelines. This process can be completely automated. We predict a paradigm shift in image-based phenotyping bought about by such deep learning approaches, given sufficient training sets. © The Authors 2017. Published by Oxford University Press.

  20. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.

    PubMed

    Ivanciuc, Ovidiu

    2013-06-01

    Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.

  1. Advanced 2-dimensional quantitative coronary angiographic analysis for prediction of fractional flow reserve in intermediate coronary stenoses.

    PubMed

    Opolski, Maksymilian P; Pregowski, Jerzy; Kruk, Mariusz; Kepka, Cezary; Staruch, Adam D; Witkowski, Adam

    2014-07-01

    The widespread clinical application of coronary computed tomography angiography (CCTA) has resulted in increased referral patterns of patients with intermediate coronary stenoses to invasive coronary angiography. We evaluated the application of advanced quantitative coronary angiography (A-QCA) for predicting fractional flow reserve (FFR) in intermediate coronary lesions detected on CCTA. Fifty-six patients with 66 single intermediate coronary lesions (≥ 50% to 80% stenosis) on CCTA prospectively underwent coronary angiography and FFR. A-QCA including calculation of the Poiseuille-based index defined as the ratio of lesion length to the fourth power of the minimal lumen diameter (MLD) was performed. Significant stenosis was defined as FFR ≤ 0.80. The mean FFR was 0.86 ± 0.09, and 18 lesions (27%) were functionally significant. FFR correlated with lesion length (R=-0.303, P=0.013), MLD (R=0.527, P<0.001), diameter stenosis (R=-0.404, P=0.001), minimum lumen area (MLA) (R=0.530, P<0.001), lumen stenosis (R=-0.400, P=0.001), and Poiseuille-based index (R=-0.602, P<0.001). The optimal cutoff values for MLD, MLA, diameter stenosis, and lumen stenosis were ≤ 1.3 mm, ≤ 1.5 mm, >44%, and >69%, respectively (maximum negative predictive value of 94% for MLA, maximum positive predictive value of 58% for diameter stenosis). The Poiseuille-based index was the most accurate (C statistic 0.86, sensitivity 100%, specificity 71%, positive predictive value 56%, and negative predictive value 100%) predictor of FFR ≤ 0.80, but showed the lowest interobserver agreement (intraclass correlation coefficient 0.37). A-QCA might be used to rule out significant ischemia in intermediate stenoses detected by CCTA. The diagnostic application of the Poiseuille-based angiographic index is precluded by its high interobserver variability.

  2. Anticipatory Understanding of Adversary Intent: A Signature-Based Knowledge System

    DTIC Science & Technology

    2009-06-01

    concept of logical positivism has been applied more recently to all human knowledge and reflected in current data fusion research, information mining...this work has been successfully translated into useful analytical tools that can provide a rigorous and quantitative basis for predictive analysis

  3. *A FASTER METHOD OF MEASURING RECREATIONAL WATER QUALITY FOR BETTER PROTECTION OF SWIMMER'S HEALTH

    EPA Science Inventory

    We previously reported that a faster method (< 2 hours) of measuring fecal indicator bacteria (FIB), based on Quantitative Polymerase Chain Reaction (QPCR), was predictive of swimming associated gastrointestinal illness. Using data from two additional beaches, we examined the re...

  4. The effect of using genealogy-based haplotypes for genomic prediction

    PubMed Central

    2013-01-01

    Background Genomic prediction uses two sources of information: linkage disequilibrium between markers and quantitative trait loci, and additive genetic relationships between individuals. One way to increase the accuracy of genomic prediction is to capture more linkage disequilibrium by regression on haplotypes instead of regression on individual markers. The aim of this study was to investigate the accuracy of genomic prediction using haplotypes based on local genealogy information. Methods A total of 4429 Danish Holstein bulls were genotyped with the 50K SNP chip. Haplotypes were constructed using local genealogical trees. Effects of haplotype covariates were estimated with two types of prediction models: (1) assuming that effects had the same distribution for all haplotype covariates, i.e. the GBLUP method and (2) assuming that a large proportion (π) of the haplotype covariates had zero effect, i.e. a Bayesian mixture method. Results About 7.5 times more covariate effects were estimated when fitting haplotypes based on local genealogical trees compared to fitting individuals markers. Genealogy-based haplotype clustering slightly increased the accuracy of genomic prediction and, in some cases, decreased the bias of prediction. With the Bayesian method, accuracy of prediction was less sensitive to parameter π when fitting haplotypes compared to fitting markers. Conclusions Use of haplotypes based on genealogy can slightly increase the accuracy of genomic prediction. Improved methods to cluster the haplotypes constructed from local genealogy could lead to additional gains in accuracy. PMID:23496971

  5. The effect of using genealogy-based haplotypes for genomic prediction.

    PubMed

    Edriss, Vahid; Fernando, Rohan L; Su, Guosheng; Lund, Mogens S; Guldbrandtsen, Bernt

    2013-03-06

    Genomic prediction uses two sources of information: linkage disequilibrium between markers and quantitative trait loci, and additive genetic relationships between individuals. One way to increase the accuracy of genomic prediction is to capture more linkage disequilibrium by regression on haplotypes instead of regression on individual markers. The aim of this study was to investigate the accuracy of genomic prediction using haplotypes based on local genealogy information. A total of 4429 Danish Holstein bulls were genotyped with the 50K SNP chip. Haplotypes were constructed using local genealogical trees. Effects of haplotype covariates were estimated with two types of prediction models: (1) assuming that effects had the same distribution for all haplotype covariates, i.e. the GBLUP method and (2) assuming that a large proportion (π) of the haplotype covariates had zero effect, i.e. a Bayesian mixture method. About 7.5 times more covariate effects were estimated when fitting haplotypes based on local genealogical trees compared to fitting individuals markers. Genealogy-based haplotype clustering slightly increased the accuracy of genomic prediction and, in some cases, decreased the bias of prediction. With the Bayesian method, accuracy of prediction was less sensitive to parameter π when fitting haplotypes compared to fitting markers. Use of haplotypes based on genealogy can slightly increase the accuracy of genomic prediction. Improved methods to cluster the haplotypes constructed from local genealogy could lead to additional gains in accuracy.

  6. Design, synthesis and exploring the quantitative structure-activity relationship of some antioxidant flavonoid analogues.

    PubMed

    Das, Sreeparna; Mitra, Indrani; Batuta, Shaikh; Niharul Alam, Md; Roy, Kunal; Begum, Naznin Ara

    2014-11-01

    A series of flavonoid analogues were synthesized and screened for the in vitro antioxidant activity through their ability to quench 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical. The activity of these compounds, measured in comparison to the well-known standard antioxidants (29-32), their precursors (38-42) and other bioactive moieties (38-42) resembling partially the flavone skeleton was analyzed further to develop Quantitative Structure-Activity Relationship (QSAR) models using the Genetic Function Approximation (GFA) technique. Based on the essential structural requirements predicted by the QSAR models, some analogues were designed, synthesized and tested for activity. The predicted and experimental activities of these compounds were well correlated. Flavone analogue 20 was found to be the most potent antioxidant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Non-destructive and fast identification of cotton-polyester blend fabrics by the portable near-infrared spectrometer.

    PubMed

    Li, Wen-xia; Li, Feng; Zhao, Guo-liang; Tang, Shi-jun; Liu, Xiao-ying

    2014-12-01

    A series of 376 cotton-polyester (PET) blend fabrics were studied by a portable near-infrared (NIR) spectrometer. A NIR semi-quantitative-qualitative calibration model was established by Partial Least Squares (PLS) method combined with qualitative identification coefficient. In this process, PLS method in a quantitative analysis was used as a correction method, and the qualitative identification coefficient was set by the content of cotton and polyester in blend fabrics. Cotton-polyester blend fabrics were identified qualitatively by the model and their relative contents were obtained quantitatively, the model can be used for semi-quantitative identification analysis. In the course of establishing the model, the noise and baseline drift of the spectra were eliminated by Savitzky-Golay(S-G) derivative. The influence of waveband selection and different pre-processing method was also studied in the qualitative calibration model. The major absorption bands of 100% cotton samples were in the 1400~1600 nm region, and the one for 100% polyester were around 1600~1800 nm, the absorption intensity was enhancing with the content increasing of cotton or polyester. Therefore, the cotton-polyester's major absorption region was selected as the base waveband, the optimal waveband (1100~2500 nm) was found by expanding the waveband in two directions (the correlation coefficient was 0.6, and wave-point number was 934). The validation samples were predicted by the calibration model, the results showed that the model evaluation parameters was optimum in the 1100~2500 nm region, and the combination of S-G derivative, multiplicative scatter correction (MSC) and mean centering was used as the pre-processing method. RC (relational coefficient of calibration) value was 0.978, RP (relational coefficient of prediction) value was 0.940, SEC (standard error of calibration) value was 1.264, SEP (standard error of prediction) value was 1.590, and the sample's recognition accuracy was up to 93.4%. It showed that the cotton-polyester blend fabrics could be predicted by the semi-quantitative-qualitative calibration model.

  8. Biochemical methane potential prediction of plant biomasses: Comparing chemical composition versus near infrared methods and linear versus non-linear models.

    PubMed

    Godin, Bruno; Mayer, Frédéric; Agneessens, Richard; Gerin, Patrick; Dardenne, Pierre; Delfosse, Philippe; Delcarte, Jérôme

    2015-01-01

    The reliability of different models to predict the biochemical methane potential (BMP) of various plant biomasses using a multispecies dataset was compared. The most reliable prediction models of the BMP were those based on the near infrared (NIR) spectrum compared to those based on the chemical composition. The NIR predictions of local (specific regression and non-linear) models were able to estimate quantitatively, rapidly, cheaply and easily the BMP. Such a model could be further used for biomethanation plant management and optimization. The predictions of non-linear models were more reliable compared to those of linear models. The presentation form (green-dried, silage-dried and silage-wet form) of biomasses to the NIR spectrometer did not influence the performances of the NIR prediction models. The accuracy of the BMP method should be improved to enhance further the BMP prediction models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Multiplicative effects model with internal standard in mobile phase for quantitative liquid chromatography-mass spectrometry.

    PubMed

    Song, Mi; Chen, Zeng-Ping; Chen, Yao; Jin, Jing-Wen

    2014-07-01

    Liquid chromatography-mass spectrometry assays suffer from signal instability caused by the gradual fouling of the ion source, vacuum instability, aging of the ion multiplier, etc. To address this issue, in this contribution, an internal standard was added into the mobile phase. The internal standard was therefore ionized and detected together with the analytes of interest by the mass spectrometer to ensure that variations in measurement conditions and/or instrument have similar effects on the signal contributions of both the analytes of interest and the internal standard. Subsequently, based on the unique strategy of adding internal standard in mobile phase, a multiplicative effects model was developed for quantitative LC-MS assays and tested on a proof of concept model system: the determination of amino acids in water by LC-MS. The experimental results demonstrated that the proposed method could efficiently mitigate the detrimental effects of continuous signal variation, and achieved quantitative results with average relative predictive error values in the range of 8.0-15.0%, which were much more accurate than the corresponding results of conventional internal standard method based on the peak height ratio and partial least squares method (their average relative predictive error values were as high as 66.3% and 64.8%, respectively). Therefore, it is expected that the proposed method can be developed and extended in quantitative LC-MS analysis of more complex systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    NASA Astrophysics Data System (ADS)

    Kim, Y. E.

    2013-03-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.

  11. The Spatial Distribution of the Exocyst and Actin Cortical Patches Is Sufficient To Organize Hyphal Tip Growth

    PubMed Central

    Caballero-Lima, David; Kaneva, Iliyana N.; Watton, Simon P.

    2013-01-01

    In the hyphal tip of Candida albicans we have made detailed quantitative measurements of (i) exocyst components, (ii) Rho1, the regulatory subunit of (1,3)-β-glucan synthase, (iii) Rom2, the specialized guanine-nucleotide exchange factor (GEF) of Rho1, and (iv) actin cortical patches, the sites of endocytosis. We use the resulting data to construct and test a quantitative 3-dimensional model of fungal hyphal growth based on the proposition that vesicles fuse with the hyphal tip at a rate determined by the local density of exocyst components. Enzymes such as (1,3)-β-glucan synthase thus embedded in the plasma membrane continue to synthesize the cell wall until they are removed by endocytosis. The model successfully predicts the shape and dimensions of the hyphae, provided that endocytosis acts to remove cell wall-synthesizing enzymes at the subapical bands of actin patches. Moreover, a key prediction of the model is that the distribution of the synthase is substantially broader than the area occupied by the exocyst. This prediction is borne out by our quantitative measurements. Thus, although the model highlights detailed issues that require further investigation, in general terms the pattern of tip growth of fungal hyphae can be satisfactorily explained by a simple but quantitative model rooted within the known molecular processes of polarized growth. Moreover, the methodology can be readily adapted to model other forms of polarized growth, such as that which occurs in plant pollen tubes. PMID:23666623

  12. WPC Quantitative Precipitation Forecasts - Day 1

    Science.gov Websites

    to all federal, state, and local government web resources and services. Quantitative Precipitation Prediction Center 5830 University Research Court College Park, Maryland 20740 Weather Prediction Center Web

  13. Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches.

    PubMed

    Gupta, Shikha; Basant, Nikita; Mohan, Dinesh; Singh, Kunwar P

    2016-07-01

    The persistence and the removal of organic chemicals from the atmosphere are largely determined by their reactions with the OH radical and O3. Experimental determinations of the kinetic rate constants of OH and O3 with a large number of chemicals are tedious and resource intensive and development of computational approaches has widely been advocated. Recently, ensemble machine learning (EML) methods have emerged as unbiased tools to establish relationship between independent and dependent variables having a nonlinear dependence. In this study, EML-based, temperature-dependent quantitative structure-reactivity relationship (QSRR) models have been developed for predicting the kinetic rate constants for OH (kOH) and O3 (kO3) reactions with diverse chemicals. Structural diversity of chemicals was evaluated using a Tanimoto similarity index. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation performed employing statistical checks. In test data, the EML QSRR models yielded correlation (R (2)) of ≥0.91 between the measured and the predicted reactivities. The applicability domains of the constructed models were determined using methods based on descriptors range, Euclidean distance, leverage, and standardization approaches. The prediction accuracies for the higher reactivity compounds were relatively better than those of the low reactivity compounds. Proposed EML QSRR models performed well and outperformed the previous reports. The proposed QSRR models can make predictions of rate constants at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards OH radical and O3 in the atmosphere.

  14. Quantitation of Flavanols, Proanthocyanidins, Isoflavones, Flavanones, Dihydrochalcones, Stilbenes, Benzoic Acid Derivatives Using Ultraviolet Absorbance after Identification by Liquid Chromatography–Mass Spectrometry

    PubMed Central

    Lin, Long-Ze; Harnly, James M.

    2013-01-01

    A general method was developed for the systematic quantitation of flavanols, proanthocyanidins, isoflavones, flavanones, dihydrochalcones, stilbenes, and hydroxybenzoic acid derivatives (mainly hydrolyzable tannins) based on UV band II absorbance arising from the benzoyl structure. The compound structures and the wavelength maximum were well correlated and were divided into four groups: the flavanols and proanthocyanidins at 278 nm, hydrolyzable tannins at 274 nm, flavanones at 288 nm, and isoflavones at 260 nm. Within each group, molar relative response factors (MRRFs) were computed for each compound based on the absorbance ratio of the compound and the group reference standard. Response factors were computed for the compounds as purchased (MRRF), after drying (MRRFD), and as the best predicted value (MRRFP). Concentrations for each compound were computed based on calibration with the group reference standard and the MRRFP. The quantitation of catechins, proanthocyanidins, and gallic acid derivatives in white tea was used as an example. PMID:22577798

  15. Quantitative Adverse Outcome Pathways and Their ...

    EPA Pesticide Factsheets

    A quantitative adverse outcome pathway (qAOP) consists of one or more biologically based, computational models describing key event relationships linking a molecular initiating event (MIE) to an adverse outcome. A qAOP provides quantitative, dose–response, and time-course predictions that can support regulatory decision-making. Herein we describe several facets of qAOPs, including (a) motivation for development, (b) technical considerations, (c) evaluation of confidence, and (d) potential applications. The qAOP used as an illustrative example for these points describes the linkage between inhibition of cytochrome P450 19A aromatase (the MIE) and population-level decreases in the fathead minnow (FHM; Pimephales promelas). The qAOP consists of three linked computational models for the following: (a) the hypothalamic-pitutitary-gonadal axis in female FHMs, where aromatase inhibition decreases the conversion of testosterone to 17β-estradiol (E2), thereby reducing E2-dependent vitellogenin (VTG; egg yolk protein precursor) synthesis, (b) VTG-dependent egg development and spawning (fecundity), and (c) fecundity-dependent population trajectory. While development of the example qAOP was based on experiments with FHMs exposed to the aromatase inhibitor fadrozole, we also show how a toxic equivalence (TEQ) calculation allows use of the qAOP to predict effects of another, untested aromatase inhibitor, iprodione. While qAOP development can be resource-intensive, the quan

  16. Quantitative analysis of glycated albumin in serum based on ATR-FTIR spectrum combined with SiPLS and SVM.

    PubMed

    Li, Yuanpeng; Li, Fucui; Yang, Xinhao; Guo, Liu; Huang, Furong; Chen, Zhenqiang; Chen, Xingdan; Zheng, Shifu

    2018-08-05

    A rapid quantitative analysis model for determining the glycated albumin (GA) content based on Attenuated total reflectance (ATR)-Fourier transform infrared spectroscopy (FTIR) combining with linear SiPLS and nonlinear SVM has been developed. Firstly, the real GA content in human serum was determined by GA enzymatic method, meanwhile, the ATR-FTIR spectra of serum samples from the population of health examination were obtained. The spectral data of the whole spectra mid-infrared region (4000-600 cm -1 ) and GA's characteristic region (1800-800 cm -1 ) were used as the research object of quantitative analysis. Secondly, several preprocessing steps including first derivative, second derivative, variable standardization and spectral normalization, were performed. Lastly, quantitative analysis regression models were established by using SiPLS and SVM respectively. The SiPLS modeling results are as follows: root mean square error of cross validation (RMSECV T ) = 0.523 g/L, calibration coefficient (R C ) = 0.937, Root Mean Square Error of Prediction (RMSEP T ) = 0.787 g/L, and prediction coefficient (R P ) = 0.938. The SVM modeling results are as follows: RMSECV T  = 0.0048 g/L, R C  = 0.998, RMSEP T  = 0.442 g/L, and R p  = 0.916. The results indicated that the model performance was improved significantly after preprocessing and optimization of characteristic regions. While modeling performance of nonlinear SVM was considerably better than that of linear SiPLS. Hence, the quantitative analysis model for GA in human serum based on ATR-FTIR combined with SiPLS and SVM is effective. And it does not need sample preprocessing while being characterized by simple operations and high time efficiency, providing a rapid and accurate method for GA content determination. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Projected effects of Climate-change-induced flow alterations on stream macroinvertebrate abundances.

    PubMed

    Kakouei, Karan; Kiesel, Jens; Domisch, Sami; Irving, Katie S; Jähnig, Sonja C; Kail, Jochem

    2018-03-01

    Global change has the potential to affect river flow conditions which are fundamental determinants of physical habitats. Predictions of the effects of flow alterations on aquatic biota have mostly been assessed based on species ecological traits (e.g., current preferences), which are difficult to link to quantitative discharge data. Alternatively, we used empirically derived predictive relationships for species' response to flow to assess the effect of flow alterations due to climate change in two contrasting central European river catchments. Predictive relationships were set up for 294 individual species based on (1) abundance data from 223 sampling sites in the Kinzig lower-mountainous catchment and 67 sites in the Treene lowland catchment, and (2) flow conditions at these sites described by five flow metrics quantifying the duration, frequency, magnitude, timing and rate of flow events using present-day gauging data. Species' abundances were predicted for three periods: (1) baseline (1998-2017), (2) horizon 2050 (2046-2065) and (3) horizon 2090 (2080-2099) based on these empirical relationships and using high-resolution modeled discharge data for the present and future climate conditions. We compared the differences in predicted abundances among periods for individual species at each site, where the percent change served as a proxy to assess the potential species responses to flow alterations. Climate change was predicted to most strongly affect the low-flow conditions, leading to decreased abundances of species up to -42%. Finally combining the response of all species over all metrics indicated increasing overall species assemblage responses in 98% of the studied river reaches in both projected horizons and were significantly larger in the lower-mountainous Kinzig compared to the lowland Treene catchment. Such quantitative analyses of freshwater taxa responses to flow alterations provide valuable tools for predicting potential climate-change impacts on species abundances and can be applied to any stressor, species, or region.

  18. Neural Extensions to Robust Parameter Design

    DTIC Science & Technology

    2010-09-01

    different ANNs to classify a winner in an NBA basketball game based simply on box score data. The results obtained from these authors showed remarkable......27-29, 2009. Loeffelholz, B.J., Bednar, E., & Bauer, K.W. (2009). “Predicting NBA games using neural networks,” Journal of Quantitative Analysis

  19. QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP (QSAR) MODELS TO PREDICT CHEMICAL TOXICITY FOR VARIOUS HEALTH ENDPOINTS

    EPA Science Inventory

    Although ranking schemes based on exposure and toxicity have been developed to aid in the prioritization of research funds for identifying chemicals of regulatory concern, there are significant gaps in the availability of experimental toxicity data for most health endpoints. Pred...

  20. Analysis of the Mechanism of Prolonged Persistence of Drug Interaction between Terbinafine and Amitriptyline or Nortriptyline.

    PubMed

    Mikami, Akiko; Hori, Satoko; Ohtani, Hisakazu; Sawada, Yasufumi

    2017-01-01

    The purpose of the study was to quantitatively estimate and predict drug interactions between terbinafine and tricyclic antidepressants (TCAs), amitriptyline or nortriptyline, based on in vitro studies. Inhibition of TCA-metabolizing activity by terbinafine was investigated using human liver microsomes. Based on the unbound K i values obtained in vitro and reported pharmacokinetic parameters, a pharmacokinetic model of drug interaction was fitted to the reported plasma concentration profiles of TCAs administered concomitantly with terbinafine to obtain the drug-drug interaction parameters. Then, the model was used to predict nortriptyline plasma concentration with concomitant administration of terbinafine and changes of area under the curve (AUC) of nortriptyline after cessation of terbinafine. The CYP2D6 inhibitory potency of terbinafine was unaffected by preincubation, so the inhibition seems to be reversible. Terbinafine competitively inhibited amitriptyline or nortriptyline E-10-hydroxylation, with unbound K i values of 13.7 and 12.4 nM, respectively. Observed plasma concentrations of TCAs administered concomitantly with terbinafine were successfully simulated with the drug interaction model using the in vitro parameters. Model-predicted nortriptyline plasma concentration after concomitant nortriptylene/terbinafine administration for two weeks exceeded the toxic level, and drug interaction was predicted to be prolonged; the AUC of nortriptyline was predicted to be increased by 2.5- or 2.0- and 1.5-fold at 0, 3 and 6 months after cessation of terbinafine, respectively. The developed model enables us to quantitatively predict the prolonged drug interaction between terbinafine and TCAs. The model should be helpful for clinical management of terbinafine-CYP2D6 substrate drug interactions, which are difficult to predict due to their time-dependency.

  1. Genotypic tropism testing by massively parallel sequencing: qualitative and quantitative analysis.

    PubMed

    Däumer, Martin; Kaiser, Rolf; Klein, Rolf; Lengauer, Thomas; Thiele, Bernhard; Thielen, Alexander

    2011-05-13

    Inferring viral tropism from genotype is a fast and inexpensive alternative to phenotypic testing. While being highly predictive when performed on clonal samples, sensitivity of predicting CXCR4-using (X4) variants drops substantially in clinical isolates. This is mainly attributed to minor variants not detected by standard bulk-sequencing. Massively parallel sequencing (MPS) detects single clones thereby being much more sensitive. Using this technology we wanted to improve genotypic prediction of coreceptor usage. Plasma samples from 55 antiretroviral-treated patients tested for coreceptor usage with the Monogram Trofile Assay were sequenced with standard population-based approaches. Fourteen of these samples were selected for further analysis with MPS. Tropism was predicted from each sequence with geno2pheno[coreceptor]. Prediction based on bulk-sequencing yielded 59.1% sensitivity and 90.9% specificity compared to the trofile assay. With MPS, 7600 reads were generated on average per isolate. Minorities of sequences with high confidence in CXCR4-usage were found in all samples, irrespective of phenotype. When using the default false-positive-rate of geno2pheno[coreceptor] (10%), and defining a minority cutoff of 5%, the results were concordant in all but one isolate. The combination of MPS and coreceptor usage prediction results in a fast and accurate alternative to phenotypic assays. The detection of X4-viruses in all isolates suggests that coreceptor usage as well as fitness of minorities is important for therapy outcome. The high sensitivity of this technology in combination with a quantitative description of the viral population may allow implementing meaningful cutoffs for predicting response to CCR5-antagonists in the presence of X4-minorities.

  2. Integrating prediction, provenance, and optimization into high energy workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schram, M.; Bansal, V.; Friese, R. D.

    We propose a novel approach for efficient execution of workflows on distributed resources. The key components of this framework include: performance modeling to quantitatively predict workflow component behavior; optimization-based scheduling such as choosing an optimal subset of resources to meet demand and assignment of tasks to resources; distributed I/O optimizations such as prefetching; and provenance methods for collecting performance data. In preliminary results, these techniques improve throughput on a small Belle II workflow by 20%.

  3. A mechanism-mediated model for carcinogenicity: Model content and prediction of the outcome of rodent carcinogenicity bioassays currently being conducted on 25 organic chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purdy, R.

    A hierarchical model consisting of quantitative structure-activity relationships based mainly on chemical reactivity was developed to predict the carcinogenicity of organic chemicals to rodents. The model is comprised of quantitative structure-activity relationships, QSARs based on hypothesized mechanisms of action, metabolism, and partitioning. Predictors included octanol/water partition coefficient, molecular size, atomic partial charge, bond angle strain, atomic acceptor delocalizibility, atomic radical superdelocalizibility, the lowest unoccupied molecular orbital (LUMO) energy of hypothesized intermediate nitrenium ion of primary aromatic amines, difference in charge of ionized and unionized carbon-chlorine bonds, substituent size and pattern on polynuclear aromatic hydrocarbons, the distance between lone electron pairsmore » over a rigid structure, and the presence of functionalities such as nitroso and hydrazine. The model correctly classified 96% of the carcinogens in the training set of 306 chemicals, and 90% of the carcinogens in the test set of 301 chemicals. The test set by chance contained 84% of the positive thiocontaining chemicals. A QSAR for these chemicals was developed. This posttest set modified model correctly predicted 94% of the carcinogens in the test set. This model was used to predict the carcinogenicity of the 25 organic chemicals the U.S. National Toxicology Program was testing at the writing of this article. 12 refs., 3 tabs.« less

  4. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.

    PubMed

    Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P

    2015-11-01

    Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The proposed AI models can be useful tools in screening the chemicals for their binding affinities toward carbon for their safe management.

  5. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance

    PubMed Central

    Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.

    2015-01-01

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887

  6. Quantitative transmission Raman spectroscopy of pharmaceutical tablets and capsules.

    PubMed

    Johansson, Jonas; Sparén, Anders; Svensson, Olof; Folestad, Staffan; Claybourn, Mike

    2007-11-01

    Quantitative analysis of pharmaceutical formulations using the new approach of transmission Raman spectroscopy has been investigated. For comparison, measurements were also made in conventional backscatter mode. The experimental setup consisted of a Raman probe-based spectrometer with 785 nm excitation for measurements in backscatter mode. In transmission mode the same system was used to detect the Raman scattered light, while an external diode laser of the same type was used as excitation source. Quantitative partial least squares models were developed for both measurement modes. The results for tablets show that the prediction error for an independent test set was lower for the transmission measurements with a relative root mean square error of about 2.2% as compared with 2.9% for the backscatter mode. Furthermore, the models were simpler in the transmission case, for which only a single partial least squares (PLS) component was required to explain the variation. The main reason for the improvement using the transmission mode is a more representative sampling of the tablets compared with the backscatter mode. Capsules containing mixtures of pharmaceutical powders were also assessed by transmission only. The quantitative results for the capsules' contents were good, with a prediction error of 3.6% w/w for an independent test set. The advantage of transmission Raman over backscatter Raman spectroscopy has been demonstrated for quantitative analysis of pharmaceutical formulations, and the prospects for reliable, lean calibrations for pharmaceutical analysis is discussed.

  7. Towards a quantitative description of tunneling conductance of superconductors: Application to LiFeAs

    DOE PAGES

    Kreisel, A.; Nelson, R.; Berlijn, T.; ...

    2016-12-27

    Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results. The spin-fluctuation theory of electronic pairing, based on first-principles electronic structure calculations, makes predictions for the superconducting gap. Within the same framework, the surface wave functions may also be calculated, allowing, e.g., for detailed comparisons between theoretical results and measured scanning tunneling topographs and spectra. We present such a comparison between theory and experiment on the Fe-based superconductor LiFeAs. Our results for the homogeneous surfacemore » as well as impurity states are presented as a benchmark test of the theory. For the homogeneous system, we argue that the maxima of topographic image intensity may be located at positions above either the As or Li atoms, depending on tip height and the setpoint current of the measurement. We further report the experimental observation of transitions between As- and Li-registered lattices as functions of both tip height and setpoint bias, in agreement with this prediction. Next, we give a detailed comparison between the simulated scanning tunneling microscopy images of transition-metal defects with experiment. Finally, we discuss possible extensions of the current framework to obtain a theory with true predictive power for scanning tunneling microscopy in Fe-based systems.« less

  8. Towards a quantitative description of tunneling conductance of superconductors: Application to LiFeAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreisel, A.; Nelson, R.; Berlijn, T.

    Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results. The spin-fluctuation theory of electronic pairing, based on first-principles electronic structure calculations, makes predictions for the superconducting gap. Within the same framework, the surface wave functions may also be calculated, allowing, e.g., for detailed comparisons between theoretical results and measured scanning tunneling topographs and spectra. We present such a comparison between theory and experiment on the Fe-based superconductor LiFeAs. Our results for the homogeneous surfacemore » as well as impurity states are presented as a benchmark test of the theory. For the homogeneous system, we argue that the maxima of topographic image intensity may be located at positions above either the As or Li atoms, depending on tip height and the setpoint current of the measurement. We further report the experimental observation of transitions between As- and Li-registered lattices as functions of both tip height and setpoint bias, in agreement with this prediction. Next, we give a detailed comparison between the simulated scanning tunneling microscopy images of transition-metal defects with experiment. Finally, we discuss possible extensions of the current framework to obtain a theory with true predictive power for scanning tunneling microscopy in Fe-based systems.« less

  9. New MYC IHC Classifier Integrating Quantitative Architecture Parameters to Predict MYC Gene Translocation in Diffuse Large B-Cell Lymphoma

    PubMed Central

    Dong, Wei-Feng; Canil, Sarah; Lai, Raymond; Morel, Didier; Swanson, Paul E.; Izevbaye, Iyare

    2018-01-01

    A new automated MYC IHC classifier based on bivariate logistic regression is presented. The predictor relies on image analysis developed with the open-source ImageJ platform. From a histologic section immunostained for MYC protein, 2 dimensionless quantitative variables are extracted: (a) relative distance between nuclei positive for MYC IHC based on euclidean minimum spanning tree graph and (b) coefficient of variation of the MYC IHC stain intensity among MYC IHC-positive nuclei. Distance between positive nuclei is suggested to inversely correlate MYC gene rearrangement status, whereas coefficient of variation is suggested to inversely correlate physiological regulation of MYC protein expression. The bivariate classifier was compared with 2 other MYC IHC classifiers (based on percentage of MYC IHC positive nuclei), all tested on 113 lymphomas including mostly diffuse large B-cell lymphomas with known MYC fluorescent in situ hybridization (FISH) status. The bivariate classifier strongly outperformed the “percentage of MYC IHC-positive nuclei” methods to predict MYC+ FISH status with 100% sensitivity (95% confidence interval, 94-100) associated with 80% specificity. The test is rapidly performed and might at a minimum provide primary IHC screening for MYC gene rearrangement status in diffuse large B-cell lymphomas. Furthermore, as this bivariate classifier actually predicts “permanent overexpressed MYC protein status,” it might identify nontranslocation-related chromosomal anomalies missed by FISH. PMID:27093450

  10. Comparative analysis of predictive models for nongenotoxic hepatocarcinogenicity using both toxicogenomics and quantitative structure-activity relationships.

    PubMed

    Liu, Zhichao; Kelly, Reagan; Fang, Hong; Ding, Don; Tong, Weida

    2011-07-18

    The primary testing strategy to identify nongenotoxic carcinogens largely relies on the 2-year rodent bioassay, which is time-consuming and labor-intensive. There is an increasing effort to develop alternative approaches to prioritize the chemicals for, supplement, or even replace the cancer bioassay. In silico approaches based on quantitative structure-activity relationships (QSAR) are rapid and inexpensive and thus have been investigated for such purposes. A slightly more expensive approach based on short-term animal studies with toxicogenomics (TGx) represents another attractive option for this application. Thus, the primary questions are how much better predictive performance using short-term TGx models can be achieved compared to that of QSAR models, and what length of exposure is sufficient for high quality prediction based on TGx. In this study, we developed predictive models for rodent liver carcinogenicity using gene expression data generated from short-term animal models at different time points and QSAR. The study was focused on the prediction of nongenotoxic carcinogenicity since the genotoxic chemicals can be inexpensively removed from further development using various in vitro assays individually or in combination. We identified 62 chemicals whose hepatocarcinogenic potential was available from the National Center for Toxicological Research liver cancer database (NCTRlcdb). The gene expression profiles of liver tissue obtained from rats treated with these chemicals at different time points (1 day, 3 days, and 5 days) are available from the Gene Expression Omnibus (GEO) database. Both TGx and QSAR models were developed on the basis of the same set of chemicals using the same modeling approach, a nearest-centroid method with a minimum redundancy and maximum relevancy-based feature selection with performance assessed using compound-based 5-fold cross-validation. We found that the TGx models outperformed QSAR in every aspect of modeling. For example, the TGx models' predictive accuracy (0.77, 0.77, and 0.82 for the 1-day, 3-day, and 5-day models, respectively) was much higher for an independent validation set than that of a QSAR model (0.55). Permutation tests confirmed the statistical significance of the model's prediction performance. The study concluded that a short-term 5-day TGx animal model holds the potential to predict nongenotoxic hepatocarcinogenicity. © 2011 American Chemical Society

  11. Intratumor partitioning and texture analysis of dynamic contrast-enhanced (DCE)-MRI identifies relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy.

    PubMed

    Wu, Jia; Gong, Guanghua; Cui, Yi; Li, Ruijiang

    2016-11-01

    To predict pathological response of breast cancer to neoadjuvant chemotherapy (NAC) based on quantitative, multiregion analysis of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI). In this Institutional Review Board-approved study, 35 patients diagnosed with stage II/III breast cancer were retrospectively investigated using 3T DCE-MR images acquired before and after the first cycle of NAC. First, principal component analysis (PCA) was used to reduce the dimensionality of the DCE-MRI data with high temporal resolution. We then partitioned the whole tumor into multiple subregions using k-means clustering based on the PCA-defined eigenmaps. Within each tumor subregion, we extracted four quantitative Haralick texture features based on the gray-level co-occurrence matrix (GLCM). The change in texture features in each tumor subregion between pre- and during-NAC was used to predict pathological complete response after NAC. Three tumor subregions were identified through clustering, each with distinct enhancement characteristics. In univariate analysis, all imaging predictors except one extracted from the tumor subregion associated with fast washout were statistically significant (P < 0.05) after correcting for multiple testing, with area under the receiver operating characteristic (ROC) curve (AUC) or AUCs between 0.75 and 0.80. In multivariate analysis, the proposed imaging predictors achieved an AUC of 0.79 (P = 0.002) in leave-one-out cross-validation. This improved upon conventional imaging predictors such as tumor volume (AUC = 0.53) and texture features based on whole-tumor analysis (AUC = 0.65). The heterogeneity of the tumor subregion associated with fast washout on DCE-MRI predicted pathological response to NAC in breast cancer. J. Magn. Reson. Imaging 2016;44:1107-1115. © 2016 International Society for Magnetic Resonance in Medicine.

  12. The predictive power of Japanese candlestick charting in Chinese stock market

    NASA Astrophysics Data System (ADS)

    Chen, Shi; Bao, Si; Zhou, Yu

    2016-09-01

    This paper studies the predictive power of 4 popular pairs of two-day bullish and bearish Japanese candlestick patterns in Chinese stock market. Based on Morris' study, we give the quantitative details of definition of long candlestick, which is important in two-day candlestick pattern recognition but ignored by several previous researches, and we further give the quantitative definitions of these four pairs of two-day candlestick patterns. To test the predictive power of candlestick patterns on short-term price movement, we propose the definition of daily average return to alleviate the impact of correlation among stocks' overlap-time returns in statistical tests. To show the robustness of our result, two methods of trend definition are used for both the medium-market-value and large-market-value sample sets. We use Step-SPA test to correct for data snooping bias. Statistical results show that the predictive power differs from pattern to pattern, three of the eight patterns provide both short-term and relatively long-term prediction, another one pair only provide significant forecasting power within very short-term period, while the rest three patterns present contradictory results for different market value groups. For all the four pairs, the predictive power drops as predicting time increases, and forecasting power is stronger for stocks with medium market value than those with large market value.

  13. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite.

    PubMed

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN using images of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN.

  14. Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite

    PubMed Central

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang; Ji, Wei

    2015-01-01

    The prediction of the short-term quantitative precipitation nowcasting (QPN) from consecutive gestational satellite images has important implications for hydro-meteorological modeling and forecasting. However, the systematic analysis of the predictability of QPN is limited. The objective of this study is to evaluate effects of the forecasting model, precipitation character, and satellite resolution on the predictability of QPN usingimages of a Chinese geostationary meteorological satellite Fengyun-2F (FY-2F) which covered all intensive observation since its launch despite of only a total of approximately 10 days. In the first step, three methods were compared to evaluate the performance of the QPN methods: a pixel-based QPN using the maximum correlation method (PMC); the Horn-Schunck optical-flow scheme (PHS); and the Pyramid Lucas-Kanade Optical Flow method (PPLK), which is newly proposed here. Subsequently, the effect of the precipitation systems was indicated by 2338 imageries of 8 precipitation periods. Then, the resolution dependence was demonstrated by analyzing the QPN with six spatial resolutions (0.1atial, 0.3a, 0.4atial rand 0.6). The results show that the PPLK improves the predictability of QPN with better performance than the other comparison methods. The predictability of the QPN is significantly determined by the precipitation system, and a coarse spatial resolution of the satellite reduces the predictability of QPN. PMID:26447470

  15. Relationship and Variation of qPCR and Culturable Enterococci Estimates in Ambient Surface Waters Are Predictable

    EPA Science Inventory

    The quantitative polymerase chain reaction (qPCR) method provides rapid estimates of fecal indicator bacteria densities that have been indicated to be useful in the assessment of water quality. Primarily because this method provides faster results than standard culture-based meth...

  16. Development of a Quantitative Model Incorporating Key Events in a Hepatoxic Mode of Action to Predict Tumor Incidence

    EPA Science Inventory

    Biologically-Based Dose Response (BBDR) modeling of environmental pollutants can be utilized to inform the mode of action (MOA) by which compounds elicit adverse health effects. Chemicals that produce tumors are typically described as either genotoxic or non-genotoxic. One common...

  17. PREDICTING THE RISKS OF NEUROTOXIC VOLATILE ORGANIC COMPOUNDS BASED ON TARGET TISSUE DOSE.

    EPA Science Inventory

    Quantitative exposure-dose-response models relate the external exposure of a substance to the dose in the target tissue, and then relate the target tissue dose to production of adverse outcomes. We developed exposure-dose-response models to describe the affects of acute exposure...

  18. Consequences of Stress for Public School Superintendents

    ERIC Educational Resources Information Center

    Carroll, Kathy J.

    2010-01-01

    Scope and Method of Study: This study is a quantitative study of Oklahoma Public School Superintendents. The data was collected by surveys using an online format. Data was analyzed to determine correlation and predictive values of the four specific stress factors: conflict mediating stress, boundary spanning stress, task based stress and role…

  19. Predicting Teacher Job Satisfaction Based on Principals' Instructional Supervision Behaviours: A Study of Turkish Teachers

    ERIC Educational Resources Information Center

    Ilgan, Abdurrahman; Parylo, Oksana; Sungu, Hilmi

    2015-01-01

    This quantitative research examined instructional supervision behaviours of school principals as a predictor of teacher job satisfaction through the analysis of Turkish teachers' perceptions of principals' instructional supervision behaviours. There was a statistically significant difference found between the teachers' job satisfaction level and…

  20. Molecular design of anticancer drug leads based on three-dimensional quantitative structure-activity relationship.

    PubMed

    Huang, Xiao Yan; Shan, Zhi Jie; Zhai, Hong Lin; Li, Li Na; Zhang, Xiao Yun

    2011-08-22

    Heat shock protein 90 (Hsp90) takes part in the developments of several cancers. Novobiocin, a typically C-terminal inhibitor for Hsp90, will probably used as an important anticancer drug in the future. In this work, we explored the valuable information and designed new novobiocin derivatives based on a three-dimensional quantitative structure-activity relationship (3D QSAR). The comparative molecular field analysis and comparative molecular similarity indices analysis models with high predictive capability were established, and their reliabilities are supported by the statistical parameters. Based on the several important influence factors obtained from these models, six new novobiocin derivatives with higher inhibitory activities were designed and confirmed by the molecular simulation with our models, which provide the potential anticancer drug leads for further research.

  1. Changes in quantitative 3D shape features of the optic nerve head associated with age

    NASA Astrophysics Data System (ADS)

    Christopher, Mark; Tang, Li; Fingert, John H.; Scheetz, Todd E.; Abramoff, Michael D.

    2013-02-01

    Optic nerve head (ONH) structure is an important biological feature of the eye used by clinicians to diagnose and monitor progression of diseases such as glaucoma. ONH structure is commonly examined using stereo fundus imaging or optical coherence tomography. Stereo fundus imaging provides stereo views of the ONH that retain 3D information useful for characterizing structure. In order to quantify 3D ONH structure, we applied a stereo correspondence algorithm to a set of stereo fundus images. Using these quantitative 3D ONH structure measurements, eigen structures were derived using principal component analysis from stereo images of 565 subjects from the Ocular Hypertension Treatment Study (OHTS). To evaluate the usefulness of the eigen structures, we explored associations with the demographic variables age, gender, and race. Using regression analysis, the eigen structures were found to have significant (p < 0.05) associations with both age and race after Bonferroni correction. In addition, classifiers were constructed to predict the demographic variables based solely on the eigen structures. These classifiers achieved an area under receiver operating characteristic curve of 0.62 in predicting a binary age variable, 0.52 in predicting gender, and 0.67 in predicting race. The use of objective, quantitative features or eigen structures can reveal hidden relationships between ONH structure and demographics. The use of these features could similarly allow specific aspects of ONH structure to be isolated and associated with the diagnosis of glaucoma, disease progression and outcomes, and genetic factors.

  2. Can quantitative sensory testing predict responses to analgesic treatment?

    PubMed

    Grosen, K; Fischer, I W D; Olesen, A E; Drewes, A M

    2013-10-01

    The role of quantitative sensory testing (QST) in prediction of analgesic effect in humans is scarcely investigated. This updated review assesses the effectiveness in predicting analgesic effects in healthy volunteers, surgical patients and patients with chronic pain. A systematic review of English written, peer-reviewed articles was conducted using PubMed and Embase (1980-2013). Additional studies were identified by chain searching. Search terms included 'quantitative sensory testing', 'sensory testing' and 'analgesics'. Studies on the relationship between QST and response to analgesic treatment in human adults were included. Appraisal of the methodological quality of the included studies was based on evaluative criteria for prognostic studies. Fourteen studies (including 720 individuals) met the inclusion criteria. Significant correlations were observed between responses to analgesics and several QST parameters including (1) heat pain threshold in experimental human pain, (2) electrical and heat pain thresholds, pressure pain tolerance and suprathreshold heat pain in surgical patients, and (3) electrical and heat pain threshold and conditioned pain modulation in patients with chronic pain. Heterogeneity among studies was observed especially with regard to application of QST and type and use of analgesics. Although promising, the current evidence is not sufficiently robust to recommend the use of any specific QST parameter in predicting analgesic response. Future studies should focus on a range of different experimental pain modalities rather than a single static pain stimulation paradigm. © 2013 European Federation of International Association for the Study of Pain Chapters.

  3. Ga-67 uptake in the lung in sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.G.; Johnson, S.M.; Harris, C.C.

    1984-02-01

    Images were obtained with Ga-67 and bronchopulmonary lavage performed in 21 patients with sarcoidosis (31 studies). The Ga-67 index, a semiquantitative criterion, was compared to a quantitative computer index based on lung:liver activity ratios; accuracy in predicting active alveolitis (defined by lavage lymphocyte counts) was assessed and differences between 24- and 48-hour studies examined. Computer activity ratios correlated well with the Ga-67 index, which had a sensitivity of 64%, specificity of 71%, 82%, and 77%, respectively, for the computer scores. Scores at 24 and 48 hours were similar. These results suggest that (a) Ga-67 scanning is useful in staging activitymore » in pulmonary sarcoidosis, (b) quantitative computer scores are accurate in predicting disease activity, and (c) scanning can be performed 24 or 48 hours after injection.« less

  4. [Quantitative estimation of vegetation cover and management factor in USLE and RUSLE models by using remote sensing data: a review].

    PubMed

    Wu, Chang-Guang; Li, Sheng; Ren, Hua-Dong; Yao, Xiao-Hua; Huang, Zi-Jie

    2012-06-01

    Soil loss prediction models such as universal soil loss equation (USLE) and its revised universal soil loss equation (RUSLE) are the useful tools for risk assessment of soil erosion and planning of soil conservation at regional scale. To make a rational estimation of vegetation cover and management factor, the most important parameters in USLE or RUSLE, is particularly important for the accurate prediction of soil erosion. The traditional estimation based on field survey and measurement is time-consuming, laborious, and costly, and cannot rapidly extract the vegetation cover and management factor at macro-scale. In recent years, the development of remote sensing technology has provided both data and methods for the estimation of vegetation cover and management factor over broad geographic areas. This paper summarized the research findings on the quantitative estimation of vegetation cover and management factor by using remote sensing data, and analyzed the advantages and the disadvantages of various methods, aimed to provide reference for the further research and quantitative estimation of vegetation cover and management factor at large scale.

  5. An effective approach to quantitative analysis of ternary amino acids in foxtail millet substrate based on terahertz spectroscopy.

    PubMed

    Lu, Shao Hua; Li, Bao Qiong; Zhai, Hong Lin; Zhang, Xin; Zhang, Zhuo Yong

    2018-04-25

    Terahertz time-domain spectroscopy has been applied to many fields, however, it still encounters drawbacks in multicomponent mixtures analysis due to serious spectral overlapping. Here, an effective approach to quantitative analysis was proposed, and applied on the determination of the ternary amino acids in foxtail millet substrate. Utilizing three parameters derived from the THz-TDS, the images were constructed and the Tchebichef image moments were used to extract the information of target components. Then the quantitative models were obtained by stepwise regression. The correlation coefficients of leave-one-out cross-validation (R loo-cv 2 ) were more than 0.9595. As for external test set, the predictive correlation coefficients (R p 2 ) were more than 0.8026 and the root mean square error of prediction (RMSE p ) were less than 1.2601. Compared with the traditional methods (PLS and N-PLS methods), our approach is more accurate, robust and reliable, and can be a potential excellent approach to quantify multicomponent with THz-TDS spectroscopy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Biological Surface Adsorption Index of Nanomaterials: Modelling Surface Interactions of Nanomaterials with Biomolecules.

    PubMed

    Chen, Ran; Riviere, Jim E

    2017-01-01

    Quantitative analysis of the interactions between nanomaterials and their surrounding environment is crucial for safety evaluation in the application of nanotechnology as well as its development and standardization. In this chapter, we demonstrate the importance of the adsorption of surrounding molecules onto the surface of nanomaterials by forming biocorona and thus impact the bio-identity and fate of those materials. We illustrate the key factors including various physical forces in determining the interaction happening at bio-nano interfaces. We further discuss the mathematical endeavors in explaining and predicting the adsorption phenomena, and propose a new statistics-based surface adsorption model, the Biological Surface Adsorption Index (BSAI), to quantitatively analyze the interaction profile of surface adsorption of a large group of small organic molecules onto nanomaterials with varying surface physicochemical properties, first employing five descriptors representing the surface energy profile of the nanomaterials, then further incorporating traditional semi-empirical adsorption models to address concentration effects of solutes. These Advancements in surface adsorption modelling showed a promising development in the application of quantitative predictive models in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.

  7. Finite Element Analysis of Quantitative Percussion Diagnostics for Evaluating the Strength of Bonds Between Composite Laminates

    NASA Astrophysics Data System (ADS)

    Poveromo, Scott; Malcolm, Doug; Earthman, James

    Conventional nondestructive (NDT) techniques used to detect defects in composites are not able to determine intact bond integrity within a composite structure and are costly to use on large and complex shaped surfaces. To overcome current NDT limitations, a new technology was adopted based on quantitative percussion diagnostics (QPD) to better quantify bond quality in fiber reinforced composite materials. Results indicate that this technology is capable of detecting weak (`kiss') bonds between flat composite laminates. Specifically, the local value of the probe force determined from quantitative percussion testing was predicted to be significantly lower for a laminate that contained a `kiss' bond compared to that for a well-bonded sample, which is in agreement with experimental findings. Experimental results were compared to a finite element analysis (FEA) using MSC PATRAN/NASTRAN to understand the visco-elastic behavior of the laminates during percussion testing. The dynamic FEA models were used to directly predict changes in the probe force, as well as effective stress distributions across the bonded panels as a function of time.

  8. A novel model to predict gas-phase hydroxyl radical oxidation kinetics of polychlorinated compounds.

    PubMed

    Luo, Shuang; Wei, Zongsu; Spinney, Richard; Yang, Zhihui; Chai, Liyuan; Xiao, Ruiyang

    2017-04-01

    In this study, a novel model based on aromatic meta-substituent grouping was presented to predict the second-order rate constants (k) for OH oxidation of PCBs in gas-phase. Since the oxidation kinetics are dependent on the chlorination degree and position, we hypothesized that it may be more accurate for k value prediction if we group PCB congeners based on substitution positions (i.e., ortho (o), meta (m), and para (p)). To test this hypothesis, we examined the correlation of polarizability (α), a quantum chemical based descriptor for k values, with an empirical Hammett constant (σ + ) on each substitution position. Our result shows that α is highly linearly correlated to ∑σ o,m,p + based on aromatic meta-substituents leading to the grouping based predictive model. With the new model, the calculated k values exhibited an excellent agreement with experimental measurements, and greater predictive power than the quantum chemical based quantitative structure activity relationship (QSAR) model. Further, the relationship of α and ∑σ o,m,p + for PCDDs congeners, together with highest occupied molecular orbital (HOMO) distribution, were used to validate the aromatic meta-substituent grouping method. This newly developed model features a combination of good predictability of quantum chemical based QSAR model and simplicity of Hammett relationship, showing a great potential for fast and computational tractable prediction of k values for gas-phase OH oxidation of polychlorinated compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Object-oriented Persistent Homology

    PubMed Central

    Wang, Bao; Wei, Guo-Wei

    2015-01-01

    Persistent homology provides a new approach for the topological simplification of big data via measuring the life time of intrinsic topological features in a filtration process and has found its success in scientific and engineering applications. However, such a success is essentially limited to qualitative data classification and analysis. Indeed, persistent homology has rarely been employed for quantitative modeling and prediction. Additionally, the present persistent homology is a passive tool, rather than a proactive technique, for classification and analysis. In this work, we outline a general protocol to construct object-oriented persistent homology methods. By means of differential geometry theory of surfaces, we construct an objective functional, namely, a surface free energy defined on the data of interest. The minimization of the objective functional leads to a Laplace-Beltrami operator which generates a multiscale representation of the initial data and offers an objective oriented filtration process. The resulting differential geometry based object-oriented persistent homology is able to preserve desirable geometric features in the evolutionary filtration and enhances the corresponding topological persistence. The cubical complex based homology algorithm is employed in the present work to be compatible with the Cartesian representation of the Laplace-Beltrami flow. The proposed Laplace-Beltrami flow based persistent homology method is extensively validated. The consistence between Laplace-Beltrami flow based filtration and Euclidean distance based filtration is confirmed on the Vietoris-Rips complex for a large amount of numerical tests. The convergence and reliability of the present Laplace-Beltrami flow based cubical complex filtration approach are analyzed over various spatial and temporal mesh sizes. The Laplace-Beltrami flow based persistent homology approach is utilized to study the intrinsic topology of proteins and fullerene molecules. Based on a quantitative model which correlates the topological persistence of fullerene central cavity with the total curvature energy of the fullerene structure, the proposed method is used for the prediction of fullerene isomer stability. The efficiency and robustness of the present method are verified by more than 500 fullerene molecules. It is shown that the proposed persistent homology based quantitative model offers good predictions of total curvature energies for ten types of fullerene isomers. The present work offers the first example to design object-oriented persistent homology to enhance or preserve desirable features in the original data during the filtration process and then automatically detect or extract the corresponding topological traits from the data. PMID:26705370

  10. Causal Rasch models.

    PubMed

    Stenner, A Jackson; Fisher, William P; Stone, Mark H; Burdick, Donald S

    2013-01-01

    Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained.

  11. Causal Rasch models

    PubMed Central

    Stenner, A. Jackson; Fisher, William P.; Stone, Mark H.; Burdick, Donald S.

    2013-01-01

    Rasch's unidimensional models for measurement show how to connect object measures (e.g., reader abilities), measurement mechanisms (e.g., machine-generated cloze reading items), and observational outcomes (e.g., counts correct on reading instruments). Substantive theory shows what interventions or manipulations to the measurement mechanism can be traded off against a change to the object measure to hold the observed outcome constant. A Rasch model integrated with a substantive theory dictates the form and substance of permissible interventions. Rasch analysis, absent construct theory and an associated specification equation, is a black box in which understanding may be more illusory than not. Finally, the quantitative hypothesis can be tested by comparing theory-based trade-off relations with observed trade-off relations. Only quantitative variables (as measured) support such trade-offs. Note that to test the quantitative hypothesis requires more than manipulation of the algebraic equivalencies in the Rasch model or descriptively fitting data to the model. A causal Rasch model involves experimental intervention/manipulation on either reader ability or text complexity or a conjoint intervention on both simultaneously to yield a successful prediction of the resultant observed outcome (count correct). We conjecture that when this type of manipulation is introduced for individual reader text encounters and model predictions are consistent with observations, the quantitative hypothesis is sustained. PMID:23986726

  12. Quantitative model analysis with diverse biological data: applications in developmental pattern formation.

    PubMed

    Pargett, Michael; Umulis, David M

    2013-07-15

    Mathematical modeling of transcription factor and signaling networks is widely used to understand if and how a mechanism works, and to infer regulatory interactions that produce a model consistent with the observed data. Both of these approaches to modeling are informed by experimental data, however, much of the data available or even acquirable are not quantitative. Data that is not strictly quantitative cannot be used by classical, quantitative, model-based analyses that measure a difference between the measured observation and the model prediction for that observation. To bridge the model-to-data gap, a variety of techniques have been developed to measure model "fitness" and provide numerical values that can subsequently be used in model optimization or model inference studies. Here, we discuss a selection of traditional and novel techniques to transform data of varied quality and enable quantitative comparison with mathematical models. This review is intended to both inform the use of these model analysis methods, focused on parameter estimation, and to help guide the choice of method to use for a given study based on the type of data available. Applying techniques such as normalization or optimal scaling may significantly improve the utility of current biological data in model-based study and allow greater integration between disparate types of data. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. A method for testing whether model predictions fall within a prescribed factor of true values, with an application to pesticide leaching

    USGS Publications Warehouse

    Parrish, Rudolph S.; Smith, Charles N.

    1990-01-01

    A quantitative method is described for testing whether model predictions fall within a specified factor of true values. The technique is based on classical theory for confidence regions on unknown population parameters and can be related to hypothesis testing in both univariate and multivariate situations. A capability index is defined that can be used as a measure of predictive capability of a model, and its properties are discussed. The testing approach and the capability index should facilitate model validation efforts and permit comparisons among competing models. An example is given for a pesticide leaching model that predicts chemical concentrations in the soil profile.

  14. Commutability of Cytomegalovirus WHO International Standard in Different Matrices

    PubMed Central

    Jones, Sara; Webb, Erika M.; Barry, Catherine P.; Choi, Won S.; Abravaya, Klara B.; Schneider, George J.

    2016-01-01

    Commutability of quantitative standards allows patient results to be compared across molecular diagnostic methods and laboratories. This is critical to establishing quantitative thresholds for use in clinical decision-making. A matrix effect associated with the 1st cytomegalovirus (CMV) WHO international standard (IS) was identified using the Abbott RealTime CMV assay. A commutability study was performed to compare the CMV WHO IS and patient specimens diluted in plasma and whole blood. Patient specimens showed similar CMV DNA quantitation values regardless of the diluent or extraction procedure used. The CMV WHO IS, on the other hand, exhibited a matrix effect. The CMV concentration reported for the WHO IS diluted in plasma was within the 95% prediction interval established with patient samples. In contrast, the reported DNA concentration of the CMV WHO IS diluted in whole blood was reduced approximately 0.4 log copies/ml, and values fell outside the 95% prediction interval. Calibrating the assay by using the CMV WHO IS diluted in whole blood would introduce a bias for CMV whole-blood quantitation; samples would be reported as having higher measured concentrations, by approximately 0.4 log IU/ml. Based on the commutability study with patient samples, the RealTime CMV assay was standardized based on the CMV WHO IS diluted in plasma. A revision of the instructions for use of the CMV WHO IS should be considered to alert users of the potential impact from the diluent matrix. The identification of a matrix effect with the CMV WHO IS underscores the importance of assessing commutability of the IS in order to achieve consistent results across methods. PMID:27030491

  15. Correlating subjective and objective descriptors of ultra high molecular weight wear particles from total joint prostheses.

    PubMed

    McMullin, Brian T; Leung, Ming-Ying; Shanbhag, Arun S; McNulty, Donald; Mabrey, Jay D; Agrawal, C Mauli

    2006-02-01

    A total of 750 images of individual ultra-high molecular weight polyethylene (UHMWPE) particles isolated from periprosthetic failed hip, knee, and shoulder arthroplasties were extracted from archival scanning electron micrographs. Particle size and morphology was subsequently analyzed using computerized image analysis software utilizing five descriptors found in ASTM F1877-98, a standard for quantitative description of wear debris. An online survey application was developed to display particle images, and allowed ten respondents to classify particle morphologies according to commonly used terminology as fibers, flakes, or granules. Particles were categorized based on a simple majority of responses. All descriptors were evaluated using a one-way ANOVA and Tukey-Kramer test for all-pairs comparison among each class of particles. A logistic regression model using half of the particles included in the survey was then used to develop a mathematical scheme to predict whether a given particle should be classified as a fiber, flake, or granule based on its quantitative measurements. The validity of the model was then assessed using the other half of the survey particles and compared with human responses. Comparison of the quantitative measurements of isolated particles showed that the morphologies of each particle type classified by respondents were statistically different from one another (p<0.05). The average agreement between mathematical prediction and human respondents was 83.5% (standard error 0.16%). These data suggest that computerized descriptors can be feasibly correlated with subjective terminology, thus providing a basis for a common vocabulary for particle description which can be translated into quantitative dimensions.

  16. Correlating subjective and objective descriptors of ultra high molecular weight wear particles from total joint prostheses

    PubMed Central

    McMullin, Brian T.; Leung, Ming-Ying; Shanbhag, Arun S.; McNulty, Donald; Mabrey, Jay D.; Agrawal, C. Mauli

    2014-01-01

    A total of 750 images of individual ultra-high molecular weight polyethylene (UHMWPE) particles isolated from periprosthetic failed hip, knee, and shoulder arthroplasties were extracted from archival scanning electron micrographs. Particle size and morphology was subsequently analyzed using computerized image analysis software utilizing five descriptors found in ASTM F1877-98, a standard for quantitative description of wear debris. An online survey application was developed to display particle images, and allowed ten respondents to classify particle morphologies according to commonly used terminology as fibers, flakes, or granules. Particles were categorized based on a simple majority of responses. All descriptors were evaluated using a one-way ANOVA and Tukey–Kramer test for all-pairs comparison among each class of particles. A logistic regression model using half of the particles included in the survey was then used to develop a mathematical scheme to predict whether a given particle should be classified as a fiber, flake, or granule based on its quantitative measurements. The validity of the model was then assessed using the other half of the survey particles and compared with human responses. Comparison of the quantitative measurements of isolated particles showed that the morphologies of each particle type classified by respondents were statistically different from one another (po0:05). The average agreement between mathematical prediction and human respondents was 83.5% (standard error 0.16%). These data suggest that computerized descriptors can be feasibly correlated with subjective terminology, thus providing a basis for a common vocabulary for particle description which can be translated into quantitative dimensions. PMID:16112725

  17. Evaluation of an ensemble of genetic models for prediction of a quantitative trait.

    PubMed

    Milton, Jacqueline N; Steinberg, Martin H; Sebastiani, Paola

    2014-01-01

    Many genetic markers have been shown to be associated with common quantitative traits in genome-wide association studies. Typically these associated genetic markers have small to modest effect sizes and individually they explain only a small amount of the variability of the phenotype. In order to build a genetic prediction model without fitting a multiple linear regression model with possibly hundreds of genetic markers as predictors, researchers often summarize the joint effect of risk alleles into a genetic score that is used as a covariate in the genetic prediction model. However, the prediction accuracy can be highly variable and selecting the optimal number of markers to be included in the genetic score is challenging. In this manuscript we present a strategy to build an ensemble of genetic prediction models from data and we show that the ensemble-based method makes the challenge of choosing the number of genetic markers more amenable. Using simulated data with varying heritability and number of genetic markers, we compare the predictive accuracy and inclusion of true positive and false positive markers of a single genetic prediction model and our proposed ensemble method. The results show that the ensemble of genetic models tends to include a larger number of genetic variants than a single genetic model and it is more likely to include all of the true genetic markers. This increased sensitivity is obtained at the price of a lower specificity that appears to minimally affect the predictive accuracy of the ensemble.

  18. Contextualized theory-based predictors of intention to practice monogamy among adolescents in Botswana junior secondary schools: Results of focus group sessions and a cross-sectional study.

    PubMed

    Chilisa, Bagele; Mohiemang, Irene; Mpeta, Kolentino Nyamadzapasi; Malinga, Tumane; Ntshwarang, Poloko; Koyabe, Bramwell Walela; Heeren, G Anita

    2016-01-01

    Culture and tradition influences behaviour. Multiple partner and concurrent relationships are made responsible for the increase of HIV infection in Sub-Saharan Africa. A contextualized "Theory of Planned Behaviour" was used to identify predictors of intention to practice monogamy. A mixed method design using qualitative data from focus groups, stories and a survey were analyzed for quantitative data. The qualitative data added to the behavioural beliefs a socio-cultural belief domain as well as attitudes, subjective norms, and perceived behavioural control predicted the intention to practice monogamy. The adolescents showed a tendency towards having more than one sexual partner. The normative beliefs and the socio cultural beliefs also predicted intentions while hedonistic belief and partner reaction did not. In contextualizing theory-based interventions, it is important to draw from stories and the langauage that circulate in a community about a given behaviour. More studies are needed on ways to combine qualitative approaches with quantitative approaches to inform the development of theory based culturally appropriate and context specific intervention strategies to reduce the risk of HIV.

  19. Contextualized theory-based predictors of intention to practice monogamy among adolescents in Botswana junior secondary schools: Results of focus group sessions and a cross-sectional study

    PubMed Central

    Chilisa, Bagele; Mohiemang, Irene; Mpeta, Kolentino Nyamadzapasi; Malinga, Tumane; Ntshwarang, Poloko; Koyabe, Bramwell Walela; Heeren, G. Anita

    2016-01-01

    Culture and tradition influences behaviour. Multiple partner and concurrent relationships are made responsible for the increase of HIV infection in Sub-Saharan Africa. A contextualized “Theory of Planned Behaviour” was used to identify predictors of intention to practice monogamy. A mixed method design using qualitative data from focus groups, stories and a survey were analyzed for quantitative data. The qualitative data added to the behavioural beliefs a socio-cultural belief domain as well as attitudes, subjective norms, and perceived behavioural control predicted the intention to practice monogamy. The adolescents showed a tendency towards having more than one sexual partner. The normative beliefs and the socio cultural beliefs also predicted intentions while hedonistic belief and partner reaction did not. In contextualizing theory-based interventions, it is important to draw from stories and the langauage that circulate in a community about a given behaviour. More studies are needed on ways to combine qualitative approaches with quantitative approaches to inform the development of theory based culturally appropriate and context specific intervention strategies to reduce the risk of HIV. PMID:28090169

  20. Scoring in genetically modified organism proficiency tests based on log-transformed results.

    PubMed

    Thompson, Michael; Ellison, Stephen L R; Owen, Linda; Mathieson, Kenneth; Powell, Joanne; Key, Pauline; Wood, Roger; Damant, Andrew P

    2006-01-01

    The study considers data from 2 UK-based proficiency schemes and includes data from a total of 29 rounds and 43 test materials over a period of 3 years. The results from the 2 schemes are similar and reinforce each other. The amplification process used in quantitative polymerase chain reaction determinations predicts a mixture of normal, binomial, and lognormal distributions dominated by the latter 2. As predicted, the study results consistently follow a positively skewed distribution. Log-transformation prior to calculating z-scores is effective in establishing near-symmetric distributions that are sufficiently close to normal to justify interpretation on the basis of the normal distribution.

  1. A computational approach to predicting ligand selectivity for the size-based separation of trivalent lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Alexander S.; Bryantsev, Vyacheslav S.

    An accurate description of solvation effects for trivalent lanthanide ions is a main stumbling block to the qualitative prediction of selectivity trends along the lanthanide series. In this work, we propose a simple model to describe the differential effect of solvation in the competitive binding of a ligand by lanthanide ions by including weakly co-ordinated counterions in the complexes of more than a +1 charge. The success of the approach to quantitatively reproduce selectivities obtained from aqueous phase complexation studies demonstrates its potential for the design and screening of new ligands for efficient size-based separation.

  2. A computational approach to predicting ligand selectivity for the size-based separation of trivalent lanthanides

    DOE PAGES

    Ivanov, Alexander S.; Bryantsev, Vyacheslav S.

    2016-06-20

    An accurate description of solvation effects for trivalent lanthanide ions is a main stumbling block to the qualitative prediction of selectivity trends along the lanthanide series. In this work, we propose a simple model to describe the differential effect of solvation in the competitive binding of a ligand by lanthanide ions by including weakly co-ordinated counterions in the complexes of more than a +1 charge. The success of the approach to quantitatively reproduce selectivities obtained from aqueous phase complexation studies demonstrates its potential for the design and screening of new ligands for efficient size-based separation.

  3. Quantitative Assessment of Commutability for Clinical Viral Load Testing Using a Digital PCR-Based Reference Standard

    PubMed Central

    Tang, L.; Sun, Y.; Buelow, D.; Gu, Z.; Caliendo, A. M.; Pounds, S.

    2016-01-01

    Given recent advances in the development of quantitative standards, particularly WHO international standards, efforts to better understand the commutability of reference materials have been made. Existing approaches in evaluating commutability include prediction intervals and correspondence analysis; however, the results obtained from existing approaches may be ambiguous. We have developed a “deviation-from-ideal” (DFI) approach to evaluate commutability of standards and applied it to the assessment of Epstein-Bar virus (EBV) load testing in four quantitative PCR assays, treating digital PCR as a reference assay. We then discuss advantages and limitations of the DFI approach as well as experimental design to best evaluate the commutability of an assay in practice. PMID:27076654

  4. Unpredictability of escape trajectory explains predator evasion ability and microhabitat preference of desert rodents.

    PubMed

    Moore, Talia Y; Cooper, Kimberly L; Biewener, Andrew A; Vasudevan, Ramanarayan

    2017-09-05

    Mechanistically linking movement behaviors and ecology is key to understanding the adaptive evolution of locomotion. Predator evasion, a behavior that enhances fitness, may depend upon short bursts or complex patterns of locomotion. However, such movements are poorly characterized by existing biomechanical metrics. We present methods based on the entropy measure of randomness from Information Theory to quantitatively characterize the unpredictability of non-steady-state locomotion. We then apply the method by examining sympatric rodent species whose escape trajectories differ in dimensionality. Unlike the speed-regulated gait use of cursorial animals to enhance locomotor economy, bipedal jerboa (family Dipodidae) gait transitions likely enhance maneuverability. In field-based observations, jerboa trajectories are significantly less predictable than those of quadrupedal rodents, likely increasing predator evasion ability. Consistent with this hypothesis, jerboas exhibit lower anxiety in open fields than quadrupedal rodents, a behavior that varies inversely with predator evasion ability. Our unpredictability metric expands the scope of quantitative biomechanical studies to include non-steady-state locomotion in a variety of evolutionary and ecologically significant contexts.Biomechanical understanding of animal gait and maneuverability has primarily been limited to species with more predictable, steady-state movement patterns. Here, the authors develop a method to quantify movement predictability, and apply the method to study escape-related movement in several species of desert rodents.

  5. Quantitative model of the growth of floodplains by vertical accretion

    USGS Publications Warehouse

    Moody, J.A.; Troutman, B.M.

    2000-01-01

    A simple one-dimensional model is developed to quantitatively predict the change in elevation, over a period of decades, for vertically accreting floodplains. This unsteady model approximates the monotonic growth of a floodplain as an incremental but constant increase of net sediment deposition per flood for those floods of a partial duration series that exceed a threshold discharge corresponding to the elevation of the floodplain. Sediment deposition from each flood increases the elevation of the floodplain and consequently the magnitude of the threshold discharge resulting in a decrease in the number of floods and growth rate of the floodplain. Floodplain growth curves predicted by this model are compared to empirical growth curves based on dendrochronology and to direct field measurements at five floodplain sites. The model was used to predict the value of net sediment deposition per flood which best fits (in a least squares sense) the empirical and field measurements; these values fall within the range of independent estimates of the net sediment deposition per flood based on empirical equations. These empirical equations permit the application of the model to estimate of floodplain growth for other floodplains throughout the world which do not have detailed data of sediment deposition during individual floods. Copyright (C) 2000 John Wiley and Sons, Ltd.

  6. Prediction of Coronal Mass Ejections From Vector Magnetograms: Quantitative Measures as Predictors

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We derived two quantitative measures of an active region's global nonpotentiality from the region's vector magnetogram, 1) the net current (I(sub N)), and 2) the length of strong-shear, strong-field main neutral line (Lss), and used these two measures in a pilot study of the CME productivity of 4 active regions. We compared the global nonpotentiality measures to the active regions' CME productivity determined from GOES and Yohkoh/SXT observations. We found that two of the active regions were highly globally nonpotential and were CME productive, while the other two active regions had little global nonpotentiality and produced no CMEs. At the Fall 2000 AGU, we reported on an expanded study (12 active regions and 17 magnetograms) in which we evaluated four quantitative global measures of an active region's magnetic field and compared these measures with the CME productivity. The four global measures (all derived from MSFC vector magnetograms) included our two previous measures (I(sub N) and L(sub ss)) as well as two new ones, the total magnetic flux (PHI) (a measure of an active region's size), and the normalized twist (alpha (bar)= muIN/PHI). We found that the three quantitative measures of global nonpotentiality (I(sub N), L(sub ss), alpha (bar)) were all well correlated (greater than 99% confidence level) with an active region's CME productivity within plus or minus 2 days of the day of the magnetogram. We will now report on our findings of how good our quantitative measures are as predictors of active-region CME productivity, using only CMEs that occurred after the magnetogram. We report the preliminary skill test of these quantitative measures as predictors. We compare the CME prediction success of our quantitative measures to the CME prediction success based on an active region's past CME productivity. We examine the cases of the handful of false positive and false negatives to look for improvements to our predictors. This work is funded by NSF through the Space Weather Program and by NASA through the Solar Physics Supporting Research and Technology Program.

  7. [Prediction method of rural landscape pattern evolution based on life cycle: a case study of Jinjing Town, Hunan Province, China].

    PubMed

    Ji, Xiang; Liu, Li-Ming; Li, Hong-Qing

    2014-11-01

    Taking Jinjing Town in Dongting Lake area as a case, this paper analyzed the evolution of rural landscape patterns by means of life cycle theory, simulated the evolution cycle curve, and calculated its evolution period, then combining CA-Markov model, a complete prediction model was built based on the rule of rural landscape change. The results showed that rural settlement and paddy landscapes of Jinjing Town would change most in 2020, with the rural settlement landscape increased to 1194.01 hm2 and paddy landscape greatly reduced to 3090.24 hm2. The quantitative and spatial prediction accuracies of the model were up to 99.3% and 96.4%, respectively, being more explicit than single CA-Markov model. The prediction model of rural landscape patterns change proposed in this paper would be helpful for rural landscape planning in future.

  8. Prediction based active ramp metering control strategy with mobility and safety assessment

    NASA Astrophysics Data System (ADS)

    Fang, Jie; Tu, Lili

    2018-04-01

    Ramp metering is one of the most direct and efficient motorway traffic flow management measures so as to improve traffic conditions. However, owing to short of traffic conditions prediction, in earlier studies, the impact on traffic flow dynamics of the applied RM control was not quantitatively evaluated. In this study, a RM control algorithm adopting Model Predictive Control (MPC) framework to predict and assess future traffic conditions, which taking both the current traffic conditions and the RM-controlled future traffic states into consideration, was presented. The designed RM control algorithm targets at optimizing the network mobility and safety performance. The designed algorithm is evaluated in a field-data-based simulation. Through comparing the presented algorithm controlled scenario with the uncontrolled scenario, it was proved that the proposed RM control algorithm can effectively relieve the congestion of traffic network with no significant compromises in safety aspect.

  9. Forecasting seasonal outbreaks of influenza.

    PubMed

    Shaman, Jeffrey; Karspeck, Alicia

    2012-12-11

    Influenza recurs seasonally in temperate regions of the world; however, our ability to predict the timing, duration, and magnitude of local seasonal outbreaks of influenza remains limited. Here we develop a framework for initializing real-time forecasts of seasonal influenza outbreaks, using a data assimilation technique commonly applied in numerical weather prediction. The availability of real-time, web-based estimates of local influenza infection rates makes this type of quantitative forecasting possible. Retrospective ensemble forecasts are generated on a weekly basis following assimilation of these web-based estimates for the 2003-2008 influenza seasons in New York City. The findings indicate that real-time skillful predictions of peak timing can be made more than 7 wk in advance of the actual peak. In addition, confidence in those predictions can be inferred from the spread of the forecast ensemble. This work represents an initial step in the development of a statistically rigorous system for real-time forecast of seasonal influenza.

  10. Monitoring Crop Yield in USA Using a Satellite-Based Climate-Variability Impact Index

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Anderson, Bruce; Tan, Bin; Barlow, Mathew; Myneni, Ranga

    2011-01-01

    A quantitative index is applied to monitor crop growth and predict agricultural yield in continental USA. The Climate-Variability Impact Index (CVII), defined as the monthly contribution to overall anomalies in growth during a given year, is derived from 1-km MODIS Leaf Area Index. The growing-season integrated CVII can provide an estimate of the fractional change in overall growth during a given year. In turn these estimates can provide fine-scale and aggregated information on yield for various crops. Trained from historical records of crop production, a statistical model is used to produce crop yield during the growing season based upon the strong positive relationship between crop yield and the CVII. By examining the model prediction as a function of time, it is possible to determine when the in-season predictive capability plateaus and which months provide the greatest predictive capacity.

  11. Forecasting seasonal outbreaks of influenza

    PubMed Central

    Shaman, Jeffrey; Karspeck, Alicia

    2012-01-01

    Influenza recurs seasonally in temperate regions of the world; however, our ability to predict the timing, duration, and magnitude of local seasonal outbreaks of influenza remains limited. Here we develop a framework for initializing real-time forecasts of seasonal influenza outbreaks, using a data assimilation technique commonly applied in numerical weather prediction. The availability of real-time, web-based estimates of local influenza infection rates makes this type of quantitative forecasting possible. Retrospective ensemble forecasts are generated on a weekly basis following assimilation of these web-based estimates for the 2003–2008 influenza seasons in New York City. The findings indicate that real-time skillful predictions of peak timing can be made more than 7 wk in advance of the actual peak. In addition, confidence in those predictions can be inferred from the spread of the forecast ensemble. This work represents an initial step in the development of a statistically rigorous system for real-time forecast of seasonal influenza. PMID:23184969

  12. Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2002-01-01

    A research program is underway to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Under these types of loading conditions, the material response can be highly strain rate dependent and nonlinear. State variable constitutive equations based on a viscoplasticity approach have been developed to model the deformation of the polymer matrix. The constitutive equations are then combined with a mechanics of materials based micromechanics model which utilizes fiber substructuring to predict the effective mechanical and thermal response of the composite. To verify the analytical model, tensile stress-strain curves are predicted for a representative composite over strain rates ranging from around 1 x 10(exp -5)/sec to approximately 400/sec. The analytical predictions compare favorably to experimentally obtained values both qualitatively and quantitatively. Effective elastic and thermal constants are predicted for another composite, and compared to finite element results.

  13. Noninvasive Assessment of Biochemical and Mechanical Properties of Lumbar Discs Through Quantitative Magnetic Resonance Imaging in Asymptomatic Volunteers.

    PubMed

    Foltz, Mary H; Kage, Craig C; Johnson, Casey P; Ellingson, Arin M

    2017-11-01

    Intervertebral disc degeneration is a prevalent phenomenon associated with back pain. It is of critical clinical interest to discriminate disc health and identify early stages of degeneration. Traditional clinical T2-weighted magnetic resonance imaging (MRI), assessed using the Pfirrmann classification system, is subjective and fails to adequately capture initial degenerative changes. Emerging quantitative MRI techniques offer a solution. Specifically, T2* mapping images water mobility in the macromolecular network, and our preliminary ex vivo work shows high predictability of the disc's glycosaminoglycan content (s-GAG) and residual mechanics. The present study expands upon this work to predict the biochemical and biomechanical properties in vivo and assess their relationship with both age and Pfirrmann grade. Eleven asymptomatic subjects (range: 18-62 yrs) were enrolled and imaged using a 3T MRI scanner. T2-weighted images (Pfirrmann grade) and quantitative T2* maps (predict s-GAG and residual stress) were acquired. Surface maps based on the distribution of these properties were generated and integrated to quantify the surface volume. Correlational analyses were conducted to establish the relationship between each metric of disc health derived from the quantitative T2* maps with both age and Pfirrmann grade, where an inverse trend was observed. Furthermore, the nucleus pulposus (NP) signal in conjunction with volumetric surface maps provided the ability to discern differences during initial stages of disc degeneration. This study highlights the ability of T2* mapping to noninvasively assess the s-GAG content, residual stress, and distributions throughout the entire disc, which may provide a powerful diagnostic tool for disc health assessment.

  14. Essential Set of Molecular Descriptors for ADME Prediction in Drug and Environmental Chemical Space

    EPA Science Inventory

    Historically, the disciplines of pharmacology and toxicology have embraced quantitative structure-activity relationships (QSAR) and quantitative structure-property relationships (QSPR) to predict ADME properties or biological activities of untested chemicals. The question arises ...

  15. On the predictability of outliers in ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Siegert, S.; Bröcker, J.; Kantz, H.

    2012-03-01

    In numerical weather prediction, ensembles are used to retrieve probabilistic forecasts of future weather conditions. We consider events where the verification is smaller than the smallest, or larger than the largest ensemble member of a scalar ensemble forecast. These events are called outliers. In a statistically consistent K-member ensemble, outliers should occur with a base rate of 2/(K+1). In operational ensembles this base rate tends to be higher. We study the predictability of outlier events in terms of the Brier Skill Score and find that forecast probabilities can be calculated which are more skillful than the unconditional base rate. This is shown analytically for statistically consistent ensembles. Using logistic regression, forecast probabilities for outlier events in an operational ensemble are calculated. These probabilities exhibit positive skill which is quantitatively similar to the analytical results. Possible causes of these results as well as their consequences for ensemble interpretation are discussed.

  16. Predicting total organic halide formation from drinking water chlorination using quantitative structure-property relationships.

    PubMed

    Luilo, G B; Cabaniss, S E

    2011-10-01

    Chlorinating water which contains dissolved organic matter (DOM) produces disinfection byproducts, the majority of unknown structure. Hence, the total organic halide (TOX) measurement is used as a surrogate for toxic disinfection byproducts. This work derives a robust quantitative structure-property relationship (QSPR) for predicting the TOX formation potential of model compounds. Literature data for 49 compounds were used to train the QSPR in moles of chlorine per mole of compound (Cp) (mol-Cl/mol-Cp). The resulting QSPR has four descriptors, calibration [Formula: see text] of 0.72 and standard deviation of estimation of 0.43 mol-Cl/mol-Cp. Internal and external validation indicate that the QSPR has good predictive power and low bias (‰<‰1%). Applying this QSPR to predict TOX formation by DOM surrogates - tannic acid, two model fulvic acids and two agent-based model assemblages - gave a predicted TOX range of 136-184 µg-Cl/mg-C, consistent with experimental data for DOM, which ranged from 78 to 192 µg-Cl/mg-C. However, the limited structural variation in the training data may limit QSPR applicability; studies of more sulfur-containing compounds, heterocyclic compounds and high molecular weight compounds could lead to a more widely applicable QSPR.

  17. Biochemical interpretation of quantitative structure-activity relationships (QSAR) for biodegradation of N-heterocycles: a complementary approach to predict biodegradability.

    PubMed

    Philipp, Bodo; Hoff, Malte; Germa, Florence; Schink, Bernhard; Beimborn, Dieter; Mersch-Sundermann, Volker

    2007-02-15

    Prediction of the biodegradability of organic compounds is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. We combined quantitative structure-activity relationships (QSAR) with the systematic collection of biochemical knowledge to establish rules for the prediction of aerobic biodegradation of N-heterocycles. Validated biodegradation data of 194 N-heterocyclic compounds were analyzed using the MULTICASE-method which delivered two QSAR models based on 17 activating (OSAR 1) and on 16 inactivating molecular fragments (GSAR 2), which were statistically significantly linked to efficient or poor biodegradability, respectively. The percentages of correct classifications were over 99% for both models, and cross-validation resulted in 67.9% (GSAR 1) and 70.4% (OSAR 2) correct predictions. Biochemical interpretation of the activating and inactivating characteristics of the molecular fragments delivered plausible mechanistic interpretations and enabled us to establish the following biodegradation rules: (1) Target sites for amidohydrolases and for cytochrome P450 monooxygenases enhance biodegradation of nonaromatic N-heterocycles. (2) Target sites for molybdenum hydroxylases enhance biodegradation of aromatic N-heterocycles. (3) Target sites for hydratation by an urocanase-like mechanism enhance biodegradation of imidazoles. Our complementary approach represents a feasible strategy for generating concrete rules for the prediction of biodegradability of organic compounds.

  18. Quantitative PET/CT scanner performance characterization based upon the society of nuclear medicine and molecular imaging clinical trials network oncology clinical simulator phantom.

    PubMed

    Sunderland, John J; Christian, Paul E

    2015-01-01

    The Clinical Trials Network (CTN) of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) operates a PET/CT phantom imaging program using the CTN's oncology clinical simulator phantom, designed to validate scanners at sites that wish to participate in oncology clinical trials. Since its inception in 2008, the CTN has collected 406 well-characterized phantom datasets from 237 scanners at 170 imaging sites covering the spectrum of commercially available PET/CT systems. The combined and collated phantom data describe a global profile of quantitative performance and variability of PET/CT data used in both clinical practice and clinical trials. Individual sites filled and imaged the CTN oncology PET phantom according to detailed instructions. Standard clinical reconstructions were requested and submitted. The phantom itself contains uniform regions suitable for scanner calibration assessment, lung fields, and 6 hot spheric lesions with diameters ranging from 7 to 20 mm at a 4:1 contrast ratio with primary background. The CTN Phantom Imaging Core evaluated the quality of the phantom fill and imaging and measured background standardized uptake values to assess scanner calibration and maximum standardized uptake values of all 6 lesions to review quantitative performance. Scanner make-and-model-specific measurements were pooled and then subdivided by reconstruction to create scanner-specific quantitative profiles. Different makes and models of scanners predictably demonstrated different quantitative performance profiles including, in some cases, small calibration bias. Differences in site-specific reconstruction parameters increased the quantitative variability among similar scanners, with postreconstruction smoothing filters being the most influential parameter. Quantitative assessment of this intrascanner variability over this large collection of phantom data gives, for the first time, estimates of reconstruction variance introduced into trials from allowing trial sites to use their preferred reconstruction methodologies. Predictably, time-of-flight-enabled scanners exhibited less size-based partial-volume bias than non-time-of-flight scanners. The CTN scanner validation experience over the past 5 y has generated a rich, well-curated phantom dataset from which PET/CT make-and-model and reconstruction-dependent quantitative behaviors were characterized for the purposes of understanding and estimating scanner-based variances in clinical trials. These results should make it possible to identify and recommend make-and-model-specific reconstruction strategies to minimize measurement variability in cancer clinical trials. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. Near Real-Time Optimal Prediction of Adverse Events in Aviation Data

    NASA Technical Reports Server (NTRS)

    Martin, Rodney Alexander; Das, Santanu

    2010-01-01

    The prediction of anomalies or adverse events is a challenging task, and there are a variety of methods which can be used to address the problem. In this paper, we demonstrate how to recast the anomaly prediction problem into a form whose solution is accessible as a level-crossing prediction problem. The level-crossing prediction problem has an elegant, optimal, yet untested solution under certain technical constraints, and only when the appropriate modeling assumptions are made. As such, we will thoroughly investigate the resilience of these modeling assumptions, and show how they affect final performance. Finally, the predictive capability of this method will be assessed by quantitative means, using both validation and test data containing anomalies or adverse events from real aviation data sets that have previously been identified as operationally significant by domain experts. It will be shown that the formulation proposed yields a lower false alarm rate on average than competing methods based on similarly advanced concepts, and a higher correct detection rate than a standard method based upon exceedances that is commonly used for prediction.

  20. Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning.

    PubMed

    Zhou, Yongxia; Yu, Fang; Duong, Timothy

    2014-01-01

    This study employed graph theory and machine learning analysis of multiparametric MRI data to improve characterization and prediction in autism spectrum disorders (ASD). Data from 127 children with ASD (13.5±6.0 years) and 153 age- and gender-matched typically developing children (14.5±5.7 years) were selected from the multi-center Functional Connectome Project. Regional gray matter volume and cortical thickness increased, whereas white matter volume decreased in ASD compared to controls. Small-world network analysis of quantitative MRI data demonstrated decreased global efficiency based on gray matter cortical thickness but not with functional connectivity MRI (fcMRI) or volumetry. An integrative model of 22 quantitative imaging features was used for classification and prediction of phenotypic features that included the autism diagnostic observation schedule, the revised autism diagnostic interview, and intelligence quotient scores. Among the 22 imaging features, four (caudate volume, caudate-cortical functional connectivity and inferior frontal gyrus functional connectivity) were found to be highly informative, markedly improving classification and prediction accuracy when compared with the single imaging features. This approach could potentially serve as a biomarker in prognosis, diagnosis, and monitoring disease progression.

  1. Quantitative structure-retention relationship models for the prediction of the reversed-phase HPLC gradient retention based on the heuristic method and support vector machine.

    PubMed

    Du, Hongying; Wang, Jie; Yao, Xiaojun; Hu, Zhide

    2009-01-01

    The heuristic method (HM) and support vector machine (SVM) were used to construct quantitative structure-retention relationship models by a series of compounds to predict the gradient retention times of reversed-phase high-performance liquid chromatography (HPLC) in three different columns. The aims of this investigation were to predict the retention times of multifarious compounds, to find the main properties of the three columns, and to indicate the theory of separation procedures. In our method, we correlated the retention times of many diverse structural analytes in three columns (Symmetry C18, Chromolith, and SG-MIX) with their representative molecular descriptors, calculated from the molecular structures alone. HM was used to select the most important molecular descriptors and build linear regression models. Furthermore, non-linear regression models were built using the SVM method; the performance of the SVM models were better than that of the HM models, and the prediction results were in good agreement with the experimental values. This paper could give some insights into the factors that were likely to govern the gradient retention process of the three investigated HPLC columns, which could theoretically supervise the practical experiment.

  2. From crystal chemistry to colloid stability

    NASA Astrophysics Data System (ADS)

    Gilbert, B.; Burrows, N.; Penn, R. L.

    2008-12-01

    Aqueous suspensions of ferrihydrite nanoparticles form a colloid with properties that can be understood using classical theories but which additionally exhibit the distinctive phenomenon of nanocluster formation. While use of in situ light and x-ray scattering methods permit the quantitative determination of colloid stability, interparticle interactions, and cluster or aggregate geometry, there are currently few approaches to predict the colloidal behavior of mineral nanoparticles. A longstanding goal of aqueous geochemistry is the rationalization and prediction of the chemical properties of hydrated mineral interfaces from knowledge of interface structure at the molecular scale. Because interfacial acid-base reactions typically lead to the formation of a net electrostatic charge at the surfaces of oxide, hydroxide, and oxyhydroxide mineral surfaces, quantitative descriptions of this behavior have the potential to permit the prediction of long-range interactions between mineral particles. We will evaluate the feasibility of this effort by constructing a model for surface charge formation for ferrihydrite that combines recent insights into the crystal structure of this phase and proposed methods for estimating the pKa of acidic surface groups. We will test the ability of this model to predict the colloidal stability of ferrihydrite suspensions as a function of solution chemistry.

  3. Characterization and prediction of chemical functions and weight fractions in consumer products.

    PubMed

    Isaacs, Kristin K; Goldsmith, Michael-Rock; Egeghy, Peter; Phillips, Katherine; Brooks, Raina; Hong, Tao; Wambaugh, John F

    2016-01-01

    Assessing exposures from the thousands of chemicals in commerce requires quantitative information on the chemical constituents of consumer products. Unfortunately, gaps in available composition data prevent assessment of exposure to chemicals in many products. Here we propose filling these gaps via consideration of chemical functional role. We obtained function information for thousands of chemicals from public sources and used a clustering algorithm to assign chemicals into 35 harmonized function categories (e.g., plasticizers, antimicrobials, solvents). We combined these functions with weight fraction data for 4115 personal care products (PCPs) to characterize the composition of 66 different product categories (e.g., shampoos). We analyzed the combined weight fraction/function dataset using machine learning techniques to develop quantitative structure property relationship (QSPR) classifier models for 22 functions and for weight fraction, based on chemical-specific descriptors (including chemical properties). We applied these classifier models to a library of 10196 data-poor chemicals. Our predictions of chemical function and composition will inform exposure-based screening of chemicals in PCPs for combination with hazard data in risk-based evaluation frameworks. As new information becomes available, this approach can be applied to other classes of products and the chemicals they contain in order to provide essential consumer product data for use in exposure-based chemical prioritization.

  4. Geochemical simulation of fluid rock interactions to predict flowback water compostions during hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Kühn, Michael; Vieth-Hillebrand, Andrea; Wilke, Franziska D. H.

    2017-04-01

    Black shales are a heterogeneous mixture of minerals, organic matter and formation water and little is actually known about the fluid-rock interactions during hydraulic fracturing and their effects on composition of flowback and produced water. Geochemical simulations have been performed based on the analyses of "real" flowback water samples and artificial stimulation fluids from lab experiments with the aim to set up a chemical process model for shale gas reservoirs. Prediction of flowback water compositions for potential or already chosen sites requires validated and parameterized geochemical models. For the software "Geochemist's Workbench" (GWB) data bases are adapted and amended based on a literature review. Evaluation of the system has been performed in comparison with the results from laboratory experiments. Parameterization was done in regard to field data provided. Finally, reaction path models are applied for quantitative information about the mobility of compounds in specific settings. Our work leads to quantitative estimates of reservoir compounds in the flowback based on calibrations by laboratory experiments. Such information is crucial for the assessment of environmental impacts as well as to estimate human- and ecotoxicological effects of the flowback waters from a variety of natural gas shales. With a comprehensive knowledge about potential composition and mobility of flowback water, selection of water treatment techniques will become easier.

  5. Improving efficacy of metastatic tumor segmentation to facilitate early prediction of ovarian cancer patients' response to chemotherapy

    NASA Astrophysics Data System (ADS)

    Danala, Gopichandh; Wang, Yunzhi; Thai, Theresa; Gunderson, Camille C.; Moxley, Katherine M.; Moore, Kathleen; Mannel, Robert S.; Cheng, Samuel; Liu, Hong; Zheng, Bin; Qiu, Yuchen

    2017-02-01

    Accurate tumor segmentation is a critical step in the development of the computer-aided detection (CAD) based quantitative image analysis scheme for early stage prognostic evaluation of ovarian cancer patients. The purpose of this investigation is to assess the efficacy of several different methods to segment the metastatic tumors occurred in different organs of ovarian cancer patients. In this study, we developed a segmentation scheme consisting of eight different algorithms, which can be divided into three groups: 1) Region growth based methods; 2) Canny operator based methods; and 3) Partial differential equation (PDE) based methods. A number of 138 tumors acquired from 30 ovarian cancer patients were used to test the performance of these eight segmentation algorithms. The results demonstrate each of the tested tumors can be successfully segmented by at least one of the eight algorithms without the manual boundary correction. Furthermore, modified region growth, classical Canny detector, and fast marching, and threshold level set algorithms are suggested in the future development of the ovarian cancer related CAD schemes. This study may provide meaningful reference for developing novel quantitative image feature analysis scheme to more accurately predict the response of ovarian cancer patients to the chemotherapy at early stage.

  6. Nonlinear ultrasonics for material state awareness

    NASA Astrophysics Data System (ADS)

    Jacobs, L. J.

    2014-02-01

    Predictive health monitoring of structural components will require the development of advanced sensing techniques capable of providing quantitative information on the damage state of structural materials. By focusing on nonlinear acoustic techniques, it is possible to measure absolute, strength based material parameters that can then be coupled with uncertainty models to enable accurate and quantitative life prediction. Starting at the material level, this review will present current research that involves a combination of sensing techniques and physics-based models to characterize damage in metallic materials. In metals, these nonlinear ultrasonic measurements can sense material state, before the formation of micro- and macro-cracks. Typically, cracks of a measurable size appear quite late in a component's total life, while the material's integrity in terms of toughness and strength gradually decreases due to the microplasticity (dislocations) and associated change in the material's microstructure. This review focuses on second harmonic generation techniques. Since these nonlinear acoustic techniques are acoustic wave based, component interrogation can be performed with bulk, surface and guided waves using the same underlying material physics; these nonlinear ultrasonic techniques provide results which are independent of the wave type used. Recent physics-based models consider the evolution of damage due to dislocations, slip bands, interstitials, and precipitates in the lattice structure, which can lead to localized damage.

  7. A community resource benchmarking predictions of peptide binding to MHC-I molecules.

    PubMed

    Peters, Bjoern; Bui, Huynh-Hoa; Frankild, Sune; Nielson, Morten; Lundegaard, Claus; Kostem, Emrah; Basch, Derek; Lamberth, Kasper; Harndahl, Mikkel; Fleri, Ward; Wilson, Stephen S; Sidney, John; Lund, Ole; Buus, Soren; Sette, Alessandro

    2006-06-09

    Recognition of peptides bound to major histocompatibility complex (MHC) class I molecules by T lymphocytes is an essential part of immune surveillance. Each MHC allele has a characteristic peptide binding preference, which can be captured in prediction algorithms, allowing for the rapid scan of entire pathogen proteomes for peptide likely to bind MHC. Here we make public a large set of 48,828 quantitative peptide-binding affinity measurements relating to 48 different mouse, human, macaque, and chimpanzee MHC class I alleles. We use this data to establish a set of benchmark predictions with one neural network method and two matrix-based prediction methods extensively utilized in our groups. In general, the neural network outperforms the matrix-based predictions mainly due to its ability to generalize even on a small amount of data. We also retrieved predictions from tools publicly available on the internet. While differences in the data used to generate these predictions hamper direct comparisons, we do conclude that tools based on combinatorial peptide libraries perform remarkably well. The transparent prediction evaluation on this dataset provides tool developers with a benchmark for comparison of newly developed prediction methods. In addition, to generate and evaluate our own prediction methods, we have established an easily extensible web-based prediction framework that allows automated side-by-side comparisons of prediction methods implemented by experts. This is an advance over the current practice of tool developers having to generate reference predictions themselves, which can lead to underestimating the performance of prediction methods they are not as familiar with as their own. The overall goal of this effort is to provide a transparent prediction evaluation allowing bioinformaticians to identify promising features of prediction methods and providing guidance to immunologists regarding the reliability of prediction tools.

  8. Spectroscopic database

    NASA Technical Reports Server (NTRS)

    Husson, N.; Barbe, A.; Brown, L. R.; Carli, B.; Goldman, A.; Pickett, H. M.; Roche, A. E.; Rothman, L. S.; Smith, M. A. H.

    1985-01-01

    Several aspects of quantitative atmospheric spectroscopy are considered, using a classification of the molecules according to the gas amounts in the stratosphere and upper troposphere, and reviews of quantitative atmospheric high-resolution spectroscopic measurements and field measurements systems are given. Laboratory spectroscopy and spectral analysis and prediction are presented with a summary of current laboratory spectroscopy capabilities. Spectroscopic data requirements for accurate derivation of atmospheric composition are discussed, where examples are given for space-based remote sensing experiments of the atmosphere: the ATMOS (Atmospheric Trace Molecule) and UARS (Upper Atmosphere Research Satellite) experiment. A review of the basic parameters involved in the data compilations; a summary of information on line parameter compilations already in existence; and a summary of current laboratory spectroscopy studies are used to assess the data base.

  9. Prediction of Moisture Content for Congou Black Tea Withering Leaves Using Image Features and Nonlinear Method.

    PubMed

    Liang, Gaozhen; Dong, Chunwang; Hu, Bin; Zhu, Hongkai; Yuan, Haibo; Jiang, Yongwen; Hao, Guoshuang

    2018-05-18

    Withering is the first step in the processing of congou black tea. With respect to the deficiency of traditional water content detection methods, a machine vision based NDT (Non Destructive Testing) method was established to detect the moisture content of withered leaves. First, according to the time sequences using computer visual system collected visible light images of tea leaf surfaces, and color and texture characteristics are extracted through the spatial changes of colors. Then quantitative prediction models for moisture content detection of withered tea leaves was established through linear PLS (Partial Least Squares) and non-linear SVM (Support Vector Machine). The results showed correlation coefficients higher than 0.8 between the water contents and green component mean value (G), lightness component mean value (L * ) and uniformity (U), which means that the extracted characteristics have great potential to predict the water contents. The performance parameters as correlation coefficient of prediction set (Rp), root-mean-square error of prediction (RMSEP), and relative standard deviation (RPD) of the SVM prediction model are 0.9314, 0.0411 and 1.8004, respectively. The non-linear modeling method can better describe the quantitative analytical relations between the image and water content. With superior generalization and robustness, the method would provide a new train of thought and theoretical basis for the online water content monitoring technology of automated production of black tea.

  10. Position of pelvis in the 3rd month of life predicts further motor development.

    PubMed

    Gajewska, Ewa; Sobieska, Magdalena; Moczko, Jerzy

    2018-06-01

    The aim of the study is to select elements of motor skills assessed at 3 months that provide the best predictive properties for motor development at 9 months. In all children a physiotherapeutic assessment of the quantitative and qualitative development at the age of 3 months was performed in the prone and supine positions, which was presented in previous papers as the quantitative and qualitative assessment sheet of motor development. The neurological examination at the age of 9 months was based on the Denver Development Screening Test II and the evaluation of reflexes, muscle tone (hypotony and hypertony), and symmetry. The particular elements of motor performance assessment were shown to have distinct predictive value for further motor development (as assessed at 9 months), and the pelvis position was the strongest predictive element. Irrespective of the symptomatic and anamnestic factors the inappropriate motor performance may already be detected in the 3rd month of life and is predictive for further motor development. The assessment of the motor performance should be performed in both supine and prone positions. The proper position of pelvis summarizes the proper positioning of the whole spine and ensures proper further motor development. To our knowledge, the presented motor development assessment sheet allows the earliest prediction of motor disturbances. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. 3D-quantitative structure-activity relationship study for the design of novel enterovirus A71 3C protease inhibitors.

    PubMed

    Nie, Quandeng; Xu, Xiaoyi; Zhang, Qi; Ma, Yuying; Yin, Zheng; Shang, Luqing

    2018-06-07

    A three-dimensional quantitative structure-activity relationships model of enterovirus A71 3C protease inhibitors was constructed in this study. The protein-ligand interaction fingerprint was analyzed to generate a pharmacophore model. A predictive and reliable three-dimensional quantitative structure-activity relationships model was built based on the Flexible Alignment of AutoGPA. Moreover, three novel compounds (I-III) were designed and evaluated for their biochemical activity against 3C protease and anti-enterovirus A71 activity in vitro. III exhibited excellent inhibitory activity (IC 50 =0.031 ± 0.005 μM, EC 50 =0.036 ± 0.007 μM). Thus, this study provides a useful quantitative structure-activity relationships model to develop potent inhibitors for enterovirus A71 3C protease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Teachers' Perceptions of Their Working Conditions: How Predictive of Planned and Actual Teacher Movement?

    ERIC Educational Resources Information Center

    Ladd, Helen F.

    2011-01-01

    This quantitative study examines the relationship between teachers' perceptions of their working conditions and their intended and actual departures from schools. Based on rich administrative data for North Carolina combined with a 2006 statewide survey administered to all teachers in the state, the study documents that working conditions are…

  13. Teacher Self-Efficacy, Professional Development and Student Reading Performance in Persistently Low-Performing Schools

    ERIC Educational Resources Information Center

    Washington, Vanassa

    2016-01-01

    The overall aim of this quantitative non-experimental study was to investigate the degree to which content-focused professional development, active based-learning professional development and teacher self-efficacy predict student performance in reading, within persistently low-performing schools. The need to investigate professional development in…

  14. The accuracies of DNA-based estimates of genetic merit derived from Angus or multibreed beef cattle training populations

    USDA-ARS?s Scientific Manuscript database

    Several organizations have developed prediction models for molecular breeding values (MBV) for quantitative growth and carcass traits in beef cattle using BovineSNP50 genotypes and phenotypic or EBV data. MBV for Angus cattle have been developed by IGENITY, Pfizer Animal Genetics, and a collaboratio...

  15. Adaptive potential of northernmost tree populations to climate change, with emphasis on Scots pine (Pinus sylvestris L.).

    PubMed

    Savolainen, Outi; Kujala, Sonja T; Sokol, Catherina; Pyhäjärvi, Tanja; Avia, Komlan; Knürr, Timo; Kärkkäinen, Katri; Hicks, Sheila

    2011-01-01

    The adaptive potential of the northernmost Pinus sylvestris L. (and other northern tree) populations is considered by examining first the current patterns of quantitative genetic adaptive traits, which show high population differentiation and clines. We then consider the postglacial history of the populations using both paleobiological and genetic data. The current patterns of diversity at nuclear genes suggest that the traces of admixture are mostly visible in mitochondrial DNA variation patterns. There is little evidence of increased diversity due to admixture between an eastern and western colonization lineage, but no signal of reduced diversity (due to sequential bottlenecks) either. Quantitative trait variation in the north is not associated with the colonizing lineages. The current clines arose rapidly and may be based on standing genetic variation. The initial phenotypic response of Scots pine in the north is predicted to be increased survival and growth. The genetic responses are examined based on quantitative genetic predictions of sustained selection response and compared with earlier simulation results that have aimed at more ecological realism. The phenotypic responses of increased growth and survival reduce the opportunity for selection and delay the evolutionary responses. The lengthening of the thermal growing period also causes selection on the critical photoperiod in the different populations. Future studies should aim at including multiple ecological and genetic factors in evaluating potential responses.

  16. Assessing treatment response in triple-negative breast cancer from quantitative image analysis in perfusion magnetic resonance imaging.

    PubMed

    Banerjee, Imon; Malladi, Sadhika; Lee, Daniela; Depeursinge, Adrien; Telli, Melinda; Lipson, Jafi; Golden, Daniel; Rubin, Daniel L

    2018-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is sensitive but not specific to determining treatment response in early stage triple-negative breast cancer (TNBC) patients. We propose an efficient computerized technique for assessing treatment response, specifically the residual tumor (RT) status and pathological complete response (pCR), in response to neoadjuvant chemotherapy. The proposed approach is based on Riesz wavelet analysis of pharmacokinetic maps derived from noninvasive DCE-MRI scans, obtained before and after treatment. We compared the performance of Riesz features with the traditional gray level co-occurrence matrices and a comprehensive characterization of the lesion that includes a wide range of quantitative features (e.g., shape and boundary). We investigated a set of predictive models ([Formula: see text]) incorporating distinct combinations of quantitative characterizations and statistical models at different time points of the treatment and some area under the receiver operating characteristic curve (AUC) values we reported are above 0.8. The most efficient models are based on first-order statistics and Riesz wavelets, which predicted RT with an AUC value of 0.85 and pCR with an AUC value of 0.83, improving results reported in a previous study by [Formula: see text]. Our findings suggest that Riesz texture analysis of TNBC lesions can be considered a potential framework for optimizing TNBC patient care.

  17. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    PubMed

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  18. Molecular surface area based predictive models for the adsorption and diffusion of disperse dyes in polylactic acid matrix.

    PubMed

    Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi

    2015-11-15

    Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    PubMed Central

    Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency. PMID:26448740

  20. Quantitative analysis and prediction of G-quadruplex forming sequences in double-stranded DNA

    PubMed Central

    Kim, Minji; Kreig, Alex; Lee, Chun-Ying; Rube, H. Tomas; Calvert, Jacob; Song, Jun S.; Myong, Sua

    2016-01-01

    Abstract G-quadruplex (GQ) is a four-stranded DNA structure that can be formed in guanine-rich sequences. GQ structures have been proposed to regulate diverse biological processes including transcription, replication, translation and telomere maintenance. Recent studies have demonstrated the existence of GQ DNA in live mammalian cells and a significant number of potential GQ forming sequences in the human genome. We present a systematic and quantitative analysis of GQ folding propensity on a large set of 438 GQ forming sequences in double-stranded DNA by integrating fluorescence measurement, single-molecule imaging and computational modeling. We find that short minimum loop length and the thymine base are two main factors that lead to high GQ folding propensity. Linear and Gaussian process regression models further validate that the GQ folding potential can be predicted with high accuracy based on the loop length distribution and the nucleotide content of the loop sequences. Our study provides important new parameters that can inform the evaluation and classification of putative GQ sequences in the human genome. PMID:27095201

  1. Quantitative modeling of reservoir-triggered seismicity

    NASA Astrophysics Data System (ADS)

    Hainzl, S.; Catalli, F.; Dahm, T.; Heinicke, J.; Woith, H.

    2017-12-01

    Reservoir-triggered seismicity might occur as the response to the crustal stress caused by the poroelastic response to the weight of the water volume and fluid diffusion. Several cases of high correlations have been found in the past decades. However, crustal stresses might be altered by many other processes such as continuous tectonic stressing and coseismic stress changes. Because reservoir-triggered stresses decay quickly with distance, even tidal or rainfall-triggered stresses might be of similar size at depth. To account for simultaneous stress sources in a physically meaningful way, we apply a seismicity model based on calculated stress changes in the crust and laboratory-derived friction laws. Based on the observed seismicity, the model parameters can be determined by maximum likelihood method. The model leads to quantitative predictions of the variations of seismicity rate in space and time which can be used for hypothesis testing and forecasting. For case studies in Talala (India), Val d'Agri (Italy) and Novy Kostel (Czech Republic), we show the comparison of predicted and observed seismicity, demonstrating the potential and limitations of the approach.

  2. A strategy to improve the identification reliability of the chemical constituents by high-resolution mass spectrometry-based isomer structure prediction combined with a quantitative structure retention relationship analysis: Phthalide compounds in Chuanxiong as a test case.

    PubMed

    Zhang, Qingqing; Huo, Mengqi; Zhang, Yanling; Qiao, Yanjiang; Gao, Xiaoyan

    2018-06-01

    High-resolution mass spectrometry (HRMS) provides a powerful tool for the rapid analysis and identification of compounds in herbs. However, the diversity and large differences in the content of the chemical constituents in herbal medicines, especially isomerisms, are a great challenge for mass spectrometry-based structural identification. In the current study, a new strategy for the structural characterization of potential new phthalide compounds was proposed by isomer structure predictions combined with a quantitative structure-retention relationship (QSRR) analysis using phthalide compounds in Chuanxiong as an example. This strategy consists of three steps. First, the structures of phthalide compounds were reasonably predicted on the basis of the structure features and MS/MS fragmentation patterns: (1) the collected raw HRMS data were preliminarily screened by an in-house database; (2) the MS/MS fragmentation patterns of the analogous compounds were summarized; (3) the reported phthalide compounds were identified, and the structures of the isomers were reasonably predicted. Second, the QSRR model was established and verified using representative phthalide compound standards. Finally, the retention times of the predicted isomers were calculated by the QSRR model, and the structures of these peaks were rationally characterized by matching retention times of the detected chromatographic peaks and the predicted isomers. A multiple linear regression QSRR model in which 6 physicochemical variables were screened was built using 23 phthalide standards. The retention times of the phthalide isomers in Chuanxiong were well predicted by the QSRR model combined with reasonable structure predictions (R 2 =0.955). A total of 81 peaks were detected from Chuanxiong and assigned to reasonable structures, and 26 potential new phthalide compounds were structurally characterized. This strategy can improve the identification efficiency and reliability of homologues in complex materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Exploring simple, transparent, interpretable and predictive QSAR models for classification and quantitative prediction of rat toxicity of ionic liquids using OECD recommended guidelines.

    PubMed

    Das, Rudra Narayan; Roy, Kunal; Popelier, Paul L A

    2015-11-01

    The present study explores the chemical attributes of diverse ionic liquids responsible for their cytotoxicity in a rat leukemia cell line (IPC-81) by developing predictive classification as well as regression-based mathematical models. Simple and interpretable descriptors derived from a two-dimensional representation of the chemical structures along with quantum topological molecular similarity indices have been used for model development, employing unambiguous modeling strategies that strictly obey the guidelines of the Organization for Economic Co-operation and Development (OECD) for quantitative structure-activity relationship (QSAR) analysis. The structure-toxicity relationships that emerged from both classification and regression-based models were in accordance with the findings of some previous studies. The models suggested that the cytotoxicity of ionic liquids is dependent on the cationic surfactant action, long alkyl side chains, cationic lipophilicity as well as aromaticity, the presence of a dialkylamino substituent at the 4-position of the pyridinium nucleus and a bulky anionic moiety. The models have been transparently presented in the form of equations, thus allowing their easy transferability in accordance with the OECD guidelines. The models have also been subjected to rigorous validation tests proving their predictive potential and can hence be used for designing novel and "greener" ionic liquids. The major strength of the present study lies in the use of a diverse and large dataset, use of simple reproducible descriptors and compliance with the OECD norms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Oxidative DNA damage background estimated by a system model of base excision repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, B A; Wilson, III, D M

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parametersmore » from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.« less

  5. Qualitative and quantitative prediction of volatile compounds from initial amino acid profiles in Korean rice wine (makgeolli) model.

    PubMed

    Kang, Bo-Sik; Lee, Jang-Eun; Park, Hyun-Jin

    2014-06-01

    In Korean rice wine (makgeolli) model, we tried to develop a prediction model capable of eliciting a quantitative relationship between initial amino acids in makgeolli mash and major aromatic compounds, such as fusel alcohols, their acetate esters, and ethyl esters of fatty acids, in makgeolli brewed. Mass-spectrometry-based electronic nose (MS-EN) was used to qualitatively discriminate between makgeollis made from makgeolli mashes with different amino acid compositions. Following this measurement, headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (GC-MS) combined with partial least-squares regression (PLSR) method was employed to quantitatively correlate amino acid composition of makgeolli mash with major aromatic compounds evolved during makgeolli fermentation. In qualitative prediction with MS-EN analysis, the makgeollis were well discriminated according to the volatile compounds derived from amino acids of makgeolli mash. Twenty-seven ion fragments with mass-to-charge ratio (m/z) of 55 to 98 amu were responsible for the discrimination. In GC-MS combined with PLSR method, a quantitative approach between the initial amino acids of makgeolli mash and the fusel compounds of makgeolli demonstrated that coefficient of determination (R(2)) of most of the fusel compounds ranged from 0.77 to 0.94 in good correlation, except for 2-phenylethanol (R(2) = 0.21), whereas R(2) for ethyl esters of MCFAs including ethyl caproate, ethyl caprylate, and ethyl caprate was 0.17 to 0.40 in poor correlation. The amino acids have been known to affect the aroma in alcoholic beverages. In this study, we demonstrated that an electronic nose qualitatively differentiated Korean rice wines (makgeollis) by their volatile compounds evolved from amino acids with rapidity and reproducibility and successively, a quantitative correlation with acceptable R2 between amino acids and fusel compounds could be established via HS-SPME GC-MS combined with partial least-squares regression. Our approach for predicting the quantities of volatile compounds in the finished product from initial condition of fermentation will give an insight to food researchers to modify and optimize the qualities of the corresponding products. © 2014 Institute of Food Technologists®

  6. Biomacromolecular quantitative structure-activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein-protein binding affinity.

    PubMed

    Zhou, Peng; Wang, Congcong; Tian, Feifei; Ren, Yanrong; Yang, Chao; Huang, Jian

    2013-01-01

    Quantitative structure-activity relationship (QSAR), a regression modeling methodology that establishes statistical correlation between structure feature and apparent behavior for a series of congeneric molecules quantitatively, has been widely used to evaluate the activity, toxicity and property of various small-molecule compounds such as drugs, toxicants and surfactants. However, it is surprising to see that such useful technique has only very limited applications to biomacromolecules, albeit the solved 3D atom-resolution structures of proteins, nucleic acids and their complexes have accumulated rapidly in past decades. Here, we present a proof-of-concept paradigm for the modeling, prediction and interpretation of the binding affinity of 144 sequence-nonredundant, structure-available and affinity-known protein complexes (Kastritis et al. Protein Sci 20:482-491, 2011) using a biomacromolecular QSAR (BioQSAR) scheme. We demonstrate that the modeling performance and predictive power of BioQSAR are comparable to or even better than that of traditional knowledge-based strategies, mechanism-type methods and empirical scoring algorithms, while BioQSAR possesses certain additional features compared to the traditional methods, such as adaptability, interpretability, deep-validation and high-efficiency. The BioQSAR scheme could be readily modified to infer the biological behavior and functions of other biomacromolecules, if their X-ray crystal structures, NMR conformation assemblies or computationally modeled structures are available.

  7. Another look at retroactive and proactive interference: a quantitative analysis of conversion processes.

    PubMed

    Blank, Hartmut

    2005-02-01

    Traditionally, the causes of interference phenomena were sought in "real" or "hard" memory processes such as unlearning, response competition, or inhibition, which serve to reduce the accessibility of target items. I propose an alternative approach which does not deny the influence of such processes but highlights a second, equally important, source of interference-the conversion (Tulving, 1983) of accessible memory information into memory performance. Conversion is conceived as a problem-solving-like activity in which the rememberer tries to find solutions to a memory task. Conversion-based interference effects are traced to different conversion processes in the experimental and control conditions of interference designs. I present a simple theoretical model that quantitatively predicts the resulting amount of interference. In two paired-associate learning experiments using two different types of memory tests, these predictions were corroborated. Relations of the present approach to traditional accounts of interference phenomena and implications for eyewitness testimony are discussed.

  8. Blood analysis by Raman spectroscopy.

    PubMed

    Enejder, Annika M K; Koo, Tae-Woong; Oh, Jeankun; Hunter, Martin; Sasic, Slobodan; Feld, Michael S; Horowitz, Gary L

    2002-11-15

    Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering-absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r(2) values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media.

  9. Predictive value of uterine contractility and the serum levels of progesterone and oestrogens with regard to preterm labour.

    PubMed

    Smit, D A; Essed, G G; de Haan, J

    1984-01-01

    A longitudinal investigation regarding the serum concentrations of oestradiol, oestriol and progesterone in relation to uterine activity has been performed in 80 healthy primigravid women during the course of pregnancy up to the 37th week of pregnancy. The frequency of uterine contractions was quantitatively objectivated by means of external toco-dynamometry; simultaneously the uterine activity has been recorded by the pregnant women qualitatively. It appears that there is a gradual increase of all the three mentioned hormones during the course of pregnancy. However, there is a large interindividual spread. There exists no relation between the hormonal serum levels and uterine activity (quantitatively as well as qualitatively recorded). Between these two latter there is a poor relation. It is impossible to predict the occurrence of preterm birth based on hormonal serum changes. This holds for the progesterone-oestradiol ratio.

  10. Evolution, Energy Landscapes and the Paradoxes of Protein Folding

    PubMed Central

    Wolynes, Peter G.

    2014-01-01

    Protein folding has been viewed as a difficult problem of molecular self-organization. The search problem involved in folding however has been simplified through the evolution of folding energy landscapes that are funneled. The funnel hypothesis can be quantified using energy landscape theory based on the minimal frustration principle. Strong quantitative predictions that follow from energy landscape theory have been widely confirmed both through laboratory folding experiments and from detailed simulations. Energy landscape ideas also have allowed successful protein structure prediction algorithms to be developed. The selection constraint of having funneled folding landscapes has left its imprint on the sequences of existing protein structural families. Quantitative analysis of co-evolution patterns allows us to infer the statistical characteristics of the folding landscape. These turn out to be consistent with what has been obtained from laboratory physicochemical folding experiments signalling a beautiful confluence of genomics and chemical physics. PMID:25530262

  11. Thermodynamic properties of gases dissolved in electrolyte solutions.

    NASA Technical Reports Server (NTRS)

    Tiepel, E. W.; Gubbins, K. E.

    1973-01-01

    A method based on perturbation theory for mixtures is applied to the prediction of thermodynamic properties of gases dissolved in electrolyte solutions. The theory is compared with experimental data for the dependence of the solute activity coefficient on concentration, temperature, and pressure; calculations are included for partial molal enthalpy and volume of the dissolved gas. The theory is also compared with previous theories for salt effects and found to be superior. The calculations are best for salting-out systems. The qualitative feature of salting-in is predicted by the theory, but quantitative predictions are not satisfactory for such systems; this is attributed to approximations made in evaluating the perturbation terms.

  12. Three-dimensional quantitative structure-activity relationship (3D QSAR) and pharmacophore elucidation of tetrahydropyran derivatives as serotonin and norepinephrine transporter inhibitors

    NASA Astrophysics Data System (ADS)

    Kharkar, Prashant S.; Reith, Maarten E. A.; Dutta, Aloke K.

    2008-01-01

    Three-dimensional quantitative structure-activity relationship (3D QSAR) using comparative molecular field analysis (CoMFA) was performed on a series of substituted tetrahydropyran (THP) derivatives possessing serotonin (SERT) and norepinephrine (NET) transporter inhibitory activities. The study aimed to rationalize the potency of these inhibitors for SERT and NET as well as the observed selectivity differences for NET over SERT. The dataset consisted of 29 molecules, of which 23 molecules were used as the training set for deriving CoMFA models for SERT and NET uptake inhibitory activities. Superimpositions were performed using atom-based fitting and 3-point pharmacophore-based alignment. Two charge calculation methods, Gasteiger-Hückel and semiempirical PM3, were tried. Both alignment methods were analyzed in terms of their predictive abilities and produced comparable results with high internal and external predictivities. The models obtained using the 3-point pharmacophore-based alignment outperformed the models with atom-based fitting in terms of relevant statistics and interpretability of the generated contour maps. Steric fields dominated electrostatic fields in terms of contribution. The selectivity analysis (NET over SERT), though yielded models with good internal predictivity, showed very poor external test set predictions. The analysis was repeated with 24 molecules after systematically excluding so-called outliers (5 out of 29) from the model derivation process. The resulting CoMFA model using the atom-based fitting exhibited good statistics and was able to explain most of the selectivity (NET over SERT)-discriminating factors. The presence of -OH substituent on the THP ring was found to be one of the most important factors governing the NET selectivity over SERT. Thus, a 4-point NET-selective pharmacophore, after introducing this newly found H-bond donor/acceptor feature in addition to the initial 3-point pharmacophore, was proposed.

  13. Applying network analysis and Nebula (neighbor-edges based and unbiased leverage algorithm) to ToxCast data.

    PubMed

    Ye, Hao; Luo, Heng; Ng, Hui Wen; Meehan, Joe; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2016-01-01

    ToxCast data have been used to develop models for predicting in vivo toxicity. To predict the in vivo toxicity of a new chemical using a ToxCast data based model, its ToxCast bioactivity data are needed but not normally available. The capability of predicting ToxCast bioactivity data is necessary to fully utilize ToxCast data in the risk assessment of chemicals. We aimed to understand and elucidate the relationships between the chemicals and bioactivity data of the assays in ToxCast and to develop a network analysis based method for predicting ToxCast bioactivity data. We conducted modularity analysis on a quantitative network constructed from ToxCast data to explore the relationships between the assays and chemicals. We further developed Nebula (neighbor-edges based and unbiased leverage algorithm) for predicting ToxCast bioactivity data. Modularity analysis on the network constructed from ToxCast data yielded seven modules. Assays and chemicals in the seven modules were distinct. Leave-one-out cross-validation yielded a Q(2) of 0.5416, indicating ToxCast bioactivity data can be predicted by Nebula. Prediction domain analysis showed some types of ToxCast assay data could be more reliably predicted by Nebula than others. Network analysis is a promising approach to understand ToxCast data. Nebula is an effective algorithm for predicting ToxCast bioactivity data, helping fully utilize ToxCast data in the risk assessment of chemicals. Published by Elsevier Ltd.

  14. Nano-QSPR Modelling of Carbon-Based Nanomaterials Properties.

    PubMed

    Salahinejad, Maryam

    2015-01-01

    Evaluation of chemical and physical properties of nanomaterials is of critical importance in a broad variety of nanotechnology researches. There is an increasing interest in computational methods capable of predicting properties of new and modified nanomaterials in the absence of time-consuming and costly experimental studies. Quantitative Structure- Property Relationship (QSPR) approaches are progressive tools in modelling and prediction of many physicochemical properties of nanomaterials, which are also known as nano-QSPR. This review provides insight into the concepts, challenges and applications of QSPR modelling of carbon-based nanomaterials. First, we try to provide a general overview of QSPR implications, by focusing on the difficulties and limitations on each step of the QSPR modelling of nanomaterials. Then follows with the most significant achievements of QSPR methods in modelling of carbon-based nanomaterials properties and their recent applications to generate predictive models. This review specifically addresses the QSPR modelling of physicochemical properties of carbon-based nanomaterials including fullerenes, single-walled carbon nanotube (SWNT), multi-walled carbon nanotube (MWNT) and graphene.

  15. Modelling of occupational respirable crystalline silica exposure for quantitative exposure assessment in community-based case-control studies.

    PubMed

    Peters, Susan; Vermeulen, Roel; Portengen, Lützen; Olsson, Ann; Kendzia, Benjamin; Vincent, Raymond; Savary, Barbara; Lavoué, Jérôme; Cavallo, Domenico; Cattaneo, Andrea; Mirabelli, Dario; Plato, Nils; Fevotte, Joelle; Pesch, Beate; Brüning, Thomas; Straif, Kurt; Kromhout, Hans

    2011-11-01

    We describe an empirical model for exposure to respirable crystalline silica (RCS) to create a quantitative job-exposure matrix (JEM) for community-based studies. Personal measurements of exposure to RCS from Europe and Canada were obtained for exposure modelling. A mixed-effects model was elaborated, with region/country and job titles as random effect terms. The fixed effect terms included year of measurement, measurement strategy (representative or worst-case), sampling duration (minutes) and a priori exposure intensity rating for each job from an independently developed JEM (none, low, high). 23,640 personal RCS exposure measurements, covering a time period from 1976 to 2009, were available for modelling. The model indicated an overall downward time trend in RCS exposure levels of -6% per year. Exposure levels were higher in the UK and Canada, and lower in Northern Europe and Germany. Worst-case sampling was associated with higher reported exposure levels and an increase in sampling duration was associated with lower reported exposure levels. Highest predicted RCS exposure levels in the reference year (1998) were for chimney bricklayers (geometric mean 0.11 mg m(-3)), monument carvers and other stone cutters and carvers (0.10 mg m(-3)). The resulting model enables us to predict time-, job-, and region/country-specific exposure levels of RCS. These predictions will be used in the SYNERGY study, an ongoing pooled multinational community-based case-control study on lung cancer.

  16. Enhancement of lung sounds based on empirical mode decomposition and Fourier transform algorithm.

    PubMed

    Mondal, Ashok; Banerjee, Poulami; Somkuwar, Ajay

    2017-02-01

    There is always heart sound (HS) signal interfering during the recording of lung sound (LS) signals. This obscures the features of LS signals and creates confusion on pathological states, if any, of the lungs. In this work, a new method is proposed for reduction of heart sound interference which is based on empirical mode decomposition (EMD) technique and prediction algorithm. In this approach, first the mixed signal is split into several components in terms of intrinsic mode functions (IMFs). Thereafter, HS-included segments are localized and removed from them. The missing values of the gap thus produced, is predicted by a new Fast Fourier Transform (FFT) based prediction algorithm and the time domain LS signal is reconstructed by taking an inverse FFT of the estimated missing values. The experiments have been conducted on simulated and recorded HS corrupted LS signals at three different flow rates and various SNR levels. The performance of the proposed method is evaluated by qualitative and quantitative analysis of the results. It is found that the proposed method is superior to the baseline method in terms of quantitative and qualitative measurement. The developed method gives better results compared to baseline method for different SNR levels. Our method gives cross correlation index (CCI) of 0.9488, signal to deviation ratio (SDR) of 9.8262, and normalized maximum amplitude error (NMAE) of 26.94 for 0 dB SNR value. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Response monitoring of breast cancer patients receiving neoadjuvant chemotherapy using quantitative ultrasound, texture, and molecular features

    PubMed Central

    Gangeh, Mehrdad; Tadayyon, Hadi; Sadeghi-Naini, Ali; Gandhi, Sonal; Wright, Frances C.; Slodkowska, Elzbieta; Curpen, Belinda; Tran, William; Czarnota, Gregory J.

    2018-01-01

    Background Pathological response of breast cancer to chemotherapy is a prognostic indicator for long-term disease free and overall survival. Responses of locally advanced breast cancer in the neoadjuvant chemotherapy (NAC) settings are often variable, and the prediction of response is imperfect. The purpose of this study was to detect primary tumor responses early after the start of neoadjuvant chemotherapy using quantitative ultrasound (QUS), textural analysis and molecular features in patients with locally advanced breast cancer. Methods The study included ninety six patients treated with neoadjuvant chemotherapy. Breast tumors were scanned with a clinical ultrasound system prior to chemotherapy treatment, during the first, fourth and eighth week of treatment, and prior to surgery. Quantitative ultrasound parameters and scatterer-based features were calculated from ultrasound radio frequency (RF) data within tumor regions of interest. Additionally, texture features were extracted from QUS parametric maps. Prior to therapy, all patients underwent a core needle biopsy and histological subtypes and biomarker ER, PR, and HER2 status were determined. Patients were classified into three treatment response groups based on combination of clinical and pathological analyses: complete responders (CR), partial responders (PR), and non-responders (NR). Response classifications from QUS parameters, receptors status and pathological were compared. Discriminant analysis was performed on extracted parameters using a support vector machine classifier to categorize subjects into CR, PR, and NR groups at all scan times. Results Of the 96 patients, the number of CR, PR and NR patients were 21, 52, and 23, respectively. The best prediction of treatment response was achieved with the combination mean QUS values, texture and molecular features with accuracies of 78%, 86% and 83% at weeks 1, 4, and 8, after treatment respectively. Mean QUS parameters or clinical receptors status alone predicted the three response groups with accuracies less than 60% at all scan time points. Recurrence free survival (RFS) of response groups determined based on combined features followed similar trend as determined based on clinical and pathology. Conclusions This work demonstrates the potential of using QUS, texture and molecular features for predicting the response of primary breast tumors to chemotherapy early, and guiding the treatment planning of refractory patients. PMID:29298305

  18. Empirical Prediction of Aircraft Landing Gear Noise

    NASA Technical Reports Server (NTRS)

    Golub, Robert A. (Technical Monitor); Guo, Yue-Ping

    2005-01-01

    This report documents a semi-empirical/semi-analytical method for landing gear noise prediction. The method is based on scaling laws of the theory of aerodynamic noise generation and correlation of these scaling laws with current available test data. The former gives the method a sound theoretical foundation and the latter quantitatively determines the relations between the parameters of the landing gear assembly and the far field noise, enabling practical predictions of aircraft landing gear noise, both for parametric trends and for absolute noise levels. The prediction model is validated by wind tunnel test data for an isolated Boeing 737 landing gear and by flight data for the Boeing 777 airplane. In both cases, the predictions agree well with data, both in parametric trends and in absolute noise levels.

  19. Effects of the approximations of light propagation on quantitative photoacoustic tomography using two-dimensional photon diffusion equation and linearization

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya

    2017-12-01

    Quantitative photoacoustic tomography (QPAT) employing a light propagation model will play an important role in medical diagnoses by quantifying the concentration of hemoglobin or a contrast agent. However, QPAT by the light propagation model with the three-dimensional (3D) radiative transfer equation (RTE) requires a huge computational load in the iterative forward calculations involved in the updating process to reconstruct the absorption coefficient. The approximations of the light propagation improve the efficiency of the image reconstruction for the QPAT. In this study, we compared the 3D/two-dimensional (2D) photon diffusion equation (PDE) approximating 3D RTE with the Monte Carlo simulation based on 3D RTE. Then, the errors in a 2D PDE-based linearized image reconstruction caused by the approximations were quantitatively demonstrated and discussed in the numerical simulations. It was clearly observed that the approximations affected the reconstructed absorption coefficient. The 2D PDE-based linearized algorithm succeeded in the image reconstruction of the region with a large absorption coefficient in the 3D phantom. The value reconstructed in the phantom experiment agreed with that in the numerical simulation, so that it was validated that the numerical simulation of the image reconstruction predicted the relationship between the true absorption coefficient of the target in the 3D medium and the reconstructed value with the 2D PDE-based linearized algorithm. Moreover, the the true absorption coefficient in 3D medium was estimated from the 2D reconstructed image on the basis of the prediction by the numerical simulation. The estimation was successful in the phantom experiment, although some limitations were revealed.

  20. Global Quantitative Modeling of Chromatin Factor Interactions

    PubMed Central

    Zhou, Jian; Troyanskaya, Olga G.

    2014-01-01

    Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the “chromatin codes”) remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles — we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions. PMID:24675896

  1. QSPR models for predicting generator-column-derived octanol/water and octanol/air partition coefficients of polychlorinated biphenyls.

    PubMed

    Yuan, Jintao; Yu, Shuling; Zhang, Ting; Yuan, Xuejie; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu

    2016-06-01

    Octanol/water (K(OW)) and octanol/air (K(OA)) partition coefficients are two important physicochemical properties of organic substances. In current practice, K(OW) and K(OA) values of some polychlorinated biphenyls (PCBs) are measured using generator column method. Quantitative structure-property relationship (QSPR) models can serve as a valuable alternative method of replacing or reducing experimental steps in the determination of K(OW) and K(OA). In this paper, two different methods, i.e., multiple linear regression based on dragon descriptors and hologram quantitative structure-activity relationship, were used to predict generator-column-derived log K(OW) and log K(OA) values of PCBs. The predictive ability of the developed models was validated using a test set, and the performances of all generated models were compared with those of three previously reported models. All results indicated that the proposed models were robust and satisfactory and can thus be used as alternative models for the rapid assessment of the K(OW) and K(OA) of PCBs. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Application Study of Comprehensive Forecasting Model Based on Entropy Weighting Method on Trend of PM2.5 Concentration in Guangzhou, China

    PubMed Central

    Liu, Dong-jun; Li, Li

    2015-01-01

    For the issue of haze-fog, PM2.5 is the main influence factor of haze-fog pollution in China. The trend of PM2.5 concentration was analyzed from a qualitative point of view based on mathematical models and simulation in this study. The comprehensive forecasting model (CFM) was developed based on the combination forecasting ideas. Autoregressive Integrated Moving Average Model (ARIMA), Artificial Neural Networks (ANNs) model and Exponential Smoothing Method (ESM) were used to predict the time series data of PM2.5 concentration. The results of the comprehensive forecasting model were obtained by combining the results of three methods based on the weights from the Entropy Weighting Method. The trend of PM2.5 concentration in Guangzhou China was quantitatively forecasted based on the comprehensive forecasting model. The results were compared with those of three single models, and PM2.5 concentration values in the next ten days were predicted. The comprehensive forecasting model balanced the deviation of each single prediction method, and had better applicability. It broadens a new prediction method for the air quality forecasting field. PMID:26110332

  3. Application Study of Comprehensive Forecasting Model Based on Entropy Weighting Method on Trend of PM2.5 Concentration in Guangzhou, China.

    PubMed

    Liu, Dong-jun; Li, Li

    2015-06-23

    For the issue of haze-fog, PM2.5 is the main influence factor of haze-fog pollution in China. The trend of PM2.5 concentration was analyzed from a qualitative point of view based on mathematical models and simulation in this study. The comprehensive forecasting model (CFM) was developed based on the combination forecasting ideas. Autoregressive Integrated Moving Average Model (ARIMA), Artificial Neural Networks (ANNs) model and Exponential Smoothing Method (ESM) were used to predict the time series data of PM2.5 concentration. The results of the comprehensive forecasting model were obtained by combining the results of three methods based on the weights from the Entropy Weighting Method. The trend of PM2.5 concentration in Guangzhou China was quantitatively forecasted based on the comprehensive forecasting model. The results were compared with those of three single models, and PM2.5 concentration values in the next ten days were predicted. The comprehensive forecasting model balanced the deviation of each single prediction method, and had better applicability. It broadens a new prediction method for the air quality forecasting field.

  4. Cortical and Hippocampal Correlates of Deliberation during Model-Based Decisions for Rewards in Humans

    PubMed Central

    Bornstein, Aaron M.; Daw, Nathaniel D.

    2013-01-01

    How do we use our memories of the past to guide decisions we've never had to make before? Although extensive work describes how the brain learns to repeat rewarded actions, decisions can also be influenced by associations between stimuli or events not directly involving reward — such as when planning routes using a cognitive map or chess moves using predicted countermoves — and these sorts of associations are critical when deciding among novel options. This process is known as model-based decision making. While the learning of environmental relations that might support model-based decisions is well studied, and separately this sort of information has been inferred to impact decisions, there is little evidence concerning the full cycle by which such associations are acquired and drive choices. Of particular interest is whether decisions are directly supported by the same mnemonic systems characterized for relational learning more generally, or instead rely on other, specialized representations. Here, building on our previous work, which isolated dual representations underlying sequential predictive learning, we directly demonstrate that one such representation, encoded by the hippocampal memory system and adjacent cortical structures, supports goal-directed decisions. Using interleaved learning and decision tasks, we monitor predictive learning directly and also trace its influence on decisions for reward. We quantitatively compare the learning processes underlying multiple behavioral and fMRI observables using computational model fits. Across both tasks, a quantitatively consistent learning process explains reaction times, choices, and both expectation- and surprise-related neural activity. The same hippocampal and ventral stream regions engaged in anticipating stimuli during learning are also engaged in proportion to the difficulty of decisions. These results support a role for predictive associations learned by the hippocampal memory system to be recalled during choice formation. PMID:24339770

  5. Quantitative prediction of repaglinide-rifampicin complex drug interactions using dynamic and static mechanistic models: delineating differential CYP3A4 induction and OATP1B1 inhibition potential of rifampicin.

    PubMed

    Varma, Manthena V S; Lin, Jian; Bi, Yi-An; Rotter, Charles J; Fahmi, Odette A; Lam, Justine L; El-Kattan, Ayman F; Goosen, Theunis C; Lai, Yurong

    2013-05-01

    Repaglinide is mainly metabolized by cytochrome P450 enzymes CYP2C8 and CYP3A4, and it is also a substrate to a hepatic uptake transporter, organic anion transporting polypeptide (OATP)1B1. The purpose of this study is to predict the dosing time-dependent pharmacokinetic interactions of repaglinide with rifampicin, using mechanistic models. In vitro hepatic transport of repaglinide, characterized using sandwich-cultured human hepatocytes, and intrinsic metabolic parameters were used to build a dynamic whole-body physiologically-based pharmacokinetic (PBPK) model. The PBPK model adequately described repaglinide plasma concentration-time profiles and successfully predicted area under the plasma concentration-time curve ratios of repaglinide (within ± 25% error), dosed (staggered 0-24 hours) after rifampicin treatment when primarily considering induction of CYP3A4 and reversible inhibition of OATP1B1 by rifampicin. Further, a static mechanistic "extended net-effect" model incorporating transport and metabolic disposition parameters of repaglinide and interaction potency of rifampicin was devised. Predictions based on the static model are similar to those observed in the clinic (average error ∼19%) and to those based on the PBPK model. Both the models suggested that the combined effect of increased gut extraction and decreased hepatic uptake caused minimal repaglinide systemic exposure change when repaglinide is dosed simultaneously or 1 hour after the rifampicin dose. On the other hand, isolated induction effect as a result of temporal separation of the two drugs translated to an approximate 5-fold reduction in repaglinide systemic exposure. In conclusion, both dynamic and static mechanistic models are instrumental in delineating the quantitative contribution of transport and metabolism in the dosing time-dependent repaglinide-rifampicin interactions.

  6. Modeling of Toxicity-Relevant Electrophilic Reactivity for Guanine with Epoxides: Estimating the Hard and Soft Acids and Bases (HSAB) Parameter as a Predictor.

    PubMed

    Zhang, Jing; Wang, Chenchen; Ji, Li; Liu, Weiping

    2016-05-16

    According to the electrophilic theory in toxicology, many chemical carcinogens in the environment and/or their active metabolites are electrophiles that exert their effects by forming covalent bonds with nucleophilic DNA centers. The theory of hard and soft acids and bases (HSAB), which states that a toxic electrophile reacts preferentially with a biological macromolecule that has a similar hardness or softness, clarifies the underlying chemistry involved in this critical event. Epoxides are hard electrophiles that are produced endogenously by the enzymatic oxidation of parent chemicals (e.g., alkenes and PAHs). Epoxide ring opening proceeds through a SN2-type mechanism with hard nucleophile DNA sites as the major facilitators of toxic effects. Thus, the quantitative prediction of chemical reactivity would enable a predictive assessment of the molecular potential to exert electrophile-mediated toxicity. In this study, we calculated the activation energies for reactions between epoxides and the guanine N7 site for a diverse set of epoxides, including aliphatic epoxides, substituted styrene oxides, and PAH epoxides, using a state-of-the-art density functional theory (DFT) method. It is worth noting that these activation energies for diverse epoxides can be further predicted by quantum chemically calculated nucleophilic indices from HSAB theory, which is a less computationally demanding method than the exacting procedure for locating the transition state. More importantly, the good qualitative/quantitative correlations between the chemical reactivity of epoxides and their bioactivity suggest that the developed model based on HSAB theory may aid in the predictive hazard evaluation of epoxides, enabling the early identification of mutagenicity/carcinogenicity-relevant SN2 reactivity.

  7. Idiopathic Pulmonary Fibrosis: Data-driven Textural Analysis of Extent of Fibrosis at Baseline and 15-Month Follow-up.

    PubMed

    Humphries, Stephen M; Yagihashi, Kunihiro; Huckleberry, Jason; Rho, Byung-Hak; Schroeder, Joyce D; Strand, Matthew; Schwarz, Marvin I; Flaherty, Kevin R; Kazerooni, Ella A; van Beek, Edwin J R; Lynch, David A

    2017-10-01

    Purpose To evaluate associations between pulmonary function and both quantitative analysis and visual assessment of thin-section computed tomography (CT) images at baseline and at 15-month follow-up in subjects with idiopathic pulmonary fibrosis (IPF). Materials and Methods This retrospective analysis of preexisting anonymized data, collected prospectively between 2007 and 2013 in a HIPAA-compliant study, was exempt from additional institutional review board approval. The extent of lung fibrosis at baseline inspiratory chest CT in 280 subjects enrolled in the IPF Network was evaluated. Visual analysis was performed by using a semiquantitative scoring system. Computer-based quantitative analysis included CT histogram-based measurements and a data-driven textural analysis (DTA). Follow-up CT images in 72 of these subjects were also analyzed. Univariate comparisons were performed by using Spearman rank correlation. Multivariate and longitudinal analyses were performed by using a linear mixed model approach, in which models were compared by using asymptotic χ 2 tests. Results At baseline, all CT-derived measures showed moderate significant correlation (P < .001) with pulmonary function. At follow-up CT, changes in DTA scores showed significant correlation with changes in both forced vital capacity percentage predicted (ρ = -0.41, P < .001) and diffusing capacity for carbon monoxide percentage predicted (ρ = -0.40, P < .001). Asymptotic χ 2 tests showed that inclusion of DTA score significantly improved fit of both baseline and longitudinal linear mixed models in the prediction of pulmonary function (P < .001 for both). Conclusion When compared with semiquantitative visual assessment and CT histogram-based measurements, DTA score provides additional information that can be used to predict diminished function. Automatic quantification of lung fibrosis at CT yields an index of severity that correlates with visual assessment and functional change in subjects with IPF. © RSNA, 2017.

  8. Role of Quantitative Clinical Pharmacology in Pediatric Approval and Labeling.

    PubMed

    Mehrotra, Nitin; Bhattaram, Atul; Earp, Justin C; Florian, Jeffry; Krudys, Kevin; Lee, Jee Eun; Lee, Joo Yeon; Liu, Jiang; Mulugeta, Yeruk; Yu, Jingyu; Zhao, Ping; Sinha, Vikram

    2016-07-01

    Dose selection is one of the key decisions made during drug development in pediatrics. There are regulatory initiatives that promote the use of model-based drug development in pediatrics. Pharmacometrics or quantitative clinical pharmacology enables development of models that can describe factors affecting pharmacokinetics and/or pharmacodynamics in pediatric patients. This manuscript describes some examples in which pharmacometric analysis was used to support approval and labeling in pediatrics. In particular, the role of pharmacokinetic (PK) comparison of pediatric PK to adults and utilization of dose/exposure-response analysis for dose selection are highlighted. Dose selection for esomeprazole in pediatrics was based on PK matching to adults, whereas for adalimumab, exposure-response, PK, efficacy, and safety data together were useful to recommend doses for pediatric Crohn's disease. For vigabatrin, demonstration of similar dose-response between pediatrics and adults allowed for selection of a pediatric dose. Based on model-based pharmacokinetic simulations and safety data from darunavir pediatric clinical studies with a twice-daily regimen, different once-daily dosing regimens for treatment-naïve human immunodeficiency virus 1-infected pediatric subjects 3 to <12 years of age were evaluated. The role of physiologically based pharmacokinetic modeling (PBPK) in predicting pediatric PK is rapidly evolving. However, regulatory review experiences and an understanding of the state of science indicate that there is a lack of established predictive performance of PBPK in pediatric PK prediction. Moving forward, pharmacometrics will continue to play a key role in pediatric drug development contributing toward decisions pertaining to dose selection, trial designs, and assessing disease similarity to adults to support extrapolation of efficacy. Copyright © 2016 U.S. Government work not protected by U.S. copyright.

  9. Quantitative variability of renewable energy resources in Norway

    NASA Astrophysics Data System (ADS)

    Christakos, Konstantinos; Varlas, George; Cheliotis, Ioannis; Aalstad, Kristoffer; Papadopoulos, Anastasios; Katsafados, Petros; Steeneveld, Gert-Jan

    2017-04-01

    Based on European Union (EU) targets for 2030, the share of renewable energy (RE) consumption should be increased at 27%. RE resources such as hydropower, wind, wave power and solar power are strongly depending on the chaotic behavior of the weather conditions and climate. Due to this dependency, the prediction of the spatiotemporal variability of the RE resources is more crucial factor than in other energy resources (i.e. carbon based energy). The fluctuation of the RE resources can affect the development of the RE technologies, the energy grid, supply and prices. This study investigates the variability of the potential RE resources in Norway. More specifically, hydropower, wind, wave, and solar power are quantitatively analyzed and correlated with respect to various spatial and temporal scales. In order to analyze the diversities and their interrelationships, reanalysis and observational data of wind, precipitation, wave, and solar radiation are used for a quantitative assessment. The results indicate a high variability of marine RE resources in the North Sea and the Norwegian Sea.

  10. A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China

    PubMed Central

    Yu, Xianyu; Wang, Yi; Niu, Ruiqing; Hu, Youjian

    2016-01-01

    In this study, a novel coupling model for landslide susceptibility mapping is presented. In practice, environmental factors may have different impacts at a local scale in study areas. To provide better predictions, a geographically weighted regression (GWR) technique is firstly used in our method to segment study areas into a series of prediction regions with appropriate sizes. Meanwhile, a support vector machine (SVM) classifier is exploited in each prediction region for landslide susceptibility mapping. To further improve the prediction performance, the particle swarm optimization (PSO) algorithm is used in the prediction regions to obtain optimal parameters for the SVM classifier. To evaluate the prediction performance of our model, several SVM-based prediction models are utilized for comparison on a study area of the Wanzhou district in the Three Gorges Reservoir. Experimental results, based on three objective quantitative measures and visual qualitative evaluation, indicate that our model can achieve better prediction accuracies and is more effective for landslide susceptibility mapping. For instance, our model can achieve an overall prediction accuracy of 91.10%, which is 7.8%–19.1% higher than the traditional SVM-based models. In addition, the obtained landslide susceptibility map by our model can demonstrate an intensive correlation between the classified very high-susceptibility zone and the previously investigated landslides. PMID:27187430

  11. A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China.

    PubMed

    Yu, Xianyu; Wang, Yi; Niu, Ruiqing; Hu, Youjian

    2016-05-11

    In this study, a novel coupling model for landslide susceptibility mapping is presented. In practice, environmental factors may have different impacts at a local scale in study areas. To provide better predictions, a geographically weighted regression (GWR) technique is firstly used in our method to segment study areas into a series of prediction regions with appropriate sizes. Meanwhile, a support vector machine (SVM) classifier is exploited in each prediction region for landslide susceptibility mapping. To further improve the prediction performance, the particle swarm optimization (PSO) algorithm is used in the prediction regions to obtain optimal parameters for the SVM classifier. To evaluate the prediction performance of our model, several SVM-based prediction models are utilized for comparison on a study area of the Wanzhou district in the Three Gorges Reservoir. Experimental results, based on three objective quantitative measures and visual qualitative evaluation, indicate that our model can achieve better prediction accuracies and is more effective for landslide susceptibility mapping. For instance, our model can achieve an overall prediction accuracy of 91.10%, which is 7.8%-19.1% higher than the traditional SVM-based models. In addition, the obtained landslide susceptibility map by our model can demonstrate an intensive correlation between the classified very high-susceptibility zone and the previously investigated landslides.

  12. Methylation analysis of plasma cell-free DNA for breast cancer early detection using bisulfite next-generation sequencing.

    PubMed

    Li, Zibo; Guo, Xinwu; Tang, Lili; Peng, Limin; Chen, Ming; Luo, Xipeng; Wang, Shouman; Xiao, Zhi; Deng, Zhongping; Dai, Lizhong; Xia, Kun; Wang, Jun

    2016-10-01

    Circulating cell-free DNA (cfDNA) has been considered as a potential biomarker for non-invasive cancer detection. To evaluate the methylation levels of six candidate genes (EGFR, GREM1, PDGFRB, PPM1E, SOX17, and WRN) in plasma cfDNA as biomarkers for breast cancer early detection, quantitative analysis of the promoter methylation of these genes from 86 breast cancer patients and 67 healthy controls was performed by using microfluidic-PCR-based target enrichment and next-generation bisulfite sequencing technology. The predictive performance of different logistic models based on methylation status of candidate genes was investigated by means of the area under the ROC curve (AUC) and odds ratio (OR) analysis. Results revealed that EGFR, PPM1E, and 8 gene-specific CpG sites showed significantly hypermethylation in cancer patients' plasma and significantly associated with breast cancer (OR ranging from 2.51 to 9.88). The AUC values for these biomarkers were ranging from 0.66 to 0.75. Combinations of multiple hypermethylated genes or CpG sites substantially improved the predictive performance for breast cancer detection. Our study demonstrated the feasibility of quantitative measurement of candidate gene methylation in cfDNA by using microfluidic-PCR-based target enrichment and bisulfite next-generation sequencing, which is worthy of further validation and potentially benefits a broad range of applications in clinical oncology practice. Quantitative analysis of methylation pattern of plasma cfDNA by next-generation sequencing might be a valuable non-invasive tool for early detection of breast cancer.

  13. National Centers for Environmental Prediction

    Science.gov Websites

    ENSEMBLE PRODUCTS & DATA SOURCES Probabilistic Forecasts of Quantitative Precipitation from the NCEP Predictability Research with Indian Monsoon Examples - PDF - 28 Mar 2005 North American Ensemble Forecast System QUANTITATIVE PRECIPITATION *PQPF* In these charts, the probability that 24-hour precipitation amounts over a

  14. Manual physical balance assistance of therapists during gait training of stroke survivors: characteristics and predicting the timing.

    PubMed

    Haarman, Juliet A M; Maartens, Erik; van der Kooij, Herman; Buurke, Jaap H; Reenalda, Jasper; Rietman, Johan S

    2017-12-02

    During gait training, physical therapists continuously supervise stroke survivors and provide physical support to their pelvis when they judge that the patient is unable to keep his balance. This paper is the first in providing quantitative data about the corrective forces that therapists use during gait training. It is assumed that changes in the acceleration of a patient's COM are a good predictor for therapeutic balance assistance during the training sessions Therefore, this paper provides a method that predicts the timing of therapeutic balance assistance, based on acceleration data of the sacrum. Eight sub-acute stroke survivors and seven therapists were included in this study. Patients were asked to perform straight line walking as well as slalom walking in a conventional training setting. Acceleration of the sacrum was captured by an Inertial Magnetic Measurement Unit. Balance-assisting corrective forces applied by the therapist were collected from two force sensors positioned on both sides of the patient's hips. Measures to characterize the therapeutic balance assistance were the amount of force, duration, impulse and the anatomical plane in which the assistance took place. Based on the acceleration data of the sacrum, an algorithm was developed to predict therapeutic balance assistance. To validate the developed algorithm, the predicted events of balance assistance by the algorithm were compared with the actual provided therapeutic assistance. The algorithm was able to predict the actual therapeutic assistance with a Positive Predictive Value of 87% and a True Positive Rate of 81%. Assistance mainly took place over the medio-lateral axis and corrective forces of about 2% of the patient's body weight (15.9 N (11), median (IQR)) were provided by therapists in this plane. Median duration of balance assistance was 1.1 s (0.6) (median (IQR)) and median impulse was 9.4Ns (8.2) (median (IQR)). Although therapists were specifically instructed to aim for the force sensors on the iliac crest, a different contact location was reported in 22% of the corrections. This paper presents insights into the behavior of therapists regarding their manual physical assistance during gait training. A quantitative dataset was presented, representing therapeutic balance-assisting force characteristics. Furthermore, an algorithm was developed that predicts events at which therapeutic balance assistance was provided. Prediction scores remain high when different therapists and patients were analyzed with the same algorithm settings. Both the quantitative dataset and the developed algorithm can serve as technical input in the development of (robot-controlled) balance supportive devices.

  15. Predicting the response of populations to environmental change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ives, A.R.

    1995-04-01

    When subject to long-term directional environmental perturbations, changes in population densities depend on the positive and negative feedbacks operating through interactions within and among species in a community. This paper develops techniques to predict the long-term responses of population densities to environmental changes using data on short-term population fluctuations driven by short-term environmental variability. In addition to giving quantitative predictions, the techniques also reveal how different qualitative patterns of species interactions either buffer or accentuate population responses to environmental trends. All of the predictions are based on regression coefficients extracted from time series data, and they can therefore be appliedmore » with a minimum of mathematical and statistical gymnastics. 48 refs., 10 figs., 4 tabs.« less

  16. Predicting Children's Reading and Mathematics Achievement from Early Quantitative Knowledge and Domain-General Cognitive Abilities

    PubMed Central

    Chu, Felicia W.; vanMarle, Kristy; Geary, David C.

    2016-01-01

    One hundred children (44 boys) participated in a 3-year longitudinal study of the development of basic quantitative competencies and the relation between these competencies and later mathematics and reading achievement. The children's preliteracy knowledge, intelligence, executive functions, and parental educational background were also assessed. The quantitative tasks assessed a broad range of symbolic and nonsymbolic knowledge and were administered four times across 2 years of preschool. Mathematics achievement was assessed at the end of each of 2 years of preschool, and mathematics and word reading achievement were assessed at the end of kindergarten. Our goals were to determine how domain-general abilities contribute to growth in children's quantitative knowledge and to determine how domain-general and domain-specific abilities contribute to children's preschool mathematics achievement and kindergarten mathematics and reading achievement. We first identified four core quantitative competencies (e.g., knowledge of the cardinal value of number words) that predict later mathematics achievement. The domain-general abilities were then used to predict growth in these competencies across 2 years of preschool, and the combination of domain-general abilities, preliteracy skills, and core quantitative competencies were used to predict mathematics achievement across preschool and mathematics and word reading achievement at the end of kindergarten. Both intelligence and executive functions predicted growth in the four quantitative competencies, especially across the first year of preschool. A combination of domain-general and domain-specific competencies predicted preschoolers' mathematics achievement, with a trend for domain-specific skills to be more strongly related to achievement at the beginning of preschool than at the end of preschool. Preschool preliteracy skills, sensitivity to the relative quantities of collections of objects, and cardinal knowledge predicted reading and mathematics achievement at the end of kindergarten. Preliteracy skills were more strongly related to word reading, whereas sensitivity to relative quantity was more strongly related to mathematics achievement. The overall results indicate that a combination of domain-general and domain-specific abilities contribute to development of children's early mathematics and reading achievement. PMID:27252675

  17. Predicting Children's Reading and Mathematics Achievement from Early Quantitative Knowledge and Domain-General Cognitive Abilities.

    PubMed

    Chu, Felicia W; vanMarle, Kristy; Geary, David C

    2016-01-01

    One hundred children (44 boys) participated in a 3-year longitudinal study of the development of basic quantitative competencies and the relation between these competencies and later mathematics and reading achievement. The children's preliteracy knowledge, intelligence, executive functions, and parental educational background were also assessed. The quantitative tasks assessed a broad range of symbolic and nonsymbolic knowledge and were administered four times across 2 years of preschool. Mathematics achievement was assessed at the end of each of 2 years of preschool, and mathematics and word reading achievement were assessed at the end of kindergarten. Our goals were to determine how domain-general abilities contribute to growth in children's quantitative knowledge and to determine how domain-general and domain-specific abilities contribute to children's preschool mathematics achievement and kindergarten mathematics and reading achievement. We first identified four core quantitative competencies (e.g., knowledge of the cardinal value of number words) that predict later mathematics achievement. The domain-general abilities were then used to predict growth in these competencies across 2 years of preschool, and the combination of domain-general abilities, preliteracy skills, and core quantitative competencies were used to predict mathematics achievement across preschool and mathematics and word reading achievement at the end of kindergarten. Both intelligence and executive functions predicted growth in the four quantitative competencies, especially across the first year of preschool. A combination of domain-general and domain-specific competencies predicted preschoolers' mathematics achievement, with a trend for domain-specific skills to be more strongly related to achievement at the beginning of preschool than at the end of preschool. Preschool preliteracy skills, sensitivity to the relative quantities of collections of objects, and cardinal knowledge predicted reading and mathematics achievement at the end of kindergarten. Preliteracy skills were more strongly related to word reading, whereas sensitivity to relative quantity was more strongly related to mathematics achievement. The overall results indicate that a combination of domain-general and domain-specific abilities contribute to development of children's early mathematics and reading achievement.

  18. Risk analysis for veterinary biologicals released into the environment.

    PubMed

    Silva, S V; Samagh, B S; Morley, R S

    1995-12-01

    All veterinary biologicals licensed in Canada must be shown to be pure, potent, safe and effective. A risk-based approach is used to evaluate the safety of all biologicals, whether produced by conventional methods or by molecular biological techniques. Traditionally, qualitative risk assessment methods have been used for this purpose. More recently, quantitative risk assessment has become available for complex issues. The quantitative risk assessment method uses "scenario tree analysis' to predict the likelihood of various outcomes and their respective impacts. The authors describe the quantitative risk assessment approach which is used within the broader context of risk analysis (i.e. risk assessment, risk management and risk communication) to develop recommendations for the field release of veterinary biologicals. The general regulatory framework for the licensing of veterinary biologicals in Canada is also presented.

  19. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.

    PubMed

    Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J

    2015-09-30

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. Copyright © 2015 the authors 0270-6474/15/3513402-17$15.00/0.

  20. Quantitative imaging features of pretreatment CT predict volumetric response to chemotherapy in patients with colorectal liver metastases.

    PubMed

    Creasy, John M; Midya, Abhishek; Chakraborty, Jayasree; Adams, Lauryn B; Gomes, Camilla; Gonen, Mithat; Seastedt, Kenneth P; Sutton, Elizabeth J; Cercek, Andrea; Kemeny, Nancy E; Shia, Jinru; Balachandran, Vinod P; Kingham, T Peter; Allen, Peter J; DeMatteo, Ronald P; Jarnagin, William R; D'Angelica, Michael I; Do, Richard K G; Simpson, Amber L

    2018-06-19

    This study investigates whether quantitative image analysis of pretreatment CT scans can predict volumetric response to chemotherapy for patients with colorectal liver metastases (CRLM). Patients treated with chemotherapy for CRLM (hepatic artery infusion (HAI) combined with systemic or systemic alone) were included in the study. Patients were imaged at baseline and approximately 8 weeks after treatment. Response was measured as the percentage change in tumour volume from baseline. Quantitative imaging features were derived from the index hepatic tumour on pretreatment CT, and features statistically significant on univariate analysis were included in a linear regression model to predict volumetric response. The regression model was constructed from 70% of data, while 30% were reserved for testing. Test data were input into the trained model. Model performance was evaluated with mean absolute prediction error (MAPE) and R 2 . Clinicopatholologic factors were assessed for correlation with response. 157 patients were included, split into training (n = 110) and validation (n = 47) sets. MAPE from the multivariate linear regression model was 16.5% (R 2 = 0.774) and 21.5% in the training and validation sets, respectively. Stratified by HAI utilisation, MAPE in the validation set was 19.6% for HAI and 25.1% for systemic chemotherapy alone. Clinical factors associated with differences in median tumour response were treatment strategy, systemic chemotherapy regimen, age and KRAS mutation status (p < 0.05). Quantitative imaging features extracted from pretreatment CT are promising predictors of volumetric response to chemotherapy in patients with CRLM. Pretreatment predictors of response have the potential to better select patients for specific therapies. • Colorectal liver metastases (CRLM) are downsized with chemotherapy but predicting the patients that will respond to chemotherapy is currently not possible. • Heterogeneity and enhancement patterns of CRLM can be measured with quantitative imaging. • Prediction model constructed that predicts volumetric response with 20% error suggesting that quantitative imaging holds promise to better select patients for specific treatments.

  1. Quantitative thickness prediction of tectonically deformed coal using Extreme Learning Machine and Principal Component Analysis: a case study

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Li, Yan; Chen, Tongjun; Yan, Qiuyan; Ma, Li

    2017-04-01

    The thickness of tectonically deformed coal (TDC) has positive correlation associations with gas outbursts. In order to predict the TDC thickness of coal beds, we propose a new quantitative predicting method using an extreme learning machine (ELM) algorithm, a principal component analysis (PCA) algorithm, and seismic attributes. At first, we build an ELM prediction model using the PCA attributes of a synthetic seismic section. The results suggest that the ELM model can produce a reliable and accurate prediction of the TDC thickness for synthetic data, preferring Sigmoid activation function and 20 hidden nodes. Then, we analyze the applicability of the ELM model on the thickness prediction of the TDC with real application data. Through the cross validation of near-well traces, the results suggest that the ELM model can produce a reliable and accurate prediction of the TDC. After that, we use 250 near-well traces from 10 wells to build an ELM predicting model and use the model to forecast the TDC thickness of the No. 15 coal in the study area using the PCA attributes as the inputs. Comparing the predicted results, it is noted that the trained ELM model with two selected PCA attributes yields better predication results than those from the other combinations of the attributes. Finally, the trained ELM model with real seismic data have a different number of hidden nodes (10) than the trained ELM model with synthetic seismic data. In summary, it is feasible to use an ELM model to predict the TDC thickness using the calculated PCA attributes as the inputs. However, the input attributes, the activation function and the number of hidden nodes in the ELM model should be selected and tested carefully based on individual application.

  2. BiPPred: Combined sequence- and structure-based prediction of peptide binding to the Hsp70 chaperone BiP.

    PubMed

    Schneider, Markus; Rosam, Mathias; Glaser, Manuel; Patronov, Atanas; Shah, Harpreet; Back, Katrin Christiane; Daake, Marina Angelika; Buchner, Johannes; Antes, Iris

    2016-10-01

    Substrate binding to Hsp70 chaperones is involved in many biological processes, and the identification of potential substrates is important for a comprehensive understanding of these events. We present a multi-scale pipeline for an accurate, yet efficient prediction of peptides binding to the Hsp70 chaperone BiP by combining sequence-based prediction with molecular docking and MMPBSA calculations. First, we measured the binding of 15mer peptides from known substrate proteins of BiP by peptide array (PA) experiments and performed an accuracy assessment of the PA data by fluorescence anisotropy studies. Several sequence-based prediction models were fitted using this and other peptide binding data. A structure-based position-specific scoring matrix (SB-PSSM) derived solely from structural modeling data forms the core of all models. The matrix elements are based on a combination of binding energy estimations, molecular dynamics simulations, and analysis of the BiP binding site, which led to new insights into the peptide binding specificities of the chaperone. Using this SB-PSSM, peptide binders could be predicted with high selectivity even without training of the model on experimental data. Additional training further increased the prediction accuracies. Subsequent molecular docking (DynaDock) and MMGBSA/MMPBSA-based binding affinity estimations for predicted binders allowed the identification of the correct binding mode of the peptides as well as the calculation of nearly quantitative binding affinities. The general concept behind the developed multi-scale pipeline can readily be applied to other protein-peptide complexes with linearly bound peptides, for which sufficient experimental binding data for the training of classical sequence-based prediction models is not available. Proteins 2016; 84:1390-1407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Towards cheminformatics-based estimation of drug therapeutic index: Predicting the protective index of anticonvulsants using a new quantitative structure-index relationship approach.

    PubMed

    Chen, Shangying; Zhang, Peng; Liu, Xin; Qin, Chu; Tao, Lin; Zhang, Cheng; Yang, Sheng Yong; Chen, Yu Zong; Chui, Wai Keung

    2016-06-01

    The overall efficacy and safety profile of a new drug is partially evaluated by the therapeutic index in clinical studies and by the protective index (PI) in preclinical studies. In-silico predictive methods may facilitate the assessment of these indicators. Although QSAR and QSTR models can be used for predicting PI, their predictive capability has not been evaluated. To test this capability, we developed QSAR and QSTR models for predicting the activity and toxicity of anticonvulsants at accuracy levels above the literature-reported threshold (LT) of good QSAR models as tested by both the internal 5-fold cross validation and external validation method. These models showed significantly compromised PI predictive capability due to the cumulative errors of the QSAR and QSTR models. Therefore, in this investigation a new quantitative structure-index relationship (QSIR) model was devised and it showed improved PI predictive capability that superseded the LT of good QSAR models. The QSAR, QSTR and QSIR models were developed using support vector regression (SVR) method with the parameters optimized by using the greedy search method. The molecular descriptors relevant to the prediction of anticonvulsant activities, toxicities and PIs were analyzed by a recursive feature elimination method. The selected molecular descriptors are primarily associated with the drug-like, pharmacological and toxicological features and those used in the published anticonvulsant QSAR and QSTR models. This study suggested that QSIR is useful for estimating the therapeutic index of drug candidates. Copyright © 2016. Published by Elsevier Inc.

  4. Development of a quantitative intracranial vascular features extraction tool on 3D MRA using semiautomated open-curve active contour vessel tracing.

    PubMed

    Chen, Li; Mossa-Basha, Mahmud; Balu, Niranjan; Canton, Gador; Sun, Jie; Pimentel, Kristi; Hatsukami, Thomas S; Hwang, Jenq-Neng; Yuan, Chun

    2018-06-01

    To develop a quantitative intracranial artery measurement technique to extract comprehensive artery features from time-of-flight MR angiography (MRA). By semiautomatically tracing arteries based on an open-curve active contour model in a graphical user interface, 12 basic morphometric features and 16 basic intensity features for each artery were identified. Arteries were then classified as one of 24 types using prediction from a probability model. Based on the anatomical structures, features were integrated within 34 vascular groups for regional features of vascular trees. Eight 3D MRA acquisitions with intracranial atherosclerosis were assessed to validate this technique. Arterial tracings were validated by an experienced neuroradiologist who checked agreement at bifurcation and stenosis locations. This technique achieved 94% sensitivity and 85% positive predictive values (PPV) for bifurcations, and 85% sensitivity and PPV for stenosis. Up to 1,456 features, such as length, volume, and averaged signal intensity for each artery, as well as vascular group in each of the MRA images, could be extracted to comprehensively reflect characteristics, distribution, and connectivity of arteries. Length for the M1 segment of the middle cerebral artery extracted by this technique was compared with reviewer-measured results, and the intraclass correlation coefficient was 0.97. A semiautomated quantitative method to trace, label, and measure intracranial arteries from 3D-MRA was developed and validated. This technique can be used to facilitate quantitative intracranial vascular research, such as studying cerebrovascular adaptation to aging and disease conditions. Magn Reson Med 79:3229-3238, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Modeling and parameterization of photoelectrons emitted in condensed matter by linearly polarized synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Jablonski, A.

    2018-01-01

    Growing availability of synchrotron facilities stimulates an interest in quantitative applications of hard X-ray photoemission spectroscopy (HAXPES) using linearly polarized radiation. An advantage of this approach is the possibility of continuous variation of radiation energy that makes it possible to control the sampling depth for a measurement. Quantitative applications are based on accurate and reliable theory relating the measured spectral features to needed characteristics of the surface region of solids. A major complication in the case of polarized radiation is an involved structure of the photoemission cross-section for hard X-rays. In the present work, details of the relevant formalism are described and algorithms implementing this formalism for different experimental configurations are proposed. The photoelectron signal intensity may be considerably affected by variation in the positioning of the polarization vector with respect to the surface plane. This information is critical for any quantitative application of HAXPES by polarized X-rays. Different quantitative applications based on photoelectrons with energies up to 10 keV are considered here: (i) determination of surface composition, (ii) estimation of sampling depth, and (iii) measurements of an overlayer thickness. Parameters facilitating these applications (mean escape depths, information depths, effective attenuation lengths) were calculated for a number of photoelectron lines in four elemental solids (Si, Cu, Ag and Au) in different experimental configurations and locations of the polarization vector. One of the considered configurations, with polarization vector located in a plane perpendicular to the surface, was recommended for quantitative applications of HAXPES. In this configurations, it was found that the considered parameters vary weakly in the range of photoelectron emission angles from normal emission to about 50° with respect to the surface normal. The averaged values of the mean escape depth and effective attenuation length were approximated with accurate predictive formulas. The predicted effective attenuation lengths were compared with published values; major discrepancies observed can be ascribed to a possibility of discontinuous structure of the deposited overlayer.

  6. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    PubMed

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in challenging Raman endoscopic applications.

  7. Quantitative simulation of intracellular signaling cascades in a Virtual Liver: estimating dose dependent changes in hepatocellular proliferation and apoptosis

    EPA Science Inventory

    The US EPA Virtual Liver (v-Liver™) is developing an approach to predict dose-dependent hepatotoxicity as an in vivo tissue level response using in vitro data. The v-Liver accomplishes this using an in silico agent-based systems model that dynamically integrates environmental exp...

  8. Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide in Counterflow Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ravikrishna, Rayavarapu V.

    2000-01-01

    The feasibility of making quantitative nonintrusive NO concentration ([NO]) measurements in nonpremixed flames has been assessed by obtaining laser-induced fluorescence (LIF) measurements of [NO] in counterflow diffusion flames at atmospheric and higher pressures. Comparisons at atmospheric pressure between laser-saturated fluorescence (LSF) and linear LIF measurements in four diluted ethane-air counterflow diffusion flames with strain rates from 5 to 48/s yielded excellent agreement from fuel-lean to moderately fuel-rich conditions, thus indicating the utility of a model-based quenching correction technique, which was then extended to higher pressures. Quantitative LIF measurements of [NO] in three diluted methane-air counterflow diffusion flames with strain rates from 5 to 35/s were compared with OPPDIF model predictions using the GRI (version 2.11) chemical kinetic mechanism. The comparisons revealed that the GRI mechanism underpredicts prompt-NO by 30-50% at atmospheric pressure. Based on these measurements, a modified reaction rate coefficient for the prompt-NO initiation reaction was proposed which causes the predictions to match experimental data. Temperature measurements using thin filament pyrometry (TFP) in conjunction with a new calibration method utilizing a near-adiabatic H2-air Hencken burner gave very good comparisons with model predictions in these counterflow diffusion flames. Quantitative LIF measurements of [NO] were also obtained in four methane-air counterflow partially-premixed flames with fuel-side equivalence ratios (phi(sub B)) of 1.45, 1.6, 1.8 and 2.0. The measurements were in excellent agreement with model predictions when accounting for radiative heat loss. Spatial separation between regions dominated by the prompt and thermal NO mechanisms was observed in the phi(sub B) = 1.45 flame. The modified rate coefficient proposed earlier for the prompt-NO initiation reaction improved agreement between code predictions and measurements in the region where prompt-NO dominates. Finally, LIF measurements of NO were obtained in counterflow diffusion flames at 2 to 5 atm. Comparisons between [NO] measurements and predictions show that the GRI mechanism underpredicts prompt-NO by a factor of two to three at all pressures. In general, the results indicate a need for refinement of the CH chemistry, especially the pressure-dependent CH formation and destruction reactions.

  9. Mammographic features and subsequent risk of breast cancer: a comparison of qualitative and quantitative evaluations in the Guernsey prospective studies.

    PubMed

    Torres-Mejía, Gabriela; De Stavola, Bianca; Allen, Diane S; Pérez-Gavilán, Juan J; Ferreira, Jorge M; Fentiman, Ian S; Dos Santos Silva, Isabel

    2005-05-01

    Mammographic features are known to be associated with breast cancer but the magnitude of the effect differs markedly from study to study. Methods to assess mammographic features range from subjective qualitative classifications to computer-automated quantitative measures. We used data from the UK Guernsey prospective studies to examine the relative value of these methods in predicting breast cancer risk. In all, 3,211 women ages > or =35 years who had a mammogram taken in 1986 to 1989 were followed-up to the end of October 2003, with 111 developing breast cancer during this period. Mammograms were classified using the subjective qualitative Wolfe classification and several quantitative mammographic features measured using computer-based techniques. Breast cancer risk was positively associated with high-grade Wolfe classification, percent breast density and area of dense tissue, and negatively associated with area of lucent tissue, fractal dimension, and lacunarity. Inclusion of the quantitative measures in the same model identified area of dense tissue and lacunarity as the best predictors of breast cancer, with risk increasing by 59% [95% confidence interval (95% CI), 29-94%] per SD increase in total area of dense tissue but declining by 39% (95% CI, 53-22%) per SD increase in lacunarity, after adjusting for each other and for other confounders. Comparison of models that included both the qualitative Wolfe classification and these two quantitative measures to models that included either the qualitative or the two quantitative variables showed that they all made significant contributions to prediction of breast cancer risk. These findings indicate that breast cancer risk is affected not only by the amount of mammographic density but also by the degree of heterogeneity of the parenchymal pattern and, presumably, by other features captured by the Wolfe classification.

  10. Highly Reproducible Label Free Quantitative Proteomic Analysis of RNA Polymerase Complexes*

    PubMed Central

    Mosley, Amber L.; Sardiu, Mihaela E.; Pattenden, Samantha G.; Workman, Jerry L.; Florens, Laurence; Washburn, Michael P.

    2011-01-01

    The use of quantitative proteomics methods to study protein complexes has the potential to provide in-depth information on the abundance of different protein components as well as their modification state in various cellular conditions. To interrogate protein complex quantitation using shotgun proteomic methods, we have focused on the analysis of protein complexes using label-free multidimensional protein identification technology and studied the reproducibility of biological replicates. For these studies, we focused on three highly related and essential multi-protein enzymes, RNA polymerase I, II, and III from Saccharomyces cerevisiae. We found that label-free quantitation using spectral counting is highly reproducible at the protein and peptide level when analyzing RNA polymerase I, II, and III. In addition, we show that peptide sampling does not follow a random sampling model, and we show the need for advanced computational models to predict peptide detection probabilities. In order to address these issues, we used the APEX protocol to model the expected peptide detectability based on whole cell lysate acquired using the same multidimensional protein identification technology analysis used for the protein complexes. Neither method was able to predict the peptide sampling levels that we observed using replicate multidimensional protein identification technology analyses. In addition to the analysis of the RNA polymerase complexes, our analysis provides quantitative information about several RNAP associated proteins including the RNAPII elongation factor complexes DSIF and TFIIF. Our data shows that DSIF and TFIIF are the most highly enriched RNAP accessory factors in Rpb3-TAP purifications and demonstrate our ability to measure low level associated protein abundance across biological replicates. In addition, our quantitative data supports a model in which DSIF and TFIIF interact with RNAPII in a dynamic fashion in agreement with previously published reports. PMID:21048197

  11. A semi-quantitative World Health Organization grading scheme evaluating worst tumor differentiation predicts disease-free survival in oral squamous carcinoma patients.

    PubMed

    Jain, Dhruv; Tikku, Gargi; Bhadana, Pallavi; Dravid, Chandrashekhar; Grover, Rajesh Kumar

    2017-08-01

    We investigated World Health Organization (WHO) grading and pattern of invasion based histological schemes as independent predictors of disease-free survival, in oral squamous carcinoma patients. Tumor resection slides of eighty-seven oral squamous carcinoma patients [pTNM: I&II/III&IV-32/55] were evaluated. Besides examining various patterns of invasion, invasive front grade, predominant and worst (highest) WHO grade were recorded. For worst WHO grading, poor-undifferentiated component was estimated semi-quantitatively at advancing tumor edge (invasive growth front) in histology sections. Tumor recurrence was observed in 31 (35.6%) cases. The 2-year disease-free survival was 47% [Median: 656; follow-up: 14-1450] days. Using receiver operating characteristic curves, we defined poor-undifferentiated component exceeding 5% of tumor as the cutoff to assign an oral squamous carcinoma as grade-3, when following worst WHO grading. Kaplan-Meier curves for disease-free survival revealed prognostic association with nodal involvement, tumor size, worst WHO grading; most common pattern of invasion and invasive pattern grading score (sum of two most predominant patterns of invasion). In further multivariate analysis, tumor size (>2.5cm) and worst WHO grading (grade-3 tumors) independently predicted reduced disease-free survival [HR, 2.85; P=0.028 and HR, 3.37; P=0.031 respectively]. The inter-observer agreement was moderate for observers who semi-quantitatively estimated percentage of poor-undifferentiated morphology in oral squamous carcinomas. Our results support the value of semi-quantitative method to assign tumors as grade-3 with worst WHO grading for predicting reduced disease-free survival. Despite limitations, of the various histological tumor stratification schemes, WHO grading holds adjunctive value for its prognostic role, ease and universal familiarity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Protein asparagine deamidation prediction based on structures with machine learning methods.

    PubMed

    Jia, Lei; Sun, Yaxiong

    2017-01-01

    Chemical stability is a major concern in the development of protein therapeutics due to its impact on both efficacy and safety. Protein "hotspots" are amino acid residues that are subject to various chemical modifications, including deamidation, isomerization, glycosylation, oxidation etc. A more accurate prediction method for potential hotspot residues would allow their elimination or reduction as early as possible in the drug discovery process. In this work, we focus on prediction models for asparagine (Asn) deamidation. Sequence-based prediction method simply identifies the NG motif (amino acid asparagine followed by a glycine) to be liable to deamidation. It still dominates deamidation evaluation process in most pharmaceutical setup due to its convenience. However, the simple sequence-based method is less accurate and often causes over-engineering a protein. We introduce structure-based prediction models by mining available experimental and structural data of deamidated proteins. Our training set contains 194 Asn residues from 25 proteins that all have available high-resolution crystal structures. Experimentally measured deamidation half-life of Asn in penta-peptides as well as 3D structure-based properties, such as solvent exposure, crystallographic B-factors, local secondary structure and dihedral angles etc., were used to train prediction models with several machine learning algorithms. The prediction tools were cross-validated as well as tested with an external test data set. The random forest model had high enrichment in ranking deamidated residues higher than non-deamidated residues while effectively eliminated false positive predictions. It is possible that such quantitative protein structure-function relationship tools can also be applied to other protein hotspot predictions. In addition, we extensively discussed metrics being used to evaluate the performance of predicting unbalanced data sets such as the deamidation case.

  13. Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under iron-limited conditions.

    PubMed

    Hempel, Kristina; Herbst, Florian-Alexander; Moche, Martin; Hecker, Michael; Becher, Dörte

    2011-04-01

    Staphylococcus aureus is capable of colonizing and infecting humans by its arsenal of surface-exposed and secreted proteins. Iron-limited conditions in mammalian body fluids serve as a major environmental signal to bacteria to express virulence determinants. Here we present a comprehensive, gel-free, and GeLC-MS/MS-based quantitative proteome profiling of S. aureus under this infection-relevant situation. (14)N(15)N metabolic labeling and three complementing approaches were combined for relative quantitative analyses of surface-associated proteins. The surface-exposed and secreted proteome profiling approaches comprise trypsin shaving, biotinylation, and precipitation of the supernatant. By analysis of the outer subproteomic and cytoplasmic protein fraction, 1210 proteins could be identified including 221 surface-associated proteins. Thus, access was enabled to 70% of the predicted cell wall-associated proteins, 80% of the predicted sortase substrates, two/thirds of lipoproteins and more than 50% of secreted and cytoplasmic proteins. For iron-deficiency, 158 surface-associated proteins were quantified. Twenty-nine proteins were found in altered amounts showing particularly surface-exposed proteins strongly induced, such as the iron-regulated surface determinant proteins IsdA, IsdB, IsdC and IsdD as well as lipid-anchored iron compound-binding proteins. The work presents a crucial subject for understanding S. aureus pathophysiology by the use of methods that allow quantitative surface proteome profiling.

  14. Rapid Method Development in Hydrophilic Interaction Liquid Chromatography for Pharmaceutical Analysis Using a Combination of Quantitative Structure-Retention Relationships and Design of Experiments.

    PubMed

    Taraji, Maryam; Haddad, Paul R; Amos, Ruth I J; Talebi, Mohammad; Szucs, Roman; Dolan, John W; Pohl, Chris A

    2017-02-07

    A design-of-experiment (DoE) model was developed, able to describe the retention times of a mixture of pharmaceutical compounds in hydrophilic interaction liquid chromatography (HILIC) under all possible combinations of acetonitrile content, salt concentration, and mobile-phase pH with R 2 > 0.95. Further, a quantitative structure-retention relationship (QSRR) model was developed to predict retention times for new analytes, based only on their chemical structures, with a root-mean-square error of prediction (RMSEP) as low as 0.81%. A compound classification based on the concept of similarity was applied prior to QSRR modeling. Finally, we utilized a combined QSRR-DoE approach to propose an optimal design space in a quality-by-design (QbD) workflow to facilitate the HILIC method development. The mathematical QSRR-DoE model was shown to be highly predictive when applied to an independent test set of unseen compounds in unseen conditions with a RMSEP value of 5.83%. The QSRR-DoE computed retention time of pharmaceutical test analytes and subsequently calculated separation selectivity was used to optimize the chromatographic conditions for efficient separation of targets. A Monte Carlo simulation was performed to evaluate the risk of uncertainty in the model's prediction, and to define the design space where the desired quality criterion was met. Experimental realization of peak selectivity between targets under the selected optimal working conditions confirmed the theoretical predictions. These results demonstrate how discovery of optimal conditions for the separation of new analytes can be accelerated by the use of appropriate theoretical tools.

  15. A novel logic-based approach for quantitative toxicology prediction.

    PubMed

    Amini, Ata; Muggleton, Stephen H; Lodhi, Huma; Sternberg, Michael J E

    2007-01-01

    There is a pressing need for accurate in silico methods to predict the toxicity of molecules that are being introduced into the environment or are being developed into new pharmaceuticals. Predictive toxicology is in the realm of structure activity relationships (SAR), and many approaches have been used to derive such SAR. Previous work has shown that inductive logic programming (ILP) is a powerful approach that circumvents several major difficulties, such as molecular superposition, faced by some other SAR methods. The ILP approach reasons with chemical substructures within a relational framework and yields chemically understandable rules. Here, we report a general new approach, support vector inductive logic programming (SVILP), which extends the essentially qualitative ILP-based SAR to quantitative modeling. First, ILP is used to learn rules, the predictions of which are then used within a novel kernel to derive a support-vector generalization model. For a highly heterogeneous dataset of 576 molecules with known fathead minnow fish toxicity, the cross-validated correlation coefficients (R2CV) from a chemical descriptor method (CHEM) and SVILP are 0.52 and 0.66, respectively. The ILP, CHEM, and SVILP approaches correctly predict 55, 58, and 73%, respectively, of toxic molecules. In a set of 165 unseen molecules, the R2 values from the commercial software TOPKAT and SVILP are 0.26 and 0.57, respectively. In all calculations, SVILP showed significant improvements in comparison with the other methods. The SVILP approach has a major advantage in that it uses ILP automatically and consistently to derive rules, mostly novel, describing fragments that are toxicity alerts. The SVILP is a general machine-learning approach and has the potential of tackling many problems relevant to chemoinformatics including in silico drug design.

  16. The role of imaging based prostate biopsy morphology in a data fusion paradigm for transducing prognostic predictions

    NASA Astrophysics Data System (ADS)

    Khan, Faisal M.; Kulikowski, Casimir A.

    2016-03-01

    A major focus area for precision medicine is in managing the treatment of newly diagnosed prostate cancer patients. For patients with a positive biopsy, clinicians aim to develop an individualized treatment plan based on a mechanistic understanding of the disease factors unique to each patient. Recently, there has been a movement towards a multi-modal view of the cancer through the fusion of quantitative information from multiple sources, imaging and otherwise. Simultaneously, there have been significant advances in machine learning methods for medical prognostics which integrate a multitude of predictive factors to develop an individualized risk assessment and prognosis for patients. An emerging area of research is in semi-supervised approaches which transduce the appropriate survival time for censored patients. In this work, we apply a novel semi-supervised approach for support vector regression to predict the prognosis for newly diagnosed prostate cancer patients. We integrate clinical characteristics of a patient's disease with imaging derived metrics for biomarker expression as well as glandular and nuclear morphology. In particular, our goal was to explore the performance of nuclear and glandular architecture within the transduction algorithm and assess their predictive power when compared with the Gleason score manually assigned by a pathologist. Our analysis in a multi-institutional cohort of 1027 patients indicates that not only do glandular and morphometric characteristics improve the predictive power of the semi-supervised transduction algorithm; they perform better when the pathological Gleason is absent. This work represents one of the first assessments of quantitative prostate biopsy architecture versus the Gleason grade in the context of a data fusion paradigm which leverages a semi-supervised approach for risk prognosis.

  17. Predicting human blood viscosity in silico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedosov, Dmitry A.; Pan, Wenxiao; Caswell, Bruce

    2011-07-05

    Cellular suspensions such as blood are a part of living organisms and their rheological and flow characteristics determine and affect majority of vital functions. The rheological and flow properties of cell suspensions are determined by collective dynamics of cells, their structure or arrangement, cell properties and interactions. We study these relations for blood in silico using a mesoscopic particle-based method and two different models (multi-scale/low-dimensional) of red blood cells. The models yield accurate quantitative predictions of the dependence of blood viscosity on shear rate and hematocrit. We explicitly model cell aggregation interactions and demonstrate the formation of reversible rouleaux structuresmore » resulting in a tremendous increase of blood viscosity at low shear rates and yield stress, in agreement with experiments. The non-Newtonian behavior of such cell suspensions (e.g., shear thinning, yield stress) is analyzed and related to the suspension’s microstructure, deformation and dynamics of single cells. We provide the flrst quantitative estimates of normal stress differences and magnitude of aggregation forces in blood. Finally, the flexibility of the cell models allows them to be employed for quantitative analysis of a much wider class of complex fluids including cell, capsule, and vesicle suspensions.« less

  18. Quantitative Magnetic Separation of Particles and Cells using Gradient Magnetic Ratcheting

    PubMed Central

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-01-01

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting (MACS), are robust but perform coarse, qualitative separations based on surface antigen expression. We report a quantitative magnetic separation technology using high-force magnetic ratcheting over arrays of magnetically soft micro-pillars with gradient spacing, and use the system to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micro-pillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic-field. Particles with higher IOC separate and equilibrate along the miro-pillar array at larger pitches. We develop a semi-analytical model that predicts behavior for particles and cells. Using the system, LNCaP cells were separated based on the bound quantity of 1μm anti-EpCAM particles as a metric for expression. The ratcheting cytometry system was able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof of concept, EpCAM-labeled cells from patient blood were isolated with 74% purity, demonstrating potential towards a quantitative magnetic separation instrument. PMID:26890496

  19. Prediction of Coronal Mass Ejections from Vector Magnetograms: Quantitative Measures as Predictors

    NASA Astrophysics Data System (ADS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2001-05-01

    In a pilot study of 4 active regions (Falconer, D.A. 2001, JGR, in press), we derived two quantitative measures of an active region's global nonpotentiality from the region's vector magnetogram, 1) the net current (IN), and 2) the length of the strong-shear, strong-field main neutral line (LSS), and used these two measures of the CME productivity of the active regions. We compared the global nonpotentiality measures to the active regions' CME productivity determined from GOES and Yohkoh/SXT observations. We found that two of the active regions were highly globally nonpotential and were CME productive, while the other two active regions had little global nonpotentiality and produced no CMEs. At the Fall 2000 AGU (Falconer, Moore, & Gary, 2000, EOS 81, 48 F998), we reported on an expanded study (12 active regions and 17 magnetograms) in which we evaluated four quantitative global measures of an active region's magnetic field and compared these measures with the CME productivity. The four global measures (all derived from MSFC vector magnetograms) included our two previous measures (IN and LSS) as well as two new ones, the total magnetic flux (Φ ) (a measure of an active region's size), and the normalized twist (α =μ IN/Φ ). We found that the three measures of global nonpotentiality (IN, LSS, α ) were all well correlated (>99% confidence level) with an active region's CME productivity within (2 days of the day of the magnetogram. We will now report on our findings of how good our quantitative measures are as predictors of active-region CME productivity, using only CMEs that occurred after the magnetogram. We report the preliminary skill test of these quantitative measures as predictors. We compare the CME prediction success of our quantitative measures to the CME prediction success based on an active region's past CME productivity. We examine the cases of the handful of false positive and false negatives to look for improvements to our predictors. This work is funded by NSF through the Space Weather Program and by NASA through the Solar Physics Supporting Research and Technology Program.

  20. DOSIMETRY MODELING OF INHALED FORMALDEHYDE: BINNING NASAL FLUX PREDICTIONS FOR QUANTITATIVE RISK ASSESSMENT

    EPA Science Inventory

    Dosimetry Modeling of Inhaled Formaldehyde: Binning Nasal Flux Predictions for Quantitative Risk Assessment. Kimbell, J.S., Overton, J.H., Subramaniam, R.P., Schlosser, P.M., Morgan, K.T., Conolly, R.B., and Miller, F.J. (2001). Toxicol. Sci. 000, 000:000.

    Interspecies e...

  1. Toxicity challenges in environmental chemicals: Prediction of human plasma protein binding through quantitative structure-activity relationship (QSAR) models

    EPA Science Inventory

    The present study explores the merit of utilizing available pharmaceutical data to construct a quantitative structure-activity relationship (QSAR) for prediction of the fraction of a chemical unbound to plasma protein (Fub) in environmentally relevant compounds. Independent model...

  2. A Market-Basket Approach to Predict the Acute Aquatic Toxicity of Munitions and Energetic Materials.

    PubMed

    Burgoon, Lyle D

    2016-06-01

    An ongoing challenge in chemical production, including the production of insensitive munitions and energetics, is the ability to make predictions about potential environmental hazards early in the process. To address this challenge, a quantitative structure activity relationship model was developed to predict acute fathead minnow toxicity of insensitive munitions and energetic materials. Computational predictive toxicology models like this one may be used to identify and prioritize environmentally safer materials early in their development. The developed model is based on the Apriori market-basket/frequent itemset mining approach to identify probabilistic prediction rules using chemical atom-pairs and the lethality data for 57 compounds from a fathead minnow acute toxicity assay. Lethality data were discretized into four categories based on the Globally Harmonized System of Classification and Labelling of Chemicals. Apriori identified toxicophores for categories two and three. The model classified 32 of the 57 compounds correctly, with a fivefold cross-validation classification rate of 74 %. A structure-based surrogate approach classified the remaining 25 chemicals correctly at 48 %. This result is unsurprising as these 25 chemicals were fairly unique within the larger set.

  3. Observing Clonal Dynamics across Spatiotemporal Axes: A Prelude to Quantitative Fitness Models for Cancer.

    PubMed

    McPherson, Andrew W; Chan, Fong Chun; Shah, Sohrab P

    2018-02-01

    The ability to accurately model evolutionary dynamics in cancer would allow for prediction of progression and response to therapy. As a prelude to quantitative understanding of evolutionary dynamics, researchers must gather observations of in vivo tumor evolution. High-throughput genome sequencing now provides the means to profile the mutational content of evolving tumor clones from patient biopsies. Together with the development of models of tumor evolution, reconstructing evolutionary histories of individual tumors generates hypotheses about the dynamics of evolution that produced the observed clones. In this review, we provide a brief overview of the concepts involved in predicting evolutionary histories, and provide a workflow based on bulk and targeted-genome sequencing. We then describe the application of this workflow to time series data obtained for transformed and progressed follicular lymphomas (FL), and contrast the observed evolutionary dynamics between these two subtypes. We next describe results from a spatial sampling study of high-grade serous (HGS) ovarian cancer, propose mechanisms of disease spread based on the observed clonal mixtures, and provide examples of diversification through subclonal acquisition of driver mutations and convergent evolution. Finally, we state implications of the techniques discussed in this review as a necessary but insufficient step on the path to predictive modelling of disease dynamics. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Fracture strength of the particulate-reinforced ultra-high temperature ceramics based on a temperature dependent fracture toughness model

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Weiguo; Ji, Baohua; Fang, Daining

    2017-10-01

    The particulate-reinforced ultra-high temperature ceramics (pUHTCs) have been particularly developed for fabricating the leading edge and nose cap of hypersonic vehicles. They have drawn intensive attention of scientific community for their superior fracture strength at high temperatures. However, there is no proper model for predicting the fracture strength of the ceramic composites and its dependency on temperature. In order to account for the effect of temperature on the fracture strength, we proposed a concept called energy storage capacity, by which we derived a new model for depicting the temperature dependent fracture toughness of the composites. This model gives a quantitative relationship between the fracture toughness and temperature. Based on this temperature dependent fracture toughness model and Griffith criterion, we developed a new fracture strength model for predicting the temperature dependent fracture strength of pUHTCs at different temperatures. The model takes into account the effects of temperature, flaw size and residual stress without any fitting parameters. The predictions of the fracture strength of pUHTCs in argon or air agreed well with the experimental measurements. Additionally, our model offers a mechanism of monitoring the strength of materials at different temperatures by testing the change of flaw size. This study provides a quantitative tool for design, evaluation and monitoring of the fracture properties of pUHTCs at high temperatures.

  5. Quantitative proteome-based systematic identification of SIRT7 substrates.

    PubMed

    Zhang, Chaohua; Zhai, Zichao; Tang, Ming; Cheng, Zhongyi; Li, Tingting; Wang, Haiying; Zhu, Wei-Guo

    2017-07-01

    SIRT7 is a class III histone deacetylase that is involved in numerous cellular processes. Only six substrates of SIRT7 have been reported thus far, so we aimed to systematically identify SIRT7 substrates using stable-isotope labeling with amino acids in cell culture (SILAC) coupled with quantitative mass spectrometry (MS). Using SIRT7 +/+ and SIRT7 -/- mouse embryonic fibroblasts as our model system, we identified and quantified 1493 acetylation sites in 789 proteins, of which 261 acetylation sites in 176 proteins showed ≥2-fold change in acetylation state between SIRT7 -/- and SIRT7 +/+ cells. These proteins were considered putative SIRT7 substrates and were carried forward for further analysis. We then validated the predictive efficiency of the SILAC-MS experiment by assessing substrate acetylation status in vitro in six predicted proteins. We also performed a bioinformatic analysis of the MS data, which indicated that many of the putative protein substrates were involved in metabolic processes. Finally, we expanded our list of candidate substrates by performing a bioinformatics-based prediction analysis of putative SIRT7 substrates, using our list of putative substrates as a positive training set, and again validated a subset of the proteins in vitro. In summary, we have generated a comprehensive list of SIRT7 candidate substrates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Are power calculations useful? A multicentre neuroimaging study

    PubMed Central

    Suckling, John; Henty, Julian; Ecker, Christine; Deoni, Sean C; Lombardo, Michael V; Baron-Cohen, Simon; Jezzard, Peter; Barnes, Anna; Chakrabarti, Bhismadev; Ooi, Cinly; Lai, Meng-Chuan; Williams, Steven C; Murphy, Declan GM; Bullmore, Edward

    2014-01-01

    There are now many reports of imaging experiments with small cohorts of typical participants that precede large-scale, often multicentre studies of psychiatric and neurological disorders. Data from these calibration experiments are sufficient to make estimates of statistical power and predictions of sample size and minimum observable effect sizes. In this technical note, we suggest how previously reported voxel-based power calculations can support decision making in the design, execution and analysis of cross-sectional multicentre imaging studies. The choice of MRI acquisition sequence, distribution of recruitment across acquisition centres, and changes to the registration method applied during data analysis are considered as examples. The consequences of modification are explored in quantitative terms by assessing the impact on sample size for a fixed effect size and detectable effect size for a fixed sample size. The calibration experiment dataset used for illustration was a precursor to the now complete Medical Research Council Autism Imaging Multicentre Study (MRC-AIMS). Validation of the voxel-based power calculations is made by comparing the predicted values from the calibration experiment with those observed in MRC-AIMS. The effect of non-linear mappings during image registration to a standard stereotactic space on the prediction is explored with reference to the amount of local deformation. In summary, power calculations offer a validated, quantitative means of making informed choices on important factors that influence the outcome of studies that consume significant resources. PMID:24644267

  7. Receptor-based 3D-QSAR in Drug Design: Methods and Applications in Kinase Studies.

    PubMed

    Fang, Cheng; Xiao, Zhiyan

    2016-01-01

    Receptor-based 3D-QSAR strategy represents a superior integration of structure-based drug design (SBDD) and three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis. It combines the accurate prediction of ligand poses by the SBDD approach with the good predictability and interpretability of statistical models derived from the 3D-QSAR approach. Extensive efforts have been devoted to the development of receptor-based 3D-QSAR methods and two alternative approaches have been exploited. One associates with computing the binding interactions between a receptor and a ligand to generate structure-based descriptors for QSAR analyses. The other concerns the application of various docking protocols to generate optimal ligand poses so as to provide reliable molecular alignments for the conventional 3D-QSAR operations. This review highlights new concepts and methodologies recently developed in the field of receptorbased 3D-QSAR, and in particular, covers its application in kinase studies.

  8. Multi-modality gellan gum-based tissue-mimicking phantom with targeted mechanical, electrical, and thermal properties.

    PubMed

    Chen, Roland K; Shih, A J

    2013-08-21

    This study develops a new class of gellan gum-based tissue-mimicking phantom material and a model to predict and control the elastic modulus, thermal conductivity, and electrical conductivity by adjusting the mass fractions of gellan gum, propylene glycol, and sodium chloride, respectively. One of the advantages of gellan gum is its gelling efficiency allowing highly regulable mechanical properties (elastic modulus, toughness, etc). An experiment was performed on 16 gellan gum-based tissue-mimicking phantoms and a regression model was fit to quantitatively predict three material properties (elastic modulus, thermal conductivity, and electrical conductivity) based on the phantom material's composition. Based on these material properties and the regression model developed, tissue-mimicking phantoms of porcine spinal cord and liver were formulated. These gellan gum tissue-mimicking phantoms have the mechanical, thermal, and electrical properties approximately equivalent to those of the spinal cord and the liver.

  9. Characterization and Prediction of Chemical Functions and ...

    EPA Pesticide Factsheets

    Assessing exposures from the thousands of chemicals in commerce requires quantitative information on the chemical constituents of consumer products. Unfortunately, gaps in available composition data prevent assessment of exposure to chemicals in many products. Here we propose filling these gaps via consideration of chemical functional role. We obtained function information for thousands of chemicals from public sources and used a clustering algorithm to assign chemicals into 35 harmonized function categories (e.g., plasticizers, antimicrobials, solvents). We combined these functions with weight fraction data for 4115 personal care products (PCPs) to characterize the composition of 66 different product categories (e.g., shampoos). We analyzed the combined weight fraction/function dataset using machine learning techniques to develop quantitative structure property relationship (QSPR) classifier models for 22 functions and for weight fraction, based on chemical-specific descriptors (including chemical properties). We applied these classifier models to a library of 10196 data-poor chemicals. Our predictions of chemical function and composition will inform exposure-based screening of chemicals in PCPs for combination with hazard data in risk-based evaluation frameworks. As new information becomes available, this approach can be applied to other classes of products and the chemicals they contain in order to provide essential consumer product data for use in exposure-b

  10. QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling

    PubMed Central

    Rossman, Timothy; Kushvaha, Vinod; Dragomir-Daescu, Dan

    2015-01-01

    Quantitative computed tomography-based finite element models of proximal femora must be validated with cadaveric experiments before using them to assess fracture risk in osteoporotic patients. During validation it is essential to carefully assess whether the boundary condition modeling matches the experimental conditions. This study evaluated proximal femur stiffness results predicted by six different boundary condition methods on a sample of 30 cadaveric femora and compared the predictions with experimental data. The average stiffness varied by 280% among the six boundary conditions. Compared with experimental data the predictions ranged from overestimating the average stiffness by 65% to underestimating it by 41%. In addition we found that the boundary condition that distributed the load to the contact surfaces similar to the expected contact mechanics predictions had the best agreement with experimental stiffness. We concluded that boundary conditions modeling introduced large variations in proximal femora stiffness predictions. PMID:25804260

  11. Use of Artificial Intelligence and Machine Learning Algorithms with Gene Expression Profiling to Predict Recurrent Nonmuscle Invasive Urothelial Carcinoma of the Bladder.

    PubMed

    Bartsch, Georg; Mitra, Anirban P; Mitra, Sheetal A; Almal, Arpit A; Steven, Kenneth E; Skinner, Donald G; Fry, David W; Lenehan, Peter F; Worzel, William P; Cote, Richard J

    2016-02-01

    Due to the high recurrence risk of nonmuscle invasive urothelial carcinoma it is crucial to distinguish patients at high risk from those with indolent disease. In this study we used a machine learning algorithm to identify the genes in patients with nonmuscle invasive urothelial carcinoma at initial presentation that were most predictive of recurrence. We used the genes in a molecular signature to predict recurrence risk within 5 years after transurethral resection of bladder tumor. Whole genome profiling was performed on 112 frozen nonmuscle invasive urothelial carcinoma specimens obtained at first presentation on Human WG-6 BeadChips (Illumina®). A genetic programming algorithm was applied to evolve classifier mathematical models for outcome prediction. Cross-validation based resampling and gene use frequencies were used to identify the most prognostic genes, which were combined into rules used in a voting algorithm to predict the sample target class. Key genes were validated by quantitative polymerase chain reaction. The classifier set included 21 genes that predicted recurrence. Quantitative polymerase chain reaction was done for these genes in a subset of 100 patients. A 5-gene combined rule incorporating a voting algorithm yielded 77% sensitivity and 85% specificity to predict recurrence in the training set, and 69% and 62%, respectively, in the test set. A singular 3-gene rule was constructed that predicted recurrence with 80% sensitivity and 90% specificity in the training set, and 71% and 67%, respectively, in the test set. Using primary nonmuscle invasive urothelial carcinoma from initial occurrences genetic programming identified transcripts in reproducible fashion, which were predictive of recurrence. These findings could potentially impact nonmuscle invasive urothelial carcinoma management. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Predicting bioconcentration of chemicals into vegetation from soil or air using the molecular connectivity index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowdy, D.L.; McKone, T.E.; Hsieh, D.P.H.

    1995-12-31

    Bioconcentration factors (BCFs) are the ratio of chemical concentration found in an exposed organism (in this case a plant) to the concentration in an air or soil exposure medium. The authors examine here the use of molecular connectivity indices (MCIs) as quantitative structure-activity relationships (QSARS) for predicting BCFs for organic chemicals between plants and air or soil. The authors compare the reliability of the octanol-air partition coefficient (K{sub oa}) to the MC based prediction method for predicting plant/air partition coefficients. The authors also compare the reliability of the octanol/water partition coefficient (K{sub ow}) to the MC based prediction method formore » predicting plant/soil partition coefficients. The results here indicate that, relative to the use of K{sub ow} or K{sub oa} as predictors of BCFs the MC can substantially increase the reliability with which BCFs can be estimated. The authors find that the MC provides a relatively precise and accurate method for predicting the potential biotransfer of a chemical from environmental media into plants. In addition, the MC is much faster and more cost effective than direct measurements.« less

  13. Optical Absorption in Molecular Crystals from Time-Dependent Density Functional Theory

    DTIC Science & Technology

    2017-04-18

    fundamental gap but there is little effect on the optical spectra. We therefore believe that the method is robust and can be used for studies of... quantitative DFT- based prediction of excited-state properties in molecu- lar solids.[28, 29] In this approach, one first computes the underlying gas...gradient ap- proximation (GGA). In some cases , the fraction of SR Fock exchange, α, can be determined from first-principles based on satisfaction of

  14. Lipid-associated Oral Delivery: Mechanisms and Analysis of Oral Absorption Enhancement

    PubMed Central

    Rezhdo, Oljora; Speciner, Lauren; Carrier, Rebecca L.

    2016-01-01

    The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented. PMID:27520734

  15. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism

    PubMed Central

    Fleming, R.M.T.; Thiele, I.; Provan, G.; Nasheuer, H.P.

    2010-01-01

    The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in E. coli and compare favourably with in silico prediction by flux balance analysis. PMID:20230840

  16. Novel quantitative pigmentation phenotyping enhances genetic association, epistasis, and prediction of human eye colour.

    PubMed

    Wollstein, Andreas; Walsh, Susan; Liu, Fan; Chakravarthy, Usha; Rahu, Mati; Seland, Johan H; Soubrane, Gisèle; Tomazzoli, Laura; Topouzis, Fotis; Vingerling, Johannes R; Vioque, Jesus; Böhringer, Stefan; Fletcher, Astrid E; Kayser, Manfred

    2017-02-27

    Success of genetic association and the prediction of phenotypic traits from DNA are known to depend on the accuracy of phenotype characterization, amongst other parameters. To overcome limitations in the characterization of human iris pigmentation, we introduce a fully automated approach that specifies the areal proportions proposed to represent differing pigmentation types, such as pheomelanin, eumelanin, and non-pigmented areas within the iris. We demonstrate the utility of this approach using high-resolution digital eye imagery and genotype data from 12 selected SNPs from over 3000 European samples of seven populations that are part of the EUREYE study. In comparison to previous quantification approaches, (1) we achieved an overall improvement in eye colour phenotyping, which provides a better separation of manually defined eye colour categories. (2) Single nucleotide polymorphisms (SNPs) known to be involved in human eye colour variation showed stronger associations with our approach. (3) We found new and confirmed previously noted SNP-SNP interactions. (4) We increased SNP-based prediction accuracy of quantitative eye colour. Our findings exemplify that precise quantification using the perceived biological basis of pigmentation leads to enhanced genetic association and prediction of eye colour. We expect our approach to deliver new pigmentation genes when applied to genome-wide association testing.

  17. Oscillatory neural representations in the sensory thalamus predict neuropathic pain relief by deep brain stimulation.

    PubMed

    Huang, Yongzhi; Green, Alexander L; Hyam, Jonathan; Fitzgerald, James; Aziz, Tipu Z; Wang, Shouyan

    2018-01-01

    Understanding the function of sensory thalamic neural activity is essential for developing and improving interventions for neuropathic pain. However, there is a lack of investigation of the relationship between sensory thalamic oscillations and pain relief in patients with neuropathic pain. This study aims to identify the oscillatory neural characteristics correlated with pain relief induced by deep brain stimulation (DBS), and develop a quantitative model to predict pain relief by integrating characteristic measures of the neural oscillations. Measures of sensory thalamic local field potentials (LFPs) in thirteen patients with neuropathic pain were screened in three dimensional feature space according to the rhythm, balancing, and coupling neural behaviours, and correlated with pain relief. An integrated approach based on principal component analysis (PCA) and multiple regression analysis is proposed to integrate the multiple measures and provide a predictive model. This study reveals distinct thalamic rhythms of theta, alpha, high beta and high gamma oscillations correlating with pain relief. The balancing and coupling measures between these neural oscillations were also significantly correlated with pain relief. The study enriches the series research on the function of thalamic neural oscillations in neuropathic pain and relief, and provides a quantitative approach for predicting pain relief by DBS using thalamic neural oscillations. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method.

    PubMed

    Zhao, Yongsheng; Zhao, Jihong; Huang, Ying; Zhou, Qing; Zhang, Xiangping; Zhang, Suojiang

    2014-08-15

    A comprehensive database on toxicity of ionic liquids (ILs) is established. The database includes over 4000 pieces of data. Based on the database, the relationship between IL's structure and its toxicity has been analyzed qualitatively. Furthermore, Quantitative Structure-Activity relationships (QSAR) model is conducted to predict the toxicities (EC50 values) of various ILs toward the Leukemia rat cell line IPC-81. Four parameters selected by the heuristic method (HM) are used to perform the studies of multiple linear regression (MLR) and support vector machine (SVM). The squared correlation coefficient (R(2)) and the root mean square error (RMSE) of training sets by two QSAR models are 0.918 and 0.959, 0.258 and 0.179, respectively. The prediction R(2) and RMSE of QSAR test sets by MLR model are 0.892 and 0.329, by SVM model are 0.958 and 0.234, respectively. The nonlinear model developed by SVM algorithm is much outperformed MLR, which indicates that SVM model is more reliable in the prediction of toxicity of ILs. This study shows that increasing the relative number of O atoms of molecules leads to decrease in the toxicity of ILs. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Inter-model comparison of the landscape determinants of vector-borne disease: implications for epidemiological and entomological risk modeling.

    PubMed

    Lorenz, Alyson; Dhingra, Radhika; Chang, Howard H; Bisanzio, Donal; Liu, Yang; Remais, Justin V

    2014-01-01

    Extrapolating landscape regression models for use in assessing vector-borne disease risk and other applications requires thoughtful evaluation of fundamental model choice issues. To examine implications of such choices, an analysis was conducted to explore the extent to which disparate landscape models agree in their epidemiological and entomological risk predictions when extrapolated to new regions. Agreement between six literature-drawn landscape models was examined by comparing predicted county-level distributions of either Lyme disease or Ixodes scapularis vector using Spearman ranked correlation. AUC analyses and multinomial logistic regression were used to assess the ability of these extrapolated landscape models to predict observed national data. Three models based on measures of vegetation, habitat patch characteristics, and herbaceous landcover emerged as effective predictors of observed disease and vector distribution. An ensemble model containing these three models improved precision and predictive ability over individual models. A priori assessment of qualitative model characteristics effectively identified models that subsequently emerged as better predictors in quantitative analysis. Both a methodology for quantitative model comparison and a checklist for qualitative assessment of candidate models for extrapolation are provided; both tools aim to improve collaboration between those producing models and those interested in applying them to new areas and research questions.

  20. Novel quantitative pigmentation phenotyping enhances genetic association, epistasis, and prediction of human eye colour

    PubMed Central

    Wollstein, Andreas; Walsh, Susan; Liu, Fan; Chakravarthy, Usha; Rahu, Mati; Seland, Johan H.; Soubrane, Gisèle; Tomazzoli, Laura; Topouzis, Fotis; Vingerling, Johannes R.; Vioque, Jesus; Böhringer, Stefan; Fletcher, Astrid E.; Kayser, Manfred

    2017-01-01

    Success of genetic association and the prediction of phenotypic traits from DNA are known to depend on the accuracy of phenotype characterization, amongst other parameters. To overcome limitations in the characterization of human iris pigmentation, we introduce a fully automated approach that specifies the areal proportions proposed to represent differing pigmentation types, such as pheomelanin, eumelanin, and non-pigmented areas within the iris. We demonstrate the utility of this approach using high-resolution digital eye imagery and genotype data from 12 selected SNPs from over 3000 European samples of seven populations that are part of the EUREYE study. In comparison to previous quantification approaches, (1) we achieved an overall improvement in eye colour phenotyping, which provides a better separation of manually defined eye colour categories. (2) Single nucleotide polymorphisms (SNPs) known to be involved in human eye colour variation showed stronger associations with our approach. (3) We found new and confirmed previously noted SNP-SNP interactions. (4) We increased SNP-based prediction accuracy of quantitative eye colour. Our findings exemplify that precise quantification using the perceived biological basis of pigmentation leads to enhanced genetic association and prediction of eye colour. We expect our approach to deliver new pigmentation genes when applied to genome-wide association testing. PMID:28240252

  1. Predicting Retention Times of Naturally Occurring Phenolic Compounds in Reversed-Phase Liquid Chromatography: A Quantitative Structure-Retention Relationship (QSRR) Approach

    PubMed Central

    Akbar, Jamshed; Iqbal, Shahid; Batool, Fozia; Karim, Abdul; Chan, Kim Wei

    2012-01-01

    Quantitative structure-retention relationships (QSRRs) have successfully been developed for naturally occurring phenolic compounds in a reversed-phase liquid chromatographic (RPLC) system. A total of 1519 descriptors were calculated from the optimized structures of the molecules using MOPAC2009 and DRAGON softwares. The data set of 39 molecules was divided into training and external validation sets. For feature selection and mapping we used step-wise multiple linear regression (SMLR), unsupervised forward selection followed by step-wise multiple linear regression (UFS-SMLR) and artificial neural networks (ANN). Stable and robust models with significant predictive abilities in terms of validation statistics were obtained with negation of any chance correlation. ANN models were found better than remaining two approaches. HNar, IDM, Mp, GATS2v, DISP and 3D-MoRSE (signals 22, 28 and 32) descriptors based on van der Waals volume, electronegativity, mass and polarizability, at atomic level, were found to have significant effects on the retention times. The possible implications of these descriptors in RPLC have been discussed. All the models are proven to be quite able to predict the retention times of phenolic compounds and have shown remarkable validation, robustness, stability and predictive performance. PMID:23203132

  2. Anharmonic and Quantum Fluctuations in Molecular Crystals: A First-Principles Study of the Stability of Paracetamol

    NASA Astrophysics Data System (ADS)

    Rossi, Mariana; Gasparotto, Piero; Ceriotti, Michele

    2016-09-01

    Molecular crystals often exist in multiple competing polymorphs, showing significantly different physicochemical properties. Computational crystal structure prediction is key to interpret and guide the search for the most stable or useful form, a real challenge due to the combinatorial search space, and the complex interplay of subtle effects that work together to determine the relative stability of different structures. Here we take a comprehensive approach based on different flavors of thermodynamic integration in order to estimate all contributions to the free energies of these systems with density-functional theory, including the oft-neglected anharmonic contributions and nuclear quantum effects. We take the two main stable forms of paracetamol as a paradigmatic example. We find that anharmonic contributions, different descriptions of van der Waals interactions, and nuclear quantum effects all matter to quantitatively determine the stability of different phases. Our analysis highlights the many challenges inherent in the development of a quantitative and predictive framework to model molecular crystals. However, it also indicates which of the components of the free energy can benefit from a cancellation of errors that can redeem the predictive power of approximate models, and suggests simple steps that could be taken to improve the reliability of ab initio crystal structure prediction.

  3. Impact of Hydrogeological Uncertainty on Estimation of Environmental Risks Posed by Hydrocarbon Transportation Networks

    NASA Astrophysics Data System (ADS)

    Ciriello, V.; Lauriola, I.; Bonvicini, S.; Cozzani, V.; Di Federico, V.; Tartakovsky, Daniel M.

    2017-11-01

    Ubiquitous hydrogeological uncertainty undermines the veracity of quantitative predictions of soil and groundwater contamination due to accidental hydrocarbon spills from onshore pipelines. Such predictions, therefore, must be accompanied by quantification of predictive uncertainty, especially when they are used for environmental risk assessment. We quantify the impact of parametric uncertainty on quantitative forecasting of temporal evolution of two key risk indices, volumes of unsaturated and saturated soil contaminated by a surface spill of light nonaqueous-phase liquids. This is accomplished by treating the relevant uncertain parameters as random variables and deploying two alternative probabilistic models to estimate their effect on predictive uncertainty. A physics-based model is solved with a stochastic collocation method and is supplemented by a global sensitivity analysis. A second model represents the quantities of interest as polynomials of random inputs and has a virtually negligible computational cost, which enables one to explore any number of risk-related contamination scenarios. For a typical oil-spill scenario, our method can be used to identify key flow and transport parameters affecting the risk indices, to elucidate texture-dependent behavior of different soils, and to evaluate, with a degree of confidence specified by the decision-maker, the extent of contamination and the correspondent remediation costs.

  4. Internet-based system for simulation-based medical planning for cardiovascular disease.

    PubMed

    Steele, Brooke N; Draney, Mary T; Ku, Joy P; Taylor, Charles A

    2003-06-01

    Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments, which does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described simulation-based medical planning methods to model blood flow in arteries and plan medical treatments based on physiologic models. An important consideration for the design of these patient-specific modeling systems is the accessibility to physicians with modest computational resources. We describe a simulation-based medical planning environment developed for the World Wide Web (WWW) using the Virtual Reality Modeling Language (VRML) and the Java programming language.

  5. Statistical evaluation of time-dependent metabolite concentrations: estimation of post-mortem intervals based on in situ 1H-MRS of the brain.

    PubMed

    Scheurer, Eva; Ith, Michael; Dietrich, Daniel; Kreis, Roland; Hüsler, Jürg; Dirnhofer, Richard; Boesch, Chris

    2005-05-01

    Knowledge of the time interval from death (post-mortem interval, PMI) has an enormous legal, criminological and psychological impact. Aiming to find an objective method for the determination of PMIs in forensic medicine, 1H-MR spectroscopy (1H-MRS) was used in a sheep head model to follow changes in brain metabolite concentrations after death. Following the characterization of newly observed metabolites (Ith et al., Magn. Reson. Med. 2002; 5: 915-920), the full set of acquired spectra was analyzed statistically to provide a quantitative estimation of PMIs with their respective confidence limits. In a first step, analytical mathematical functions are proposed to describe the time courses of 10 metabolites in the decomposing brain up to 3 weeks post-mortem. Subsequently, the inverted functions are used to predict PMIs based on the measured metabolite concentrations. Individual PMIs calculated from five different metabolites are then pooled, being weighted by their inverse variances. The predicted PMIs from all individual examinations in the sheep model are compared with known true times. In addition, four human cases with forensically estimated PMIs are compared with predictions based on single in situ MRS measurements. Interpretation of the individual sheep examinations gave a good correlation up to 250 h post-mortem, demonstrating that the predicted PMIs are consistent with the data used to generate the model. Comparison of the estimated PMIs with the forensically determined PMIs in the four human cases shows an adequate correlation. Current PMI estimations based on forensic methods typically suffer from uncertainties in the order of days to weeks without mathematically defined confidence information. In turn, a single 1H-MRS measurement of brain tissue in situ results in PMIs with defined and favorable confidence intervals in the range of hours, thus offering a quantitative and objective method for the determination of PMIs. Copyright 2004 John Wiley & Sons, Ltd.

  6. A Quantitative Model of Expert Transcription Typing

    DTIC Science & Technology

    1993-03-08

    side of pure psychology, several researchers have argued that transcription typing is a particularly good activity for the study of human skilled...phenomenon with a quantitative METT prediction. The first, quick and dirty analysis gives a good prediction of the copy span, in fact, it is even...typing, it should be demonstrated that the mechanism of the model does not get in the way of good predictions. If situations occur where the entire

  7. Quantitative body fluid proteomics in medicine - A focus on minimal invasiveness.

    PubMed

    Csősz, Éva; Kalló, Gergő; Márkus, Bernadett; Deák, Eszter; Csutak, Adrienne; Tőzsér, József

    2017-02-05

    Identification of new biomarkers specific for various pathological conditions is an important field in medical sciences. Body fluids have emerging potential in biomarker studies especially those which are continuously available and can be collected by non-invasive means. Changes in the protein composition of body fluids such as tears, saliva, sweat, etc. may provide information on both local and systemic conditions of medical relevance. In this review, our aim is to discuss the quantitative proteomics techniques used in biomarker studies, and to present advances in quantitative body fluid proteomics of non-invasively collectable body fluids with relevance to biomarker identification. The advantages and limitations of the widely used quantitative proteomics techniques are also presented. Based on the reviewed literature, we suggest an ideal pipeline for body fluid analyses aiming at biomarkers discoveries: starting from identification of biomarker candidates by shotgun quantitative proteomics or protein arrays, through verification of potential biomarkers by targeted mass spectrometry, to the antibody-based validation of biomarkers. The importance of body fluids as a rich source of biomarkers is discussed. Quantitative proteomics is a challenging part of proteomics applications. The body fluids collected by non-invasive means have high relevance in medicine; they are good sources for biomarkers used in establishing the diagnosis, follow up of disease progression and predicting high risk groups. The review presents the most widely used quantitative proteomics techniques in body fluid analysis and lists the potential biomarkers identified in tears, saliva, sweat, nasal mucus and urine for local and systemic diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments

    NASA Astrophysics Data System (ADS)

    Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia

    2017-03-01

    Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent.

  9. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments

    PubMed Central

    Loo, Lit-Hsin; Bougen-Zhukov, Nicola Michelle; Tan, Wei-Ling Cecilia

    2017-01-01

    Signaling pathways can generate different cellular responses to the same cytotoxic agents. Current quantitative models for predicting these differential responses are usually based on large numbers of intracellular gene products or signals at different levels of signaling cascades. Here, we report a study to predict cellular sensitivity to tumor necrosis factor alpha (TNFα) using high-throughput cellular imaging and machine-learning methods. We measured and compared 1170 protein phosphorylation events in a panel of human lung cancer cell lines based on different signals, subcellular regions, and time points within one hour of TNFα treatment. We found that two spatiotemporal-specific changes in an intermediate signaling protein, p90 ribosomal S6 kinase (RSK), are sufficient to predict the TNFα sensitivity of these cell lines. Our models could also predict the combined effects of TNFα and other kinase inhibitors, many of which are not known to target RSK directly. Therefore, early spatiotemporal-specific changes in intermediate signals are sufficient to represent the complex cellular responses to these perturbations. Our study provides a general framework for the development of rapid, signaling-based cytotoxicity screens that may be used to predict cellular sensitivity to a cytotoxic agent, or identify co-treatments that may sensitize or desensitize cells to the agent. PMID:28272488

  10. Coagulation monitoring based on blood elastic measurement using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping

    2017-02-01

    Blood coagulation monitoring is important to diagnose hematological diseases and cardiovascular diseases and to predict the risk of bleeding and excessive clotting. In this study, we developed a system to dynamically monitor blood coagulation and quantitatively determine the coagulation function by blood elastic measurement. When blood forms a clot from a liquid, ultrasonic force induces a shear wave, which is detected by optical coherence tomography (OCT). The coagulation of porcine whole blood recalcified by calcium chloride is assessed using the metrics of reaction time, clot formation kinetics and maximum shear modulus. The OCE system can noninvasively monitor the blood coagulation and quantitatively determine the coagulation function.

  11. A penalized quantitative structure-property relationship study on melting point of energetic carbocyclic nitroaromatic compounds using adaptive bridge penalty.

    PubMed

    Al-Fakih, A M; Algamal, Z Y; Lee, M H; Aziz, M

    2018-05-01

    A penalized quantitative structure-property relationship (QSPR) model with adaptive bridge penalty for predicting the melting points of 92 energetic carbocyclic nitroaromatic compounds is proposed. To ensure the consistency of the descriptor selection of the proposed penalized adaptive bridge (PBridge), we proposed a ridge estimator ([Formula: see text]) as an initial weight in the adaptive bridge penalty. The Bayesian information criterion was applied to ensure the accurate selection of the tuning parameter ([Formula: see text]). The PBridge based model was internally and externally validated based on [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], the Y-randomization test, [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and the applicability domain. The validation results indicate that the model is robust and not due to chance correlation. The descriptor selection and prediction performance of PBridge for the training dataset outperforms the other methods used. PBridge shows the highest [Formula: see text] of 0.959, [Formula: see text] of 0.953, [Formula: see text] of 0.949 and [Formula: see text] of 0.959, and the lowest [Formula: see text] and [Formula: see text]. For the test dataset, PBridge shows a higher [Formula: see text] of 0.945 and [Formula: see text] of 0.948, and a lower [Formula: see text] and [Formula: see text], indicating its better prediction performance. The results clearly reveal that the proposed PBridge is useful for constructing reliable and robust QSPRs for predicting melting points prior to synthesizing new organic compounds.

  12. Magnetic resonance imaging-based measures predictive of short-term surgical outcome in patients with Chiari malformation Type I: a pilot study.

    PubMed

    Alperin, Noam; Loftus, James Ryan; Bagci, Ahmet M; Lee, Sang H; Oliu, Carlos J; Shah, Ashish H; Green, Barth A

    2017-01-01

    OBJECTIVE This study identifies quantitative imaging-based measures in patients with Chiari malformation Type I (CM-I) that are associated with positive outcomes after suboccipital decompression with duraplasty. METHODS Fifteen patients in whom CM-I was newly diagnosed underwent MRI preoperatively and 3 months postoperatively. More than 20 previously described morphological and physiological parameters were derived to assess quantitatively the impact of surgery. Postsurgical clinical outcomes were assessed in 2 ways, based on resolution of the patient's chief complaint and using a modified Chicago Chiari Outcome Scale (CCOS). Statistical analyses were performed to identify measures that were different between the unfavorable- and favorable-outcome cohorts. Multivariate analysis was used to identify the strongest predictors of outcome. RESULTS The strongest physiological parameter predictive of outcome was the preoperative maximal cord displacement in the upper cervical region during the cardiac cycle, which was significantly larger in the favorable-outcome subcohorts for both outcome types (p < 0.05). Several hydrodynamic measures revealed significantly larger preoperative-to-postoperative changes in the favorable-outcome subcohort. Predictor sets for the chief-complaint classification included the cord displacement, percent venous drainage through the jugular veins, and normalized cerebral blood flow with 93.3% accuracy. Maximal cord displacement combined with intracranial volume change predicted outcome based on the modified CCOS classification with similar accuracy. CONCLUSIONS Tested physiological measures were stronger predictors of outcome than the morphological measures in patients with CM-I. Maximal cord displacement and intracranial volume change during the cardiac cycle together with a measure that reflects the cerebral venous drainage pathway emerged as likely predictors of decompression outcome in patients with CM-I.

  13. Evaluation of quantitative precipitation forecasts by TIGGE ensembles for south China during the presummer rainy season

    NASA Astrophysics Data System (ADS)

    Huang, Ling; Luo, Yali

    2017-08-01

    Based on The Observing System Research and Predictability Experiment Interactive Grand Global Ensemble (TIGGE) data set, this study evaluates the ability of global ensemble prediction systems (EPSs) from the European Centre for Medium-Range Weather Forecasts (ECMWF), U.S. National Centers for Environmental Prediction, Japan Meteorological Agency (JMA), Korean Meteorological Administration, and China Meteorological Administration (CMA) to predict presummer rainy season (April-June) precipitation in south China. Evaluation of 5 day forecasts in three seasons (2013-2015) demonstrates the higher skill of probability matching forecasts compared to simple ensemble mean forecasts and shows that the deterministic forecast is a close second. The EPSs overestimate light-to-heavy rainfall (0.1 to 30 mm/12 h) and underestimate heavier rainfall (>30 mm/12 h), with JMA being the worst. By analyzing the synoptic situations predicted by the identified more skillful (ECMWF) and less skillful (JMA and CMA) EPSs and the ensemble sensitivity for four representative cases of torrential rainfall, the transport of warm-moist air into south China by the low-level southwesterly flow, upstream of the torrential rainfall regions, is found to be a key synoptic factor that controls the quantitative precipitation forecast. The results also suggest that prediction of locally produced torrential rainfall is more challenging than prediction of more extensively distributed torrential rainfall. A slight improvement in the performance is obtained by shortening the forecast lead time from 30-36 h to 18-24 h to 6-12 h for the cases with large-scale forcing, but not for the locally produced cases.

  14. Chemical Structural Novelty: On-Targets and Off-Targets

    PubMed Central

    Yera, Emmanuel R.; Cleves, Ann. E.; Jain, Ajay N.

    2011-01-01

    Drug structures may be quantitatively compared based on 2D topological structural considerations and based on 3D characteristics directly related to binding. A framework for combining multiple similarity computations is presented along with its systematic application to 358 drugs with overlapping pharmacology. Given a new molecule along with a set of molecules sharing some biological effect, a single score based on comparison to the known set is produced, reflecting either 2D similarity, 3D similarity, or their combination. For prediction of primary targets, the benefit of 3D over 2D was relatively small, but for prediction of off-targets, the added benefit was large. In addition to assessing prediction, the relationship between chemical similarity and pharmacological novelty was studied. Drug pairs that shared high 3D similarity but low 2D similarity (i.e. a novel scaffold) were shown to be much more likely to exhibit pharmacologically relevant differences in terms of specific protein target modulation. PMID:21916467

  15. A System Computational Model of Implicit Emotional Learning

    PubMed Central

    Puviani, Luca; Rama, Sidita

    2016-01-01

    Nowadays, the experimental study of emotional learning is commonly based on classical conditioning paradigms and models, which have been thoroughly investigated in the last century. Unluckily, models based on classical conditioning are unable to explain or predict important psychophysiological phenomena, such as the failure of the extinction of emotional responses in certain circumstances (for instance, those observed in evaluative conditioning, in post-traumatic stress disorders and in panic attacks). In this manuscript, starting from the experimental results available from the literature, a computational model of implicit emotional learning based both on prediction errors computation and on statistical inference is developed. The model quantitatively predicts (a) the occurrence of evaluative conditioning, (b) the dynamics and the resistance-to-extinction of the traumatic emotional responses, (c) the mathematical relation between classical conditioning and unconditioned stimulus revaluation. Moreover, we discuss how the derived computational model can lead to the development of new animal models for resistant-to-extinction emotional reactions and novel methodologies of emotions modulation. PMID:27378898

  16. A System Computational Model of Implicit Emotional Learning.

    PubMed

    Puviani, Luca; Rama, Sidita

    2016-01-01

    Nowadays, the experimental study of emotional learning is commonly based on classical conditioning paradigms and models, which have been thoroughly investigated in the last century. Unluckily, models based on classical conditioning are unable to explain or predict important psychophysiological phenomena, such as the failure of the extinction of emotional responses in certain circumstances (for instance, those observed in evaluative conditioning, in post-traumatic stress disorders and in panic attacks). In this manuscript, starting from the experimental results available from the literature, a computational model of implicit emotional learning based both on prediction errors computation and on statistical inference is developed. The model quantitatively predicts (a) the occurrence of evaluative conditioning, (b) the dynamics and the resistance-to-extinction of the traumatic emotional responses, (c) the mathematical relation between classical conditioning and unconditioned stimulus revaluation. Moreover, we discuss how the derived computational model can lead to the development of new animal models for resistant-to-extinction emotional reactions and novel methodologies of emotions modulation.

  17. Computational Methods in Drug Discovery

    PubMed Central

    Sliwoski, Gregory; Kothiwale, Sandeepkumar; Meiler, Jens

    2014-01-01

    Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades. These methods are broadly classified as either structure-based or ligand-based methods. Structure-based methods are in principle analogous to high-throughput screening in that both target and ligand structure information is imperative. Structure-based approaches include ligand docking, pharmacophore, and ligand design methods. The article discusses theory behind the most important methods and recent successful applications. Ligand-based methods use only ligand information for predicting activity depending on its similarity/dissimilarity to previously known active ligands. We review widely used ligand-based methods such as ligand-based pharmacophores, molecular descriptors, and quantitative structure-activity relationships. In addition, important tools such as target/ligand data bases, homology modeling, ligand fingerprint methods, etc., necessary for successful implementation of various computer-aided drug discovery/design methods in a drug discovery campaign are discussed. Finally, computational methods for toxicity prediction and optimization for favorable physiologic properties are discussed with successful examples from literature. PMID:24381236

  18. Predicting loop–helix tertiary structural contacts in RNA pseudoknots

    PubMed Central

    Cao, Song; Giedroc, David P.; Chen, Shi-Jie

    2010-01-01

    Tertiary interactions between loops and helical stems play critical roles in the biological function of many RNA pseudoknots. However, quantitative predictions for RNA tertiary interactions remain elusive. Here we report a statistical mechanical model for the prediction of noncanonical loop–stem base-pairing interactions in RNA pseudoknots. Central to the model is the evaluation of the conformational entropy for the pseudoknotted folds with defined loop–stem tertiary structural contacts. We develop an RNA virtual bond-based conformational model (Vfold model), which permits a rigorous computation of the conformational entropy for a given fold that contains loop–stem tertiary contacts. With the entropy parameters predicted from the Vfold model and the energy parameters for the tertiary contacts as inserted parameters, we can then predict the RNA folding thermodynamics, from which we can extract the tertiary contact thermodynamic parameters from theory–experimental comparisons. These comparisons reveal a contact enthalpy (ΔH) of −14 kcal/mol and a contact entropy (ΔS) of −38 cal/mol/K for a protonated C+•(G–C) base triple at pH 7.0, and (ΔH = −7 kcal/mol, ΔS = −19 cal/mol/K) for an unprotonated base triple. Tests of the model for a series of pseudoknots show good theory–experiment agreement. Based on the extracted energy parameters for the tertiary structural contacts, the model enables predictions for the structure, stability, and folding pathways for RNA pseudoknots with known or postulated loop–stem tertiary contacts from the nucleotide sequence alone. PMID:20100813

  19. Virtual Clinical Trial Toward Polytherapy Safety Assessment: Combination of Physiologically Based Pharmacokinetic/Pharmacodynamic-Based Modeling and Simulation Approach With Drug-Drug Interactions Involving Terfenadine as an Example.

    PubMed

    Wiśniowska, Barbara; Polak, Sebastian

    2016-11-01

    A Quantitative Systems Pharmacology approach was utilized to predict the cardiac consequences of drug-drug interaction (DDI) at the population level. The Simcyp in vitro-in vivo correlation and physiologically based pharmacokinetic platform was used to predict the pharmacokinetic profile of terfenadine following co-administration of the drug. Electrophysiological effects were simulated using the Cardiac Safety Simulator. The modulation of ion channel activity was dependent on the inhibitory potential of drugs on the main cardiac ion channels and a simulated free heart tissue concentration. ten Tusscher's human ventricular cardiomyocyte model was used to simulate the pseudo-ECG traces and further predict the pharmacodynamic consequences of DDI. Consistent with clinical observations, predicted plasma concentration profiles of terfenadine show considerable intra-subject variability with recorded C max values below 5 ng/mL for most virtual subjects. The pharmacokinetic and pharmacodynamic effects of inhibitors were predicted with reasonable accuracy. In all cases, a combination of the physiologically based pharmacokinetic and physiology-based pharmacodynamic models was able to differentiate between the terfenadine alone and terfenadine + inhibitor scenario. The range of QT prolongation was comparable in the clinical and virtual studies. The results indicate that mechanistic in vitro-in vivo correlation can be applied to predict the clinical effects of DDI even without comprehensive knowledge on all mechanisms contributing to the interaction. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Comparative Analysis of Predictive Models for Liver Toxicity Using ToxCast Assays and Quantitative Structure-Activity Relationships (MCBIOS)

    EPA Science Inventory

    Comparative Analysis of Predictive Models for Liver Toxicity Using ToxCast Assays and Quantitative Structure-Activity Relationships Jie Liu1,2, Richard Judson1, Matthew T. Martin1, Huixiao Hong3, Imran Shah1 1National Center for Computational Toxicology (NCCT), US EPA, RTP, NC...

  1. Investigation of a redox-sensitive predictive model of mouse embryonic stem cells differentiation using quantitative nuclease protection assays and glutathione redox status

    EPA Science Inventory

    Investigation of a redox-sensitive predictive model of mouse embryonic stem cell differentiation via quantitative nuclease protection assays and glutathione redox status Chandler KJ,Hansen JM, Knudsen T,and Hunter ES 1. U.S. Environmental Protection Agency, Research Triangl...

  2. Quantitative structure activity relationship (QSAR) of piperine analogs for bacterial NorA efflux pump inhibitors.

    PubMed

    Nargotra, Amit; Sharma, Sujata; Koul, Jawahir Lal; Sangwan, Pyare Lal; Khan, Inshad Ali; Kumar, Ashwani; Taneja, Subhash Chander; Koul, Surrinder

    2009-10-01

    Quantitative structure activity relationship (QSAR) analysis of piperine analogs as inhibitors of efflux pump NorA from Staphylococcus aureus has been performed in order to obtain a highly accurate model enabling prediction of inhibition of S. aureus NorA of new chemical entities from natural sources as well as synthetic ones. Algorithm based on genetic function approximation method of variable selection in Cerius2 was used to generate the model. Among several types of descriptors viz., topological, spatial, thermodynamic, information content and E-state indices that were considered in generating the QSAR model, three descriptors such as partial negative surface area of the compounds, area of the molecular shadow in the XZ plane and heat of formation of the molecules resulted in a statistically significant model with r(2)=0.962 and cross-validation parameter q(2)=0.917. The validation of the QSAR models was done by cross-validation, leave-25%-out and external test set prediction. The theoretical approach indicates that the increase in the exposed partial negative surface area increases the inhibitory activity of the compound against NorA whereas the area of the molecular shadow in the XZ plane is inversely proportional to the inhibitory activity. This model also explains the relationship of the heat of formation of the compound with the inhibitory activity. The model is not only able to predict the activity of new compounds but also explains the important regions in the molecules in quantitative manner.

  3. Optical properties of acute kidney injury measured by quantitative phase imaging

    PubMed Central

    Ban, Sungbea; Min, Eunjung; Baek, Songyee; Kwon, Hyug Moo; Popescu, Gabriel

    2018-01-01

    The diagnosis of acute kidney disease (AKI) has been examined mainly by histology, immunohistochemistry and western blot. Though these approaches are widely accepted in the field, it has an inherent limitation due to the lack of high-throughput and quantitative information. For a better understanding of prognosis in AKI, we present a new approach using quantitative phase imaging combined with a wide-field scanning platform. Through the phase-delay information from the tissue, we were able to predict a stage of AKI based on various optical properties such as light scattering coefficient and anisotropy. These optical parameters quantify the deterioration process of the AKI model of tissue. Our device would be a very useful tool when it is required to deliver fast feedback of tissue pathology or when diseases are related to mechanical properties such as fibrosis. PMID:29541494

  4. Early prediction of coma recovery after cardiac arrest with blinded pupillometry.

    PubMed

    Solari, Daria; Rossetti, Andrea O; Carteron, Laurent; Miroz, John-Paul; Novy, Jan; Eckert, Philippe; Oddo, Mauro

    2017-06-01

    Prognostication studies on comatose cardiac arrest (CA) patients are limited by lack of blinding, potentially causing overestimation of outcome predictors and self-fulfilling prophecy. Using a blinded approach, we analyzed the value of quantitative automated pupillometry to predict neurological recovery after CA. We examined a prospective cohort of 103 comatose adult patients who were unconscious 48 hours after CA and underwent repeated measurements of quantitative pupillary light reflex (PLR) using the Neurolight-Algiscan device. Clinical examination, electroencephalography (EEG), somatosensory evoked potentials (SSEP), and serum neuron-specific enolase were performed in parallel, as part of standard multimodal assessment. Automated pupillometry results were blinded to clinicians involved in patient care. Cerebral Performance Categories (CPC) at 1 year was the outcome endpoint. Survivors (n = 50 patients; 32 CPC 1, 16 CPC 2, 2 CPC 3) had higher quantitative PLR (median = 20 [range = 13-41] vs 11 [0-55] %, p < 0.0001) and constriction velocity (1.46 [0.85-4.63] vs 0.94 [0.16-4.97] mm/s, p < 0.0001) than nonsurvivors. At 48 hours, a quantitative PLR < 13% had 100% specificity and positive predictive value to predict poor recovery (0% false-positive rate), and provided equal performance to that of EEG and SSEP. Reduced quantitative PLR correlated with higher serum neuron-specific enolase (Spearman r = -0.52, p < 0.0001). Reduced quantitative PLR correlates with postanoxic brain injury and, when compared to standard multimodal assessment, is highly accurate in predicting long-term prognosis after CA. This is the first prognostication study to show the value of automated pupillometry using a blinded approach to minimize self-fulfilling prophecy. Ann Neurol 2017;81:804-810. © 2017 American Neurological Association.

  5. Pitfalls and Precautions When Using Predicted Failure Data for Quantitative Analysis of Safety Risk for Human Rated Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hatfield, Glen S.; Hark, Frank; Stott, James

    2016-01-01

    Launch vehicle reliability analysis is largely dependent upon using predicted failure rates from data sources such as MIL-HDBK-217F. Reliability prediction methodologies based on component data do not take into account system integration risks such as those attributable to manufacturing and assembly. These sources often dominate component level risk. While consequence of failure is often understood, using predicted values in a risk model to estimate the probability of occurrence may underestimate the actual risk. Managers and decision makers use the probability of occurrence to influence the determination whether to accept the risk or require a design modification. The actual risk threshold for acceptance may not be fully understood due to the absence of system level test data or operational data. This paper will establish a method and approach to identify the pitfalls and precautions of accepting risk based solely upon predicted failure data. This approach will provide a set of guidelines that may be useful to arrive at a more realistic quantification of risk prior to acceptance by a program.

  6. Prediction of quantitative intrathoracic fluid volume to diagnose pulmonary oedema using LabVIEW.

    PubMed

    Urooj, Shabana; Khan, M; Ansari, A Q; Lay-Ekuakille, Aimé; Salhan, Ashok K

    2012-01-01

    Pulmonary oedema is a life-threatening disease that requires special attention in the area of research and clinical diagnosis. Computer-based techniques are rarely used to quantify the intrathoracic fluid volume (IFV) for diagnostic purposes. This paper discusses a software program developed to detect and diagnose pulmonary oedema using LabVIEW. The software runs on anthropometric dimensions and physiological parameters, mainly transthoracic electrical impedance (TEI). This technique is accurate and faster than existing manual techniques. The LabVIEW software was used to compute the parameters required to quantify IFV. An equation relating per cent control and IFV was obtained. The results of predicted TEI and measured TEI were compared with previously reported data to validate the developed program. It was found that the predicted values of TEI obtained from the computer-based technique were much closer to the measured values of TEI. Six new subjects were enrolled to measure and predict transthoracic impedance and hence to quantify IFV. A similar difference was also observed in the measured and predicted values of TEI for the new subjects.

  7. T2* Mapping Provides Information That Is Statistically Comparable to an Arthroscopic Evaluation of Acetabular Cartilage.

    PubMed

    Morgan, Patrick; Nissi, Mikko J; Hughes, John; Mortazavi, Shabnam; Ellerman, Jutta

    2017-07-01

    Objectives The purpose of this study was to validate T2* mapping as an objective, noninvasive method for the prediction of acetabular cartilage damage. Methods This is the second step in the validation of T2*. In a previous study, we established a quantitative predictive model for identifying and grading acetabular cartilage damage. In this study, the model was applied to a second cohort of 27 consecutive hips to validate the model. A clinical 3.0-T imaging protocol with T2* mapping was used. Acetabular regions of interest (ROI) were identified on magnetic resonance and graded using the previously established model. Each ROI was then graded in a blinded fashion by arthroscopy. Accurate surgical location of ROIs was facilitated with a 2-dimensional map projection of the acetabulum. A total of 459 ROIs were studied. Results When T2* mapping and arthroscopic assessment were compared, 82% of ROIs were within 1 Beck group (of a total 6 possible) and 32% of ROIs were classified identically. Disease prediction based on receiver operating characteristic curve analysis demonstrated a sensitivity of 0.713 and a specificity of 0.804. Model stability evaluation required no significant changes to the predictive model produced in the initial study. Conclusions These results validate that T2* mapping provides statistically comparable information regarding acetabular cartilage when compared to arthroscopy. In contrast to arthroscopy, T2* mapping is quantitative, noninvasive, and can be used in follow-up. Unlike research quantitative magnetic resonance protocols, T2* takes little time and does not require a contrast agent. This may facilitate its use in the clinical sphere.

  8. Evaluation of prognostic and predictive value of microtubule associated protein tau in two independent cohorts.

    PubMed

    Baquero, Maria T; Lostritto, Karen; Gustavson, Mark D; Bassi, Kimberly A; Appia, Franck; Camp, Robert L; Molinaro, Annette M; Harris, Lyndsay N; Rimm, David L

    2011-11-02

    Microtubule associated proteins (MAPs) endogenously regulate microtubule stabilization and have been reported as prognostic and predictive markers for taxane response. The microtubule stabilizer, MAP-tau, has shown conflicting results. We quantitatively assessed MAP-tau expression in two independent breast cancer cohorts to determine prognostic and predictive value of this biomarker. MAP-tau expression was evaluated in the retrospective Yale University breast cancer cohort (n = 651) using tissue microarrays and also in the TAX 307 cohort, a clinical trial randomized for TAC versus FAC chemotherapy (n = 140), using conventional whole tissue sections. Expression was measured using the AQUA method for quantitative immunofluorescence. Scores were correlated with clinicopathologic variables, survival, and response to therapy. Assessment of the Yale cohort using Cox univariate analysis indicated an improved overall survival (OS) in tumors with a positive correlation between high MAP-tau expression and overall survival (OS) (HR = 0.691, 95% CI = 0.489-0.974; P = 0.004). Kaplan Meier analysis showed 10-year survival for 65% of patients with high MAP-tau expression compared to 52% with low expression (P = .006). In TAX 307, high expression was associated with significantly longer median time to tumor progression (TTP) regardless of treatment arm (33.0 versus 23.4 months, P = 0.010) with mean TTP of 31.2 months. Response rates did not differ by MAP-tau expression (P = 0.518) or by treatment arm (P = 0.584). Quantitative measurement of MAP-tau expression has prognostic value in both cohorts, with high expression associated with longer TTP and OS. Differences by treatment arm or response rate in low versus high MAP-tau groups were not observed, indicating that MAP-tau is not associated with response to taxanes and is not a useful predictive marker for taxane-based chemotherapy.

  9. Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA).

    PubMed

    Redmond, Haley; Thompson, Jonathan E

    2011-04-21

    In this work we describe and evaluate a simple scheme by which the refractive index (λ = 589 nm) of non-absorbing components common to secondary organic aerosols (SOA) may be predicted from molecular formula and density (g cm(-3)). The QSPR approach described is based on three parameters linked to refractive index-molecular polarizability, the ratio of mass density to molecular weight, and degree of unsaturation. After computing these quantities for a training set of 111 compounds common to atmospheric aerosols, multi-linear regression analysis was conducted to establish a quantitative relationship between the parameters and accepted value of refractive index. The resulting quantitative relationship can often estimate refractive index to ±0.01 when averaged across a variety of compound classes. A notable exception is for alcohols for which the model consistently underestimates refractive index. Homogenous internal mixtures can conceivably be addressed through use of either the volume or mole fraction mixing rules commonly used in the aerosol community. Predicted refractive indices reconstructed from chemical composition data presented in the literature generally agree with previous reports of SOA refractive index. Additionally, the predicted refractive indices lie near measured values we report for λ = 532 nm for SOA generated from vapors of α-pinene (R.I. 1.49-1.51) and toluene (R.I. 1.49-1.50). We envision the QSPR method may find use in reconstructing optical scattering of organic aerosols if mass composition data is known. Alternatively, the method described could be incorporated into in models of organic aerosol formation/phase partitioning to better constrain organic aerosol optical properties.

  10. Teacher Emotions in the Classroom: Associations with Students' Engagement, Classroom Discipline and the Interpersonal Teacher-Student Relationship

    ERIC Educational Resources Information Center

    Hagenauer, Gerda; Hascher, Tina; Volet, Simone E.

    2015-01-01

    The present study explores teacher emotions, in particular how they are predicted by students' behaviour and the interpersonal aspect of the teacher-student relationship (TSR). One hundred thirty-two secondary teachers participated in a quantitative study relying on self-report questionnaire data. Based on the model of teacher emotions by Frenzel…

  11. When More of A Doesn't Result in More of B: Physics Experiments with a Surprising Outcome

    ERIC Educational Resources Information Center

    Tsakmaki, Paraskevi; Koumaras, Panagiotis

    2016-01-01

    Science education research has shown that students use causal reasoning, particularly the model "agent--instrument--object," to explain or predict the outcome of many natural situations. Students' reasoning seems to be based on a small set of few intuitive rules. One of these rules quantitatively correlates the outcome of an experiment…

  12. Can Ambiguity Tolerance, Success in Reading, and Gender Predict the Foreign Language Reading Anxiety?

    ERIC Educational Resources Information Center

    Genç, Gülten

    2016-01-01

    The present study focuses on the relationship between reading anxiety and ambiguity tolerance of 295 Turkish EFL learners of English (180 females, 115 males). Data were collected using the Turkish version of FLRAS and SLTAS in 2015-2016 academic year. The overall design of the study was based on the quantitative research method. Data were…

  13. The Application of the Theory of Planned Behaviour to Diet in Carers of People with an Intellectual Disability

    ERIC Educational Resources Information Center

    Jenkins, Catherine M.; McKenzie, Karen

    2011-01-01

    Background: The utility of the theory of planned behaviour (TPB) in predicting the intentions of care staff to encourage healthy eating behaviour in those they supported was examined. Method: A quantitative, within-participant, questionnaire based design was used with 112 carers to assess the performance of two TPB models. The first contained the…

  14. Predictive Power of Attention and Reading Readiness Variables on Auditory Reasoning and Processing Skills of Six-Year-Old Children

    ERIC Educational Resources Information Center

    Erbay, Filiz

    2013-01-01

    The aim of present research was to describe the relation of six-year-old children's attention and reading readiness skills (general knowledge, word comprehension, sentences, and matching) with their auditory reasoning and processing skills. This was a quantitative study based on scanning model. Research sampling consisted of 204 kindergarten…

  15. Quantitative structure-property relationship modeling of Grätzel solar cell dyes.

    PubMed

    Venkatraman, Vishwesh; Åstrand, Per-Olof; Alsberg, Bjørn Kåre

    2014-01-30

    With fossil fuel reserves on the decline, there is increasing focus on the design and development of low-cost organic photovoltaic devices, in particular, dye-sensitized solar cells (DSSCs). The power conversion efficiency (PCE) of a DSSC is heavily influenced by the chemical structure of the dye. However, as far as we know, no predictive quantitative structure-property relationship models for DSSCs with PCE as one of the response variables have been reported. Thus, we report for the first time the successful application of comparative molecular field analysis (CoMFA) and vibrational frequency-based eigenvalue (EVA) descriptors to model molecular structure-photovoltaic performance relationships for a set of 40 coumarin derivatives. The results show that the models obtained provide statistically robust predictions of important photovoltaic parameters such as PCE, the open-circuit voltage (V(OC)), short-circuit current (J(SC)) and the peak absorption wavelength λ(max). Some of our findings based on the analysis of the models are in accordance with those reported in the literature. These structure-property relationships can be applied to the rational structural design and evaluation of new photovoltaic materials. Copyright © 2013 Wiley Periodicals, Inc.

  16. Quantitative characterization of genetic parts and circuits for plant synthetic biology.

    PubMed

    Schaumberg, Katherine A; Antunes, Mauricio S; Kassaw, Tessema K; Xu, Wenlong; Zalewski, Christopher S; Medford, June I; Prasad, Ashok

    2016-01-01

    Plant synthetic biology promises immense technological benefits, including the potential development of a sustainable bio-based economy through the predictive design of synthetic gene circuits. Such circuits are built from quantitatively characterized genetic parts; however, this characterization is a significant obstacle in work with plants because of the time required for stable transformation. We describe a method for rapid quantitative characterization of genetic plant parts using transient expression in protoplasts and dual luciferase outputs. We observed experimental variability in transient-expression assays and developed a mathematical model to describe, as well as statistical normalization methods to account for, this variability, which allowed us to extract quantitative parameters. We characterized >120 synthetic parts in Arabidopsis and validated our method by comparing transient expression with expression in stably transformed plants. We also tested >100 synthetic parts in sorghum (Sorghum bicolor) protoplasts, and the results showed that our method works in diverse plant groups. Our approach enables the construction of tunable gene circuits in complex eukaryotic organisms.

  17. Conventional liquid chromatography/triple quadrupole mass spectrometer-based metabolite identification and semi-quantitative estimation approach in the investigation of dabigatran etexilate in vitro metabolism

    PubMed Central

    Hu, Zhe-Yi; Parker, Robert B.; Herring, Vanessa L.; Laizure, S. Casey

    2012-01-01

    Dabigatran etexilate (DABE) is an oral prodrug that is rapidly converted by esterases to dabigatran (DAB), a direct inhibitor of thrombin. To elucidate the esterase-mediated metabolic pathway of DABE, a high-performance liquid chromatography/mass spectrometer (LC-MS/MS)-based metabolite identification and semi-quantitative estimation approach was developed. To overcome the poor full-scan sensitivity of conventional triple quadrupole mass spectrometry, precursor-product ion pairs were predicted, to search for the potential in vitro metabolites. The detected metabolites were confirmed by the product ion scan. A dilution method was introduced to evaluate the matrix effects of tentatively identified metabolites without chemical standards. Quantitative information on detected metabolites was obtained using ‘metabolite standards’ generated from incubation samples that contain a high concentration of metabolite in combination with a correction factor for mass spectrometry response. Two in vitro metabolites of DABE (M1 and M2) were identified, and quantified by the semi-quantitative estimation approach. It is noteworthy that CES1 convert DABE to M1 while CES2 mediates the conversion of DABE to M2. M1 (or M2) was further metabolized to DAB by CES2 (or CES1). The approach presented here provides a solution to a bioanalytical need for fast identification and semi-quantitative estimation of CES metabolites in preclinical samples. PMID:23239178

  18. Implementation of the Realized Genomic Relationship Matrix to Open-Pollinated White Spruce Family Testing for Disentangling Additive from Nonadditive Genetic Effects

    PubMed Central

    Gamal El-Dien, Omnia; Ratcliffe, Blaise; Klápště, Jaroslav; Porth, Ilga; Chen, Charles; El-Kassaby, Yousry A.

    2016-01-01

    The open-pollinated (OP) family testing combines the simplest known progeny evaluation and quantitative genetics analyses as candidates’ offspring are assumed to represent independent half-sib families. The accuracy of genetic parameter estimates is often questioned as the assumption of “half-sibling” in OP families may often be violated. We compared the pedigree- vs. marker-based genetic models by analysing 22-yr height and 30-yr wood density for 214 white spruce [Picea glauca (Moench) Voss] OP families represented by 1694 individuals growing on one site in Quebec, Canada. Assuming half-sibling, the pedigree-based model was limited to estimating the additive genetic variances which, in turn, were grossly overestimated as they were confounded by very minor dominance and major additive-by-additive epistatic genetic variances. In contrast, the implemented genomic pairwise realized relationship models allowed the disentanglement of additive from all nonadditive factors through genetic variance decomposition. The marker-based models produced more realistic narrow-sense heritability estimates and, for the first time, allowed estimating the dominance and epistatic genetic variances from OP testing. In addition, the genomic models showed better prediction accuracies compared to pedigree models and were able to predict individual breeding values for new individuals from untested families, which was not possible using the pedigree-based model. Clearly, the use of marker-based relationship approach is effective in estimating the quantitative genetic parameters of complex traits even under simple and shallow pedigree structure. PMID:26801647

  19. Quantitative contrast-enhanced ultrasound evaluation of pathological complete response in patients with locally advanced breast cancer receiving neoadjuvant chemotherapy.

    PubMed

    Wan, Cai-Feng; Liu, Xue-Song; Wang, Lin; Zhang, Jie; Lu, Jin-Song; Li, Feng-Hua

    2018-06-01

    To clarify whether the quantitative parameters of contrast-enhanced ultrasound (CEUS) can be used to predict pathological complete response (pCR) in patients with locally advanced breast cancer receiving neoadjuvant chemotherapy (NAC). Fifty-one patients with histologically proved locally advanced breast cancer scheduled for NAC were enrolled. The quantitative data for CEUS and the tumor diameter were collected at baseline and before surgery, and compared with the pathological response. Multiple logistic regression analysis was performed to examine quantitative parameters at CEUS and the tumor diameter to predict the pCR, and receiver operating characteristic (ROC) curve analysis was used as a summary statistic. Multiple logistic regression analysis revealed that PEAK (the maximum intensity of the time-intensity curve during bolus transit), PEAK%, TTP% (time to peak), and diameter% were significant independent predictors of pCR, and the area under the ROC curve was 0.932(Az 1 ), and the sensitivity and specificity to predict pCR were 93.7% and 80.0%. The area under the ROC curve for the quantitative parameters was 0.927(Az 2 ), and the sensitivity and specificity to predict pCR were 81.2% and 94.3%. For diameter%, the area under the ROC curve was 0.786 (Az 3 ), and the sensitivity and specificity to predict pCR were 93.8% and 54.3%. The values of Az 1 and Az 2 were significantly higher than that of Az 3 (P = 0.027 and P = 0.034, respectively). However, there was no significant difference between the values of Az 1 and Az 2 (P = 0.825). Quantitative analysis of tumor blood perfusion with CEUS is superior to diameter% to predict pCR, and can be used as a functional technique to evaluate tumor response to NAC. Copyright © 2018. Published by Elsevier B.V.

  20. A data-driven SVR model for long-term runoff prediction and uncertainty analysis based on the Bayesian framework

    NASA Astrophysics Data System (ADS)

    Liang, Zhongmin; Li, Yujie; Hu, Yiming; Li, Binquan; Wang, Jun

    2017-06-01

    Accurate and reliable long-term forecasting plays an important role in water resources management and utilization. In this paper, a hybrid model called SVR-HUP is presented to predict long-term runoff and quantify the prediction uncertainty. The model is created based on three steps. First, appropriate predictors are selected according to the correlations between meteorological factors and runoff. Second, a support vector regression (SVR) model is structured and optimized based on the LibSVM toolbox and a genetic algorithm. Finally, using forecasted and observed runoff, a hydrologic uncertainty processor (HUP) based on a Bayesian framework is used to estimate the posterior probability distribution of the simulated values, and the associated uncertainty of prediction was quantitatively analyzed. Six precision evaluation indexes, including the correlation coefficient (CC), relative root mean square error (RRMSE), relative error (RE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE), and qualification rate (QR), are used to measure the prediction accuracy. As a case study, the proposed approach is applied in the Han River basin, South Central China. Three types of SVR models are established to forecast the monthly, flood season and annual runoff volumes. The results indicate that SVR yields satisfactory accuracy and reliability at all three scales. In addition, the results suggest that the HUP cannot only quantify the uncertainty of prediction based on a confidence interval but also provide a more accurate single value prediction than the initial SVR forecasting result. Thus, the SVR-HUP model provides an alternative method for long-term runoff forecasting.

  1. NMR-based metabolomic urinalysis: a rapid screening test for urinary tract infection.

    PubMed

    Lam, Ching-Wan; Law, Chun-Yiu; To, Kelvin Kai-Wang; Cheung, Stanley Kwok-Kuen; Lee, Kim-Chung; Sze, Kong-Hung; Leung, Ka-Fai; Yuen, Kwok-Yung

    2014-09-25

    Urinary tract infection (UTI) is one of the most common bacterial infections in humans; however, there is no accurate and fast quantitative test to detect UTI. Dipstick urinalysis is semi-quantitative with a limited diagnostic accuracy, while urine culture is accurate but takes time. We described a quantitative biochemical method for the diagnosis of bacteriuria using a single marker. We compared the urine metabolomes from 88 patients with bacterial UTI and 61 controls using (1)H NMR spectroscopy followed by principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA). The biomarker identified was subsequently validated using independent samples. The urine acetic acid/creatinine (mmol/mmol) level was determined to be the most discriminatory marker for bacterial UTI with an area-under-receiver operating characteristic curve=0.97, sensitivity=91% and specificity=95% at the optimal cutoff 0.03 mmol/mmol. For validation, 60 samples were recruited prospectively. Using the optimal cutoff for acetic acid/creatinine, this method showed sensitivity=96%, specificity=94%, positive predictive value=92%, negative predictive value=97% and an overall accuracy=95%. The diagnostic performance was superior to dipstick urinalysis or microscopy. In addition, we also observed an increase of urinary trimethylamine (TMA) in patients with Escherichia coli-associated UTI. TMA is a mammalian-microbial co-metabolite and the high level of TMA generated is related to the bacterial enzyme, trimethylamine N-oxide (TMAO) reductase which reduces TMAO to TMA. Urine acetic acid is a neglected metabolite that can be used for rapid diagnosis of UTI and TMA can be used for etiologic diagnosis of UTI. With the introduction of NMR-based clinical analyzers to clinical laboratories, NMR-based urinalysis can be translated for clinical use. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and drug-bank compounds.

    PubMed

    Ngo, Trieu-Du; Tran, Thanh-Dao; Le, Minh-Tri; Thai, Khac-Minh

    2016-11-01

    The human P-glycoprotein (P-gp) efflux pump is of great interest for medicinal chemists because of its important role in multidrug resistance (MDR). Because of the high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of this transmembrane protein, ligand-based, and structure-based approaches which were machine learning, homology modeling, and molecular docking were combined for this study. In ligand-based approach, individual two-dimensional quantitative structure-activity relationship models were developed using different machine learning algorithms and subsequently combined into the Ensemble model which showed good performance on both the diverse training set and the validation sets. The applicability domain and the prediction quality of the developed models were also judged using the state-of-the-art methods and tools. In our structure-based approach, the P-gp structure and its binding region were predicted for a docking study to determine possible interactions between the ligands and the receptor. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening using prediction models and molecular docking in an attempt to restore cancer cell sensitivity to cytotoxic drugs.

  3. Quantitative prediction of solute strengthening in aluminium alloys.

    PubMed

    Leyson, Gerard Paul M; Curtin, William A; Hector, Louis G; Woodward, Christopher F

    2010-09-01

    Despite significant advances in computational materials science, a quantitative, parameter-free prediction of the mechanical properties of alloys has been difficult to achieve from first principles. Here, we present a new analytic theory that, with input from first-principles calculations, is able to predict the strengthening of aluminium by substitutional solute atoms. Solute-dislocation interaction energies in and around the dislocation core are first calculated using density functional theory and a flexible-boundary-condition method. An analytic model for the strength, or stress to move a dislocation, owing to the random field of solutes, is then presented. The theory, which has no adjustable parameters and is extendable to other metallic alloys, predicts both the energy barriers to dislocation motion and the zero-temperature flow stress, allowing for predictions of finite-temperature flow stresses. Quantitative comparisons with experimental flow stresses at temperature T=78 K are made for Al-X alloys (X=Mg, Si, Cu, Cr) and good agreement is obtained.

  4. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone.

    PubMed

    Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2017-01-01

    Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain. However, it is unclear what density-modulus equation(s) should be applied with subchondral cortical and subchondral trabecular bone when constructing finite element models of the tibia. Using a novel approach applying neural networks, optimization, and back-calculation against in situ experimental testing results, the objective of this study was to identify subchondral-specific equations that optimized finite element predictions of local structural stiffness at the proximal tibial subchondral surface. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using multiple density-modulus equations (93 total variations) then mapped to corresponding finite element models. For each variation, root mean squared error was calculated between finite element prediction and in situ measured stiffness at 47 indentation sites. Resulting errors were used to train an artificial neural network, which provided an unlimited number of model variations, with corresponding error, for predicting stiffness at the subchondral bone surface. Nelder-Mead optimization was used to identify optimum density-modulus equations for predicting stiffness. Finite element modeling predicted 81% of experimental stiffness variance (with 10.5% error) using optimized equations for subchondral cortical and trabecular bone differentiated with a 0.5g/cm 3 density. In comparison with published density-modulus relationships, optimized equations offered improved predictions of local subchondral structural stiffness. Further research is needed with anisotropy inclusion, a smaller voxel size and de-blurring algorithms to improve predictions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Role of serum hepatitis B virus marker quantitation to differentiate natural history phases of HBV infection.

    PubMed

    Wang, Li; Zou, Zhi-Qiang; Wang, Kai; Yu, Ji-Guang; Liu, Xiang-Zhong

    2016-01-01

    The purpose of this study was to characterize roles of serum hepatitis B virus marker quantitation in differentiation of natural phases of HBV infection. A total of 184 chronic hepatitis B (CHB) patients were analyzed retrospectively. Patients were classified into four categories: immune tolerant phase (IT, n = 36), immune clearance phase (IC, n = 81), low-replicative phase (LR, n = 31), and HBeAg-negative hepatitis phase (ENH, n = 36), based on clinical, biochemical, serological, HBV DNA level and histological data. Hepatitis B surface antigen (HBsAg) quantitation in four phases were 4.7 ± 0.2, 3.8 ± 0.5, 2.5 ± 1.2 and 3.4 ± 0.4 log10 IU/mL, respectively. There were significant differences between IT and IC (p < 0.001) and between LR and ENH phases (p < 0.001). Quantitation of hepatitis B e antigen (HBeAg) in IT and IC phases are 1317.9 ± 332.9 and 673.4 ± 562.1 S/CO, respectively (p < 0.001). Hepatitis B core antibody (HBcAb) quantitation in the four groups were 9.48 ± 3.3, 11.7 ± 2.8, 11.2 ± 2.6 and 13.2 ± 2.9 S/CO, respectively. Area under receiver operating characteristic curve (AUCs) of HBsAg and HBeAg at cutoff values of 4.41 log10 IU/mL and 1118.96 S/CO for differentiation of IT and IC phases are 0.984 and 0.828, with sensitivity 94.4 and 85.2 %, specificity 98.7 and 75 %, respectively. AUCs of HBsAg and HBcAb at cutoff values of 3.4 log10 IU/mL and 10.5 S/CO for differentiation of LR and ENT phases are 0.796 and 0.705, with sensitivity 58.1 and 85.7 %, and specificity 94.4 and 46.2 %, respectively. HBsAg quantitation has high predictive value and HBeAg quantitation has moderate predictive value for discriminating IT and IC phase. HBsAg and HBcAb quantitations have moderate predictive values for differentiation of LR and ENH phase.

  6. Comprehensive Computational Pathological Image Analysis Predicts Lung Cancer Prognosis.

    PubMed

    Luo, Xin; Zang, Xiao; Yang, Lin; Huang, Junzhou; Liang, Faming; Rodriguez-Canales, Jaime; Wistuba, Ignacio I; Gazdar, Adi; Xie, Yang; Xiao, Guanghua

    2017-03-01

    Pathological examination of histopathological slides is a routine clinical procedure for lung cancer diagnosis and prognosis. Although the classification of lung cancer has been updated to become more specific, only a small subset of the total morphological features are taken into consideration. The vast majority of the detailed morphological features of tumor tissues, particularly tumor cells' surrounding microenvironment, are not fully analyzed. The heterogeneity of tumor cells and close interactions between tumor cells and their microenvironments are closely related to tumor development and progression. The goal of this study is to develop morphological feature-based prediction models for the prognosis of patients with lung cancer. We developed objective and quantitative computational approaches to analyze the morphological features of pathological images for patients with NSCLC. Tissue pathological images were analyzed for 523 patients with adenocarcinoma (ADC) and 511 patients with squamous cell carcinoma (SCC) from The Cancer Genome Atlas lung cancer cohorts. The features extracted from the pathological images were used to develop statistical models that predict patients' survival outcomes in ADC and SCC, respectively. We extracted 943 morphological features from pathological images of hematoxylin and eosin-stained tissue and identified morphological features that are significantly associated with prognosis in ADC and SCC, respectively. Statistical models based on these extracted features stratified NSCLC patients into high-risk and low-risk groups. The models were developed from training sets and validated in independent testing sets: a predicted high-risk group versus a predicted low-risk group (for patients with ADC: hazard ratio = 2.34, 95% confidence interval: 1.12-4.91, p = 0.024; for patients with SCC: hazard ratio = 2.22, 95% confidence interval: 1.15-4.27, p = 0.017) after adjustment for age, sex, smoking status, and pathologic tumor stage. The results suggest that the quantitative morphological features of tumor pathological images predict prognosis in patients with lung cancer. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  7. Prediction of genotoxic potential of cosmetic ingredients by an in silico battery system consisting of a combination of an expert rule-based system and a statistics-based system.

    PubMed

    Aiba née Kaneko, Maki; Hirota, Morihiko; Kouzuki, Hirokazu; Mori, Masaaki

    2015-02-01

    Genotoxicity is the most commonly used endpoint to predict the carcinogenicity of chemicals. The International Conference on Harmonization (ICH) M7 Guideline on Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk offers guidance on (quantitative) structure-activity relationship ((Q)SAR) methodologies that predict the outcome of bacterial mutagenicity assay for actual and potential impurities. We examined the effectiveness of the (Q)SAR approach with the combination of DEREK NEXUS as an expert rule-based system and ADMEWorks as a statistics-based system for the prediction of not only mutagenic potential in the Ames test, but also genotoxic potential in mutagenicity and clastogenicity tests, using a data set of 342 chemicals extracted from the literature. The prediction of mutagenic potential or genotoxic potential by DEREK NEXUS or ADMEWorks showed high values of sensitivity and concordance, while prediction by the combination of DEREK NEXUS and ADMEWorks (battery system) showed the highest values of sensitivity and concordance among the three methods, but the lowest value of specificity. The number of false negatives was reduced with the battery system. We also separately predicted the mutagenic potential and genotoxic potential of 41 cosmetic ingredients listed in the International Nomenclature of Cosmetic Ingredients (INCI) among the 342 chemicals. Although specificity was low with the battery system, sensitivity and concordance were high. These results suggest that the battery system consisting of DEREK NEXUS and ADMEWorks is useful for prediction of genotoxic potential of chemicals, including cosmetic ingredients.

  8. Learning physical descriptors for materials science by compressed sensing

    NASA Astrophysics Data System (ADS)

    Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre; Ouyang, Runhai; Levchenko, Sergey V.; Draxl, Claudia; Scheffler, Matthias

    2017-02-01

    The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors.

  9. Cost Models for MMC Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    Processes for the manufacture of advanced metal matrix composites are rapidly approaching maturity in the research laboratory and there is growing interest in their transition to industrial production. However, research conducted to date has almost exclusively focused on overcoming the technical barriers to producing high-quality material and little attention has been given to the economical feasibility of these laboratory approaches and process cost issues. A quantitative cost modeling (QCM) approach was developed to address these issues. QCM are cost analysis tools based on predictive process models relating process conditions to the attributes of the final product. An important attribute, of the QCM approach is the ability to predict the sensitivity of material production costs to product quality and to quantitatively explore trade-offs between cost and quality. Applications of the cost models allow more efficient direction of future MMC process technology development and a more accurate assessment of MMC market potential. Cost models were developed for two state-of-the art metal matrix composite (MMC) manufacturing processes: tape casting and plasma spray deposition. Quality and Cost models are presented for both processes and the resulting predicted quality-cost curves are presented and discussed.

  10. Chemistry of atmosphere-surface interactions on Venus and Mars

    NASA Astrophysics Data System (ADS)

    Fegley, Bruce, Jr.; Treiman, Allan H.

    Earth-based, earth-orbital, and spacecraft observational data are used in the present evaluation of Venus atmosphere-surface interactions to quantitatively characterize the reactions between C, H, S, Cl, F, and N gases and plausible surface minerals. Calculation results are used to predict stable minerals and mineral assemblages on the Venus surface, in order to ascertain which (if any) of the atmospheric gases are buffeted by mineral assemblages. Chemical equilibrium calculations using extant thermodynamic data on scapolite minerals predict that carbonate-bearing scapolite and sulfate meionite are unstable on the surface of Venus, while chloride-bearing scapolite is stable.

  11. Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity.

    PubMed

    Mulligan, M E; Hawley, D K; Entriken, R; McClure, W R

    1984-01-11

    We describe a simple algorithm for computing a homology score for Escherichia coli promoters based on DNA sequence alone. The homology score was related to 31 values, measured in vitro, of RNA polymerase selectivity, which we define as the product KBk2, the apparent second order rate constant for open complex formation. We found that promoter strength could be predicted to within a factor of +/-4.1 in KBk2 over a range of 10(4) in the same parameter. The quantitative evaluation was linked to an automated (Apple II) procedure for searching and evaluating possible promoters in DNA sequence files.

  12. Modelling Influence and Opinion Evolution in Online Collective Behaviour

    PubMed Central

    Gend, Pascal; Rentfrow, Peter J.; Hendrickx, Julien M.; Blondel, Vincent D.

    2016-01-01

    Opinion evolution and judgment revision are mediated through social influence. Based on a large crowdsourced in vitro experiment (n = 861), it is shown how a consensus model can be used to predict opinion evolution in online collective behaviour. It is the first time the predictive power of a quantitative model of opinion dynamics is tested against a real dataset. Unlike previous research on the topic, the model was validated on data which did not serve to calibrate it. This avoids to favor more complex models over more simple ones and prevents overfitting. The model is parametrized by the influenceability of each individual, a factor representing to what extent individuals incorporate external judgments. The prediction accuracy depends on prior knowledge on the participants’ past behaviour. Several situations reflecting data availability are compared. When the data is scarce, the data from previous participants is used to predict how a new participant will behave. Judgment revision includes unpredictable variations which limit the potential for prediction. A first measure of unpredictability is proposed. The measure is based on a specific control experiment. More than two thirds of the prediction errors are found to occur due to unpredictability of the human judgment revision process rather than to model imperfection. PMID:27336834

  13. Gray correlation analysis and prediction models of living refuse generation in Shanghai city.

    PubMed

    Liu, Gousheng; Yu, Jianguo

    2007-01-01

    A better understanding of the factors that affect the generation of municipal living refuse (MLF) and the accurate prediction of its generation are crucial for municipal planning projects and city management. Up to now, most of the design efforts have been based on a rough prediction of MLF without any actual support. In this paper, based on published data of socioeconomic variables and MLF generation from 1990 to 2003 in the city of Shanghai, the main factors that affect MLF generation have been quantitatively studied using the method of gray correlation coefficient. Several gray models, such as GM(1,1), GIM(1), GPPM(1) and GLPM(1), have been studied, and predicted results are verified with subsequent residual test. Results show that, among the selected seven factors, consumption of gas, water and electricity are the largest three factors affecting MLF generation, and GLPM(1) is the optimized model to predict MLF generation. Through this model, the predicted MLF generation in 2010 in Shanghai will be 7.65 million tons. The methods and results developed in this paper can provide valuable information for MLF management and related municipal planning projects.

  14. Reliability prediction of ontology-based service compositions using Petri net and time series models.

    PubMed

    Li, Jia; Xia, Yunni; Luo, Xin

    2014-01-01

    OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy.

  15. Sensitivity and specificity of radiographic methods for predicting insertion torque of dental implants.

    PubMed

    Cortes, Arthur Rodriguez Gonzalez; Eimar, Hazem; Barbosa, Jorge de Sá; Costa, Claudio; Arita, Emiko Saito; Tamimi, Faleh

    2015-05-01

    Subjective radiographic classifications of alveolar bone have been proposed and correlated with implant insertion torque (IT). The present diagnostic study aims to identify quantitative bone features influencing IT and to use these findings to develop an objective radiographic classification for predicting IT. Demographics, panoramic radiographs (taken at the beginning of dental treatment), and cone-beam computed tomographic scans (taken for implant surgical planning) of 25 patients receiving 31 implants were analyzed. Bone samples retrieved from implant sites were assessed with dual x-ray absorptiometry, microcomputed tomography, and histology. Odds ratio, sensitivity, and specificity of all variables to predict high peak IT were assessed. A ridge cortical thickness >0.75 mm and a normal appearance of the inferior mandibular cortex were the most sensitive variables for predicting high peak IT (87.5% and 75%, respectively). A classification based on the combination of both variables presented high sensitivity (90.9%) and specificity (100%) for predicting IT. Within the limitations of this study, the results suggest that it is possible to predict IT accurately based on radiographic findings of the patient. This could be useful in the treatment plan of immediate loading cases.

  16. [Influence of sample surface roughness on mathematical model of NIR quantitative analysis of wood density].

    PubMed

    Huang, An-Min; Fei, Ben-Hua; Jiang, Ze-Hui; Hse, Chung-Yun

    2007-09-01

    Near infrared spectroscopy is widely used as a quantitative method, and the main multivariate techniques consist of regression methods used to build prediction models, however, the accuracy of analysis results will be affected by many factors. In the present paper, the influence of different sample roughness on the mathematical model of NIR quantitative analysis of wood density was studied. The result of experiments showed that if the roughness of predicted samples was consistent with that of calibrated samples, the result was good, otherwise the error would be much higher. The roughness-mixed model was more flexible and adaptable to different sample roughness. The prediction ability of the roughness-mixed model was much better than that of the single-roughness model.

  17. Improving lung cancer prognosis assessment by incorporating synthetic minority oversampling technique and score fusion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Shiju; Qian, Wei; Guan, Yubao

    2016-06-15

    Purpose: This study aims to investigate the potential to improve lung cancer recurrence risk prediction performance for stage I NSCLS patients by integrating oversampling, feature selection, and score fusion techniques and develop an optimal prediction model. Methods: A dataset involving 94 early stage lung cancer patients was retrospectively assembled, which includes CT images, nine clinical and biological (CB) markers, and outcome of 3-yr disease-free survival (DFS) after surgery. Among the 94 patients, 74 remained DFS and 20 had cancer recurrence. Applying a computer-aided detection scheme, tumors were segmented from the CT images and 35 quantitative image (QI) features were initiallymore » computed. Two normalized Gaussian radial basis function network (RBFN) based classifiers were built based on QI features and CB markers separately. To improve prediction performance, the authors applied a synthetic minority oversampling technique (SMOTE) and a BestFirst based feature selection method to optimize the classifiers and also tested fusion methods to combine QI and CB based prediction results. Results: Using a leave-one-case-out cross-validation (K-fold cross-validation) method, the computed areas under a receiver operating characteristic curve (AUCs) were 0.716 ± 0.071 and 0.642 ± 0.061, when using the QI and CB based classifiers, respectively. By fusion of the scores generated by the two classifiers, AUC significantly increased to 0.859 ± 0.052 (p < 0.05) with an overall prediction accuracy of 89.4%. Conclusions: This study demonstrated the feasibility of improving prediction performance by integrating SMOTE, feature selection, and score fusion techniques. Combining QI features and CB markers and performing SMOTE prior to feature selection in classifier training enabled RBFN based classifier to yield improved prediction accuracy.« less

  18. Empirical source strength correlations for rans-based acoustic analogy methods

    NASA Astrophysics Data System (ADS)

    Kube-McDowell, Matthew Tyndall

    JeNo is a jet noise prediction code based on an acoustic analogy method developed by Mani, Gliebe, Balsa, and Khavaran. Using the flow predictions from a standard Reynolds-averaged Navier-Stokes computational fluid dynamics solver, JeNo predicts the overall sound pressure level and angular spectra for high-speed hot jets over a range of observer angles, with a processing time suitable for rapid design purposes. JeNo models the noise from hot jets as a combination of two types of noise sources; quadrupole sources dependent on velocity fluctuations, which represent the major noise of turbulent mixing, and dipole sources dependent on enthalpy fluctuations, which represent the effects of thermal variation. These two sources are modeled by JeNo as propagating independently into the far-field, with no cross-correlation at the observer location. However, high-fidelity computational fluid dynamics solutions demonstrate that this assumption is false. In this thesis, the theory, assumptions, and limitations of the JeNo code are briefly discussed, and a modification to the acoustic analogy method is proposed in which the cross-correlation of the two primary noise sources is allowed to vary with the speed of the jet and the observer location. As a proof-of-concept implementation, an empirical correlation correction function is derived from comparisons between JeNo's noise predictions and a set of experimental measurements taken for the Air Force Aero-Propulsion Laboratory. The empirical correlation correction is then applied to JeNo's predictions of a separate data set of hot jets tested at NASA's Glenn Research Center. Metrics are derived to measure the qualitative and quantitative performance of JeNo's acoustic predictions, and the empirical correction is shown to provide a quantitative improvement in the noise prediction at low observer angles with no freestream flow, and a qualitative improvement in the presence of freestream flow. However, the results also demonstrate that there are underlying flaws in JeNo's ability to predict the behavior of a hot jet's acoustic signature at certain rear observer angles, and that this correlation correction is not able to correct these flaws.

  19. Time-to-contact estimation of accelerated stimuli is based on first-order information.

    PubMed

    Benguigui, Nicolas; Ripoll, Hubert; Broderick, Michael P

    2003-12-01

    The goal of this study was to test whether 1st-order information, which does not account for acceleration, is used (a) to estimate the time to contact (TTC) of an accelerated stimulus after the occlusion of a final part of its trajectory and (b) to indirectly intercept an accelerated stimulus with a thrown projectile. Both tasks require the production of an action on the basis of predictive information acquired before the arrival of the stimulus at the target and allow the experimenter to make quantitative predictions about the participants' use (or nonuse) of 1st-order information. The results show that participants do not use information about acceleration and that they commit errors that rely quantitatively on 1st-order information even when acceleration is psychophysically detectable. In the indirect interceptive task, action is planned about 200 ms before the initiation of the movement, at which time the 1st-order TTC attains a critical value. ((c) 2003 APA, all rights reserved)

  20. Towards a Quantitative Endogenous Network Theory of Cancer Genesis and Progression: beyond ``cancer as diseases of genome''

    NASA Astrophysics Data System (ADS)

    Ao, Ping

    2011-03-01

    There has been a tremendous progress in cancer research. However, it appears the current dominant cancer research framework of regarding cancer as diseases of genome leads impasse. Naturally questions have been asked that whether it is possible to develop alternative frameworks such that they can connect both to mutations and other genetic/genomic effects and to environmental factors. Furthermore, such framework can be made quantitative and with predictions experimentally testable. In this talk, I will present a positive answer to this calling. I will explain on our construction of endogenous network theory based on molecular-cellular agencies as dynamical variable. Such cancer theory explicitly demonstrates a profound connection to many fundamental concepts in physics, as such stochastic non-equilibrium processes, ``energy'' landscape, metastability, etc. It suggests that neneath cancer's daunting complexity may lie a simplicity that gives grounds for hope. The rationales behind such theory, its predictions, and its initial experimental verifications will be presented. Supported by USA NIH and China NSF.

  1. Stability and instability towards delocalization in many-body localization systems

    NASA Astrophysics Data System (ADS)

    De Roeck, Wojciech; Huveneers, François

    2017-04-01

    We propose a theory that describes quantitatively the (in)stability of fully many-body localization (MBL) systems due to ergodic, i.e., delocalized, grains, that can be, for example, due to disorder fluctuations. The theory is based on the ETH hypothesis and elementary notions of perturbation theory. The main idea is that we assume as much chaoticity as is consistent with conservation laws. The theory describes correctly—even without relying on the theory of local integrals of motion (LIOM)—the MBL phase in one dimension at strong disorder. It yields an explicit and quantitative picture of the spatial boundary between localized and ergodic systems. We provide numerical evidence for this picture. When the theory is taken to its extreme logical consequences, it predicts that the MBL phase is destabilised in the long time limit whenever (1) interactions decay slower than exponentially in d =1 and (2) always in d >1 . Finer numerics is required to assess these predictions.

  2. Importance of Multimodal MRI in Characterizing Brain Tissue and Its Potential Application for Individual Age Prediction.

    PubMed

    Cherubini, Andrea; Caligiuri, Maria Eugenia; Peran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco

    2016-09-01

    This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2(*) relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. The results of the linear model were used to predict apparent age in different regions of individual brain. This approach pointed to a number of novel applications that could potentially help highlighting areas particularly vulnerable to disease.

  3. Applications of population genetics to animal breeding, from wright, fisher and lush to genomic prediction.

    PubMed

    Hill, William G

    2014-01-01

    Although animal breeding was practiced long before the science of genetics and the relevant disciplines of population and quantitative genetics were known, breeding programs have mainly relied on simply selecting and mating the best individuals on their own or relatives' performance. This is based on sound quantitative genetic principles, developed and expounded by Lush, who attributed much of his understanding to Wright, and formalized in Fisher's infinitesimal model. Analysis at the level of individual loci and gene frequency distributions has had relatively little impact. Now with access to genomic data, a revolution in which molecular information is being used to enhance response with "genomic selection" is occurring. The predictions of breeding value still utilize multiple loci throughout the genome and, indeed, are largely compatible with additive and specifically infinitesimal model assumptions. I discuss some of the history and genetic issues as applied to the science of livestock improvement, which has had and continues to have major spin-offs into ideas and applications in other areas.

  4. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth.

    PubMed

    Zhang, Xuehai; Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Xiong, Lizhong; Yang, Wanneng; Yan, Jianbing

    2017-03-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize ( Zea mays ) recombinant inbred line population ( n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. © 2017 American Society of Plant Biologists. All Rights Reserved.

  5. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth1[OPEN

    PubMed Central

    Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Yang, Wanneng

    2017-01-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize (Zea mays) recombinant inbred line population (n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. PMID:28153923

  6. Automatic variable selection method and a comparison for quantitative analysis in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Duan, Fajie; Fu, Xiao; Jiang, Jiajia; Huang, Tingting; Ma, Ling; Zhang, Cong

    2018-05-01

    In this work, an automatic variable selection method for quantitative analysis of soil samples using laser-induced breakdown spectroscopy (LIBS) is proposed, which is based on full spectrum correction (FSC) and modified iterative predictor weighting-partial least squares (mIPW-PLS). The method features automatic selection without artificial processes. To illustrate the feasibility and effectiveness of the method, a comparison with genetic algorithm (GA) and successive projections algorithm (SPA) for different elements (copper, barium and chromium) detection in soil was implemented. The experimental results showed that all the three methods could accomplish variable selection effectively, among which FSC-mIPW-PLS required significantly shorter computation time (12 s approximately for 40,000 initial variables) than the others. Moreover, improved quantification models were got with variable selection approaches. The root mean square errors of prediction (RMSEP) of models utilizing the new method were 27.47 (copper), 37.15 (barium) and 39.70 (chromium) mg/kg, which showed comparable prediction effect with GA and SPA.

  7. Simulating boundary layer transition with low-Reynolds-number k-epsilon turbulence models. I - An evaluation of prediction characteristics. II - An approach to improving the predictions

    NASA Technical Reports Server (NTRS)

    Schmidt, R. C.; Patankar, S. V.

    1991-01-01

    The capability of two k-epsilon low-Reynolds number (LRN) turbulence models, those of Jones and Launder (1972) and Lam and Bremhorst (1981), to predict transition in external boundary-layer flows subject to free-stream turbulence is analyzed. Both models correctly predict the basic qualitative aspects of boundary-layer transition with free stream turbulence, but for calculations started at low values of certain defined Reynolds numbers, the transition is generally predicted at unrealistically early locations. Also, the methods predict transition lengths significantly shorter than those found experimentally. An approach to overcoming these deficiencies without abandoning the basic LRN k-epsilon framework is developed. This approach limits the production term in the turbulent kinetic energy equation and is based on a simple stability criterion. It is correlated to the free-stream turbulence value. The modification is shown to improve the qualitative and quantitative characteristics of the transition predictions.

  8. In Silico Prediction of Organ Level Toxicity: Linking Chemistry to Adverse Effects

    PubMed Central

    Cronin, Mark T.D.; Enoch, Steven J.; Mellor, Claire L.; Przybylak, Katarzyna R.; Richarz, Andrea-Nicole; Madden, Judith C.

    2017-01-01

    In silico methods to predict toxicity include the use of (Quantitative) Structure-Activity Relationships ((Q)SARs) as well as grouping (category formation) allowing for read-across. A challenging area for in silico modelling is the prediction of chronic toxicity and the No Observed (Adverse) Effect Level (NO(A)EL) in particular. A proposed solution to the prediction of chronic toxicity is to consider organ level effects, as opposed to modelling the NO(A)EL itself. This review has focussed on the use of structural alerts to identify potential liver toxicants. In silico profilers, or groups of structural alerts, have been developed based on mechanisms of action and informed by current knowledge of Adverse Outcome Pathways. These profilers are robust and can be coded computationally to allow for prediction. However, they do not cover all mechanisms or modes of liver toxicity and recommendations for the improvement of these approaches are given. PMID:28744348

  9. In Silico Prediction of Organ Level Toxicity: Linking Chemistry to Adverse Effects.

    PubMed

    Cronin, Mark T D; Enoch, Steven J; Mellor, Claire L; Przybylak, Katarzyna R; Richarz, Andrea-Nicole; Madden, Judith C

    2017-07-01

    In silico methods to predict toxicity include the use of (Quantitative) Structure-Activity Relationships ((Q)SARs) as well as grouping (category formation) allowing for read-across. A challenging area for in silico modelling is the prediction of chronic toxicity and the No Observed (Adverse) Effect Level (NO(A)EL) in particular. A proposed solution to the prediction of chronic toxicity is to consider organ level effects, as opposed to modelling the NO(A)EL itself. This review has focussed on the use of structural alerts to identify potential liver toxicants. In silico profilers, or groups of structural alerts, have been developed based on mechanisms of action and informed by current knowledge of Adverse Outcome Pathways. These profilers are robust and can be coded computationally to allow for prediction. However, they do not cover all mechanisms or modes of liver toxicity and recommendations for the improvement of these approaches are given.

  10. [Determination of acidity and vitamin C in apples using portable NIR analyzer].

    PubMed

    Yang, Fan; Li, Ya-Ting; Gu, Xuan; Ma, Jiang; Fan, Xing; Wang, Xiao-Xuan; Zhang, Zhuo-Yong

    2011-09-01

    Near infrared (NIR) spectroscopy technology based on a portable NIR analyzer, combined with kernel Isomap algorithm and generalized regression neural network (GRNN) has been applied to establishing quantitative models for prediction of acidity and vitamin C in six kinds of apple samples. The obtained results demonstrated that the fitting and the predictive accuracy of the models with kernel Isomap algorithm were satisfactory. The correlation between actual and predicted values of calibration samples (R(c)) obtained by the acidity model was 0.999 4, and for prediction samples (R(p)) was 0.979 9. The root mean square error of prediction set (RMSEP) was 0.055 8. For the vitamin C model, R(c) was 0.989 1, R(p) was 0.927 2, and RMSEP was 4.043 1. Results proved that the portable NIR analyzer can be a feasible tool for the determination of acidity and vitamin C in apples.

  11. Affordable, automatic quantitative fall risk assessment based on clinical balance scales and Kinect data.

    PubMed

    Colagiorgio, P; Romano, F; Sardi, F; Moraschini, M; Sozzi, A; Bejor, M; Ricevuti, G; Buizza, A; Ramat, S

    2014-01-01

    The problem of a correct fall risk assessment is becoming more and more critical with the ageing of the population. In spite of the available approaches allowing a quantitative analysis of the human movement control system's performance, the clinical assessment and diagnostic approach to fall risk assessment still relies mostly on non-quantitative exams, such as clinical scales. This work documents our current effort to develop a novel method to assess balance control abilities through a system implementing an automatic evaluation of exercises drawn from balance assessment scales. Our aim is to overcome the classical limits characterizing these scales i.e. limited granularity and inter-/intra-examiner reliability, to obtain objective scores and more detailed information allowing to predict fall risk. We used Microsoft Kinect to record subjects' movements while performing challenging exercises drawn from clinical balance scales. We then computed a set of parameters quantifying the execution of the exercises and fed them to a supervised classifier to perform a classification based on the clinical score. We obtained a good accuracy (~82%) and especially a high sensitivity (~83%).

  12. GLS-Finder: A Platform for Fast Profiling of Glucosinolates in Brassica Vegetables.

    PubMed

    Sun, Jianghao; Zhang, Mengliang; Chen, Pei

    2016-06-01

    Mass spectrometry combined with related tandem techniques has become the most popular method for plant secondary metabolite characterization. We introduce a new strategy based on in-database searching, mass fragmentation behavior study, formula predicting for fast profiling of glucosinolates, a class of important compounds in brassica vegetables. A MATLAB script-based expert system computer program, "GLS-Finder", was developed. It is capable of qualitative and semi-quantitative analyses of glucosinolates in samples using data generated by ultrahigh-performance liquid chromatography-high-resolution accurate mass with multi-stage mass fragmentation (UHPLC-HRAM/MS(n)). A suite of bioinformatic tools was integrated into the "GLS-Finder" to perform raw data deconvolution, peak alignment, glucosinolate putative assignments, semi-quantitation, and unsupervised principal component analysis (PCA). GLS-Finder was successfully applied to identify intact glucosinolates in 49 commonly consumed Brassica vegetable samples in the United States. It is believed that this work introduces a new way of fast data processing and interpretation for qualitative and quantitative analyses of glucosinolates, where great efficacy was improved in comparison to identification manually.

  13. Inverse methods for 3D quantitative optical coherence elasticity imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Li; Wijesinghe, Philip; Hugenberg, Nicholas; Sampson, David D.; Munro, Peter R. T.; Kennedy, Brendan F.; Oberai, Assad A.

    2017-02-01

    In elastography, quantitative elastograms are desirable as they are system and operator independent. Such quantification also facilitates more accurate diagnosis, longitudinal studies and studies performed across multiple sites. In optical elastography (compression, surface-wave or shear-wave), quantitative elastograms are typically obtained by assuming some form of homogeneity. This simplifies data processing at the expense of smearing sharp transitions in elastic properties, and/or introducing artifacts in these regions. Recently, we proposed an inverse problem-based approach to compression OCE that does not assume homogeneity, and overcomes the drawbacks described above. In this approach, the difference between the measured and predicted displacement field is minimized by seeking the optimal distribution of elastic parameters. The predicted displacements and recovered elastic parameters together satisfy the constraint of the equations of equilibrium. This approach, which has been applied in two spatial dimensions assuming plane strain, has yielded accurate material property distributions. Here, we describe the extension of the inverse problem approach to three dimensions. In addition to the advantage of visualizing elastic properties in three dimensions, this extension eliminates the plane strain assumption and is therefore closer to the true physical state. It does, however, incur greater computational costs. We address this challenge through a modified adjoint problem, spatially adaptive grid resolution, and three-dimensional decomposition techniques. Through these techniques the inverse problem is solved on a typical desktop machine within a wall clock time of 20 hours. We present the details of the method and quantitative elasticity images of phantoms and tissue samples.

  14. Genomic Prediction Accounting for Residual Heteroskedasticity

    PubMed Central

    Ou, Zhining; Tempelman, Robert J.; Steibel, Juan P.; Ernst, Catherine W.; Bates, Ronald O.; Bello, Nora M.

    2015-01-01

    Whole-genome prediction (WGP) models that use single-nucleotide polymorphism marker information to predict genetic merit of animals and plants typically assume homogeneous residual variance. However, variability is often heterogeneous across agricultural production systems and may subsequently bias WGP-based inferences. This study extends classical WGP models based on normality, heavy-tailed specifications and variable selection to explicitly account for environmentally-driven residual heteroskedasticity under a hierarchical Bayesian mixed-models framework. WGP models assuming homogeneous or heterogeneous residual variances were fitted to training data generated under simulation scenarios reflecting a gradient of increasing heteroskedasticity. Model fit was based on pseudo-Bayes factors and also on prediction accuracy of genomic breeding values computed on a validation data subset one generation removed from the simulated training dataset. Homogeneous vs. heterogeneous residual variance WGP models were also fitted to two quantitative traits, namely 45-min postmortem carcass temperature and loin muscle pH, recorded in a swine resource population dataset prescreened for high and mild residual heteroskedasticity, respectively. Fit of competing WGP models was compared using pseudo-Bayes factors. Predictive ability, defined as the correlation between predicted and observed phenotypes in validation sets of a five-fold cross-validation was also computed. Heteroskedastic error WGP models showed improved model fit and enhanced prediction accuracy compared to homoskedastic error WGP models although the magnitude of the improvement was small (less than two percentage points net gain in prediction accuracy). Nevertheless, accounting for residual heteroskedasticity did improve accuracy of selection, especially on individuals of extreme genetic merit. PMID:26564950

  15. Improving accuracy of genomic prediction in Brangus cattle by adding animals with imputed low-density SNP genotypes.

    PubMed

    Lopes, F B; Wu, X-L; Li, H; Xu, J; Perkins, T; Genho, J; Ferretti, R; Tait, R G; Bauck, S; Rosa, G J M

    2018-02-01

    Reliable genomic prediction of breeding values for quantitative traits requires the availability of sufficient number of animals with genotypes and phenotypes in the training set. As of 31 October 2016, there were 3,797 Brangus animals with genotypes and phenotypes. These Brangus animals were genotyped using different commercial SNP chips. Of them, the largest group consisted of 1,535 animals genotyped by the GGP-LDV4 SNP chip. The remaining 2,262 genotypes were imputed to the SNP content of the GGP-LDV4 chip, so that the number of animals available for training the genomic prediction models was more than doubled. The present study showed that the pooling of animals with both original or imputed 40K SNP genotypes substantially increased genomic prediction accuracies on the ten traits. By supplementing imputed genotypes, the relative gains in genomic prediction accuracies on estimated breeding values (EBV) were from 12.60% to 31.27%, and the relative gain in genomic prediction accuracies on de-regressed EBV was slightly small (i.e. 0.87%-18.75%). The present study also compared the performance of five genomic prediction models and two cross-validation methods. The five genomic models predicted EBV and de-regressed EBV of the ten traits similarly well. Of the two cross-validation methods, leave-one-out cross-validation maximized the number of animals at the stage of training for genomic prediction. Genomic prediction accuracy (GPA) on the ten quantitative traits was validated in 1,106 newly genotyped Brangus animals based on the SNP effects estimated in the previous set of 3,797 Brangus animals, and they were slightly lower than GPA in the original data. The present study was the first to leverage currently available genotype and phenotype resources in order to harness genomic prediction in Brangus beef cattle. © 2018 Blackwell Verlag GmbH.

  16. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.

    PubMed

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-04-13

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Structural parameterization and functional prediction of antigenic polypeptome sequences with biological activity through quantitative sequence-activity models (QSAM) by molecular electronegativity edge-distance vector (VMED).

    PubMed

    Li, ZhiLiang; Wu, ShiRong; Chen, ZeCong; Ye, Nancy; Yang, ShengXi; Liao, ChunYang; Zhang, MengJun; Yang, Li; Mei, Hu; Yang, Yan; Zhao, Na; Zhou, Yuan; Zhou, Ping; Xiong, Qing; Xu, Hong; Liu, ShuShen; Ling, ZiHua; Chen, Gang; Li, GenRong

    2007-10-01

    Only from the primary structures of peptides, a new set of descriptors called the molecular electronegativity edge-distance vector (VMED) was proposed and applied to describing and characterizing the molecular structures of oligopeptides and polypeptides, based on the electronegativity of each atom or electronic charge index (ECI) of atomic clusters and the bonding distance between atom-pairs. Here, the molecular structures of antigenic polypeptides were well expressed in order to propose the automated technique for the computerized identification of helper T lymphocyte (Th) epitopes. Furthermore, a modified MED vector was proposed from the primary structures of polypeptides, based on the ECI and the relative bonding distance of the fundamental skeleton groups. The side-chains of each amino acid were here treated as a pseudo-atom. The developed VMED was easy to calculate and able to work. Some quantitative model was established for 28 immunogenic or antigenic polypeptides (AGPP) with 14 (1-14) A(d) and 14 other restricted activities assigned as "1"(+) and "0"(-), respectively. The latter comprised 6 A(b)(15-20), 3 A(k)(21-23), 2 E(k)(24-26), 2 H-2(k)(27 and 28) restricted sequences. Good results were obtained with 90% correct classification (only 2 wrong ones for 20 training samples) and 100% correct prediction (none wrong for 8 testing samples); while contrastively 100% correct classification (none wrong for 20 training samples) and 88% correct classification (1 wrong for 8 testing samples). Both stochastic samplings and cross validations were performed to demonstrate good performance. The described method may also be suitable for estimation and prediction of classes I and II for major histocompatibility antigen (MHC) epitope of human. It will be useful in immune identification and recognition of proteins and genes and in the design and development of subunit vaccines. Several quantitative structure activity relationship (QSAR) models were developed for various oligopeptides and polypeptides including 58 dipeptides and 31 pentapeptides with angiotensin converting enzyme (ACE) inhibition by multiple linear regression (MLR) method. In order to explain the ability to characterize molecular structure of polypeptides, a molecular modeling investigation on QSAR was performed for functional prediction of polypeptide sequences with antigenic activity and heptapeptide sequences with tachykinin activity through quantitative sequence-activity models (QSAMs) by the molecular electronegativity edge-distance vector (VMED). The results showed that VMED exhibited both excellent structural selectivity and good activity prediction. Moreover, the results showed that VMED behaved quite well for both QSAR and QSAM of poly-and oligopeptides, which exhibited both good estimation ability and prediction power, equal to or better than those reported in the previous references. Finally, a preliminary conclusion was drawn: both classical and modified MED vectors were very useful structural descriptors. Some suggestions were proposed for further studies on QSAR/QSAM of proteins in various fields.

  18. Design and prediction of new acetylcholinesterase inhibitor via quantitative structure activity relationship of huprines derivatives.

    PubMed

    Zhang, Shuqun; Hou, Bo; Yang, Huaiyu; Zuo, Zhili

    2016-05-01

    Acetylcholinesterase (AChE) is an important enzyme in the pathogenesis of Alzheimer's disease (AD). Comparative quantitative structure-activity relationship (QSAR) analyses on some huprines inhibitors against AChE were carried out using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR) methods. Three highly predictive QSAR models were constructed successfully based on the training set. The CoMFA, CoMSIA, and HQSAR models have values of r (2) = 0.988, q (2) = 0.757, ONC = 6; r (2) = 0.966, q (2) = 0.645, ONC = 5; and r (2) = 0.957, q (2) = 0.736, ONC = 6. The predictabilities were validated using an external test sets, and the predictive r (2) values obtained by the three models were 0.984, 0.973, and 0.783, respectively. The analysis was performed by combining the CoMFA and CoMSIA field distributions with the active sites of the AChE to further understand the vital interactions between huprines and the protease. On the basis of the QSAR study, 14 new potent molecules have been designed and six of them are predicted to be more active than the best active compound 24 described in the literature. The final QSAR models could be helpful in design and development of novel active AChE inhibitors.

  19. Protocol for a systematic review of quantitative burn wound microbiology in the management of burns patients.

    PubMed

    Kwei, Johnny; Halstead, Fenella D; Dretzke, Janine; Oppenheim, Beryl A; Moiemen, Naiem S

    2015-11-06

    Sepsis from burn injuries can result from colonisation of burn wounds, especially in large surface area burns. Reducing bacterial infection will reduce morbidity and mortality, and mortality for severe burns can be as high as 15 %. There are various quantitative and semi-quantitative techniques to monitor bacterial load on wounds. In the UK, burn wounds are typically monitored for the presence or absence of bacteria through the collection and culture of swabs, but no absolute count is obtained. Quantitative burn wound culture provides a measure of bacterial count and is gaining increased popularity in some countries. It is however more resource intensive, and evidence for its utility appears to be inconsistent. This systematic review therefore aims to assess the evidence on the utility and reliability of different quantitative microbiology techniques in terms of diagnosing or predicting clinical outcomes. Standard systematic review methods aimed at minimising bias will be employed for study identification, selection and data extraction. Bibliographic databases and ongoing trial registers will be searched and conference abstracts screened. Studies will be eligible if they are prospective studies or systematic reviews of burn patients (any age) for whom quantitative microbiology has been performed, whether it is compared to another method. Quality assessment will be based on quality assessment tools for diagnostic and prognostic studies and tailored to the review as necessary. Synthesis is likely to be primarily narrative, but meta-analysis may be considered where clinical and methodological homogeneity exists. Given the increasing use of quantitative methods, this is a timely systematic review, which will attempt to clarify the evidence base. As far as the authors are aware, it will be the first to address this topic. PROSPERO, CRD42015023903.

  20. Association of pain ratings with the prediction of early physical recovery after general and orthopaedic surgery-A quantitative study with repeated measures.

    PubMed

    Eriksson, Kerstin; Wikström, Lotta; Fridlund, Bengt; Årestedt, Kristofer; Broström, Anders

    2017-11-01

    To compare different levels of self-rated pain and determine if they predict anticipated early physical recovery in patients undergoing general and orthopaedic surgery. Previous research has indicated that average self-rated pain reflects patients' ability to recover the same day. However, there is a knowledge gap about the feasibility of using average pain ratings to predict patients' physical recovery for the next day. Descriptive, quantitative repeated measures. General and orthopaedic inpatients (n = 479) completed a questionnaire (October 2012-January 2015) about pain and recovery. Average pain intensity at rest and during activity was based on the Numeric Rating Scale and divided into three levels (0-3, 4-6, 7-10). Three out of five dimensions from the tool "Postoperative Recovery Profile" were used. Because few suffered severe pain, general and orthopaedic patients were analysed together. Binary logistic regression analysis showed that average pain intensity postoperative day 1 significantly predicted the impact on recovery day 2, except nausea, gastrointestinal function and bladder function when pain at rest and also nausea, appetite changes, and bladder function when pain during activity. High pain ratings (NRS 7-10) demonstrated to be a better predictor for recovery compared with moderate ratings (NRS 4-6), day 2, as it significantly predicted more items in recovery. Pain intensity reflected general and orthopaedic patients' physical recovery postoperative day 1 and predicted recovery for day 2. By monitoring patients' pain and impact on recovery, patients' need for support becomes visible which is valuable during hospital stays. © 2017 John Wiley & Sons Ltd.

  1. TREX13 Data Analysis/Modeling

    DTIC Science & Technology

    2015-09-30

    TREX13 data analysis /modeling Dajun (DJ) Tang Applied Physics Laboratory, University of Washington 1013 NE 40th Street, Seattle, WA 98105...accuracy in those predictions. With extensive TREX13 data in hand, the objective now shifts to realizing the long-term goals using data analysis and...be quantitatively addressed. The approach to analysis can be summarized into the following steps: 1. Based on measurements, assess to what degree

  2. Development and Use of Numerical and Factual Data Bases

    DTIC Science & Technology

    1983-10-01

    the quantitative description of what has been accomplished by their scientific and technical endeavors. 1-3 overhead charge to the national treasury... Molecular properties calculated with the aid of quantum mechanics or the prediction of solar eclipses using celestial mechanics are examples of theoretical...system under study. Examples include phase diagrams, molecular models, geological maps, metabolic pathways. Symbolic data (F3) are data presented in

  3. Prediction of the Formulation Dependence of the Glass Transition Temperature for Amine-Epoxy Copolymers Using a Quantitative Structure-Property Relationship Based on the AM1 Method

    DTIC Science & Technology

    2004-02-01

    Products and Chemicals , Inc . The stoichiometry of the DGEBA-PACM polymerization reaction was varied to yield epoxy/amine ratios ranging from ~2:1 through...equivalent). The DGEBA epoxy resin was cured with bis(p-aminocyclohexyl)methane (PACM) (EEW = 52.5 g/equivalent), which was acquired from Air

  4. Modeling ready biodegradability of fragrance materials.

    PubMed

    Ceriani, Lidia; Papa, Ester; Kovarich, Simona; Boethling, Robert; Gramatica, Paola

    2015-06-01

    In the present study, quantitative structure activity relationships were developed for predicting ready biodegradability of approximately 200 heterogeneous fragrance materials. Two classification methods, classification and regression tree (CART) and k-nearest neighbors (kNN), were applied to perform the modeling. The models were validated with multiple external prediction sets, and the structural applicability domain was verified by the leverage approach. The best models had good sensitivity (internal ≥80%; external ≥68%), specificity (internal ≥80%; external 73%), and overall accuracy (≥75%). Results from the comparison with BIOWIN global models, based on group contribution method, show that specific models developed in the present study perform better in prediction than BIOWIN6, in particular for the correct classification of not readily biodegradable fragrance materials. © 2015 SETAC.

  5. Twelve-month prostate volume reduction after MRI-guided transurethral ultrasound ablation of the prostate.

    PubMed

    Bonekamp, David; Wolf, M B; Roethke, M C; Pahernik, S; Hadaschik, B A; Hatiboglu, G; Kuru, T H; Popeneciu, I V; Chin, J L; Billia, M; Relle, J; Hafron, J; Nandalur, K R; Staruch, R M; Burtnyk, M; Hohenfellner, M; Schlemmer, H-P

    2018-06-25

    To quantitatively assess 12-month prostate volume (PV) reduction based on T2-weighted MRI and immediate post-treatment contrast-enhanced MRI non-perfused volume (NPV), and to compare measurements with predictions of acute and delayed ablation volumes based on MR-thermometry (MR-t), in a central radiology review of the Phase I clinical trial of MRI-guided transurethral ultrasound ablation (TULSA) in patients with localized prostate cancer. Treatment day MRI and 12-month follow-up MRI and biopsy were available for central radiology review in 29 of 30 patients from the published institutional review board-approved, prospective, multi-centre, single-arm Phase I clinical trial of TULSA. Viable PV at 12 months was measured as the remaining PV on T2-weighted MRI, less 12-month NPV, scaled by the fraction of fibrosis in 12-month biopsy cores. Reduction of viable PV was compared to predictions based on the fraction of the prostate covered by the MR-t derived acute thermal ablation volume (ATAV, 55°C isotherm), delayed thermal ablation volume (DTAV, 240 cumulative equivalent minutes at 43°C thermal dose isocontour) and treatment-day NPV. We also report linear and volumetric comparisons between metrics. After TULSA, the median 12-month reduction in viable PV was 88%. DTAV predicted a reduction of 90%. Treatment day NPV predicted only 53% volume reduction, and underestimated ATAV and DTAV by 36% and 51%. Quantitative volumetry of the TULSA phase I MR and biopsy data identifies DTAV (240 CEM43 thermal dose boundary) as a useful predictor of viable prostate tissue reduction at 12 months. Immediate post-treatment NPV underestimates tissue ablation. • MRI-guided transurethral ultrasound ablation (TULSA) achieved an 88% reduction of viable prostate tissue volume at 12 months, in excellent agreement with expectation from thermal dose calculations. • Non-perfused volume on immediate post-treatment contrast-enhanced MRI represents only 64% of the acute thermal ablation volume (ATAV), and reports only 60% (53% instead of 88% achieved) of the reduction in viable prostate tissue volume at 12 months. • MR-thermometry-based predictions of 12-month prostate volume reduction based on 240 cumulative equivalent minute thermal dose volume are in excellent agreement with reduction in viable prostate tissue volume measured on pre- and 12-month post-treatment T2w-MRI.

  6. Quantitative systems toxicology

    PubMed Central

    Bloomingdale, Peter; Housand, Conrad; Apgar, Joshua F.; Millard, Bjorn L.; Mager, Donald E.; Burke, John M.; Shah, Dhaval K.

    2017-01-01

    The overarching goal of modern drug development is to optimize therapeutic benefits while minimizing adverse effects. However, inadequate efficacy and safety concerns remain to be the major causes of drug attrition in clinical development. For the past 80 years, toxicity testing has consisted of evaluating the adverse effects of drugs in animals to predict human health risks. The U.S. Environmental Protection Agency recognized the need to develop innovative toxicity testing strategies and asked the National Research Council to develop a long-range vision and strategy for toxicity testing in the 21st century. The vision aims to reduce the use of animals and drug development costs through the integration of computational modeling and in vitro experimental methods that evaluates the perturbation of toxicity-related pathways. Towards this vision, collaborative quantitative systems pharmacology and toxicology modeling endeavors (QSP/QST) have been initiated amongst numerous organizations worldwide. In this article, we discuss how quantitative structure-activity relationship (QSAR), network-based, and pharmacokinetic/pharmacodynamic modeling approaches can be integrated into the framework of QST models. Additionally, we review the application of QST models to predict cardiotoxicity and hepatotoxicity of drugs throughout their development. Cell and organ specific QST models are likely to become an essential component of modern toxicity testing, and provides a solid foundation towards determining individualized therapeutic windows to improve patient safety. PMID:29308440

  7. Quantitative Stratification of Diffuse Parenchymal Lung Diseases

    PubMed Central

    Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Maldonado, Fabien; Peikert, Tobias; Moua, Teng; Ryu, Jay H.; Bartholmai, Brian J.; Robb, Richard A.

    2014-01-01

    Diffuse parenchymal lung diseases (DPLDs) are characterized by widespread pathological changes within the pulmonary tissue that impair the elasticity and gas exchange properties of the lungs. Clinical-radiological diagnosis of these diseases remains challenging and their clinical course is characterized by variable disease progression. These challenges have hindered the introduction of robust objective biomarkers for patient-specific prediction based on specific phenotypes in clinical practice for patients with DPLD. Therefore, strategies facilitating individualized clinical management, staging and identification of specific phenotypes linked to clinical disease outcomes or therapeutic responses are urgently needed. A classification schema consistently reflecting the radiological, clinical (lung function and clinical outcomes) and pathological features of a disease represents a critical need in modern pulmonary medicine. Herein, we report a quantitative stratification paradigm to identify subsets of DPLD patients with characteristic radiologic patterns in an unsupervised manner and demonstrate significant correlation of these self-organized disease groups with clinically accepted surrogate endpoints. The proposed consistent and reproducible technique could potentially transform diagnostic staging, clinical management and prognostication of DPLD patients as well as facilitate patient selection for clinical trials beyond the ability of current radiological tools. In addition, the sequential quantitative stratification of the type and extent of parenchymal process may allow standardized and objective monitoring of disease, early assessment of treatment response and mortality prediction for DPLD patients. PMID:24676019

  8. Synthesis, Spectra, and Theoretical Investigations of 1,3,5-Triazines Compounds as Ultraviolet Rays Absorber Based on Time-Dependent Density Functional Calculations and three-Dimensional Quantitative Structure-Property Relationship.

    PubMed

    Wang, Xueding; Xu, Yilian; Yang, Lu; Lu, Xiang; Zou, Hao; Yang, Weiqing; Zhang, Yuanyuan; Li, Zicheng; Ma, Menglin

    2018-03-01

    A series of 1,3,5-triazines were synthesized and their UV absorption properties were tested. The computational chemistry methods were used to construct quantitative structure-property relationship (QSPR), which was used to computer aided design of new 1,3,5-triazines ultraviolet rays absorber compounds. The experimental UV absorption data are in good agreement with those predicted data using the Time-dependent density functional theory (TD-DFT) [B3LYP/6-311 + G(d,p)]. A suitable forecasting model (R > 0.8, P < 0.0001) was revealed. Predictive three-dimensional quantitative structure-property relationship (3D-QSPR) model was established using multifit molecular alignment rule of Sybyl program, which conclusion is consistent with the TD-DFT calculation. The exceptional photostability mechanism of such ultraviolet rays absorber compounds was studied and confirmed as principally banked upon their ability to undergo excited-state deactivation via an ultrafast excited-state proton transfer (ESIPT). The intramolecular hydrogen bond (IMHB) of 1,3,5-triazines compounds is the basis for the excited state proton transfer, which was explored by IR spectroscopy, UV spectra, structural and energetic aspects of different conformers and frontier molecular orbitals analysis.

  9. Establishment of quantitative retention-activity model by optimized microemulsion liquid chromatography.

    PubMed

    Xu, Liyuan; Gao, Haoshi; Li, Liangxing; Li, Yinnong; Wang, Liuyun; Gao, Chongkai; Li, Ning

    2016-12-23

    The effective permeability coefficient is of theoretical and practical importance in evaluation of the bioavailability of drug candidates. However, most methods currently used to measure this coefficient are expensive and time-consuming. In this paper, we addressed these problems by proposing a new measurement method which is based on the microemulsion liquid chromatography. First, the parallel artificial membrane permeability assays model was used to determine the effective permeability of drug so that quantitative retention-activity relationships could be established, which were used to optimize the microemulsion liquid chromatography. The most effective microemulsion system used a mobile phase of 6.0% (w/w) Brij35, 6.6% (w/w) butanol, 0.8% (w/w) octanol, and 86.6% (w/w) phosphate buffer (pH 7.4). Next, support vector machine and back-propagation neural networks are employed to develop a quantitative retention-activity relationships model associated with the optimal microemulsion system, and used to improve the prediction ability. Finally, an adequate correlation between experimental value and predicted value is computed to verify the performance of the optimal model. The results indicate that the microemulsion liquid chromatography can serve as a possible alternative to the PAMPA method for determination of high-throughput permeability and simulation of biological processes. Copyright © 2016. Published by Elsevier B.V.

  10. High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples.

    PubMed

    Bian, Xihui; Li, Shujuan; Lin, Ligang; Tan, Xiaoyao; Fan, Qingjie; Li, Ming

    2016-06-21

    Accurate prediction of the model is fundamental to the successful analysis of complex samples. To utilize abundant information embedded over frequency and time domains, a novel regression model is presented for quantitative analysis of hydrocarbon contents in the fuel oil samples. The proposed method named as high and low frequency unfolded PLSR (HLUPLSR), which integrates empirical mode decomposition (EMD) and unfolded strategy with partial least squares regression (PLSR). In the proposed method, the original signals are firstly decomposed into a finite number of intrinsic mode functions (IMFs) and a residue by EMD. Secondly, the former high frequency IMFs are summed as a high frequency matrix and the latter IMFs and residue are summed as a low frequency matrix. Finally, the two matrices are unfolded to an extended matrix in variable dimension, and then the PLSR model is built between the extended matrix and the target values. Coupled with Ultraviolet (UV) spectroscopy, HLUPLSR has been applied to determine hydrocarbon contents of light gas oil and diesel fuels samples. Comparing with single PLSR and other signal processing techniques, the proposed method shows superiority in prediction ability and better model interpretation. Therefore, HLUPLSR method provides a promising tool for quantitative analysis of complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhong, Shi-Lei; Lu, Yuan; Kong, Wei-Jin; Cheng, Kai; Zheng, Ronger

    2016-08-01

    In this study, an ultrasonic nebulizer unit was established to improve the quantitative analysis ability of laser-induced breakdown spectroscopy (LIBS) for liquid samples detection, using solutions of the heavy metal element Pb as an example. An analytical procedure was designed to guarantee the stability and repeatability of the LIBS signal. A series of experiments were carried out strictly according to the procedure. The experimental parameters were optimized based on studies of the pulse energy influence and temporal evolution of the emission features. The plasma temperature and electron density were calculated to confirm the LTE state of the plasma. Normalizing the intensities by background was demonstrated to be an appropriate method in this work. The linear range of this system for Pb analysis was confirmed over a concentration range of 0-4,150ppm by measuring 12 samples with different concentrations. The correlation coefficient of the fitted calibration curve was as high as 99.94% in the linear range, and the LOD of Pb was confirmed as 2.93ppm. Concentration prediction experiments were performed on a further six samples. The excellent quantitative ability of the system was demonstrated by comparison of the real and predicted concentrations of the samples. The lowest relative error was 0.043% and the highest was no more than 7.1%.

  12. Early prediction of cerebral palsy by computer-based video analysis of general movements: a feasibility study.

    PubMed

    Adde, Lars; Helbostad, Jorunn L; Jensenius, Alexander R; Taraldsen, Gunnar; Grunewaldt, Kristine H; Støen, Ragnhild

    2010-08-01

    The aim of this study was to investigate the predictive value of a computer-based video analysis of the development of cerebral palsy (CP) in young infants. A prospective study of general movements used recordings from 30 high-risk infants (13 males, 17 females; mean gestational age 31wks, SD 6wks; range 23-42wks) between 10 and 15 weeks post term when fidgety movements should be present. Recordings were analysed using computer vision software. Movement variables, derived from differences between subsequent video frames, were used for quantitative analyses. CP status was reported at 5 years. Thirteen infants developed CP (eight hemiparetic, four quadriparetic, one dyskinetic; seven ambulatory, three non-ambulatory, and three unknown function), of whom one had fidgety movements. Variability of the centroid of motion had a sensitivity of 85% and a specificity of 71% in identifying CP. By combining this with variables reflecting the amount of motion, specificity increased to 88%. Nine out of 10 children with CP, and for whom information about functional level was available, were correctly predicted with regard to ambulatory and non-ambulatory function. Prediction of CP can be provided by computer-based video analysis in young infants. The method may serve as an objective and feasible tool for early prediction of CP in high-risk infants.

  13. Effects of Scan Resolutions and Element Sizes on Bovine Vertebral Mechanical Parameters from Quantitative Computed Tomography-Based Finite Element Analysis

    PubMed Central

    Zhang, Meng; Gao, Jiazi; Huang, Xu; Zhang, Min; Liu, Bei

    2017-01-01

    Quantitative computed tomography-based finite element analysis (QCT/FEA) has been developed to predict vertebral strength. However, QCT/FEA models may be different with scan resolutions and element sizes. The aim of this study was to explore the effects of scan resolutions and element sizes on QCT/FEA outcomes. Nine bovine vertebral bodies were scanned using the clinical CT scanner and reconstructed from datasets with the two-slice thickness, that is, 0.6 mm (PA resolution) and 1 mm (PB resolution). There were significantly linear correlations between the predicted and measured principal strains (R2 > 0.7, P < 0.0001), and the predicted vertebral strength and stiffness were modestly correlated with the experimental values (R2 > 0.6, P < 0.05). Two different resolutions and six different element sizes were combined in pairs, and finite element (FE) models of bovine vertebral cancellous bones in the 12 cases were obtained. It showed that the mechanical parameters of FE models with the PB resolution were similar to those with the PA resolution. The computational accuracy of FE models with the element sizes of 0.41 × 0.41 × 0.6 mm3 and 0.41 × 0.41 × 1 mm3 was higher by comparing the apparent elastic modulus and yield strength. Therefore, scan resolution and element size should be chosen optimally to improve the accuracy of QCT/FEA. PMID:29065624

  14. Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis.

    PubMed

    Attiyeh, Marc A; Chakraborty, Jayasree; Doussot, Alexandre; Langdon-Embry, Liana; Mainarich, Shiana; Gönen, Mithat; Balachandran, Vinod P; D'Angelica, Michael I; DeMatteo, Ronald P; Jarnagin, William R; Kingham, T Peter; Allen, Peter J; Simpson, Amber L; Do, Richard K

    2018-04-01

    Pancreatic cancer is a highly lethal cancer with no established a priori markers of survival. Existing nomograms rely mainly on post-resection data and are of limited utility in directing surgical management. This study investigated the use of quantitative computed tomography (CT) features to preoperatively assess survival for pancreatic ductal adenocarcinoma (PDAC) patients. A prospectively maintained database identified consecutive chemotherapy-naive patients with CT angiography and resected PDAC between 2009 and 2012. Variation in CT enhancement patterns was extracted from the tumor region using texture analysis, a quantitative image analysis tool previously described in the literature. Two continuous survival models were constructed, with 70% of the data (training set) using Cox regression, first based only on preoperative serum cancer antigen (CA) 19-9 levels and image features (model A), and then on CA19-9, image features, and the Brennan score (composite pathology score; model B). The remaining 30% of the data (test set) were reserved for independent validation. A total of 161 patients were included in the analysis. Training and test sets contained 113 and 48 patients, respectively. Quantitative image features combined with CA19-9 achieved a c-index of 0.69 [integrated Brier score (IBS) 0.224] on the test data, while combining CA19-9, imaging, and the Brennan score achieved a c-index of 0.74 (IBS 0.200) on the test data. We present two continuous survival prediction models for resected PDAC patients. Quantitative analysis of CT texture features is associated with overall survival. Further work includes applying the model to an external dataset to increase the sample size for training and to determine its applicability.

  15. A quantitative study for determination of sugar concentration using attenuated total reflectance terahertz (ATR-THz) spectroscopy

    NASA Astrophysics Data System (ADS)

    Suhandy, Diding; Suzuki, Tetsuhito; Ogawa, Yuichi; Kondo, Naoshi; Ishihara, Takeshi; Takemoto, Yuichiro

    2011-06-01

    The objective of our research was to use ATR-THz spectroscopy together with chemometric for quantitative study in food analysis. Glucose, fructose and sucrose are main component of sugar both in fresh and processed fruits. The use of spectroscopic-based method for sugar determination is well reported especially using visible, near infrared (NIR) and middle infrared (MIR) spectroscopy. However, the use of terahertz spectroscopy for sugar determination in fruits has not yet been reported. In this work, a quantitative study for sugars determination using attenuated total reflectance terahertz (ATR-THz) spectroscopy was conducted. Each samples of glucose, fructose and sucrose solution with different concentrations were prepared respectively and their absorbance spectra between wavenumber 20 and 450 cm-1 (between 0.6 THz and 13.5 THz) were acquired using a terahertz-based Fourier Transform spectrometer (FARIS-1S, JASCO Co., Japan). This spectrometer was equipped with a high pressure of mercury lamp as light source and a pyroelectric sensor made from deuterated L-alanine triglycine sulfate (DLTGS) as detector. Each spectrum was acquired using 16 cm-1 of resolution and 200 scans for averaging. The spectra of water and sugar solutions were compared and discussed. The results showed that increasing sugar concentration caused decreasing absorbance. The correlation between sugar concentration and its spectra was investigated using multivariate analysis. Calibration models for glucose, fructose and sucrose determination were developed using partial least squares (PLS) regression. The calibration model was evaluated using some parameters such as coefficient of determination (R2), standard error of calibration (SEC), standard error of prediction (SEP), bias between actual and predicted sugar concentration value and ratio prediction to deviation (RPD) parameter. The cross validation method was used to validate each calibration model. It is showed that the use of ATR-THz spectroscopy combined with appropriate chemometric can be a potential for a rapid determination of sugar concentrations.

  16. Defeating the Warrior: genetic architecture of triticale resistance against a novel aggressive yellow rust race.

    PubMed

    Losert, Dominik; Maurer, Hans Peter; Leiser, Willmar L; Würschum, Tobias

    2017-04-01

    Genome-wide association mapping of resistance against the novel, aggressive 'Warrior' race of yellow rust in triticale revealed a genetic architecture with some medium-effect QTL and a quantitative component, which in combination confer high levels of resistance on both leaves and ears. Yellow rust is an important destructive fungal disease in small grain cereals and the exotic 'Warrior' race has recently conquered Europe. The aim of this study was to investigate the genetic architecture of yellow rust resistance in hexaploid winter triticale as the basis for a successful resistance breeding. To this end, a diverse panel of 919 genotypes was evaluated for yellow rust infection on leaves and ears in multi-location field trials and genotyped by genotyping-by-sequencing as well as for known Yr resistance loci. Genome-wide association mapping identified ten quantitative trait loci (QTL) for yellow rust resistance on the leaves and seven of these also for ear resistance. The total genotypic variance explained by the QTL amounted to 44.0% for leaf and 26.0% for ear resistance. The same three medium-effect QTL were identified for both traits on chromosomes 1B, 2B, and 7B. Interestingly, plants pyramiding the resistance allele of all three medium-effect QTL were generally most resistant, but constitute less than 5% of the investigated triticale breeding material. Nevertheless, a genome-wide prediction yielded a higher predictive ability than prediction based on these three QTL. Taken together, our results show that yellow rust resistance in winter triticale is genetically complex, including both medium-effect QTL as well as a quantitative resistance component. Resistance to the novel 'Warrior' race of this fungal pathogen is consequently best achieved by recurrent selection in the field based on identified resistant lines and can potentially be assisted by genomic approaches.

  17. Quantitative validation of an air-coupled ultrasonic probe model by Interferometric laser tomography

    NASA Astrophysics Data System (ADS)

    Revel, G. M.; Pandarese, G.; Cavuto, A.

    2012-06-01

    The present paper describes the quantitative validation of a finite element (FE) model of the ultrasound beam generated by an air coupled non-contact ultrasound transducer. The model boundary conditions are given by vibration velocities measured by laser vibrometry on the probe membrane. The proposed validation method is based on the comparison between the simulated 3D pressure field and the pressure data measured with interferometric laser tomography technique. The model details and the experimental techniques are described in paper. The analysis of results shows the effectiveness of the proposed approach and the possibility to quantitatively assess and predict the generated acoustic pressure field, with maximum discrepancies in the order of 20% due to uncertainty effects. This step is important for determining in complex problems the real applicability of air-coupled probes and for the simulation of the whole inspection procedure, also when the component is designed, so as to virtually verify its inspectability.

  18. Ionocovalency and Applications 1. Ionocovalency Model and Orbital Hybrid Scales

    PubMed Central

    Zhang, Yonghe

    2010-01-01

    Ionocovalency (IC), a quantitative dual nature of the atom, is defined and correlated with quantum-mechanical potential to describe quantitatively the dual properties of the bond. Orbiotal hybrid IC model scale, IC, and IC electronegativity scale, XIC, are proposed, wherein the ionicity and the covalent radius are determined by spectroscopy. Being composed of the ionic function I and the covalent function C, the model describes quantitatively the dual properties of bond strengths, charge density and ionic potential. Based on the atomic electron configuration and the various quantum-mechanical built-up dual parameters, the model formed a Dual Method of the multiple-functional prediction, which has much more versatile and exceptional applications than traditional electronegativity scales and molecular properties. Hydrogen has unconventional values of IC and XIC, lower than that of boron. The IC model can agree fairly well with the data of bond properties and satisfactorily explain chemical observations of elements throughout the Periodic Table. PMID:21151444

  19. Multiblob coarse-graining for mixtures of long polymers and soft colloids

    NASA Astrophysics Data System (ADS)

    Locatelli, Emanuele; Capone, Barbara; Likos, Christos N.

    2016-11-01

    Soft nanocomposites represent both a theoretical and an experimental challenge due to the high number of the microscopic constituents that strongly influence the behaviour of the systems. An effective theoretical description of such systems invokes a reduction of the degrees of freedom to be analysed, hence requiring the introduction of an efficient, quantitative, coarse-grained description. We here report on a novel coarse graining approach based on a set of transferable potentials that quantitatively reproduces properties of mixtures of linear and star-shaped homopolymeric nanocomposites. By renormalizing groups of monomers into a single effective potential between a f-functional star polymer and an homopolymer of length N0, and through a scaling argument, it will be shown how a substantial reduction of the to degrees of freedom allows for a full quantitative description of the system. Our methodology is tested upon full monomer simulations for systems of different molecular weight, proving its full predictive potential.

  20. Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging.

    PubMed

    Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert

    2009-03-10

    In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.

  1. Predicting Ideological Prejudice

    PubMed Central

    Brandt, Mark J.

    2017-01-01

    A major shortcoming of current models of ideological prejudice is that although they can anticipate the direction of the association between participants’ ideology and their prejudice against a range of target groups, they cannot predict the size of this association. I developed and tested models that can make specific size predictions for this association. A quantitative model that used the perceived ideology of the target group as the primary predictor of the ideology-prejudice relationship was developed with a representative sample of Americans (N = 4,940) and tested against models using the perceived status of and choice to belong to the target group as predictors. In four studies (total N = 2,093), ideology-prejudice associations were estimated, and these observed estimates were compared with the models’ predictions. The model that was based only on perceived ideology was the most parsimonious with the smallest errors. PMID:28394693

  2. Predicting the growth of S i3N4 nanowires by phase-equilibrium-dominated vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Yongliang; Cai, Jing; Yang, Lijun; Wu, Qiang; Wang, Xizhang; Hu, Zheng

    2017-09-01

    Nanomaterial synthesis is experiencing a profound evolution from empirical science ("cook-and-look") to prediction and design, which depends on the deep insight into the growth mechanism. Herein, we report a generalized prediction of the growth of S i3N4 nanowires by nitriding F e28S i72 alloy particles across different phase regions based on our finding of the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism. All the predictions about the growth of S i3N4 nanowires, and the associated evolutions of lattice parameters and geometries of the coexisting Fe -Si alloy phases, are experimentally confirmed quantitatively. This progress corroborates the general validity of the PED-VLS mechanism, which could be applied to the design and controllable synthesis of various one-dimensional nanomaterials.

  3. Docking Based 3D-QSAR Study of Tricyclic Guanidine Analogues of Batzelladine K as anti-malarial agents

    NASA Astrophysics Data System (ADS)

    Ahmed, Nafees; Anwar, Sirajudheen; Thet Htar, Thet

    2017-06-01

    The Plasmodium falciparum Lactate Dehydrogenase enzyme (PfLDH) catalyzes inter-conversion of pyruvate to lactate during glycolysis producing the energy required for parasitic growth. The PfLDH has been studied as a potential molecular target for development of anti-malarial agents. In an attempt to find the potent inhibitor of PfLDH, we have used Discovery studio to perform molecular docking in the active binding pocket of PfLDH by CDOCKER, followed by three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of tricyclic guanidine batzelladine compounds, which were previously synthesized in our laboratory. Docking studies showed that there is a very strong correlation between in silico and in vitro results. Based on docking results, a highly predictive 3D-QSAR model was developed with q2 of 0.516. The model has predicted r2 of 0.91 showing that predicted IC50 values are in good agreement with experimental IC50 values. The results obtained from this study revealed the developed model can be used to design new anti-malarial compounds based on tricyclic guanidine derivatives and to predict activities of new inhibitors.

  4. Docking Based 3D-QSAR Study of Tricyclic Guanidine Analogues of Batzelladine K As Anti-Malarial Agents.

    PubMed

    Ahmed, Nafees; Anwar, Sirajudheen; Thet Htar, Thet

    2017-01-01

    The Plasmodium falciparum Lactate Dehydrogenase enzyme ( Pf LDH) catalyzes inter-conversion of pyruvate to lactate during glycolysis producing the energy required for parasitic growth. The Pf LDH has been studied as a potential molecular target for development of anti-malarial agents. In an attempt to find the potent inhibitor of Pf LDH, we have used Discovery studio to perform molecular docking in the active binding pocket of Pf LDH by CDOCKER, followed by three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of tricyclic guanidine batzelladine compounds, which were previously synthesized in our laboratory. Docking studies showed that there is a very strong correlation between in silico and in vitro results. Based on docking results, a highly predictive 3D-QSAR model was developed with q 2 of 0.516. The model has predicted r 2 of 0.91 showing that predicted IC 50 values are in good agreement with experimental IC 50 values. The results obtained from this study revealed the developed model can be used to design new anti-malarial compounds based on tricyclic guanidine derivatives and to predict activities of new inhibitors.

  5. Docking Based 3D-QSAR Study of Tricyclic Guanidine Analogues of Batzelladine K As Anti-Malarial Agents

    PubMed Central

    Ahmed, Nafees; Anwar, Sirajudheen; Thet Htar, Thet

    2017-01-01

    The Plasmodium falciparum Lactate Dehydrogenase enzyme (PfLDH) catalyzes inter-conversion of pyruvate to lactate during glycolysis producing the energy required for parasitic growth. The PfLDH has been studied as a potential molecular target for development of anti-malarial agents. In an attempt to find the potent inhibitor of PfLDH, we have used Discovery studio to perform molecular docking in the active binding pocket of PfLDH by CDOCKER, followed by three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of tricyclic guanidine batzelladine compounds, which were previously synthesized in our laboratory. Docking studies showed that there is a very strong correlation between in silico and in vitro results. Based on docking results, a highly predictive 3D-QSAR model was developed with q2 of 0.516. The model has predicted r2 of 0.91 showing that predicted IC50 values are in good agreement with experimental IC50 values. The results obtained from this study revealed the developed model can be used to design new anti-malarial compounds based on tricyclic guanidine derivatives and to predict activities of new inhibitors. PMID:28664157

  6. Predictive equation of state method for heavy materials based on the Dirac equation and density functional theory

    NASA Astrophysics Data System (ADS)

    Wills, John M.; Mattsson, Ann E.

    2012-02-01

    Density functional theory (DFT) provides a formally predictive base for equation of state properties. Available approximations to the exchange/correlation functional provide accurate predictions for many materials in the periodic table. For heavy materials however, DFT calculations, using available functionals, fail to provide quantitative predictions, and often fail to be even qualitative. This deficiency is due both to the lack of the appropriate confinement physics in the exchange/correlation functional and to approximations used to evaluate the underlying equations. In order to assess and develop accurate functionals, it is essential to eliminate all other sources of error. In this talk we describe an efficient first-principles electronic structure method based on the Dirac equation and compare the results obtained with this method with other methods generally used. Implications for high-pressure equation of state of relativistic materials are demonstrated in application to Ce and the light actinides. Sandia National Laboratories is a multi-program laboratory managed andoperated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Forecasting the Environmental Impacts of New Energetic Materials

    DTIC Science & Technology

    2010-11-30

    Quantitative structure- activity relationships for chemical reductions of organic contaminants. Environmental Toxicology and Chemistry 22(8): 1733-1742. QSARs ...activity relationships [ QSARs ]) and the use of these properties to predict the chemical?s fate with multimedia assessment models. SERDP has recently...has several parts, including the prediction of chemical properties (e.g., with quantitative structure-activity relationships [ QSARs ]) and the use of

  8. Quantitative studies on structure-ORAC relationships of anthocyanins from eggplant and radish using 3D-QSAR.

    PubMed

    Jing, Pu; Zhao, Shujuan; Ruan, Siyu; Sui, Zhongquan; Chen, Lihong; Jiang, Linlei; Qian, Bingjun

    2014-02-15

    The 3-dimensional quantitative structure activity relationship (3D-QSAR) models were established from 21 anthocyanins based on their oxygen radical absorbing capacity (ORAC) and were applied to predict anthocyanins in eggplant and radish for their ORAC values. The cross-validated q(2)=0.857/0.729, non-cross-validated r(2) = 0.958/0.856, standard error of estimate = 0.153/0.134, and F = 73.267/19.247 were for the best QSAR (CoMFA/CoMSIA) models, where the correlation coefficient r(2)pred = 0.998/0.997 (>0.6) indicated a high predictive ability for each. Additionally, the contour map results suggested that structural characteristics of anthocyanins favourable for the high ORAC. Four anthocyanins from eggplant and radish have been screened based on the QSAR models. Pelargonidin-3-[(6''-p-coumaroyl)-glucosyl(2 → 1)glucoside]-5-(6''-malonyl)-glucoside, delphinidin-3-rutinoside-5-glucoside, and delphinidin-3-[(4''-p-coumaroyl)-rhamnosyl(1 → 6)glucoside]-5-glucoside potential with high ORAC based the QSAR models were isolated and also confirmed for their relative high antioxidant ability, which might attribute to the bulky and/or electron-donating substituent at the 3-position in the C ring or/and hydrogen bond donor group/electron donating group on the R1 position in the B ring. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Random Dopant Induced Threshold Voltage Lowering and Fluctuations in Sub-0.1 (micron)meter MOSFET's: A 3-D 'Atomistic' Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen

    1998-01-01

    A three-dimensional (3-D) "atomistic" simulation study of random dopant induced threshold voltage lowering and fluctuations in sub-0.1 microns MOSFET's is presented. For the first time a systematic analysis of random dopant effects down to an individual dopant level was carried out in 3-D on a scale sufficient to provide quantitative statistical predictions. Efficient algorithms based on a single multigrid solution of the Poisson equation followed by the solution of a simplified current continuity equation are used in the simulations. The effects of various MOSFET design parameters, including the channel length and width, oxide thickness and channel doping, on the threshold voltage lowering and fluctuations are studied using typical samples of 200 atomistically different MOSFET's. The atomistic results for the threshold voltage fluctuations were compared with two analytical models based on dopant number fluctuations. Although the analytical models predict the general trends in the threshold voltage fluctuations, they fail to describe quantitatively the magnitude of the fluctuations. The distribution of the atomistically calculated threshold voltage and its correlation with the number of dopants in the channel of the MOSFET's was analyzed based on a sample of 2500 microscopically different devices. The detailed analysis shows that the threshold voltage fluctuations are determined not only by the fluctuation in the dopant number, but also in the dopant position.

  10. Quantitative physiologically based modeling of subjective fatigue during sleep deprivation.

    PubMed

    Fulcher, B D; Phillips, A J K; Robinson, P A

    2010-05-21

    A quantitative physiologically based model of the sleep-wake switch is used to predict variations in subjective fatigue-related measures during total sleep deprivation. The model includes the mutual inhibition of the sleep-active neurons in the hypothalamic ventrolateral preoptic area (VLPO) and the wake-active monoaminergic brainstem populations (MA), as well as circadian and homeostatic drives. We simulate sleep deprivation by introducing a drive to the MA, which we call wake effort, to maintain the system in a wakeful state. Physiologically this drive is proposed to be afferent from the cortex or the orexin group of the lateral hypothalamus. It is hypothesized that the need to exert this effort to maintain wakefulness at high homeostatic sleep pressure correlates with subjective fatigue levels. The model's output indeed exhibits good agreement with existing clinical time series of subjective fatigue-related measures, supporting this hypothesis. Subjective fatigue, adrenaline, and body temperature variations during two 72h sleep deprivation protocols are reproduced by the model. By distinguishing a motivation-dependent orexinergic contribution to the wake-effort drive, the model can be extended to interpret variation in performance levels during sleep deprivation in a way that is qualitatively consistent with existing, clinically derived results. The example of sleep deprivation thus demonstrates the ability of physiologically based sleep modeling to predict psychological measures from the underlying physiological interactions that produce them. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Prediction of Environmental Impact of High-Energy Materials with Atomistic Computer Simulations

    DTIC Science & Technology

    2010-11-01

    from a training set of compounds. Other methods include Quantitative Struc- ture-Activity Relationship ( QSAR ) and Quantitative Structure-Property...26 28 the development of QSPR/ QSAR models, in contrast to boiling points and critical parameters derived from empirical correlations, to improve...Quadratic Configuration Interaction Singles Doubles QSAR Quantitative Structure-Activity Relationship QSPR Quantitative Structure-Property

  12. Quantitative computed tomography-based predictions of vertebral strength in anterior bending.

    PubMed

    Buckley, Jenni M; Cheng, Liu; Loo, Kenneth; Slyfield, Craig; Xu, Zheng

    2007-04-20

    This study examined the ability of QCT-based structural assessment techniques to predict vertebral strength in anterior bending. The purpose of this study was to compare the abilities of QCT-based bone mineral density (BMD), mechanics of solids models (MOS), e.g., bending rigidity, and finite element analyses (FE) to predict the strength of isolated vertebral bodies under anterior bending boundary conditions. Although the relative performance of QCT-based structural measures is well established for uniform compression, the ability of these techniques to predict vertebral strength under nonuniform loading conditions has not yet been established. Thirty human thoracic vertebrae from 30 donors (T9-T10, 20 female, 10 male; 87 +/- 5 years of age) were QCT scanned and destructively tested in anterior bending using an industrial robot arm. The QCT scans were processed to generate specimen-specific FE models as well as trabecular bone mineral density (tBMD), integral bone mineral density (iBMD), and MOS measures, such as axial and bending rigidities. Vertebral strength in anterior bending was poorly to moderately predicted by QCT-based BMD and MOS measures (R2 = 0.14-0.22). QCT-based FE models were better strength predictors (R2 = 0.34-0.40); however, their predictive performance was not statistically different from MOS bending rigidity (P > 0.05). Our results suggest that the poor clinical performance of noninvasive structural measures may be due to their inability to predict vertebral strength under bending loads. While their performance was not statistically better than MOS bending rigidities, QCT-based FE models were moderate predictors of both compressive and bending loads at failure, suggesting that this technique has the potential for strength prediction under nonuniform loads. The current FE modeling strategy is insufficient, however, and significant modifications must be made to better mimic whole bone elastic and inelastic material behavior.

  13. Can We Predict Functional Outcome in Neonates with Hypoxic Ischemic Encephalopathy by the Combination of Neuroimaging and Electroencephalography?

    PubMed Central

    Nanavati, Tania; Seemaladinne, Nirupama; Regier, Michael; Yossuck, Panitan; Pergami, Paola

    2015-01-01

    Background Neonatal hypoxic ischemic encephalopathy (HIE) is a major cause of mortality, morbidity, and long-term neurological deficits. Despite the availability of neuroimaging and neurophysiological testing, tools for accurate early diagnosis and prediction of developmental outcome are still lacking. The goal of this study was to determine if combined use of magnetic resonance imaging (MRI) and electroencephalography (EEG) findings could support outcome prediction. Methods We retrospectively reviewed records of 17 HIE neonates, classified brain MRI and EEG findings based on severity, and assessed clinical outcome up to 48 months. We determined the relation between MRI/EEG findings and clinical outcome. Results We demonstrated a significant relationship between MRI findings and clinical outcome (Fisher’s exact test, p = 0.017). EEG provided no additional information about the outcome beyond that contained in the MRI score. The statistical model for outcome prediction based on random forests suggested that EEG readings at 24 hours and 72 hours could be important variables for outcome prediction, but this needs to be investigated further. Conclusion Caution should be used when discussing prognosis for neonates with mild-to-moderate HIE based on early MR imaging and EEG findings. A robust, quantitative marker of HIE severity that allows for accurate prediction of long-term outcome, particularly for mild-to-moderate cases, is still needed. PMID:25862075

  14. Grading of Emphysema Is Indispensable for Predicting Prolonged Air Leak After Lung Lobectomy.

    PubMed

    Murakami, Junichi; Ueda, Kazuhiro; Tanaka, Toshiki; Kobayashi, Taiga; Hamano, Kimikazu

    2018-04-01

    The aim of this study was to assess the utility of quantitative computed tomography-based grading of emphysema for predicting prolonged air leak after thoracoscopic lobectomy. A consecutive series of 284 patients undergoing thoracoscopic lobectomy for lung cancer was retrospectively reviewed. Prolonged air leak was defined as air leaks lasting 7 days or longer. The grade of emphysema (emphysema index) was defined by the proportion of the emphysematous lung volume (less than -910 HU) to the total lung volume (-600 to -1,024 HU) by a computer-assisted histogram analysis of whole-lung computed tomography scans. The mean length of chest tube drainage was 1.5 days. Fifteen patients (5.3%) presented with prolonged air leak. According to a receiver-operating characteristics curve analysis, the emphysema index was the best predictor of prolonged air leak, with an area under the curve of 0.85 (95% confidence interval: 0.73 to 0.98). An emphysema index of 35% or greater was the best cutoff value for predicting prolonged air leak, with a negative predictive value of 0.99. The emphysema index was the only significant predictor for the length of postoperative chest tube drainage among conventional variables, including the pulmonary function and resected lobe, in both univariate and multivariate analyses. Prolonged air leak resulted in an increased duration of hospitalization (p < 0.001) and was frequently accompanied by pneumonia or empyema (p < 0.001). The grade of emphysema on computed tomography scan is the best predictor of prolonged air leak that adversely influences early postoperative outcomes. We must take new measures against prolonged air leak in quantitative computed tomography-based high-risk patients. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Predicting Protein Function by Genomic Context: Quantitative Evaluation and Qualitative Inferences

    PubMed Central

    Huynen, Martijn; Snel, Berend; Lathe, Warren; Bork, Peer

    2000-01-01

    Various new methods have been proposed to predict functional interactions between proteins based on the genomic context of their genes. The types of genomic context that they use are Type I: the fusion of genes; Type II: the conservation of gene-order or co-occurrence of genes in potential operons; and Type III: the co-occurrence of genes across genomes (phylogenetic profiles). Here we compare these types for their coverage, their correlations with various types of functional interaction, and their overlap with homology-based function assignment. We apply the methods to Mycoplasma genitalium, the standard benchmarking genome in computational and experimental genomics. Quantitatively, conservation of gene order is the technique with the highest coverage, applying to 37% of the genes. By combining gene order conservation with gene fusion (6%), the co-occurrence of genes in operons in absence of gene order conservation (8%), and the co-occurrence of genes across genomes (11%), significant context information can be obtained for 50% of the genes (the categories overlap). Qualitatively, we observe that the functional interactions between genes are stronger as the requirements for physical neighborhood on the genome are more stringent, while the fraction of potential false positives decreases. Moreover, only in cases in which gene order is conserved in a substantial fraction of the genomes, in this case six out of twenty-five, does a single type of functional interaction (physical interaction) clearly dominate (>80%). In other cases, complementary function information from homology searches, which is available for most of the genes with significant genomic context, is essential to predict the type of interaction. Using a combination of genomic context and homology searches, new functional features can be predicted for 10% of M. genitalium genes. PMID:10958638

  16. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer.

    PubMed

    Covarrubias-Pazaran, Giovanny

    2016-01-01

    Most traits of agronomic importance are quantitative in nature, and genetic markers have been used for decades to dissect such traits. Recently, genomic selection has earned attention as next generation sequencing technologies became feasible for major and minor crops. Mixed models have become a key tool for fitting genomic selection models, but most current genomic selection software can only include a single variance component other than the error, making hybrid prediction using additive, dominance and epistatic effects unfeasible for species displaying heterotic effects. Moreover, Likelihood-based software for fitting mixed models with multiple random effects that allows the user to specify the variance-covariance structure of random effects has not been fully exploited. A new open-source R package called sommer is presented to facilitate the use of mixed models for genomic selection and hybrid prediction purposes using more than one variance component and allowing specification of covariance structures. The use of sommer for genomic prediction is demonstrated through several examples using maize and wheat genotypic and phenotypic data. At its core, the program contains three algorithms for estimating variance components: Average information (AI), Expectation-Maximization (EM) and Efficient Mixed Model Association (EMMA). Kernels for calculating the additive, dominance and epistatic relationship matrices are included, along with other useful functions for genomic analysis. Results from sommer were comparable to other software, but the analysis was faster than Bayesian counterparts in the magnitude of hours to days. In addition, ability to deal with missing data, combined with greater flexibility and speed than other REML-based software was achieved by putting together some of the most efficient algorithms to fit models in a gentle environment such as R.

  17. Gastrointestinal Endogenous Proteins as a Source of Bioactive Peptides - An In Silico Study

    PubMed Central

    Dave, Lakshmi A.; Montoya, Carlos A.; Rutherfurd, Shane M.; Moughan, Paul J.

    2014-01-01

    Dietary proteins are known to contain bioactive peptides that are released during digestion. Endogenous proteins secreted into the gastrointestinal tract represent a quantitatively greater supply of protein to the gut lumen than those of dietary origin. Many of these endogenous proteins are digested in the gastrointestinal tract but the possibility that these are also a source of bioactive peptides has not been considered. An in silico prediction method was used to test if bioactive peptides could be derived from the gastrointestinal digestion of gut endogenous proteins. Twenty six gut endogenous proteins and seven dietary proteins were evaluated. The peptides present after gastric and intestinal digestion were predicted based on the amino acid sequence of the proteins and the known specificities of the major gastrointestinal proteases. The predicted resultant peptides possessing amino acid sequences identical to those of known bioactive peptides were identified. After gastrointestinal digestion (based on the in silico simulation), the total number of bioactive peptides predicted to be released ranged from 1 (gliadin) to 55 (myosin) for the selected dietary proteins and from 1 (secretin) to 39 (mucin-5AC) for the selected gut endogenous proteins. Within the intact proteins and after simulated gastrointestinal digestion, angiotensin converting enzyme (ACE)-inhibitory peptide sequences were the most frequently observed in both the dietary and endogenous proteins. Among the dietary proteins, after in silico simulated gastrointestinal digestion, myosin was found to have the highest number of ACE-inhibitory peptide sequences (49 peptides), while for the gut endogenous proteins, mucin-5AC had the greatest number of ACE-inhibitory peptide sequences (38 peptides). Gut endogenous proteins may be an important source of bioactive peptides in the gut particularly since gut endogenous proteins represent a quantitatively large and consistent source of protein. PMID:24901416

  18. Unraveling additive from nonadditive effects using genomic relationship matrices.

    PubMed

    Muñoz, Patricio R; Resende, Marcio F R; Gezan, Salvador A; Resende, Marcos Deon Vilela; de Los Campos, Gustavo; Kirst, Matias; Huber, Dudley; Peter, Gary F

    2014-12-01

    The application of quantitative genetics in plant and animal breeding has largely focused on additive models, which may also capture dominance and epistatic effects. Partitioning genetic variance into its additive and nonadditive components using pedigree-based models (P-genomic best linear unbiased predictor) (P-BLUP) is difficult with most commonly available family structures. However, the availability of dense panels of molecular markers makes possible the use of additive- and dominance-realized genomic relationships for the estimation of variance components and the prediction of genetic values (G-BLUP). We evaluated height data from a multifamily population of the tree species Pinus taeda with a systematic series of models accounting for additive, dominance, and first-order epistatic interactions (additive by additive, dominance by dominance, and additive by dominance), using either pedigree- or marker-based information. We show that, compared with the pedigree, use of realized genomic relationships in marker-based models yields a substantially more precise separation of additive and nonadditive components of genetic variance. We conclude that the marker-based relationship matrices in a model including additive and nonadditive effects performed better, improving breeding value prediction. Moreover, our results suggest that, for tree height in this population, the additive and nonadditive components of genetic variance are similar in magnitude. This novel result improves our current understanding of the genetic control and architecture of a quantitative trait and should be considered when developing breeding strategies. Copyright © 2014 by the Genetics Society of America.

  19. Lipid-associated oral delivery: Mechanisms and analysis of oral absorption enhancement.

    PubMed

    Rezhdo, Oljora; Speciner, Lauren; Carrier, Rebecca

    2016-10-28

    The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid in the understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comparative study on sample stacking by moving reaction boundary formed with weak acid and weak or strong base in capillary electrophoresis: II. Experiments.

    PubMed

    Zhang, Wei; Fan, Liuyin; Shao, Jing; Li, Si; Li, Shan; Cao, Chengxi

    2011-04-15

    To demonstrate the theoretic method on the stacking of zwitterion with moving reaction boundary (MRB) in the accompanying paper, the relevant experiments were performed. The experimental results quantitatively show that (1) MRB velocity, including the comparisons between MRB and zwitterionic velocities, possesses key importance to the design of MRB stacking; (2) a much long front alkaline plug without sample should be injected before the sample injection for a complete stacking of zwitterion if sample buffer is prepared with strong base, conversely no such plug is needed if using a weak base as the sample buffer with proper concentration and pH value; (3) the presence of salt in MRB system holds dramatic effect on the MRB stacking if sample solution is a strong base, but has no effect if a weak alkali is used as sample solution; (4) all of the experiments of this paper, including the previous work, quantitatively manifest the theory and predictions shown in the accompanying paper. In addition, the so-called derivative MRB-induced re-stacking and transient FASI-induced re-stacking were also observed during the experiments, and the relevant mechanisms were briefly demonstrated with the results. The theory and its calculation procedures developed in the accompanying paper can be well used for the predictions to the MRB stacking of zwitterion in CE. Copyright © 2011 Elsevier B.V. All rights reserved.

Top