Sample records for quantitative proteomics identification

  1. Quantitative body fluid proteomics in medicine - A focus on minimal invasiveness.

    PubMed

    Csősz, Éva; Kalló, Gergő; Márkus, Bernadett; Deák, Eszter; Csutak, Adrienne; Tőzsér, József

    2017-02-05

    Identification of new biomarkers specific for various pathological conditions is an important field in medical sciences. Body fluids have emerging potential in biomarker studies especially those which are continuously available and can be collected by non-invasive means. Changes in the protein composition of body fluids such as tears, saliva, sweat, etc. may provide information on both local and systemic conditions of medical relevance. In this review, our aim is to discuss the quantitative proteomics techniques used in biomarker studies, and to present advances in quantitative body fluid proteomics of non-invasively collectable body fluids with relevance to biomarker identification. The advantages and limitations of the widely used quantitative proteomics techniques are also presented. Based on the reviewed literature, we suggest an ideal pipeline for body fluid analyses aiming at biomarkers discoveries: starting from identification of biomarker candidates by shotgun quantitative proteomics or protein arrays, through verification of potential biomarkers by targeted mass spectrometry, to the antibody-based validation of biomarkers. The importance of body fluids as a rich source of biomarkers is discussed. Quantitative proteomics is a challenging part of proteomics applications. The body fluids collected by non-invasive means have high relevance in medicine; they are good sources for biomarkers used in establishing the diagnosis, follow up of disease progression and predicting high risk groups. The review presents the most widely used quantitative proteomics techniques in body fluid analysis and lists the potential biomarkers identified in tears, saliva, sweat, nasal mucus and urine for local and systemic diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Analysis of high accuracy, quantitative proteomics data in the MaxQB database.

    PubMed

    Schaab, Christoph; Geiger, Tamar; Stoehr, Gabriele; Cox, Juergen; Mann, Matthias

    2012-03-01

    MS-based proteomics generates rapidly increasing amounts of precise and quantitative information. Analysis of individual proteomic experiments has made great strides, but the crucial ability to compare and store information across different proteome measurements still presents many challenges. For example, it has been difficult to avoid contamination of databases with low quality peptide identifications, to control for the inflation in false positive identifications when combining data sets, and to integrate quantitative data. Although, for example, the contamination with low quality identifications has been addressed by joint analysis of deposited raw data in some public repositories, we reasoned that there should be a role for a database specifically designed for high resolution and quantitative data. Here we describe a novel database termed MaxQB that stores and displays collections of large proteomics projects and allows joint analysis and comparison. We demonstrate the analysis tools of MaxQB using proteome data of 11 different human cell lines and 28 mouse tissues. The database-wide false discovery rate is controlled by adjusting the project specific cutoff scores for the combined data sets. The 11 cell line proteomes together identify proteins expressed from more than half of all human genes. For each protein of interest, expression levels estimated by label-free quantification can be visualized across the cell lines. Similarly, the expression rank order and estimated amount of each protein within each proteome are plotted. We used MaxQB to calculate the signal reproducibility of the detected peptides for the same proteins across different proteomes. Spearman rank correlation between peptide intensity and detection probability of identified proteins was greater than 0.8 for 64% of the proteome, whereas a minority of proteins have negative correlation. This information can be used to pinpoint false protein identifications, independently of peptide database scores. The information contained in MaxQB, including high resolution fragment spectra, is accessible to the community via a user-friendly web interface at http://www.biochem.mpg.de/maxqb.

  3. High-resolution proteomic profiling of spider venom: expanding the toxin diversity of Phoneutria nigriventer venom.

    PubMed

    Liberato, Tarcísio; Troncone, Lanfranco Ranieri Paolo; Yamashiro, Edson T; Serrano, Solange M T; Zelanis, André

    2016-03-01

    Here we present a proteomic characterization of Phoneutria nigriventer venom. A shotgun proteomic approach allowed the identification, for the first time, of O-glycosyl hydrolases (chitinases) in P. nigriventer venom. The electrophoretic profiles under nonreducing and reducing conditions, and protein identification by mass spectrometry, indicated the presence of oligomeric toxin structures in the venom. Complementary proteomic approaches allowed for a qualitative and semi-quantitative profiling of P. nigriventer venom complexity, expanding its known venom proteome diversity.

  4. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsenko, Marina A.; Xu, Zhe; Liu, Tao

    Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification andmore » quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.« less

  5. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.

    PubMed

    Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D

    2016-01-01

    Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.

  6. PIQMIe: a web server for semi-quantitative proteomics data management and analysis

    PubMed Central

    Kuzniar, Arnold; Kanaar, Roland

    2014-01-01

    We present the Proteomics Identifications and Quantitations Data Management and Integration Service or PIQMIe that aids in reliable and scalable data management, analysis and visualization of semi-quantitative mass spectrometry based proteomics experiments. PIQMIe readily integrates peptide and (non-redundant) protein identifications and quantitations from multiple experiments with additional biological information on the protein entries, and makes the linked data available in the form of a light-weight relational database, which enables dedicated data analyses (e.g. in R) and user-driven queries. Using the web interface, users are presented with a concise summary of their proteomics experiments in numerical and graphical forms, as well as with a searchable protein grid and interactive visualization tools to aid in the rapid assessment of the experiments and in the identification of proteins of interest. The web server not only provides data access through a web interface but also supports programmatic access through RESTful web service. The web server is available at http://piqmie.semiqprot-emc.cloudlet.sara.nl or http://www.bioinformatics.nl/piqmie. This website is free and open to all users and there is no login requirement. PMID:24861615

  7. PIQMIe: a web server for semi-quantitative proteomics data management and analysis.

    PubMed

    Kuzniar, Arnold; Kanaar, Roland

    2014-07-01

    We present the Proteomics Identifications and Quantitations Data Management and Integration Service or PIQMIe that aids in reliable and scalable data management, analysis and visualization of semi-quantitative mass spectrometry based proteomics experiments. PIQMIe readily integrates peptide and (non-redundant) protein identifications and quantitations from multiple experiments with additional biological information on the protein entries, and makes the linked data available in the form of a light-weight relational database, which enables dedicated data analyses (e.g. in R) and user-driven queries. Using the web interface, users are presented with a concise summary of their proteomics experiments in numerical and graphical forms, as well as with a searchable protein grid and interactive visualization tools to aid in the rapid assessment of the experiments and in the identification of proteins of interest. The web server not only provides data access through a web interface but also supports programmatic access through RESTful web service. The web server is available at http://piqmie.semiqprot-emc.cloudlet.sara.nl or http://www.bioinformatics.nl/piqmie. This website is free and open to all users and there is no login requirement. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. A comparative proteomics method for multiple samples based on a 18O-reference strategy and a quantitation and identification-decoupled strategy.

    PubMed

    Wang, Hongbin; Zhang, Yongqian; Gui, Shuqi; Zhang, Yong; Lu, Fuping; Deng, Yulin

    2017-08-15

    Comparisons across large numbers of samples are frequently necessary in quantitative proteomics. Many quantitative methods used in proteomics are based on stable isotope labeling, but most of these are only useful for comparing two samples. For up to eight samples, the iTRAQ labeling technique can be used. For greater numbers of samples, the label-free method has been used, but this method was criticized for low reproducibility and accuracy. An ingenious strategy has been introduced, comparing each sample against a 18 O-labeled reference sample that was created by pooling equal amounts of all samples. However, it is necessary to use proportion-known protein mixtures to investigate and evaluate this new strategy. Another problem for comparative proteomics of multiple samples is the poor coincidence and reproducibility in protein identification results across samples. In present study, a method combining 18 O-reference strategy and a quantitation and identification-decoupled strategy was investigated with proportion-known protein mixtures. The results obviously demonstrated that the 18 O-reference strategy had greater accuracy and reliability than other previously used comparison methods based on transferring comparison or label-free strategies. By the decoupling strategy, the quantification data acquired by LC-MS and the identification data acquired by LC-MS/MS are matched and correlated to identify differential expressed proteins, according to retention time and accurate mass. This strategy made protein identification possible for all samples using a single pooled sample, and therefore gave a good reproducibility in protein identification across multiple samples, and allowed for optimizing peptide identification separately so as to identify more proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. MASH Suite Pro: A Comprehensive Software Tool for Top-Down Proteomics*

    PubMed Central

    Cai, Wenxuan; Guner, Huseyin; Gregorich, Zachery R.; Chen, Albert J.; Ayaz-Guner, Serife; Peng, Ying; Valeja, Santosh G.; Liu, Xiaowen; Ge, Ying

    2016-01-01

    Top-down mass spectrometry (MS)-based proteomics is arguably a disruptive technology for the comprehensive analysis of all proteoforms arising from genetic variation, alternative splicing, and posttranslational modifications (PTMs). However, the complexity of top-down high-resolution mass spectra presents a significant challenge for data analysis. In contrast to the well-developed software packages available for data analysis in bottom-up proteomics, the data analysis tools in top-down proteomics remain underdeveloped. Moreover, despite recent efforts to develop algorithms and tools for the deconvolution of top-down high-resolution mass spectra and the identification of proteins from complex mixtures, a multifunctional software platform, which allows for the identification, quantitation, and characterization of proteoforms with visual validation, is still lacking. Herein, we have developed MASH Suite Pro, a comprehensive software tool for top-down proteomics with multifaceted functionality. MASH Suite Pro is capable of processing high-resolution MS and tandem MS (MS/MS) data using two deconvolution algorithms to optimize protein identification results. In addition, MASH Suite Pro allows for the characterization of PTMs and sequence variations, as well as the relative quantitation of multiple proteoforms in different experimental conditions. The program also provides visualization components for validation and correction of the computational outputs. Furthermore, MASH Suite Pro facilitates data reporting and presentation via direct output of the graphics. Thus, MASH Suite Pro significantly simplifies and speeds up the interpretation of high-resolution top-down proteomics data by integrating tools for protein identification, quantitation, characterization, and visual validation into a customizable and user-friendly interface. We envision that MASH Suite Pro will play an integral role in advancing the burgeoning field of top-down proteomics. PMID:26598644

  10. Recent advances in mass spectrometry-based proteomics of gastric cancer.

    PubMed

    Kang, Changwon; Lee, Yejin; Lee, J Eugene

    2016-10-07

    The last decade has witnessed remarkable technological advances in mass spectrometry-based proteomics. The development of proteomics techniques has enabled the reliable analysis of complex proteomes, leading to the identification and quantification of thousands of proteins in gastric cancer cells, tissues, and sera. This quantitative information has been used to profile the anomalies in gastric cancer and provide insights into the pathogenic mechanism of the disease. In this review, we mainly focus on the advances in mass spectrometry and quantitative proteomics that were achieved in the last five years and how these up-and-coming technologies are employed to track biochemical changes in gastric cancer cells. We conclude by presenting a perspective on quantitative proteomics and its future applications in the clinic and translational gastric cancer research.

  11. Design and analysis issues in quantitative proteomics studies.

    PubMed

    Karp, Natasha A; Lilley, Kathryn S

    2007-09-01

    Quantitative proteomics is the comparison of distinct proteomes which enables the identification of protein species which exhibit changes in expression or post-translational state in response to a given stimulus. Many different quantitative techniques are being utilized and generate large datasets. Independent of the technique used, these large datasets need robust data analysis to ensure valid conclusions are drawn from such studies. Approaches to address the problems that arise with large datasets are discussed to give insight into the types of statistical analyses of data appropriate for the various experimental strategies that can be employed by quantitative proteomic studies. This review also highlights the importance of employing a robust experimental design and highlights various issues surrounding the design of experiments. The concepts and examples discussed within will show how robust design and analysis will lead to confident results that will ensure quantitative proteomics delivers.

  12. A multi-center study benchmarks software tools for label-free proteome quantification

    PubMed Central

    Gillet, Ludovic C; Bernhardt, Oliver M.; MacLean, Brendan; Röst, Hannes L.; Tate, Stephen A.; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I.; Aebersold, Ruedi; Tenzer, Stefan

    2016-01-01

    The consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra), a method that uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test datasets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation windows setups. For consistent evaluation we developed LFQbench, an R-package to calculate metrics of precision and accuracy in label-free quantitative MS, and report the identification performance, robustness and specificity of each software tool. Our reference datasets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics. PMID:27701404

  13. A multicenter study benchmarks software tools for label-free proteome quantification.

    PubMed

    Navarro, Pedro; Kuharev, Jörg; Gillet, Ludovic C; Bernhardt, Oliver M; MacLean, Brendan; Röst, Hannes L; Tate, Stephen A; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I; Aebersold, Ruedi; Tenzer, Stefan

    2016-11-01

    Consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH 2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from sequential window acquisition of all theoretical fragment-ion spectra (SWATH)-MS, which uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test data sets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation-window setups. For consistent evaluation, we developed LFQbench, an R package, to calculate metrics of precision and accuracy in label-free quantitative MS and report the identification performance, robustness and specificity of each software tool. Our reference data sets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics.

  14. Absolute Quantification of Middle- to High-Abundant Plasma Proteins via Targeted Proteomics.

    PubMed

    Dittrich, Julia; Ceglarek, Uta

    2017-01-01

    The increasing number of peptide and protein biomarker candidates requires expeditious and reliable quantification strategies. The utilization of liquid chromatography coupled to quadrupole tandem mass spectrometry (LC-MS/MS) for the absolute quantitation of plasma proteins and peptides facilitates the multiplexed verification of tens to hundreds of biomarkers from smallest sample quantities. Targeted proteomics assays derived from bottom-up proteomics principles rely on the identification and analysis of proteotypic peptides formed in an enzymatic digestion of the target protein. This protocol proposes a procedure for the establishment of a targeted absolute quantitation method for middle- to high-abundant plasma proteins waiving depletion or enrichment steps. Essential topics as proteotypic peptide identification and LC-MS/MS method development as well as sample preparation and calibration strategies are described in detail.

  15. Recent advances on multidimensional liquid chromatography-mass spectrometry for proteomics: from qualitative to quantitative analysis--a review.

    PubMed

    Wu, Qi; Yuan, Huiming; Zhang, Lihua; Zhang, Yukui

    2012-06-20

    With the acceleration of proteome research, increasing attention has been paid to multidimensional liquid chromatography-mass spectrometry (MDLC-MS) due to its high peak capacity and separation efficiency. Recently, many efforts have been put to improve MDLC-based strategies including "top-down" and "bottom-up" to enable highly sensitive qualitative and quantitative analysis of proteins, as well as accelerate the whole analytical procedure. Integrated platforms with combination of sample pretreatment, multidimensional separations and identification were also developed to achieve high throughput and sensitive detection of proteomes, facilitating highly accurate and reproducible quantification. This review summarized the recent advances of such techniques and their applications in qualitative and quantitative analysis of proteomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Systematic Comparison of Label-Free, Metabolic Labeling, and Isobaric Chemical Labeling for Quantitative Proteomics on LTQ Orbitrap Velos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhou; Adams, Rachel M; Chourey, Karuna

    2012-01-01

    A variety of quantitative proteomics methods have been developed, including label-free, metabolic labeling, and isobaric chemical labeling using iTRAQ or TMT. Here, these methods were compared in terms of the depth of proteome coverage, quantification accuracy, precision, and reproducibility using a high-performance hybrid mass spectrometer, LTQ Orbitrap Velos. Our results show that (1) the spectral counting method provides the deepest proteome coverage for identification, but its quantification performance is worse than labeling-based approaches, especially the quantification reproducibility; (2) metabolic labeling and isobaric chemical labeling are capable of accurate, precise, and reproducible quantification and provide deep proteome coverage for quantification. Isobaricmore » chemical labeling surpasses metabolic labeling in terms of quantification precision and reproducibility; (3) iTRAQ and TMT perform similarly in all aspects compared in the current study using a CID-HCD dual scan configuration. Based on the unique advantages of each method, we provide guidance for selection of the appropriate method for a quantitative proteomics study.« less

  17. Proteomics for understanding miRNA biology

    PubMed Central

    Huang, Tai-Chung; Pinto, Sneha M.; Pandey, Akhilesh

    2013-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in posttranscriptional regulation of gene expression. Mature miRNAs associate with the RNA interference silencing complex to repress mRNA translation and/or degrade mRNA transcripts. Mass spectrometry-based proteomics has enabled identification of several core components of the canonical miRNA processing pathway and their posttranslational modifications which are pivotal in miRNA regulatory mechanisms. The use of quantitative proteomic strategies has also emerged as a key technique for experimental identification of miRNA targets by allowing direct determination of proteins whose levels are altered because of translational suppression. This review focuses on the role of proteomics and labeling strategies to understand miRNA biology. PMID:23125164

  18. Computer aided manual validation of mass spectrometry-based proteomic data.

    PubMed

    Curran, Timothy G; Bryson, Bryan D; Reigelhaupt, Michael; Johnson, Hannah; White, Forest M

    2013-06-15

    Advances in mass spectrometry-based proteomic technologies have increased the speed of analysis and the depth provided by a single analysis. Computational tools to evaluate the accuracy of peptide identifications from these high-throughput analyses have not kept pace with technological advances; currently the most common quality evaluation methods are based on statistical analysis of the likelihood of false positive identifications in large-scale data sets. While helpful, these calculations do not consider the accuracy of each identification, thus creating a precarious situation for biologists relying on the data to inform experimental design. Manual validation is the gold standard approach to confirm accuracy of database identifications, but is extremely time-intensive. To palliate the increasing time required to manually validate large proteomic datasets, we provide computer aided manual validation software (CAMV) to expedite the process. Relevant spectra are collected, catalogued, and pre-labeled, allowing users to efficiently judge the quality of each identification and summarize applicable quantitative information. CAMV significantly reduces the burden associated with manual validation and will hopefully encourage broader adoption of manual validation in mass spectrometry-based proteomics. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform.

    PubMed

    Pan, Sheng; Rush, John; Peskind, Elaine R; Galasko, Douglas; Chung, Kathryn; Quinn, Joseph; Jankovic, Joseph; Leverenz, James B; Zabetian, Cyrus; Pan, Catherine; Wang, Yan; Oh, Jung Hun; Gao, Jean; Zhang, Jianpeng; Montine, Thomas; Zhang, Jing

    2008-02-01

    Targeted quantitative proteomics by mass spectrometry aims to selectively detect one or a panel of peptides/proteins in a complex sample and is particularly appealing for novel biomarker verification/validation because it does not require specific antibodies. Here, we demonstrated the application of targeted quantitative proteomics in searching, identifying, and quantifying selected peptides in human cerebrospinal spinal fluid (CSF) using a matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (MALDI TOF/TOF)-based platform. The approach involved two major components: the use of isotopic-labeled synthetic peptides as references for targeted identification and quantification and a highly selective mass spectrometric analysis based on the unique characteristics of the MALDI instrument. The platform provides high confidence for targeted peptide detection in a complex system and can potentially be developed into a high-throughput system. Using the liquid chromatography (LC) MALDI TOF/TOF platform and the complementary identification strategy, we were able to selectively identify and quantify a panel of targeted peptides in the whole proteome of CSF without prior depletion of abundant proteins. The effectiveness and robustness of the approach associated with different sample complexity, sample preparation strategies, as well as mass spectrometric quantification were evaluated. Other issues related to chromatography separation and the feasibility for high-throughput analysis were also discussed. Finally, we applied targeted quantitative proteomics to analyze a subset of previously identified candidate markers in CSF samples of patients with Parkinson's disease (PD) at different stages and Alzheimer's disease (AD) along with normal controls.

  20. Standardized protocols for quality control of MRM-based plasma proteomic workflows.

    PubMed

    Percy, Andrew J; Chambers, Andrew G; Smith, Derek S; Borchers, Christoph H

    2013-01-04

    Mass spectrometry (MS)-based proteomics is rapidly emerging as a viable technology for the identification and quantitation of biological samples, such as human plasma--the most complex yet commonly employed biofluid in clinical analyses. The transition from a qualitative to quantitative science is required if proteomics is going to successfully make the transition to a clinically useful technique. MS, however, has been criticized for a lack of reproducibility and interlaboratory transferability. Currently, the MS and plasma proteomics communities lack standardized protocols and reagents to ensure that high-quality quantitative data can be accurately and precisely reproduced by laboratories across the world using different MS technologies. Toward addressing this issue, we have developed standard protocols for multiple reaction monitoring (MRM)-based assays with customized isotopically labeled internal standards for quality control of the sample preparation workflow and the MS platform in quantitative plasma proteomic analyses. The development of reference standards and their application to a single MS platform is discussed herein, along with the results from intralaboratory tests. The tests highlighted the importance of the reference standards in assessing the efficiency and reproducibility of the entire bottom-up proteomic workflow and revealed errors related to the sample preparation and performance quality and deficits of the MS and LC systems. Such evaluations are necessary if MRM-based quantitative plasma proteomics is to be used in verifying and validating putative disease biomarkers across different research laboratories and eventually in clinical laboratories.

  1. Proteomics for understanding miRNA biology.

    PubMed

    Huang, Tai-Chung; Pinto, Sneha M; Pandey, Akhilesh

    2013-02-01

    MicroRNAs (miRNAs) are small noncoding RNAs that play important roles in posttranscriptional regulation of gene expression. Mature miRNAs associate with the RNA interference silencing complex to repress mRNA translation and/or degrade mRNA transcripts. Mass spectrometry-based proteomics has enabled identification of several core components of the canonical miRNA processing pathway and their posttranslational modifications which are pivotal in miRNA regulatory mechanisms. The use of quantitative proteomic strategies has also emerged as a key technique for experimental identification of miRNA targets by allowing direct determination of proteins whose levels are altered because of translational suppression. This review focuses on the role of proteomics and labeling strategies to understand miRNA biology. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Stable isotope dimethyl labelling for quantitative proteomics and beyond

    PubMed Central

    Hsu, Jue-Liang; Chen, Shu-Hui

    2016-01-01

    Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644970

  3. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification.

    PubMed

    Liu, Ming-Qi; Zeng, Wen-Feng; Fang, Pan; Cao, Wei-Qian; Liu, Chao; Yan, Guo-Quan; Zhang, Yang; Peng, Chao; Wu, Jian-Qiang; Zhang, Xiao-Jin; Tu, Hui-Jun; Chi, Hao; Sun, Rui-Xiang; Cao, Yong; Dong, Meng-Qiu; Jiang, Bi-Yun; Huang, Jiang-Ming; Shen, Hua-Li; Wong, Catherine C L; He, Si-Min; Yang, Peng-Yuan

    2017-09-05

    The precise and large-scale identification of intact glycopeptides is a critical step in glycoproteomics. Owing to the complexity of glycosylation, the current overall throughput, data quality and accessibility of intact glycopeptide identification lack behind those in routine proteomic analyses. Here, we propose a workflow for the precise high-throughput identification of intact N-glycopeptides at the proteome scale using stepped-energy fragmentation and a dedicated search engine. pGlyco 2.0 conducts comprehensive quality control including false discovery rate evaluation at all three levels of matches to glycans, peptides and glycopeptides, improving the current level of accuracy of intact glycopeptide identification. The N-glycoproteome of samples metabolically labeled with 15 N/ 13 C were analyzed quantitatively and utilized to validate the glycopeptide identification, which could be used as a novel benchmark pipeline to compare different search engines. Finally, we report a large-scale glycoproteome dataset consisting of 10,009 distinct site-specific N-glycans on 1988 glycosylation sites from 955 glycoproteins in five mouse tissues.Protein glycosylation is a heterogeneous post-translational modification that generates greater proteomic diversity that is difficult to analyze. Here the authors describe pGlyco 2.0, a workflow for the precise one step identification of intact N-glycopeptides at the proteome scale.

  4. Quantitative Molecular Phenotyping of Gill Remodeling in a Cichlid Fish Responding to Salinity Stress*

    PubMed Central

    Kültz, Dietmar; Li, Johnathon; Gardell, Alison; Sacchi, Romina

    2013-01-01

    A two-tiered label-free quantitative (LFQ) proteomics workflow was used to elucidate how salinity affects the molecular phenotype, i.e. proteome, of gills from a cichlid fish, the euryhaline tilapia (Oreochromis mossambicus). The workflow consists of initial global profiling of relative tryptic peptide abundances in treated versus control samples followed by targeted identification (by MS/MS) and quantitation (by chromatographic peak area integration) of validated peptides for each protein of interest. Fresh water acclimated tilapia were independently exposed in separate experiments to acute short-term (34 ppt) and gradual long-term (70 ppt, 90 ppt) salinity stress followed by molecular phenotyping of the gill proteome. The severity of salinity stress can be deduced with high technical reproducibility from the initial global label-free quantitative profiling step alone at both peptide and protein levels. However, an accurate regulation ratio can only be determined by targeted label-free quantitative profiling because not all peptides used for protein identification are also valid for quantitation. Of the three salinity challenges, gradual acclimation to 90 ppt has the most pronounced effect on gill molecular phenotype. Known salinity effects on tilapia gills, including an increase in the size and number of mitochondria-rich ionocytes, activities of specific ion transporters, and induction of specific molecular chaperones are reflected in the regulation of abundances of the corresponding proteins. Moreover, specific protein isoforms that are responsive to environmental salinity change are resolved and it is revealed that salinity effects on the mitochondrial proteome are nonuniform. Furthermore, protein NDRG1 has been identified as a novel key component of molecular phenotype restructuring during salinity-induced gill remodeling. In conclusion, besides confirming known effects of salinity on gills of euryhaline fish, molecular phenotyping reveals novel insight into proteome changes that underlie the remodeling of tilapia gill epithelium in response to environmental salinity change. PMID:24065692

  5. Quantitative trait loci mapping of the mouse plasma proteome (pQTL).

    PubMed

    Holdt, Lesca M; von Delft, Annette; Nicolaou, Alexandros; Baumann, Sven; Kostrzewa, Markus; Thiery, Joachim; Teupser, Daniel

    2013-02-01

    A current challenge in the era of genome-wide studies is to determine the responsible genes and mechanisms underlying newly identified loci. Screening of the plasma proteome by high-throughput mass spectrometry (MALDI-TOF MS) is considered a promising approach for identification of metabolic and disease processes. Therefore, plasma proteome screening might be particularly useful for identifying responsible genes when combined with analysis of variation in the genome. Here, we describe a proteomic quantitative trait locus (pQTL) study of plasma proteome screens in an F(2) intercross of 455 mice mapped with 177 genetic markers across the genome. A total of 69 of 176 peptides revealed significant LOD scores (≥5.35) demonstrating strong genetic regulation of distinct components of the plasma proteome. Analyses were confirmed by mechanistic studies and MALDI-TOF/TOF, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the two strongest pQTLs: A pQTL for mass-to-charge ratio (m/z) 3494 (LOD 24.9, D11Mit151) was identified as the N-terminal 35 amino acids of hemoglobin subunit A (Hba) and caused by genetic variation in Hba. Another pQTL for m/z 8713 (LOD 36.4; D1Mit111) was caused by variation in apolipoprotein A2 (Apoa2) and cosegregated with HDL cholesterol. Taken together, we show that genome-wide plasma proteome profiling in combination with genome-wide genetic screening aids in the identification of causal genetic variants affecting abundance of plasma proteins.

  6. Quantitative Trait Loci Mapping of the Mouse Plasma Proteome (pQTL)

    PubMed Central

    Holdt, Lesca M.; von Delft, Annette; Nicolaou, Alexandros; Baumann, Sven; Kostrzewa, Markus; Thiery, Joachim; Teupser, Daniel

    2013-01-01

    A current challenge in the era of genome-wide studies is to determine the responsible genes and mechanisms underlying newly identified loci. Screening of the plasma proteome by high-throughput mass spectrometry (MALDI-TOF MS) is considered a promising approach for identification of metabolic and disease processes. Therefore, plasma proteome screening might be particularly useful for identifying responsible genes when combined with analysis of variation in the genome. Here, we describe a proteomic quantitative trait locus (pQTL) study of plasma proteome screens in an F2 intercross of 455 mice mapped with 177 genetic markers across the genome. A total of 69 of 176 peptides revealed significant LOD scores (≥5.35) demonstrating strong genetic regulation of distinct components of the plasma proteome. Analyses were confirmed by mechanistic studies and MALDI-TOF/TOF, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the two strongest pQTLs: A pQTL for mass-to-charge ratio (m/z) 3494 (LOD 24.9, D11Mit151) was identified as the N-terminal 35 amino acids of hemoglobin subunit A (Hba) and caused by genetic variation in Hba. Another pQTL for m/z 8713 (LOD 36.4; D1Mit111) was caused by variation in apolipoprotein A2 (Apoa2) and cosegregated with HDL cholesterol. Taken together, we show that genome-wide plasma proteome profiling in combination with genome-wide genetic screening aids in the identification of causal genetic variants affecting abundance of plasma proteins. PMID:23172855

  7. UNiquant, a program for quantitative proteomics analysis using stable isotope labeling.

    PubMed

    Huang, Xin; Tolmachev, Aleksey V; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A; Smith, Richard D; Chan, Wing C; Hinrichs, Steven H; Fu, Kai; Ding, Shi-Jian

    2011-03-04

    Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for postmeasurement normalization of peptide ratios, which is required by the other programs.

  8. UNiquant, a Program for Quantitative Proteomics Analysis Using Stable Isotope Labeling

    PubMed Central

    Huang, Xin; Tolmachev, Aleksey V.; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A.; Smith, Richard D.; Chan, Wing C.; Hinrichs, Steven H.; Fu, Kai; Ding, Shi-Jian

    2011-01-01

    Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for post-measurement normalization of peptide ratios, which is required by the other programs. PMID:21158445

  9. Highly Reproducible Label Free Quantitative Proteomic Analysis of RNA Polymerase Complexes*

    PubMed Central

    Mosley, Amber L.; Sardiu, Mihaela E.; Pattenden, Samantha G.; Workman, Jerry L.; Florens, Laurence; Washburn, Michael P.

    2011-01-01

    The use of quantitative proteomics methods to study protein complexes has the potential to provide in-depth information on the abundance of different protein components as well as their modification state in various cellular conditions. To interrogate protein complex quantitation using shotgun proteomic methods, we have focused on the analysis of protein complexes using label-free multidimensional protein identification technology and studied the reproducibility of biological replicates. For these studies, we focused on three highly related and essential multi-protein enzymes, RNA polymerase I, II, and III from Saccharomyces cerevisiae. We found that label-free quantitation using spectral counting is highly reproducible at the protein and peptide level when analyzing RNA polymerase I, II, and III. In addition, we show that peptide sampling does not follow a random sampling model, and we show the need for advanced computational models to predict peptide detection probabilities. In order to address these issues, we used the APEX protocol to model the expected peptide detectability based on whole cell lysate acquired using the same multidimensional protein identification technology analysis used for the protein complexes. Neither method was able to predict the peptide sampling levels that we observed using replicate multidimensional protein identification technology analyses. In addition to the analysis of the RNA polymerase complexes, our analysis provides quantitative information about several RNAP associated proteins including the RNAPII elongation factor complexes DSIF and TFIIF. Our data shows that DSIF and TFIIF are the most highly enriched RNAP accessory factors in Rpb3-TAP purifications and demonstrate our ability to measure low level associated protein abundance across biological replicates. In addition, our quantitative data supports a model in which DSIF and TFIIF interact with RNAPII in a dynamic fashion in agreement with previously published reports. PMID:21048197

  10. An accurate proteomic quantification method: fluorescence labeling absolute quantification (FLAQ) using multidimensional liquid chromatography and tandem mass spectrometry.

    PubMed

    Liu, Junyan; Liu, Yang; Gao, Mingxia; Zhang, Xiangmin

    2012-08-01

    A facile proteomic quantification method, fluorescent labeling absolute quantification (FLAQ), was developed. Instead of using MS for quantification, the FLAQ method is a chromatography-based quantification in combination with MS for identification. Multidimensional liquid chromatography (MDLC) with laser-induced fluorescence (LIF) detection with high accuracy and tandem MS system were employed for FLAQ. Several requirements should be met for fluorescent labeling in MS identification: Labeling completeness, minimum side-reactions, simple MS spectra, and no extra tandem MS fragmentations for structure elucidations. A fluorescence dye, 5-iodoacetamidofluorescein, was finally chosen to label proteins on all cysteine residues. The fluorescent dye was compatible with the process of the trypsin digestion and MALDI MS identification. Quantitative labeling was achieved with optimization of reacting conditions. A synthesized peptide and model proteins, BSA (35 cysteines), OVA (five cysteines), were used for verifying the completeness of labeling. Proteins were separated through MDLC and quantified based on fluorescent intensities, followed by MS identification. High accuracy (RSD% < 1.58) and wide linearity of quantification (1-10(5) ) were achieved by LIF detection. The limit of quantitation for the model protein was as low as 0.34 amol. Parts of proteins in human liver proteome were quantified and demonstrated using FLAQ. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thermo-msf-parser: an open source Java library to parse and visualize Thermo Proteome Discoverer msf files.

    PubMed

    Colaert, Niklaas; Barsnes, Harald; Vaudel, Marc; Helsens, Kenny; Timmerman, Evy; Sickmann, Albert; Gevaert, Kris; Martens, Lennart

    2011-08-05

    The Thermo Proteome Discoverer program integrates both peptide identification and quantification into a single workflow for peptide-centric proteomics. Furthermore, its close integration with Thermo mass spectrometers has made it increasingly popular in the field. Here, we present a Java library to parse the msf files that constitute the output of Proteome Discoverer. The parser is also implemented as a graphical user interface allowing convenient access to the information found in the msf files, and in Rover, a program to analyze and validate quantitative proteomics information. All code, binaries, and documentation is freely available at http://thermo-msf-parser.googlecode.com.

  12. Guidelines for reporting quantitative mass spectrometry based experiments in proteomics.

    PubMed

    Martínez-Bartolomé, Salvador; Deutsch, Eric W; Binz, Pierre-Alain; Jones, Andrew R; Eisenacher, Martin; Mayer, Gerhard; Campos, Alex; Canals, Francesc; Bech-Serra, Joan-Josep; Carrascal, Montserrat; Gay, Marina; Paradela, Alberto; Navajas, Rosana; Marcilla, Miguel; Hernáez, María Luisa; Gutiérrez-Blázquez, María Dolores; Velarde, Luis Felipe Clemente; Aloria, Kerman; Beaskoetxea, Jabier; Medina-Aunon, J Alberto; Albar, Juan P

    2013-12-16

    Mass spectrometry is already a well-established protein identification tool and recent methodological and technological developments have also made possible the extraction of quantitative data of protein abundance in large-scale studies. Several strategies for absolute and relative quantitative proteomics and the statistical assessment of quantifications are possible, each having specific measurements and therefore, different data analysis workflows. The guidelines for Mass Spectrometry Quantification allow the description of a wide range of quantitative approaches, including labeled and label-free techniques and also targeted approaches such as Selected Reaction Monitoring (SRM). The HUPO Proteomics Standards Initiative (HUPO-PSI) has invested considerable efforts to improve the standardization of proteomics data handling, representation and sharing through the development of data standards, reporting guidelines, controlled vocabularies and tooling. In this manuscript, we describe a key output from the HUPO-PSI-namely the MIAPE Quant guidelines, which have developed in parallel with the corresponding data exchange format mzQuantML [1]. The MIAPE Quant guidelines describe the HUPO-PSI proposal concerning the minimum information to be reported when a quantitative data set, derived from mass spectrometry (MS), is submitted to a database or as supplementary information to a journal. The guidelines have been developed with input from a broad spectrum of stakeholders in the proteomics field to represent a true consensus view of the most important data types and metadata, required for a quantitative experiment to be analyzed critically or a data analysis pipeline to be reproduced. It is anticipated that they will influence or be directly adopted as part of journal guidelines for publication and by public proteomics databases and thus may have an impact on proteomics laboratories across the world. This article is part of a Special Issue entitled: Standardization and Quality Control. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Functional Module Search in Protein Networks based on Semantic Similarity Improves the Analysis of Proteomics Data*

    PubMed Central

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-01-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868

  14. Quantitative Proteomic Analysis of the Hfq-Regulon in Sinorhizobium meliloti 2011

    PubMed Central

    Sobrero, Patricio; Schlüter, Jan-Philip; Lanner, Ulrike; Schlosser, Andreas; Becker, Anke; Valverde, Claudio

    2012-01-01

    Riboregulation stands for RNA-based control of gene expression. In bacteria, small non-coding RNAs (sRNAs) are a major class of riboregulatory elements, most of which act at the post-transcriptional level by base-pairing target mRNA genes. The RNA chaperone Hfq facilitates antisense interactions between target mRNAs and regulatory sRNAs, thus influencing mRNA stability and/or translation rate. In the α-proteobacterium Sinorhizobium meliloti strain 2011, the identification and detection of multiple sRNAs genes and the broadly pleitropic phenotype associated to the absence of a functional Hfq protein both support the existence of riboregulatory circuits controlling gene expression to ensure the fitness of this bacterium in both free living and symbiotic conditions. In order to identify target mRNAs subject to Hfq-dependent riboregulation, we have compared the proteome of an hfq mutant and the wild type S. meliloti by quantitative proteomics following protein labelling with 15N. Among 2139 univocally identified proteins, a total of 195 proteins showed a differential abundance between the Hfq mutant and the wild type strain; 65 proteins accumulated ≥2-fold whereas 130 were downregulated (≤0.5-fold) in the absence of Hfq. This profound proteomic impact implies a major role for Hfq on regulation of diverse physiological processes in S. meliloti, from transport of small molecules to homeostasis of iron and nitrogen. Changes in the cellular levels of proteins involved in transport of nucleotides, peptides and amino acids, and in iron homeostasis, were confirmed with phenotypic assays. These results represent the first quantitative proteomic analysis in S. meliloti. The comparative analysis of the hfq mutant proteome allowed identification of novel strongly Hfq-regulated genes in S. meliloti. PMID:23119037

  15. Quantitative proteomic analysis of the Hfq-regulon in Sinorhizobium meliloti 2011.

    PubMed

    Sobrero, Patricio; Schlüter, Jan-Philip; Lanner, Ulrike; Schlosser, Andreas; Becker, Anke; Valverde, Claudio

    2012-01-01

    Riboregulation stands for RNA-based control of gene expression. In bacteria, small non-coding RNAs (sRNAs) are a major class of riboregulatory elements, most of which act at the post-transcriptional level by base-pairing target mRNA genes. The RNA chaperone Hfq facilitates antisense interactions between target mRNAs and regulatory sRNAs, thus influencing mRNA stability and/or translation rate. In the α-proteobacterium Sinorhizobium meliloti strain 2011, the identification and detection of multiple sRNAs genes and the broadly pleitropic phenotype associated to the absence of a functional Hfq protein both support the existence of riboregulatory circuits controlling gene expression to ensure the fitness of this bacterium in both free living and symbiotic conditions. In order to identify target mRNAs subject to Hfq-dependent riboregulation, we have compared the proteome of an hfq mutant and the wild type S. meliloti by quantitative proteomics following protein labelling with (15)N. Among 2139 univocally identified proteins, a total of 195 proteins showed a differential abundance between the Hfq mutant and the wild type strain; 65 proteins accumulated ≥2-fold whereas 130 were downregulated (≤0.5-fold) in the absence of Hfq. This profound proteomic impact implies a major role for Hfq on regulation of diverse physiological processes in S. meliloti, from transport of small molecules to homeostasis of iron and nitrogen. Changes in the cellular levels of proteins involved in transport of nucleotides, peptides and amino acids, and in iron homeostasis, were confirmed with phenotypic assays. These results represent the first quantitative proteomic analysis in S. meliloti. The comparative analysis of the hfq mutant proteome allowed identification of novel strongly Hfq-regulated genes in S. meliloti.

  16. Clinical veterinary proteomics: Techniques and approaches to decipher the animal plasma proteome.

    PubMed

    Ghodasara, P; Sadowski, P; Satake, N; Kopp, S; Mills, P C

    2017-12-01

    Over the last two decades, technological advancements in the field of proteomics have advanced our understanding of the complex biological systems of living organisms. Techniques based on mass spectrometry (MS) have emerged as powerful tools to contextualise existing genomic information and to create quantitative protein profiles from plasma, tissues or cell lines of various species. Proteomic approaches have been used increasingly in veterinary science to investigate biological processes responsible for growth, reproduction and pathological events. However, the adoption of proteomic approaches by veterinary investigators lags behind that of researchers in the human medical field. Furthermore, in contrast to human proteomics studies, interpretation of veterinary proteomic data is difficult due to the limited protein databases available for many animal species. This review article examines the current use of advanced proteomics techniques for evaluation of animal health and welfare and covers the current status of clinical veterinary proteomics research, including successful protein identification and data interpretation studies. It includes a description of an emerging tool, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS), available on selected mass spectrometry instruments. This newly developed data acquisition technique combines advantages of discovery and targeted proteomics approaches, and thus has the potential to advance the veterinary proteomics field by enhancing identification and reproducibility of proteomics data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Global Cell Proteome Profiling, Phospho-signaling and Quantitative 
Proteomics for Identification of New Biomarkers in Acute Myeloid 
Leukemia Patients

    PubMed Central

    Aasebø, Elise; Forthun, Rakel B.; Berven, Frode; Selheim, Frode; Hernandez-Valladares, Maria

    2016-01-01

    The identification of protein biomarkers for acute myeloid leukemia (AML) that could find applications in AML diagnosis and prognosis, treatment and the selection for bone marrow transplant requires substantial comparative analyses of the proteomes from AML patients. In the past years, several studies have suggested some biomarkers for AML diagnosis or AML classification using methods for sample preparation with low proteome coverage and low resolution mass spectrometers. However, most of the studies did not follow up, confirm or validate their candidates with more patient samples. Current proteomics methods, new high resolution and fast mass spectrometers allow the identification and quantification of several thousands of proteins obtained from few tens of μg of AML cell lysate. Enrichment methods for posttranslational modifications (PTM), such as phosphorylation, can isolate several thousands of site-specific phosphorylated peptides from AML patient samples, which subsequently can be quantified with high confidence in new mass spectrometers. While recent reports aiming to propose proteomic or phosphoproteomic biomarkers on the studied AML patient samples have taken advantage of the technological progress, the access to large cohorts of AML patients to sample from and the availability of appropriate control samples still remain challenging. PMID:26306748

  18. PANDA-view: An easy-to-use tool for statistical analysis and visualization of quantitative proteomics data.

    PubMed

    Chang, Cheng; Xu, Kaikun; Guo, Chaoping; Wang, Jinxia; Yan, Qi; Zhang, Jian; He, Fuchu; Zhu, Yunping

    2018-05-22

    Compared with the numerous software tools developed for identification and quantification of -omics data, there remains a lack of suitable tools for both downstream analysis and data visualization. To help researchers better understand the biological meanings in their -omics data, we present an easy-to-use tool, named PANDA-view, for both statistical analysis and visualization of quantitative proteomics data and other -omics data. PANDA-view contains various kinds of analysis methods such as normalization, missing value imputation, statistical tests, clustering and principal component analysis, as well as the most commonly-used data visualization methods including an interactive volcano plot. Additionally, it provides user-friendly interfaces for protein-peptide-spectrum representation of the quantitative proteomics data. PANDA-view is freely available at https://sourceforge.net/projects/panda-view/. 1987ccpacer@163.com and zhuyunping@gmail.com. Supplementary data are available at Bioinformatics online.

  19. A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification.

    PubMed

    Tu, Chengjian; Shen, Shichen; Sheng, Quanhu; Shyr, Yu; Qu, Jun

    2017-01-30

    Reliable quantification of low-abundance proteins in complex proteomes is challenging largely owing to the limited number of spectra/peptides identified. In this study we developed a straightforward method to improve the quantitative accuracy and precision of proteins by strategically retrieving the less confident peptides that were previously filtered out using the standard target-decoy search strategy. The filtered-out MS/MS spectra matched to confidently-identified proteins were recovered, and the peptide-spectrum-match FDR were re-calculated and controlled at a confident level of FDR≤1%, while protein FDR maintained at ~1%. We evaluated the performance of this strategy in both spectral count- and ion current-based methods. >60% increase of total quantified spectra/peptides was respectively achieved for analyzing a spike-in sample set and a public dataset from CPTAC. Incorporating the peptide retrieval strategy significantly improved the quantitative accuracy and precision, especially for low-abundance proteins (e.g. one-hit proteins). Moreover, the capacity of confidently discovering significantly-altered proteins was also enhanced substantially, as demonstrated with two spike-in datasets. In summary, improved quantitative performance was achieved by this peptide recovery strategy without compromising confidence of protein identification, which can be readily implemented in a broad range of quantitative proteomics techniques including label-free or labeling approaches. We hypothesize that more quantifiable spectra and peptides in a protein, even including less confident peptides, could help reduce variations and improve protein quantification. Hence the peptide retrieval strategy was developed and evaluated in two spike-in sample sets with different LC-MS/MS variations using both MS1- and MS2-based quantitative approach. The list of confidently identified proteins using the standard target-decoy search strategy was fixed and more spectra/peptides with less confidence matched to confident proteins were retrieved. However, the total peptide-spectrum-match false discovery rate (PSM FDR) after retrieval analysis was still controlled at a confident level of FDR≤1%. As expected, the penalty for occasionally incorporating incorrect peptide identifications is negligible by comparison with the improvements in quantitative performance. More quantifiable peptides, lower missing value rate, better quantitative accuracy and precision were significantly achieved for the same protein identifications by this simple strategy. This strategy is theoretically applicable for any quantitative approaches in proteomics and thereby provides more quantitative information, especially on low-abundance proteins. Published by Elsevier B.V.

  20. A tutorial for software development in quantitative proteomics using PSI standard formats☆

    PubMed Central

    Gonzalez-Galarza, Faviel F.; Qi, Da; Fan, Jun; Bessant, Conrad; Jones, Andrew R.

    2014-01-01

    The Human Proteome Organisation — Proteomics Standards Initiative (HUPO-PSI) has been working for ten years on the development of standardised formats that facilitate data sharing and public database deposition. In this article, we review three HUPO-PSI data standards — mzML, mzIdentML and mzQuantML, which can be used to design a complete quantitative analysis pipeline in mass spectrometry (MS)-based proteomics. In this tutorial, we briefly describe the content of each data model, sufficient for bioinformaticians to devise proteomics software. We also provide guidance on the use of recently released application programming interfaces (APIs) developed in Java for each of these standards, which makes it straightforward to read and write files of any size. We have produced a set of example Java classes and a basic graphical user interface to demonstrate how to use the most important parts of the PSI standards, available from http://code.google.com/p/psi-standard-formats-tutorial. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. PMID:23584085

  1. Mass Defect Labeling of Cysteine for Improving Peptide Assignment in Shotgun Proteomic Analyses

    PubMed Central

    Hernandez, Hilda; Niehauser, Sarah; Boltz, Stacey A.; Gawandi, Vijay; Phillips, Robert S.; Amster, I. Jonathan

    2006-01-01

    A method for improving the identification of peptides in a shotgun proteome analysis using accurate mass measurement has been developed. The improvement is based upon the derivatization of cysteine residues with a novel reagent, 2,4-dibromo-(2′-iodo)acetanilide. The derivitization changes the mass defect of cysteine-containing proteolytic peptides in a manner that increases their identification specificity. Peptide masses were measured using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron mass spectrometry. Reactions with protein standards show that the derivatization of cysteine is rapid and quantitative, and the data suggest that the derivatized peptides are more easily ionized or detected than unlabeled cysteine-containing peptides. The reagent was tested on a 15N-metabolically labeled proteome from M. maripaludis. Proteins were identified by their accurate mass values and from their nitrogen stoichiometry. A total of 47% of the labeled peptides are identified versus 27% for the unlabeled peptides. This procedure permits the identification of proteins from the M. maripaludis proteome that are not usually observed by the standard protocol and shows that better protein coverage is obtained with this methodology. PMID:16689545

  2. Trends in mass spectrometry instrumentation for proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Richard D.

    2002-12-01

    Mass spectrometry has become a primary tool for proteomics due to its capabilities for rapid and sensitive protein identification and quantitation. It is now possible to identify thousands of proteins from microgram sample quantities in a single day and to quantify relative protein abundances. However, the needs for increased capabilities for proteome measurements are immense and are now driving both new strategies and instrument advances. These developments include those based on integration with multi-dimensional liquid separations and high accuracy mass measurements, and promise more than order of magnitude improvements in sensitivity, dynamic range, and throughput for proteomic analyses in themore » near future.« less

  3. Mass spectrometry-based proteomics for translational research: a technical overview.

    PubMed

    Paulo, Joao A; Kadiyala, Vivek; Banks, Peter A; Steen, Hanno; Conwell, Darwin L

    2012-03-01

    Mass spectrometry-based investigation of clinical samples enables the high-throughput identification of protein biomarkers. We provide an overview of mass spectrometry-based proteomic techniques that are applicable to the investigation of clinical samples. We address sample collection, protein extraction and fractionation, mass spectrometry modalities, and quantitative proteomics. Finally, we examine the limitations and further potential of such technologies. Liquid chromatography fractionation coupled with tandem mass spectrometry is well suited to handle mixtures of hundreds or thousands of proteins. Mass spectrometry-based proteome elucidation can reveal potential biomarkers and aid in the development of hypotheses for downstream investigation of the molecular mechanisms of disease.

  4. Mass Spectrometry-Based Proteomics for Translational Research: A Technical Overview

    PubMed Central

    Paulo, Joao A.; Kadiyala, Vivek; Banks, Peter A.; Steen, Hanno; Conwell, Darwin L.

    2012-01-01

    Mass spectrometry-based investigation of clinical samples enables the high-throughput identification of protein biomarkers. We provide an overview of mass spectrometry-based proteomic techniques that are applicable to the investigation of clinical samples. We address sample collection, protein extraction and fractionation, mass spectrometry modalities, and quantitative proteomics. Finally, we examine the limitations and further potential of such technologies. Liquid chromatography fractionation coupled with tandem mass spectrometry is well suited to handle mixtures of hundreds or thousands of proteins. Mass spectrometry-based proteome elucidation can reveal potential biomarkers and aid in the development of hypotheses for downstream investigation of the molecular mechanisms of disease. PMID:22461744

  5. PROTICdb: a web-based application to store, track, query, and compare plant proteome data.

    PubMed

    Ferry-Dumazet, Hélène; Houel, Gwenn; Montalent, Pierre; Moreau, Luc; Langella, Olivier; Negroni, Luc; Vincent, Delphine; Lalanne, Céline; de Daruvar, Antoine; Plomion, Christophe; Zivy, Michel; Joets, Johann

    2005-05-01

    PROTICdb is a web-based application, mainly designed to store and analyze plant proteome data obtained by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and mass spectrometry (MS). The purposes of PROTICdb are (i) to store, track, and query information related to proteomic experiments, i.e., from tissue sampling to protein identification and quantitative measurements, and (ii) to integrate information from the user's own expertise and other sources into a knowledge base, used to support data interpretation (e.g., for the determination of allelic variants or products of post-translational modifications). Data insertion into the relational database of PROTICdb is achieved either by uploading outputs of image analysis and MS identification software, or by filling web forms. 2-D PAGE annotated maps can be displayed, queried, and compared through a graphical interface. Links to external databases are also available. Quantitative data can be easily exported in a tabulated format for statistical analyses. PROTICdb is based on the Oracle or the PostgreSQL Database Management System and is freely available upon request at the following URL: http://moulon.inra.fr/ bioinfo/PROTICdb.

  6. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity

    PubMed Central

    Barkla, Bronwyn J.

    2016-01-01

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised. PMID:28248236

  7. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity.

    PubMed

    Barkla, Bronwyn J

    2016-09-08

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised.

  8. Quantitation of heat-shock proteins in clinical samples using mass spectrometry.

    PubMed

    Kaur, Punit; Asea, Alexzander

    2011-01-01

    Mass spectrometry (MS) is a powerful analytical tool for proteomics research and drug and biomarker discovery. MS enables identification and quantification of known and unknown compounds by revealing their structural and chemical properties. Proper sample preparation for MS-based analysis is a critical step in the proteomics workflow because the quality and reproducibility of sample extraction and preparation for downstream analysis significantly impact the separation and identification capabilities of mass spectrometers. The highly expressed proteins represent potential biomarkers that could aid in diagnosis, therapy, or drug development. Because the proteome is so complex, there is no one standard method for preparing protein samples for MS analysis. Protocols differ depending on the type of sample, source, experiment, and method of analysis. Molecular chaperones play significant roles in almost all biological functions due to their capacity for detecting intracellular denatured/unfolded proteins, initiating refolding or denaturation of such malfolded protein sequences and more recently for their role in the extracellular milieu as chaperokines. In this chapter, we describe the latest techniques for quantitating the expression of molecular chaperones in human clinical samples.

  9. Quality Assessments of Long-Term Quantitative Proteomic Analysis of Breast Cancer Xenograft Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jian-Ying; Chen, Lijun; Zhang, Bai

    The identification of protein biomarkers requires large-scale analysis of human specimens to achieve statistical significance. In this study, we evaluated the long-term reproducibility of an iTRAQ (isobaric tags for relative and absolute quantification) based quantitative proteomics strategy using one channel for universal normalization across all samples. A total of 307 liquid chromatography tandem mass spectrometric (LC-MS/MS) analyses were completed, generating 107 one-dimensional (1D) LC-MS/MS datasets and 8 offline two-dimensional (2D) LC-MS/MS datasets (25 fractions for each set) for human-in-mouse breast cancer xenograft tissues representative of basal and luminal subtypes. Such large-scale studies require the implementation of robust metrics to assessmore » the contributions of technical and biological variability in the qualitative and quantitative data. Accordingly, we developed a quantification confidence score based on the quality of each peptide-spectrum match (PSM) to remove quantification outliers from each analysis. After combining confidence score filtering and statistical analysis, reproducible protein identification and quantitative results were achieved from LC-MS/MS datasets collected over a 16 month period.« less

  10. Quantitative Clinical Chemistry Proteomics (qCCP) using mass spectrometry: general characteristics and application.

    PubMed

    Lehmann, Sylvain; Hoofnagle, Andrew; Hochstrasser, Denis; Brede, Cato; Glueckmann, Matthias; Cocho, José A; Ceglarek, Uta; Lenz, Christof; Vialaret, Jérôme; Scherl, Alexander; Hirtz, Christophe

    2013-05-01

    Proteomics studies typically aim to exhaustively detect peptides/proteins in a given biological sample. Over the past decade, the number of publications using proteomics methodologies has exploded. This was made possible due to the availability of high-quality genomic data and many technological advances in the fields of microfluidics and mass spectrometry. Proteomics in biomedical research was initially used in 'functional' studies for the identification of proteins involved in pathophysiological processes, complexes and networks. Improved sensitivity of instrumentation facilitated the analysis of even more complex sample types, including human biological fluids. It is at that point the field of clinical proteomics was born, and its fundamental aim was the discovery and (ideally) validation of biomarkers for the diagnosis, prognosis, or therapeutic monitoring of disease. Eventually, it was recognized that the technologies used in clinical proteomics studies [particularly liquid chromatography-tandem mass spectrometry (LC-MS/MS)] could represent an alternative to classical immunochemical assays. Prior to deploying MS in the measurement of peptides/proteins in the clinical laboratory, it seems likely that traditional proteomics workflows and data management systems will need to adapt to the clinical environment and meet in vitro diagnostic (IVD) regulatory constraints. This defines a new field, as reviewed in this article, that we have termed quantitative Clinical Chemistry Proteomics (qCCP).

  11. Reproducibility of combinatorial peptide ligand libraries for proteome capture evaluated by selected reaction monitoring.

    PubMed

    Di Girolamo, Francesco; Righetti, Pier Giorgio; Soste, Martin; Feng, Yuehan; Picotti, Paola

    2013-08-26

    Systems biology studies require the capability to quantify with high precision proteins spanning a broad range of abundances across multiple samples. However, the broad range of protein expression in cells often precludes the detection of low-abundance proteins. Different sample processing techniques can be applied to increase proteome coverage. Among these, combinatorial (hexa)peptide ligand libraries (CPLLs) bound to solid matrices have been used to specifically capture and detect low-abundance proteins in complex samples. To assess whether CPLL capture can be applied in systems biology studies involving the precise quantitation of proteins across a multitude of samples, we evaluated its performance across the whole range of protein abundances in Saccharomyces cerevisiae. We used selected reaction monitoring assays for a set of target proteins covering a broad abundance range to quantitatively evaluate the precision of the approach and its capability to detect low-abundance proteins. Replicated CPLL-isolates showed an average variability of ~10% in the amount of the isolated proteins. The high reproducibility of the technique was not dependent on the abundance of the protein or the amount of beads used for the capture. However, the protein-to-bead ratio affected the enrichment of specific proteins. We did not observe a normalization effect of CPLL beads on protein abundances. However, CPLLs enriched for and depleted specific sets of proteins and thus changed the abundances of proteins from a whole proteome extract. This allowed the identification of ~400 proteins otherwise undetected in an untreated sample, under the experimental conditions used. CPLL capture is thus a useful tool to increase protein identifications in proteomic experiments, but it should be coupled to the analysis of untreated samples, to maximize proteome coverage. Our data also confirms that CPLL capture is reproducible and can be confidently used in quantitative proteomic experiments. Combinatorial hexapeptide ligand libraries (CPLLs) bound to solid matrices have been proposed to specifically capture and detect low-abundance proteins in complex samples. To assess whether the CPLL capture can be confidently applied in systems biology studies involving the precise quantitation of proteins across a broad range of abundances and a multitude of samples, we evaluated its reproducibility and performance features. Using selected reaction monitoring assays for proteins covering the whole range of abundances we show that the technique is reproducible and compatible with quantitative proteomic studies. However, the protein-to-bead ratio affects the enrichment of specific proteins and CPLLs depleted specific sets of proteins from a whole proteome extract. Our results suggest that CPLL-based analyses should be coupled to the analysis of untreated samples, to maximize proteome coverage. Overall, our data confirms the applicability of CPLLs in systems biology research and guides the correct use of this technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Analytical performance of reciprocal isotope labeling of proteome digests for quantitative proteomics and its application for comparative studies of aerobic and anaerobic Escherichia coli proteomes.

    PubMed

    Lo, Andy; Weiner, Joel H; Li, Liang

    2013-09-17

    Due to limited sample amounts, instrument time considerations, and reagent costs, only a small number of replicate experiments are typically performed for quantitative proteome analyses. Generation of reproducible data that can be readily assessed for consistency within a small number of datasets is critical for accurate quantification. We report our investigation of a strategy using reciprocal isotope labeling of two comparative samples as a tool for determining proteome changes. Reciprocal labeling was evaluated to determine the internal consistency of quantified proteome changes from Escherichia coli grown under aerobic and anaerobic conditions. Qualitatively, the peptide overlap between replicate analyses of the same sample and reverse labeled samples were found to be within 8%. Quantitatively, reciprocal analyses showed only a slight increase in average overall inconsistency when compared with replicate analyses (1.29 vs. 1.24-fold difference). Most importantly, reverse labeling was successfully used to identify spurious values resulting from incorrect peptide identifications and poor peak fitting. After removal of 5% of the peptide data with low reproducibility, a total of 275 differentially expressed proteins (>1.50-fold difference) were consistently identified and were then subjected to bioinformatics analysis. General considerations and guidelines for reciprocal labeling experimental design and biological significance of obtained results are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Respiratory Proteomics Today: Are Technological Advances for the Identification of Biomarker Signatures Catching up with Their Promise? A Critical Review of the Literature in the Decade 2004-2013.

    PubMed

    Viglio, Simona; Stolk, Jan; Iadarola, Paolo; Giuliano, Serena; Luisetti, Maurizio; Salvini, Roberta; Fumagalli, Marco; Bardoni, Anna

    2014-01-22

    To improve the knowledge on a variety of severe disorders, research has moved from the analysis of individual proteins to the investigation of all proteins expressed by a tissue/organism. This global proteomic approach could prove very useful: (i) for investigating the biochemical pathways involved in disease; (ii) for generating hypotheses; or (iii) as a tool for the identification of proteins differentially expressed in response to the disease state. Proteomics has not been used yet in the field of respiratory research as extensively as in other fields, only a few reproducible and clinically applicable molecular markers, which can assist in diagnosis, having been currently identified. The continuous advances in both instrumentation and methodology, which enable sensitive and quantitative proteomic analyses in much smaller amounts of biological material than before, will hopefully promote the identification of new candidate biomarkers in this area. The aim of this report is to critically review the application over the decade 2004-2013 of very sophisticated technologies to the study of respiratory disorders. The observed changes in protein expression profiles from tissues/fluids of patients affected by pulmonary disorders opens the route for the identification of novel pathological mediators of these disorders.

  14. Label-free protein profiling of formalin-fixed paraffin-embedded (FFPE) heart tissue reveals immediate mitochondrial impairment after ionising radiation.

    PubMed

    Azimzadeh, Omid; Scherthan, Harry; Yentrapalli, Ramesh; Barjaktarovic, Zarko; Ueffing, Marius; Conrad, Marcus; Neff, Frauke; Calzada-Wack, Julia; Aubele, Michaela; Buske, Christian; Atkinson, Michael J; Hauck, Stefanie M; Tapio, Soile

    2012-04-18

    Qualitative proteome profiling of formalin-fixed, paraffin-embedded (FFPE) tissue is advancing the field of clinical proteomics. However, quantitative proteome analysis of FFPE tissue is hampered by the lack of an efficient labelling method. The usage of conventional protein labelling on FFPE tissue has turned out to be inefficient. Classical labelling targets lysine residues that are blocked by the formalin treatment. The aim of this study was to establish a quantitative proteomics analysis of FFPE tissue by combining the label-free approach with optimised protein extraction and separation conditions. As a model system we used FFPE heart tissue of control and exposed C57BL/6 mice after total body irradiation using a gamma ray dose of 3 gray. We identified 32 deregulated proteins (p≤0.05) in irradiated hearts 24h after the exposure. The proteomics data were further evaluated and validated by bioinformatics and immunoblotting investigation. In good agreement with our previous results using fresh-frozen tissue, the analysis indicated radiation-induced alterations in three main biological pathways: respiratory chain, lipid metabolism and pyruvate metabolism. The label-free approach enables the quantitative measurement of radiation-induced alterations in FFPE tissue and facilitates retrospective biomarker identification using clinical archives. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Mass spectrometry data from label-free quantitative proteomic analysis of harmless and pathogenic strains of infectious microalgae, Prototheca spp.

    PubMed

    Murugaiyan, Jayaseelan; Eravci, Murat; Weise, Christoph; Roesler, Uwe

    2017-06-01

    Here, we provide the dataset associated with our research article 'label-free quantitative proteomic analysis of harmless and pathogenic strains of infectious microalgae, Prototheca spp.' (Murugaiyan et al., 2017) [1]. This dataset describes liquid chromatography-mass spectrometry (LC-MS)-based protein identification and quantification of a non-infectious strain, Prototheca zopfii genotype 1 and two strains associated with severe and mild infections, respectively, P. zopfii genotype 2 and Prototheca blaschkeae . Protein identification and label-free quantification was carried out by analysing MS raw data using the MaxQuant-Andromeda software suit. The expressional level differences of the identified proteins among the strains were computed using Perseus software and the results were presented in [1]. This DiB provides the MaxQuant output file and raw data deposited in the PRIDE repository with the dataset identifier PXD005305.

  16. Protein identification and quantification from riverbank grape, Vitis riparia: Comparing SDS-PAGE and FASP-GPF techniques for shotgun proteomic analysis.

    PubMed

    George, Iniga S; Fennell, Anne Y; Haynes, Paul A

    2015-09-01

    Protein sample preparation optimisation is critical for establishing reproducible high throughput proteomic analysis. In this study, two different fractionation sample preparation techniques (in-gel digestion and in-solution digestion) for shotgun proteomics were used to quantitatively compare proteins identified in Vitis riparia leaf samples. The total number of proteins and peptides identified were compared between filter aided sample preparation (FASP) coupled with gas phase fractionation (GPF) and SDS-PAGE methods. There was a 24% increase in the total number of reproducibly identified proteins when FASP-GPF was used. FASP-GPF is more reproducible, less expensive and a better method than SDS-PAGE for shotgun proteomics of grapevine samples as it significantly increases protein identification across biological replicates. Total peptide and protein information from the two fractionation techniques is available in PRIDE with the identifier PXD001399 (http://proteomecentral.proteomexchange.org/dataset/PXD001399). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantitative proteome analysis of barley seeds using ruthenium(II)-tris-(bathophenanthroline-disulphonate) staining.

    PubMed

    Witzel, Katja; Surabhi, Giridara-Kumar; Jyothsnakumari, Gottimukkala; Sudhakar, Chinta; Matros, Andrea; Mock, Hans-Peter

    2007-04-01

    This paper describes the application of the recently introduced fluorescence stain Ruthenium(II)-tris-(bathophenanthroline-disulphonate) (RuBP) on a comparative proteome analysis of two phenotypically different barley lines. We carried out an analysis of protein patterns from 2-D gels of the parental lines of the Oregon Wolfe Barley mapping population DOM and REC and stained with either the conventional colloidal Coomassie Brilliant Blue (cCBB) or with the novel RuBP solution. We wished to experimentally verify the usefulness of such a stain in evaluating the complex pattern of a seed proteome, in comparison to the previously used cCBB staining technique. To validate the efficiency of visualization by both stains, we first compared the overall number of detected protein spots. On average, 790 spots were visible by cCBB staining and 1200 spots by RuBP staining. Then, the intensity of a set of spots was assessed, and changes in relative abundance were determined using image analysis software. As expected, staining with RuBP performed better in quantitation in terms of sensitivity and dynamic range. Furthermore, spots from a cultivar-specific region in the protein map were chosen for identification to asses the gain of biological information due to the staining procedure. From this particular region, eight spots were visualized exclusively by RuBP and identification was successful for all spots, proving the ability to identify even very low abundant proteins. Performance in MS analysis was comparable for both protein stains. Proteins were identified by MALDI-TOF MS peptide mass fingerprinting. This approach was not successful for all spots, due to the restricted entry number for barley in the database. Therefore, we subsequently used LC-ESI-Q-TOF MS/MS and de novo sequencing for identification. Because only an insufficient number of proteins from barley is annotated, an EST-based identification strategy was chosen for our experiment. We wished to test whether under these limitations the application of a more sensitive stain would lead to a more advanced proteome approach. In summary, we demonstrate here that the application of RuBP as an economical but reliable and sensitive fluorescence stain is highly suitable for quantitative proteome analysis of plant seeds.

  18. Quantitative Proteomics Identifies Activation of Hallmark Pathways of Cancer in Patient Melanoma.

    PubMed

    Byrum, Stephanie D; Larson, Signe K; Avaritt, Nathan L; Moreland, Linley E; Mackintosh, Samuel G; Cheung, Wang L; Tackett, Alan J

    2013-03-01

    Molecular pathways regulating melanoma initiation and progression are potential targets of therapeutic development for this aggressive cancer. Identification and molecular analysis of these pathways in patients has been primarily restricted to targeted studies on individual proteins. Here, we report the most comprehensive analysis of formalin-fixed paraffin-embedded human melanoma tissues using quantitative proteomics. From 61 patient samples, we identified 171 proteins varying in abundance among benign nevi, primary melanoma, and metastatic melanoma. Seventy-three percent of these proteins were validated by immunohistochemistry staining of malignant melanoma tissues from the Human Protein Atlas database. Our results reveal that molecular pathways involved with tumor cell proliferation, motility, and apoptosis are mis-regulated in melanoma. These data provide the most comprehensive proteome resource on patient melanoma and reveal insight into the molecular mechanisms driving melanoma progression.

  19. A New Algorithm Using Cross-Assignment for Label-Free Quantitation with LC/LTQ-FT MS

    PubMed Central

    Andreev, Victor P.; Li, Lingyun; Cao, Lei; Gu, Ye; Rejtar, Tomas; Wu, Shiaw-Lin; Karger, Barry L.

    2008-01-01

    A new algorithm is described for label-free quantitation of relative protein abundances across multiple complex proteomic samples. Q-MEND is based on the denoising and peak picking algorithm, MEND, previously developed in our laboratory. Q-MEND takes advantage of the high resolution and mass accuracy of the hybrid LTQFT MS mass spectrometer (or other high resolution mass spectrometers, such as a Q-TOF MS). The strategy, termed “cross-assignment”, is introduced to increase substantially the number of quantitated proteins. In this approach, all MS/MS identifications for the set of analyzed samples are combined into a master ID list, and then each LC/MS run is searched for the features that can be assigned to a specific identification from that master list. The reliability of quantitation is enhanced by quantitating separately all peptide charge states, along with a scoring procedure to filter out less reliable peptide abundance measurements. The effectiveness of Q-MEND is illustrated in the relative quantitative analysis of E.coli samples spiked with known amounts of non-E.coli protein digests. A mean quantitation accuracy of 7% and mean precision of 15% is demonstrated. Q-MEND can perform relative quantitation of a set of LC/MS datasets without manual intervention and can generate files compatible with the Guidelines for Proteomic Data Publication. PMID:17441747

  20. A new algorithm using cross-assignment for label-free quantitation with LC-LTQ-FT MS.

    PubMed

    Andreev, Victor P; Li, Lingyun; Cao, Lei; Gu, Ye; Rejtar, Tomas; Wu, Shiaw-Lin; Karger, Barry L

    2007-06-01

    A new algorithm is described for label-free quantitation of relative protein abundances across multiple complex proteomic samples. Q-MEND is based on the denoising and peak picking algorithm, MEND, previously developed in our laboratory. Q-MEND takes advantage of the high resolution and mass accuracy of the hybrid LTQ-FT MS mass spectrometer (or other high-resolution mass spectrometers, such as a Q-TOF MS). The strategy, termed "cross-assignment", is introduced to increase substantially the number of quantitated proteins. In this approach, all MS/MS identifications for the set of analyzed samples are combined into a master ID list, and then each LC-MS run is searched for the features that can be assigned to a specific identification from that master list. The reliability of quantitation is enhanced by quantitating separately all peptide charge states, along with a scoring procedure to filter out less reliable peptide abundance measurements. The effectiveness of Q-MEND is illustrated in the relative quantitative analysis of Escherichia coli samples spiked with known amounts of non-E. coli protein digests. A mean quantitation accuracy of 7% and mean precision of 15% is demonstrated. Q-MEND can perform relative quantitation of a set of LC-MS data sets without manual intervention and can generate files compatible with the Guidelines for Proteomic Data Publication.

  1. Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines.

    PubMed

    Vester, Diana; Rapp, Erdmann; Gade, Dörte; Genzel, Yvonne; Reichl, Udo

    2009-06-01

    Over the last years virus-host cell interactions were investigated in numerous studies. Viral strategies for evasion of innate immune response, inhibition of cellular protein synthesis and permission of viral RNA and protein production were disclosed. With quantitative proteome technology, comprehensive studies concerning the impact of viruses on the cellular machinery of their host cells at protein level are possible. Therefore, 2-D DIGE and nanoHPLC-nanoESI-MS/MS analysis were used to qualitatively and quantitatively determine the dynamic cellular proteome responses of two mammalian cell lines to human influenza A virus infection. A cell line used for vaccine production (MDCK) was compared with a human lung carcinoma cell line (A549) as a reference model. Analyzing 2-D gels of the proteomes of uninfected and influenza-infected host cells, 16 quantitatively altered protein spots (at least +/-1.7-fold change in relative abundance, p<0.001) were identified for both cell lines. Most significant changes were found for keratins, major components of the cytoskeleton system, and for Mx proteins, interferon-induced key components of the host cell defense. Time series analysis of infection processes allowed the identification of further proteins that are described to be involved in protein synthesis, signal transduction and apoptosis events. Most likely, these proteins are required for supporting functions during influenza viral life cycle or host cell stress response. Quantitative proteome-wide profiling of virus infection can provide insights into complexity and dynamics of virus-host cell interactions and may accelerate antiviral research and support optimization of vaccine manufacturing processes.

  2. COMPASS: a suite of pre- and post-search proteomics software tools for OMSSA

    PubMed Central

    Wenger, Craig D.; Phanstiel, Douglas H.; Lee, M. Violet; Bailey, Derek J.; Coon, Joshua J.

    2011-01-01

    Here we present the Coon OMSSA Proteomic Analysis Software Suite (COMPASS): a free and open-source software pipeline for high-throughput analysis of proteomics data, designed around the Open Mass Spectrometry Search Algorithm. We detail a synergistic set of tools for protein database generation, spectral reduction, peptide false discovery rate analysis, peptide quantitation via isobaric labeling, protein parsimony and protein false discovery rate analysis, and protein quantitation. We strive for maximum ease of use, utilizing graphical user interfaces and working with data files in the original instrument vendor format. Results are stored in plain text comma-separated values files, which are easy to view and manipulate with a text editor or spreadsheet program. We illustrate the operation and efficacy of COMPASS through the use of two LC–MS/MS datasets. The first is a dataset of a highly annotated mixture of standard proteins and manually validated contaminants that exhibits the identification workflow. The second is a dataset of yeast peptides, labeled with isobaric stable isotope tags and mixed in known ratios, to demonstrate the quantitative workflow. For these two datasets, COMPASS performs equivalently or better than the current de facto standard, the Trans-Proteomic Pipeline. PMID:21298793

  3. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology.

    PubMed

    von Bergen, Martin; Jehmlich, Nico; Taubert, Martin; Vogt, Carsten; Bastida, Felipe; Herbst, Florian-Alexander; Schmidt, Frank; Richnow, Hans-Hermann; Seifert, Jana

    2013-10-01

    The recent development of metaproteomics has enabled the direct identification and quantification of expressed proteins from microbial communities in situ, without the need for microbial enrichment. This became possible by (1) significant increases in quality and quantity of metagenome data and by improvements of (2) accuracy and (3) sensitivity of modern mass spectrometers (MS). The identification of physiologically relevant enzymes can help to understand the role of specific species within a community or an ecological niche. Beside identification, relative and absolute quantitation is also crucial. We will review label-free and label-based methods of quantitation in MS-based proteome analysis and the contribution of quantitative proteome data to microbial ecology. Additionally, approaches of protein-based stable isotope probing (protein-SIP) for deciphering community structures are reviewed. Information on the species-specific metabolic activity can be obtained when substrates or nutrients are labeled with stable isotopes in a protein-SIP approach. The stable isotopes ((13)C, (15)N, (36)S) are incorporated into proteins and the rate of incorporation can be used for assessing the metabolic activity of the corresponding species. We will focus on the relevance of the metabolic and phylogenetic information retrieved with protein-SIP studies and for detecting and quantifying the carbon flux within microbial consortia. Furthermore, the combination of protein-SIP with established tools in microbial ecology such as other stable isotope probing techniques are discussed.

  4. Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer

    PubMed Central

    Kim, Yunee; Jeon, Jouhyun; Mejia, Salvador; Yao, Cindy Q; Ignatchenko, Vladimir; Nyalwidhe, Julius O; Gramolini, Anthony O; Lance, Raymond S; Troyer, Dean A; Drake, Richard R; Boutros, Paul C; Semmes, O. John; Kislinger, Thomas

    2016-01-01

    Biomarkers are rapidly gaining importance in personalized medicine. Although numerous molecular signatures have been developed over the past decade, there is a lack of overlap and many biomarkers fail to validate in independent patient cohorts and hence are not useful for clinical application. For these reasons, identification of novel and robust biomarkers remains a formidable challenge. We combine targeted proteomics with computational biology to discover robust proteomic signatures for prostate cancer. Quantitative proteomics conducted in expressed prostatic secretions from men with extraprostatic and organ-confined prostate cancers identified 133 differentially expressed proteins. Using synthetic peptides, we evaluate them by targeted proteomics in a 74-patient cohort of expressed prostatic secretions in urine. We quantify a panel of 34 candidates in an independent 207-patient cohort. We apply machine-learning approaches to develop clinical predictive models for prostate cancer diagnosis and prognosis. Our results demonstrate that computationally guided proteomics can discover highly accurate non-invasive biomarkers. PMID:27350604

  5. Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics

    PubMed Central

    Brusniak, Mi-Youn; Bodenmiller, Bernd; Campbell, David; Cooke, Kelly; Eddes, James; Garbutt, Andrew; Lau, Hollis; Letarte, Simon; Mueller, Lukas N; Sharma, Vagisha; Vitek, Olga; Zhang, Ning; Aebersold, Ruedi; Watts, Julian D

    2008-01-01

    Background Quantitative proteomics holds great promise for identifying proteins that are differentially abundant between populations representing different physiological or disease states. A range of computational tools is now available for both isotopically labeled and label-free liquid chromatography mass spectrometry (LC-MS) based quantitative proteomics. However, they are generally not comparable to each other in terms of functionality, user interfaces, information input/output, and do not readily facilitate appropriate statistical data analysis. These limitations, along with the array of choices, present a daunting prospect for biologists, and other researchers not trained in bioinformatics, who wish to use LC-MS-based quantitative proteomics. Results We have developed Corra, a computational framework and tools for discovery-based LC-MS proteomics. Corra extends and adapts existing algorithms used for LC-MS-based proteomics, and statistical algorithms, originally developed for microarray data analyses, appropriate for LC-MS data analysis. Corra also adapts software engineering technologies (e.g. Google Web Toolkit, distributed processing) so that computationally intense data processing and statistical analyses can run on a remote server, while the user controls and manages the process from their own computer via a simple web interface. Corra also allows the user to output significantly differentially abundant LC-MS-detected peptide features in a form compatible with subsequent sequence identification via tandem mass spectrometry (MS/MS). We present two case studies to illustrate the application of Corra to commonly performed LC-MS-based biological workflows: a pilot biomarker discovery study of glycoproteins isolated from human plasma samples relevant to type 2 diabetes, and a study in yeast to identify in vivo targets of the protein kinase Ark1 via phosphopeptide profiling. Conclusion The Corra computational framework leverages computational innovation to enable biologists or other researchers to process, analyze and visualize LC-MS data with what would otherwise be a complex and not user-friendly suite of tools. Corra enables appropriate statistical analyses, with controlled false-discovery rates, ultimately to inform subsequent targeted identification of differentially abundant peptides by MS/MS. For the user not trained in bioinformatics, Corra represents a complete, customizable, free and open source computational platform enabling LC-MS-based proteomic workflows, and as such, addresses an unmet need in the LC-MS proteomics field. PMID:19087345

  6. Performance Metrics for Liquid Chromatography-Tandem Mass Spectrometry Systems in Proteomics Analyses*

    PubMed Central

    Rudnick, Paul A.; Clauser, Karl R.; Kilpatrick, Lisa E.; Tchekhovskoi, Dmitrii V.; Neta, Pedatsur; Blonder, Nikša; Billheimer, Dean D.; Blackman, Ronald K.; Bunk, David M.; Cardasis, Helene L.; Ham, Amy-Joan L.; Jaffe, Jacob D.; Kinsinger, Christopher R.; Mesri, Mehdi; Neubert, Thomas A.; Schilling, Birgit; Tabb, David L.; Tegeler, Tony J.; Vega-Montoto, Lorenzo; Variyath, Asokan Mulayath; Wang, Mu; Wang, Pei; Whiteaker, Jeffrey R.; Zimmerman, Lisa J.; Carr, Steven A.; Fisher, Susan J.; Gibson, Bradford W.; Paulovich, Amanda G.; Regnier, Fred E.; Rodriguez, Henry; Spiegelman, Cliff; Tempst, Paul; Liebler, Daniel C.; Stein, Stephen E.

    2010-01-01

    A major unmet need in LC-MS/MS-based proteomics analyses is a set of tools for quantitative assessment of system performance and evaluation of technical variability. Here we describe 46 system performance metrics for monitoring chromatographic performance, electrospray source stability, MS1 and MS2 signals, dynamic sampling of ions for MS/MS, and peptide identification. Applied to data sets from replicate LC-MS/MS analyses, these metrics displayed consistent, reasonable responses to controlled perturbations. The metrics typically displayed variations less than 10% and thus can reveal even subtle differences in performance of system components. Analyses of data from interlaboratory studies conducted under a common standard operating procedure identified outlier data and provided clues to specific causes. Moreover, interlaboratory variation reflected by the metrics indicates which system components vary the most between laboratories. Application of these metrics enables rational, quantitative quality assessment for proteomics and other LC-MS/MS analytical applications. PMID:19837981

  7. Comprehensive and Quantitative Proteomic Analysis of Metamorphosis-Related Proteins in the Veined Rapa Whelk, Rapana venosa.

    PubMed

    Song, Hao; Wang, Hai-Yan; Zhang, Tao

    2016-06-15

    Larval metamorphosis of the veined rapa whelk (Rapana venosa) is a pelagic to benthic transition that involves considerable structural and physiological changes. Because metamorphosis plays a pivotal role in R. venosa commercial breeding and natural populations, the endogenous proteins that drive this transition attract considerable interest. This study is the first to perform a comprehensive and quantitative proteomic analysis related to metamorphosis in a marine gastropod. We analyzed the proteomes of competent R. venosa larvae and post-larvae, resulting in the identification of 5312 proteins, including 470 that were downregulated and 668 that were upregulated after metamorphosis. The differentially expressed proteins reflected multiple processes involved in metamorphosis, including cytoskeleton and cell adhesion, ingestion and digestion, stress response and immunity, as well as specific tissue development. Our data improve understanding of the physiological traits controlling R. venosa metamorphosis and provide a solid basis for further study.

  8. Data Independent Acquisition analysis in ProHits 4.0.

    PubMed

    Liu, Guomin; Knight, James D R; Zhang, Jian Ping; Tsou, Chih-Chiang; Wang, Jian; Lambert, Jean-Philippe; Larsen, Brett; Tyers, Mike; Raught, Brian; Bandeira, Nuno; Nesvizhskii, Alexey I; Choi, Hyungwon; Gingras, Anne-Claude

    2016-10-21

    Affinity purification coupled with mass spectrometry (AP-MS) is a powerful technique for the identification and quantification of physical interactions. AP-MS requires careful experimental design, appropriate control selection and quantitative workflows to successfully identify bona fide interactors amongst a large background of contaminants. We previously introduced ProHits, a Laboratory Information Management System for interaction proteomics, which tracks all samples in a mass spectrometry facility, initiates database searches and provides visualization tools for spectral counting-based AP-MS approaches. More recently, we implemented Significance Analysis of INTeractome (SAINT) within ProHits to provide scoring of interactions based on spectral counts. Here, we provide an update to ProHits to support Data Independent Acquisition (DIA) with identification software (DIA-Umpire and MSPLIT-DIA), quantification tools (through DIA-Umpire, or externally via targeted extraction), and assessment of quantitative enrichment (through mapDIA) and scoring of interactions (through SAINT-intensity). With additional improvements, notably support of the iProphet pipeline, facilitated deposition into ProteomeXchange repositories and enhanced export and viewing functions, ProHits 4.0 offers a comprehensive suite of tools to facilitate affinity proteomics studies. It remains challenging to score, annotate and analyze proteomics data in a transparent manner. ProHits was previously introduced as a LIMS to enable storing, tracking and analysis of standard AP-MS data. In this revised version, we expand ProHits to include integration with a number of identification and quantification tools based on Data-Independent Acquisition (DIA). ProHits 4.0 also facilitates data deposition into public repositories, and the transfer of data to new visualization tools. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Identification of head and neck squamous cell carcinoma biomarker candidates through proteomic analysis of cancer cell secretome.

    PubMed

    Marimuthu, Arivusudar; Chavan, Sandip; Sathe, Gajanan; Sahasrabuddhe, Nandini A; Srikanth, Srinivas M; Renuse, Santosh; Ahmad, Sartaj; Radhakrishnan, Aneesha; Barbhuiya, Mustafa A; Kumar, Rekha V; Harsha, H C; Sidransky, David; Califano, Joseph; Pandey, Akhilesh; Chatterjee, Aditi

    2013-11-01

    Protein biomarker discovery for early detection of head and neck squamous cell carcinoma (HNSCC) is a crucial unmet need to improve patient outcomes. Mass spectrometry-based proteomics has emerged as a promising tool for identification of biomarkers in different cancer types. Proteins secreted from cancer cells can serve as potential biomarkers for early diagnosis. In the current study, we have used isobaric tag for relative and absolute quantitation (iTRAQ) labeling methodology coupled with high resolution mass spectrometry to identify and quantitate secreted proteins from a panel of head and neck carcinoma cell lines. In all, we identified 2,472 proteins, of which 225 proteins were secreted at higher or lower abundance in HNSCC-derived cell lines. Of these, 148 were present in higher abundance and 77 were present in lower abundance in the cancer-cell derived secretome. We detected a higher abundance of some previously known markers for HNSCC including insulin like growth factor binding protein 3, IGFBP3 (11-fold) and opioid growth factor receptor, OGFR (10-fold) demonstrating the validity of our approach. We also identified several novel secreted proteins in HNSCC including olfactomedin-4, OLFM4 (12-fold) and hepatocyte growth factor activator, HGFA (5-fold). IHC-based validation was conducted in HNSCC using tissue microarrays which revealed overexpression of IGFBP3 and OLFM4 in 70% and 75% of the tested cases, respectively. Our study illustrates quantitative proteomics of secretome as a robust approach for identification of potential HNSCC biomarkers. This article is part of a Special Issue entitled: An Updated Secretome. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Identification of Mature Atherosclerotic Plaque Proteome Signatures Using Data-Independent Acquisition Mass Spectrometry.

    PubMed

    Hansmeier, Nicole; Buttigieg, Josef; Kumar, Pankaj; Pelle, Shaneen; Choi, Kyoo Yoon; Kopriva, David; Chao, Tzu-Chiao

    2018-01-05

    Atherosclerosis is a chronic inflammatory disease with complex pathobiology and one of the most common causes of cardiovascular events. The process is characterized by complex vascular remodeling processes that require the actions of numerous proteins. The composition of atherosclerotic plaque is increasingly recognized as a major factor governing the occurrence of cardiovascular or neurological symptoms. To gain deeper insights into the composition of atherosclerotic plaques, we created quantitative proteome profiles of advanced plaque tissues of six male patients undergoing carotid endarterectomy for stroke prevention. Using a quantitative, data-independent proteome approach, we identified 4181 proteins with an average protein coverage of 45%. An analysis of the quantitative composition of the tissue revealed key players of vascular remodeling processes. Moreover, compared with proximal arterial tissue, 20 proteins in mature plaques were enriched, whereas 52 proteins were found in lower quantities. Among the proteins with increased abundance were prominent extracellular matrix proteins such as biglycan and lumican, whereas cytoskeletal markers for contractile smooth muscle cells (SMCs) were decreased. Taken together, this study provides the most comprehensive quantitative assessment of mature human plaque tissue to date, which indicates a central role of SMCs in the structure of advanced atherosclerotic plaques.

  11. Quantitative profiling of drug-associated proteomic alterations by combined 2-nitrobenzenesulfenyl chloride (NBS) isotope labeling and 2DE/MS identification.

    PubMed

    Ou, Keli; Kesuma, Djohan; Ganesan, Kumaresan; Yu, Kun; Soon, Sou Yen; Lee, Suet Ying; Goh, Xin Pei; Hooi, Michelle; Chen, Wei; Jikuya, Hiroyuki; Ichikawa, Tetsuo; Kuyama, Hiroki; Matsuo, Ei-ichi; Nishimura, Osamu; Tan, Patrick

    2006-09-01

    The identification of drug-responsive biomarkers in complex protein mixtures is an important goal of quantitative proteomics. Here, we describe a novel approach for identifying such drug-induced protein alterations, which combines 2-nitrobenzenesulfenyl chloride (NBS) tryptophan labeling with two-dimensional gel electrophoresis (2DE)/mass spectrometry (MS). Lysates from drug-treated and control samples are labeled with light or heavy NBS moiety and separated on a common 2DE gel, and protein alterations are identified by MS through the differential intensity of paired NBS peptide peaks. Using NBS/2DE/MS, we profiled the proteomic alterations induced by tamoxifen (TAM) in the estrogen receptor (ER) positive MCF-7 breast cancer cell line. Of 88 protein spots that significantly changed upon TAM treatment, 44 spots representing 23 distinct protein species were successfully identified with NBS-paired peptides. Of these 23 TAM-altered proteins, 16 (70%) have not been previously associated with TAM or ER activity. We found the NBS labeling procedure to be both technically and biologically reproducible, and the NBS/2DE/MS alterations exhibited good concordance with conventional 2DE differential protein quantitation, with discrepancies largely due to the comigration of distinct proteins in the regular 2DE gels. To validate the NBS/2DE/MS results, we used immunoblotting to confirm GRP78, CK19, and PA2G4 as bona fide TAM-regulated proteins. Furthermore, we demonstrate that PA2G4 expression can serve as a novel prognostic factor for disease-free survival in two independent breast cancer patient cohorts. To our knowledge, this is the first report describing the proteomic changes in breast cancer cells induced by TAM, the most commonly used selective estrogen receptor modulator (SERM). Our results indicate that NBS/2DE/MS may represent a more reliable approach for cellular protein quantitation than conventional 2DE approaches.

  12. Affinity Proteomics for Fast, Sensitive, Quantitative Analysis of Proteins in Plasma.

    PubMed

    O'Grady, John P; Meyer, Kevin W; Poe, Derrick N

    2017-01-01

    The improving efficacy of many biological therapeutics and identification of low-level biomarkers are driving the analytical proteomics community to deal with extremely high levels of sample complexity relative to their analytes. Many protein quantitation and biomarker validation procedures utilize an immunoaffinity enrichment step to purify the sample and maximize the sensitivity of the corresponding liquid chromatography tandem mass spectrometry measurements. In order to generate surrogate peptides with better mass spectrometric properties, protein enrichment is followed by a proteolytic cleavage step. This is often a time-consuming multistep process. Presented here is a workflow which enables rapid protein enrichment and proteolytic cleavage to be performed in a single, easy-to-use reactor. Using this strategy Klotho, a low-abundance biomarker found in plasma, can be accurately quantitated using a protocol that takes under 5 h from start to finish.

  13. Identification of Salmonella Typhimurium deubiquitinase SseL substrates by immunoaffinity enrichment and quantitative proteomic analysis

    DOE PAGES

    Nakayasu, Ernesto S.; Sydor, Michael A.; Brown, Roslyn N.; ...

    2015-07-06

    Ubiquitination is a key protein post-translational modification that regulates many important cellular pathways and whose levels are regulated by equilibrium between the activities of ubiquitin ligases and deubiquitinases. Here we present a method to identify specific deubiquitinase substrates based on treatment of cell lysates with recombinant enzymes, immunoaffinity purification and global quantitative proteomic analysis. As model system to identify substrates, we used a virulence-related deubiquitinase secreted by Salmonella enterica serovar Typhimurium into the host cells, SseL. By using this approach two SseL substrates were identified in RAW 264.7 murine macrophage-like cell line, S100A6 and het-erogeneous nuclear ribonuclear protein K, inmore » addition to the previously reported K63-linked ubiquitin chains. These substrates were further validated by a combination of enzymatic and binding assays. Finally, this method can be used for the systematic identification of substrates of deubiquitinases from other organisms and applied to study their functions in physiology and disease.« less

  14. Identification of Salmonella Typhimurium deubiquitinase SseL substrates by immunoaffinity enrichment and quantitative proteomic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayasu, Ernesto S.; Sydor, Michael A.; Brown, Roslyn N.

    Ubiquitination is a key protein post-translational modification that regulates many important cellular pathways and whose levels are regulated by equilibrium between the activities of ubiquitin ligases and deubiquitinases. Here we present a method to identify specific deubiquitinase substrates based on treatment of cell lysates with recombinant enzymes, immunoaffinity purification and global quantitative proteomic analysis. As model system to identify substrates, we used a virulence-related deubiquitinase secreted by Salmonella enterica serovar Typhimurium into the host cells, SseL. By using this approach two SseL substrates were identified in RAW 264.7 murine macrophage-like cell line, S100A6 and het-erogeneous nuclear ribonuclear protein K, inmore » addition to the previously reported K63-linked ubiquitin chains. These substrates were further validated by a combination of enzymatic and binding assays. Finally, this method can be used for the systematic identification of substrates of deubiquitinases from other organisms and applied to study their functions in physiology and disease.« less

  15. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum—Phytophthora capsici Phytopathosystem

    PubMed Central

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G.; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset will serve as a useful resource for future studies in this plant. Data are available via ProteomeXchange with identifier PXD003887. PMID:27379110

  16. Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum-Phytophthora capsici Phytopathosystem.

    PubMed

    Mahadevan, Chidambareswaren; Krishnan, Anu; Saraswathy, Gayathri G; Surendran, Arun; Jaleel, Abdul; Sakuntala, Manjula

    2016-01-01

    Black pepper (Piper nigrum L.), a tropical spice crop of global acclaim, is susceptible to Phytophthora capsici, an oomycete pathogen which causes the highly destructive foot rot disease. A systematic understanding of this phytopathosystem has not been possible owing to lack of genome or proteome information. In this study, we explain an integrated transcriptome-assisted label-free quantitative proteomics pipeline to study the basal immune components of black pepper when challenged with P. capsici. We report a global identification of 532 novel leaf proteins from black pepper, of which 518 proteins were functionally annotated using BLAST2GO tool. A label-free quantitation of the protein datasets revealed 194 proteins common to diseased and control protein datasets of which 22 proteins showed significant up-regulation and 134 showed significant down-regulation. Ninety-three proteins were identified exclusively on P. capsici infected leaf tissues and 245 were expressed only in mock (control) infected samples. In-depth analysis of our data gives novel insights into the regulatory pathways of black pepper which are compromised during the infection. Differential down-regulation was observed in a number of critical pathways like carbon fixation in photosynthetic organism, cyano-amino acid metabolism, fructose, and mannose metabolism, glutathione metabolism, and phenylpropanoid biosynthesis. The proteomics results were validated with real-time qRT-PCR analysis. We were also able to identify the complete coding sequences for all the proteins of which few selected genes were cloned and sequence characterized for further confirmation. Our study is the first report of a quantitative proteomics dataset in black pepper which provides convincing evidence on the effectiveness of a transcriptome-based label-free proteomics approach for elucidating the host response to biotic stress in a non-model spice crop like P. nigrum, for which genome information is unavailable. Our dataset will serve as a useful resource for future studies in this plant. Data are available via ProteomeXchange with identifier PXD003887.

  17. Quantitative proteomic analysis of microdissected oral epithelium for cancer biomarker discovery.

    PubMed

    Xiao, Hua; Langerman, Alexander; Zhang, Yan; Khalid, Omar; Hu, Shen; Cao, Cheng-Xi; Lingen, Mark W; Wong, David T W

    2015-11-01

    Specific biomarkers are urgently needed for the detection and progression of oral cancer. The objective of this study was to discover cancer biomarkers from oral epithelium through utilizing high throughput quantitative proteomics approaches. Morphologically malignant, epithelial dysplasia, and adjacent normal epithelial tissues were laser capture microdissected (LCM) from 19 patients and used for proteomics analysis. Total proteins from each group were extracted, digested and then labelled with corresponding isobaric tags for relative and absolute quantitation (iTRAQ). Labelled peptides from each sample were combined and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) for protein identification and quantification. In total, 500 proteins were identified and 425 of them were quantified. When compared with adjacent normal oral epithelium, 17 and 15 proteins were consistently up-regulated or down-regulated in malignant and epithelial dysplasia, respectively. Half of these candidate biomarkers were discovered for oral cancer for the first time. Cornulin was initially confirmed in tissue protein extracts and was further validated in tissue microarray. Its presence in the saliva of oral cancer patients was also explored. Myoglobin and S100A8 were pre-validated by tissue microarray. These data demonstrated that the proteomic biomarkers discovered through this strategy are potential targets for oral cancer detection and salivary diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Plant proteome analysis: a 2006 update.

    PubMed

    Jorrín, Jesús V; Maldonado, Ana M; Castillejo, Ma Angeles

    2007-08-01

    This 2006 'Plant Proteomics Update' is a continuation of the two previously published in 'Proteomics' by 2004 (Canovas et al., Proteomics 2004, 4, 285-298) and 2006 (Rossignol et al., Proteomics 2006, 6, 5529-5548) and it aims to bring up-to-date the contribution of proteomics to plant biology on the basis of the original research papers published throughout 2006, with references to those appearing last year. According to the published papers and topics addressed, we can conclude that, as observed for the three previous years, there has been a quantitative, but not qualitative leap in plant proteomics. The full potential of proteomics is far from being exploited in plant biology research, especially if compared to other organisms, mainly yeast and humans, and a number of challenges, mainly technological, remain to be tackled. The original papers published last year numbered nearly 100 and deal with the proteome of at least 26 plant species, with a high percentage for Arabidopsis thaliana (28) and rice (11). Scientific objectives ranged from proteomic analysis of organs/tissues/cell suspensions (57) or subcellular fractions (29), to the study of plant development (12), the effect of hormones and signalling molecules (8) and response to symbionts (4) and stresses (27). A small number of contributions have covered PTMs (8) and protein interactions (4). 2-DE (specifically IEF-SDS-PAGE) coupled to MS still constitutes the almost unique platform utilized in plant proteome analysis. The application of gel-free protein separation methods and 'second generation' proteomic techniques such as multidimensional protein identification technology (MudPIT), and those for quantitative proteomics including DIGE, isotope-coded affinity tags (ICAT), iTRAQ and stable isotope labelling by amino acids in cell culture (SILAC) still remains anecdotal. This review is divided into seven sections: Introduction, Methodology, Subcellular proteomes, Development, Responses to biotic and abiotic stresses, PTMs and Protein interactions. Section 8 summarizes the major pitfalls and challenges of plant proteomics.

  19. [Progress in stable isotope labeled quantitative proteomics methods].

    PubMed

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2013-06-01

    Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.

  20. Comparative Evaluation of Small Molecular Additives and Their Effects on Peptide/Protein Identification.

    PubMed

    Gao, Jing; Zhong, Shaoyun; Zhou, Yanting; He, Han; Peng, Shuying; Zhu, Zhenyun; Liu, Xing; Zheng, Jing; Xu, Bin; Zhou, Hu

    2017-06-06

    Detergents and salts are widely used in lysis buffers to enhance protein extraction from biological samples, facilitating in-depth proteomic analysis. However, these detergents and salt additives must be efficiently removed from the digested samples prior to LC-MS/MS analysis to obtain high-quality mass spectra. Although filter-aided sample preparation (FASP), acetone precipitation (AP), followed by in-solution digestion, and strong cation exchange-based centrifugal proteomic reactors (CPRs) are commonly used for proteomic sample processing, little is known about their efficiencies at removing detergents and salt additives. In this study, we (i) developed an integrative workflow for the quantification of small molecular additives in proteomic samples, developing a multiple reaction monitoring (MRM)-based LC-MS approach for the quantification of six additives (i.e., Tris, urea, CHAPS, SDS, SDC, and Triton X-100) and (ii) systematically evaluated the relationships between the level of additive remaining in samples following sample processing and the number of peptides/proteins identified by mass spectrometry. Although FASP outperformed the other two methods, the results were complementary in terms of peptide/protein identification, as well as the GRAVY index and amino acid distributions. This is the first systematic and quantitative study of the effect of detergents and salt additives on protein identification. This MRM-based approach can be used for an unbiased evaluation of the performance of new sample preparation methods. Data are available via ProteomeXchange under identifier PXD005405.

  1. A practical data processing workflow for multi-OMICS projects.

    PubMed

    Kohl, Michael; Megger, Dominik A; Trippler, Martin; Meckel, Hagen; Ahrens, Maike; Bracht, Thilo; Weber, Frank; Hoffmann, Andreas-Claudius; Baba, Hideo A; Sitek, Barbara; Schlaak, Jörg F; Meyer, Helmut E; Stephan, Christian; Eisenacher, Martin

    2014-01-01

    Multi-OMICS approaches aim on the integration of quantitative data obtained for different biological molecules in order to understand their interrelation and the functioning of larger systems. This paper deals with several data integration and data processing issues that frequently occur within this context. To this end, the data processing workflow within the PROFILE project is presented, a multi-OMICS project that aims on identification of novel biomarkers and the development of new therapeutic targets for seven important liver diseases. Furthermore, a software called CrossPlatformCommander is sketched, which facilitates several steps of the proposed workflow in a semi-automatic manner. Application of the software is presented for the detection of novel biomarkers, their ranking and annotation with existing knowledge using the example of corresponding Transcriptomics and Proteomics data sets obtained from patients suffering from hepatocellular carcinoma. Additionally, a linear regression analysis of Transcriptomics vs. Proteomics data is presented and its performance assessed. It was shown, that for capturing profound relations between Transcriptomics and Proteomics data, a simple linear regression analysis is not sufficient and implementation and evaluation of alternative statistical approaches are needed. Additionally, the integration of multivariate variable selection and classification approaches is intended for further development of the software. Although this paper focuses only on the combination of data obtained from quantitative Proteomics and Transcriptomics experiments, several approaches and data integration steps are also applicable for other OMICS technologies. Keeping specific restrictions in mind the suggested workflow (or at least parts of it) may be used as a template for similar projects that make use of different high throughput techniques. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics.

    PubMed

    Röst, Hannes L; Liu, Yansheng; D'Agostino, Giuseppe; Zanella, Matteo; Navarro, Pedro; Rosenberger, George; Collins, Ben C; Gillet, Ludovic; Testa, Giuseppe; Malmström, Lars; Aebersold, Ruedi

    2016-09-01

    Next-generation mass spectrometric (MS) techniques such as SWATH-MS have substantially increased the throughput and reproducibility of proteomic analysis, but ensuring consistent quantification of thousands of peptide analytes across multiple liquid chromatography-tandem MS (LC-MS/MS) runs remains a challenging and laborious manual process. To produce highly consistent and quantitatively accurate proteomics data matrices in an automated fashion, we developed TRIC (http://proteomics.ethz.ch/tric/), a software tool that utilizes fragment-ion data to perform cross-run alignment, consistent peak-picking and quantification for high-throughput targeted proteomics. TRIC reduced the identification error compared to a state-of-the-art SWATH-MS analysis without alignment by more than threefold at constant recall while correcting for highly nonlinear chromatographic effects. On a pulsed-SILAC experiment performed on human induced pluripotent stem cells, TRIC was able to automatically align and quantify thousands of light and heavy isotopic peak groups. Thus, TRIC fills a gap in the pipeline for automated analysis of massively parallel targeted proteomics data sets.

  3. YPED: An Integrated Bioinformatics Suite and Database for Mass Spectrometry-based Proteomics Research

    PubMed Central

    Colangelo, Christopher M.; Shifman, Mark; Cheung, Kei-Hoi; Stone, Kathryn L.; Carriero, Nicholas J.; Gulcicek, Erol E.; Lam, TuKiet T.; Wu, Terence; Bjornson, Robert D.; Bruce, Can; Nairn, Angus C.; Rinehart, Jesse; Miller, Perry L.; Williams, Kenneth R.

    2015-01-01

    We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography–tandem mass spectrometry (LC–MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring (MRM)/selective reaction monitoring (SRM) assay development. We have linked YPED’s database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results. PMID:25712262

  4. YPED: an integrated bioinformatics suite and database for mass spectrometry-based proteomics research.

    PubMed

    Colangelo, Christopher M; Shifman, Mark; Cheung, Kei-Hoi; Stone, Kathryn L; Carriero, Nicholas J; Gulcicek, Erol E; Lam, TuKiet T; Wu, Terence; Bjornson, Robert D; Bruce, Can; Nairn, Angus C; Rinehart, Jesse; Miller, Perry L; Williams, Kenneth R

    2015-02-01

    We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography-tandem mass spectrometry (LC-MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring (MRM)/selective reaction monitoring (SRM) assay development. We have linked YPED's database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  5. Proteomic Identification and Quantification of S-glutathionylation in Mouse Macrophages Using Resin-Assisted Enrichment and Isobaric Labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Dian; Gaffrey, Matthew J.; Guo, Jia

    2014-02-11

    Protein S-glutathionylation (SSG) is an important regulatory posttranslational modification of protein cysteine (Cys) thiol redox switches, yet the role of specific cysteine residues as targets of modification is poorly understood. We report a novel quantitative mass spectrometry (MS)-based proteomic method for site-specific identification and quantification of S-glutathionylation across different conditions. Briefly, this approach consists of initial blocking of free thiols by alkylation, selective reduction of glutathionylated thiols and enrichment using thiol affinity resins, followed by on-resin tryptic digestion and isobaric labeling with iTRAQ (isobaric tags for relative and absolute quantitation) for MS-based identification and quantification. The overall approach was validatedmore » by application to RAW 264.7 mouse macrophages treated with different doses of diamide to induce glutathionylation. A total of 1071 Cys-sites from 690 proteins were identified in response to diamide treatment, with ~90% of the sites displaying >2-fold increases in SSG-modification compared to controls.. This approach was extended to identify potential SSG modified Cys-sites in response to H2O2, an endogenous oxidant produced by activated macrophages and many pathophysiological stimuli. The results revealed 364 Cys-sites from 265 proteins that were sensitive to S-glutathionylation in response to H2O2 treatment. These proteins covered a range of molecular types and molecular functions with free radical scavenging, and cell death and survival included as the most significantly enriched functional categories. Overall the results demonstrate that our approach is effective for site-specific identification and quantification of S-glutathionylated proteins. The analytical strategy also provides a unique approach to determining the major pathways and cell processes most susceptible to glutathionylation at a proteome-wide scale.« less

  6. A Comprehensive Guide for Performing Sample Preparation and Top-Down Protein Analysis

    PubMed Central

    Padula, Matthew P.; Berry, Iain J.; O′Rourke, Matthew B.; Raymond, Benjamin B.A.; Santos, Jerran; Djordjevic, Steven P.

    2017-01-01

    Methodologies for the global analysis of proteins in a sample, or proteome analysis, have been available since 1975 when Patrick O′Farrell published the first paper describing two-dimensional gel electrophoresis (2D-PAGE). This technique allowed the resolution of single protein isoforms, or proteoforms, into single ‘spots’ in a polyacrylamide gel, allowing the quantitation of changes in a proteoform′s abundance to ascertain changes in an organism′s phenotype when conditions change. In pursuit of the comprehensive profiling of the proteome, significant advances in technology have made the identification and quantitation of intact proteoforms from complex mixtures of proteins more routine, allowing analysis of the proteome from the ‘Top-Down’. However, the number of proteoforms detected by Top-Down methodologies such as 2D-PAGE or mass spectrometry has not significantly increased since O’Farrell’s paper when compared to Bottom-Up, peptide-centric techniques. This article explores and explains the numerous methodologies and technologies available to analyse the proteome from the Top-Down with a strong emphasis on the necessity to analyse intact proteoforms as a better indicator of changes in biology and phenotype. We arrive at the conclusion that the complete and comprehensive profiling of an organism′s proteome is still, at present, beyond our reach but the continuing evolution of protein fractionation techniques and mass spectrometry brings comprehensive Top-Down proteome profiling closer. PMID:28387712

  7. A Comprehensive Guide for Performing Sample Preparation and Top-Down Protein Analysis.

    PubMed

    Padula, Matthew P; Berry, Iain J; O Rourke, Matthew B; Raymond, Benjamin B A; Santos, Jerran; Djordjevic, Steven P

    2017-04-07

    Methodologies for the global analysis of proteins in a sample, or proteome analysis, have been available since 1975 when Patrick O'Farrell published the first paper describing two-dimensional gel electrophoresis (2D-PAGE). This technique allowed the resolution of single protein isoforms, or proteoforms, into single 'spots' in a polyacrylamide gel, allowing the quantitation of changes in a proteoform's abundance to ascertain changes in an organism's phenotype when conditions change. In pursuit of the comprehensive profiling of the proteome, significant advances in technology have made the identification and quantitation of intact proteoforms from complex mixtures of proteins more routine, allowing analysis of the proteome from the 'Top-Down'. However, the number of proteoforms detected by Top-Down methodologies such as 2D-PAGE or mass spectrometry has not significantly increased since O'Farrell's paper when compared to Bottom-Up, peptide-centric techniques. This article explores and explains the numerous methodologies and technologies available to analyse the proteome from the Top-Down with a strong emphasis on the necessity to analyse intact proteoforms as a better indicator of changes in biology and phenotype. We arrive at the conclusion that the complete and comprehensive profiling of an organism's proteome is still, at present, beyond our reach but the continuing evolution of protein fractionation techniques and mass spectrometry brings comprehensive Top-Down proteome profiling closer.

  8. Parasites, proteomes and systems: has Descartes' clock run out of time?

    PubMed

    Wastling, J M; Armstrong, S D; Krishna, R; Xia, D

    2012-08-01

    Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types.

  9. Parasites, proteomes and systems: has Descartes’ clock run out of time?

    PubMed Central

    WASTLING, J. M.; ARMSTRONG, S. D.; KRISHNA, R.; XIA, D.

    2012-01-01

    SUMMARY Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types. PMID:22828391

  10. Quantitative proteomic analysis of bacterial enzymes released in cheese during ripening.

    PubMed

    Jardin, Julien; Mollé, Daniel; Piot, Michel; Lortal, Sylvie; Gagnaire, Valérie

    2012-04-02

    Due to increasingly available bacterial genomes in databases, proteomic tools have recently been used to screen proteins expressed by micro-organisms in food in order to better understand their metabolism in situ. While the main objective is the systematic identification of proteins, the next step will be to bridge the gap between identification and quantification of these proteins. For that purpose, a new mass spectrometry-based approach was applied, using isobaric tagging reagent for quantitative proteomic analysis (iTRAQ), which are amine specific and yield labelled peptides identical in mass. Experimental Swiss-type cheeses were manufactured from microfiltered milk using Streptococcus thermophilus ITG ST20 and Lactobacillus helveticus ITG LH1 as lactic acid starters. At three ripening times (7, 20 and 69 days), cheese aqueous phases were extracted and enriched in bacterial proteins by fractionation. Each sample, standardised in protein amount prior to proteomic analyses, was: i) analysed by 2D-electrophoresis for qualitative analysis and ii) submitted to trypsinolysis, and labelled with specific iTRAQ tag, one per ripening time. The three labelled samples were mixed together and analysed by nano-LC coupled on-line with ESI-QTOF mass spectrometer. Thirty proteins, both from bacterial or bovine origin, were identified and efficiently quantified. The free bacterial proteins detected were enzymes from the central carbon metabolism as well as stress proteins. Depending on the protein considered, the quantity of these proteins in the cheese aqueous extract increased from 2.5 to 20 fold in concentration from day 7 to day 69 of ripening. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects.

    PubMed

    Batthyány, Carlos; Bartesaghi, Silvina; Mastrogiovanni, Mauricio; Lima, Analía; Demicheli, Verónica; Radi, Rafael

    2017-03-01

    "Nitroproteomic" is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a "tour de force" for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313-328.

  12. Final Report: Proteomic study of brassinosteroid responses in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhiyong; Burlingame, Alma

    2017-11-29

    The steroid hormone brassinosteroid (BR) is a major growth-promoting phytohormone. The specific aim of the current project is to identify BR-regulated proteins and characterize their functions in various aspects of plant growth, development, and adaptation. Our research has significantly advanced our understanding of how BR signal is transduced from the receptor at the cell surface to changes of nuclear gene expression and other cellular responses such as vesicle trafficking, as well as developmental transitions such as seed germination and flowering. We have also developed effective proteomic methods for quantitative analysis of protein phosphorylation and for identification of glycosylated proteins. Throughmore » this DOE funding, we have performed several proteomic experiments and made major discoveries.« less

  13. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein isoform expression to polerovirus transmission

    USDA-ARS?s Scientific Manuscript database

    Yellow dwarf viruses in the family Luteoviridae, such as Cereal yellow dwarf virus-RPV (CYDV-RPV), are vectored by aphids and cause the most economically important virus disease of cereal crops worldwide. The identification of aphid proteins mediating virus transmission will better define transmiss...

  14. RECENT ADVANCES IN QUANTITATIVE NEUROPROTEOMICS

    PubMed Central

    Craft, George E; Chen, Anshu; Nairn, Angus C

    2014-01-01

    The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson’s disease and Alzheimer’s disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders. PMID:23623823

  15. Recent advances in quantitative neuroproteomics.

    PubMed

    Craft, George E; Chen, Anshu; Nairn, Angus C

    2013-06-15

    The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders. Copyright © 2013. Published by Elsevier Inc.

  16. Analysis of Reproducibility of Proteome Coverage and Quantitation Using Isobaric Mass Tags (iTRAQ and TMT).

    PubMed

    Casey, Tammy M; Khan, Javed M; Bringans, Scott D; Koudelka, Tomas; Takle, Pari S; Downs, Rachael A; Livk, Andreja; Syme, Robert A; Tan, Kar-Chun; Lipscombe, Richard J

    2017-02-03

    This study aimed to compare the depth and reproducibility of total proteome and differentially expressed protein coverage in technical duplicates and triplicates using iTRAQ 4-plex, iTRAQ 8-plex, and TMT 6-plex reagents. The analysis was undertaken because comprehensive comparisons of isobaric mass tag reproducibility have not been widely reported in the literature. The highest number of proteins was identified with 4-plex, followed by 8-plex and then 6-plex reagents. Quantitative analyses revealed that more differentially expressed proteins were identified with 4-plex reagents than 8-plex reagents and 6-plex reagents. Replicate reproducibility was determined to be ≥69% for technical duplicates and ≥57% for technical triplicates. The results indicate that running an 8-plex or 6-plex experiment instead of a 4-plex experiment resulted in 26 or 39% fewer protein identifications, respectively. When 4-plex spectra were searched with three software tools-ProteinPilot, Mascot, and Proteome Discoverer-the highest number of protein identifications were obtained with Mascot. The analysis of negative controls demonstrated the importance of running experiments as replicates. Overall, this study demonstrates the advantages of using iTRAQ 4-plex reagents over iTRAQ 8-plex and TMT 6-plex reagents, provides estimates of technical duplicate and triplicate reproducibility, and emphasizes the value of running replicate samples.

  17. TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics

    PubMed Central

    Röst, Hannes L.; Liu, Yansheng; D’Agostino, Giuseppe; Zanella, Matteo; Navarro, Pedro; Rosenberger, George; Collins, Ben C.; Gillet, Ludovic; Testa, Giuseppe; Malmström, Lars; Aebersold, Ruedi

    2016-01-01

    Large scale, quantitative proteomic studies have become essential for the analysis of clinical cohorts, large perturbation experiments and systems biology studies. While next-generation mass spectrometric techniques such as SWATH-MS have substantially increased throughput and reproducibility, ensuring consistent quantification of thousands of peptide analytes across multiple LC-MS/MS runs remains a challenging and laborious manual process. To produce highly consistent and quantitatively accurate proteomics data matrices in an automated fashion, we have developed the TRIC software which utilizes fragment ion data to perform cross-run alignment, consistent peak-picking and quantification for high throughput targeted proteomics. TRIC uses a graph-based alignment strategy based on non-linear retention time correction to integrate peak elution information from all LC-MS/MS runs acquired in a study. When compared to state-of-the-art SWATH-MS data analysis, the algorithm was able to reduce the identification error by more than 3-fold at constant recall, while correcting for highly non-linear chromatographic effects. On a pulsed-SILAC experiment performed on human induced pluripotent stem (iPS) cells, TRIC was able to automatically align and quantify thousands of light and heavy isotopic peak groups and substantially increased the quantitative completeness and biological information in the data, providing insights into protein dynamics of iPS cells. Overall, this study demonstrates the importance of consistent quantification in highly challenging experimental setups, and proposes an algorithm to automate this task, constituting the last missing piece in a pipeline for automated analysis of massively parallel targeted proteomics datasets. PMID:27479329

  18. Recent advances in proteomics of cereals.

    PubMed

    Bansal, Monika; Sharma, Madhu; Kanwar, Priyanka; Goyal, Aakash

    Cereals contribute a major part of human nutrition and are considered as an integral source of energy for human diets. With genomic databases already available in cereals such as rice, wheat, barley, and maize, the focus has now moved to proteome analysis. Proteomics studies involve the development of appropriate databases based on developing suitable separation and purification protocols, identification of protein functions, and can confirm their functional networks based on already available data from other sources. Tremendous progress has been made in the past decade in generating huge data-sets for covering interactions among proteins, protein composition of various organs and organelles, quantitative and qualitative analysis of proteins, and to characterize their modulation during plant development, biotic, and abiotic stresses. Proteomics platforms have been used to identify and improve our understanding of various metabolic pathways. This article gives a brief review of efforts made by different research groups on comparative descriptive and functional analysis of proteomics applications achieved in the cereal science so far.

  19. What computational non-targeted mass spectrometry-based metabolomics can gain from shotgun proteomics.

    PubMed

    Hamzeiy, Hamid; Cox, Jürgen

    2017-02-01

    Computational workflows for mass spectrometry-based shotgun proteomics and untargeted metabolomics share many steps. Despite the similarities, untargeted metabolomics is lagging behind in terms of reliable fully automated quantitative data analysis. We argue that metabolomics will strongly benefit from the adaptation of successful automated proteomics workflows to metabolomics. MaxQuant is a popular platform for proteomics data analysis and is widely considered to be superior in achieving high precursor mass accuracies through advanced nonlinear recalibration, usually leading to five to ten-fold better accuracy in complex LC-MS/MS runs. This translates to a sharp decrease in the number of peptide candidates per measured feature, thereby strongly improving the coverage of identified peptides. We argue that similar strategies can be applied to untargeted metabolomics, leading to equivalent improvements in metabolite identification. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Common Features Between the Proteomes of Floral and Extrafloral Nectar From the Castor Plant (Ricinus Communis) and the Proteomes of Exudates From Carnivorous Plants

    PubMed Central

    Nogueira, Fábio C. S.; Farias, Andreza R. B.; Teixeira, Fabiano M.; Domont, Gilberto B.; Campos, Francisco A. P.

    2018-01-01

    Label-free quantitative proteome analysis of extrafloral (EFN) and floral nectar (FN) from castor (Ricinus communis) plants resulted in the identification of 72 and 37 proteins, respectively. Thirty proteins were differentially accumulated between EFN and FN, and 24 of these were more abundant in the EFN. In addition to proteins involved in maintaining the nectar pathogen free such as chitinases and glucan 1,3-beta-glucosidase, both proteomes share an array of peptidases, lipases, carbohydrases, and nucleases. A total of 39 of the identified proteins, comprising different classes of hydrolases, were found to have biochemical matching partners in the exudates of at least five genera of carnivorous plants, indicating the EFN and FN possess a potential to digest biological material from microbial, animal or plant origin equivalent to the exudates of carnivorous plants. PMID:29755492

  1. Common Features Between the Proteomes of Floral and Extrafloral Nectar From the Castor Plant (Ricinus Communis) and the Proteomes of Exudates From Carnivorous Plants.

    PubMed

    Nogueira, Fábio C S; Farias, Andreza R B; Teixeira, Fabiano M; Domont, Gilberto B; Campos, Francisco A P

    2018-01-01

    Label-free quantitative proteome analysis of extrafloral (EFN) and floral nectar (FN) from castor ( Ricinus communis ) plants resulted in the identification of 72 and 37 proteins, respectively. Thirty proteins were differentially accumulated between EFN and FN, and 24 of these were more abundant in the EFN. In addition to proteins involved in maintaining the nectar pathogen free such as chitinases and glucan 1,3-beta-glucosidase, both proteomes share an array of peptidases, lipases, carbohydrases, and nucleases. A total of 39 of the identified proteins, comprising different classes of hydrolases, were found to have biochemical matching partners in the exudates of at least five genera of carnivorous plants, indicating the EFN and FN possess a potential to digest biological material from microbial, animal or plant origin equivalent to the exudates of carnivorous plants.

  2. Accurate proteome-wide protein quantification from high-resolution 15N mass spectra

    PubMed Central

    2011-01-01

    In quantitative mass spectrometry-based proteomics, the metabolic incorporation of a single source of 15N-labeled nitrogen has many advantages over using stable isotope-labeled amino acids. However, the lack of a robust computational framework for analyzing the resulting spectra has impeded wide use of this approach. We have addressed this challenge by introducing a new computational methodology for analyzing 15N spectra in which quantification is integrated with identification. Application of this method to an Escherichia coli growth transition reveals significant improvement in quantification accuracy over previous methods. PMID:22182234

  3. Capillary nano-immunoassays: advancing quantitative proteomics analysis, biomarker assessment, and molecular diagnostics.

    PubMed

    Chen, Jin-Qiu; Wakefield, Lalage M; Goldstein, David J

    2015-06-06

    There is an emerging demand for the use of molecular profiling to facilitate biomarker identification and development, and to stratify patients for more efficient treatment decisions with reduced adverse effects. In the past decade, great strides have been made to advance genomic, transcriptomic and proteomic approaches to address these demands. While there has been much progress with these large scale approaches, profiling at the protein level still faces challenges due to limitations in clinical sample size, poor reproducibility, unreliable quantitation, and lack of assay robustness. A novel automated capillary nano-immunoassay (CNIA) technology has been developed. This technology offers precise and accurate measurement of proteins and their post-translational modifications using either charge-based or size-based separation formats. The system not only uses ultralow nanogram levels of protein but also allows multi-analyte analysis using a parallel single-analyte format for increased sensitivity and specificity. The high sensitivity and excellent reproducibility of this technology make it particularly powerful for analysis of clinical samples. Furthermore, the system can distinguish and detect specific protein post-translational modifications that conventional Western blot and other immunoassays cannot easily capture. This review will summarize and evaluate the latest progress to optimize the CNIA system for comprehensive, quantitative protein and signaling event characterization. It will also discuss how the technology has been successfully applied in both discovery research and clinical studies, for signaling pathway dissection, proteomic biomarker assessment, targeted treatment evaluation and quantitative proteomic analysis. Lastly, a comparison of this novel system with other conventional immuno-assay platforms is performed.

  4. LFQProfiler and RNP(xl): Open-Source Tools for Label-Free Quantification and Protein-RNA Cross-Linking Integrated into Proteome Discoverer.

    PubMed

    Veit, Johannes; Sachsenberg, Timo; Chernev, Aleksandar; Aicheler, Fabian; Urlaub, Henning; Kohlbacher, Oliver

    2016-09-02

    Modern mass spectrometry setups used in today's proteomics studies generate vast amounts of raw data, calling for highly efficient data processing and analysis tools. Software for analyzing these data is either monolithic (easy to use, but sometimes too rigid) or workflow-driven (easy to customize, but sometimes complex). Thermo Proteome Discoverer (PD) is a powerful software for workflow-driven data analysis in proteomics which, in our eyes, achieves a good trade-off between flexibility and usability. Here, we present two open-source plugins for PD providing additional functionality: LFQProfiler for label-free quantification of peptides and proteins, and RNP(xl) for UV-induced peptide-RNA cross-linking data analysis. LFQProfiler interacts with existing PD nodes for peptide identification and validation and takes care of the entire quantitative part of the workflow. We show that it performs at least on par with other state-of-the-art software solutions for label-free quantification in a recently published benchmark ( Ramus, C.; J. Proteomics 2016 , 132 , 51 - 62 ). The second workflow, RNP(xl), represents the first software solution to date for identification of peptide-RNA cross-links including automatic localization of the cross-links at amino acid resolution and localization scoring. It comes with a customized integrated cross-link fragment spectrum viewer for convenient manual inspection and validation of the results.

  5. Recent Achievements in Characterizing the Histone Code and Approaches to Integrating Epigenomics and Systems Biology.

    PubMed

    Janssen, K A; Sidoli, S; Garcia, B A

    2017-01-01

    Functional epigenetic regulation occurs by dynamic modification of chromatin, including genetic material (i.e., DNA methylation), histone proteins, and other nuclear proteins. Due to the highly complex nature of the histone code, mass spectrometry (MS) has become the leading technique in identification of single and combinatorial histone modifications. MS has now overcome antibody-based strategies due to its automation, high resolution, and accurate quantitation. Moreover, multiple approaches to analysis have been developed for global quantitation of posttranslational modifications (PTMs), including large-scale characterization of modification coexistence (middle-down and top-down proteomics), which is not currently possible with any other biochemical strategy. Recently, our group and others have simplified and increased the effectiveness of analyzing histone PTMs by improving multiple MS methods and data analysis tools. This review provides an overview of the major achievements in the analysis of histone PTMs using MS with a focus on the most recent improvements. We speculate that the workflow for histone analysis at its state of the art is highly reliable in terms of identification and quantitation accuracy, and it has the potential to become a routine method for systems biology thanks to the possibility of integrating histone MS results with genomics and proteomics datasets. © 2017 Elsevier Inc. All rights reserved.

  6. Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics.

    PubMed

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-04-29

    Cypermethrin (CYP) is one of the most widely used pesticides in large scale for agricultural and domestic purpose and the residue often seriously affects aquatic system. Environmental pollutant-induced protein changes in organisms could be detected by proteomics, leading to discovery of potential biomarkers and understanding of mode of action. While proteomics investigations of CYP stress in some animal models have been well studied, few reports about the effects of exposure to CYP on algae proteome were published. To determine CYP effect in algae, the impact of various dosages (0.001μg/L, 0.01μg/L and 1μg/L) of CYP on green algae Chlorella vulgaris for 24h and 96h was investigated by using iTRAQ quantitative proteomics technique. A total of 162 and 198 proteins were significantly altered after CYP exposure for 24h and 96h, respectively. Overview of iTRAQ results indicated that the influence of CYP on algae protein might be dosage-dependent. Functional analysis of differentially expressed proteins showed that CYP could induce protein alterations related to photosynthesis, stress responses and carbohydrate metabolism. This study provides a comprehensive view of complex mode of action of algae under CYP stress and highlights several potential biomarkers for further investigation of pesticide-exposed plant and algae. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Population-specific plasma proteomes of marine and freshwater three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Kültz, Dietmar; Li, Johnathon; Zhang, Xuezhen; Villarreal, Fernando; Pham, Tuan; Paguio, Darlene

    2015-12-01

    Molecular phenotypes that distinguish resident marine (Bodega Harbor) from landlocked freshwater (FW, Lake Solano) three-spined sticklebacks were revealed by label-free quantitative proteomics. Secreted plasma proteins involved in lipid transport, blood coagulation, proteolysis, plasminogen-activating cascades, extracellular stimulus responses, and immunity are most abundant in this species. Globulins and albumins are much less abundant than in mammalian plasma. Unbiased quantitative proteome profiling identified 45 highly population-specific plasma proteins. Population-specific abundance differences were validated by targeted proteomics based on data-independent acquisition. Gene ontology enrichment analyses and known functions of population-specific plasma proteins indicate enrichment of processes controlling cell adhesion, tissue remodeling, proteolytic processing, and defense signaling in marine sticklebacks. Moreover, fetuin B and leukocyte cell derived chemotaxin 2 are much more abundant in marine fish. These proteins promote bone morphogenesis and likely contribute to population-specific body armor differences. Plasma proteins enriched in FW fish promote translation, heme biosynthesis, and lipid transport, suggesting a greater presence of plasma microparticles. Many prominent population-specific plasma proteins (e.g. apoptosis-associated speck-like protein containing a CARD) lack any homolog of known function or adequate functional characterization. Their functional characterization and the identification of population-specific environmental contexts and selective pressures that cause plasma proteome diversification are future directions emerging from this study. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Comprehensive proteomic analysis of Penicillium verrucosum.

    PubMed

    Nöbauer, Katharina; Hummel, Karin; Mayrhofer, Corina; Ahrens, Maike; Setyabudi, Francis M C; Schmidt-Heydt, Markus; Eisenacher, Martin; Razzazi-Fazeli, Ebrahim

    2017-05-01

    Mass spectrometric identification of proteins in species lacking validated sequence information is a major problem in veterinary science. In the present study, we used ochratoxin A producing Penicillium verrucosum to identify and quantitatively analyze proteins of an organism with yet no protein information available. The work presented here aimed to provide a comprehensive protein identification of P. verrucosum using shotgun proteomics. We were able to identify 3631 proteins in an "ab initio" translated database from DNA sequences of P. verrucosum. Additionally, a sequential window acquisition of all theoretical fragment-ion spectra analysis was done to find differentially regulated proteins at two different time points of the growth curve. We compared the proteins at the beginning (day 3) and at the end of the log phase (day 12). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Method optimization for proteomic analysis of soybean leaf: Improvements in identification of new and low-abundance proteins

    PubMed Central

    Mesquita, Rosilene Oliveira; de Almeida Soares, Eduardo; de Barros, Everaldo Gonçalves; Loureiro, Marcelo Ehlers

    2012-01-01

    The most critical step in any proteomic study is protein extraction and sample preparation. Better solubilization increases the separation and resolution of gels, allowing identification of a higher number of proteins and more accurate quantitation of differences in gene expression. Despite the existence of published results for the optimization of proteomic analyses of soybean seeds, no comparable data are available for proteomic studies of soybean leaf tissue. In this work we have tested the effects of modification of a TCA-acetone method on the resolution of 2-DE gels of leaves and roots of soybean. Better focusing was obtained when both mercaptoethanol and dithiothreitol were used in the extraction buffer simultaneously. Increasing the number of washes of TCA precipitated protein with acetone, using a final wash with 80% ethanol and using sonication to ressuspend the pellet increased the number of detected proteins as well the resolution of the 2-DE gels. Using this approach we have constructed a soybean protein map. The major group of identified proteins corresponded to genes of unknown function. The second and third most abundant groups of proteins were composed of photosynthesis and metabolism related genes. The resulting protocol improved protein solubility and gel resolution allowing the identification of 122 soybean leaf proteins, 72 of which were not detected in other published soybean leaf 2-DE gel datasets, including a transcription factor and several signaling proteins. PMID:22802721

  10. Targeted quantitative analysis of Streptococcus pyogenes virulence factors by multiple reaction monitoring.

    PubMed

    Lange, Vinzenz; Malmström, Johan A; Didion, John; King, Nichole L; Johansson, Björn P; Schäfer, Juliane; Rameseder, Jonathan; Wong, Chee-Hong; Deutsch, Eric W; Brusniak, Mi-Youn; Bühlmann, Peter; Björck, Lars; Domon, Bruno; Aebersold, Ruedi

    2008-08-01

    In many studies, particularly in the field of systems biology, it is essential that identical protein sets are precisely quantified in multiple samples such as those representing differentially perturbed cell states. The high degree of reproducibility required for such experiments has not been achieved by classical mass spectrometry-based proteomics methods. In this study we describe the implementation of a targeted quantitative approach by which predetermined protein sets are first identified and subsequently quantified at high sensitivity reliably in multiple samples. This approach consists of three steps. First, the proteome is extensively mapped out by multidimensional fractionation and tandem mass spectrometry, and the data generated are assembled in the PeptideAtlas database. Second, based on this proteome map, peptides uniquely identifying the proteins of interest, proteotypic peptides, are selected, and multiple reaction monitoring (MRM) transitions are established and validated by MS2 spectrum acquisition. This process of peptide selection, transition selection, and validation is supported by a suite of software tools, TIQAM (Targeted Identification for Quantitative Analysis by MRM), described in this study. Third, the selected target protein set is quantified in multiple samples by MRM. Applying this approach we were able to reliably quantify low abundance virulence factors from cultures of the human pathogen Streptococcus pyogenes exposed to increasing amounts of plasma. The resulting quantitative protein patterns enabled us to clearly define the subset of virulence proteins that is regulated upon plasma exposure.

  11. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects

    PubMed Central

    Batthyány, Carlos; Bartesaghi, Silvina; Mastrogiovanni, Mauricio; Lima, Analía; Demicheli, Verónica

    2017-01-01

    Abstract Significance: “Nitroproteomic” is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a “tour de force” for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. Critical Issues: Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. Future Directions: The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313–328. PMID:27324931

  12. Proteomic Screening of Antigenic Proteins from the Hard Tick, Haemaphysalis longicornis (Acari: Ixodidae)

    PubMed Central

    Kim, Young-Ha; slam, Mohammad Saiful; You, Myung-Jo

    2015-01-01

    Proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of proteome. For detection of antigens from Haemaphysalis longicornis, 1-dimensional electrophoresis (1-DE) quantitative immunoblotting technique combined with 2-dimensional electrophoresis (2-DE) immunoblotting was used for whole body proteins from unfed and partially fed female ticks. Reactivity bands and 2-DE immunoblotting were performed following 2-DE electrophoresis to identify protein spots. The proteome of the partially fed female had a larger number of lower molecular weight proteins than that of the unfed female tick. The total number of detected spots was 818 for unfed and 670 for partially fed female ticks. The 2-DE immunoblotting identified 10 antigenic spots from unfed females and 8 antigenic spots from partially fed females. Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF) of relevant spots identified calreticulin, putative secreted WC salivary protein, and a conserved hypothetical protein from the National Center for Biotechnology Information and Swiss Prot protein sequence databases. These findings indicate that most of the whole body components of these ticks are non-immunogenic. The data reported here will provide guidance in the identification of antigenic proteins to prevent infestation and diseases transmitted by H. longicornis. PMID:25748713

  13. Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging

    PubMed Central

    2014-01-01

    The molecular mechanisms underlying skeletal muscle aging and associated sarcopenia have been linked to an altered oxidative status of redox-sensitive proteins. Reactive oxygen and reactive nitrogen species (ROS/RNS) generated by contracting skeletal muscle are necessary for optimal protein function, signaling, and adaptation. To investigate the redox proteome of aging gastrocnemius muscles from adult and old male mice, we developed a label-free quantitative proteomic approach that includes a differential cysteine labeling step. The approach allows simultaneous identification of up- and downregulated proteins between samples in addition to the identification and relative quantification of the reversible oxidation state of susceptible redox cysteine residues. Results from muscles of adult and old mice indicate significant changes in the content of chaperone, glucose metabolism, and cytoskeletal regulatory proteins, including Protein DJ-1, cAMP-dependent protein kinase type II, 78 kDa glucose regulated protein, and a reduction in the number of redox-responsive proteins identified in muscle of old mice. Results demonstrate skeletal muscle aging causes a reduction in redox-sensitive proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response. Data is available via ProteomeXchange with identifier PXD001054. PMID:25181601

  14. iTRAQ-Based Quantitative Proteomics of Developing and Ripening Muscadine Grape Berry

    PubMed Central

    Kambiranda, Devaiah; Katam, Ramesh; Basha, Sheikh M.; Siebert, Shalom

    2014-01-01

    Grapes are among the widely cultivated fruit crops in the world. Grape berries like other nonclimacteric fruits undergo a complex set of dynamic, physical, physiological, and biochemical changes during ripening. Muscadine grapes are widely cultivated in the southern United States for fresh fruit and wine. To date, changes in the metabolites composition of muscadine grapes have been well documented; however, the molecular changes during berry development and ripening are not fully known. The aim of this study was to investigate changes in the berry proteome during ripening in muscadine grape cv. Noble. Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS was used to detect statistically significant changes in the berry proteome. A total of 674 proteins were detected, and 76 were differentially expressed across four time points in muscadine berry. Proteins obtained were further analyzed to provide information about its potential functions during ripening. Several proteins involved in abiotic and biotic stimuli and sucrose and hexose metabolism were upregulated during berry ripening. Quantitative real-time PCR analysis validated the protein expression results for nine proteins. Identification of vicilin-like antimicrobial peptides indicates additional disease tolerance proteins are present in muscadines for berry protection during ripening. The results provide new information for characterization and understanding muscadine berry proteome and grape ripening. PMID:24251720

  15. Garlic (Allium sativum L.) fertility: transcriptome and proteome analyses provide insight into flower and pollen development

    PubMed Central

    Shemesh-Mayer, Einat; Ben-Michael, Tomer; Rotem, Neta; Rabinowitch, Haim D.; Doron-Faigenboim, Adi; Kosmala, Arkadiusz; Perlikowski, Dawid; Sherman, Amir; Kamenetsky, Rina

    2015-01-01

    Commercial cultivars of garlic, a popular condiment, are sterile, making genetic studies and breeding of this plant challenging. However, recent fertility restoration has enabled advanced physiological and genetic research and hybridization in this important crop. Morphophysiological studies, combined with transcriptome and proteome analyses and quantitative PCR validation, enabled the identification of genes and specific processes involved in gametogenesis in fertile and male-sterile garlic genotypes. Both genotypes exhibit normal meiosis at early stages of anther development, but in the male-sterile plants, tapetal hypertrophy after microspore release leads to pollen degeneration. Transcriptome analysis and global gene-expression profiling showed that >16,000 genes are differentially expressed in the fertile vs. male-sterile developing flowers. Proteome analysis and quantitative comparison of 2D-gel protein maps revealed 36 significantly different protein spots, 9 of which were present only in the male-sterile genotype. Bioinformatic and quantitative PCR validation of 10 candidate genes exhibited significant expression differences between male-sterile and fertile flowers. A comparison of morphophysiological and molecular traits of fertile and male-sterile garlic flowers suggests that respiratory restrictions and/or non-regulated programmed cell death of the tapetum can lead to energy deficiency and consequent pollen abortion. Potential molecular markers for male fertility and sterility in garlic are proposed. PMID:25972879

  16. A Comparative Quantitative Proteomic Study Identifies New Proteins Relevant for Sulfur Oxidation in the Purple Sulfur Bacterium Allochromatium vinosum

    PubMed Central

    Weissgerber, Thomas; Sylvester, Marc; Kröninger, Lena

    2014-01-01

    In the present study, we compared the proteome response of Allochromatium vinosum when growing photoautotrophically in the presence of sulfide, thiosulfate, and elemental sulfur with the proteome response when the organism was growing photoheterotrophically on malate. Applying tandem mass tag analysis as well as two-dimensional (2D) PAGE, we detected 1,955 of the 3,302 predicted proteins by identification of at least two peptides (59.2%) and quantified 1,848 of the identified proteins. Altered relative protein amounts (≥1.5-fold) were observed for 385 proteins, corresponding to 20.8% of the quantified A. vinosum proteome. A significant number of the proteins exhibiting strongly enhanced relative protein levels in the presence of reduced sulfur compounds are well documented essential players during oxidative sulfur metabolism, e.g., the dissimilatory sulfite reductase DsrAB. Changes in protein levels generally matched those observed for the respective relative mRNA levels in a previous study and allowed identification of new genes/proteins participating in oxidative sulfur metabolism. One gene cluster (hyd; Alvin_2036-Alvin_2040) and one hypothetical protein (Alvin_2107) exhibiting strong responses on both the transcriptome and proteome levels were chosen for gene inactivation and phenotypic analyses of the respective mutant strains, which verified the importance of the so-called Isp hydrogenase supercomplex for efficient oxidation of sulfide and a crucial role of Alvin_2107 for the oxidation of sulfur stored in sulfur globules to sulfite. In addition, we analyzed the sulfur globule proteome and identified a new sulfur globule protein (SgpD; Alvin_2515). PMID:24487535

  17. A Proof of Concept to Bridge the Gap between Mass Spectrometry Imaging, Protein Identification and Relative Quantitation: MSI~LC-MS/MS-LF.

    PubMed

    Théron, Laëtitia; Centeno, Delphine; Coudy-Gandilhon, Cécile; Pujos-Guillot, Estelle; Astruc, Thierry; Rémond, Didier; Barthelemy, Jean-Claude; Roche, Frédéric; Feasson, Léonard; Hébraud, Michel; Béchet, Daniel; Chambon, Christophe

    2016-10-26

    Mass spectrometry imaging (MSI) is a powerful tool to visualize the spatial distribution of molecules on a tissue section. The main limitation of MALDI-MSI of proteins is the lack of direct identification. Therefore, this study focuses on a MSI~LC-MS/MS-LF workflow to link the results from MALDI-MSI with potential peak identification and label-free quantitation, using only one tissue section. At first, we studied the impact of matrix deposition and laser ablation on protein extraction from the tissue section. Then, we did a back-correlation of the m / z of the proteins detected by MALDI-MSI to those identified by label-free quantitation. This allowed us to compare the label-free quantitation of proteins obtained in LC-MS/MS with the peak intensities observed in MALDI-MSI. We managed to link identification to nine peaks observed by MALDI-MSI. The results showed that the MSI~LC-MS/MS-LF workflow (i) allowed us to study a representative muscle proteome compared to a classical bottom-up workflow; and (ii) was sparsely impacted by matrix deposition and laser ablation. This workflow, performed as a proof-of-concept, suggests that a single tissue section can be used to perform MALDI-MSI and protein extraction, identification, and relative quantitation.

  18. A Proof of Concept to Bridge the Gap between Mass Spectrometry Imaging, Protein Identification and Relative Quantitation: MSI~LC-MS/MS-LF

    PubMed Central

    Théron, Laëtitia; Centeno, Delphine; Coudy-Gandilhon, Cécile; Pujos-Guillot, Estelle; Astruc, Thierry; Rémond, Didier; Barthelemy, Jean-Claude; Roche, Frédéric; Feasson, Léonard; Hébraud, Michel; Béchet, Daniel; Chambon, Christophe

    2016-01-01

    Mass spectrometry imaging (MSI) is a powerful tool to visualize the spatial distribution of molecules on a tissue section. The main limitation of MALDI-MSI of proteins is the lack of direct identification. Therefore, this study focuses on a MSI~LC-MS/MS-LF workflow to link the results from MALDI-MSI with potential peak identification and label-free quantitation, using only one tissue section. At first, we studied the impact of matrix deposition and laser ablation on protein extraction from the tissue section. Then, we did a back-correlation of the m/z of the proteins detected by MALDI-MSI to those identified by label-free quantitation. This allowed us to compare the label-free quantitation of proteins obtained in LC-MS/MS with the peak intensities observed in MALDI-MSI. We managed to link identification to nine peaks observed by MALDI-MSI. The results showed that the MSI~LC-MS/MS-LF workflow (i) allowed us to study a representative muscle proteome compared to a classical bottom-up workflow; and (ii) was sparsely impacted by matrix deposition and laser ablation. This workflow, performed as a proof-of-concept, suggests that a single tissue section can be used to perform MALDI-MSI and protein extraction, identification, and relative quantitation. PMID:28248242

  19. The mzTab data exchange format: communicating mass-spectrometry-based proteomics and metabolomics experimental results to a wider audience.

    PubMed

    Griss, Johannes; Jones, Andrew R; Sachsenberg, Timo; Walzer, Mathias; Gatto, Laurent; Hartler, Jürgen; Thallinger, Gerhard G; Salek, Reza M; Steinbeck, Christoph; Neuhauser, Nadin; Cox, Jürgen; Neumann, Steffen; Fan, Jun; Reisinger, Florian; Xu, Qing-Wei; Del Toro, Noemi; Pérez-Riverol, Yasset; Ghali, Fawaz; Bandeira, Nuno; Xenarios, Ioannis; Kohlbacher, Oliver; Vizcaíno, Juan Antonio; Hermjakob, Henning

    2014-10-01

    The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The mzTab Data Exchange Format: Communicating Mass-spectrometry-based Proteomics and Metabolomics Experimental Results to a Wider Audience*

    PubMed Central

    Griss, Johannes; Jones, Andrew R.; Sachsenberg, Timo; Walzer, Mathias; Gatto, Laurent; Hartler, Jürgen; Thallinger, Gerhard G.; Salek, Reza M.; Steinbeck, Christoph; Neuhauser, Nadin; Cox, Jürgen; Neumann, Steffen; Fan, Jun; Reisinger, Florian; Xu, Qing-Wei; del Toro, Noemi; Pérez-Riverol, Yasset; Ghali, Fawaz; Bandeira, Nuno; Xenarios, Ioannis; Kohlbacher, Oliver; Vizcaíno, Juan Antonio; Hermjakob, Henning

    2014-01-01

    The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online. PMID:24980485

  1. Label-free Quantitative Proteomics of Mouse Cerebrospinal Fluid Detects β-Site APP Cleaving Enzyme (BACE1) Protease Substrates In Vivo*

    PubMed Central

    Dislich, Bastian; Wohlrab, Felix; Bachhuber, Teresa; Müller, Stephan A.; Kuhn, Peer-Hendrik; Hogl, Sebastian; Meyer-Luehmann, Melanie; Lichtenthaler, Stefan F.

    2015-01-01

    Analysis of murine cerebrospinal fluid (CSF) by quantitative mass spectrometry is challenging because of low CSF volume, low total protein concentration, and the presence of highly abundant proteins such as albumin. We demonstrate that the CSF proteome of individual mice can be analyzed in a quantitative manner to a depth of several hundred proteins in a robust and simple workflow consisting of single ultra HPLC runs on a benchtop mass spectrometer. The workflow is validated by a comparative analysis of BACE1−/− and wild-type mice using label-free quantification. The protease BACE1 cleaves the amyloid precursor protein (APP) as well as several other substrates and is a major drug target in Alzheimer's disease. We identified a total of 715 proteins with at least 2 unique peptides and quantified 522 of those proteins in CSF from BACE1−/− and wild-type mice. Several proteins, including the known BACE1 substrates APP, APLP1, CHL1 and contactin-2 showed lower abundance in the CSF of BACE1−/− mice, demonstrating that BACE1 substrate identification is possible from CSF. Additionally, ectonucleotide pyrophosphatase 5 was identified as a novel BACE1 substrate and validated in cells using immunoblots and by an in vitro BACE1 protease assay. Likewise, receptor-type tyrosine-protein phosphatase N2 and plexin domain-containing 2 were confirmed as BACE1 substrates by in vitro assays. Taken together, our study shows the deepest characterization of the mouse CSF proteome to date and the first quantitative analysis of the CSF proteome of individual mice. The BACE1 substrates identified in CSF may serve as biomarkers to monitor BACE1 activity in Alzheimer patients treated with BACE inhibitors. PMID:26139848

  2. TUBEs-Mass Spectrometry for Identification and Analysis of the Ubiquitin-Proteome.

    PubMed

    Azkargorta, Mikel; Escobes, Iraide; Elortza, Felix; Matthiesen, Rune; Rodríguez, Manuel S

    2016-01-01

    Mass spectrometry (MS) has become the method of choice for the large-scale analysis of protein ubiquitylation. There exist a number of proposed methods for mapping ubiquitin sites, each with different pros and cons. We present here a protocol for the MS analysis of the ubiquitin-proteome captured by TUBEs and subsequent data analysis. Using dedicated software and algorithms, specific information on the presence of ubiquitylated peptides can be obtained from the MS search results. In addition, a quantitative and functional analysis of the ubiquitylated proteins and their interacting partners helps to unravel the biological and molecular processes they are involved in.

  3. Identification of Immunogenic Targets for Lung Cancer Vaccines

    DTIC Science & Technology

    2017-09-01

    quantitative proteomic analysis to identify proteins overexpressed in non-small cell lung cancer cell lines compared with normal lung epithelial...Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public Release; Distribution...Department of the Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

  4. The speciation of the proteome

    PubMed Central

    Jungblut, Peter R; Holzhütter, Hermann G; Apweiler, Rolf; Schlüter, Hartmut

    2008-01-01

    Introduction In proteomics a paradox situation developed in the last years. At one side it is basic knowledge that proteins are post-translationally modified and occur in different isoforms. At the other side the protein expression concept disclaims post-translational modifications by connecting protein names directly with function. Discussion Optimal proteome coverage is today reached by bottom-up liquid chromatography/mass spectrometry. But quantification at the peptide level in shotgun or bottom-up approaches by liquid chromatography and mass spectrometry is completely ignoring that a special peptide may exist in an unmodified form and in several-fold modified forms. The acceptance of the protein species concept is a basic prerequisite for meaningful quantitative analyses in functional proteomics. In discovery approaches only top-down analyses, separating the protein species before digestion, identification and quantification by two-dimensional gel electrophoresis or protein liquid chromatography, allow the correlation between changes of a biological situation and function. Conclusion To obtain biological relevant information kinetics and systems biology have to be performed at the protein species level, which is the major challenge in proteomics today. PMID:18638390

  5. Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (Phospho)Proteomic Profiling.

    PubMed

    Singec, Ilyas; Crain, Andrew M; Hou, Junjie; Tobe, Brian T D; Talantova, Maria; Winquist, Alicia A; Doctor, Kutbuddin S; Choy, Jennifer; Huang, Xiayu; La Monaca, Esther; Horn, David M; Wolf, Dieter A; Lipton, Stuart A; Gutierrez, Gustavo J; Brill, Laurence M; Snyder, Evan Y

    2016-09-13

    Controlled differentiation of human embryonic stem cells (hESCs) can be utilized for precise analysis of cell type identities during early development. We established a highly efficient neural induction strategy and an improved analytical platform, and determined proteomic and phosphoproteomic profiles of hESCs and their specified multipotent neural stem cell derivatives (hNSCs). This quantitative dataset (nearly 13,000 proteins and 60,000 phosphorylation sites) provides unique molecular insights into pluripotency and neural lineage entry. Systems-level comparative analysis of proteins (e.g., transcription factors, epigenetic regulators, kinase families), phosphorylation sites, and numerous biological pathways allowed the identification of distinct signatures in pluripotent and multipotent cells. Furthermore, as predicted by the dataset, we functionally validated an autocrine/paracrine mechanism by demonstrating that the secreted protein midkine is a regulator of neural specification. This resource is freely available to the scientific community, including a searchable website, PluriProt. Published by Elsevier Inc.

  6. Proteomic profiling of an undefined microbial consortium cultured in fermented dairy manure: Methods development.

    PubMed

    Hanson, Andrea J; Paszczynski, Andrzej J; Coats, Erik R

    2016-03-01

    The production of polyhydroxyalkanoates (PHA; bioplastics) from waste or surplus feedstocks using mixed microbial consortia (MMC) and aerobic dynamic feeding (ADF) is a growing field within mixed culture biotechnology. This study aimed to optimize a 2DE workflow to investigate the proteome dynamics of an MMC synthesizing PHA from fermented dairy manure. To mitigate the challenges posed to effective 2DE by this complex sample matrix, the bacterial biomass was purified using Accudenz gradient centrifugation (AGC) before protein extraction. The optimized 2DE method yielded high-quality gels suitable for quantitative comparative analysis and subsequent protein identification by LC-MS/MS. The optimized 2DE method could be adapted to other proteomic investigations involving MMC in complex organic or environmental matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Proteomic analysis of enterotoxigenic Escherichia coli (ETEC) in neutral and alkaline conditions.

    PubMed

    Gonzales-Siles, Lucia; Karlsson, Roger; Kenny, Diarmuid; Karlsson, Anders; Sjöling, Åsa

    2017-01-07

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in children and travelers to endemic areas. Secretion of the heat labile AB 5 toxin (LT) is induced by alkaline conditions. In this study, we determined the surface proteome of ETEC exposed to alkaline conditions (pH 9) as compared to neutral conditions (pH 7) using a LPI Hexalane FlowCell combined with quantitative proteomics. Relative quantitation with isobaric labeling (TMT) was used to compare peptide abundance and their corresponding proteins in multiple samples at MS/MS level. For protein identification and quantification samples were analyzed using either a 1D-LCMS or a 2D-LCMS approach. Strong up-regulation of the ATP synthase operon encoding F1Fo ATP synthase and down-regulation of proton pumping proteins NuoF, NuoG, Ndh and WrbA were detected among proteins involved in regulating the proton and electron transport under alkaline conditions. Reduced expression of proteins involved in osmotic stress was found at alkaline conditions while the Sec-dependent transport over the inner membrane and outer membrane protein proteins such as OmpA and the β-Barrel Assembly Machinery (BAM) complex were up-regulated. ETEC exposed to alkaline environments express a specific proteome profile characterized by up-regulation of membrane proteins and secretion of LT toxin. Alkaline microenvironments have been reported close to the intestinal epithelium and the alkaline proteome may hence represent a better view of ETEC during infection.

  8. Nanodroplet processing platform for deep and quantitative proteome profiling of 10-100 mammalian cells.

    PubMed

    Zhu, Ying; Piehowski, Paul D; Zhao, Rui; Chen, Jing; Shen, Yufeng; Moore, Ronald J; Shukla, Anil K; Petyuk, Vladislav A; Campbell-Thompson, Martha; Mathews, Clayton E; Smith, Richard D; Qian, Wei-Jun; Kelly, Ryan T

    2018-02-28

    Nanoscale or single-cell technologies are critical for biomedical applications. However, current mass spectrometry (MS)-based proteomic approaches require samples comprising a minimum of thousands of cells to provide in-depth profiling. Here, we report the development of a nanoPOTS (nanodroplet processing in one pot for trace samples) platform for small cell population proteomics analysis. NanoPOTS enhances the efficiency and recovery of sample processing by downscaling processing volumes to <200 nL to minimize surface losses. When combined with ultrasensitive liquid chromatography-MS, nanoPOTS allows identification of ~1500 to ~3000 proteins from ~10 to ~140 cells, respectively. By incorporating the Match Between Runs algorithm of MaxQuant, >3000 proteins are consistently identified from as few as 10 cells. Furthermore, we demonstrate quantification of ~2400 proteins from single human pancreatic islet thin sections from type 1 diabetic and control donors, illustrating the application of nanoPOTS for spatially resolved proteome measurements from clinical tissues.

  9. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Ying; Piehowski, Paul D.; Zhao, Rui

    Nanoscale or single-cell technologies are critical for biomedical applications. However, current mass spectrometry (MS)-based proteomic approaches require samples comprising a minimum of thousands of cells to provide in-depth profiling. Here in this paper, we report the development of a nanoPOTS (nanodroplet processing in one pot for trace samples) platform for small cell population proteomics analysis. NanoPOTS enhances the efficiency and recovery of sample processing by downscaling processing volumes to <200 nL to minimize surface losses. When combined with ultrasensitive liquid chromatography-MS, nanoPOTS allows identification of ~1500 to ~3000 proteins from ~10 to ~140 cells, respectively. By incorporating the Match Betweenmore » Runs algorithm of MaxQuant, >3000 proteins are consistently identified from as few as 10 cells. Furthermore, we demonstrate quantification of ~2400 proteins from single human pancreatic islet thin sections from type 1 diabetic and control donors, illustrating the application of nanoPOTS for spatially resolved proteome measurements from clinical tissues.« less

  10. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells

    DOE PAGES

    Zhu, Ying; Piehowski, Paul D.; Zhao, Rui; ...

    2018-02-28

    Nanoscale or single-cell technologies are critical for biomedical applications. However, current mass spectrometry (MS)-based proteomic approaches require samples comprising a minimum of thousands of cells to provide in-depth profiling. Here in this paper, we report the development of a nanoPOTS (nanodroplet processing in one pot for trace samples) platform for small cell population proteomics analysis. NanoPOTS enhances the efficiency and recovery of sample processing by downscaling processing volumes to <200 nL to minimize surface losses. When combined with ultrasensitive liquid chromatography-MS, nanoPOTS allows identification of ~1500 to ~3000 proteins from ~10 to ~140 cells, respectively. By incorporating the Match Betweenmore » Runs algorithm of MaxQuant, >3000 proteins are consistently identified from as few as 10 cells. Furthermore, we demonstrate quantification of ~2400 proteins from single human pancreatic islet thin sections from type 1 diabetic and control donors, illustrating the application of nanoPOTS for spatially resolved proteome measurements from clinical tissues.« less

  11. Cell death proteomics database: consolidating proteomics data on cell death.

    PubMed

    Arntzen, Magnus Ø; Bull, Vibeke H; Thiede, Bernd

    2013-05-03

    Programmed cell death is a ubiquitous process of utmost importance for the development and maintenance of multicellular organisms. More than 10 different types of programmed cell death forms have been discovered. Several proteomics analyses have been performed to gain insight in proteins involved in the different forms of programmed cell death. To consolidate these studies, we have developed the cell death proteomics (CDP) database, which comprehends data from apoptosis, autophagy, cytotoxic granule-mediated cell death, excitotoxicity, mitotic catastrophe, paraptosis, pyroptosis, and Wallerian degeneration. The CDP database is available as a web-based database to compare protein identifications and quantitative information across different experimental setups. The proteomics data of 73 publications were integrated and unified with protein annotations from UniProt-KB and gene ontology (GO). Currently, more than 6,500 records of more than 3,700 proteins are included in the CDP. Comparing apoptosis and autophagy using overrepresentation analysis of GO terms, the majority of enriched processes were found in both, but also some clear differences were perceived. Furthermore, the analysis revealed differences and similarities of the proteome between autophagosomal and overall autophagy. The CDP database represents a useful tool to consolidate data from proteome analyses of programmed cell death and is available at http://celldeathproteomics.uio.no.

  12. Progress on the HUPO Draft Human Proteome: 2017 Metrics of the Human Proteome Project.

    PubMed

    Omenn, Gilbert S; Lane, Lydie; Lundberg, Emma K; Overall, Christopher M; Deutsch, Eric W

    2017-12-01

    The Human Proteome Organization (HUPO) Human Proteome Project (HPP) continues to make progress on its two overall goals: (1) completing the protein parts list, with an annual update of the HUPO draft human proteome, and (2) making proteomics an integrated complement to genomics and transcriptomics throughout biomedical and life sciences research. neXtProt version 2017-01-23 has 17 008 confident protein identifications (Protein Existence [PE] level 1) that are compliant with the HPP Guidelines v2.1 ( https://hupo.org/Guidelines ), up from 13 664 in 2012-12 and 16 518 in 2016-04. Remaining to be found by mass spectrometry and other methods are 2579 "missing proteins" (PE2+3+4), down from 2949 in 2016. PeptideAtlas 2017-01 has 15 173 canonical proteins, accounting for nearly all of the 15 290 PE1 proteins based on MS data. These resources have extensive data on PTMs, single amino acid variants, and splice isoforms. The Human Protein Atlas v16 has 10 492 highly curated protein entries with tissue and subcellular spatial localization of proteins and transcript expression. Organ-specific popular protein lists have been generated for broad use in quantitative targeted proteomics using SRM-MS or DIA-SWATH-MS studies of biology and disease.

  13. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP).

    PubMed

    Ma, Hongyan; Delafield, Daniel G; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion. Graphical Abstract ᅟ.

  14. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    NASA Astrophysics Data System (ADS)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  15. Coatomer subunit beta 2 (COPB2), identified by label-free quantitative proteomics, regulates cell proliferation and apoptosis in human prostate carcinoma cells.

    PubMed

    Mi, Yuanyuan; Sun, Chuanyu; Wei, Bingbing; Sun, Feiyu; Guo, Yijun; Hu, Qingfeng; Ding, Weihong; Zhu, Lijie; Xia, Guowei

    2018-01-01

    Label-free quantitative proteomics has broad applications in the identification of differentially expressed proteins. Here, we applied this method to identify differentially expressed proteins (such as coatomer subunit beta 2 [COPB2]) and evaluated the functions and molecular mechanisms of these proteins in prostate cancer (PCA) cell proliferation. Proteins extracted from surgically resected PCA tissues and adjacent tissues of 3 patients were analyzed by label-free quantitative proteomics. The target protein was confirmed by bioinformatics and GEO dataset analyses. To investigate the role of the target protein in PCA, we used lentivirus-mediated small-interfering RNA (siRNA) to knockdown protein expression in the prostate carcinoma cell line, CWR22RV1 cells and assessed gene and protein expression by reverse transcription quantitative polymerase chain reaction and western blotting. CCK8 and colony formation assays were conducted to evaluate cell proliferation. Cell cycle distributions and apoptosis were assayed by flow cytometry. We selected the differentiation-related protein COPB2 as our target protein based on the results of label-free quantitative proteomics. High expression of COPB2 was found in PCA tissue and was related to poor overall survival based on a public dataset. Cell proliferation was significantly inhibited in COPB2-knockdown CWR22RV1 cells, as demonstrated by CCK8 and colony formation assays. Additionally, the apoptosis rate and percentage of cells in the G 1 phase were increased in COPB2-knockdown cells compared with those in control cells. CDK2, CDK4, and cyclin D1 were downregulated, whereas p21 Waf1/Cip1 and p27 Kip1 were upregulated, affecting the cell cycle signaling pathway. COPB2 significantly promoted CWR22RV1 cell proliferation through the cell cycle signaling pathway. Thus, silencing of COPB2 may have therapeutic applications in PCA. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. ProteoSign: an end-user online differential proteomics statistical analysis platform.

    PubMed

    Efstathiou, Georgios; Antonakis, Andreas N; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Divanach, Peter; Trudgian, David C; Thomas, Benjamin; Papanikolaou, Nikolas; Aivaliotis, Michalis; Acuto, Oreste; Iliopoulos, Ioannis

    2017-07-03

    Profiling of proteome dynamics is crucial for understanding cellular behavior in response to intrinsic and extrinsic stimuli and maintenance of homeostasis. Over the last 20 years, mass spectrometry (MS) has emerged as the most powerful tool for large-scale identification and characterization of proteins. Bottom-up proteomics, the most common MS-based proteomics approach, has always been challenging in terms of data management, processing, analysis and visualization, with modern instruments capable of producing several gigabytes of data out of a single experiment. Here, we present ProteoSign, a freely available web application, dedicated in allowing users to perform proteomics differential expression/abundance analysis in a user-friendly and self-explanatory way. Although several non-commercial standalone tools have been developed for post-quantification statistical analysis of proteomics data, most of them are not end-user appealing as they often require very stringent installation of programming environments, third-party software packages and sometimes further scripting or computer programming. To avoid this bottleneck, we have developed a user-friendly software platform accessible via a web interface in order to enable proteomics laboratories and core facilities to statistically analyse quantitative proteomics data sets in a resource-efficient manner. ProteoSign is available at http://bioinformatics.med.uoc.gr/ProteoSign and the source code at https://github.com/yorgodillo/ProteoSign. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. A Novel Proteomics Approach to Identify SUMOylated Proteins and Their Modification Sites in Human Cells*

    PubMed Central

    Galisson, Frederic; Mahrouche, Louiza; Courcelles, Mathieu; Bonneil, Eric; Meloche, Sylvain; Chelbi-Alix, Mounira K.; Thibault, Pierre

    2011-01-01

    The small ubiquitin-related modifier (SUMO) is a small group of proteins that are reversibly attached to protein substrates to modify their functions. The large scale identification of protein SUMOylation and their modification sites in mammalian cells represents a significant challenge because of the relatively small number of in vivo substrates and the dynamic nature of this modification. We report here a novel proteomics approach to selectively enrich and identify SUMO conjugates from human cells. We stably expressed different SUMO paralogs in HEK293 cells, each containing a His6 tag and a strategically located tryptic cleavage site at the C terminus to facilitate the recovery and identification of SUMOylated peptides by affinity enrichment and mass spectrometry. Tryptic peptides with short SUMO remnants offer significant advantages in large scale SUMOylome experiments including the generation of paralog-specific fragment ions following CID and ETD activation, and the identification of modified peptides using conventional database search engines such as Mascot. We identified 205 unique protein substrates together with 17 precise SUMOylation sites present in 12 SUMO protein conjugates including three new sites (Lys-380, Lys-400, and Lys-497) on the protein promyelocytic leukemia. Label-free quantitative proteomics analyses on purified nuclear extracts from untreated and arsenic trioxide-treated cells revealed that all identified SUMOylated sites of promyelocytic leukemia were differentially SUMOylated upon stimulation. PMID:21098080

  18. Study of cellular oncometabolism via multidimensional protein identification technology.

    PubMed

    Aukim-Hastie, Claire; Garbis, Spiros D

    2014-01-01

    Cellular proteomics is becoming a widespread clinical application, matching the definition of bench-to-bedside translation. Among various fields of investigation, this approach can be applied to the study of the metabolic alterations that accompany oncogenesis and tumor progression, which are globally referred to as oncometabolism. Here, we describe a multidimensional protein identification technology (MuDPIT)-based strategy that can be employed to study the cellular proteome of malignant cells and tissues. This method has previously been shown to be compatible with the reproducible, in-depth analysis of up to a thousand proteins in clinical samples. The possibility to employ this technique to study clinical specimens demonstrates its robustness. MuDPIT is advantageous as compared to other approaches because it is direct, highly sensitive, and reproducible, it provides high resolution with ultra-high mass accuracy, it allows for relative quantifications, and it is compatible with multiplexing (thus limiting costs).This method enables the direct assessment of the proteomic profile of neoplastic cells and tissues and could be employed in the near future as a high-throughput, rapid, quantitative, and cost-effective screening platform for clinical samples. © 2014 Elsevier Inc. All rights reserved.

  19. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics.

    PubMed

    Chahrour, Osama; Cobice, Diego; Malone, John

    2015-09-10

    Mass-spectrometry based proteomics has evolved as a promising technology over the last decade and is undergoing a dramatic development in a number of different areas, such as; mass spectrometric instrumentation, peptide identification algorithms and bioinformatic computational data analysis. The improved methodology allows quantitative measurement of relative or absolute protein amounts, which is essential for gaining insights into their functions and dynamics in biological systems. Several different strategies involving stable isotopes label (ICAT, ICPL, IDBEST, iTRAQ, TMT, IPTL, SILAC), label-free statistical assessment approaches (MRM, SWATH) and absolute quantification methods (AQUA) are possible, each having specific strengths and weaknesses. Inductively coupled plasma mass spectrometry (ICP-MS), which is still widely recognised as elemental detector, has recently emerged as a complementary technique to the previous methods. The new application area for ICP-MS is targeting the fast growing field of proteomics related research, allowing absolute protein quantification using suitable elemental based tags. This document describes the different stable isotope labelling methods which incorporate metabolic labelling in live cells, ICP-MS based detection and post-harvest chemical label tagging for protein quantification, in addition to summarising their pros and cons. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The PROTICdb database for 2-DE proteomics.

    PubMed

    Langella, Olivier; Zivy, Michel; Joets, Johann

    2007-01-01

    PROTICdb is a web-based database mainly designed to store and analyze plant proteome data obtained by 2D polyacrylamide gel electrophoresis (2D PAGE) and mass spectrometry (MS). The goals of PROTICdb are (1) to store, track, and query information related to proteomic experiments, i.e., from tissue sampling to protein identification and quantitative measurements; and (2) to integrate information from the user's own expertise and other sources into a knowledge base, used to support data interpretation (e.g., for the determination of allelic variants or products of posttranslational modifications). Data insertion into the relational database of PROTICdb is achieved either by uploading outputs from Mélanie, PDQuest, IM2d, ImageMaster(tm) 2D Platinum v5.0, Progenesis, Sequest, MS-Fit, and Mascot software, or by filling in web forms (experimental design and methods). 2D PAGE-annotated maps can be displayed, queried, and compared through the GelBrowser. Quantitative data can be easily exported in a tabulated format for statistical analyses with any third-party software. PROTICdb is based on the Oracle or the PostgreSQLDataBase Management System (DBMS) and is freely available upon request at http://cms.moulon.inra.fr/content/view/14/44/.

  1. Towards a proteome signature for invasive ductal breast carcinoma derived from label-free nanoscale LC-MS protein expression profiling of tumorous and glandular tissue.

    PubMed

    Röwer, Claudia; Vissers, Johannes P C; Koy, Cornelia; Kipping, Marc; Hecker, Michael; Reimer, Toralf; Gerber, Bernd; Thiesen, Hans-Jürgen; Glocker, Michael O

    2009-12-01

    As more and more alternative treatments become available for breast carcinoma, there is a need to stratify patients and individual molecular information seems to be suitable for this purpose. In this study, we applied label-free protein quantitation by nanoscale LC-MS and investigated whether this approach could be used for defining a proteome signature for invasive ductal breast carcinoma. Tissue samples from healthy breast and tumor were collected from three patients. Protein identifications were based on LC-MS peptide fragmentation data which were obtained simultaneously to the quantitative information. Hereby, an invasive ductal breast carcinoma proteome signature was generated which contains 60 protein entries. The on-column concentrations for osteoinductive factor, vimentin, GAP-DH, and NDKA are provided as examples. These proteins represent distinctive gene ontology groups of differentially expressed proteins and are discussed as risk markers for primary tumor pathogenesis. The developed methodology has been found well applicable in a clinical environment in which standard operating procedures can be kept; a prerequisite for the definition of molecular parameter sets that shall be capable for stratification of patients.

  2. Sperm Proteome: What Is on the Horizon?

    PubMed

    Mohanty, Gayatri; Swain, Nirlipta; Samanta, Luna

    2015-06-01

    As the mammalian spermatozoa transcends from the testis to the end of the epididymal tubule, the functionally incompetent spermatozoa acquires its fertilizing capability. Molecular changes in the spermatozoa at the posttesticular level concern qualitative and quantitative modifications of proteins along with their sugar moieties and membranous lipids mostly associated with motility, egg binding, and penetration processes. Proteomic studies have identified numerous sperm-specific proteins, and recent reports have provided a further understanding of their function with respect to male fertility. High-throughput techniques such as mass spectrometry have shown drastic potential for the identification and study of sperm proteins. In fact, compelling evidence has provided that proteins are critically important in cellular remodeling event and that aberrant expression is associated with pronounced defects in sperm function. This review highlights the posttesticular functional transformation in the epididymis and female reproductive tract with due emphasis on proteomics. © The Author(s) 2014.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanov, Bogdan; Smith, Richard D.

    This review offers a broad overview of recent FTICR applications and technological developments in the field of proteomics, directed to a variety of people with different expertise and interests. Both the ''bottom-up'' (peptide level) and ''top-down'' (intact protein level) approaches will be covered and various related aspects will be discussed and illustrated with examples that are among the best available references in the literature. ''Bottom-up topics include peptide fragmentation, the AMT approach and DREAMS technology, quantitative proteomics, post-translational modifications, and special FTICR software focused on peptide and protein identification. Topics in the ''top-down'' part include various aspects of high-mass measurements,more » protein tandem mass spectrometry, protein confirmations, protein-protein complexes, as well as some esoteric applications that may become more practical in the coming years. Finally, examples of integrating both approaches and medical proteomics applications using FTICR will be provided, closing with an outlook of what may be coming our way sooner than later.« less

  4. Methods, Tools and Current Perspectives in Proteogenomics *

    PubMed Central

    Ruggles, Kelly V.; Krug, Karsten; Wang, Xiaojing; Clauser, Karl R.; Wang, Jing; Payne, Samuel H.; Fenyö, David; Zhang, Bing; Mani, D. R.

    2017-01-01

    With combined technological advancements in high-throughput next-generation sequencing and deep mass spectrometry-based proteomics, proteogenomics, i.e. the integrative analysis of proteomic and genomic data, has emerged as a new research field. Early efforts in the field were focused on improving protein identification using sample-specific genomic and transcriptomic sequencing data. More recently, integrative analysis of quantitative measurements from genomic and proteomic studies have identified novel insights into gene expression regulation, cell signaling, and disease. Many methods and tools have been developed or adapted to enable an array of integrative proteogenomic approaches and in this article, we systematically classify published methods and tools into four major categories, (1) Sequence-centric proteogenomics; (2) Analysis of proteogenomic relationships; (3) Integrative modeling of proteogenomic data; and (4) Data sharing and visualization. We provide a comprehensive review of methods and available tools in each category and highlight their typical applications. PMID:28456751

  5. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities.

    PubMed

    Lapek, John D; Greninger, Patricia; Morris, Robert; Amzallag, Arnaud; Pruteanu-Malinici, Iulian; Benes, Cyril H; Haas, Wilhelm

    2017-10-01

    The formation of protein complexes and the co-regulation of the cellular concentrations of proteins are essential mechanisms for cellular signaling and for maintaining homeostasis. Here we use isobaric-labeling multiplexed proteomics to analyze protein co-regulation and show that this allows the identification of protein-protein associations with high accuracy. We apply this 'interactome mapping by high-throughput quantitative proteome analysis' (IMAHP) method to a panel of 41 breast cancer cell lines and show that deviations of the observed protein co-regulations in specific cell lines from the consensus network affects cellular fitness. Furthermore, these aberrant interactions serve as biomarkers that predict the drug sensitivity of cell lines in screens across 195 drugs. We expect that IMAHP can be broadly used to gain insight into how changing landscapes of protein-protein associations affect the phenotype of biological systems.

  6. The Expanding Landscape of the Thiol Redox Proteome*

    PubMed Central

    Yang, Jing; Carroll, Kate S.; Liebler, Daniel C.

    2016-01-01

    Cysteine occupies a unique place in protein chemistry. The nucleophilic thiol group allows cysteine to undergo a broad range of redox modifications beyond classical thiol-disulfide redox equilibria, including S-sulfenylation (-SOH), S-sulfinylation (-SO2H), S-sulfonylation (-SO3H), S-nitrosylation (-SNO), S-sulfhydration (-SSH), S-glutathionylation (-SSG), and others. Emerging evidence suggests that these post-translational modifications (PTM) are important in cellular redox regulation and protection against oxidative damage. Identification of protein targets of thiol redox modifications is crucial to understanding their roles in biology and disease. However, analysis of these highly labile and dynamic modifications poses challenges. Recent advances in the design of probes for thiol redox forms, together with innovative mass spectrometry based chemoproteomics methods make it possible to perform global, site-specific, and quantitative analyses of thiol redox modifications in complex proteomes. Here, we review chemical proteomic strategies used to expand the landscape of thiol redox modifications. PMID:26518762

  7. Quantitative proteomics in biological research.

    PubMed

    Wilm, Matthias

    2009-10-01

    Proteomics has enabled the direct investigation of biological material, at first through the analysis of individual proteins, then of lysates from cell cultures, and finally of extracts from tissues and biopsies from entire organisms. Its latest manifestation - quantitative proteomics - allows deeper insight into biological systems. This article reviews the different methods used to extract quantitative information from mass spectra. It follows the technical developments aimed toward global proteomics, the attempt to characterize every expressed protein in a cell by at least one peptide. When applications of the technology are discussed, the focus is placed on yeast biology. In particular, differential quantitative proteomics, the comparison between an experiment and its control, is very discriminating for proteins involved in the process being studied. When trying to understand biological processes on a molecular level, differential quantitative proteomics tends to give a clearer picture than global transcription analyses. As a result, MS has become an even more indispensable tool for biochemically motivated biological research.

  8. Evaluation of empirical rule of linearly correlated peptide selection (ERLPS) for proteotypic peptide-based quantitative proteomics.

    PubMed

    Liu, Kehui; Zhang, Jiyang; Fu, Bin; Xie, Hongwei; Wang, Yingchun; Qian, Xiaohong

    2014-07-01

    Precise protein quantification is essential in comparative proteomics. Currently, quantification bias is inevitable when using proteotypic peptide-based quantitative proteomics strategy for the differences in peptides measurability. To improve quantification accuracy, we proposed an "empirical rule for linearly correlated peptide selection (ERLPS)" in quantitative proteomics in our previous work. However, a systematic evaluation on general application of ERLPS in quantitative proteomics under diverse experimental conditions needs to be conducted. In this study, the practice workflow of ERLPS was explicitly illustrated; different experimental variables, such as, different MS systems, sample complexities, sample preparations, elution gradients, matrix effects, loading amounts, and other factors were comprehensively investigated to evaluate the applicability, reproducibility, and transferability of ERPLS. The results demonstrated that ERLPS was highly reproducible and transferable within appropriate loading amounts and linearly correlated response peptides should be selected for each specific experiment. ERLPS was used to proteome samples from yeast to mouse and human, and in quantitative methods from label-free to O18/O16-labeled and SILAC analysis, and enabled accurate measurements for all proteotypic peptide-based quantitative proteomics over a large dynamic range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics.

    PubMed

    Prudova, Anna; auf dem Keller, Ulrich; Butler, Georgina S; Overall, Christopher M

    2010-05-01

    Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses using iTRAQ-TAILS links gelatinases with new mechanisms of action in angiogenesis and reveals unpredicted restrictions in substrate repertoires for these two very similar proteases.

  10. Multiplex N-terminome Analysis of MMP-2 and MMP-9 Substrate Degradomes by iTRAQ-TAILS Quantitative Proteomics*

    PubMed Central

    Prudova, Anna; auf dem Keller, Ulrich; Butler, Georgina S.; Overall, Christopher M.

    2010-01-01

    Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses using iTRAQ-TAILS links gelatinases with new mechanisms of action in angiogenesis and reveals unpredicted restrictions in substrate repertoires for these two very similar proteases. PMID:20305284

  11. Label-Free Quantitative Proteomic Analysis of Harmless and Pathogenic Strains of Infectious Microalgae, Prototheca spp.

    PubMed Central

    Murugaiyan, Jayaseelan; Eravci, Murat; Weise, Christoph; Roesler, Uwe

    2016-01-01

    Microalgae of the genus Prototheca (P.) spp are associated with rare algal infections of invertebrates termed protothecosis. Among the seven generally accepted species, P. zopfii genotype 2 (GT2) is associated with a severe form of bovine mastitis while P. blaschkeae causes the mild and sub-clinical form of mastitis. The reason behind the infectious nature of P. zopfii GT2, while genotype 1 (GT1) remains non-infectious, is not known. Therefore, in the present study we investigated the protein expression level difference between the genotypes of P. zopfii and P. blaschkeae. Cells were cultured to the mid-exponential phase, harvested, and processed for LC-MS analysis. Peptide data was acquired on an LTQ Orbitrap Velos, raw spectra were quantitatively analyzed with MaxQuant software and matching with the reference database of Chlorella variabilis and Auxenochlorella protothecoides resulted in the identification of 226 proteins. Comparison of an environmental strain with infectious strains resulted in the identification of 51 differentially expressed proteins related to carbohydrate metabolism, energy production and protein translation. The expression level of Hsp70 proteins and their role in the infectious process is worth further investigation. All mass spectrometry data are available via ProteomeXchange with identifier PXD005305. PMID:28036087

  12. GProX, a user-friendly platform for bioinformatics analysis and visualization of quantitative proteomics data.

    PubMed

    Rigbolt, Kristoffer T G; Vanselow, Jens T; Blagoev, Blagoy

    2011-08-01

    Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)(1). The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net.

  13. GProX, a User-Friendly Platform for Bioinformatics Analysis and Visualization of Quantitative Proteomics Data*

    PubMed Central

    Rigbolt, Kristoffer T. G.; Vanselow, Jens T.; Blagoev, Blagoy

    2011-01-01

    Recent technological advances have made it possible to identify and quantify thousands of proteins in a single proteomics experiment. As a result of these developments, the analysis of data has become the bottleneck of proteomics experiment. To provide the proteomics community with a user-friendly platform for comprehensive analysis, inspection and visualization of quantitative proteomics data we developed the Graphical Proteomics Data Explorer (GProX)1. The program requires no special bioinformatics training, as all functions of GProX are accessible within its graphical user-friendly interface which will be intuitive to most users. Basic features facilitate the uncomplicated management and organization of large data sets and complex experimental setups as well as the inspection and graphical plotting of quantitative data. These are complemented by readily available high-level analysis options such as database querying, clustering based on abundance ratios, feature enrichment tests for e.g. GO terms and pathway analysis tools. A number of plotting options for visualization of quantitative proteomics data is available and most analysis functions in GProX create customizable high quality graphical displays in both vector and bitmap formats. The generic import requirements allow data originating from essentially all mass spectrometry platforms, quantitation strategies and software to be analyzed in the program. GProX represents a powerful approach to proteomics data analysis providing proteomics experimenters with a toolbox for bioinformatics analysis of quantitative proteomics data. The program is released as open-source and can be freely downloaded from the project webpage at http://gprox.sourceforge.net. PMID:21602510

  14. A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography-mass spectrometry.

    PubMed

    Li, Xiao-jun; Yi, Eugene C; Kemp, Christopher J; Zhang, Hui; Aebersold, Ruedi

    2005-09-01

    There is an increasing interest in the quantitative proteomic measurement of the protein contents of substantially similar biological samples, e.g. for the analysis of cellular response to perturbations over time or for the discovery of protein biomarkers from clinical samples. Technical limitations of current proteomic platforms such as limited reproducibility and low throughput make this a challenging task. A new LC-MS-based platform is able to generate complex peptide patterns from the analysis of proteolyzed protein samples at high throughput and represents a promising approach for quantitative proteomics. A crucial component of the LC-MS approach is the accurate evaluation of the abundance of detected peptides over many samples and the identification of peptide features that can stratify samples with respect to their genetic, physiological, or environmental origins. We present here a new software suite, SpecArray, that generates a peptide versus sample array from a set of LC-MS data. A peptide array stores the relative abundance of thousands of peptide features in many samples and is in a format identical to that of a gene expression microarray. A peptide array can be subjected to an unsupervised clustering analysis to stratify samples or to a discriminant analysis to identify discriminatory peptide features. We applied the SpecArray to analyze two sets of LC-MS data: one was from four repeat LC-MS analyses of the same glycopeptide sample, and another was from LC-MS analysis of serum samples of five male and five female mice. We demonstrate through these two study cases that the SpecArray software suite can serve as an effective software platform in the LC-MS approach for quantitative proteomics.

  15. SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers.

    PubMed

    Zanivan, Sara; Maione, Federica; Hein, Marco Y; Hernández-Fernaud, Juan Ramon; Ostasiewicz, Pawel; Giraudo, Enrico; Mann, Matthias

    2013-12-01

    Proteomics has been successfully used for cell culture on dishes, but more complex cellular systems have proven to be challenging and so far poorly approached with proteomics. Because of the complexity of the angiogenic program, we still do not have a complete understanding of the molecular mechanisms involved in this process, and there have been no in depth quantitative proteomic studies. Plating endothelial cells on matrigel recapitulates aspects of vessel growth, and here we investigate this mechanism by using a spike-in SILAC quantitative proteomic approach. By comparing proteomic changes in primary human endothelial cells morphogenesis on matrigel to general adhesion mechanisms in cells spreading on culture dish, we pinpoint pathways and proteins modulated by endothelial cells. The cell-extracellular matrix adhesion proteome depends on the adhesion substrate, and a detailed proteomic profile of the extracellular matrix secreted by endothelial cells identified CLEC14A as a matrix component, which binds to MMRN2. We verify deregulated levels of these proteins during tumor angiogenesis in models of multistage carcinogenesis. This is the most in depth quantitative proteomic study of endothelial cell morphogenesis, which shows the potential of applying high accuracy quantitative proteomics to in vitro models of vessel growth to shed new light on mechanisms that accompany pathological angiogenesis. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000359.

  16. Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications.

    PubMed

    Jimenez, Connie R; Verheul, Henk M W

    2014-01-01

    Proteomics is optimally suited to bridge the gap between genomic information on the one hand and biologic functions and disease phenotypes at the other, since it studies the expression and/or post-translational modification (especially phosphorylation) of proteins--the major cellular players bringing about cellular functions--at a global level in biologic specimens. Mass spectrometry technology and (bio)informatic tools have matured to the extent that they can provide high-throughput, comprehensive, and quantitative protein inventories of cells, tissues, and biofluids in clinical samples at low level. In this article, we focus on next-generation proteomics employing nanoliquid chromatography coupled to high-resolution tandem mass spectrometry for in-depth (phospho)protein profiling of tumor tissues and (proximal) biofluids, with a focus on studies employing clinical material. In addition, we highlight emerging proteogenomic approaches for the identification of tumor-specific protein variants, and targeted multiplex mass spectrometry strategies for large-scale biomarker validation. Below we provide a discussion of recent progress, some research highlights, and challenges that remain for clinical translation of proteomic discoveries.

  17. Elucidation of cross-species proteomic effects in human and hominin bone proteome identification through a bioinformatics experiment.

    PubMed

    Welker, F

    2018-02-20

    The study of ancient protein sequences is increasingly focused on the analysis of older samples, including those of ancient hominins. The analysis of such ancient proteomes thereby potentially suffers from "cross-species proteomic effects": the loss of peptide and protein identifications at increased evolutionary distances due to a larger number of protein sequence differences between the database sequence and the analyzed organism. Error-tolerant proteomic search algorithms should theoretically overcome this problem at both the peptide and protein level; however, this has not been demonstrated. If error-tolerant searches do not overcome the cross-species proteomic issue then there might be inherent biases in the identified proteomes. Here, a bioinformatics experiment is performed to test this using a set of modern human bone proteomes and three independent searches against sequence databases at increasing evolutionary distances: the human (0 Ma), chimpanzee (6-8 Ma) and orangutan (16-17 Ma) reference proteomes, respectively. Incorrectly suggested amino acid substitutions are absent when employing adequate filtering criteria for mutable Peptide Spectrum Matches (PSMs), but roughly half of the mutable PSMs were not recovered. As a result, peptide and protein identification rates are higher in error-tolerant mode compared to non-error-tolerant searches but did not recover protein identifications completely. Data indicates that peptide length and the number of mutations between the target and database sequences are the main factors influencing mutable PSM identification. The error-tolerant results suggest that the cross-species proteomics problem is not overcome at increasing evolutionary distances, even at the protein level. Peptide and protein loss has the potential to significantly impact divergence dating and proteome comparisons when using ancient samples as there is a bias towards the identification of conserved sequences and proteins. Effects are minimized between moderately divergent proteomes, as indicated by almost complete recovery of informative positions in the search against the chimpanzee proteome (≈90%, 6-8 Ma). This provides a bioinformatic background to future phylogenetic and proteomic analysis of ancient hominin proteomes, including the future description of novel hominin amino acid sequences, but also has negative implications for the study of fast-evolving proteins in hominins, non-hominin animals, and ancient bacterial proteins in evolutionary contexts.

  18. A Method for Label-Free, Differential Top-Down Proteomics.

    PubMed

    Ntai, Ioanna; Toby, Timothy K; LeDuc, Richard D; Kelleher, Neil L

    2016-01-01

    Biomarker discovery in the translational research has heavily relied on labeled and label-free quantitative bottom-up proteomics. Here, we describe a new approach to biomarker studies that utilizes high-throughput top-down proteomics and is the first to offer whole protein characterization and relative quantitation within the same experiment. Using yeast as a model, we report procedures for a label-free approach to quantify the relative abundance of intact proteins ranging from 0 to 30 kDa in two different states. In this chapter, we describe the integrated methodology for the large-scale profiling and quantitation of the intact proteome by liquid chromatography-mass spectrometry (LC-MS) without the need for metabolic or chemical labeling. This recent advance for quantitative top-down proteomics is best implemented with a robust and highly controlled sample preparation workflow before data acquisition on a high-resolution mass spectrometer, and the application of a hierarchical linear statistical model to account for the multiple levels of variance contained in quantitative proteomic comparisons of samples for basic and clinical research.

  19. Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes

    PubMed Central

    Virant-Klun, Irma; Leicht, Stefan; Hughes, Christopher; Krijgsveld, Jeroen

    2016-01-01

    Oocytes undergo a range of complex processes via oogenesis, maturation, fertilization, and early embryonic development, eventually giving rise to a fully functioning organism. To understand proteome composition and diversity during maturation of human oocytes, here we have addressed crucial aspects of oocyte collection and proteome analysis, resulting in the first proteome and secretome maps of human oocytes. Starting from 100 oocytes collected via a novel serum-free hanging drop culture system, we identified 2,154 proteins, whose function indicate that oocytes are largely resting cells with a proteome that is tailored for homeostasis, cellular attachment, and interaction with its environment via secretory factors. In addition, we have identified 158 oocyte-enriched proteins (such as ECAT1, PIWIL3, NLRP7)1 not observed in high-coverage proteomics studies of other human cell lines or tissues. Exploiting SP3, a novel technology for proteomic sample preparation using magnetic beads, we scaled down proteome analysis to single cells. Despite the low protein content of only ∼100 ng per cell, we consistently identified ∼450 proteins from individual oocytes. When comparing individual oocytes at the germinal vesicle (GV) and metaphase II (MII) stage, we found that the Tudor and KH domain-containing protein (TDRKH) is preferentially expressed in immature oocytes, while Wee2, PCNA, and DNMT1 were enriched in mature cells, collectively indicating that maintenance of genome integrity is crucial during oocyte maturation. This study demonstrates that an innovative proteomics workflow facilitates analysis of single human oocytes to investigate human oocyte biology and preimplantation development. The approach presented here paves the way for quantitative proteomics in other quantity-limited tissues and cell types. Data associated with this study are available via ProteomeXchange with identifier PXD004142. PMID:27215607

  20. Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes.

    PubMed

    Virant-Klun, Irma; Leicht, Stefan; Hughes, Christopher; Krijgsveld, Jeroen

    2016-08-01

    Oocytes undergo a range of complex processes via oogenesis, maturation, fertilization, and early embryonic development, eventually giving rise to a fully functioning organism. To understand proteome composition and diversity during maturation of human oocytes, here we have addressed crucial aspects of oocyte collection and proteome analysis, resulting in the first proteome and secretome maps of human oocytes. Starting from 100 oocytes collected via a novel serum-free hanging drop culture system, we identified 2,154 proteins, whose function indicate that oocytes are largely resting cells with a proteome that is tailored for homeostasis, cellular attachment, and interaction with its environment via secretory factors. In addition, we have identified 158 oocyte-enriched proteins (such as ECAT1, PIWIL3, NLRP7)(1) not observed in high-coverage proteomics studies of other human cell lines or tissues. Exploiting SP3, a novel technology for proteomic sample preparation using magnetic beads, we scaled down proteome analysis to single cells. Despite the low protein content of only ∼100 ng per cell, we consistently identified ∼450 proteins from individual oocytes. When comparing individual oocytes at the germinal vesicle (GV) and metaphase II (MII) stage, we found that the Tudor and KH domain-containing protein (TDRKH) is preferentially expressed in immature oocytes, while Wee2, PCNA, and DNMT1 were enriched in mature cells, collectively indicating that maintenance of genome integrity is crucial during oocyte maturation. This study demonstrates that an innovative proteomics workflow facilitates analysis of single human oocytes to investigate human oocyte biology and preimplantation development. The approach presented here paves the way for quantitative proteomics in other quantity-limited tissues and cell types. Data associated with this study are available via ProteomeXchange with identifier PXD004142. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome

    PubMed Central

    Chaudhuri, Roy R.; Yu, Lu; Kanji, Alpa; Perkins, Timothy T.; Gardner, Paul P.; Choudhary, Jyoti; Maskell, Duncan J.

    2011-01-01

    Campylobacter jejuni is the most common bacterial cause of foodborne disease in the developed world. Its general physiology and biochemistry, as well as the mechanisms enabling it to colonize and cause disease in various hosts, are not well understood, and new approaches are required to understand its basic biology. High-throughput sequencing technologies provide unprecedented opportunities for functional genomic research. Recent studies have shown that direct Illumina sequencing of cDNA (RNA-seq) is a useful technique for the quantitative and qualitative examination of transcriptomes. In this study we report RNA-seq analyses of the transcriptomes of C. jejuni (NCTC11168) and its rpoN mutant. This has allowed the identification of hitherto unknown transcriptional units, and further defines the regulon that is dependent on rpoN for expression. The analysis of the NCTC11168 transcriptome was supplemented by additional proteomic analysis using liquid chromatography-MS. The transcriptomic and proteomic datasets represent an important resource for the Campylobacter research community. PMID:21816880

  2. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    PubMed Central

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  3. Quantitative proteomics in cardiovascular research: global and targeted strategies

    PubMed Central

    Shen, Xiaomeng; Young, Rebeccah; Canty, John M.; Qu, Jun

    2014-01-01

    Extensive technical advances in the past decade have substantially expanded quantitative proteomics in cardiovascular research. This has great promise for elucidating the mechanisms of cardiovascular diseases (CVD) and the discovery of cardiac biomarkers used for diagnosis and treatment evaluation. Global and targeted proteomics are the two major avenues of quantitative proteomics. While global approaches enable unbiased discovery of altered proteins via relative quantification at the proteome level, targeted techniques provide higher sensitivity and accuracy, and are capable of multiplexed absolute quantification in numerous clinical/biological samples. While promising, technical challenges need to be overcome to enable full utilization of these techniques in cardiovascular medicine. Here we discuss recent advances in quantitative proteomics and summarize applications in cardiovascular research with an emphasis on biomarker discovery and elucidating molecular mechanisms of disease. We propose the integration of global and targeted strategies as a high-throughput pipeline for cardiovascular proteomics. Targeted approaches enable rapid, extensive validation of biomarker candidates discovered by global proteomics. These approaches provide a promising alternative to immunoassays and other low-throughput means currently used for limited validation. PMID:24920501

  4. Comprehensive genome-wide proteomic analysis of human placental tissue for the Chromosome-Centric Human Proteome Project.

    PubMed

    Lee, Hyoung-Joo; Jeong, Seul-Ki; Na, Keun; Lee, Min Jung; Lee, Sun Hee; Lim, Jong-Sun; Cha, Hyun-Jeong; Cho, Jin-Young; Kwon, Ja-Young; Kim, Hoguen; Song, Si Young; Yoo, Jong Shin; Park, Young Mok; Kim, Hail; Hancock, William S; Paik, Young-Ki

    2013-06-07

    As a starting point of the Chromosome-Centric Human Proteome Project (C-HPP), we established strategies of genome-wide proteomic analysis, including protein identification, quantitation of disease-specific proteins, and assessment of post-translational modifications, using paired human placental tissues from healthy and preeclampsia patients. This analysis resulted in identification of 4239 unique proteins with high confidence (two or more unique peptides with a false discovery rate less than 1%), covering 21% of approximately 20, 059 (Ensembl v69, Oct 2012) human proteins, among which 28 proteins exhibited differentially expressed preeclampsia-specific proteins. When these proteins are assigned to all human chromosomes, the pattern of the newly identified placental protein population is proportional to that of the gene count distribution of each chromosome. We also identified 219 unique N-linked glycopeptides, 592 unique phosphopeptides, and 66 chromosome 13-specific proteins. In particular, protein evidence of 14 genes previously known to be specifically up-regulated in human placenta was verified by mass spectrometry. With respect to the functional implication of these proteins, 38 proteins were found to be involved in regulatory factor biosynthesis or the immune system in the placenta, but the molecular mechanism of these proteins during pregnancy warrants further investigation. As far as we know, this work produced the highest number of proteins identified in the placenta and will be useful for annotating and mapping all proteins encoded in the human genome.

  5. The mzqLibrary--An open source Java library supporting the HUPO-PSI quantitative proteomics standard.

    PubMed

    Qi, Da; Zhang, Huaizhong; Fan, Jun; Perkins, Simon; Pisconti, Addolorata; Simpson, Deborah M; Bessant, Conrad; Hubbard, Simon; Jones, Andrew R

    2015-09-01

    The mzQuantML standard has been developed by the Proteomics Standards Initiative for capturing, archiving and exchanging quantitative proteomic data, derived from mass spectrometry. It is a rich XML-based format, capable of representing data about two-dimensional features from LC-MS data, and peptides, proteins or groups of proteins that have been quantified from multiple samples. In this article we report the development of an open source Java-based library of routines for mzQuantML, called the mzqLibrary, and associated software for visualising data called the mzqViewer. The mzqLibrary contains routines for mapping (peptide) identifications on quantified features, inference of protein (group)-level quantification values from peptide-level values, normalisation and basic statistics for differential expression. These routines can be accessed via the command line, via a Java programming interface access or a basic graphical user interface. The mzqLibrary also contains several file format converters, including import converters (to mzQuantML) from OpenMS, Progenesis LC-MS and MaxQuant, and exporters (from mzQuantML) to other standards or useful formats (mzTab, HTML, csv). The mzqViewer contains in-built routines for viewing the tables of data (about features, peptides or proteins), and connects to the R statistical library for more advanced plotting options. The mzqLibrary and mzqViewer packages are available from https://code.google.com/p/mzq-lib/. © 2015 The Authors. PROTEOMICS Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Urine Sample Preparation in 96-Well Filter Plates for Quantitative Clinical Proteomics

    PubMed Central

    2015-01-01

    Urine is an important, noninvasively collected body fluid source for the diagnosis and prognosis of human diseases. Liquid chromatography mass spectrometry (LC-MS) based shotgun proteomics has evolved as a sensitive and informative technique to discover candidate disease biomarkers from urine specimens. Filter-aided sample preparation (FASP) generates peptide samples from protein mixtures of cell lysate or body fluid origin. Here, we describe a FASP method adapted to 96-well filter plates, named 96FASP. Soluble urine concentrates containing ∼10 μg of total protein were processed by 96FASP and LC-MS resulting in 700–900 protein identifications at a 1% false discovery rate (FDR). The experimental repeatability, as assessed by label-free quantification and Pearson correlation analysis for shared proteins among replicates, was high (R ≥ 0.97). Application to urinary pellet lysates which is of particular interest in the context of urinary tract infection analysis was also demonstrated. On average, 1700 proteins (±398) were identified in five experiments. In a pilot study using 96FASP for analysis of eight soluble urine samples, we demonstrated that protein profiles of technical replicates invariably clustered; the protein profiles for distinct urine donors were very different from each other. Robust, highly parallel methods to generate peptide mixtures from urine and other body fluids are critical to increase cost-effectiveness in clinical proteomics projects. This 96FASP method has potential to become a gold standard for high-throughput quantitative clinical proteomics. PMID:24797144

  7. New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis.

    PubMed

    Xia, Kai; Zang, Ning; Zhang, Junmei; Zhang, Hong; Li, Yudong; Liu, Ye; Feng, Wei; Liang, Xinle

    2016-12-05

    Acetobacter pasteurianus is the main starter in rice vinegar manufacturing due to its remarkable abilities to resist and produce acetic acid. Although several mechanisms of acetic acid resistance have been proposed and only a few effector proteins have been identified, a comprehensive depiction of the biological processes involved in acetic acid resistance is needed. In this study, iTRAQ-based quantitative proteomic analysis was adopted to investigate the whole proteome of different acidic titers (3.6, 7.1 and 9.3%, w/v) of Acetobacter pasteurianus Ab3 during the vinegar fermentation process. Consequently, 1386 proteins, including 318 differentially expressed proteins (p<0.05), were identified. Compared to that in the low titer circumstance, cells conducted distinct biological processes under high acetic acid stress, where >150 proteins were differentially expressed. Specifically, proteins involved in amino acid metabolic processes and fatty acid biosynthesis were differentially expressed, which may contribute to the acetic acid resistance of Acetobacter. Transcription factors, two component systems and toxin-antitoxin systems were implicated in the modulatory network at multiple levels. In addition, the identification of proteins involved in redox homeostasis, protein metabolism, and the cell envelope suggested that the whole cellular system is mobilized in response to acid stress. These findings provide a differential proteomic profile of acetic acid resistance in Acetobacter pasteurianus and have potential application to highly acidic rice vinegar manufacturing. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility.

    PubMed

    Peddinti, Divyaswetha; Nanduri, Bindu; Kaya, Abdullah; Feugang, Jean M; Burgess, Shane C; Memili, Erdogan

    2008-02-22

    Male infertility is a major problem for mammalian reproduction. However, molecular details including the underlying mechanisms of male fertility are still not known. A thorough understanding of these mechanisms is essential for obtaining consistently high reproductive efficiency and to ensure lower cost and time-loss by breeder. Using high and low fertility bull spermatozoa, here we employed differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) and identified 125 putative biomarkers of fertility. We next used quantitative Systems Biology modeling and canonical protein interaction pathways and networks to show that high fertility spermatozoa differ from low fertility spermatozoa in four main ways. Compared to sperm from low fertility bulls, sperm from high fertility bulls have higher expression of proteins involved in: energy metabolism, cell communication, spermatogenesis, and cell motility. Our data also suggests a hypothesis that low fertility sperm DNA integrity may be compromised because cell cycle: G2/M DNA damage checkpoint regulation was most significant signaling pathway identified in low fertility spermatozoa. This is the first comprehensive description of the bovine spermatozoa proteome. Comparative proteomic analysis of high fertility and low fertility bulls, in the context of protein interaction networks identified putative molecular markers associated with high fertility phenotype.

  9. Proteomic Analysis of the Endosperm Ontogeny of Jatropha curcas L. Seeds.

    PubMed

    Shah, Mohibullah; Soares, Emanoella L; Carvalho, Paulo C; Soares, Arlete A; Domont, Gilberto B; Nogueira, Fábio C S; Campos, Francisco A P

    2015-06-05

    Seeds of Jatropha curcas L. represent a potential source of raw material for the production of biodiesel. However, this use is hampered by the lack of basic information on the biosynthetic pathways associated with synthesis of toxic diterpenes, fatty acids, and triacylglycerols, as well as the pattern of deposition of storage proteins during seed development. In this study, we performed an in-depth proteome analysis of the endosperm isolated from five developmental stages which resulted in the identification of 1517, 1256, 1033, 752, and 307 proteins, respectively, summing up 1760 different proteins. Proteins with similar label free quantitation expression pattern were grouped into five clusters. The biological significance of these identifications is discussed with special focus on the analysis of seed storage proteins, proteins involved in the metabolism of fatty acids, carbohydrates, toxic components and proteolytic processing. Although several enzymes belonging to the biosynthesis of diterpenoid precursors were identified, we were unable to find any terpene synthase/cyclase, indicating that the synthesis of phorbol esters, the main toxic diterpenes, does not occur in seeds. The strategy used enabled us to provide a first in depth proteome analysis of the developing endosperm of this biodiesel plant, providing an important glimpse into the enzymatic machinery devoted to the production of C and N sources to sustain seed development.

  10. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility

    PubMed Central

    Peddinti, Divyaswetha; Nanduri, Bindu; Kaya, Abdullah; Feugang, Jean M; Burgess, Shane C; Memili, Erdogan

    2008-01-01

    Background Male infertility is a major problem for mammalian reproduction. However, molecular details including the underlying mechanisms of male fertility are still not known. A thorough understanding of these mechanisms is essential for obtaining consistently high reproductive efficiency and to ensure lower cost and time-loss by breeder. Results Using high and low fertility bull spermatozoa, here we employed differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) and identified 125 putative biomarkers of fertility. We next used quantitative Systems Biology modeling and canonical protein interaction pathways and networks to show that high fertility spermatozoa differ from low fertility spermatozoa in four main ways. Compared to sperm from low fertility bulls, sperm from high fertility bulls have higher expression of proteins involved in: energy metabolism, cell communication, spermatogenesis, and cell motility. Our data also suggests a hypothesis that low fertility sperm DNA integrity may be compromised because cell cycle: G2/M DNA damage checkpoint regulation was most significant signaling pathway identified in low fertility spermatozoa. Conclusion This is the first comprehensive description of the bovine spermatozoa proteome. Comparative proteomic analysis of high fertility and low fertility bulls, in the context of protein interaction networks identified putative molecular markers associated with high fertility phenotype. PMID:18294385

  11. Quantitative Metaproteomics and Activity-Based Probe Enrichment Reveals Significant Alterations in Protein Expression from a Mouse Model of Inflammatory Bowel Disease.

    PubMed

    Mayers, Michael D; Moon, Clara; Stupp, Gregory S; Su, Andrew I; Wolan, Dennis W

    2017-02-03

    Tandem mass spectrometry based shotgun proteomics of distal gut microbiomes is exceedingly difficult due to the inherent complexity and taxonomic diversity of the samples. We introduce two new methodologies to improve metaproteomic studies of microbiome samples. These methods include the stable isotope labeling in mammals to permit protein quantitation across two mouse cohorts as well as the application of activity-based probes to enrich and analyze both host and microbial proteins with specific functionalities. We used these technologies to study the microbiota from the adoptive T cell transfer mouse model of inflammatory bowel disease (IBD) and compare these samples to an isogenic control, thereby limiting genetic and environmental variables that influence microbiome composition. The data generated highlight quantitative alterations in both host and microbial proteins due to intestinal inflammation and corroborates the observed phylogenetic changes in bacteria that accompany IBD in humans and mouse models. The combination of isotope labeling with shotgun proteomics resulted in the total identification of 4434 protein clusters expressed in the microbial proteomic environment, 276 of which demonstrated differential abundance between control and IBD mice. Notably, application of a novel cysteine-reactive probe uncovered several microbial proteases and hydrolases overrepresented in the IBD mice. Implementation of these methods demonstrated that substantial insights into the identity and dysregulation of host and microbial proteins altered in IBD can be accomplished and can be used in the interrogation of other microbiome-related diseases.

  12. Proteomic profiling in MPTP monkey model for early Parkinson disease biomarker discovery

    PubMed Central

    Lin, Xiangmin; Shi, Min; Gunasingh Masilamoni, Jeyaraj; Dator, Romel; Movius, James; Aro, Patrick; Smith, Yoland; Zhang, Jing

    2015-01-01

    Identification of reliable and robust biomarkers is crucial to enable early diagnosis of Parkinson disease (PD) and monitoring disease progression. While imperfect, the slow, chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced non-human primate animal model system of parkinsonism is an abundant source of pre-motor or early stage PD biomarker discovery. Here, we present a study of a MPTP rhesus monkey model of PD that utilizes complementary quantitative iTRAQ-based proteomic, glycoproteomics and phosphoproteomics approaches. We compared the glycoprotein, non-glycoprotein, and phosphoprotein profiles in the putamen of asymptomatic and symptomatic MPTP-treated monkeys as well as saline injected controls. We identified 86 glycoproteins, 163 non-glycoproteins, and 71 phosphoproteins differentially expressed in the MPTP-treated groups. Functional analysis of the data sets inferred the biological processes and pathways that link to neurodegeneration in PD and related disorders. Several potential biomarkers identified in this study have already been translated for their usefulness in PD diagnosis in human subjects and further validation investigations are currently under way. In addition to providing potential early PD biomarkers, this comprehensive quantitative proteomic study may also shed insights regarding the mechanisms underlying early PD development. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology. PMID:25617661

  13. Proteomic analysis of hair shafts from monozygotic twins: Expression profiles and genetically variant peptides.

    PubMed

    Wu, Pei-Wen; Mason, Katelyn E; Durbin-Johnson, Blythe P; Salemi, Michelle; Phinney, Brett S; Rocke, David M; Parker, Glendon J; Rice, Robert H

    2017-07-01

    Forensic association of hair shaft evidence with individuals is currently assessed by comparing mitochondrial DNA haplotypes of reference and casework samples, primarily for exclusionary purposes. Present work tests and validates more recent proteomic approaches to extract quantitative transcriptional and genetic information from hair samples of monozygotic twin pairs, which would be predicted to partition away from unrelated individuals if the datasets contain identifying information. Protein expression profiles and polymorphic, genetically variant hair peptides were generated from ten pairs of monozygotic twins. Profiling using the protein tryptic digests revealed that samples from identical twins had typically an order of magnitude fewer protein expression differences than unrelated individuals. The data did not indicate that the degree of difference within twin pairs increased with age. In parallel, data from the digests were used to detect genetically variant peptides that result from common nonsynonymous single nucleotide polymorphisms in genes expressed in the hair follicle. Compilation of the variants permitted sorting of the samples by hierarchical clustering, permitting accurate matching of twin pairs. The results demonstrate that genetic differences are detectable by proteomic methods and provide a framework for developing quantitative statistical estimates of personal identification that increase the value of hair shaft evidence. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Identification of Tengfu Jiangya Tablet Target Biomarkers with Quantitative Proteomic Technique

    PubMed Central

    Xu, Jingwen; Zhang, Shijun; Jiang, Haiqiang; Wang, Nan; Lin, Haiqing

    2017-01-01

    Tengfu Jiangya Tablet (TJT) is a well accepted antihypertension drug in China and its major active components were Uncaria total alkaloids and Semen Raphani soluble alkaloid. To further explore treatment effects mechanism of TJT on essential hypertension, a serum proteomic study was performed. Potential biomarkers were quantified in serum of hypertension individuals before and after taking TJT with isobaric tags for relative and absolute quantitation (iTRAQ) coupled two-dimensional liquid chromatography followed electrospray ionization-tandem mass spectrometry (2D LC-MS/MS) proteomics technique. Among 391 identified proteins with high confidence, 70 proteins were differentially expressed (fold variation criteria, >1.2 or <0.83) between two groups (39 upregulated and 31 downregulated). Combining with Gene Ontology annotation, KEGG pathway analysis, and literature retrieval, 5 proteins were chosen as key target biomarkers during TJT therapeutic process. And the alteration profiles of these 5 proteins were verified by ELISA and Western Blot. Proteins Kininogen 1 and Keratin 1 are members of Kallikrein system, while Myeloperoxidase, Serum Amyloid protein A, and Retinol binding protein 4 had been reported closely related to vascular endothelial injury. Our study discovered 5 target biomarkers of the compound Chinese medicine TJT. Secondly, this research initially revealed the antihypertension therapeutic mechanism of this drug from a brand-new aspect. PMID:28408942

  15. [Methods of quantitative proteomics].

    PubMed

    Kopylov, A T; Zgoda, V G

    2007-01-01

    In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.

  16. Comparative membrane proteomics analyses of breast cancer cell lines to understand the molecular mechanism of breast cancer brain metastasis.

    PubMed

    Peng, Wenjing; Zhang, Yu; Zhu, Rui; Mechref, Yehia

    2017-09-01

    Breast cancer is the leading type of cancer in women. Breast cancer brain metastasis is currently considered an issue of concern among breast cancer patients. Membrane proteins play important roles in breast cancer brain metastasis, involving cell adhesion and penetration of blood-brain barrier. To understand the mechanism of breast cancer brain metastasis, liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed in conjunction with enrichment of membrane proteins to analyze the proteomes from five different breast cancer and a brain cancer cell lines. Quantitative proteomic data of all cell lines were compared with MDA-MB-231BR which is a brain seeking breast cancer cell line, thus representing brain metastasis characteristics. Label-free proteomics of the six cell lines facilitates the identification of 1238 proteins and the quantification of 899 proteins of which more than 70% were membrane proteins. Unsupervised principal component analysis (PCA) of the label-free proteomics data resulted in a distinct clustering of cell lines, suggesting quantitative differences in the expression of several proteins among the different cell lines. Unique protein expressions in 231BR were observed for 28 proteins. The up-regulation of STAU1, AT1B3, NPM1, hnRNP Q, and hnRNP K and the down-regulation of TUBB4B and TUBB5 were noted in 231BR relative to 231 (precursor cell lines from which 231BR is derived). These proteins might contribute to the breast cancer brain metastasis. Ingenuity pathway analysis (IPA) supported the great brain metastatic propensity of 231BR and suggested the importance of the up-regulation of integrin proteins and down-regulation of EPHA2 in brain metastasis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantitative Proteomic Profiling of Prostate Cancer Reveals a Role for miR-128 in Prostate Cancer*

    PubMed Central

    Khan, Amjad P.; Poisson, Laila M.; Bhat, Vadiraja B.; Fermin, Damian; Zhao, Rong; Kalyana-Sundaram, Shanker; Michailidis, George; Nesvizhskii, Alexey I.; Omenn, Gilbert S.; Chinnaiyan, Arul M.; Sreekumar, Arun

    2010-01-01

    Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of biomarkers of cancer invasion and disease aggressiveness. Although alterations in gene expression have been extensively quantified during neoplastic progression, complementary analyses of proteomic changes have been limited. Here we interrogate the proteomic alterations in a cohort of 15 prostate-derived tissues that included five each from adjacent benign prostate, clinically localized prostate cancer, and metastatic disease from distant sites. The experimental strategy couples isobaric tags for relative and absolute quantitation with multidimensional liquid phase peptide fractionation followed by tandem mass spectrometry. Over 1000 proteins were quantified across the specimens and delineated into clinically localized and metastatic prostate cancer-specific signatures. Included in these class-specific profiles were both proteins that were known to be dysregulated during prostate cancer progression and new ones defined by this study. Enrichment analysis of the prostate cancer-specific proteomic signature, to gain insight into the functional consequences of these alterations, revealed involvement of miR-128-a/b regulation during prostate cancer progression. This finding was validated using real time PCR analysis for microRNA transcript levels in an independent set of 15 clinical specimens. miR-128 levels were elevated in benign prostate epithelial cell lines compared with invasive prostate cancer cells. Knockdown of miR-128 induced invasion in benign prostate epithelial cells, whereas its overexpression attenuated invasion in prostate cancer cells. Taken together, our profiles of the proteomic alterations of prostate cancer progression revealed miR-128 as a potentially important negative regulator of prostate cancer cell invasion. PMID:19955085

  18. Quantitative Shotgun Proteomics Using a Uniform 15N-Labeled Standard to Monitor Proteome Dynamics in Time Course Experiments Reveals New Insights into the Heat Stress Response of Chlamydomonas reinhardtii*

    PubMed Central

    Mühlhaus, Timo; Weiss, Julia; Hemme, Dorothea; Sommer, Frederik; Schroda, Michael

    2011-01-01

    Crop-plant-yield safety is jeopardized by temperature stress caused by the global climate change. To take countermeasures by breeding and/or transgenic approaches it is essential to understand the mechanisms underlying plant acclimation to heat stress. To this end proteomics approaches are most promising, as acclimation is largely mediated by proteins. Accordingly, several proteomics studies, mainly based on two-dimensional gel-tandem MS approaches, were conducted in the past. However, results often were inconsistent, presumably attributable to artifacts inherent to the display of complex proteomes via two-dimensional-gels. We describe here a new approach to monitor proteome dynamics in time course experiments. This approach involves full 15N metabolic labeling and mass spectrometry based quantitative shotgun proteomics using a uniform 15N standard over all time points. It comprises a software framework, IOMIQS, that features batch job mediated automated peptide identification by four parallelized search engines, peptide quantification and data assembly for the processing of large numbers of samples. We have applied this approach to monitor proteome dynamics in a heat stress time course using the unicellular green alga Chlamydomonas reinhardtii as model system. We were able to identify 3433 Chlamydomonas proteins, of which 1116 were quantified in at least three of five time points of the time course. Statistical analyses revealed that levels of 38 proteins significantly increased, whereas levels of 206 proteins significantly decreased during heat stress. The increasing proteins comprise 25 (co-)chaperones and 13 proteins involved in chromatin remodeling, signal transduction, apoptosis, photosynthetic light reactions, and yet unknown functions. Proteins decreasing during heat stress were significantly enriched in functional categories that mediate carbon flux from CO2 and external acetate into protein biosynthesis, which also correlated with a rapid, but fully reversible cell cycle arrest after onset of stress. Our approach opens up new perspectives for plant systems biology and provides novel insights into plant stress acclimation. PMID:21610104

  19. To label or not to label: applications of quantitative proteomics in neuroscience research.

    PubMed

    Filiou, Michaela D; Martins-de-Souza, Daniel; Guest, Paul C; Bahn, Sabine; Turck, Christoph W

    2012-02-01

    Proteomics has provided researchers with a sophisticated toolbox of labeling-based and label-free quantitative methods. These are now being applied in neuroscience research where they have already contributed to the elucidation of fundamental mechanisms and the discovery of candidate biomarkers. In this review, we evaluate and compare labeling-based and label-free quantitative proteomic techniques for applications in neuroscience research. We discuss the considerations required for the analysis of brain and central nervous system specimens, the experimental design of quantitative proteomic workflows as well as the feasibility, advantages, and disadvantages of the available techniques for neuroscience-oriented questions. Furthermore, we assess the use of labeled standards as internal controls for comparative studies in humans and review applications of labeling-based and label-free mass spectrometry approaches in relevant model organisms and human subjects. Providing a comprehensive guide of feasible and meaningful quantitative proteomic methodologies for neuroscience research is crucial not only for overcoming current limitations but also for gaining useful insights into brain function and translating proteomics from bench to bedside. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Study of quantitative changes of cereal allergenic proteins after food processing.

    PubMed

    Flodrová, Dana; Benkovská, Dagmar; Laštovičková, Markéta

    2015-03-30

    Within last few years, the occurrence of food allergens and corresponding food allergies has been increasing, therefore research into the individual allergens is required. In the present work, the effect of cereal processing on the amounts of allergenic proteins is studied by modern proteomic-based approaches. The most important wheat and barley allergens are low-molecular-weight (LMW) proteins. Therefore we investigated the relative quantitative changes of these proteins after food technological processing, namely wheat couscous production and barley malting. A comparative study using mass spectrometry in connection with the technique of isobaric tag for relative and absolute quantification (iTRAQ) revealed that the amount of wheat allergenic LMW proteins decreased significantly during couscous production (approximately to 5-26% of their initial content in wheat flour). After barley malting, the amounts of the majority of LMW proteins decreased as well, although to a lesser extent than in the case of wheat/couscous. The level of two allergens even slightly increased. Suggested proteomic strategy proved as universal and sensitive method for fast and reliable identification of various cereal allergens and monitoring of their quantitative changes during food processing. Such information is important for consumers who suffer from allergies. © 2014 Society of Chemical Industry.

  1. Magnetoresistive biosensors for quantitative proteomics

    NASA Astrophysics Data System (ADS)

    Zhou, Xiahan; Huang, Chih-Cheng; Hall, Drew A.

    2017-08-01

    Quantitative proteomics, as a developing method for study of proteins and identification of diseases, reveals more comprehensive and accurate information of an organism than traditional genomics. A variety of platforms, such as mass spectrometry, optical sensors, electrochemical sensors, magnetic sensors, etc., have been developed for detecting proteins quantitatively. The sandwich immunoassay is widely used as a labeled detection method due to its high specificity and flexibility allowing multiple different types of labels. While optical sensors use enzyme and fluorophore labels to detect proteins with high sensitivity, they often suffer from high background signal and challenges in miniaturization. Magnetic biosensors, including nuclear magnetic resonance sensors, oscillator-based sensors, Hall-effect sensors, and magnetoresistive sensors, use the specific binding events between magnetic nanoparticles (MNPs) and target proteins to measure the analyte concentration. Compared with other biosensing techniques, magnetic sensors take advantage of the intrinsic lack of magnetic signatures in biological samples to achieve high sensitivity and high specificity, and are compatible with semiconductor-based fabrication process to have low-cost and small-size for point-of-care (POC) applications. Although still in the development stage, magnetic biosensing is a promising technique for in-home testing and portable disease monitoring.

  2. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.

    PubMed

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-12-14

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.

  3. Optimizing Algorithm Choice for Metaproteomics: Comparing X!Tandem and Proteome Discoverer for Soil Proteomes

    NASA Astrophysics Data System (ADS)

    Diaz, K. S.; Kim, E. H.; Jones, R. M.; de Leon, K. C.; Woodcroft, B. J.; Tyson, G. W.; Rich, V. I.

    2014-12-01

    The growing field of metaproteomics links microbial communities to their expressed functions by using mass spectrometry methods to characterize community proteins. Comparison of mass spectrometry protein search algorithms and their biases is crucial for maximizing the quality and amount of protein identifications in mass spectral data. Available algorithms employ different approaches when mapping mass spectra to peptides against a database. We compared mass spectra from four microbial proteomes derived from high-organic content soils searched with two search algorithms: 1) Sequest HT as packaged within Proteome Discoverer (v.1.4) and 2) X!Tandem as packaged in TransProteomicPipeline (v.4.7.1). Searches used matched metagenomes, and results were filtered to allow identification of high probability proteins. There was little overlap in proteins identified by both algorithms, on average just ~24% of the total. However, when adjusted for spectral abundance, the overlap improved to ~70%. Proteome Discoverer generally outperformed X!Tandem, identifying an average of 12.5% more proteins than X!Tandem, with X!Tandem identifying more proteins only in the first two proteomes. For spectrally-adjusted results, the algorithms were similar, with X!Tandem marginally outperforming Proteome Discoverer by an average of ~4%. We then assessed differences in heat shock proteins (HSP) identification by the two algorithms by BLASTing identified proteins against the Heat Shock Protein Information Resource, because HSP hits typically account for the majority signal in proteomes, due to extraction protocols. Total HSP identifications for each of the 4 proteomes were approximately ~15%, ~11%, ~17%, and ~19%, with ~14% for total HSPs with redundancies removed. Of the ~15% average of proteins from the 4 proteomes identified as HSPs, ~10% of proteins and spectra were identified by both algorithms. On average, Proteome Discoverer identified ~9% more HSPs than X!Tandem.

  4. Comparison between Procedures using Sodium Dodecyl Sulfate for Shotgun Proteomic Analyses of Complex Samples

    PubMed Central

    Bereman, Michael S.; Egertson, Jarrett D.; MacCoss, Michael J.

    2012-01-01

    Filter aided sample preparation (FASP) and a new sample preparation method using a modified commercial SDS removal spin column are quantitatively compared in terms of their performance for shotgun proteomic experiments in three complex proteomic samples: a Saccharomyces cerevisiae lysate (insoluble fraction), a Caenorhabditis elegans lysate (soluble fraction), and a human embryonic kidney cell line (HEK293T). The characteristics and total number of peptides and proteins identified are compared between the two procedures. The SDS spin column procedure affords a conservative 4-fold improvement in throughput, is more reproducible, less expensive (i.e., requires less materials), and identifies between 30–107% more peptides at a q≤0.01, than the FASP procedure. The peptides identified by SDS spin column are more hydrophobic than species identified by the FASP procedure as indicated by the distribution of GRAVY scores. Ultimately, these improvements correlate to as great as a 50% increase in protein identifications with 2 or more peptides. PMID:21656683

  5. An Integrated Platform for Isolation, Processing, and Mass Spectrometry-based Proteomic Profiling of Rare Cells in Whole Blood*

    PubMed Central

    Li, Siyang; Plouffe, Brian D.; Belov, Arseniy M.; Ray, Somak; Wang, Xianzhe; Murthy, Shashi K.; Karger, Barry L.; Ivanov, Alexander R.

    2015-01-01

    Isolation and molecular characterization of rare cells (e.g. circulating tumor and stem cells) within biological fluids and tissues has significant potential in clinical diagnostics and personalized medicine. The present work describes an integrated platform of sample procurement, preparation, and analysis for deep proteomic profiling of rare cells in blood. Microfluidic magnetophoretic isolation of target cells spiked into 1 ml of blood at the level of 1000–2000 cells/ml, followed by focused acoustics-assisted sample preparation has been coupled with one-dimensional PLOT-LC-MS methodology. The resulting zeptomole detection sensitivity enabled identification of ∼4000 proteins with injection of the equivalent of only 100–200 cells per analysis. The characterization of rare cells in limited volumes of physiological fluids is shown by the isolation and quantitative proteomic profiling of first MCF-7 cells spiked into whole blood as a model system and then two CD133+ endothelial progenitor and hematopoietic cells in whole blood from volunteers. PMID:25755294

  6. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Ying; Piehowski, Paul D.; Zhao, Rui

    Nanoscale or single cell technologies are critical for biomedical applications. However, current mass spectrometry (MS)-based proteomic approaches require samples comprising a minimum of thousands of cells to provide in-depth profiling. Here, we report the development of a nanoPOTS (Nanodroplet Processing in One pot for Trace Samples) platform as a major advance in overall sensitivity. NanoPOTS dramatically enhances the efficiency and recovery of sample processing by downscaling processing volumes to <200 nL to minimize surface losses. When combined with ultrasensitive LC-MS, nanoPOTS allows identification of ~1500 to ~3,000 proteins from ~10 to ~140 cells, respectively. By incorporating the Match Between Runsmore » algorithm of MaxQuant, >3000 proteins were consistently identified from as few as 10 cells. Furthermore, we demonstrate robust quantification of ~2400 proteins from single human pancreatic islet thin sections from type 1 diabetic and control donors, illustrating the application of nanoPOTS for spatially resolved proteome measurements from clinical tissues.« less

  7. The Seminal fluid proteome of the polyandrous Red junglefowl offers insights into the molecular basis of fertility, reproductive ageing and domestication

    PubMed Central

    Borziak, Kirill; Álvarez-Fernández, Aitor; L. Karr, Timothy; Pizzari, Tommaso; Dorus, Steve

    2016-01-01

    Seminal fluid proteins (SFPs) are emerging as fundamental contributors to sexual selection given their role in post-mating reproductive events, particularly in polyandrous species where the ejaculates of different males compete for fertilisation. SFP identification however remains taxonomically limited and little is known about avian SFPs, despite extensive work on sexual selection in birds. We characterize the SF proteome of the polyandrous Red junglefowl, Gallus gallus, the wild species that gave rise to the domestic chicken. We identify 1,141 SFPs, including proteins involved in immunity and antimicrobial defences, sperm maturation, and fertilisation, revealing a functionally complex SF proteome. This includes a predominant contribution of blood plasma proteins that is conserved with human SF. By comparing the proteome of young and old males with fast or slow sperm velocity in a balanced design, we identify proteins associated with ageing and sperm velocity, and show that old males that retain high sperm velocity have distinct proteome characteristics. SFP comparisons with domestic chickens revealed both qualitative and quantitative differences likely associated with domestication and artificial selection. Collectively, these results shed light onto the functional complexity of avian SF, and provide a platform for molecular studies of fertility, reproductive ageing, and domestication. PMID:27804984

  8. The Seminal fluid proteome of the polyandrous Red junglefowl offers insights into the molecular basis of fertility, reproductive ageing and domestication.

    PubMed

    Borziak, Kirill; Álvarez-Fernández, Aitor; L Karr, Timothy; Pizzari, Tommaso; Dorus, Steve

    2016-11-02

    Seminal fluid proteins (SFPs) are emerging as fundamental contributors to sexual selection given their role in post-mating reproductive events, particularly in polyandrous species where the ejaculates of different males compete for fertilisation. SFP identification however remains taxonomically limited and little is known about avian SFPs, despite extensive work on sexual selection in birds. We characterize the SF proteome of the polyandrous Red junglefowl, Gallus gallus, the wild species that gave rise to the domestic chicken. We identify 1,141 SFPs, including proteins involved in immunity and antimicrobial defences, sperm maturation, and fertilisation, revealing a functionally complex SF proteome. This includes a predominant contribution of blood plasma proteins that is conserved with human SF. By comparing the proteome of young and old males with fast or slow sperm velocity in a balanced design, we identify proteins associated with ageing and sperm velocity, and show that old males that retain high sperm velocity have distinct proteome characteristics. SFP comparisons with domestic chickens revealed both qualitative and quantitative differences likely associated with domestication and artificial selection. Collectively, these results shed light onto the functional complexity of avian SF, and provide a platform for molecular studies of fertility, reproductive ageing, and domestication.

  9. Perturbations in the Urinary Exosome in Transplant Rejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigdel, Tara K.; NG, Yolanda; Lee, Sangho

    Background: Urine exosomes, vesicles exocytosed into urine by all renal epithelial cell types, occur under normal physiologic and disease states. Exosome contents may mirror disease-specific proteome perturbations in kidney injury. Analysis methodologies for the exosomal fraction of the urinary proteome were developed and for comparing the urinary exosomal fraction versus unfractionated proteome for biomarker discovery. Methods: Urine exosomes were isolated by centrifugal filtration from mid-stream, second morning void, urine samples collected from kidney transplant recipients with and without biopsy matched acute rejection. The proteomes of unfractionated whole urine (Uw) and urine exosomes (Uexo) underwent mass spectrometry-based quantitative proteomics analysis. Themore » proteome data were analyzed for significant differential protein abundances in acute rejection (AR). Results: Identifications of 1018 and 349 proteins, Uw and Uexo fractions, respectively, demonstrated a 279 protein overlap between the two urinary compartments with 25%(70) of overlapping proteins unique to Uexoand represented membrane bound proteins (p=9.31e-7). Of 349 urine exosomal proteins identified in transplant patients 220 were not previously identified in the normal urine exosomal fraction. Uexo proteins (11), functioning in the inflammatory / stress response, were more abundant in patients with biopsy-confirmed acute rejection, 3 of which were exclusive to Uexo. Uexo AR-specific biomarkers (8) were also detected in Uw, but since they were observed at significantly lower abundances in Uw, they were not significant for AR in Uw. Conclusions: A rapid urinary exosome isolation method and quantitative measurement of enriched Uexo proteins was applied. Urine proteins specific to the exosomal fraction were detected either in unfractionated urine (at low abundances) or by Uexo fraction analysis. Perturbed proteins in the exosomal compartment of urine collected from kidney transplant patients were specific to inflammatory responses, and were not observed in the Uexo fraction from normal healthy subjects. Uexo specific protein alterations in renal disease provide potential mechanistic insights and offer a unique panel of sensitive biomarkers for monitoring for acute transplant rejection.« less

  10. The Proteome of Native Adult Müller Glial Cells From Murine Retina*

    PubMed Central

    Hauser, Alexandra; Lepper, Marlen Franziska; Mayo, Rebecca

    2016-01-01

    To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial physiology. This provides the basis to allow the discovery of novel glial specializations and will enable us to elucidate the role of Müller cells in retinal pathologies — a topic still controversially discussed. PMID:26324419

  11. CPTAC Accelerates Precision Proteomics Biomedical Research | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The accurate quantitation of proteins or peptides using Mass Spectrometry (MS) is gaining prominence in the biomedical research community as an alternative method for analyte measurement. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigators have been at the forefront in the promotion of reproducible MS techniques, through the development and application of standardized proteomic methods for protein quantitation on biologically relevant samples.

  12. Identification of cellular MMP substrates using quantitative proteomics: isotope-coded affinity tags (ICAT) and isobaric tags for relative and absolute quantification (iTRAQ).

    PubMed

    Butler, Georgina S; Dean, Richard A; Morrison, Charlotte J; Overall, Christopher M

    2010-01-01

    Identification of protease substrates is essential to understand the functional consequences of normal proteolytic processing and dysregulated proteolysis in disease. Quantitative proteomics and mass spectrometry can be used to identify protease substrates in the cellular context. Here we describe the use of two protein labeling techniques, Isotope-Coded Affinity Tags (ICAT and Isobaric Tags for Relative and Absolute Quantification (iTRAQ), which we have used successfully to identify novel matrix metalloproteinase (MMP) substrates in cell culture systems (1-4). ICAT and iTRAQ can label proteins and protease cleavage products of secreted proteins, protein domains shed from the cell membrane or pericellular matrix of protease-transfected cells that have accumulated in conditioned medium, or cell surface proteins in membrane preparations; isotopically distinct labels are used for control cells. Tryptic digestion and tandem mass spectrometry of the generated fragments enable sequencing of differentially labeled but otherwise identical pooled peptides. The isotopic tag, which is unique for each label, identifies the peptides originating from each sample, for instance, protease-transfected or control cells, and comparison of the peak areas enables relative quantification of the peptide in each sample. Thus proteins present in altered amounts between protease-expressing and null cells are implicated as protease substrates and can be further validated as such.

  13. Quantitative changes in proteins responsible for flavonoid and anthocyanin biosynthesis in strawberry fruit at different ripening stages: A targeted quantitative proteomic investigation employing multiple reaction monitoring.

    PubMed

    Song, Jun; Du, Lina; Li, Li; Kalt, Wilhelmina; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, Ying; Zhang, ZhaoQi; Li, XiHong

    2015-06-03

    To better understand the regulation of flavonoid and anthocyanin biosynthesis, a targeted quantitative proteomic investigation employing LC-MS with multiple reaction monitoring was conducted on two strawberry cultivars at three ripening stages. This quantitative proteomic workflow was improved through an OFFGEL electrophoresis to fractionate peptides from total protein digests. A total of 154 peptide transitions from 47 peptides covering 21 proteins and isoforms related to anthocyanin biosynthesis were investigated. The normalized protein abundance, which was measured using isotopically-labeled standards, was significantly changed concurrently with increased anthocyanin content and advanced fruit maturity. The protein abundance of phenylalanine ammonia-lyase; anthocyanidin synthase, chalcone isomerase; flavanone 3-hydroxylase; dihydroflavonol 4-reductase, UDP-glucose:flavonoid-3-O-glucosyltransferase, cytochrome c and cytochrome C oxidase subunit 2, was all significantly increased in fruit of more advanced ripeness. An interaction between cultivar and maturity was also shown with respect to chalcone isomerase. The good correlation between protein abundance and anthocyanin content suggested that a metabolic control point may exist for anthocyanin biosynthesis. This research provides insights into the process of anthocyanin formation in strawberry fruit at the level of protein concentration and reveals possible candidates in the regulation of anthocyanin formation during fruit ripening. To gain insight into the molecular mechanisms contributing to flavonoids and anthocyanin biosynthesis and regulation of strawberry fruit during ripening is challenging due to limited molecular biology tools and established hypothesis. Our targeted proteomic approach employing LC-MS/MS analysis and MRM technique to quantify proteins in relation to flavonoids and anthocyanin biosynthesis and regulation in strawberry fruit during fruit ripening is novel. The identification of peptides and proteins provided reliable design and validation of quantitative approaches using SRM on targeted proteins proposed involved in strawberry fruit. Our data revealed the identifying candidate proteins and their quantitative changes in relation to fruit ripening and flavonoids and anthocyanin biosynthesis and regulation. More importantly, this quantitative proteomic data is also compared with chemical analysis to reveal possible control levels of this important quality trait. Although, MRM approach is not new in plant biology research, the application has been very rare. This is the first systematic multi-targeted interrogation of the possible regulation of entire pathway of flavonoids and anthocyanin biosynthesis in strawberry fruit at different ripening stages using quantitative MRM technique on mass spectrometry. Our results demonstrate the power of targeted quantitative mass spectrometry data for analysis of proteins in biological regulation. These results indicate that distinct and diverse control of flavonoids and anthocyanin biosynthesis mechanisms at metabolism and proteins levels. This important and complementary knowledge will be useful for systematically characterizing the flavonoids and anthocyanin biosynthesis pathway of any fruit/plant species. Copyright © 2015. Published by Elsevier B.V.

  14. Quantitative proteomics in the field of microbiology.

    PubMed

    Otto, Andreas; Becher, Dörte; Schmidt, Frank

    2014-03-01

    Quantitative proteomics has become an indispensable analytical tool for microbial research. Modern microbial proteomics covers a wide range of topics in basic and applied research from in vitro characterization of single organisms to unravel the physiological implications of stress/starvation to description of the proteome content of a cell at a given time. With the techniques available, ranging from classical gel-based procedures to modern MS-based quantitative techniques, including metabolic and chemical labeling, as well as label-free techniques, quantitative proteomics is today highly successful in sophisticated settings of high complexity such as host-pathogen interactions, mixed microbial communities, and microbial metaproteomics. In this review, we will focus on the vast range of techniques practically applied in current research with an introduction of the workflows used for quantitative comparisons, a description of the advantages/disadvantages of the various methods, reference to hallmark publications and presentation of applications in current microbial research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Systematic Errors in Peptide and Protein Identification and Quantification by Modified Peptides*

    PubMed Central

    Bogdanow, Boris; Zauber, Henrik; Selbach, Matthias

    2016-01-01

    The principle of shotgun proteomics is to use peptide mass spectra in order to identify corresponding sequences in a protein database. The quality of peptide and protein identification and quantification critically depends on the sensitivity and specificity of this assignment process. Many peptides in proteomic samples carry biochemical modifications, and a large fraction of unassigned spectra arise from modified peptides. Spectra derived from modified peptides can erroneously be assigned to wrong amino acid sequences. However, the impact of this problem on proteomic data has not yet been investigated systematically. Here we use combinations of different database searches to show that modified peptides can be responsible for 20–50% of false positive identifications in deep proteomic data sets. These false positive hits are particularly problematic as they have significantly higher scores and higher intensities than other false positive matches. Furthermore, these wrong peptide assignments lead to hundreds of false protein identifications and systematic biases in protein quantification. We devise a “cleaned search” strategy to address this problem and show that this considerably improves the sensitivity and specificity of proteomic data. In summary, we show that modified peptides cause systematic errors in peptide and protein identification and quantification and should therefore be considered to further improve the quality of proteomic data annotation. PMID:27215553

  16. Proteomic Identification of Heat Shock-Induced Danger Signals in a Melanoma Cell Lysate Used in Dendritic Cell-Based Cancer Immunotherapy.

    PubMed

    González, Fermín E; Chernobrovkin, Alexey; Pereda, Cristián; García-Salum, Tamara; Tittarelli, Andrés; López, Mercedes N; Salazar-Onfray, Flavio; Zubarev, Roman A

    2018-01-01

    Autologous dendritic cells (DCs) loaded with cancer cell-derived lysates have become a promising tool in cancer immunotherapy. During the last decade, we demonstrated that vaccination of advanced melanoma patients with autologous tumor antigen presenting cells (TAPCells) loaded with an allogeneic heat shock- (HS-) conditioned melanoma cell-derived lysate (called TRIMEL) is able to induce an antitumor immune response associated with a prolonged patient survival. TRIMEL provides not only a broad spectrum of potential melanoma-associated antigens but also danger signals that are crucial in the induction of a committed mature DC phenotype. However, potential changes induced by heat conditioning on the proteome of TRIMEL are still unknown. The identification of newly or differentially expressed proteins under defined stress conditions is relevant for understanding the lysate immunogenicity. Here, we characterized the proteomic profile of TRIMEL in response to HS treatment. A quantitative label-free proteome analysis of over 2800 proteins was performed, with 91 proteins that were found to be regulated by HS treatment: 18 proteins were overexpressed and 73 underexpressed. Additionally, 32 proteins were only identified in the HS-treated TRIMEL and 26 in non HS-conditioned samples. One protein from the overexpressed group and two proteins from the HS-exclusive group were previously described as potential damage-associated molecular patterns (DAMPs). Some of the HS-induced proteins, such as haptoglobin, could be also considered as DAMPs and candidates for further immunological analysis in the establishment of new putative danger signals with immunostimulatory functions.

  17. Proteomic Identification of Heat Shock-Induced Danger Signals in a Melanoma Cell Lysate Used in Dendritic Cell-Based Cancer Immunotherapy

    PubMed Central

    Chernobrovkin, Alexey; Pereda, Cristián; García-Salum, Tamara; Tittarelli, Andrés; López, Mercedes N.; Salazar-Onfray, Flavio

    2018-01-01

    Autologous dendritic cells (DCs) loaded with cancer cell-derived lysates have become a promising tool in cancer immunotherapy. During the last decade, we demonstrated that vaccination of advanced melanoma patients with autologous tumor antigen presenting cells (TAPCells) loaded with an allogeneic heat shock- (HS-) conditioned melanoma cell-derived lysate (called TRIMEL) is able to induce an antitumor immune response associated with a prolonged patient survival. TRIMEL provides not only a broad spectrum of potential melanoma-associated antigens but also danger signals that are crucial in the induction of a committed mature DC phenotype. However, potential changes induced by heat conditioning on the proteome of TRIMEL are still unknown. The identification of newly or differentially expressed proteins under defined stress conditions is relevant for understanding the lysate immunogenicity. Here, we characterized the proteomic profile of TRIMEL in response to HS treatment. A quantitative label-free proteome analysis of over 2800 proteins was performed, with 91 proteins that were found to be regulated by HS treatment: 18 proteins were overexpressed and 73 underexpressed. Additionally, 32 proteins were only identified in the HS-treated TRIMEL and 26 in non HS-conditioned samples. One protein from the overexpressed group and two proteins from the HS-exclusive group were previously described as potential damage-associated molecular patterns (DAMPs). Some of the HS-induced proteins, such as haptoglobin, could be also considered as DAMPs and candidates for further immunological analysis in the establishment of new putative danger signals with immunostimulatory functions. PMID:29744371

  18. Synthesis and Evaluation of a Novel Adenosine-Ribose Probe for Global-Scale Profiling of Nucleoside and Nucleotide-Binding Proteins

    PubMed Central

    Mahajan, Shikha; Manetsch, Roman; Merkler, David J.; Stevens Jr., Stanley M.

    2015-01-01

    Proteomics is a powerful approach used for investigating the complex molecular mechanisms of disease pathogenesis and progression. An important challenge in modern protein profiling approaches involves targeting of specific protein activities in order to identify altered molecular processes associated with disease pathophysiology. Adenosine-binding proteins represent an important subset of the proteome where aberrant expression or activity changes of these proteins have been implicated in numerous human diseases. Herein, we describe an affinity-based approach for the enrichment of adenosine-binding proteins from a complex cell proteome. A novel N 6-biotinylated-8-azido-adenosine probe (AdoR probe) was synthesized, which contains a reactive group that forms a covalent bond with the target proteins, as well as a biotin tag for affinity enrichment using avidin chromatography. Probe specificity was confirmed with protein standards prior to further evaluation in a complex protein mixture consisting of a lysate derived from mouse neuroblastoma N18TG2 cells. Protein identification and relative quantitation using mass spectrometry allowed for the identification of small variations in abundance of nucleoside- and nucleotide-binding proteins in these samples where a significant enrichment of AdoR-binding proteins in the labeled proteome from the neuroblastoma cells was observed. The results from this study demonstrate the utility of this method to enrich for nucleoside- and nucleotide-binding proteins in a complex protein mixture, pointing towards a unique set of proteins that can be examined in the context of further understanding mechanisms of disease, or fundamental biological processes in general. PMID:25671571

  19. Identification of Novel Tumor-Associated Cell Surface Sialoglycoproteins in Human Glioblastoma Tumors Using Quantitative Proteomics

    PubMed Central

    Autelitano, François; Loyaux, Denis; Roudières, Sébastien; Déon, Catherine; Guette, Frédérique; Fabre, Philippe; Ping, Qinggong; Wang, Su; Auvergne, Romane; Badarinarayana, Vasudeo; Smith, Michael; Guillemot, Jean-Claude; Goldman, Steven A.; Natesan, Sridaran; Ferrara, Pascual; August, Paul

    2014-01-01

    Glioblastoma multiform (GBM) remains clinical indication with significant “unmet medical need”. Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells. PMID:25360666

  20. Identification of novel tumor-associated cell surface sialoglycoproteins in human glioblastoma tumors using quantitative proteomics.

    PubMed

    Autelitano, François; Loyaux, Denis; Roudières, Sébastien; Déon, Catherine; Guette, Frédérique; Fabre, Philippe; Ping, Qinggong; Wang, Su; Auvergne, Romane; Badarinarayana, Vasudeo; Smith, Michael; Guillemot, Jean-Claude; Goldman, Steven A; Natesan, Sridaran; Ferrara, Pascual; August, Paul

    2014-01-01

    Glioblastoma multiform (GBM) remains clinical indication with significant "unmet medical need". Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells.

  1. Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics.

    PubMed

    Shen, Xiaomeng; Hu, Qiang; Li, Jun; Wang, Jianmin; Qu, Jun

    2015-10-02

    Comprehensive and accurate evaluation of data quality and false-positive biomarker discovery is critical to direct the method development/optimization for quantitative proteomics, which nonetheless remains challenging largely due to the high complexity and unique features of proteomic data. Here we describe an experimental null (EN) method to address this need. Because the method experimentally measures the null distribution (either technical or biological replicates) using the same proteomic samples, the same procedures and the same batch as the case-vs-contol experiment, it correctly reflects the collective effects of technical variability (e.g., variation/bias in sample preparation, LC-MS analysis, and data processing) and project-specific features (e.g., characteristics of the proteome and biological variation) on the performances of quantitative analysis. To show a proof of concept, we employed the EN method to assess the quantitative accuracy and precision and the ability to quantify subtle ratio changes between groups using different experimental and data-processing approaches and in various cellular and tissue proteomes. It was found that choices of quantitative features, sample size, experimental design, data-processing strategies, and quality of chromatographic separation can profoundly affect quantitative precision and accuracy of label-free quantification. The EN method was also demonstrated as a practical tool to determine the optimal experimental parameters and rational ratio cutoff for reliable protein quantification in specific proteomic experiments, for example, to identify the necessary number of technical/biological replicates per group that affords sufficient power for discovery. Furthermore, we assessed the ability of EN method to estimate levels of false-positives in the discovery of altered proteins, using two concocted sample sets mimicking proteomic profiling using technical and biological replicates, respectively, where the true-positives/negatives are known and span a wide concentration range. It was observed that the EN method correctly reflects the null distribution in a proteomic system and accurately measures false altered proteins discovery rate (FADR). In summary, the EN method provides a straightforward, practical, and accurate alternative to statistics-based approaches for the development and evaluation of proteomic experiments and can be universally adapted to various types of quantitative techniques.

  2. Quantitative proteomics to study carbapenem resistance in Acinetobacter baumannii

    PubMed Central

    Tiwari, Vishvanath; Tiwari, Monalisa

    2014-01-01

    Acinetobacter baumannii is an opportunistic pathogen causing pneumonia, respiratory infections and urinary tract infections. The prevalence of this lethal pathogen increases gradually in the clinical setup where it can grow on artificial surfaces, utilize ethanol as a carbon source. Moreover it resists desiccation. Carbapenems, a β-lactam, are the most commonly prescribed drugs against A. baumannii. Resistance against carbapenem has emerged in Acinetobacter baumannii which can create significant health problems and is responsible for high morbidity and mortality. With the development of quantitative proteomics, a considerable progress has been made in the study of carbapenem resistance of Acinetobacter baumannii. Recent updates showed that quantitative proteomics has now emerged as an important tool to understand the carbapenem resistance mechanism in Acinetobacter baumannii. Present review also highlights the complementary nature of different quantitative proteomic methods used to study carbapenem resistance and suggests to combine multiple proteomic methods for understanding the response to antibiotics by Acinetobacter baumannii. PMID:25309531

  3. Proteomic and transcriptomic analysis of lung tissue in OVA-challenged mice.

    PubMed

    Lee, Yongjin; Hwang, Yun-Ho; Kim, Kwang-Jin; Park, Ae-Kyung; Paik, Man-Jeong; Kim, Seong Hwan; Lee, Su Ui; Yee, Sung-Tae; Son, Young-Jin

    2018-01-01

    Asthma is a long term inflammatory disease of the airway of lungs characterized by variable airflow obstruction and bronchospasm. Asthma is caused by a complex combination of environmental and genetic interactions. In this study, we conducted proteomic analysis of samples derived from control and OVA challenged mice for environmental respiratory disease by using 2-D gel electrophoresis. In addition, we explored the genes associated with the environmental substances that cause respiratory disease and conducted RNA-seq by next-generation sequencing. Proteomic analysis revealed 7 up-regulated (keratin KB40, CRP, HSP27, chaperonin containing TCP-1, TCP-10, keratin, and albumin) and 3 down-regulated proteins (PLC-α, PLA2, and precursor ApoA-1). The expression diversity of many genes was found in the lung tissue of OVA challenged moue by RNA-seq. 146 genes were identified as significantly differentially expressed by OVA treatment, and 118 genes of the 146 differentially expressed genes were up-regulated and 28 genes were downregulated. These genes were related to inflammation, mucin production, and airway remodeling. The results presented herein enable diagnosis and the identification of quantitative markers to monitor the progression of environmental respiratory disease using proteomics and genomic approaches.

  4. A Proteomic View on the Role of Legume Symbiotic Interactions

    PubMed Central

    Larrainzar, Estíbaliz; Wienkoop, Stefanie

    2017-01-01

    Legume plants are key elements in sustainable agriculture and represent a significant source of plant-based protein for humans and animal feed worldwide. One specific feature of the family is the ability to establish nitrogen-fixing symbiosis with Rhizobium bacteria. Additionally, like most vascular flowering plants, legumes are able to form a mutualistic endosymbiosis with arbuscular mycorrhizal (AM) fungi. These beneficial associations can enhance the plant resistance to biotic and abiotic stresses. Understanding how symbiotic interactions influence and increase plant stress tolerance are relevant questions toward maintaining crop yield and food safety in the scope of climate change. Proteomics offers numerous tools for the identification of proteins involved in such responses, allowing the study of sub-cellular localization and turnover regulation, as well as the discovery of post-translational modifications (PTMs). The current work reviews the progress made during the last decades in the field of proteomics applied to the study of the legume-Rhizobium and -AM symbioses, and highlights their influence on the plant responses to pathogens and abiotic stresses. We further discuss future perspectives and new experimental approaches that are likely to have a significant impact on the field including peptidomics, mass spectrometric imaging, and quantitative proteomics. PMID:28769967

  5. The cassava (Manihot esculenta Crantz) root proteome: protein identification and differential expression.

    PubMed

    Sheffield, Jeanne; Taylor, Nigel; Fauquet, Claude; Chen, Sixue

    2006-03-01

    Using high-resolution 2-DE, we resolved proteins extracted from fibrous and tuberous root tissues of 3-month-old cassava plants. Gel image analysis revealed an average of 1467 electrophoretically resolved spots on the fibrous gels and 1595 spots on the tuberous gels in pH 3-10 range. Protein spots from both sets of gels were digested with trypsin. The digests were subjected to nanoelectrospray quadrupole TOF tandem mass analysis. Currently, we have obtained 299 protein identifications for 292 gel spots corresponding to 237 proteins. The proteins span various functional categories from energy, primary and secondary metabolism, disease and defense, destination and storage, transport, signal transduction, protein synthesis, cell structure, and transcription to cell growth and division. Gel image analysis has shown unique, as well as up- and down-regulated proteins, present in the tuberous and the fibrous tissues. Quantitative and qualitative analysis of the cassava root proteome is an important step towards further characterization of differentially expressed proteins and the elucidation of the mechanisms underlying the development and biological functions of the two types of roots.

  6. Insights into temperature modulation of the Eucalyptus globulus and Eucalyptus grandis antioxidant and lignification subproteomes.

    PubMed

    de Santana Costa, Marília Gabriela; Mazzafera, Paulo; Balbuena, Tiago Santana

    2017-05-01

    Eucalyptus grandis and Eucalyptus globulus are among the most widely cultivated trees, differing in lignin composition and plantation areas, as E. grandis is mostly cultivated in tropical regions while E. globulus is preferred in temperate areas. As temperature is a key modulator in plant metabolism, a large-scale proteome analysis was carried out to investigate changes in the antioxidant system and the lignification metabolism in plantlets grown at different temperatures. Our strategy allowed the identification of 3111 stem proteins. A total of 103 antioxidant proteins were detected in the stems of both species. Hierarchical clustering revealed that alterations in the antioxidant proteins are more prominent when Eucalyptus seedlings were exposed to high temperature and that the superoxide isoforms coded by the gene Eucgr.B03930 are the most abundant antioxidant enzymes induced by thermal stimulus. Regarding the lignin biosynthesis, our proteomics approach resulted in the identification of 13 of the 17 core proteins involved in this metabolism, corroborating with gene predictions and the proposed lignin toolbox. Quantitative analyses revealed significant differences in 8 protein isoforms, including the ferulate 5-hydroxylase isoform F5H1, a key enzyme in catalyzing the synthesis of sinapyl alcohol, and the cinnamyl alcohol dehydrogenase isoform CAD2, the last enzyme in monolignol biosynthesis. Data are available via ProteomeXchange with identifier PXD005743. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors.

    PubMed

    Deshmukh, Atul S; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T; Cox, Jürgen; Mann, Matthias

    2015-04-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fang; Liu, Tao; Qian, Weijun

    2011-07-22

    Liquid chromatography-mass spectrometry (LC-MS)-based quantitative proteomics has become increasingly applied for a broad range of biological applications due to growing capabilities for broad proteome coverage and good accuracy in quantification. Herein, we review the current LC-MS-based quantification methods with respect to their advantages and limitations, and highlight their potential applications.

  9. iTRAQ Quantitative Proteomic Comparison of Metastatic and Non-Metastatic Uveal Melanoma Tumors

    PubMed Central

    Crabb, John W.; Hu, Bo; Crabb, John S.; Triozzi, Pierre; Saunthararajah, Yogen; Singh, Arun D.

    2015-01-01

    Background Uveal melanoma is the most common malignancy of the adult eye. The overall mortality rate is high because this aggressive cancer often metastasizes before ophthalmic diagnosis. Quantitative proteomic analysis of primary metastasizing and non-metastasizing tumors was pursued for insights into mechanisms and biomarkers of uveal melanoma metastasis. Methods Eight metastatic and 7 non-metastatic human primary uveal melanoma tumors were analyzed by LC MS/MS iTRAQ technology with Bruch’s membrane/choroid complex from normal postmortem eyes as control tissue. Tryptic peptides from tumor and control proteins were labeled with iTRAQ tags, fractionated by cation exchange chromatography, and analyzed by LC MS/MS. Protein identification utilized the Mascot search engine and the human Uni-Prot/Swiss-Protein database with false discovery ≤ 1%; protein quantitation utilized the Mascot weighted average method. Proteins designated differentially expressed exhibited quantitative differences (p ≤ 0.05, t-test) in a training set of five metastatic and five non-metastatic tumors. Logistic regression models developed from the training set were used to classify the metastatic status of five independent tumors. Results Of 1644 proteins identified and quantified in 5 metastatic and 5 non-metastatic tumors, 12 proteins were found uniquely in ≥ 3 metastatic tumors, 28 were found significantly elevated and 30 significantly decreased only in metastatic tumors, and 31 were designated differentially expressed between metastatic and non-metastatic tumors. Logistic regression modeling of differentially expressed collagen alpha-3(VI) and heat shock protein beta-1 allowed correct prediction of metastasis status for each of five independent tumor specimens. Conclusions The present data provide new clues to molecular differences in metastatic and non-metastatic uveal melanoma tumors. While sample size is limited and validation required, the results support collagen alpha-3(VI) and heat shock protein beta-1 as candidate biomarkers of uveal melanoma metastasis and establish a quantitative proteomic database for uveal melanoma primary tumors. PMID:26305875

  10. LFQuant: a label-free fast quantitative analysis tool for high-resolution LC-MS/MS proteomics data.

    PubMed

    Zhang, Wei; Zhang, Jiyang; Xu, Changming; Li, Ning; Liu, Hui; Ma, Jie; Zhu, Yunping; Xie, Hongwei

    2012-12-01

    Database searching based methods for label-free quantification aim to reconstruct the peptide extracted ion chromatogram based on the identification information, which can limit the search space and thus make the data processing much faster. The random effect of the MS/MS sampling can be remedied by cross-assignment among different runs. Here, we present a new label-free fast quantitative analysis tool, LFQuant, for high-resolution LC-MS/MS proteomics data based on database searching. It is designed to accept raw data in two common formats (mzXML and Thermo RAW), and database search results from mainstream tools (MASCOT, SEQUEST, and X!Tandem), as input data. LFQuant can handle large-scale label-free data with fractionation such as SDS-PAGE and 2D LC. It is easy to use and provides handy user interfaces for data loading, parameter setting, quantitative analysis, and quantitative data visualization. LFQuant was compared with two common quantification software packages, MaxQuant and IDEAL-Q, on the replication data set and the UPS1 standard data set. The results show that LFQuant performs better than them in terms of both precision and accuracy, and consumes significantly less processing time. LFQuant is freely available under the GNU General Public License v3.0 at http://sourceforge.net/projects/lfquant/. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. SAFER, an Analysis Method of Quantitative Proteomic Data, Reveals New Interactors of the C. elegans Autophagic Protein LGG-1.

    PubMed

    Yi, Zhou; Manil-Ségalen, Marion; Sago, Laila; Glatigny, Annie; Redeker, Virginie; Legouis, Renaud; Mucchielli-Giorgi, Marie-Hélène

    2016-05-06

    Affinity purifications followed by mass spectrometric analysis are used to identify protein-protein interactions. Because quantitative proteomic data are noisy, it is necessary to develop statistical methods to eliminate false-positives and identify true partners. We present here a novel approach for filtering false interactors, named "SAFER" for mass Spectrometry data Analysis by Filtering of Experimental Replicates, which is based on the reproducibility of the replicates and the fold-change of the protein intensities between bait and control. To identify regulators or targets of autophagy, we characterized the interactors of LGG1, a ubiquitin-like protein involved in autophagosome formation in C. elegans. LGG-1 partners were purified by affinity, analyzed by nanoLC-MS/MS mass spectrometry, and quantified by a label-free proteomic approach based on the mass spectrometric signal intensity of peptide precursor ions. Because the selection of confident interactions depends on the method used for statistical analysis, we compared SAFER with several statistical tests and different scoring algorithms on this set of data. We show that SAFER recovers high-confidence interactors that have been ignored by the other methods and identified new candidates involved in the autophagy process. We further validated our method on a public data set and conclude that SAFER notably improves the identification of protein interactors.

  12. The Human Skeletal Muscle Proteome Project: a reappraisal of the current literature

    PubMed Central

    Gonzalez‐Freire, Marta; Semba, Richard D.; Ubaida‐Mohien, Ceereena; Fabbri, Elisa; Scalzo, Paul; Højlund, Kurt; Dufresne, Craig; Lyashkov, Alexey

    2016-01-01

    Abstract Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of ‘sarcopenia’, a condition that impairs mobility, challenges autonomy, and is a risk factor for mortality. The mechanisms leading to sarcopenia as well as myopathies are still little understood. The Human Skeletal Muscle Proteome Project was initiated with the aim to characterize muscle proteins and how they change with ageing and disease. We conducted an extensive review of the literature and analysed publically available protein databases. A systematic search of peer‐reviewed studies was performed using PubMed. Search terms included ‘human’, ‘skeletal muscle’, ‘proteome’, ‘proteomic(s)’, and ‘mass spectrometry’, ‘liquid chromatography‐mass spectrometry (LC‐MS/MS)’. A catalogue of 5431 non‐redundant muscle proteins identified by mass spectrometry‐based proteomics from 38 peer‐reviewed scientific publications from 2002 to November 2015 was created. We also developed a nosology system for the classification of muscle proteins based on localization and function. Such inventory of proteins should serve as a useful background reference for future research on changes in muscle proteome assessed by quantitative mass spectrometry‐based proteomic approaches that occur with ageing and diseases. This classification and compilation of the human skeletal muscle proteome can be used for the identification and quantification of proteins in skeletal muscle to discover new mechanisms for sarcopenia and specific muscle diseases that can be targeted for the prevention and treatment. PMID:27897395

  13. Chemical proteomics approaches for identifying the cellular targets of natural products

    PubMed Central

    Sieber, S. A.

    2016-01-01

    Covering: 2010 up to 2016 Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied “in situ” – in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide–alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss ‘competitive mode’ approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed. PMID:27098809

  14. Chemical proteomics approaches for identifying the cellular targets of natural products.

    PubMed

    Wright, M H; Sieber, S A

    2016-05-04

    Covering: 2010 up to 2016Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied "in situ" - in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide-alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss 'competitive mode' approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed.

  15. A comparative proteomic characterization and nutritional assessment of naturally- and artificially-cultivated Cordyceps sinensis.

    PubMed

    Zhang, Xu; Liu, Qun; Zhou, Wei; Li, Ping; Alolga, Raphael N; Qi, Lian-Wen; Yin, Xiaojian

    2018-06-15

    Cordyceps sinensis has gained increasing attention due to its nutritional and medicinal properties. Herein, we employed label-free quantitative mass spectrometry to explore the proteome differences between naturally- and artificially-cultivated C. sinensis. A total of 22,829 peptides with confidence ≥95%, corresponding to 2541 protein groups were identified from the caterpillar bodies/stromata of 12 naturally- and artificially-cultivated samples of C. sinensis. Among them, 165 proteins showed significant differences between the samples of natural and artificial cultivation. These proteins were mainly involved in energy production/conversion, amino acid transport/metabolism, and transcription regulation. The proteomic results were confirmed by the identification of 4 significantly changed metabolites, thus, lysine, threonine, serine, and arginine via untargeted metabolomics. The change tendencies of these metabolites were partly in accordance with changes in abundance of the proteins, which was upstream of their synthetic pathways. In addition, the nutritional value in terms of the levels of nucleosides, nucleotides, and adenosine between the artificially- and naturally-cultivated samples was virtually same. These proteomic data will be useful for understanding the medicinal value of C. sinensis and serve as reference for its artificial cultivation. C. sinensis is a precious and valued medicinal product, the current basic proteome dataset would provide useful information to understand its development/infection processes as well as help to artificially cultivate it. This work would also provide basic proteome profile for further study of C. sinensis. Copyright © 2018. Published by Elsevier B.V.

  16. GO Explorer: A gene-ontology tool to aid in the interpretation of shotgun proteomics data.

    PubMed

    Carvalho, Paulo C; Fischer, Juliana Sg; Chen, Emily I; Domont, Gilberto B; Carvalho, Maria Gc; Degrave, Wim M; Yates, John R; Barbosa, Valmir C

    2009-02-24

    Spectral counting is a shotgun proteomics approach comprising the identification and relative quantitation of thousands of proteins in complex mixtures. However, this strategy generates bewildering amounts of data whose biological interpretation is a challenge. Here we present a new algorithm, termed GO Explorer (GOEx), that leverages the gene ontology (GO) to aid in the interpretation of proteomic data. GOEx stands out because it combines data from protein fold changes with GO over-representation statistics to help draw conclusions. Moreover, it is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. Its usefulness is demonstrated by applying it to help interpret the effects of perillyl alcohol, a natural chemotherapeutic agent, on glioblastoma multiform cell lines (A172). We used a new multi-surfactant shotgun proteomic strategy and identified more than 2600 proteins; GOEx pinpointed key sets of differentially expressed proteins related to cell cycle, alcohol catabolism, the Ras pathway, apoptosis, and stress response, to name a few. GOEx facilitates organism-specific studies by leveraging GO and providing a rich graphical user interface. It is a simple to use tool, specialized for biologists who wish to analyze spectral counting data from shotgun proteomics. GOEx is available at http://pcarvalho.com/patternlab.

  17. Quantitative Proteomics of the Infectious and Replicative Forms of Chlamydia trachomatis

    PubMed Central

    Skipp, Paul J. S.; Hughes, Chris; McKenna, Thérèse; Edwards, Richard; Langridge, James; Thomson, Nicholas R.; Clarke, Ian N.

    2016-01-01

    The obligate intracellular developmental cycle of Chlamydia trachomatis presents significant challenges in defining its proteome. In this study we have applied quantitative proteomics to both the intracellular reticulate body (RB) and the extracellular elementary body (EB) from C. trachomatis. We used C. trachomatis L2 as a model chlamydial isolate for our study since it has a high infectivity:particle ratio and there is an excellent quality genome sequence. EBs and RBs (>99% pure) were quantified by chromosomal and plasmid copy number using PCR, from which the concentrations of chlamydial proteins per bacterial cell/genome were determined. RBs harvested at 15h post infection (PI) were purified by three successive rounds of gradient centrifugation. This is the earliest possible time to obtain purified RBs, free from host cell components in quantity, within the constraints of the technology. EBs were purified at 48h PI. We then used two-dimensional reverse phase UPLC to fractionate RB or EB peptides before mass spectroscopic analysis, providing absolute amount estimates of chlamydial proteins. The ability to express the data as molecules per cell gave ranking in both abundance and energy requirements for synthesis, allowing meaningful identification of rate-limiting components. The study assigned 562 proteins with high confidence and provided absolute estimates of protein concentration for 489 proteins. Interestingly, the data showed an increase in TTS capacity at 15h PI. Most of the enzymes involved in peptidoglycan biosynthesis were detected along with high levels of muramidase (in EBs) suggesting breakdown of peptidoglycan occurs in the non-dividing form of the microorganism. All the genome-encoded enzymes for glycolysis, pentose phosphate pathway and tricarboxylic acid cycle were identified and quantified; these data supported the observation that the EB is metabolically active. The availability of detailed, accurate quantitative proteomic data will be invaluable for investigations into gene regulation and function. PMID:26871455

  18. Design and analysis of quantitative differential proteomics investigations using LC-MS technology.

    PubMed

    Bukhman, Yury V; Dharsee, Moyez; Ewing, Rob; Chu, Peter; Topaloglou, Thodoros; Le Bihan, Thierry; Goh, Theo; Duewel, Henry; Stewart, Ian I; Wisniewski, Jacek R; Ng, Nancy F

    2008-02-01

    Liquid chromatography-mass spectrometry (LC-MS)-based proteomics is becoming an increasingly important tool in characterizing the abundance of proteins in biological samples of various types and across conditions. Effects of disease or drug treatments on protein abundance are of particular interest for the characterization of biological processes and the identification of biomarkers. Although state-of-the-art instrumentation is available to make high-quality measurements and commercially available software is available to process the data, the complexity of the technology and data presents challenges for bioinformaticians and statisticians. Here, we describe a pipeline for the analysis of quantitative LC-MS data. Key components of this pipeline include experimental design (sample pooling, blocking, and randomization) as well as deconvolution and alignment of mass chromatograms to generate a matrix of molecular abundance profiles. An important challenge in LC-MS-based quantitation is to be able to accurately identify and assign abundance measurements to members of protein families. To address this issue, we implement a novel statistical method for inferring the relative abundance of related members of protein families from tryptic peptide intensities. This pipeline has been used to analyze quantitative LC-MS data from multiple biomarker discovery projects. We illustrate our pipeline here with examples from two of these studies, and show that the pipeline constitutes a complete workable framework for LC-MS-based differential quantitation. Supplementary material is available at http://iec01.mie.utoronto.ca/~thodoros/Bukhman/.

  19. Comprehensive Analysis of Temporal Alterations in Cellular Proteome of Bacillus subtilis under Curcumin Treatment

    PubMed Central

    Reddy, Panga Jaipal; Sinha, Sneha; Ray, Sandipan; Sathe, Gajanan J.; Chatterjee, Aditi; Prasad, T. S. Keshava; Dhali, Snigdha; Srikanth, Rapole; Panda, Dulal; Srivastava, Sanjeeva

    2015-01-01

    Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division. PMID:25874956

  20. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment.

    PubMed

    Reddy, Panga Jaipal; Sinha, Sneha; Ray, Sandipan; Sathe, Gajanan J; Chatterjee, Aditi; Prasad, T S Keshava; Dhali, Snigdha; Srikanth, Rapole; Panda, Dulal; Srivastava, Sanjeeva

    2015-01-01

    Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.

  1. Mapping sites of aspirin-induced acetylations in live cells by quantitative acid-cleavable activity-based protein profiling (QA-ABPP)

    PubMed Central

    Wang, Jigang; Zhang, Chong-Jing; Zhang, Jianbin; He, Yingke; Lee, Yew Mun; Chen, Songbi; Lim, Teck Kwang; Ng, Shukie; Shen, Han-Ming; Lin, Qingsong

    2015-01-01

    Target-identification and understanding of mechanism-of-action (MOA) are challenging for development of small-molecule probes and their application in biology and drug discovery. For example, although aspirin has been widely used for more than 100 years, its molecular targets have not been fully characterized. To cope with this challenge, we developed a novel technique called quantitative acid-cleavable activity-based protein profiling (QA-ABPP) with combination of the following two parts: (i) activity-based protein profiling (ABPP) and iTRAQ™ quantitative proteomics for identification of target proteins and (ii) acid-cleavable linker-based ABPP for identification of peptides with specific binding sites. It is known that reaction of aspirin with its target proteins leads to acetylation. We thus applied the above technique using aspirin-based probes in human cancer HCT116 cells. We identified 1110 target proteins and 2775 peptides with exact acetylation sites. By correlating these two sets of data, 523 proteins were identified as targets of aspirin. We used various biological assays to validate the effects of aspirin on inhibition of protein synthesis and induction of autophagy which were elicited from the pathway analysis of Aspirin target profile. This technique is widely applicable for target identification in the field of drug discovery and biology, especially for the covalent drugs. PMID:25600173

  2. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.

    PubMed

    Audain, Enrique; Uszkoreit, Julian; Sachsenberg, Timo; Pfeuffer, Julianus; Liang, Xiao; Hermjakob, Henning; Sanchez, Aniel; Eisenacher, Martin; Reinert, Knut; Tabb, David L; Kohlbacher, Oliver; Perez-Riverol, Yasset

    2017-01-06

    In mass spectrometry-based shotgun proteomics, protein identifications are usually the desired result. However, most of the analytical methods are based on the identification of reliable peptides and not the direct identification of intact proteins. Thus, assembling peptides identified from tandem mass spectra into a list of proteins, referred to as protein inference, is a critical step in proteomics research. Currently, different protein inference algorithms and tools are available for the proteomics community. Here, we evaluated five software tools for protein inference (PIA, ProteinProphet, Fido, ProteinLP, MSBayesPro) using three popular database search engines: Mascot, X!Tandem, and MS-GF+. All the algorithms were evaluated using a highly customizable KNIME workflow using four different public datasets with varying complexities (different sample preparation, species and analytical instruments). We defined a set of quality control metrics to evaluate the performance of each combination of search engines, protein inference algorithm, and parameters on each dataset. We show that the results for complex samples vary not only regarding the actual numbers of reported protein groups but also concerning the actual composition of groups. Furthermore, the robustness of reported proteins when using databases of differing complexities is strongly dependant on the applied inference algorithm. Finally, merging the identifications of multiple search engines does not necessarily increase the number of reported proteins, but does increase the number of peptides per protein and thus can generally be recommended. Protein inference is one of the major challenges in MS-based proteomics nowadays. Currently, there are a vast number of protein inference algorithms and implementations available for the proteomics community. Protein assembly impacts in the final results of the research, the quantitation values and the final claims in the research manuscript. Even though protein inference is a crucial step in proteomics data analysis, a comprehensive evaluation of the many different inference methods has never been performed. Previously Journal of proteomics has published multiple studies about other benchmark of bioinformatics algorithms (PMID: 26585461; PMID: 22728601) in proteomics studies making clear the importance of those studies for the proteomics community and the journal audience. This manuscript presents a new bioinformatics solution based on the KNIME/OpenMS platform that aims at providing a fair comparison of protein inference algorithms (https://github.com/KNIME-OMICS). Six different algorithms - ProteinProphet, MSBayesPro, ProteinLP, Fido and PIA- were evaluated using the highly customizable workflow on four public datasets with varying complexities. Five popular database search engines Mascot, X!Tandem, MS-GF+ and combinations thereof were evaluated for every protein inference tool. In total >186 proteins lists were analyzed and carefully compare using three metrics for quality assessments of the protein inference results: 1) the numbers of reported proteins, 2) peptides per protein, and the 3) number of uniquely reported proteins per inference method, to address the quality of each inference method. We also examined how many proteins were reported by choosing each combination of search engines, protein inference algorithms and parameters on each dataset. The results show that using 1) PIA or Fido seems to be a good choice when studying the results of the analyzed workflow, regarding not only the reported proteins and the high-quality identifications, but also the required runtime. 2) Merging the identifications of multiple search engines gives almost always more confident results and increases the number of peptides per protein group. 3) The usage of databases containing not only the canonical, but also known isoforms of proteins has a small impact on the number of reported proteins. The detection of specific isoforms could, concerning the question behind the study, compensate for slightly shorter reports using the parsimonious reports. 4) The current workflow can be easily extended to support new algorithms and search engine combinations. Copyright © 2016. Published by Elsevier B.V.

  3. The Hemolymph Proteome of Fed and Starved Drosophila Larvae

    PubMed Central

    Goetze, Sandra; Ahrens, Christian H.; Omasits, Ulrich; Marty, Florian; Simigdala, Nikiana; Meyer, Imke; Wollscheid, Bernd; Brunner, Erich; Hafen, Ernst; Lehner, Christian F.

    2013-01-01

    The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid) contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics. PMID:23840627

  4. The hemolymph proteome of fed and starved Drosophila larvae.

    PubMed

    Handke, Björn; Poernbacher, Ingrid; Goetze, Sandra; Ahrens, Christian H; Omasits, Ulrich; Marty, Florian; Simigdala, Nikiana; Meyer, Imke; Wollscheid, Bernd; Brunner, Erich; Hafen, Ernst; Lehner, Christian F

    2013-01-01

    The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid) contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics.

  5. Current trends in quantitative proteomics - an update.

    PubMed

    Li, H; Han, J; Pan, J; Liu, T; Parker, C E; Borchers, C H

    2017-05-01

    Proteins can provide insights into biological processes at the functional level, so they are very promising biomarker candidates. The quantification of proteins in biological samples has been routinely used for the diagnosis of diseases and monitoring the treatment. Although large-scale protein quantification in complex samples is still a challenging task, a great amount of effort has been made to advance the technologies that enable quantitative proteomics. Seven years ago, in 2009, we wrote an article about the current trends in quantitative proteomics. In writing this current paper, we realized that, today, we have an even wider selection of potential tools for quantitative proteomics. These tools include new derivatization reagents, novel sampling formats, new types of analyzers and scanning techniques, and recently developed software to assist in assay development and data analysis. In this review article, we will discuss these innovative methods, and their current and potential applications in proteomics. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. A Quantitative Proteomics Approach to Clinical Research with Non-Traditional Samples

    PubMed Central

    Licier, Rígel; Miranda, Eric; Serrano, Horacio

    2016-01-01

    The proper handling of samples to be analyzed by mass spectrometry (MS) can guarantee excellent results and a greater depth of analysis when working in quantitative proteomics. This is critical when trying to assess non-traditional sources such as ear wax, saliva, vitreous humor, aqueous humor, tears, nipple aspirate fluid, breast milk/colostrum, cervical-vaginal fluid, nasal secretions, bronco-alveolar lavage fluid, and stools. We intend to provide the investigator with relevant aspects of quantitative proteomics and to recognize the most recent clinical research work conducted with atypical samples and analyzed by quantitative proteomics. Having as reference the most recent and different approaches used with non-traditional sources allows us to compare new strategies in the development of novel experimental models. On the other hand, these references help us to contribute significantly to the understanding of the proportions of proteins in different proteomes of clinical interest and may lead to potential advances in the emerging field of precision medicine. PMID:28248241

  7. A Quantitative Proteomics Approach to Clinical Research with Non-Traditional Samples.

    PubMed

    Licier, Rígel; Miranda, Eric; Serrano, Horacio

    2016-10-17

    The proper handling of samples to be analyzed by mass spectrometry (MS) can guarantee excellent results and a greater depth of analysis when working in quantitative proteomics. This is critical when trying to assess non-traditional sources such as ear wax, saliva, vitreous humor, aqueous humor, tears, nipple aspirate fluid, breast milk/colostrum, cervical-vaginal fluid, nasal secretions, bronco-alveolar lavage fluid, and stools. We intend to provide the investigator with relevant aspects of quantitative proteomics and to recognize the most recent clinical research work conducted with atypical samples and analyzed by quantitative proteomics. Having as reference the most recent and different approaches used with non-traditional sources allows us to compare new strategies in the development of novel experimental models. On the other hand, these references help us to contribute significantly to the understanding of the proportions of proteins in different proteomes of clinical interest and may lead to potential advances in the emerging field of precision medicine.

  8. Identification of novel biomarker candidates for hypertrophic cardiomyopathy and other cardiovascular diseases leading to heart failure.

    PubMed

    Rehulkova, H; Rehulka, P; Myslivcova Fucikova, A; Stulik, J; Pudil, R

    2016-11-23

    In-depth proteome discovery analysis represents new strategy in an effort to identify novel reliable specific protein markers for hypertrophic cardiomyopathy and other life threatening cardiovascular diseases. To systematically identify novel protein biomarkers of cardiovascular diseases with high mortality we employed an isobaric tag for relative and absolute quantitation (iTRAQ) proteome technology to make comparative analysis of plasma samples obtained from patients suffering from non-obstructive hypertrophic cardiomyopathy, stable dilated cardiomyopathy, aortic valve stenosis, chronic stable coronary artery disease and stable arterial hypertension. We found 128 plasma proteins whose abundances were uniquely regulated among the analyzed cardiovascular pathologies. 49 of them have not been described yet. Additionally, application of statistical exploratory analyses of the measured protein profiles indicated the relationship in pathophysiology of the examined cardiovascular pathologies.

  9. A Proteomic Workflow Using High-Throughput De Novo Sequencing Towards Complementation of Genome Information for Improved Comparative Crop Science.

    PubMed

    Turetschek, Reinhard; Lyon, David; Desalegn, Getinet; Kaul, Hans-Peter; Wienkoop, Stefanie

    2016-01-01

    The proteomic study of non-model organisms, such as many crop plants, is challenging due to the lack of comprehensive genome information. Changing environmental conditions require the study and selection of adapted cultivars. Mutations, inherent to cultivars, hamper protein identification and thus considerably complicate the qualitative and quantitative comparison in large-scale systems biology approaches. With this workflow, cultivar-specific mutations are detected from high-throughput comparative MS analyses, by extracting sequence polymorphisms with de novo sequencing. Stringent criteria are suggested to filter for confidential mutations. Subsequently, these polymorphisms complement the initially used database, which is ready to use with any preferred database search algorithm. In our example, we thereby identified 26 specific mutations in two cultivars of Pisum sativum and achieved an increased number (17 %) of peptide spectrum matches.

  10. Yeast proteome map (last update).

    PubMed

    Perrot, Michel; Moes, Suzette; Massoni, Aurélie; Jenoe, Paul; Boucherie, Hélian

    2009-10-01

    The identification of proteins separated on 2-D gels is essential to exploit the full potential of 2-D gel electrophoresis for proteomic investigations. For this purpose we have undertaken the systematic identification of Saccharomyces cerevisiae proteins separated on 2-D gels. We report here the identification by mass spectrometry of 100 novel yeast protein spots that have so far not been tackled due to their scarcity on our standard 2-D gels. These identifications extend the number of protein spots identified on our yeast 2-D proteome map to 716. They correspond to 485 unique proteins. Among these, 154 were resolved into several isoforms. The present data set can now be expanded to report for the first time a map of 363 protein isoforms that significantly deepens our knowledge of the yeast proteome. The reference map and a list of all identified proteins can be accessed on the Yeast Protein Map server (www.ibgc.u-bordeaux2.fr/YPM).

  11. Comparative proteomic profiling of the choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves.

    PubMed

    Kraner, Max E; Müller, Carmen; Sonnewald, Uwe

    2017-11-01

    In plants, intercellular communication and exchange are highly dependent on cell wall bridging structures between adhering cells, so-called plasmodesmata (PD). In our previous genetic screen for PD-deficient Arabidopsis mutants, we described choline transporter-like 1 (CHER1) being important for PD genesis and maturation. Leaves of cher1 mutant plants have up to 10 times less PD, which do not develop to complex structures. Here we utilize the T-DNA insertion mutant cher1-4 and report a deep comparative proteomic workflow for the identification of cell-wall-embedded PD-associated proteins. Analyzing triplicates of cell-wall-enriched fractions in depth by fractionation and quantitative high-resolution mass spectrometry, we compared > 5000 proteins obtained from fully developed leaves. Comparative data analysis and subsequent filtering generated a list of 61 proteins being significantly more abundant in Col-0. This list was enriched for previously described PD-associated proteins. To validate PD association of so far uncharacterized proteins, subcellular localization analyses were carried out by confocal laser-scanning microscopy. This study confirmed the association of PD for three out of four selected candidates, indicating that the comparative approach indeed allowed identification of so far undescribed PD-associated proteins. Performing comparative cell wall proteomics of Nicotiana benthamiana tissue, we observed an increase in abundance of these three selected candidates during sink to source transition. Taken together, our comparative proteomic approach revealed a valuable data set of potential PD-associated proteins, which can be used as a resource to unravel the molecular composition of complex PD and to investigate their function in cell-to-cell communication. © 2017 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  12. Quantitative targeted proteomics for understanding the blood-brain barrier: towards pharmacoproteomics.

    PubMed

    Ohtsuki, Sumio; Hirayama, Mio; Ito, Shingo; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya

    2014-06-01

    The blood-brain barrier (BBB) is formed by brain capillary endothelial cells linked together via complex tight junctions, and serves to prevent entry of drugs into the brain. Multiple transporters are expressed at the BBB, where they control exchange of materials between the circulating blood and brain interstitial fluid, thereby supporting and protecting the CNS. An understanding of the BBB is necessary for efficient development of CNS-acting drugs and to identify potential drug targets for treatment of CNS diseases. Quantitative targeted proteomics can provide detailed information on protein expression levels at the BBB. The present review highlights the latest applications of quantitative targeted proteomics in BBB research, specifically to evaluate species and in vivo-in vitro differences, and to reconstruct in vivo transport activity. Such a BBB quantitative proteomics approach can be considered as pharmacoproteomics.

  13. Middle-Down and Chemical Proteomic Approaches to Reveal Histone H4 Modification Dynamics in Cell Cycle: Label-Free Semi-Quantification of Histone Tail Peptide Modifications Including Phosphorylation and Highly Sensitive Capture of Histone PTM Binding Proteins Using Photo-Reactive Crosslinkers

    PubMed Central

    Yamamoto, Kazuki; Chikaoka, Yoko; Hayashi, Gosuke; Sakamoto, Ryosuke; Yamamoto, Ryuji; Sugiyama, Akira; Kodama, Tatsuhiko; Okamoto, Akimitsu; Kawamura, Takeshi

    2015-01-01

    Mass spectrometric proteomics is an effective approach for identifying and quantifying histone post-translational modifications (PTMs) and their binding proteins, especially in the cases of methylation and acetylation. However, another vital PTM, phosphorylation, tends to be poorly quantified because it is easily lost and inefficiently ionized. In addition, PTM binding proteins for phosphorylation are sometimes resistant to identification because of their variable binding affinities. Here, we present our efforts to improve the sensitivity of detection of histone H4 tail peptide phosphorylated at serine 1 (H4S1ph) and our successful identification of an H4S1ph binder candidate by means of a chemical proteomics approach. Our nanoLC-MS/MS system permitted semi-quantitative label-free analysis of histone H4 PTM dynamics of cell cycle-synchronized HeLa S3 cells, including phosphorylation, methylation, and acetylation. We show that H4S1ph abundance on nascent histone H4 unmethylated at lysine 20 (H4K20me0) peaks from late S-phase to M-phase. We also attempted to characterize effects of phosphorylation at H4S1 on protein–protein interactions. Specially synthesized photoaffinity bait peptides specifically captured 14-3-3 proteins as novel H4S1ph binding partners, whose interaction was otherwise undetectable by conventional peptide pull-down experiments. This is the first report that analyzes dynamics of PTM pattern on the whole histone H4 tail during cell cycle and enables the identification of PTM binders with low affinities using high-resolution mass spectrometry and photo-affinity bait peptides. PMID:26819910

  14. Quantitative multiplexed proteomics of Taenia solium cysts obtained from the skeletal muscle and central nervous system of pigs

    PubMed Central

    Navarrete-Perea, José; Isasa, Marta; Paulo, Joao A.; Corral-Corral, Ricardo; Flores-Bautista, Jeanette; Hernández-Téllez, Beatriz; Bobes, Raúl J.; Fragoso, Gladis; Sciutto, Edda; Soberón, Xavier; Gygi, Steven P.; Laclette, Juan P.

    2017-01-01

    In human and porcine cysticercosis caused by the tapeworm Taenia solium, the larval stage (cysts) can infest several tissues including the central nervous system (CNS) and the skeletal muscles (SM). The cyst’s proteomics changes associated with the tissue localization in the host tissues have been poorly studied. Quantitative multiplexed proteomics has the power to evaluate global proteome changes in response to different conditions. Here, using a TMT-multiplexed strategy we identified and quantified over 4,200 proteins in cysts obtained from the SM and CNS of pigs, of which 891 were host proteins. To our knowledge, this is the most extensive intermixing of host and parasite proteins reported for tapeworm infections.Several antigens in cysticercosis, i.e., GP50, paramyosin and a calcium-binding protein were enriched in skeletal muscle cysts. Our results suggested the occurrence of tissue-enriched antigen that could be useful in the improvement of the immunodiagnosis for cysticercosis. Using several algorithms for epitope detection, we selected 42 highly antigenic proteins enriched for each tissue localization of the cysts. Taking into account the fold changes and the antigen/epitope contents, we selected 10 proteins and produced synthetic peptides from the best epitopes. Nine peptides were recognized by serum antibodies of cysticercotic pigs, suggesting that those peptides are antigens. Mixtures of peptides derived from SM and CNS cysts yielded better results than mixtures of peptides derived from a single tissue location, however the identification of the ‘optimal’ tissue-enriched antigens remains to be discovered. Through machine learning technologies, we determined that a reliable immunodiagnostic test for porcine cysticercosis required at least five different antigenic determinants. PMID:28945737

  15. Identification of p90 Ribosomal S6 Kinase 2 as a Novel Host Protein in HBx Augmenting HBV Replication by iTRAQ-Based Quantitative Comparative Proteomics.

    PubMed

    Yan, Li-Bo; Yu, You-Jia; Zhang, Qing-Bo; Tang, Xiao-Qiong; Bai, Lang; Huang, FeiJun; Tang, Hong

    2018-05-01

    The aim of this study was to screen for novel host proteins that play a role in HBx augmenting Hepatitis B virus (HBV) replication. Three HepG2 cell lines stably harboring different functional domains of HBx (HBx, HBx-Cm6, and HBx-Cm16) were cultured. ITRAQ technology integrated with LC-MS/MS analysis was applied to identify the proteome differences among these three cell lines. In brief, a total of 70 different proteins were identified among HepG2-HBx, HepG2-HBx-Cm6, and HepG2-HBx-Cm16 by double repetition. Several differentially expressed proteins, including p90 ribosomal S6 kinase 2 (RSK2), were further validated. RSK2 was expressed at higher levels in HepG2-HBx and HepG2-HBx-Cm6 compared with HepG2-HBx-Cm16. Furthermore, levels of HBV replication intermediates were decreased after silencing RSK2 in HepG2.2.15. An HBx-minus HBV mutant genome led to decreased levels of HBV replication intermediates and these decreases were restored to levels similar to wild-type HBV by transient ectopic expression of HBx. After silencing RSK2 expression, the levels of HBV replication intermediates synthesized from the HBx-minus HBV mutant genome were not restored to levels that were observed with wild-type HBV by transient HBx expression. Based on iTRAQ quantitative comparative proteomics, RSK2 was identified as a novel host protein that plays a role in HBx augmenting HBV replication. © 2018 The Authors. Proteomics - Clinical Application Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Quantitative multiplexed proteomics of Taenia solium cysts obtained from the skeletal muscle and central nervous system of pigs.

    PubMed

    Navarrete-Perea, José; Isasa, Marta; Paulo, Joao A; Corral-Corral, Ricardo; Flores-Bautista, Jeanette; Hernández-Téllez, Beatriz; Bobes, Raúl J; Fragoso, Gladis; Sciutto, Edda; Soberón, Xavier; Gygi, Steven P; Laclette, Juan P

    2017-09-01

    In human and porcine cysticercosis caused by the tapeworm Taenia solium, the larval stage (cysts) can infest several tissues including the central nervous system (CNS) and the skeletal muscles (SM). The cyst's proteomics changes associated with the tissue localization in the host tissues have been poorly studied. Quantitative multiplexed proteomics has the power to evaluate global proteome changes in response to different conditions. Here, using a TMT-multiplexed strategy we identified and quantified over 4,200 proteins in cysts obtained from the SM and CNS of pigs, of which 891 were host proteins. To our knowledge, this is the most extensive intermixing of host and parasite proteins reported for tapeworm infections.Several antigens in cysticercosis, i.e., GP50, paramyosin and a calcium-binding protein were enriched in skeletal muscle cysts. Our results suggested the occurrence of tissue-enriched antigen that could be useful in the improvement of the immunodiagnosis for cysticercosis. Using several algorithms for epitope detection, we selected 42 highly antigenic proteins enriched for each tissue localization of the cysts. Taking into account the fold changes and the antigen/epitope contents, we selected 10 proteins and produced synthetic peptides from the best epitopes. Nine peptides were recognized by serum antibodies of cysticercotic pigs, suggesting that those peptides are antigens. Mixtures of peptides derived from SM and CNS cysts yielded better results than mixtures of peptides derived from a single tissue location, however the identification of the 'optimal' tissue-enriched antigens remains to be discovered. Through machine learning technologies, we determined that a reliable immunodiagnostic test for porcine cysticercosis required at least five different antigenic determinants.

  17. Quantitative proteome profile of water deficit stress responses in eastern cottonwood ( Populus deltoides) leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Paul E.; Garcia, Benjamin J.; Gunter, Lee E.

    Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understoodmore » in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood ( Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Altogether, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly, we highlight the RD26 transcription factor as a gene regulated at both the transcript and protein level, regardless of species and drought condition, and, thus, represents a key, universal drought marker for Populus species.« less

  18. Quantitative proteome profile of water deficit stress responses in eastern cottonwood ( Populus deltoides) leaves

    DOE PAGES

    Abraham, Paul E.; Garcia, Benjamin J.; Gunter, Lee E.; ...

    2018-02-15

    Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understoodmore » in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood ( Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Altogether, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly, we highlight the RD26 transcription factor as a gene regulated at both the transcript and protein level, regardless of species and drought condition, and, thus, represents a key, universal drought marker for Populus species.« less

  19. Advances in Quantitative Proteomics of Microbes and Microbial Communities

    NASA Astrophysics Data System (ADS)

    Waldbauer, J.; Zhang, L.; Rizzo, A. I.

    2015-12-01

    Quantitative measurements of gene expression are key to developing a mechanistic, predictive understanding of how microbial metabolism drives many biogeochemical fluxes and responds to environmental change. High-throughput RNA-sequencing can afford a wealth of information about transcript-level expression patterns, but it is becoming clear that expression dynamics are often very different at the protein level where biochemistry actually occurs. These divergent dynamics between levels of biological organization necessitate quantitative proteomic measurements to address many biogeochemical questions. The protein-level expression changes that underlie shifts in the magnitude, or even the direction, of metabolic and biogeochemical fluxes can be quite subtle and test the limits of current quantitative proteomics techniques. Here we describe methodologies for high-precision, whole-proteome quantification that are applicable to both model organisms of biogeochemical interest that may not be genetically tractable, and to complex community samples from natural environments. Employing chemical derivatization of peptides with multiple isotopically-coded tags, this strategy is rapid and inexpensive, can be implemented on a wide range of mass spectrometric instrumentation, and is relatively insensitive to chromatographic variability. We demonstrate the utility of this quantitative proteomics approach in application to both isolates and natural communities of sulfur-metabolizing and photosynthetic microbes.

  20. Fungal proteomics: from identification to function.

    PubMed

    Doyle, Sean

    2011-08-01

    Some fungi cause disease in humans and plants, while others have demonstrable potential for the control of insect pests. In addition, fungi are also a rich reservoir of therapeutic metabolites and industrially useful enzymes. Detailed analysis of fungal biochemistry is now enabled by multiple technologies including protein mass spectrometry, genome and transcriptome sequencing and advances in bioinformatics. Yet, the assignment of function to fungal proteins, encoded either by in silico annotated, or unannotated genes, remains problematic. The purpose of this review is to describe the strategies used by many researchers to reveal protein function in fungi, and more importantly, to consolidate the nomenclature of 'unknown function protein' as opposed to 'hypothetical protein' - once any protein has been identified by protein mass spectrometry. A combination of approaches including comparative proteomics, pathogen-induced protein expression and immunoproteomics are outlined, which, when used in combination with a variety of other techniques (e.g. functional genomics, microarray analysis, immunochemical and infection model systems), appear to yield comprehensive and definitive information on protein function in fungi. The relative advantages of proteomic, as opposed to transcriptomic-only, analyses are also described. In the future, combined high-throughput, quantitative proteomics, allied to transcriptomic sequencing, are set to reveal much about protein function in fungi. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Comparative evaluation of saliva collection methods for proteome analysis.

    PubMed

    Golatowski, Claas; Salazar, Manuela Gesell; Dhople, Vishnu Mukund; Hammer, Elke; Kocher, Thomas; Jehmlich, Nico; Völker, Uwe

    2013-04-18

    Saliva collection devices are widely used for large-scale screening approaches. This study was designed to compare the suitability of three different whole-saliva collection approaches for subsequent proteome analyses. From 9 young healthy volunteers (4 women and 5 men) saliva samples were collected either unstimulated by passive drooling or stimulated using a paraffin gum or Salivette® (cotton swab). Saliva volume, protein concentration and salivary protein patterns were analyzed comparatively. Samples collected using paraffin gum showed the highest saliva volume (4.1±1.5 ml) followed by Salivette® collection (1.8±0.4 ml) and drooling (1.0±0.4 ml). Saliva protein concentrations (average 1145 μg/ml) showed no significant differences between the three sampling schemes. Each collection approach facilitated the identification of about 160 proteins (≥2 distinct peptides) per subject, but collection-method dependent variations in protein composition were observed. Passive drooling, paraffin gum and Salivette® each allows similar coverage of the whole saliva proteome, but the specific proteins observed depended on the collection approach. Thus, only one type of collection device should be used for quantitative proteome analysis in one experiment, especially when performing large-scale cross-sectional or multi-centric studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The impact of carbon-13 and deuterium on relative quantification of proteins using stable isotope diethyl labeling.

    PubMed

    Koehler, Christian J; Arntzen, Magnus Ø; Thiede, Bernd

    2015-05-15

    Stable isotopic labeling techniques are useful for quantitative proteomics. A cost-effective and convenient method for diethylation by reductive amination was established. The impact using either carbon-13 or deuterium on quantification accuracy and precision was investigated using diethylation. We established an effective approach for stable isotope labeling by diethylation of amino groups of peptides. The approach was validated using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and nanospray liquid chromatography/electrospray ionization (nanoLC/ESI)-ion trap/orbitrap for mass spectrometric analysis as well as MaxQuant for quantitative data analysis. Reaction conditions with low reagent costs, high yields and minor side reactions were established for diethylation. Furthermore, we showed that diethylation can be applied to up to sixplex labeling. For duplex experiments, we compared diethylation in the analysis of the proteome of HeLa cells using acetaldehyde-(13) C(2)/(12) C(2) and acetaldehyde-(2) H(4)/(1) H(4). Equal numbers of proteins could be identified and quantified; however, (13) C(4)/(12) C(4) -diethylation revealed a lower variance of quantitative peptide ratios within proteins resulting in a higher precision of quantified proteins and less falsely regulated proteins. The results were compared with dimethylation showing minor effects because of the lower number of deuteriums. The described approach for diethylation of primary amines is a cost-effective and accurate method for up to sixplex relative quantification of proteomes. (13) C(4)/(12) C(4) -diethylation enables duplex quantification based on chemical labeling without using deuterium which reduces identification of false-negatives and increases the quality of the quantification results. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Computer applications making rapid advances in high throughput microbial proteomics (HTMP).

    PubMed

    Anandkumar, Balakrishna; Haga, Steve W; Wu, Hui-Fen

    2014-02-01

    The last few decades have seen the rise of widely-available proteomics tools. From new data acquisition devices, such as MALDI-MS and 2DE to new database searching softwares, these new products have paved the way for high throughput microbial proteomics (HTMP). These tools are enabling researchers to gain new insights into microbial metabolism, and are opening up new areas of study, such as protein-protein interactions (interactomics) discovery. Computer software is a key part of these emerging fields. This current review considers: 1) software tools for identifying the proteome, such as MASCOT or PDQuest, 2) online databases of proteomes, such as SWISS-PROT, Proteome Web, or the Proteomics Facility of the Pathogen Functional Genomics Resource Center, and 3) software tools for applying proteomic data, such as PSI-BLAST or VESPA. These tools allow for research in network biology, protein identification, functional annotation, target identification/validation, protein expression, protein structural analysis, metabolic pathway engineering and drug discovery.

  4. A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics.

    PubMed

    Van Oudenhove, Laurence; Devreese, Bart

    2013-06-01

    Proteomics has evolved substantially since its early days, some 20 years ago. In this mini-review, we aim to provide an overview of general methodologies and more recent developments in mass spectrometric approaches used for relative and absolute quantitation of proteins. Enhancement of sensitivity of the mass spectrometers as well as improved sample preparation and protein fractionation methods are resulting in a more comprehensive analysis of proteomes. We also document some upcoming trends for quantitative proteomics such as the use of label-free quantification methods. Hopefully, microbiologists will continue to explore proteomics as a tool in their research to understand the adaptation of microorganisms to their ever changing environment. We encourage them to incorporate some of the described new developments in mass spectrometry to facilitate their analyses and improve the general knowledge of the fascinating world of microorganisms.

  5. iProphet: Multi-level Integrative Analysis of Shotgun Proteomic Data Improves Peptide and Protein Identification Rates and Error Estimates*

    PubMed Central

    Shteynberg, David; Deutsch, Eric W.; Lam, Henry; Eng, Jimmy K.; Sun, Zhi; Tasman, Natalie; Mendoza, Luis; Moritz, Robert L.; Aebersold, Ruedi; Nesvizhskii, Alexey I.

    2011-01-01

    The combination of tandem mass spectrometry and sequence database searching is the method of choice for the identification of peptides and the mapping of proteomes. Over the last several years, the volume of data generated in proteomic studies has increased dramatically, which challenges the computational approaches previously developed for these data. Furthermore, a multitude of search engines have been developed that identify different, overlapping subsets of the sample peptides from a particular set of tandem mass spectrometry spectra. We present iProphet, the new addition to the widely used open-source suite of proteomic data analysis tools Trans-Proteomics Pipeline. Applied in tandem with PeptideProphet, it provides more accurate representation of the multilevel nature of shotgun proteomic data. iProphet combines the evidence from multiple identifications of the same peptide sequences across different spectra, experiments, precursor ion charge states, and modified states. It also allows accurate and effective integration of the results from multiple database search engines applied to the same data. The use of iProphet in the Trans-Proteomics Pipeline increases the number of correctly identified peptides at a constant false discovery rate as compared with both PeptideProphet and another state-of-the-art tool Percolator. As the main outcome, iProphet permits the calculation of accurate posterior probabilities and false discovery rate estimates at the level of sequence identical peptide identifications, which in turn leads to more accurate probability estimates at the protein level. Fully integrated with the Trans-Proteomics Pipeline, it supports all commonly used MS instruments, search engines, and computer platforms. The performance of iProphet is demonstrated on two publicly available data sets: data from a human whole cell lysate proteome profiling experiment representative of typical proteomic data sets, and from a set of Streptococcus pyogenes experiments more representative of organism-specific composite data sets. PMID:21876204

  6. Isolation and Proteomic Characterization of the Arabidopsis Golgi Defines Functional and Novel Components Involved in Plant Cell Wall Biosynthesis1[W][OA

    PubMed Central

    Parsons, Harriet T.; Christiansen, Katy; Knierim, Bernhard; Carroll, Andrew; Ito, Jun; Batth, Tanveer S.; Smith-Moritz, Andreia M.; Morrison, Stephanie; McInerney, Peter; Hadi, Masood Z.; Auer, Manfred; Mukhopadhyay, Aindrila; Petzold, Christopher J.; Scheller, Henrik V.; Loqué, Dominique; Heazlewood, Joshua L.

    2012-01-01

    The plant Golgi plays a pivotal role in the biosynthesis of cell wall matrix polysaccharides, protein glycosylation, and vesicle trafficking. Golgi-localized proteins have become prospective targets for reengineering cell wall biosynthetic pathways for the efficient production of biofuels from plant cell walls. However, proteomic characterization of the Golgi has so far been limited, owing to the technical challenges inherent in Golgi purification. In this study, a combination of density centrifugation and surface charge separation techniques have allowed the reproducible isolation of Golgi membranes from Arabidopsis (Arabidopsis thaliana) at sufficiently high purity levels for in-depth proteomic analysis. Quantitative proteomic analysis, immunoblotting, enzyme activity assays, and electron microscopy all confirm high purity levels. A composition analysis indicated that approximately 19% of proteins were likely derived from contaminating compartments and ribosomes. The localization of 13 newly assigned proteins to the Golgi using transient fluorescent markers further validated the proteome. A collection of 371 proteins consistently identified in all replicates has been proposed to represent the Golgi proteome, marking an appreciable advancement in numbers of Golgi-localized proteins. A significant proportion of proteins likely involved in matrix polysaccharide biosynthesis were identified. The potential within this proteome for advances in understanding Golgi processes has been demonstrated by the identification and functional characterization of the first plant Golgi-resident nucleoside diphosphatase, using a yeast complementation assay. Overall, these data show key proteins involved in primary cell wall synthesis and include a mixture of well-characterized and unknown proteins whose biological roles and importance as targets for future research can now be realized. PMID:22430844

  7. YahO protein as a calibrant for top-down proteomic identification of Shiga toxin using MALDI-TOF-TOF-MS/MS and post-source decay

    USDA-ARS?s Scientific Manuscript database

    Matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF-TOF) mass spectrometry is increasingly utilized for rapid top-down proteomic identification of proteins. This identification may involve analysis of either a pure protein or a protein mixture. For analysis of a pure protein...

  8. P19-S Managing Proteomics Data from Data Generation and Data Warehousing to Central Data Repository and Journal Reviewing Processes

    PubMed Central

    Thiele, H.; Glandorf, J.; Koerting, G.; Reidegeld, K.; Blüggel, M.; Meyer, H.; Stephan, C.

    2007-01-01

    In today’s proteomics research, various techniques and instrumentation bioinformatics tools are necessary to manage the large amount of heterogeneous data with an automatic quality control to produce reliable and comparable results. Therefore a data-processing pipeline is mandatory for data validation and comparison in a data-warehousing system. The proteome bioinformatics platform ProteinScape has been proven to cover these needs. The reprocessing of HUPO BPP participants’ MS data was done within ProteinScape. The reprocessed information was transferred into the global data repository PRIDE. ProteinScape as a data-warehousing system covers two main aspects: archiving relevant data of the proteomics workflow and information extraction functionality (protein identification, quantification and generation of biological knowledge). As a strategy for automatic data validation, different protein search engines are integrated. Result analysis is performed using a decoy database search strategy, which allows the measurement of the false-positive identification rate. Peptide identifications across different workflows, different MS techniques, and different search engines are merged to obtain a quality-controlled protein list. The proteomics identifications database (PRIDE), as a public data repository, is an archiving system where data are finally stored and no longer changed by further processing steps. Data submission to PRIDE is open to proteomics laboratories generating protein and peptide identifications. An export tool has been developed for transferring all relevant HUPO BPP data from ProteinScape into PRIDE using the PRIDE.xml format. The EU-funded ProDac project will coordinate the development of software tools covering international standards for the representation of proteomics data. The implementation of data submission pipelines and systematic data collection in public standards–compliant repositories will cover all aspects, from the generation of MS data in each laboratory to the conversion of all the annotating information and identifications to a standardized format. Such datasets can be used in the course of publishing in scientific journals.

  9. Unlocking the proteomic information encoded in MALDI-TOF-MS data used for microbial identification and characterization.

    PubMed

    Fagerquist, Clifton K

    2017-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is increasingly utilized as a rapid technique to identify microorganisms including pathogenic bacteria. However, little attention has been paid to the significant proteomic information encoded in the MS peaks that collectively constitute the MS 'fingerprint'. This review/perspective is intended to explore this topic in greater detail in the hopes that it may spur interest and further research in this area. Areas covered: This paper examines the recent literature on utilizing MALDI-TOF for bacterial identification. Critical works highlighting protein biomarker identification of bacteria, arguments for and against protein biomarker identification, proteomic approaches to biomarker identification, emergence of MALDI-TOF-TOF platforms and their use for top-down proteomic identification of bacterial proteins, protein denaturation and its effect on protein ion fragmentation, collision cross-sections and energy deposition during desorption/ionization are also explored. Expert commentary: MALDI-TOF and TOF-TOF mass spectrometry platforms will continue to provide chemical analyses that are rapid, cost-effective and high throughput. These instruments have proven their utility in the taxonomic identification of pathogenic bacteria at the genus and species level and are poised to more fully characterize these microorganisms to the benefit of clinical microbiology, food safety and other fields.

  10. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob.

    PubMed

    Goeminne, Ludger J E; Gevaert, Kris; Clement, Lieven

    2018-01-16

    Label-free shotgun proteomics is routinely used to assess proteomes. However, extracting relevant information from the massive amounts of generated data remains difficult. This tutorial provides a strong foundation on analysis of quantitative proteomics data. We provide key statistical concepts that help researchers to design proteomics experiments and we showcase how to analyze quantitative proteomics data using our recent free and open-source R package MSqRob, which was developed to implement the peptide-level robust ridge regression method for relative protein quantification described by Goeminne et al. MSqRob can handle virtually any experimental proteomics design and outputs proteins ordered by statistical significance. Moreover, its graphical user interface and interactive diagnostic plots provide easy inspection and also detection of anomalies in the data and flaws in the data analysis, allowing deeper assessment of the validity of results and a critical review of the experimental design. Our tutorial discusses interactive preprocessing, data analysis and visualization of label-free MS-based quantitative proteomics experiments with simple and more complex designs. We provide well-documented scripts to run analyses in bash mode on GitHub, enabling the integration of MSqRob in automated pipelines on cluster environments (https://github.com/statOmics/MSqRob). The concepts outlined in this tutorial aid in designing better experiments and analyzing the resulting data more appropriately. The two case studies using the MSqRob graphical user interface will contribute to a wider adaptation of advanced peptide-based models, resulting in higher quality data analysis workflows and more reproducible results in the proteomics community. We also provide well-documented scripts for experienced users that aim at automating MSqRob on cluster environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Will Quantitative Proteomics Redefine Some of the Key Concepts in Skeletal Muscle Physiology?

    PubMed

    Gizak, Agnieszka; Rakus, Dariusz

    2016-01-11

    Molecular and cellular biology methodology is traditionally based on the reasoning called "the mechanistic explanation". In practice, this means identifying and selecting correlations between biological processes which result from our manipulation of a biological system. In theory, a successful application of this approach requires precise knowledge about all parameters of a studied system. However, in practice, due to the systems' complexity, this requirement is rarely, if ever, accomplished. Typically, it is limited to a quantitative or semi-quantitative measurements of selected parameters (e.g., concentrations of some metabolites), and a qualitative or semi-quantitative description of expression/post-translational modifications changes within selected proteins. A quantitative proteomics approach gives a possibility of quantitative characterization of the entire proteome of a biological system, in the context of the titer of proteins as well as their post-translational modifications. This enables not only more accurate testing of novel hypotheses but also provides tools that can be used to verify some of the most fundamental dogmas of modern biology. In this short review, we discuss some of the consequences of using quantitative proteomics to verify several key concepts in skeletal muscle physiology.

  12. Current algorithmic solutions for peptide-based proteomics data generation and identification.

    PubMed

    Hoopmann, Michael R; Moritz, Robert L

    2013-02-01

    Peptide-based proteomic data sets are ever increasing in size and complexity. These data sets provide computational challenges when attempting to quickly analyze spectra and obtain correct protein identifications. Database search and de novo algorithms must consider high-resolution MS/MS spectra and alternative fragmentation methods. Protein inference is a tricky problem when analyzing large data sets of degenerate peptide identifications. Combining multiple algorithms for improved peptide identification puts significant strain on computational systems when investigating large data sets. This review highlights some of the recent developments in peptide and protein identification algorithms for analyzing shotgun mass spectrometry data when encountering the aforementioned hurdles. Also explored are the roles that analytical pipelines, public spectral libraries, and cloud computing play in the evolution of peptide-based proteomics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Separomics applied to the proteomics and peptidomics of low-abundance proteins: Choice of methods and challenges - A review.

    PubMed

    Baracat-Pereira, Maria Cristina; de Oliveira Barbosa, Meire; Magalhães, Marcos Jorge; Carrijo, Lanna Clicia; Games, Patrícia Dias; Almeida, Hebréia Oliveira; Sena Netto, José Fabiano; Pereira, Matheus Rodrigues; de Barros, Everaldo Gonçalves

    2012-06-01

    The enrichment and isolation of proteins are considered limiting steps in proteomic studies. Identification of proteins whose expression is transient, those that are of low-abundance, and of natural peptides not described in databases, is still a great challenge. Plant extracts are in general complex, and contaminants interfere with the identification of proteins involved in important physiological processes, such as plant defense against pathogens. This review discusses the challenges and strategies of separomics applied to the identification of low-abundance proteins and peptides in plants, especially in plants challenged by pathogens. Separomics is described as a group of methodological strategies for the separation of protein molecules for proteomics. Several tools have been used to remove highly abundant proteins from samples and also non-protein contaminants. The use of chromatographic techniques, the partition of the proteome into subproteomes, and an effort to isolate proteins in their native form have allowed the isolation and identification of rare proteins involved in different processes.

  14. Separomics applied to the proteomics and peptidomics of low-abundance proteins: Choice of methods and challenges – A review

    PubMed Central

    Baracat-Pereira, Maria Cristina; de Oliveira Barbosa, Meire; Magalhães, Marcos Jorge; Carrijo, Lanna Clicia; Games, Patrícia Dias; Almeida, Hebréia Oliveira; Sena Netto, José Fabiano; Pereira, Matheus Rodrigues; de Barros, Everaldo Gonçalves

    2012-01-01

    The enrichment and isolation of proteins are considered limiting steps in proteomic studies. Identification of proteins whose expression is transient, those that are of low-abundance, and of natural peptides not described in databases, is still a great challenge. Plant extracts are in general complex, and contaminants interfere with the identification of proteins involved in important physiological processes, such as plant defense against pathogens. This review discusses the challenges and strategies of separomics applied to the identification of low-abundance proteins and peptides in plants, especially in plants challenged by pathogens. Separomics is described as a group of methodological strategies for the separation of protein molecules for proteomics. Several tools have been used to remove highly abundant proteins from samples and also non-protein contaminants. The use of chromatographic techniques, the partition of the proteome into subproteomes, and an effort to isolate proteins in their native form have allowed the isolation and identification of rare proteins involved in different processes. PMID:22802713

  15. Divergent synthesis and identification of the cellular targets of deoxyelephantopins

    NASA Astrophysics Data System (ADS)

    Lagoutte, Roman; Serba, Christelle; Abegg, Daniel; Hoch, Dominic G.; Adibekian, Alexander; Winssinger, Nicolas

    2016-08-01

    Herbal extracts containing sesquiterpene lactones have been extensively used in traditional medicine and are known to be rich in α,β-unsaturated functionalities that can covalently engage target proteins. Here we report synthetic methodologies to access analogues of deoxyelephantopin, a sesquiterpene lactone with anticancer properties. Using alkyne-tagged cellular probes and quantitative proteomics analysis, we identified several cellular targets of deoxyelephantopin. We further demonstrate that deoxyelephantopin antagonizes PPARγ activity in situ via covalent engagement of a cysteine residue in the zinc-finger motif of this nuclear receptor.

  16. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics.

    PubMed

    Nanjo, Yohei; Nakamura, Takuji; Komatsu, Setsuko

    2013-11-01

    Flooding injury is one of the abiotic constraints on soybean growth. An experimental system established for evaluating flooding injury in soybean seedlings indicated that the degree of injury is dependent on seedling density in floodwater. Dissolved oxygen levels in the floodwater were decreased by the seedlings and correlated with the degree of injury. To understand the molecular mechanism responsible for the injury, proteomic alterations in soybean seedlings that correlated with severity of stress were analyzed using label-free quantitative proteomics. The analysis showed that the abundance of proteins involved in cell wall modification, such as polygalacturonase inhibitor-like and expansin-like B1-like proteins, which may be associated with the defense system, increased dependence on stress at both the protein and mRNA levels in all organs during flooding. The manner of alteration in abundance of these proteins was distinct from those of other responsive proteins. Furthermore, proteins also showing specific changes in abundance in the root tip included protein phosphatase 2A subunit-like proteins, which are possibly involved in flooding-induced root tip cell death. Additionally, decreases in abundance of cell wall synthesis-related proteins, such as cinnamyl-alcohol dehydrogenase and cellulose synthase-interactive protein-like proteins, were identified in hypocotyls of seedlings grown for 3 days after flooding, and these proteins may be associated with suppression of growth after flooding. These flooding injury-associated proteins can be defined as indicator proteins for severity of flooding stress in soybean.

  17. The mzqLibrary – An open source Java library supporting the HUPO‐PSI quantitative proteomics standard

    PubMed Central

    Zhang, Huaizhong; Fan, Jun; Perkins, Simon; Pisconti, Addolorata; Simpson, Deborah M.; Bessant, Conrad; Hubbard, Simon; Jones, Andrew R.

    2015-01-01

    The mzQuantML standard has been developed by the Proteomics Standards Initiative for capturing, archiving and exchanging quantitative proteomic data, derived from mass spectrometry. It is a rich XML‐based format, capable of representing data about two‐dimensional features from LC‐MS data, and peptides, proteins or groups of proteins that have been quantified from multiple samples. In this article we report the development of an open source Java‐based library of routines for mzQuantML, called the mzqLibrary, and associated software for visualising data called the mzqViewer. The mzqLibrary contains routines for mapping (peptide) identifications on quantified features, inference of protein (group)‐level quantification values from peptide‐level values, normalisation and basic statistics for differential expression. These routines can be accessed via the command line, via a Java programming interface access or a basic graphical user interface. The mzqLibrary also contains several file format converters, including import converters (to mzQuantML) from OpenMS, Progenesis LC‐MS and MaxQuant, and exporters (from mzQuantML) to other standards or useful formats (mzTab, HTML, csv). The mzqViewer contains in‐built routines for viewing the tables of data (about features, peptides or proteins), and connects to the R statistical library for more advanced plotting options. The mzqLibrary and mzqViewer packages are available from https://code.google.com/p/mzq‐lib/. PMID:26037908

  18. SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries.

    PubMed

    Wu, Jemma X; Song, Xiaomin; Pascovici, Dana; Zaw, Thiri; Care, Natasha; Krisp, Christoph; Molloy, Mark P

    2016-07-01

    The use of data-independent acquisition methods such as SWATH for mass spectrometry based proteomics is usually performed with peptide MS/MS assay libraries which enable identification and quantitation of peptide peak areas. Reference assay libraries can be generated locally through information dependent acquisition, or obtained from community data repositories for commonly studied organisms. However, there have been no studies performed to systematically evaluate how locally generated or repository-based assay libraries affect SWATH performance for proteomic studies. To undertake this analysis, we developed a software workflow, SwathXtend, which generates extended peptide assay libraries by integration with a local seed library and delivers statistical analysis of SWATH-quantitative comparisons. We designed test samples using peptides from a yeast extract spiked into peptides from human K562 cell lysates at three different ratios to simulate protein abundance change comparisons. SWATH-MS performance was assessed using local and external assay libraries of varying complexities and proteome compositions. These experiments demonstrated that local seed libraries integrated with external assay libraries achieve better performance than local assay libraries alone, in terms of the number of identified peptides and proteins and the specificity to detect differentially abundant proteins. Our findings show that the performance of extended assay libraries is influenced by the MS/MS feature similarity of the seed and external libraries, while statistical analysis using multiple testing corrections increases the statistical rigor needed when searching against large extended assay libraries. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries*

    PubMed Central

    Wu, Jemma X.; Song, Xiaomin; Pascovici, Dana; Zaw, Thiri; Care, Natasha; Krisp, Christoph; Molloy, Mark P.

    2016-01-01

    The use of data-independent acquisition methods such as SWATH for mass spectrometry based proteomics is usually performed with peptide MS/MS assay libraries which enable identification and quantitation of peptide peak areas. Reference assay libraries can be generated locally through information dependent acquisition, or obtained from community data repositories for commonly studied organisms. However, there have been no studies performed to systematically evaluate how locally generated or repository-based assay libraries affect SWATH performance for proteomic studies. To undertake this analysis, we developed a software workflow, SwathXtend, which generates extended peptide assay libraries by integration with a local seed library and delivers statistical analysis of SWATH-quantitative comparisons. We designed test samples using peptides from a yeast extract spiked into peptides from human K562 cell lysates at three different ratios to simulate protein abundance change comparisons. SWATH-MS performance was assessed using local and external assay libraries of varying complexities and proteome compositions. These experiments demonstrated that local seed libraries integrated with external assay libraries achieve better performance than local assay libraries alone, in terms of the number of identified peptides and proteins and the specificity to detect differentially abundant proteins. Our findings show that the performance of extended assay libraries is influenced by the MS/MS feature similarity of the seed and external libraries, while statistical analysis using multiple testing corrections increases the statistical rigor needed when searching against large extended assay libraries. PMID:27161445

  20. iTRAQ-based Quantitative Proteomics Study in Patients with Refractory Mycoplasma pneumoniae Pneumonia.

    PubMed

    Yu, Jia-Lu; Song, Qi-Fang; Xie, Zhi-Wei; Jiang, Wen-Hui; Chen, Jia-Hui; Fan, Hui-Feng; Xie, Ya-Ping; Lu, Gen

    2017-09-25

    Mycoplasma pneumoniae (MP) is a leading cause of community-acquired pneumonia in children and young adults. Although MP pneumonia is usually benign and self-limited, in some cases it can develop into life-threating refractory MP pneumonia (RMPP). However, the pathogenesis of RMPP is poorly understood. The identification and characterization of proteins related to RMPP could provide a proof of principle to facilitate appropriate diagnostic and therapeutic strategies for treating paients with MP. In this study, we used a quantitative proteomic technique (iTRAQ) to analyze MP-related proteins in serum samples from 5 patients with RMPP, 5 patients with non-refractory MP pneumonia (NRMPP), and 5 healthy children. Functional classification, sub-cellular localization, and protein interaction network analysis were carried out based on protein annotation through evolutionary relationship (PANTHER) and Cytoscape analysis. A total of 260 differentially expressed proteins were identified in the RMPP and NRMPP groups. Compared to the control group, the NRMPP and RMPP groups showed 134 (70 up-regulated and 64 down-regulated) and 126 (63 up-regulated and 63 down-regulated) differentially expressed proteins, respectively. The complex functional classification and protein interaction network of the identified proteins reflected the complex pathogenesis of RMPP. Our study provides the first comprehensive proteome map of RMPP-related proteins from MP pneumonia. These profiles may be useful as part of a diagnostic panel, and the identified proteins provide new insights into the pathological mechanisms underlying RMPP.

  1. Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite's host adaptation machinery.

    PubMed

    Butter, Falk; Bucerius, Ferdinand; Michel, Margaux; Cicova, Zdenka; Mann, Matthias; Janzen, Christian J

    2013-01-01

    Trypanosoma brucei developed a sophisticated life cycle to adapt to different host environments. Although developmental differentiation of T. brucei has been the topic of intensive research for decades, the mechanisms responsible for adaptation to different host environments are not well understood. We developed stable isotope labeling by amino acids in cell culture in trypanosomes to compare the proteomes of two different life cycle stages. Quantitative comparison of 4364 protein groups identified many proteins previously not known to be stage-specifically expressed. The identification of stage-specific proteins helps to understand how parasites adapt to different hosts and provides new insights into differences in metabolism, gene regulation, and cell architecture. A DEAD-box RNA helicase, which is highly up-regulated in the bloodstream form of this parasite and which is essential for viability and proper cell cycle progression in this stage is described as an example.

  2. PRIDE: new developments and new datasets.

    PubMed

    Jones, Philip; Côté, Richard G; Cho, Sang Yun; Klie, Sebastian; Martens, Lennart; Quinn, Antony F; Thorneycroft, David; Hermjakob, Henning

    2008-01-01

    The PRIDE (http://www.ebi.ac.uk/pride) database of protein and peptide identifications was previously described in the NAR Database Special Edition in 2006. Since this publication, the volume of public data in the PRIDE relational database has increased by more than an order of magnitude. Several significant public datasets have been added, including identifications and processed mass spectra generated by the HUPO Brain Proteome Project and the HUPO Liver Proteome Project. The PRIDE software development team has made several significant changes and additions to the user interface and tool set associated with PRIDE. The focus of these changes has been to facilitate the submission process and to improve the mechanisms by which PRIDE can be queried. The PRIDE team has developed a Microsoft Excel workbook that allows the required data to be collated in a series of relatively simple spreadsheets, with automatic generation of PRIDE XML at the end of the process. The ability to query PRIDE has been augmented by the addition of a BioMart interface allowing complex queries to be constructed. Collaboration with groups outside the EBI has been fruitful in extending PRIDE, including an approach to encode iTRAQ quantitative data in PRIDE XML.

  3. IBT-based quantitative proteomics identifies potential regulatory proteins involved in pigmentation of purple sea cucumber, Apostichopus japonicus.

    PubMed

    Xing, Lili; Sun, Lina; Liu, Shilin; Li, Xiaoni; Zhang, Libin; Yang, Hongsheng

    2017-09-01

    Sea cucumbers are an important economic species and exhibit high yield value among aquaculture animals. Purple sea cucumbers are very rare and beautiful and have stable hereditary patterns. In this study, isobaric tags (IBT) were first used to reveal the molecular mechanism of pigmentation in the body wall of the purple sea cucumber. We analyzed the proteomes of purple sea cucumber in early pigmentation stage (Pa), mid pigmentation stage (Pb) and late pigmentation stage (Pc), resulting in the identification of 5580 proteins, including 1099 differentially expressed proteins in Pb: Pa and 339 differentially expressed proteins in Pc: Pb. GO and KEGG analyses revealed possible differentially expressed proteins, including"melanogenesis", "melanosome", "melanoma", "pigment-biosynthetic process", "Epidermis development", "Ras-signaling pathway", "Wnt-signaling pathway", "response to UV light", and "tyrosine metabolism", involved in pigment synthesis and regulation in purple sea cucumbers. The large number of differentially expressed proteins identified here should be highly useful in further elucidating the mechanisms underlying pigmentation in sea cucumbers. Furthermore, these results may also provide the base for further identification of proteins involved in resistance mechanisms against melanoma, albinism, UV damage, and other diseases in sea cucumbers. Copyright © 2017. Published by Elsevier Inc.

  4. Proteomics meets blood banking: identification of protein targets for the improvement of platelet quality.

    PubMed

    Schubert, Peter; Devine, Dana V

    2010-01-03

    Proteomics has brought new perspectives to the fields of hematology and transfusion medicine in the last decade. The steady improvement of proteomic technology is propelling novel discoveries of molecular mechanisms by studying protein expression, post-translational modifications and protein interactions. This review article focuses on the application of proteomics to the identification of molecular mechanisms leading to the deterioration of blood platelets during storage - a critical aspect in the provision of platelet transfusion products. Several proteomic approaches have been employed to analyse changes in the platelet protein profile during storage and the obtained data now need to be translated into platelet biochemistry in order to connect the results to platelet function. Targeted biochemical applications then allow the identification of points for intervention in signal transduction pathways. Once validated and placed in a transfusion context, these data will provide further understanding of the underlying molecular mechanisms leading to platelet storage lesion. Future aspects of proteomics in blood banking will aim to make use of protein markers identified for platelet storage lesion development to monitor proteome changes when alterations such as the use of additive solutions or pathogen reduction strategies are put in place in order to improve platelet quality for patients. (c) 2009 Elsevier B.V. All rights reserved.

  5. Inhibition of glycogen phosphorylation induces changes in cellular proteome and signaling pathways in MIA pancreatic cancer cells

    PubMed Central

    Ma, Danjun; Wang, Jiarui; Zhao, Yingchun; Lee, Wai-Nang Paul; Xiao, Jing; Go, Vay Liang W.; Wang, Qi; Recker, Robert; Xiao, Gary Guishan

    2011-01-01

    Objectives Novel quantitative proteomic approaches were used to study the effects of inhibition of glycogen phosphorylase on proteome and signaling pathways in MIA PaCa-2 pancreatic cancer cells. Methods We performed quantitative proteomic analysis in MIA PaCa-2 cancer cells treated with a stratified dose of CP-320626 (25 μM, 50 μM and 100 μM). The effect of metabolic inhibition on cellular protein turnover dynamics was also studied using the modified SILAC method (mSILAC). Results A total of twenty-two protein spots and four phosphoprotein spots were quantitatively analyzed. We found that dynamic expression of total proteins and phosphoproteins was significantly changed in MIA PaCa-2 cells treated with an incremental dose of CP-320626. Functional analyses suggested that most of the proteins differentially expressed were in the pathways of MAPK/ERK and TNF-α/NF-κB. Conclusions Signaling pathways and metabolic pathways share many common cofactors and substrates forming an extended metabolic network. The restriction of substrate through one pathway such as inhibition of glycogen phosphorylation induces pervasive metabolomic and proteomic changes manifested in protein synthesis, breakdown and post-translational modification of signaling molecules. Our results suggest that quantitative proteomic is an important approach to understand the interaction between metabolism and signaling pathways. PMID:22158071

  6. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis.

    PubMed

    Abdallah, Cosette; Valot, Benoit; Guillier, Christelle; Mounier, Arnaud; Balliau, Thierry; Zivy, Michel; van Tuinen, Diederik; Renaut, Jenny; Wipf, Daniel; Dumas-Gaudot, Eliane; Recorbet, Ghislaine

    2014-08-28

    Arbuscular mycorrhizal (AM) symbiosis that associates roots of most land plants with soil-borne fungi (Glomeromycota), is characterized by reciprocal nutritional benefits. Fungal colonization of plant roots induces massive changes in cortical cells where the fungus differentiates an arbuscule, which drives proliferation of the plasma membrane. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza still remains to be explored. In this study, we first examined the qualitative composition of the root membrane proteome of Medicago truncatula after microsome enrichment and subsequent in depth analysis by GeLC-MS/MS. The results obtained highlighted the identification of 1226 root membrane protein candidates whose cellular and functional classifications predispose plastids and protein synthesis as prevalent organelle and function, respectively. Changes at the protein abundance level between the membrane proteomes of mycorrhizal and nonmycorrhizal roots were further monitored by spectral counting, which retrieved a total of 96 proteins that displayed a differential accumulation upon AM symbiosis. Besides the canonical markers of the periarbuscular membrane, new candidates supporting the importance of membrane trafficking events during mycorrhiza establishment/functioning were identified, including flotillin-like proteins. The data have been deposited to the ProteomeXchange with identifier PXD000875. During arbuscular mycorrhizal symbiosis, one of the most widespread mutualistic associations in nature, the endomembrane system of plant roots is believed to undergo qualitative and quantitative changes in order to sustain both the accommodation process of the AM fungus within cortical cells and the exchange of nutrients between symbionts. Large-scale GeLC-MS/MS proteomic analysis of the membrane fractions from mycorrhizal and nonmycorrhizal roots of M. truncatula coupled to spectral counting retrieved around one hundred proteins that displayed changes in abundance upon mycorrhizal establishment. The symbiosis-related membrane proteins that were identified mostly function in signaling/membrane trafficking and nutrient uptake regulation. Besides extending the coverage of the root membrane proteome of M. truncatula, new candidates involved in the symbiotic program emerged from the current study, which pointed out a dynamic reorganization of microsomal proteins during the accommodation of AM fungi within cortical cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Identification of autoantigens in body fluids by combining pull-downs and organic precipitations of intact immune complexes with quantitative label-free mass spectrometry.

    PubMed

    Merl, Juliane; Deeg, Cornelia A; Swadzba, Margarete E; Ueffing, Marius; Hauck, Stefanie M

    2013-12-06

    Most autoimmune diseases are multifactorial diseases and are caused by the immunological reaction against a number of autoantigens. Key for understanding autoimmune pathologies is the knowledge of the targeted autoantigens, both initially and during disease progression. We present an approach for autoantigen identification based on isolation of intact autoantibody-antigen complexes from body fluids. After organic precipitation of high molecular weight proteins and free immunoglobulins, released autoantigens were identified by quantitative label-free liquid chromatography mass spectrometry. We confirmed feasibility of target enrichment and identification from highly complex body fluid proteomes by spiking of a predefined antibody-antigen complex at low level of abundance. As a proof of principle, we studied the blinding disease autoimmune uveitis, which is caused by autoreactive T-cells attacking the inner eye and is accompanied by autoantibodies. We identified three novel autoantigens in the spontaneous animal model equine recurrent uveitis (secreted acidic phosphoprotein osteopontin, extracellular matrix protein 1, and metalloproteinase inhibitor 2) and confirmed the presence of the corresponding autoantibodies in 15-25% of patient samples by enzyme-linked immunosorbent assay. Thus, this workflow led to the identification of novel autoantigens in autoimmune uveitis and may provide a versatile and useful tool to identify autoantigens in other autoimmune diseases in the future.

  8. SWATH2stats: An R/Bioconductor Package to Process and Convert Quantitative SWATH-MS Proteomics Data for Downstream Analysis Tools.

    PubMed

    Blattmann, Peter; Heusel, Moritz; Aebersold, Ruedi

    2016-01-01

    SWATH-MS is an acquisition and analysis technique of targeted proteomics that enables measuring several thousand proteins with high reproducibility and accuracy across many samples. OpenSWATH is popular open-source software for peptide identification and quantification from SWATH-MS data. For downstream statistical and quantitative analysis there exist different tools such as MSstats, mapDIA and aLFQ. However, the transfer of data from OpenSWATH to the downstream statistical tools is currently technically challenging. Here we introduce the R/Bioconductor package SWATH2stats, which allows convenient processing of the data into a format directly readable by the downstream analysis tools. In addition, SWATH2stats allows annotation, analyzing the variation and the reproducibility of the measurements, FDR estimation, and advanced filtering before submitting the processed data to downstream tools. These functionalities are important to quickly analyze the quality of the SWATH-MS data. Hence, SWATH2stats is a new open-source tool that summarizes several practical functionalities for analyzing, processing, and converting SWATH-MS data and thus facilitates the efficient analysis of large-scale SWATH/DIA datasets.

  9. Quantitative Proteomic Analysis of Serum Exosomes from Patients with Locally Advanced Pancreatic Cancer Undergoing Chemoradiotherapy.

    PubMed

    An, Mingrui; Lohse, Ines; Tan, Zhijing; Zhu, Jianhui; Wu, Jing; Kurapati, Himabindu; Morgan, Meredith A; Lawrence, Theodore S; Cuneo, Kyle C; Lubman, David M

    2017-04-07

    Pancreatic cancer is the third leading cause of cancer-related death in the USA. Despite extensive research, minimal improvements in patient outcomes have been achieved. Early identification of treatment response and metastasis would be valuable to determine the appropriate therapeutic course for patients. In this work, we isolated exosomes from the serum of 10 patients with locally advanced pancreatic cancer at serial time points over a course of therapy, and quantitative analysis was performed using the iTRAQ method. We detected approximately 700-800 exosomal proteins per sample, several of which have been implicated in metastasis and treatment resistance. We compared the exosomal proteome of patients at different time points during treatment to healthy controls and identified eight proteins that show global treatment-specific changes. We then tested the effect of patient-derived exosomes on the migration of tumor cells and found that patient-derived exosomes, but not healthy controls, induce cell migration, supporting their role in metastasis. Our data show that exosomes can be reliably extracted from patient serum and analyzed for protein content. The differential loading of exosomes during a course of therapy suggests that exosomes may provide novel insights into the development of treatment resistance and metastasis.

  10. Dynamic quantitative proteomics characterization of TNF-α-induced necroptosis.

    PubMed

    Wang, Yang; Huang, Zhi-Hao; Li, Yang-Jia; He, Gui-Wei; Yu, Ru-Yuan; Yang, Jie; Liu, Wan-Ting; Li, Bin; He, Qing-Yu

    2016-12-01

    Emerging evidence suggested that necroptosis has essential functions in many human inflammatory diseases, but the molecular mechanisms of necroptosis remain unclear. Here, we employed SILAC quantitatively dynamic proteomics to compare the protein changes during TNF-α-induced necroptosis at different time points in murine fibrosarcoma L929 cells with caspase-8 deficiency, and then performed the systematical analysis on the signaling networks involved in the progress using bioinformatics methods. Our results showed that a total of 329, 421 and 378 differentially expressed proteins were detected at three stages of necroptosis, respectively. Gene ontology and ingenuity pathway analysis (IPA) revealed that the proteins regulated at early stages of necroptosis (2, 6 h) were mainly involved in mitochondria dysfunction, oxidative phosphorylation and Nrf-2 signaling, while the expression levels of the proteins related to ubiquitin, Nrf-2, and NF-κB pathways were found to have changes at last stages of necroptosis (6, 18 h). Taken together, we demonstrated for the first time that dysfunction of mitochondria and ubiquitin-proteasome signaling contributed to the initiation and execution of necroptosis. These findings may provide clues for the identification of important regulators in necroptosis and the development of novel therapeutic strategies for the related diseases.

  11. Diagnosis of major depressive disorder by combining multimodal information from heart rate dynamics and serum proteomics using machine-learning algorithm.

    PubMed

    Kim, Eun Young; Lee, Min Young; Kim, Se Hyun; Ha, Kyooseob; Kim, Kwang Pyo; Ahn, Yong Min

    2017-06-02

    Major depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the autonomic nervous system. This study applied a machine-learning method to classify MDD and control groups by incorporating data from serum proteomic analysis and heart rate variability (HRV) analysis for the identification of novel peripheral biomarkers. The study subjects consisted of 25 drug-free female MDD patients and 25 age- and sex-matched healthy controls. First, quantitative serum proteome profiles were analyzed by liquid chromatography-tandem mass spectrometry using pooled serum samples from 10 patients and 10 controls. Next, candidate proteins were quantified with multiple reaction monitoring (MRM) in 50 subjects. We also analyzed 22 linear and nonlinear HRV parameters in 50 subjects. Finally, we identified a combined biomarker panel consisting of proteins and HRV indexes using a support vector machine with recursive feature elimination. A separation between MDD and control groups was achieved using five parameters (apolipoprotein B, group-specific component, ceruloplasmin, RMSSD, and SampEn) at 80.1% classification accuracy. A combination of HRV and proteomic data achieved better classification accuracy. A high classification accuracy can be achieved by combining multimodal information from heart rate dynamics and serum proteomics in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD. Further studies using larger, independent cohorts are needed to verify the role of these candidate biomarkers for MDD diagnosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Arabidopsis proteome responses to the smoke-derived growth regulator karrikin.

    PubMed

    Baldrianová, Jana; Černý, Martin; Novák, Jan; Jedelský, Petr L; Divíšková, Eva; Brzobohatý, Břetislav

    2015-04-29

    Karrikins are butenolide plant growth regulators in smoke from burning plant material that have proven ability to promote germination and seedling photomorphogenesis. However, the molecular mechanisms underlying these processes are unclear. Here we provide the first proteome-wide analysis of early responses to karrikin in plants (Arabidopsis seedlings). Image analysis of two-dimensionally separated proteins, Rubisco-depleted proteomes and phosphoproteomes, together with LC-MS profiling, detected >1900 proteins, 113 of which responded to karrikin treatment. All the differentially abundant proteins (except HSP70-3) are novel karrikin-responders, and most are involved in photosynthesis, carbohydrate metabolism, redox homeostasis, transcription control, proteosynthesis, protein transport and processing, or protein degradation. Our data provide functionally complementary information to previous identifications of karrikin-responsive genes and evidence for a novel karrikin signalling pathway originating in chloroplasts. We present an updated model of karrikin signalling that integrates proteomic data and is supported by growth response observations. Karrikin has shown promising potential in agricultural applications, yet this process is poorly understood at the molecular level. To the best of our knowledge, this is the first survey of early global proteomic responses to karrikin in plants (Arabidopsis seedlings). The combination of label-free LC-MS profiling and 2-DE analyses provided highly sensitive snapshots of protein abundance and quantitative information on proteoform-level changes. These results present evidence of proteasome-independent karrikin signalling pathways and provide novel targets for detailed mechanistic studies using, e.g., mutants and transgenic plants. Copyright © 2015. Published by Elsevier B.V.

  13. Using PSEA-Quant for Protein Set Enrichment Analysis of Quantitative Mass Spectrometry-Based Proteomics

    PubMed Central

    Lavallée-Adam, Mathieu

    2017-01-01

    PSEA-Quant analyzes quantitative mass spectrometry-based proteomics datasets to identify enrichments of annotations contained in repositories such as the Gene Ontology and Molecular Signature databases. It allows users to identify the annotations that are significantly enriched for reproducibly quantified high abundance proteins. PSEA-Quant is available on the web and as a command-line tool. It is compatible with all label-free and isotopic labeling-based quantitative proteomics methods. This protocol describes how to use PSEA-Quant and interpret its output. The importance of each parameter as well as troubleshooting approaches are also discussed. PMID:27010334

  14. PeptideDepot: flexible relational database for visual analysis of quantitative proteomic data and integration of existing protein information.

    PubMed

    Yu, Kebing; Salomon, Arthur R

    2009-12-01

    Recently, dramatic progress has been achieved in expanding the sensitivity, resolution, mass accuracy, and scan rate of mass spectrometers able to fragment and identify peptides through MS/MS. Unfortunately, this enhanced ability to acquire proteomic data has not been accompanied by a concomitant increase in the availability of flexible tools allowing users to rapidly assimilate, explore, and analyze this data and adapt to various experimental workflows with minimal user intervention. Here we fill this critical gap by providing a flexible relational database called PeptideDepot for organization of expansive proteomic data sets, collation of proteomic data with available protein information resources, and visual comparison of multiple quantitative proteomic experiments. Our software design, built upon the synergistic combination of a MySQL database for safe warehousing of proteomic data with a FileMaker-driven graphical user interface for flexible adaptation to diverse workflows, enables proteomic end-users to directly tailor the presentation of proteomic data to the unique analysis requirements of the individual proteomics lab. PeptideDepot may be deployed as an independent software tool or integrated directly with our high throughput autonomous proteomic pipeline used in the automated acquisition and post-acquisition analysis of proteomic data.

  15. A multiplexed quantitative proteomics approach for investigating protein expression in the developing central nervous system.

    PubMed

    Orme, Rowan P; Gates, Monte A; Fricker-Gates, Rosemary A

    2010-08-15

    Cell transplantation using stem cell-derived neurons is commonly viewed as a candidate therapy for neurodegenerative diseases. However, methods for differentiating stem cells into homogenous populations of neurons suitable for transplant remain elusive. This suggests that there are as yet unknown signalling factors working in vivo to specify neuronal cell fate during development. These factors could be manipulated to better differentiate stem cells into neural populations useful for therapeutic transplantation. Here a quantitative proteomics approach is described for investigating cell signalling in the developing central nervous system (CNS), using the embryonic ventral mesencephalon as a model. Briefly, total protein was extracted from embryonic ventral midbrain tissue before, during and after the birth of dopaminergic neurons, and digested using trypsin. Two-dimensional liquid chromatography, coupled with tandem mass spectrometry, was then used to identify proteins from the tryptic peptides. Isobaric tagging for relative and absolute quantification (iTRAQ) reagents were used to label the tryptic peptides and facilitate relative quantitative analysis. The success of the experiment was confirmed by the identification of proteins known to be expressed in the developing ventral midbrain, as well as by Western blotting, and immunolabelling of embryonic tissue sections. This method of protein discovery improves upon previous attempts to identify novel signalling factors through microarray analysis. Importantly, the methods described here could be applied to virtually any aspect of development. (c) 2010 Elsevier B.V. All rights reserved.

  16. Microbial Protein-Antigenome Determination (MAD) Technology: A Proteomics-Based Strategy for Rapid Identification of Microbial Targets of Host Humoral Immune Responses

    USDA-ARS?s Scientific Manuscript database

    Immunogenic, pathogen-specific proteins have excellent potential for development of novel management modalities. Here, we describe an innovative application of proteomics called Microbial protein-Antigenome Determination (MAD) Technology for rapid identification of native microbial proteins that el...

  17. Microbial Protein-Antigenome Determination (MAD) Technology: A Proteomics-Based Strategy for Rapid Identification of Microbial Targets of Host Humoral Immune Responses

    USDA-ARS?s Scientific Manuscript database

    Immunogenic, pathogen-specific proteins have excellent potential for development of novel management modalities. Here, we describe an innovative application of proteomics called Microbial protein-Antigenome Determination (MAD) Technology for rapid identification of native microbial proteins that eli...

  18. Proteomic Workflows for Biomarker Identification Using Mass Spectrometry — Technical and Statistical Considerations during Initial Discovery

    PubMed Central

    Orton, Dennis J.; Doucette, Alan A.

    2013-01-01

    Identification of biomarkers capable of differentiating between pathophysiological states of an individual is a laudable goal in the field of proteomics. Protein biomarker discovery generally employs high throughput sample characterization by mass spectrometry (MS), being capable of identifying and quantifying thousands of proteins per sample. While MS-based technologies have rapidly matured, the identification of truly informative biomarkers remains elusive, with only a handful of clinically applicable tests stemming from proteomic workflows. This underlying lack of progress is attributed in large part to erroneous experimental design, biased sample handling, as well as improper statistical analysis of the resulting data. This review will discuss in detail the importance of experimental design and provide some insight into the overall workflow required for biomarker identification experiments. Proper balance between the degree of biological vs. technical replication is required for confident biomarker identification. PMID:28250400

  19. A practical guide for the identification of membrane and plasma membrane proteins in human embryonic stem cells and human embryonal carcinoma cells.

    PubMed

    Dormeyer, Wilma; van Hoof, Dennis; Mummery, Christine L; Krijgsveld, Jeroen; Heck, Albert J R

    2008-10-01

    The identification of (plasma) membrane proteins in cells can provide valuable insights into the regulation of their biological processes. Pluripotent cells such as human embryonic stem cells and embryonal carcinoma cells are capable of unlimited self-renewal and share many of the biological mechanisms that regulate proliferation and differentiation. The comparison of their membrane proteomes will help unravel the biological principles of pluripotency, and the identification of biomarker proteins in their plasma membranes is considered a crucial step to fully exploit pluripotent cells for therapeutic purposes. For these tasks, membrane proteomics is the method of choice, but as indicated by the scarce identification of membrane and plasma membrane proteins in global proteomic surveys it is not an easy task. In this minireview, we first describe the general challenges of membrane proteomics. We then review current sample preparation steps and discuss protocols that we found particularly beneficial for the identification of large numbers of (plasma) membrane proteins in human tumour- and embryo-derived stem cells. Our optimized assembled protocol led to the identification of a large number of membrane proteins. However, as the composition of cells and membranes is highly variable we still recommend adapting the sample preparation protocol for each individual system.

  20. A Critical Appraisal of Techniques, Software Packages, and Standards for Quantitative Proteomic Analysis

    PubMed Central

    Lawless, Craig; Hubbard, Simon J.; Fan, Jun; Bessant, Conrad; Hermjakob, Henning; Jones, Andrew R.

    2012-01-01

    Abstract New methods for performing quantitative proteome analyses based on differential labeling protocols or label-free techniques are reported in the literature on an almost monthly basis. In parallel, a correspondingly vast number of software tools for the analysis of quantitative proteomics data has also been described in the literature and produced by private companies. In this article we focus on the review of some of the most popular techniques in the field and present a critical appraisal of several software packages available to process and analyze the data produced. We also describe the importance of community standards to support the wide range of software, which may assist researchers in the analysis of data using different platforms and protocols. It is intended that this review will serve bench scientists both as a useful reference and a guide to the selection and use of different pipelines to perform quantitative proteomics data analysis. We have produced a web-based tool (http://www.proteosuite.org/?q=other_resources) to help researchers find appropriate software for their local instrumentation, available file formats, and quantitative methodology. PMID:22804616

  1. Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.

    PubMed

    Åhrman, Emma; Hallgren, Oskar; Malmström, Lars; Hedström, Ulf; Malmström, Anders; Bjermer, Leif; Zhou, Xiao-Hong; Westergren-Thorsson, Gunilla; Malmström, Johan

    2018-03-01

    Remodeling of the extracellular matrix (ECM) is a common feature in lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Here, we applied a sequential tissue extraction strategy to describe disease-specific remodeling of human lung tissue in disease, using end-stages of COPD and IPF. Our strategy was based on quantitative comparison of the disease proteomes, with specific focus on the matrisome, using data-independent acquisition and targeted data analysis (SWATH-MS). Our work provides an in-depth proteomic characterization of human lung tissue during impaired tissue remodeling. In addition, we show important quantitative and qualitative effects of the solubility of matrisome proteins. COPD was characterized by a disease-specific increase in ECM regulators, metalloproteinase inhibitor 3 (TIMP3) and matrix metalloproteinase 28 (MMP-28), whereas for IPF, impairment in cell adhesion proteins, such as collagen VI and laminins, was most prominent. For both diseases, we identified increased levels of proteins involved in the regulation of endopeptidase activity, with several proteins belonging to the serpin family. The established human lung quantitative proteome inventory and the construction of a tissue-specific protein assay library provides a resource for future quantitative proteomic analyses of human lung tissues. We present a sequential tissue extraction strategy to determine changes in extractability of matrisome proteins in end-stage COPD and IPF compared to healthy control tissue. Extensive quantitative analysis of the proteome changes of the disease states revealed altered solubility of matrisome proteins involved in ECM regulators and cell-ECM communication. The results highlight disease-specific remodeling mechanisms associated with COPD and IPF. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells.

    PubMed

    Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan

    2016-01-29

    Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics.

  3. Automated selected reaction monitoring data analysis workflow for large-scale targeted proteomic studies.

    PubMed

    Surinova, Silvia; Hüttenhain, Ruth; Chang, Ching-Yun; Espona, Lucia; Vitek, Olga; Aebersold, Ruedi

    2013-08-01

    Targeted proteomics based on selected reaction monitoring (SRM) mass spectrometry is commonly used for accurate and reproducible quantification of protein analytes in complex biological mixtures. Strictly hypothesis-driven, SRM assays quantify each targeted protein by collecting measurements on its peptide fragment ions, called transitions. To achieve sensitive and accurate quantitative results, experimental design and data analysis must consistently account for the variability of the quantified transitions. This consistency is especially important in large experiments, which increasingly require profiling up to hundreds of proteins over hundreds of samples. Here we describe a robust and automated workflow for the analysis of large quantitative SRM data sets that integrates data processing, statistical protein identification and quantification, and dissemination of the results. The integrated workflow combines three software tools: mProphet for peptide identification via probabilistic scoring; SRMstats for protein significance analysis with linear mixed-effect models; and PASSEL, a public repository for storage, retrieval and query of SRM data. The input requirements for the protocol are files with SRM traces in mzXML format, and a file with a list of transitions in a text tab-separated format. The protocol is especially suited for data with heavy isotope-labeled peptide internal standards. We demonstrate the protocol on a clinical data set in which the abundances of 35 biomarker candidates were profiled in 83 blood plasma samples of subjects with ovarian cancer or benign ovarian tumors. The time frame to realize the protocol is 1-2 weeks, depending on the number of replicates used in the experiment.

  4. Statistical design of quantitative mass spectrometry-based proteomic experiments.

    PubMed

    Oberg, Ann L; Vitek, Olga

    2009-05-01

    We review the fundamental principles of statistical experimental design, and their application to quantitative mass spectrometry-based proteomics. We focus on class comparison using Analysis of Variance (ANOVA), and discuss how randomization, replication and blocking help avoid systematic biases due to the experimental procedure, and help optimize our ability to detect true quantitative changes between groups. We also discuss the issues of pooling multiple biological specimens for a single mass analysis, and calculation of the number of replicates in a future study. When applicable, we emphasize the parallels between designing quantitative proteomic experiments and experiments with gene expression microarrays, and give examples from that area of research. We illustrate the discussion using theoretical considerations, and using real-data examples of profiling of disease.

  5. Data from quantitative label free proteomics analysis of rat spleen.

    PubMed

    Dudekula, Khadar; Le Bihan, Thierry

    2016-09-01

    The dataset presented in this work has been obtained using a label-free quantitative proteomic analysis of rat spleen. A robust method for extraction of proteins from rat spleen tissue and LC-MS-MS analysis was developed using a urea and SDS-based buffer. Different fractionation methods were compared. A total of 3484 different proteins were identified from the pool of all experiments run in this study (a total of 2460 proteins with at least two peptides). A total of 1822 proteins were identified from nine non-fractionated pulse gels, 2288 proteins and 2864 proteins were identified by SDS-PAGE fractionation into three and five fractions respectively. The proteomics data are deposited in ProteomeXchange Consortium via PRIDE PXD003520, Progenesis and Maxquant output are presented in the supported information. The generated list of proteins under different regimes of fractionation allow assessing the nature of the identified proteins; variability in the quantitative analysis associated with the different sampling strategy and allow defining a proper number of replicates for future quantitative analysis.

  6. Discovery of Colorectal Cancer Biomarker Candidates by Membrane Proteomic Analysis and Subsequent Verification using Selected Reaction Monitoring (SRM) and Tissue Microarray (TMA) Analysis*

    PubMed Central

    Kume, Hideaki; Muraoka, Satoshi; Kuga, Takahisa; Adachi, Jun; Narumi, Ryohei; Watanabe, Shio; Kuwano, Masayoshi; Kodera, Yoshio; Matsushita, Kazuyuki; Fukuoka, Junya; Masuda, Takeshi; Ishihama, Yasushi; Matsubara, Hisahiro; Nomura, Fumio; Tomonaga, Takeshi

    2014-01-01

    Recent advances in quantitative proteomic technology have enabled the large-scale validation of biomarkers. We here performed a quantitative proteomic analysis of membrane fractions from colorectal cancer tissue to discover biomarker candidates, and then extensively validated the candidate proteins identified. A total of 5566 proteins were identified in six tissue samples, each of which was obtained from polyps and cancer with and without metastasis. GO cellular component analysis predicted that 3087 of these proteins were membrane proteins, whereas TMHMM algorithm predicted that 1567 proteins had a transmembrane domain. Differences were observed in the expression of 159 membrane proteins and 55 extracellular proteins between polyps and cancer without metastasis, while the expression of 32 membrane proteins and 17 extracellular proteins differed between cancer with and without metastasis. A total of 105 of these biomarker candidates were quantitated using selected (or multiple) reaction monitoring (SRM/MRM) with stable synthetic isotope-labeled peptides as an internal control. The results obtained revealed differences in the expression of 69 of these proteins, and this was subsequently verified in an independent set of patient samples (polyps (n = 10), cancer without metastasis (n = 10), cancer with metastasis (n = 10)). Significant differences were observed in the expression of 44 of these proteins, including ITGA5, GPRC5A, PDGFRB, and TFRC, which have already been shown to be overexpressed in colorectal cancer, as well as proteins with unknown function, such as C8orf55. The expression of C8orf55 was also shown to be high not only in colorectal cancer, but also in several cancer tissues using a multicancer tissue microarray, which included 1150 cores from 14 cancer tissues. This is the largest verification study of biomarker candidate membrane proteins to date; our methods for biomarker discovery and subsequent validation using SRM/MRM will contribute to the identification of useful biomarker candidates for various cancers. Data are available via ProteomeXchange with identifier PXD000851. PMID:24687888

  7. Discovery of colorectal cancer biomarker candidates by membrane proteomic analysis and subsequent verification using selected reaction monitoring (SRM) and tissue microarray (TMA) analysis.

    PubMed

    Kume, Hideaki; Muraoka, Satoshi; Kuga, Takahisa; Adachi, Jun; Narumi, Ryohei; Watanabe, Shio; Kuwano, Masayoshi; Kodera, Yoshio; Matsushita, Kazuyuki; Fukuoka, Junya; Masuda, Takeshi; Ishihama, Yasushi; Matsubara, Hisahiro; Nomura, Fumio; Tomonaga, Takeshi

    2014-06-01

    Recent advances in quantitative proteomic technology have enabled the large-scale validation of biomarkers. We here performed a quantitative proteomic analysis of membrane fractions from colorectal cancer tissue to discover biomarker candidates, and then extensively validated the candidate proteins identified. A total of 5566 proteins were identified in six tissue samples, each of which was obtained from polyps and cancer with and without metastasis. GO cellular component analysis predicted that 3087 of these proteins were membrane proteins, whereas TMHMM algorithm predicted that 1567 proteins had a transmembrane domain. Differences were observed in the expression of 159 membrane proteins and 55 extracellular proteins between polyps and cancer without metastasis, while the expression of 32 membrane proteins and 17 extracellular proteins differed between cancer with and without metastasis. A total of 105 of these biomarker candidates were quantitated using selected (or multiple) reaction monitoring (SRM/MRM) with stable synthetic isotope-labeled peptides as an internal control. The results obtained revealed differences in the expression of 69 of these proteins, and this was subsequently verified in an independent set of patient samples (polyps (n = 10), cancer without metastasis (n = 10), cancer with metastasis (n = 10)). Significant differences were observed in the expression of 44 of these proteins, including ITGA5, GPRC5A, PDGFRB, and TFRC, which have already been shown to be overexpressed in colorectal cancer, as well as proteins with unknown function, such as C8orf55. The expression of C8orf55 was also shown to be high not only in colorectal cancer, but also in several cancer tissues using a multicancer tissue microarray, which included 1150 cores from 14 cancer tissues. This is the largest verification study of biomarker candidate membrane proteins to date; our methods for biomarker discovery and subsequent validation using SRM/MRM will contribute to the identification of useful biomarker candidates for various cancers. Data are available via ProteomeXchange with identifier PXD000851. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Multi-component immunoaffinity subtraction chromatography: an innovative step towards a comprehensive survey of the human plasma proteome.

    PubMed

    Pieper, Rembert; Su, Qin; Gatlin, Christine L; Huang, Shih-Ting; Anderson, N Leigh; Steiner, Sandra

    2003-04-01

    In order to discover novel protein markers indicative of disease processes or drug effects, the proteomics technology platform most commonly used consists of high resolution protein separation by two-dimensional electrophoresis (2-DE), mass spectrometric identification of proteins from stained gel spots and a bioinformatic data analysis process supported by statistics. This approach has been more successful in profiling proteins and their disease- or treatment-related quantitative changes in tissue homogenates than in plasma samples. Plasma protein display and quantitation suffer from several disadvantages: very high abundance of a few proteins; high heterogeneity of many proteins resulting in long charge trains; crowding of 2-DE separated protein spots in the molecular mass range between 45-80 kD and in the isoelectric point range between 4.5 and 6. Therefore, proteomic technologies are needed that address these problems and particularly allow accurate quantitation of a larger number of less abundant proteins in plasma and other body fluids. The immunoaffinity-based protein subtraction chromatography (IASC) described here removes multiple proteins present in plasma and serum in high concentrations effectively and reproducibly. Applying IASC as an upfront plasma sample preparation process for 2-DE, the protein spot pattern observed in gels changes dramatically and at least 350 additional lower abundance proteins are visualized. Affinity-purified polyclonal antibodies (pAbs) are the immunoaffinity reagents used to specifically remove the abundant proteins such as albumin, immunoglobulin G, immunoglobulin A, transferrin, haptoglobin, alpha-1-antitrypsin, hemopexin, transthyretin, alpha-2-HS glycoprotein, alpha-1-acid glycoprotein, alpha-2-macroglobulin and fibrinogen from human plasma samples. To render the immunoaffinity subtraction procedure recyclable, the pAbs are immobilized and cross-linked on chromatographic matrices. Antibody-coupled matrices specific for one protein each can be pooled to form mixed-bed IASC columns. We show that up to ten affinity-bound plasma proteins with similar solubility characteristics are eluted from a mixed-bed column in one step. This facilitates automated chromatographic processing of plasma samples in high throughput, which is desirable in proteomic disease marker discovery projects.

  9. Comparative quantitative proteomics analysis of the ABA response of roots of drought-sensitive and drought-tolerant wheat varieties identifies proteomic signatures of drought adaptability.

    PubMed

    Alvarez, Sophie; Roy Choudhury, Swarup; Pandey, Sona

    2014-03-07

    Wheat is one of the most highly cultivated cereals in the world. Like other cultivated crops, wheat production is significantly affected by abiotic stresses such as drought. Multiple wheat varieties suitable for different geographical regions of the world have been developed that are adapted to different environmental conditions; however, the molecular basis of such adaptations remains unknown in most cases. We have compared the quantitative proteomics profile of the roots of two different wheat varieties, Nesser (drought-tolerant) and Opata (drought-sensitive), in the absence and presence of abscisic acid (ABA, as a proxy for drought). A labeling LC-based quantitative proteomics approach using iTRAQ was applied to elucidate the changes in protein abundance levels. Quantitative differences in protein levels were analyzed for the evaluation of inherent differences between the two varieties as well as the overall and variety-specific effect of ABA on the root proteome. This study reveals the most elaborate ABA-responsive root proteome identified to date in wheat. A large number of proteins exhibited inherently different expression levels between Nesser and Opata. Additionally, significantly higher numbers of proteins were ABA-responsive in Nesser roots compared with Opata roots. Furthermore, several proteins showed variety-specific regulation by ABA, suggesting their role in drought adaptation.

  10. Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p.

    PubMed

    Bailey, Ulla-Maja; Schulz, Benjamin L

    2013-04-01

    Post-translational modification of proteins with glycosylation is of key importance in many biological systems in eukaryotes, influencing fundamental biological processes and regulating protein function. Changes in glycosylation are therefore of interest in understanding these processes and are also useful as clinical biomarkers of disease. The presence of glycosylation can also inhibit protease digestion and lower the quality and confidence of protein identification by mass spectrometry. While deglycosylation can improve the efficiency of subsequent protease digest and increase protein coverage, this step is often excluded from proteomic workflows. Here, we performed a systematic analysis that showed that deglycosylation with peptide-N-glycosidase F (PNGase F) prior to protease digestion with AspN or trypsin improved the quality of identification of the yeast cell wall proteome. The improvement in the confidence of identification of glycoproteins following PNGase F deglycosylation correlated with a higher density of glycosylation sites. Optimal identification across the proteome was achieved with PNGase F deglycosylation and complementary proteolysis with either AspN or trypsin. We used this combination of deglycosylation and complementary protease digest to identify changes in the yeast cell wall proteome caused by lack of the Alg3p protein, a key component of the biosynthetic pathway of protein N-glycosylation. The cell wall of yeast lacking Alg3p showed specifically increased levels of Cis3p, a protein important for cell wall integrity. Our results showed that deglycosylation prior to protease digestion improved the quality of proteomic analyses even if protein glycosylation is not of direct relevance to the study at hand. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Integrated Proteomic Pipeline Using Multiple Search Engines for a Proteogenomic Study with a Controlled Protein False Discovery Rate.

    PubMed

    Park, Gun Wook; Hwang, Heeyoun; Kim, Kwang Hoe; Lee, Ju Yeon; Lee, Hyun Kyoung; Park, Ji Yeong; Ji, Eun Sun; Park, Sung-Kyu Robin; Yates, John R; Kwon, Kyung-Hoon; Park, Young Mok; Lee, Hyoung-Joo; Paik, Young-Ki; Kim, Jin Young; Yoo, Jong Shin

    2016-11-04

    In the Chromosome-Centric Human Proteome Project (C-HPP), false-positive identification by peptide spectrum matches (PSMs) after database searches is a major issue for proteogenomic studies using liquid-chromatography and mass-spectrometry-based large proteomic profiling. Here we developed a simple strategy for protein identification, with a controlled false discovery rate (FDR) at the protein level, using an integrated proteomic pipeline (IPP) that consists of four engrailed steps as follows. First, using three different search engines, SEQUEST, MASCOT, and MS-GF+, individual proteomic searches were performed against the neXtProt database. Second, the search results from the PSMs were combined using statistical evaluation tools including DTASelect and Percolator. Third, the peptide search scores were converted into E-scores normalized using an in-house program. Last, ProteinInferencer was used to filter the proteins containing two or more peptides with a controlled FDR of 1.0% at the protein level. Finally, we compared the performance of the IPP to a conventional proteomic pipeline (CPP) for protein identification using a controlled FDR of <1% at the protein level. Using the IPP, a total of 5756 proteins (vs 4453 using the CPP) including 477 alternative splicing variants (vs 182 using the CPP) were identified from human hippocampal tissue. In addition, a total of 10 missing proteins (vs 7 using the CPP) were identified with two or more unique peptides, and their tryptic peptides were validated using MS/MS spectral pattern from a repository database or their corresponding synthetic peptides. This study shows that the IPP effectively improved the identification of proteins, including alternative splicing variants and missing proteins, in human hippocampal tissues for the C-HPP. All RAW files used in this study were deposited in ProteomeXchange (PXD000395).

  12. PeptideDepot: Flexible Relational Database for Visual Analysis of Quantitative Proteomic Data and Integration of Existing Protein Information

    PubMed Central

    Yu, Kebing; Salomon, Arthur R.

    2010-01-01

    Recently, dramatic progress has been achieved in expanding the sensitivity, resolution, mass accuracy, and scan rate of mass spectrometers able to fragment and identify peptides through tandem mass spectrometry (MS/MS). Unfortunately, this enhanced ability to acquire proteomic data has not been accompanied by a concomitant increase in the availability of flexible tools allowing users to rapidly assimilate, explore, and analyze this data and adapt to a variety of experimental workflows with minimal user intervention. Here we fill this critical gap by providing a flexible relational database called PeptideDepot for organization of expansive proteomic data sets, collation of proteomic data with available protein information resources, and visual comparison of multiple quantitative proteomic experiments. Our software design, built upon the synergistic combination of a MySQL database for safe warehousing of proteomic data with a FileMaker-driven graphical user interface for flexible adaptation to diverse workflows, enables proteomic end-users to directly tailor the presentation of proteomic data to the unique analysis requirements of the individual proteomics lab. PeptideDepot may be deployed as an independent software tool or integrated directly with our High Throughput Autonomous Proteomic Pipeline (HTAPP) used in the automated acquisition and post-acquisition analysis of proteomic data. PMID:19834895

  13. Assay Portal | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The CPTAC Assay Portal serves as a centralized public repository of "fit-for-purpose," multiplexed quantitative mass spectrometry-based proteomic targeted assays. Targeted proteomic assays eliminate issues that are commonly observed using conventional protein detection systems.

  14. Quantitative proteomics in Giardia duodenalis-Achievements and challenges.

    PubMed

    Emery, Samantha J; Lacey, Ernest; Haynes, Paul A

    2016-08-01

    Giardia duodenalis (syn. G. lamblia and G. intestinalis) is a protozoan parasite of vertebrates and a major contributor to the global burden of diarrheal diseases and gastroenteritis. The publication of multiple genome sequences in the G. duodenalis species complex has provided important insights into parasite biology, and made post-genomic technologies, including proteomics, significantly more accessible. The aims of proteomics are to identify and quantify proteins present in a cell, and assign functions to them within the context of dynamic biological systems. In Giardia, proteomics in the post-genomic era has transitioned from reliance on gel-based systems to utilisation of a diverse array of techniques based on bottom-up LC-MS/MS technologies. Together, these have generated crucial foundations for subcellular proteomes, elucidated intra- and inter-assemblage isolate variation, and identified pathways and markers in differentiation, host-parasite interactions and drug resistance. However, in Giardia, proteomics remains an emerging field, with considerable shortcomings evident from the published research. These include a bias towards assemblage A, a lack of emphasis on quantitative analytical techniques, and limited information on post-translational protein modifications. Additionally, there are multiple areas of research for which proteomic data is not available to add value to published transcriptomic data. The challenge of amalgamating data in the systems biology paradigm necessitates the further generation of large, high-quality quantitative datasets to accurately model parasite biology. This review surveys the current proteomic research available for Giardia and evaluates their technical and quantitative approaches, while contextualising their biological insights into parasite pathology, isolate variation and eukaryotic evolution. Finally, we propose areas of priority for the generation of future proteomic data to explore fundamental questions in Giardia, including the analysis of post-translational modifications, and the design of MS-based assays for validation of differentially expressed proteins in large datasets. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Shotgun proteomics of the barley seed proteome

    USDA-ARS?s Scientific Manuscript database

    Barley seed proteins are of prime importance to the brewing industry, human and animal nutrition and in plant breeding for cultivar identification. To obtain comprehensive proteomic data from barley seeds, acetone precipitated proteins were in-solution digested and the resulting peptides were analyz...

  16. NCI's Proteome Characterization Centers Announced | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute (NCI), part of the National Institutes of Health, announces the launch of a Clinical Proteomic Tumor Analysis Consortium (CPTAC). CPTAC is a comprehensive, coordinated team effort to accelerate the understanding of the molecular basis of cancer through the application of robust, quantitative, proteomic technologies and workflows.

  17. Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics

    PubMed Central

    Deutsch, Eric W.; Mendoza, Luis; Shteynberg, David; Slagel, Joseph; Sun, Zhi; Moritz, Robert L.

    2015-01-01

    Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include mass spectrometry to define protein sequence, protein:protein interactions, and protein post-translational modifications. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative mass spectrometry proteomics. It supports all major operating systems and instrument vendors via open data formats. Here we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of tandem mass spectrometry datasets, as well as some major upcoming features. PMID:25631240

  18. Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics.

    PubMed

    Deutsch, Eric W; Mendoza, Luis; Shteynberg, David; Slagel, Joseph; Sun, Zhi; Moritz, Robert L

    2015-08-01

    Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include MS to define protein sequence, protein:protein interactions, and protein PTMs. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative MS proteomics. It supports all major operating systems and instrument vendors via open data formats. Here, we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of MS/MS datasets, as well as some major upcoming features. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A comparative analysis of human plasma and serum proteins by combining native PAGE, whole-gel slicing and quantitative LC-MS/MS: Utilizing native MS-electropherograms in proteomic analysis for discovering structure and interaction-correlated differences.

    PubMed

    Wen, Meiling; Jin, Ya; Manabe, Takashi; Chen, Shumin; Tan, Wen

    2017-12-01

    MS identification has long been used for PAGE-separated protein bands, but global and systematic quantitation utilizing MS after PAGE has remained rare and not been reported for native PAGE. Here we reported on a new method combining native PAGE, whole-gel slicing and quantitative LC-MS/MS, aiming at comparative analysis on not only abundance, but also structures and interactions of proteins. A pair of human plasma and serum samples were used as test samples and separated on a native PAGE gel. Six lanes of each sample were cut, each lane was further sliced into thirty-five 1.1 mm × 1.1 mm squares and all the squares were subjected to standardized procedures of in-gel digestion and quantitative LC-MS/MS. The results comprised 958 data rows that each contained abundance values of a protein detected in one square in eleven gel lanes (one plasma lane excluded). The data were evaluated to have satisfactory reproducibility of assignment and quantitation. Totally 315 proteins were assigned, with each protein assigned in 1-28 squares. The abundance distributions in the plasma and serum gel lanes were reconstructed for each protein, named as "native MS-electropherograms". Comparison of the electropherograms revealed significant plasma-versus-serum differences on 33 proteins in 87 squares (fold difference > 2 or < 0.5, p < 0.05). Many of the differences matched with accumulated knowledge on protein interactions and proteolysis involved in blood coagulation, complement and wound healing processes. We expect this method would be useful to provide more comprehensive information in comparative proteomic analysis, on both quantities and structures/interactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mass spectrometry based biomarker discovery, verification, and validation--quality assurance and control of protein biomarker assays.

    PubMed

    Parker, Carol E; Borchers, Christoph H

    2014-06-01

    In its early years, mass spectrometry (MS)-based proteomics focused on the cataloging of proteins found in different species or different tissues. By 2005, proteomics was being used for protein quantitation, typically based on "proteotypic" peptides which act as surrogates for the parent proteins. Biomarker discovery is usually done by non-targeted "shotgun" proteomics, using relative quantitation methods to determine protein expression changes that correlate with disease (output given as "up-or-down regulation" or "fold-increases"). MS-based techniques can also perform "absolute" quantitation which is required for clinical applications (output given as protein concentrations). Here we describe the differences between these methods, factors that affect the precision and accuracy of the results, and some examples of recent studies using MS-based proteomics to verify cancer-related biomarkers. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Functional protease profiling for diagnosis of malignant disease.

    PubMed

    Findeisen, Peter; Neumaier, Michael

    2012-01-01

    Clinical proteomic profiling by mass spectrometry (MS) aims at uncovering specific alterations within mass profiles of clinical specimens that are of diagnostic value for the detection and classification of various diseases including cancer. However, despite substantial progress in the field, the clinical proteomic profiling approaches have not matured into routine diagnostic applications so far. Their limitations are mainly related to high-abundance proteins and their complex processing by a multitude of endogenous proteases thus making rigorous standardization difficult. MS is biased towards the detection of low-molecular-weight peptides. Specifically, in serum specimens, the particular fragments of proteolytically degraded proteins are amenable to MS analysis. Proteases are known to be involved in tumour progression and tumour-specific proteases are released into the blood stream presumably as a result of invasive progression and metastasis. Thus, the determination of protease activity in clinical specimens from patients with malignant disease can offer diagnostic and also therapeutic options. The identification of specific substrates for tumour proteases in complex biological samples is challenging, but proteomic screens for proteases/substrate interactions are currently experiencing impressive progress. Such proteomic screens include peptide-based libraries, differential isotope labelling in combination with MS, quantitative degradomic analysis of proteolytically generated neo-N-termini, monitoring the degradation of exogenous reporter peptides with MS, and activity-based protein profiling. In the present article, we summarize and discuss the current status of proteomic techniques to identify tumour-specific protease-substrate interactions for functional protease profiling. Thereby, we focus on the potential diagnostic use of the respective approaches. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Global proteome changes in larvae of Callosobruchus maculatus Coleoptera:Chrysomelidae:Bruchinae) following ingestion of a cysteine proteinase inhibitor.

    PubMed

    Nogueira, Fábio C S; Silva, Carlos P; Alexandre, Daniel; Samuels, Richard I; Soares, Emanoella L; Aragão, Francisco J L; Palmisano, Giuseppe; Domont, Gilberto B; Roepstorff, Peter; Campos, Francisco A P

    2012-08-01

    The seed-feeding beetle Callosobruchus maculatus is an important cowpea pest (Vigna unguiculata) as well as an interesting model to study insect digestive physiology. The larvae of C. maculatus rely on cysteine and aspartic peptidases to digest proteins in their diet. In this work, the global proteomic changes induced in the intestinal tract of larval C. maculatus challenged by the ingestion of cystatin, a cysteine peptidase inhibitor, was investigated by a nanoLC-MS/MS approach. The ingestion of cystatin caused a delay in the development of the larvae, but the mortality was not high, indicating that C. maculatus is able to adapt to this inhibitor. This proteomic strategy resulted in the identification of 752 and 550 protein groups in the midgut epithelia and midgut contents, respectively, and quantitative analyses allowed us to establish relative differences of the identified proteins. Ingestion of cystatin led to significant changes in the proteome of both the midgut epithelia and midgut contents. We have observed that proteins related to plant cell wall degradation, particularly the key glycoside hydrolases of the families GH5 (endo-β-1,4-mannanase) and GH 28 (polygalacturonase) were overexpressed. Conversely, α-amylases were downexpressed, indicating that an increase in hemicelluloses digestion helps the larvae to cope with the challenge of cystatin ingestion. Furthermore, a number of proteins associated with transcription/translation and antistress reactions were among the cystatin-responsive proteins, implying that a substantial rearrangement in the proteome occurred in C. maculatus exposed to the inhibitor. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Deletion of Cysteine Cathepsins B or L Yields Differential Impacts on Murine Skin Proteome and Degradome*

    PubMed Central

    Tholen, Stefan; Biniossek, Martin L.; Gansz, Martina; Gomez-Auli, Alejandro; Bengsch, Fee; Noel, Agnes; Kizhakkedathu, Jayachandran N.; Boerries, Melanie; Busch, Hauke; Reinheckel, Thomas; Schilling, Oliver

    2013-01-01

    Numerous studies highlight the fact that concerted proteolysis is essential for skin morphology and function. The cysteine protease cathepsin L (Ctsl) has been implicated in epidermal proliferation and desquamation, as well as in hair cycle regulation. In stark contrast, mice deficient in cathepsin B (Ctsb) do not display an overt skin phenotype. To understand the systematic consequences of deleting Ctsb or Ctsl, we determined the protein abundances of >1300 proteins and proteolytic cleavage events in skin samples of wild-type, Ctsb−/−, and Ctsl−/− mice via mass-spectrometry-based proteomics. Both protease deficiencies revealed distinct quantitative changes in proteome composition. Ctsl−/− skin revealed increased levels of the cysteine protease inhibitors cystatin B and cystatin M/E, increased cathepsin D, and an accumulation of the extracellular glycoprotein periostin. Immunohistochemistry located periostin predominantly in the hypodermal connective tissue of Ctsl−/− skin. The proteomic identification of proteolytic cleavage sites within skin proteins revealed numerous processing sites that are underrepresented in Ctsl−/− or Ctsb−/− samples. Notably, few of the affected cleavage sites shared the canonical Ctsl or Ctsb specificity, providing further evidence of a complex proteolytic network in the skin. Novel processing sites in proteins such as dermokine and Notch-1 were detected. Simultaneous analysis of acetylated protein N termini showed prototypical mammalian N-alpha acetylation. These results illustrate an influence of both Ctsb and Ctsl on the murine skin proteome and degradome, with the phenotypic consequences of the absence of either protease differing considerably. PMID:23233448

  4. Quantitative proteomic analysis of human lung tumor xenografts treated with the ectopic ATP synthase inhibitor citreoviridin.

    PubMed

    Wu, Yi-Hsuan; Hu, Chia-Wei; Chien, Chih-Wei; Chen, Yu-Ju; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2013-01-01

    ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy.

  5. Quantitative Proteomic Analysis of Human Lung Tumor Xenografts Treated with the Ectopic ATP Synthase Inhibitor Citreoviridin

    PubMed Central

    Wu, Yi-Hsuan; Hu, Chia-Wei; Chien, Chih-Wei; Chen, Yu-Ju; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2013-01-01

    ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy. PMID:23990911

  6. Pre-fractionation strategies to resolve pea (Pisum sativum) sub-proteomes

    PubMed Central

    Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana; Kukavica, Biljana M.; Lüthje, Sabine

    2015-01-01

    Legumes are important crop plants and pea (Pisum sativum L.) has been investigated as a model with respect to several physiological aspects. The sequencing of the pea genome has not been completed. Therefore, proteomic approaches are currently limited. Nevertheless, the increasing numbers of available EST-databases as well as the high homology of the pea and medicago genome (Medicago truncatula Gaertner) allow the successful identification of proteins. Due to the un-sequenced pea genome, pre-fractionation approaches have been used in pea proteomic surveys in the past. Aside from a number of selective proteome studies on crude extracts and the chloroplast, few studies have targeted other components such as the pea secretome, an important sub-proteome of interest due to its role in abiotic and biotic stress processes. The secretome itself can be further divided into different sub-proteomes (plasma membrane, apoplast, cell wall proteins). Cell fractionation in combination with different gel-electrophoresis, chromatography methods and protein identification by mass spectrometry are important partners to gain insight into pea sub-proteomes, post-translational modifications and protein functions. Overall, pea proteomics needs to link numerous existing physiological and biochemical data to gain further insight into adaptation processes, which play important roles in field applications. Future developments and directions in pea proteomics are discussed. PMID:26539198

  7. A standardized framing for reporting protein identifications in mzIdentML 1.2

    PubMed Central

    Seymour, Sean L.; Farrah, Terry; Binz, Pierre-Alain; Chalkley, Robert J.; Cottrell, John S.; Searle, Brian C.; Tabb, David L.; Vizcaíno, Juan Antonio; Prieto, Gorka; Uszkoreit, Julian; Eisenacher, Martin; Martínez-Bartolomé, Salvador; Ghali, Fawaz; Jones, Andrew R.

    2015-01-01

    Inferring which protein species have been detected in bottom-up proteomics experiments has been a challenging problem for which solutions have been maturing over the past decade. While many inference approaches now function well in isolation, comparing and reconciling the results generated across different tools remains difficult. It presently stands as one of the greatest barriers in collaborative efforts such as the Human Proteome Project and public repositories like the PRoteomics IDEntifications (PRIDE) database. Here we present a framework for reporting protein identifications that seeks to improve capabilities for comparing results generated by different inference tools. This framework standardizes the terminology for describing protein identification results, associated with the HUPO-Proteomics Standards Initiative (PSI) mzIdentML standard, while still allowing for differing methodologies to reach that final state. It is proposed that developers of software for reporting identification results will adopt this terminology in their outputs. While the new terminology does not require any changes to the core mzIdentML model, it represents a significant change in practice, and, as such, the rules will be released via a new version of the mzIdentML specification (version 1.2) so that consumers of files are able to determine whether the new guidelines have been adopted by export software. PMID:25092112

  8. Oestrus synchronisation and superovulation alter the cervicovaginal mucus proteome of the ewe.

    PubMed

    Maddison, Jessie W; Rickard, Jessica P; Bernecic, Naomi C; Tsikis, Guillaume; Soleilhavoup, Clement; Labas, Valerie; Combes-Soia, Lucie; Harichaux, Gregoire; Druart, Xavier; Leahy, Tamara; de Graaf, Simon P

    2017-02-23

    Although essential for artificial insemination (AI) and MOET (multiple ovulation and embryo transfer), oestrus synchronisation and superovulation are associated with increased female reproductive tract mucus production and altered sperm transport. The effects of such breeding practices on the ovine cervicovaginal (CV) mucus proteome have not been detailed. The aim of this study was to qualitatively and quantitatively investigate the Merino CV mucus proteome in naturally cycling (NAT) ewes at oestrus and mid-luteal phase, and quantitatively compare CV oestrus mucus proteomes of NAT, progesterone synchronised (P4) and superovulated (SOV) ewes. Quantitative analysis revealed 60 proteins were more abundant during oestrus and 127 were more abundant during the luteal phase, with 27 oestrus specific and 40 luteal specific proteins identified. The oestrus proteins most disparate in abundance compared to mid-luteal phase were ceruloplasmin (CP), chitinase-3-like protein 1 (CHI3L1), clusterin (CLU), alkaline phosphatase (ALPL) and mucin-16 (MUC16). Exogenous hormones greatly altered the proteome with 51 and 32 proteins more abundant and 98 and 53 proteins less abundant, in P4 and SOV mucus, respectively when compared to NAT mucus. Investigation of the impact of these proteomic changes on sperm motility and longevity within mucus may help improve sperm transport and fertility following cervical AI. This manuscript is the first to detail the proteome of ovine cervicovaginal mucus using qualitative and quantitative proteomic methods over the oestrous cycle in naturally cycling ewes, and also after application of common oestrus synchronisation and superovulation practices. The investigation of the mucus proteome throughout both the follicular and luteal periods of the oestrous cycle, and also after oestrous synchronisation and superovulation provides information about the endocrine control and the effects that exogenous hormones have on protein expression in the female reproductive tract. This information contributes to the field by providing important information on the changes that occur to the cervicovaginal mucus proteome after use of exogenous hormones in controlled breeding programs, which are commonly used on farm and also in a research setting. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Proteomic analysis of human aqueous humor using multidimensional protein identification technology

    PubMed Central

    Richardson, Matthew R.; Price, Marianne O.; Price, Francis W.; Pardo, Jennifer C.; Grandin, Juan C.; You, Jinsam; Wang, Mu

    2009-01-01

    Aqueous humor (AH) supports avascular tissues in the anterior segment of the eye, maintains intraocular pressure, and potentially influences the pathogenesis of ocular diseases. Nevertheless, the AH proteome is still poorly defined despite several previous efforts, which were hindered by interfering high abundance proteins, inadequate animal models, and limited proteomic technologies. To facilitate future investigations into AH function, the AH proteome was extensively characterized using an advanced proteomic approach. Samples from patients undergoing cataract surgery were pooled and depleted of interfering abundant proteins and thereby divided into two fractions: albumin-bound and albumin-depleted. Multidimensional Protein Identification Technology (MudPIT) was utilized for each fraction; this incorporates strong cation exchange chromatography to reduce sample complexity before reversed-phase liquid chromatography and tandem mass spectrometric analysis. Twelve proteins had multi-peptide, high confidence identifications in the albumin-bound fraction and 50 proteins had multi-peptide, high confidence identifications in the albumin-depleted fraction. Gene ontological analyses were performed to determine which cellular components and functions were enriched. Many proteins were previously identified in the AH and for several their potential role in the AH has been investigated; however, the majority of identified proteins were novel and only speculative roles can be suggested. The AH was abundant in anti-oxidant and immunoregulatory proteins as well as anti-angiogenic proteins, which may be involved in maintaining the avascular tissues. This is the first known report to extensively characterize and describe the human AH proteome and lays the foundation for future work regarding its function in homeostatic and pathologic states. PMID:20019884

  10. freeQuant: A Mass Spectrometry Label-Free Quantification Software Tool for Complex Proteome Analysis.

    PubMed

    Deng, Ning; Li, Zhenye; Pan, Chao; Duan, Huilong

    2015-01-01

    Study of complex proteome brings forward higher request for the quantification method using mass spectrometry technology. In this paper, we present a mass spectrometry label-free quantification tool for complex proteomes, called freeQuant, which integrated quantification with functional analysis effectively. freeQuant consists of two well-integrated modules: label-free quantification and functional analysis with biomedical knowledge. freeQuant supports label-free quantitative analysis which makes full use of tandem mass spectrometry (MS/MS) spectral count, protein sequence length, shared peptides, and ion intensity. It adopts spectral count for quantitative analysis and builds a new method for shared peptides to accurately evaluate abundance of isoforms. For proteins with low abundance, MS/MS total ion count coupled with spectral count is included to ensure accurate protein quantification. Furthermore, freeQuant supports the large-scale functional annotations for complex proteomes. Mitochondrial proteomes from the mouse heart, the mouse liver, and the human heart were used to evaluate the usability and performance of freeQuant. The evaluation showed that the quantitative algorithms implemented in freeQuant can improve accuracy of quantification with better dynamic range.

  11. Integrated Proteomic Approaches for Understanding Toxicity of Environmental Chemicals

    EPA Science Inventory

    To apply quantitative proteomic analysis to the evaluation of toxicity of environmental chemicals, we have developed an integrated proteomic technology platform. This platform has been applied to the analysis of the toxic effects and pathways of many important environmental chemi...

  12. STEPS: a grid search methodology for optimized peptide identification filtering of MS/MS database search results.

    PubMed

    Piehowski, Paul D; Petyuk, Vladislav A; Sandoval, John D; Burnum, Kristin E; Kiebel, Gary R; Monroe, Matthew E; Anderson, Gordon A; Camp, David G; Smith, Richard D

    2013-03-01

    For bottom-up proteomics, there are wide variety of database-searching algorithms in use for matching peptide sequences to tandem MS spectra. Likewise, there are numerous strategies being employed to produce a confident list of peptide identifications from the different search algorithm outputs. Here we introduce a grid-search approach for determining optimal database filtering criteria in shotgun proteomics data analyses that is easily adaptable to any search. Systematic Trial and Error Parameter Selection--referred to as STEPS--utilizes user-defined parameter ranges to test a wide array of parameter combinations to arrive at an optimal "parameter set" for data filtering, thus maximizing confident identifications. The benefits of this approach in terms of numbers of true-positive identifications are demonstrated using datasets derived from immunoaffinity-depleted blood serum and a bacterial cell lysate, two common proteomics sample types. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Using PSEA-Quant for Protein Set Enrichment Analysis of Quantitative Mass Spectrometry-Based Proteomics.

    PubMed

    Lavallée-Adam, Mathieu; Yates, John R

    2016-03-24

    PSEA-Quant analyzes quantitative mass spectrometry-based proteomics datasets to identify enrichments of annotations contained in repositories such as the Gene Ontology and Molecular Signature databases. It allows users to identify the annotations that are significantly enriched for reproducibly quantified high abundance proteins. PSEA-Quant is available on the Web and as a command-line tool. It is compatible with all label-free and isotopic labeling-based quantitative proteomics methods. This protocol describes how to use PSEA-Quant and interpret its output. The importance of each parameter as well as troubleshooting approaches are also discussed. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  14. Proteomic platform for the identification of proteins in olive (Olea europaea) pulp.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; Piovesana, Susy; Samperi, Roberto; Stampachiacchiere, Serena; Laganà, Aldo

    2013-10-24

    The nutritional and cancer-protective properties of the oil extracted mechanically from the ripe fruits of Olea europaea trees are attracting constantly more attention worldwide. The preparation of high-quality protein samples from plant tissues for proteomic analysis poses many challenging problems. In this study we employed a proteomic platform based on two different extraction methods, SDS and CHAPS based protocols, followed by two precipitation protocols, TCA/acetone and MeOH precipitation, in order to increase the final number of identified proteins. The use of advanced MS techniques in combination with the Swissprot and NCBI Viridiplantae databases and TAIR10 Arabidopsis database allowed us to identify 1265 proteins, of which 22 belong to O. europaea. The application of this proteomic platform for protein extraction and identification will be useful also for other proteomic studies on recalcitrant plant/fruit tissues. Copyright © 2013. Published by Elsevier B.V.

  15. OFFGEL electrophoresis and tandem mass spectrometry approach compared with DNA-based PCR method for authentication of meat species from raw and cooked ground meat mixtures containing cattle meat, water buffalo meat and sheep meat.

    PubMed

    Naveena, Basappa M; Jagadeesh, Deepak S; Jagadeesh Babu, A; Madhava Rao, T; Kamuni, Veeranna; Vaithiyanathan, S; Kulkarni, Vinayak V; Rapole, Srikanth

    2017-10-15

    The present study compared the accuracy of an OFFGEL electrophoresis and tandem mass spectrometry-based proteomic approach with a DNA-based method for meat species identification from raw and cooked ground meat mixes containing cattle, water buffalo and sheep meat. The proteomic approach involved the separation of myofibrillar proteins using OFFGEL electrophoresis, SDS-PAGE and protein identification by MALDI-TOF MS. Species-specific peptides derived from myosin light chain-1 and 2 were identified for authenticating buffalo meat spiked at a minimum 0.5% level in sheep meat with high confidence. Relative quantification of buffalo meat mixed with sheep meat was done by quantitative label-free mass spectrometry using UPLC-QTOF and PLGS search engine to substantiate the confidence level of the data. In the DNA-based method, PCR amplification of mitochondrial D loop gene using species specific primers found 226bp and 126bp product amplicons for buffalo and cattle meat, respectively. The method was efficient in detecting a minimum of 0.5% and 1.0% when buffalo meat was spiked with cattle meat in raw and cooked meat mixes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Proteomic Profiling of De Novo Protein Synthesis in Starvation-Induced Autophagy Using Bioorthogonal Noncanonical Amino Acid Tagging.

    PubMed

    Zhang, J; Wang, J; Lee, Y-M; Lim, T-K; Lin, Q; Shen, H-M

    2017-01-01

    Autophagy is an intracellular degradation process activated by stress factors such as nutrient starvation to maintain cellular homeostasis. There is emerging evidence demonstrating that de novo protein synthesis is involved in the autophagic process. However, up-to-date characterizing of these de novo proteins is technically difficult. In this chapter, we describe a novel method to identify newly synthesized proteins during starvation-mediated autophagy by bioorthogonal noncanonical amino acid tagging (BONCAT), in conjunction with isobaric tagging for relative and absolute quantification (iTRAQ)-based quantitative proteomics. l-azidohomoalanine (AHA) is an analog of methionine, and it can be readily incorporated into the newly synthesized proteins. The AHA-containing proteins can be enriched with avidin beads after a "click" reaction between alkyne-bearing biotin and the azide moiety of AHA. The enriched proteins are then subjected to iTRAQ™ labeling for protein identification and quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By using this technique, we have successfully profiled more than 700 proteins that are synthesized during starvation-induced autophagy. We believe that this approach is effective in identification of newly synthesized proteins in the process of autophagy and provides useful insights to the molecular mechanisms and biological functions of autophagy. © 2017 Elsevier Inc. All rights reserved.

  17. Identification of Mediator Kinase Substrates in Human Cells using Cortistatin A and Quantitative Phosphoproteomics.

    PubMed

    Poss, Zachary C; Ebmeier, Christopher C; Odell, Aaron T; Tangpeerachaikul, Anupong; Lee, Thomas; Pelish, Henry E; Shair, Matthew D; Dowell, Robin D; Old, William M; Taatjes, Dylan J

    2016-04-12

    Cortistatin A (CA) is a highly selective inhibitor of the Mediator kinases CDK8 and CDK19. Using CA, we now report a large-scale identification of Mediator kinase substrates in human cells (HCT116). We identified over 16,000 quantified phosphosites including 78 high-confidence Mediator kinase targets within 64 proteins, including DNA-binding transcription factors and proteins associated with chromatin, DNA repair, and RNA polymerase II. Although RNA-seq data correlated with Mediator kinase targets, the effects of CA on gene expression were limited and distinct from CDK8 or CDK19 knockdown. Quantitative proteome analyses, tracking around 7,000 proteins across six time points (0-24 hr), revealed that CA selectively affected pathways implicated in inflammation, growth, and metabolic regulation. Contrary to expectations, increased turnover of Mediator kinase targets was not generally observed. Collectively, these data support Mediator kinases as regulators of chromatin and RNA polymerase II activity and suggest their roles extend beyond transcription to metabolism and DNA repair. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Urea free and more efficient sample preparation method for mass spectrometry based protein identification via combining the formic acid-assisted chemical cleavage and trypsin digestion.

    PubMed

    Wu, Shuaibin; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2011-10-30

    A formic acid (FA)-assisted sample preparation method was presented for protein identification via mass spectrometry (MS). Detailedly, an aqueous solution containing 2% FA and dithiothreitol was selected to perform protein denaturation, aspartic acid (D) sites cleavage and disulfide linkages reduction simultaneously at 108°C for 2h. Subsequently, FA wiped off via vacuum concentration. Finally, iodoacetamide (IAA) alkylation and trypsin digestion could be performed ordinally. A series of model proteins (BSA, β-lactoglobulin and apo-Transferrin) were treated respectively using such method, followed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The identified peptide number was increased by ∼ 80% in comparison with the conventional urea-assisted sample preparation method. Moreover, BSA identification was achieved efficiently down to femtomole (25 ± 0 sequence coverage and 16 ± 1 peptides) via such method. In contrast, there were not peptides identified confidently via the urea-assisted method before desalination via the C18 zip tip. The absence of urea in this sample preparation method was an advantage for the more favorable digestion and MALDI-TOF MS analysis. The performances of two methods for the real sample (rat liver proteome) were also compared, followed by a nanoflow reversed-phase liquid chromatography with electrospray ionization tandem mass spectrometry system analysis. As a result, 1335 ± 43 peptides were identified confidently (false discovery rate <1%) via FA-assisted method, corresponding to 295 ± 12 proteins (of top match=1 and requiring 2 unique peptides at least). In contrast, there were only 1107 ± 16 peptides (corresponding to 231 ± 10 proteins) obtained from the conventional urea-assisted method. It was serving as a more efficient protein sample preparation method for researching specific proteomes better, and providing assistance to develop other proteomics analysis methods, such as, peptide quantitative analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Proteome-wide analysis of Anopheles culicifacies mosquito midgut: new insights into the mechanism of refractoriness.

    PubMed

    Vijay, Sonam; Rawal, Ritu; Kadian, Kavita; Singh, Jagbir; Adak, Tridibesh; Sharma, Arun

    2018-05-08

    Midgut invasion, a major bottleneck for malaria parasites transmission is considered as a potential target for vector-parasite interaction studies. New intervention strategies are required to explore the midgut proteins and their potential role in refractoriness for malaria control in Anopheles mosquitoes. To better understand the midgut functional proteins of An. culicifacies susceptible and refractory species, proteomic approaches coupled with bioinformatics analysis is an effective means in order to understand the mechanism of refractoriness. In the present study, an integrated in solution- in gel trypsin digestion approach, along with Isobaric tag for relative and absolute quantitation (iTRAQ)-Liquid chromatography/Mass spectrometry (LC/MS/MS) and data mining were performed to identify the proteomic profile and differentially expressed proteins in Anopheles culicifacies susceptible species A and refractory species B. Shot gun proteomics approaches led to the identification of 80 proteins in An. culicifacies susceptible species A and 92 in refractory species B and catalogue was prepared. iTRAQ based proteomic analysis identified 48 differentially expressed proteins from total 130 proteins. Of these, 41 were downregulated and 7 were upregulated in refractory species B in comparison to susceptible species A. We report that the altered midgut proteins identified in naturally refractory mosquitoes are involved in oxidative phosphorylation, antioxidant and proteolysis process that may suggest their role in parasite growth inhibition. Furthermore, real time polymerase chain reaction (PCR) analysis of few proteins indicated higher expression of iTRAQ upregulated protein in refractory species than susceptible species. This study elucidates the first proteome of the midguts of An. culicifacies sibling species that attempts to analyze unique proteogenomic interactions to provide insights for better understanding of the mechanism of refractoriness. Functional implications of these upregulated proteins in refractory species may reflect the phenotypic characteristics of the mosquitoes and will improve our understandings of blood meal digestion process, parasite vector interactions and proteomes of other vectors of human diseases for development of novel vector control strategies.

  20. Identification of disease specific pathways using in vivo SILAC proteomics in dystrophin deficient mdx mouse.

    PubMed

    Rayavarapu, Sree; Coley, William; Cakir, Erdinc; Jahnke, Vanessa; Takeda, Shin'ichi; Aoki, Yoshitsugu; Grodish-Dressman, Heather; Jaiswal, Jyoti K; Hoffman, Eric P; Brown, Kristy J; Hathout, Yetrib; Nagaraju, Kanneboyina

    2013-05-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disorder caused by a mutation in the dystrophin gene. DMD is characterized by progressive weakness of skeletal, cardiac, and respiratory muscles. The molecular mechanisms underlying dystrophy-associated muscle weakness and damage are not well understood. Quantitative proteomics techniques could help to identify disease-specific pathways. Recent advances in the in vivo labeling strategies such as stable isotope labeling in mouse (SILAC mouse) with (13)C6-lysine or stable isotope labeling in mammals (SILAM) with (15)N have enabled accurate quantitative analysis of the proteomes of whole organs and tissues as a function of disease. Here we describe the use of the SILAC mouse strategy to define the underlying pathological mechanisms in dystrophin-deficient skeletal muscle. Differential SILAC proteome profiling was performed on the gastrocnemius muscles of 3-week-old (early stage) dystrophin-deficient mdx mice and wild-type (normal) mice. The generated data were further confirmed in an independent set of mdx and normal mice using a SILAC spike-in strategy. A total of 789 proteins were quantified; of these, 73 were found to be significantly altered between mdx and normal mice (p < 0.05). Bioinformatics analyses using Ingenuity Pathway software established that the integrin-linked kinase pathway, actin cytoskeleton signaling, mitochondrial energy metabolism, and calcium homeostasis are the pathways initially affected in dystrophin-deficient muscle at early stages of pathogenesis. The key proteins involved in these pathways were validated by means of immunoblotting and immunohistochemistry in independent sets of mdx mice and in human DMD muscle biopsies. The specific involvement of these molecular networks early in dystrophic pathology makes them potential therapeutic targets. In sum, our findings indicate that SILAC mouse strategy has uncovered previously unidentified pathological pathways in mouse models of human skeletal muscle disease.

  1. Identification of Disease Specific Pathways Using in Vivo SILAC Proteomics in Dystrophin Deficient mdx Mouse*

    PubMed Central

    Rayavarapu, Sree; Coley, William; Cakir, Erdinc; Jahnke, Vanessa; Takeda, Shin'ichi; Aoki, Yoshitsugu; Grodish-Dressman, Heather; Jaiswal, Jyoti K.; Hoffman, Eric P.; Brown, Kristy J.; Hathout, Yetrib; Nagaraju, Kanneboyina

    2013-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disorder caused by a mutation in the dystrophin gene. DMD is characterized by progressive weakness of skeletal, cardiac, and respiratory muscles. The molecular mechanisms underlying dystrophy-associated muscle weakness and damage are not well understood. Quantitative proteomics techniques could help to identify disease-specific pathways. Recent advances in the in vivo labeling strategies such as stable isotope labeling in mouse (SILAC mouse) with 13C6-lysine or stable isotope labeling in mammals (SILAM) with 15N have enabled accurate quantitative analysis of the proteomes of whole organs and tissues as a function of disease. Here we describe the use of the SILAC mouse strategy to define the underlying pathological mechanisms in dystrophin-deficient skeletal muscle. Differential SILAC proteome profiling was performed on the gastrocnemius muscles of 3-week-old (early stage) dystrophin-deficient mdx mice and wild-type (normal) mice. The generated data were further confirmed in an independent set of mdx and normal mice using a SILAC spike-in strategy. A total of 789 proteins were quantified; of these, 73 were found to be significantly altered between mdx and normal mice (p < 0.05). Bioinformatics analyses using Ingenuity Pathway software established that the integrin-linked kinase pathway, actin cytoskeleton signaling, mitochondrial energy metabolism, and calcium homeostasis are the pathways initially affected in dystrophin-deficient muscle at early stages of pathogenesis. The key proteins involved in these pathways were validated by means of immunoblotting and immunohistochemistry in independent sets of mdx mice and in human DMD muscle biopsies. The specific involvement of these molecular networks early in dystrophic pathology makes them potential therapeutic targets. In sum, our findings indicate that SILAC mouse strategy has uncovered previously unidentified pathological pathways in mouse models of human skeletal muscle disease. PMID:23297347

  2. Identification of Proteins Related to Epigenetic Regulation in the Malignant Transformation of Aberrant Karyotypic Human Embryonic Stem Cells by Quantitative Proteomics

    PubMed Central

    Sun, Yi; Yang, Yixuan; Zeng, Sicong; Tan, Yueqiu; Lu, Guangxiu; Lin, Ge

    2014-01-01

    Previous reports have demonstrated that human embryonic stem cells (hESCs) tend to develop genomic alterations and progress to a malignant state during long-term in vitro culture. This raises concerns of the clinical safety in using cultured hESCs. However, transformed hESCs might serve as an excellent model to determine the process of embryonic stem cell transition. In this study, ITRAQ-based tandem mass spectrometry was used to quantify normal and aberrant karyotypic hESCs proteins from simple to more complex karyotypic abnormalities. We identified and quantified 2583 proteins, and found that the expression levels of 316 proteins that represented at least 23 functional molecular groups were significantly different in both normal and abnormal hESCs. Dysregulated protein expression in epigenetic regulation was further verified in six pairs of hESC lines in early and late passage. In summary, this study is the first large-scale quantitative proteomic analysis of the malignant transformation of aberrant karyotypic hESCs. The data generated should serve as a useful reference of stem cell-derived tumor progression. Increased expression of both HDAC2 and CTNNB1 are detected as early as the pre-neoplastic stage, and might serve as prognostic markers in the malignant transformation of hESCs. PMID:24465727

  3. Comparison of Pancreas Juice Proteins from Cancer Versus Pancreatitis Using Quantitative Proteomic Analysis

    PubMed Central

    Chen, Ru; Pan, Sheng; Cooke, Kelly; Moyes, Kara White; Bronner, Mary P.; Goodlett, David R.; Aebersold, Ruedi; Brentnall, Teresa A.

    2008-01-01

    Objectives Pancreatitis is an inflammatory condition of the pancreas. However, it often shares many molecular features with pancreatic cancer. Biomarkers present in pancreatic cancer frequently occur in the setting of pancreatitis. The efforts to develop diagnostic biomarkers for pancreatic cancer have thus been complicated by the false-positive involvement of pancreatitis. Methods In an attempt to develop protein biomarkers for pancreatic cancer, we previously use quantitative proteomics to identify and quantify the proteins from pancreatic cancer juice. Pancreatic juice is a rich source of proteins that are shed by the pancreatic ductal cells. In this study, we used a similar approach to identify and quantify proteins from pancreatitis juice. Results In total, 72 proteins were identified and quantified in the comparison of pancreatic juice from pancreatitis patients versus pooled normal control juice. Nineteen of the juice proteins were overexpressed, and 8 were underexpressed in pancreatitis juice by at least 2-fold compared with normal pancreatic juice. Of these 27 differentially expressed proteins in pancreatitis, 9 proteins were also differentially expressed in the pancreatic juice from pancreatic cancer patient. Conclusions Identification of these differentially expressed proteins from pancreatitis juice provides useful information for future study of specific pancreatitis-associated proteins and to eliminate potential false-positive biomarkers for pancreatic cancer. PMID:17198186

  4. Comparison of pancreas juice proteins from cancer versus pancreatitis using quantitative proteomic analysis.

    PubMed

    Chen, Ru; Pan, Sheng; Cooke, Kelly; Moyes, Kara White; Bronner, Mary P; Goodlett, David R; Aebersold, Ruedi; Brentnall, Teresa A

    2007-01-01

    Pancreatitis is an inflammatory condition of the pancreas. However, it often shares many molecular features with pancreatic cancer. Biomarkers present in pancreatic cancer frequently occur in the setting of pancreatitis. The efforts to develop diagnostic biomarkers for pancreatic cancer have thus been complicated by the false-positive involvement of pancreatitis. In an attempt to develop protein biomarkers for pancreatic cancer, we previously use quantitative proteomics to identify and quantify the proteins from pancreatic cancer juice. Pancreatic juice is a rich source of proteins that are shed by the pancreatic ductal cells. In this study, we used a similar approach to identify and quantify proteins from pancreatitis juice. In total, 72 proteins were identified and quantified in the comparison of pancreatic juice from pancreatitis patients versus pooled normal control juice. Nineteen of the juice proteins were overexpressed, and 8 were underexpressed in pancreatitis juice by at least 2-fold compared with normal pancreatic juice. Of these 27 differentially expressed proteins in pancreatitis, 9 proteins were also differentially expressed in the pancreatic juice from pancreatic cancer patient. Identification of these differentially expressed proteins from pancreatitis juice provides useful information for future study of specific pancreatitis-associated proteins and to eliminate potential false-positive biomarkers for pancreatic cancer.

  5. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy.

    PubMed

    Mancias, Joseph D; Wang, Xiaoxu; Gygi, Steven P; Harper, J Wade; Kimmelman, Alec C

    2014-05-01

    Autophagy, the process by which proteins and organelles are sequestered in double-membrane structures called autophagosomes and delivered to lysosomes for degradation, is critical in diseases such as cancer and neurodegeneration. Much of our understanding of this process has emerged from analysis of bulk cytoplasmic autophagy, but our understanding of how specific cargo, including organelles, proteins or intracellular pathogens, are targeted for selective autophagy is limited. Here we use quantitative proteomics to identify a cohort of novel and known autophagosome-enriched proteins in human cells, including cargo receptors. Like known cargo receptors, nuclear receptor coactivator 4 (NCOA4) was highly enriched in autophagosomes, and associated with ATG8 proteins that recruit cargo-receptor complexes into autophagosomes. Unbiased identification of NCOA4-associated proteins revealed ferritin heavy and light chains, components of an iron-filled cage structure that protects cells from reactive iron species but is degraded via autophagy to release iron through an unknown mechanism. We found that delivery of ferritin to lysosomes required NCOA4, and an inability of NCOA4-deficient cells to degrade ferritin led to decreased bioavailable intracellular iron. This work identifies NCOA4 as a selective cargo receptor for autophagic turnover of ferritin (ferritinophagy), which is critical for iron homeostasis, and provides a resource for further dissection of autophagosomal cargo-receptor connectivity.

  6. Proteomics: Protein Identification Using Online Databases

    ERIC Educational Resources Information Center

    Eurich, Chris; Fields, Peter A.; Rice, Elizabeth

    2012-01-01

    Proteomics is an emerging area of systems biology that allows simultaneous study of thousands of proteins expressed in cells, tissues, or whole organisms. We have developed this activity to enable high school or college students to explore proteomic databases using mass spectrometry data files generated from yeast proteins in a college laboratory…

  7. NCI Launches Proteomics Assay Portal | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In a paper recently published by the journal Nature Methods, Investigators from the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (NCI-CPTAC) announced the launch of a proteomics Assay Portal for multiple reaction monitoring-mass spectrometry (MRM-MS) assays.  This community web-based repository for well-characterized quantitative proteomic assays currently consists of 456 unique peptide assays to 282 unique proteins and ser

  8. Identification of Autophagosome-associated Proteins and Regulators by Quantitative Proteomic Analysis and Genetic Screens*

    PubMed Central

    Dengjel, Jörn; Høyer-Hansen, Maria; Nielsen, Maria O.; Eisenberg, Tobias; Harder, Lea M.; Schandorff, Søren; Farkas, Thomas; Kirkegaard, Thomas; Becker, Andrea C.; Schroeder, Sabrina; Vanselow, Katja; Lundberg, Emma; Nielsen, Mogens M.; Kristensen, Anders R.; Akimov, Vyacheslav; Bunkenborg, Jakob; Madeo, Frank; Jäättelä, Marja; Andersen, Jens S.

    2012-01-01

    Autophagy is one of the major intracellular catabolic pathways, but little is known about the composition of autophagosomes. To study the associated proteins, we isolated autophagosomes from human breast cancer cells using two different biochemical methods and three stimulus types: amino acid deprivation or rapamycin or concanamycin A treatment. The autophagosome-associated proteins were dependent on stimulus, but a core set of proteins was stimulus-independent. Remarkably, proteasomal proteins were abundant among the stimulus-independent common autophagosome-associated proteins, and the activation of autophagy significantly decreased the cellular proteasome level and activity supporting interplay between the two degradation pathways. A screen of yeast strains defective in the orthologs of the human genes encoding for a common set of autophagosome-associated proteins revealed several regulators of autophagy, including subunits of the retromer complex. The combined spatiotemporal proteomic and genetic data sets presented here provide a basis for further characterization of autophagosome biogenesis and cargo selection. PMID:22311637

  9. Comparative Proteomics of Human Monkeypox and Vaccinia Intracellular Mature and Extracellular Enveloped Virions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manes, Nathan P.; Estep, Ryan D.; Mottaz, Heather M.

    2008-03-07

    Orthopoxviruses are the largest and most complex of the animal viruses. In response to the recent emergence of monkeypox in Africa and the threat of smallpox bioterrorism, virulent (monkeypox virus) and benign (vaccinia virus) orthopoxviruses were proteomically compared with the goal of identifying proteins required for pathogenesis. Orthopoxviruses were grown in HeLa cells to two different viral forms (intracellular mature virus and extracellular enveloped virus), purified by sucrose gradient ultracentrifugation, denatured using RapiGest™ surfactant, and digested with trypsin. Unfractionated samples and strong cation exchange HPLC fractions were analyzed by reversed-phase LC-MS/MS, and analyses of the MS/MS spectra using SEQUEST® andmore » X! Tandem resulted in the identification of hundreds of monkeypox, vaccinia, and copurified host proteins. The unfractionated samples were additionally analyzed by LC-MS on an LTQ-Orbitrap™, and the accurate mass and elution time tag approach was used to perform quantitative comparisons. Possible pathophysiological roles of differentially expressed orthopoxvirus genes are discussed.« less

  10. Detergents: Friends not foes for high-performance membrane proteomics toward precision medicine.

    PubMed

    Zhang, Xi

    2017-02-01

    Precision medicine, particularly therapeutics, emphasizes the atomic-precise, dynamic, and systems visualization of human membrane proteins and their endogenous modifiers. For years, bottom-up proteomics has grappled with removing and avoiding detergents, yet faltered at the therapeutic-pivotal membrane proteins, which have been tackled by classical approaches and are known for decades refractory to single-phase aqueous or organic denaturants. Hydrophobicity and aggregation commonly challenge tissue and cell lysates, biofluids, and enriched samples. Frequently, expected membrane proteins and peptides are not identified by shotgun bottom-up proteomics, let alone robust quantitation. This review argues the cause of this proteomic crisis is not detergents per se, but the choice of detergents. Recently, inclusion of compatible detergents for membrane protein extraction and digestion has revealed stark improvements in both quantitative and structural proteomics. This review analyzes detergent properties behind recent proteomic advances, and proposes that rational use of detergents may reconcile outstanding membrane proteomics dilemmas, enabling ultradeep coverage and minimal artifacts for robust protein and endogenous PTM measurements. The simplicity of detergent tools confers bottom-up membrane proteomics the sophistication toward precision medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparative and Quantitative Global Proteomics Approaches: An Overview

    PubMed Central

    Deracinois, Barbara; Flahaut, Christophe; Duban-Deweer, Sophie; Karamanos, Yannis

    2013-01-01

    Proteomics became a key tool for the study of biological systems. The comparison between two different physiological states allows unravelling the cellular and molecular mechanisms involved in a biological process. Proteomics can confirm the presence of proteins suggested by their mRNA content and provides a direct measure of the quantity present in a cell. Global and targeted proteomics strategies can be applied. Targeted proteomics strategies limit the number of features that will be monitored and then optimise the methods to obtain the highest sensitivity and throughput for a huge amount of samples. The advantage of global proteomics strategies is that no hypothesis is required, other than a measurable difference in one or more protein species between the samples. Global proteomics methods attempt to separate quantify and identify all the proteins from a given sample. This review highlights only the different techniques of separation and quantification of proteins and peptides, in view of a comparative and quantitative global proteomics analysis. The in-gel and off-gel quantification of proteins will be discussed as well as the corresponding mass spectrometry technology. The overview is focused on the widespread techniques while keeping in mind that each approach is modular and often recovers the other. PMID:28250403

  12. Identification of 7 Proteins in Sera of RA Patients with Potential to Predict ETA/MTX Treatment Response

    PubMed Central

    Obry, Antoine; Hardouin, Julie; Lequerré, Thierry; Jarnier, Frédérique; Boyer, Olivier; Fardellone, Patrice; Philippe, Peggy; Marcelli, Christian; Loët, Xavier Le; Vittecoq, Olivier; Cosette, Pascal

    2015-01-01

    Objective: The recent growth of innovating biologics has opened fascinating avenues for the management of patients. In rheumatoid arthritis, many biologics are currently available, the choice of which being mostly determined empirically. Importantly, a given biologic may not be active in a fraction of patients and may even provoke side effects. Here, we conducted a comparative proteomics study in attempt to identify a predictive theranostic signature of non-response in patients with rheumatoid arthritis treated by etanercept/methotrexate combination. Methods: A serum sample was collected prior to treatment exposure from a cohort of 22 patients with active RA. A proteomic “label free” approach was then designed to quantitate protein biomarkers using mass spectrometry. To verify these results, a relative quantification followed by an absolute quantification of interesting protein candidates were performed on a second cohort. The criterion of judgment was the response to etanercept/methotrexate combination according to the EULAR criteria assessed at 6 months of treatment. Results: These investigations led to the identification of a set of 12 biomarkers with capacity to predict treatment response. A targeted quantitative analysis allowed to confirm the potential of 7 proteins from the latter combination on a new cohort of 16 patients. Two highly discriminating proteins, PROS and CO7, were further evaluated by ELISA on this second cohort. By combining the concentration threshold of each protein associated to a right classification (responders vs non-responders), the sensitivity and specificity reached 88.9 % and 100 %, respectively. Conclusion: Prior to methotrexate/etanercept treatment, abundance of several sera proteins, notably PROS and CO7, were associated to response status of RA patients 6 month after treatment initiation. PMID:26379787

  13. Quantitative- and Phospho-Proteomic Analysis of the Yeast Response to the Tyrosine Kinase Inhibitor Imatinib to Pharmacoproteomics-Guided Drug Line Extension

    PubMed Central

    dos Santos, Sandra C.; Mira, Nuno P.; Moreira, Ana S.

    2012-01-01

    Abstract Imatinib mesylate (IM) is a potent tyrosine kinase inhibitor used as front-line therapy in chronic myeloid leukemia, a disease caused by the oncogenic kinase Bcr-Abl. Although the clinical success of IM set a new paradigm in molecular-targeted therapy, the emergence of IM resistance is a clinically significant problem. In an effort to obtain new insights into the mechanisms of adaptation and tolerance to IM, as well as the signaling pathways potentially affected by this drug, we performed a two-dimensional electrophoresis-based quantitative- and phospho-proteomic analysis in the eukaryotic model Saccharomyces cerevisiae. We singled out proteins that were either differentially expressed or differentially phosphorylated in response to IM, using the phosphoselective dye Pro-Q® Diamond, and identified 18 proteins in total. Ten were altered only at the content level (mostly decreased), while the remaining 8 possessed IM-repressed phosphorylation. These 18 proteins are mainly involved in cellular carbohydrate processes (glycolysis/gluconeogenesis), translation, protein folding, ion homeostasis, and nucleotide and amino acid metabolism. Remarkably, all 18 proteins have human functional homologs. A role for HSP70 proteins in the response to IM, as well as decreased glycolysis as a metabolic marker of IM action are suggested, consistent with findings from studies in human cell lines. The previously-proposed effect of IM as an inhibitor of vacuolar H+-ATPase function was supported by the identification of an underexpressed protein subunit of this complex. Taken together, these findings reinforce the role of yeast as a valuable eukaryotic model for pharmacological studies and identification of new drug targets, with potential clinical implications in drug reassignment or line extension under a personalized medicine perspective. PMID:22775238

  14. Optimization of Statistical Methods Impact on Quantitative Proteomics Data.

    PubMed

    Pursiheimo, Anna; Vehmas, Anni P; Afzal, Saira; Suomi, Tomi; Chand, Thaman; Strauss, Leena; Poutanen, Matti; Rokka, Anne; Corthals, Garry L; Elo, Laura L

    2015-10-02

    As tools for quantitative label-free mass spectrometry (MS) rapidly develop, a consensus about the best practices is not apparent. In the work described here we compared popular statistical methods for detecting differential protein expression from quantitative MS data using both controlled experiments with known quantitative differences for specific proteins used as standards as well as "real" experiments where differences in protein abundance are not known a priori. Our results suggest that data-driven reproducibility-optimization can consistently produce reliable differential expression rankings for label-free proteome tools and are straightforward in their application.

  15. Proteomic Approach for Extracting Cytoplasmic Proteins from Streptococcus sanguinis using Mass Spectrometry

    PubMed Central

    El-Rami, Fadi; Nelson, Kristina; Xu, Ping

    2017-01-01

    Streptococcus sanguinis is a commensal and early colonizer of oral cavity as well as an opportunistic pathogen of infectious endocarditis. Extracting the soluble proteome of this bacterium provides deep insights about the physiological dynamic changes under different growth and stress conditions, thus defining “proteomic signatures” as targets for therapeutic intervention. In this protocol, we describe an experimentally verified approach to extract maximal cytoplasmic proteins from Streptococcus sanguinis SK36 strain. A combination of procedures was adopted that broke the thick cell wall barrier and minimized denaturation of the intracellular proteome, using optimized buffers and a sonication step. Extracted proteome was quantitated using Pierce BCA Protein Quantitation assay and protein bands were macroscopically assessed by Coomassie Blue staining. Finally, a high resolution detection of the extracted proteins was conducted through Synapt G2Si mass spectrometer, followed by label-free relative quantification via Progenesis QI. In conclusion, this pipeline for proteomic extraction and analysis of soluble proteins provides a fundamental tool in deciphering the biological complexity of Streptococcus sanguinis. PMID:29152022

  16. Standardization approaches in absolute quantitative proteomics with mass spectrometry.

    PubMed

    Calderón-Celis, Francisco; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo

    2017-07-31

    Mass spectrometry-based approaches have enabled important breakthroughs in quantitative proteomics in the last decades. This development is reflected in the better quantitative assessment of protein levels as well as to understand post-translational modifications and protein complexes and networks. Nowadays, the focus of quantitative proteomics shifted from the relative determination of proteins (ie, differential expression between two or more cellular states) to absolute quantity determination, required for a more-thorough characterization of biological models and comprehension of the proteome dynamism, as well as for the search and validation of novel protein biomarkers. However, the physico-chemical environment of the analyte species affects strongly the ionization efficiency in most mass spectrometry (MS) types, which thereby require the use of specially designed standardization approaches to provide absolute quantifications. Most common of such approaches nowadays include (i) the use of stable isotope-labeled peptide standards, isotopologues to the target proteotypic peptides expected after tryptic digestion of the target protein; (ii) use of stable isotope-labeled protein standards to compensate for sample preparation, sample loss, and proteolysis steps; (iii) isobaric reagents, which after fragmentation in the MS/MS analysis provide a final detectable mass shift, can be used to tag both analyte and standard samples; (iv) label-free approaches in which the absolute quantitative data are not obtained through the use of any kind of labeling, but from computational normalization of the raw data and adequate standards; (v) elemental mass spectrometry-based workflows able to provide directly absolute quantification of peptides/proteins that contain an ICP-detectable element. A critical insight from the Analytical Chemistry perspective of the different standardization approaches and their combinations used so far for absolute quantitative MS-based (molecular and elemental) proteomics is provided in this review. © 2017 Wiley Periodicals, Inc.

  17. Comparison of the Membrane Proteome of Virulent Mycobacterium tuberculosis and the Attenuated Mycobacterium bovis BCG Vaccine Strain by Label-free Quantitative Proteomics

    PubMed Central

    Gunawardena, Harsha P.; Feltcher, Meghan E.; Wrobel, John A.; Gu, Sheng; Braunstein, Miriam; Chen, Xian

    2015-01-01

    The Mycobacterium tuberculosis (MTB) membrane is rich in antigens that are potential targets for diagnostics and the development of new vaccines. To better understand the mechanisms underlying MTB virulence and identify new targets for therapeutic intervention we investigated the differential composition of membrane proteomes between virulent M. tuberculosis H37Rv (MTB) and the Mycobacterium bovis BCG vaccine strain. To compare the membrane proteomes, we used LC-MS/MS analysis in combination with label-free quantitative (LFQ) proteomics, utilizing the area-under-curve (AUC) of the extracted ion chromatograms (XIC) of peptides obtained from m/z and retention time alignment of MS1 features. With this approach, we obtained relative abundance ratios for 2,203 identified membrane-associated proteins in high confidence. Of these proteins, 294 showed statistically significant differences of at least 2 fold, in relative abundance between MTB and BCG membrane fractions. Our comparative analysis detected several proteins associated with known genomic regions of difference between MTB and BCG as being absent, which validated the accuracy of our approach. In further support of our label-free quantitative data, we verified select protein differences by immunoblotting. To our knowledge we have generated the first comprehensive and high coverage profile of comparative membrane proteome changes between virulent MTB and its attenuated relative BCG, which helps elucidate the proteomic basis of the intrinsic virulence of the MTB pathogen. PMID:24093440

  18. Proteomic analysis of Medulloblastoma reveals functional biology with translational potential.

    PubMed

    Rivero-Hinojosa, Samuel; Lau, Ling San; Stampar, Mojca; Staal, Jerome; Zhang, Huizhen; Gordish-Dressman, Heather; Northcott, Paul A; Pfister, Stefan M; Taylor, Michael D; Brown, Kristy J; Rood, Brian R

    2018-06-07

    Genomic characterization has begun to redefine diagnostic classifications of cancers. However, it remains a challenge to infer disease phenotypes from genomic alterations alone. To help realize the promise of genomics, we have performed a quantitative proteomics investigation using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and 41 tissue samples spanning the 4 genomically based subgroups of medulloblastoma and control cerebellum. We have identified and quantitated thousands of proteins across these groups and find that we are able to recapitulate the genomic subgroups based upon subgroup restricted and differentially abundant proteins while also identifying subgroup specific protein isoforms. Integrating our proteomic measurements with genomic data, we calculate a poor correlation between mRNA and protein abundance. Using EPIC 850 k methylation array data on the same tissues, we also investigate the influence of copy number alterations and DNA methylation on the proteome in an attempt to characterize the impact of these genetic features on the proteome. Reciprocally, we are able to use the proteome to identify which genomic alterations result in altered protein abundance and thus are most likely to impact biology. Finally, we are able to assemble protein-based pathways yielding potential avenues for clinical intervention. From these, we validate the EIF4F cap-dependent translation pathway as a novel druggable pathway in medulloblastoma. Thus, quantitative proteomics complements genomic platforms to yield a more complete understanding of functional tumor biology and identify novel therapeutic targets for medulloblastoma.

  19. Missing Value Monitoring Enhances the Robustness in Proteomics Quantitation.

    PubMed

    Matafora, Vittoria; Corno, Andrea; Ciliberto, Andrea; Bachi, Angela

    2017-04-07

    In global proteomic analysis, it is estimated that proteins span from millions to less than 100 copies per cell. The challenge of protein quantitation by classic shotgun proteomic techniques relies on the presence of missing values in peptides belonging to low-abundance proteins that lowers intraruns reproducibility affecting postdata statistical analysis. Here, we present a new analytical workflow MvM (missing value monitoring) able to recover quantitation of missing values generated by shotgun analysis. In particular, we used confident data-dependent acquisition (DDA) quantitation only for proteins measured in all the runs, while we filled the missing values with data-independent acquisition analysis using the library previously generated in DDA. We analyzed cell cycle regulated proteins, as they are low abundance proteins with highly dynamic expression levels. Indeed, we found that cell cycle related proteins are the major components of the missing values-rich proteome. Using the MvM workflow, we doubled the number of robustly quantified cell cycle related proteins, and we reduced the number of missing values achieving robust quantitation for proteins over ∼50 molecules per cell. MvM allows lower quantification variance among replicates for low abundance proteins with respect to DDA analysis, which demonstrates the potential of this novel workflow to measure low abundance, dynamically regulated proteins.

  20. QuantFusion: Novel Unified Methodology for Enhanced Coverage and Precision in Quantifying Global Proteomic Changes in Whole Tissues.

    PubMed

    Gunawardena, Harsha P; O'Brien, Jonathon; Wrobel, John A; Xie, Ling; Davies, Sherri R; Li, Shunqiang; Ellis, Matthew J; Qaqish, Bahjat F; Chen, Xian

    2016-02-01

    Single quantitative platforms such as label-based or label-free quantitation (LFQ) present compromises in accuracy, precision, protein sequence coverage, and speed of quantifiable proteomic measurements. To maximize the quantitative precision and the number of quantifiable proteins or the quantifiable coverage of tissue proteomes, we have developed a unified approach, termed QuantFusion, that combines the quantitative ratios of all peptides measured by both LFQ and label-based methodologies. Here, we demonstrate the use of QuantFusion in determining the proteins differentially expressed in a pair of patient-derived tumor xenografts (PDXs) representing two major breast cancer (BC) subtypes, basal and luminal. Label-based in-spectra quantitative peptides derived from amino acid-coded tagging (AACT, also known as SILAC) of a non-malignant mammary cell line were uniformly added to each xenograft with a constant predefined ratio, from which Ratio-of-Ratio estimates were obtained for the label-free peptides paired with AACT peptides in each PDX tumor. A mixed model statistical analysis was used to determine global differential protein expression by combining complementary quantifiable peptide ratios measured by LFQ and Ratio-of-Ratios, respectively. With minimum number of replicates required for obtaining the statistically significant ratios, QuantFusion uses the distinct mechanisms to "rescue" the missing data inherent to both LFQ and label-based quantitation. Combined quantifiable peptide data from both quantitative schemes increased the overall number of peptide level measurements and protein level estimates. In our analysis of the PDX tumor proteomes, QuantFusion increased the number of distinct peptide ratios by 65%, representing differentially expressed proteins between the BC subtypes. This quantifiable coverage improvement, in turn, not only increased the number of measurable protein fold-changes by 8% but also increased the average precision of quantitative estimates by 181% so that some BC subtypically expressed proteins were rescued by QuantFusion. Thus, incorporating data from multiple quantitative approaches while accounting for measurement variability at both the peptide and global protein levels make QuantFusion unique for obtaining increased coverage and quantitative precision for tissue proteomes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Improvement of Quantitative Measurements in Multiplex Proteomics Using High-Field Asymmetric Waveform Spectrometry.

    PubMed

    Pfammatter, Sibylle; Bonneil, Eric; Thibault, Pierre

    2016-12-02

    Quantitative proteomics using isobaric reagent tandem mass tags (TMT) or isobaric tags for relative and absolute quantitation (iTRAQ) provides a convenient approach to compare changes in protein abundance across multiple samples. However, the analysis of complex protein digests by isobaric labeling can be undermined by the relative large proportion of co-selected peptide ions that lead to distorted reporter ion ratios and affect the accuracy and precision of quantitative measurements. Here, we investigated the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS) in proteomic experiments to reduce sample complexity and improve protein quantification using TMT isobaric labeling. LC-FAIMS-MS/MS analyses of human and yeast protein digests led to significant reductions in interfering ions, which increased the number of quantifiable peptides by up to 68% while significantly improving the accuracy of abundance measurements compared to that with conventional LC-MS/MS. The improvement in quantitative measurements using FAIMS is further demonstrated for the temporal profiling of protein abundance of HEK293 cells following heat shock treatment.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denef, Vincent; Shah, Manesh B; Verberkmoes, Nathan C

    The recent surge in microbial genomic sequencing, combined with the development of high-throughput liquid chromatography-mass-spectrometry-based (LC/LC-MS/MS) proteomics, has raised the question of the extent to which genomic information of one strain or environmental sample can be used to profile proteomes of related strains or samples. Even with decreasing sequencing costs, it remains impractical to obtain genomic sequence for every strain or sample analyzed. Here, we evaluate how shotgun proteomics is affected by amino acid divergence between the sample and the genomic database using a probability-based model and a random mutation simulation model constrained by experimental data. To assess the effectsmore » of nonrandom distribution of mutations, we also evaluated identification levels using in silico peptide data from sequenced isolates with average amino acid identities (AAI) varying between 76 and 98%. We compared the predictions to experimental protein identification levels for a sample that was evaluated using a database that included genomic information for the dominant organism and for a closely related variant (95% AAI). The range of models set the boundaries at which half of the proteins in a proteomic experiment can be identified to be 77-92% AAI between orthologs in the sample and database. Consistent with this prediction, experimental data indicated loss of half the identifiable proteins at 90% AAI. Additional analysis indicated a 6.4% reduction of the initial protein coverage per 1% amino acid divergence and total identification loss at 86% AAI. Consequently, shotgun proteomics is capable of cross-strain identifications but avoids most crossspecies false positives.« less

  3. Identification of MAPK Substrates Using Quantitative Phosphoproteomics.

    PubMed

    Zhang, Tong; Schneider, Jacqueline D; Zhu, Ning; Chen, Sixue

    2017-01-01

    Activation of mitogen-activated protein kinases (MAPKs) under diverse biotic and abiotic factors and identification of an array of downstream MAPK target proteins are hot topics in plant signal transduction. Through interactions with a plethora of substrate proteins, MAPK cascades regulate many physiological processes in the course of plant growth, development, and response to environmental factors. Identification and quantification of potential MAPK substrates are essential, but have been technically challenging. With the recent advancement in phosphoproteomics, here we describe a method that couples metal dioxide for phosphopeptide enrichment with tandem mass tags (TMT) mass spectrometry (MS) for large-scale MAPK substrate identification and quantification. We have applied this method to a transient expression system carrying a wild type (WT) and a constitutive active (CA) version of a MAPK. This combination of genetically engineered MAPKs and phosphoproteomics provides a high-throughput, unbiased analysis of MAPK-triggered phosphorylation changes on the proteome scale. Therefore, it is a robust method for identifying potential MAPK substrates and should be applicable in the study of other kinase cascades in plants as well as in other organisms.

  4. Identification of candidate cerebrospinal fluid biomarkers in parkinsonism using quantitative proteomics.

    PubMed

    Magdalinou, N K; Noyce, A J; Pinto, R; Lindstrom, E; Holmén-Larsson, J; Holtta, M; Blennow, K; Morris, H R; Skillbäck, T; Warner, T T; Lees, A J; Pike, I; Ward, M; Zetterberg, H; Gobom, J

    2017-04-01

    Neurodegenerative parkinsonian syndromes have significant clinical and pathological overlap, making early diagnosis difficult. Cerebrospinal fluid (CSF) biomarkers may aid the differentiation of these disorders, but other than α-synuclein and neurofilament light chain protein, which have limited diagnostic power, specific protein biomarkers remain elusive. To study disease mechanisms and identify possible CSF diagnostic biomarkers through discovery proteomics, which discriminate parkinsonian syndromes from healthy controls. CSF was collected consecutively from 134 participants; Parkinson's disease (n = 26), atypical parkinsonian syndromes (n = 78, including progressive supranuclear palsy (n = 36), multiple system atrophy (n = 28), corticobasal syndrome (n = 14)), and elderly healthy controls (n = 30). Participants were divided into a discovery and a validation set for analysis. The samples were subjected to tryptic digestion, followed by liquid chromatography-mass spectrometry analysis for identification and relative quantification by isobaric labelling. Candidate protein biomarkers were identified based on the relative abundances of the identified tryptic peptides. Their predictive performance was evaluated by analysis of the validation set. 79 tryptic peptides, derived from 26 proteins were found to differ significantly between atypical parkinsonism patients and controls. They included acute phase/inflammatory markers and neuronal/synaptic markers, which were respectively increased or decreased in atypical parkinsonism, while their levels in PD subjects were intermediate between controls and atypical parkinsonism. Using an unbiased proteomic approach, proteins were identified that were able to differentiate atypical parkinsonian syndrome patients from healthy controls. Our study indicates that markers that may reflect neuronal function and/or plasticity, such as the amyloid precursor protein, and inflammatory markers may hold future promise as candidate biomarkers in parkinsonism. Copyright © 2017. Published by Elsevier Ltd.

  5. A Combined Omics Approach to Generate the Surface Atlas of Human Naive CD4+ T Cells during Early T-Cell Receptor Activation*

    PubMed Central

    Graessel, Anke; Hauck, Stefanie M.; von Toerne, Christine; Kloppmann, Edda; Goldberg, Tatyana; Koppensteiner, Herwig; Schindler, Michael; Knapp, Bettina; Krause, Linda; Dietz, Katharina; Schmidt-Weber, Carsten B.; Suttner, Kathrin

    2015-01-01

    Naive CD4+ T cells are the common precursors of multiple effector and memory T-cell subsets and possess a high plasticity in terms of differentiation potential. This stem-cell-like character is important for cell therapies aiming at regeneration of specific immunity. Cell surface proteins are crucial for recognition and response to signals mediated by other cells or environmental changes. Knowledge of cell surface proteins of human naive CD4+ T cells and their changes during the early phase of T-cell activation is urgently needed for a guided differentiation of naive T cells and may support the selection of pluripotent cells for cell therapy. Periodate oxidation and aniline-catalyzed oxime ligation technology was applied with subsequent quantitative liquid chromatography-tandem MS to generate a data set describing the surface proteome of primary human naive CD4+ T cells and to monitor dynamic changes during the early phase of activation. This led to the identification of 173 N-glycosylated surface proteins. To independently confirm the proteomic data set and to analyze the cell surface by an alternative technique a systematic phenotypic expression analysis of surface antigens via flow cytometry was performed. This screening expanded the previous data set, resulting in 229 surface proteins, which were expressed on naive unstimulated and activated CD4+ T cells. Furthermore, we generated a surface expression atlas based on transcriptome data, experimental annotation, and predicted subcellular localization, and correlated the proteomics result with this transcriptional data set. This extensive surface atlas provides an overall naive CD4+ T cell surface resource and will enable future studies aiming at a deeper understanding of mechanisms of T-cell biology allowing the identification of novel immune targets usable for the development of therapeutic treatments. PMID:25991687

  6. Mass Spectrometry Data Collection in Parallel at Multiple Core Facilities Operating TripleTOF 5600 and Orbitrap Elite/Velos Pro/Q Exactive Mass Spectrometers

    PubMed Central

    Jones, K.; Kim, K.; Patel, B.; Kelsen, S.; Braverman, A.; Swinton, D.; Gafken, P.; Jones, L.; Lane, W.; Neveu, J.; Leung, H.; Shaffer, S.; Leszyk, J.; Stanley, B.; Fox, T.; Stanley, A.; Yeung, Anthony

    2013-01-01

    Proteomic research can benefit from simultaneous access to multiple cutting-edge mass spectrometers. 18 core facilities responded to our investigators seeking service through the ABRF Discussion Forum. Five of the facilities selected completed four plasma proteomics experiments as routine fee-for-service. Each biological experiment entailed an iTRAQ 4-plex proteome comparison of immunodepleted plasma provided as 30 labeled-peptide fractions. Identical samples were analyzed by two AB SCIEX TripleTOF 5600 and three Thermo Orbitrap (Elite/Velos Pro/Q Exactive) instruments. 480 LC-MS/MS runs delivered >250 GB of data over two months. We compare herein routine service analyses of three peptide fractions of different peptide abundance. Data files from each instrument were studied to develop optimal analysis parameters to compare with default parameters in Mascot Distiller 2.4, ProteinPilot 4.5 beta, AB Sciex MS Data Converter 1.3 beta, and Proteome Discover 1.3. Peak-picking for TripleTOFs was best by ProteinPilot 4.5 beta while Mascot Distiller and Proteome Discoverer were comparable for the Orbitraps. We compared protein identification and quantitation in SwissProt 2012_07 database by Mascot Server 2.4.01 versus ProteinPilot. By all search methods, more proteins, up to two fold, were identified using the Q Exactive than others. Q Exactive excelled also at the number of unique significant peptide ion sequences. However, software-dependent impact on subsequent interpretation, due to peptide modifications, can be critical. These findings may have special implications for iTRAQ plasma proteomics. For the low abundance peptide ions, the slope of the dynamic range drop-off in the plasma proteome is uniquely sharp compared with cell lysates. Our study provides data for testable improvements in the operation of these mass spectrometers. More importantly, we have demonstrated a new affordable expedient workflow for investigators to perform proteomic experiments through the ABRF infrastructure. (We acknowledge John Cottrell for optimizing the peak-picking parameters for Mascot Distiller).

  7. Chemical Proteomics Uncovers EPHA2 as a Mechanism of Acquired Resistance to Small Molecule EGFR Kinase Inhibition.

    PubMed

    Koch, Heiner; Busto, M Estela Del Castillo; Kramer, Karl; Médard, Guillaume; Kuster, Bernhard

    2015-06-05

    Tyrosine kinase inhibitors (TKIs) have become an important therapeutic option for treating several forms of cancer. Gefitinib, an inhibitor of the epidermal growth factor receptor (EGFR), is in clinical use for treating non-small cell lung cancer (NSCLC) harboring activating EGFR mutations. However, despite high initial response rates, many patients develop resistance to gefitinib. The molecular mechanisms of TKI resistance often remain unclear. Here, we describe a chemical proteomic approach comprising kinase affinity purification (kinobeads) and quantitative mass spectrometry for the identification of kinase inhibitor resistance mechanisms in cancer cells. We identified the previously described amplification of MET and found EPHA2 to be more than 10-fold overexpressed (p < 0.001) in gefitinib-resistant HCC827 cells suggesting a potential role in developing resistance. siRNA-mediated EPHA2 knock-down or treating cells with the multikinase inhibitor dasatinib restored sensitivity to gefitinib. Of all dasatinib targets, EPHA2 exhibited the most drastic effect (p < 0.001). In addition, EPHA2 knockdown or ephrin-A1 treatment of resistant cells decreased FAK phosphorylation and cell migration. These findings confirm EPHA2 as an actionable drug target, provide a rational basis for drug combination approaches, and indicate that chemical proteomics is broadly applicable for the discovery of kinase inhibitor resistance.

  8. SWATH-based proteomics identified carbonic anhydrase 2 as a potential diagnosis biomarker for nasopharyngeal carcinoma

    PubMed Central

    Luo, Yanzhang; Mok, Tin Seak; Lin, Xiuxian; Zhang, Wanling; Cui, Yizhi; Guo, Jiahui; Chen, Xing; Zhang, Tao; Wang, Tong

    2017-01-01

    Nasopharyngeal carcinoma (NPC) is a serious threat to public health, and the biomarker discovery is of urgent needs. The data-independent mode (DIA) based sequential window acquisition of all theoretical fragment-ion spectra (SWATH) mass spectrometry (MS) has been proved to be precise in protein quantitation and efficient for cancer biomarker researches. In this study, we performed the first SWATH-MS analysis comparing the NPC and normal tissues. Spike-in stable isotope labeling by amino acids in cell culture (super-SILAC) MS was used as a shotgun reference. We identified and quantified 1414 proteins across all SWATH-MS analyses. We found that SWATH-MS had a unique feature to preferentially detect proteins with smaller molecular weights than either super-SILAC MS or human proteome background. With SWATH-MS, 29 significant differentially express proteins (DEPs) were identified. Among them, carbonic anhydrase 2 (CA2) was selected for further validation per novelty, MS quality and other supporting rationale. With the tissue microarray analysis, we found that CA2 had an AUC of 0.94 in differentiating NPC from normal tissue samples. In conclusion, SWATH-MS has unique features in proteome analysis, and it leads to the identification of CA2 as a potentially new diagnostic biomarker for NPC. PMID:28117408

  9. Advanced Mass Spectrometric Methods for the Rapid and Quantitative Characterization of Proteomes

    DOE PAGES

    Smith, Richard D.

    2002-01-01

    Progress is reviewedmore » towards the development of a global strategy that aims to extend the sensitivity, dynamic range, comprehensiveness and throughput of proteomic measurements based upon the use of high performance separations and mass spectrometry. The approach uses high accuracy mass measurements from Fourier transform ion cyclotron resonance mass spectrometry (FTICR) to validate peptide ‘accurate mass tags’ (AMTs) produced by global protein enzymatic digestions for a specific organism, tissue or cell type from ‘potential mass tags’ tentatively identified using conventional tandem mass spectrometry (MS/MS). This provides the basis for subsequent measurements without the need for MS/ MS. High resolution capillary liquid chromatography separations combined with high sensitivity, and high resolution accurate FTICR measurements are shown to be capable of characterizing peptide mixtures of more than 10 5 components. The strategy has been initially demonstrated using the microorganisms Saccharomyces cerevisiae and Deinococcus radiodurans. Advantages of the approach include the high confidence of protein identification, its broad proteome coverage, high sensitivity, and the capability for stableisotope labeling methods for precise relative protein abundance measurements. Abbreviations : LC, liquid chromatography; FTICR, Fourier transform ion cyclotron resonance; AMT, accurate mass tag; PMT, potential mass tag; MMA, mass measurement accuracy; MS, mass spectrometry; MS/MS, tandem mass spectrometry; ppm, parts per million.« less

  10. Optimization strategies for a fluorescent dye with bimodal excitation spectra: application to semiautomated proteomics

    NASA Astrophysics Data System (ADS)

    Patton, Wayne F.; Berggren, Kiera N.; Lopez, Mary F.

    2001-04-01

    Facilities engaged in proteome analysis differ significantly in the degree that they implement automated systems for high-throughput protein characterization. Though automated workstation environments are becoming more routine in the biotechnology and pharmaceutical sectors of industry, university-based laboratories often perform these tasks manually, submitting protein spots excised from polyacrylamide gels to institutional core facilities for identification. For broad compatibility with imaging platforms, an optimized fluorescent dye developed for proteomics applications should be designed taking into account that laser scanners use visible light excitation and that charge-coupled device camera systems and gas discharge transilluminators rely upon UV excitation. The luminescent ruthenium metal complex, SYPRO Ruby protein gel stain, is compatible with a variety of excitation sources since it displays intense UV (280 nm) and visible (470 nm) absorption maxima. Localization is achieved by noncovalent, electrostatic and hydrophobic binding of dye to proteins, with signal being detected at 610 nm. Since proteins are not covalently modified by the dye, compatibility with downstream microchemical characterization techniques such as matrix-assisted laser desorption/ionization-mass spectrometry is assured. Protocols have been devised for optimizing fluorophore intensity. SYPRO Ruby dye outperforms alternatives such as silver staining in terms of quantitative capabilities, compatibility with mass spectrometry and ease of integration into automated work environments.

  11. Characterization and comparison of proteomes of albino sea cucumber Apostichopus japonicus (Selenka) by iTRAQ analysis.

    PubMed

    Xia, Chang-Ge; Zhang, Dijun; Ma, Chengnv; Zhou, Jun; He, Shan; Su, Xiu-Rong

    2016-04-01

    Sea cucumber is a commercially important marine organism in China. Of the different colored varieties sold in China, albino sea cucumber has the greatest appeal among consumers. Identification of factors contributing to albinism in sea cucumber is therefore likely to provide a scientific basis for improving the cultivability of these strains. In this study, two-dimensional liquid chromatography-tandem mass spectrometry coupled with isobaric tags for relative and absolute quantification labeling was used for the first time to quantitatively define the proteome of sea cucumbers and reveal proteomic characteristics unique to albino sea cucumbers. A total of 549 proteins were identified and quantified in albino sea cucumber and the functional annotations of 485 proteins have been exhibited based on COG database. Compared with green sea cucumber, 12 proteins were identified as differentially expressed in the intestine and 16 proteins in the body wall of albino sea cucumber. Among them, 5 proteins were up-regulated in the intestine and 8 proteins were down-regulated in body wall. Gene ontology annotations of these differentially expressed proteins consisted mostly of 'biological process'. The large number of differentially expressed proteins identified here should be highly useful in further elucidating the mechanisms underlying albinism in sea cucumber. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Generation of High-Quality SWATH® Acquisition Data for Label-free Quantitative Proteomics Studies Using TripleTOF® Mass Spectrometers

    PubMed Central

    Schilling, Birgit; Gibson, Bradford W.; Hunter, Christie L.

    2017-01-01

    Data-independent acquisition is a powerful mass spectrometry technique that enables comprehensive MS and MS/MS analysis of all detectable species, providing an information rich data file that can be mined deeply. Here, we describe how to acquire high-quality SWATH® Acquisition data to be used for large quantitative proteomic studies. We specifically focus on using variable sized Q1 windows for acquisition of MS/MS data for generating higher specificity quantitative data. PMID:28188533

  13. Evaluation of the Nicotinic Acetylcholine Receptor-Associated Proteome at Baseline and Following Nicotine Exposure in Human and Mouse Cortex.

    PubMed

    McClure-Begley, Tristan D; Esterlis, Irina; Stone, Kathryn L; Lam, TuKiet T; Grady, Sharon R; Colangelo, Christopher M; Lindstrom, Jon M; Marks, Michael J; Picciotto, Marina R

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) support the initiation and maintenance of smoking, but the long-term changes occurring in the protein complex as a result of smoking and the nicotine in tobacco are not known. Human studies and animal models have also demonstrated that increasing cholinergic tone increases behaviors related to depression, suggesting that the nAChR-associated proteome could be altered in individuals with mood disorders. We therefore immunopurified nAChRs and associated proteins for quantitative proteomic assessment of changes in protein-protein interactions of high-affinity nAChRs containing the β2 subunit (β2*-nAChRs) from either cortex of mice treated with saline or nicotine, or postmortem human temporal cortex tissue from tobacco-exposed and nonexposed individuals, with a further comparison of diagnosed mood disorder to control subjects. We observed significant effects of nicotine exposure on the β2*-nAChR-associated proteome in human and mouse cortex, particularly in the abundance of the nAChR subunits themselves, as well as putative interacting proteins that make up core components of neuronal excitability (Na/K ATPase subunits), presynaptic neurotransmitter release (syntaxins, SNAP25, synaptotagmin), and a member of a known nAChR protein chaperone family (14-3-3ζ). These findings identify candidate-signaling proteins that could mediate changes in cholinergic signaling via nicotine or tobacco use. Further analysis of identified proteins will determine whether these interactions are essential for primary function of nAChRs at presynaptic terminals. The identification of differences in the nAChR-associated proteome and downstream signaling in subjects with various mood disorders may also identify novel etiological mechanisms and reveal new treatment targets.

  14. Comparative Salivary Proteome of Hepatitis B- and C-Infected Patients

    PubMed Central

    Gonçalves, Lorena Da Rós; Campanhon, Isabele Batista; Domingues, Romênia R.; Paes Leme, Adriana F.; Soares da Silva, Márcia Regina

    2014-01-01

    Hepatitis B and C virus (HBV and HCV) infections are an important cause of cirrhosis and hepatocellular carcinoma. The natural history has a prominent latent phase, and infected patients may remain undiagnosed; this situation may lead to the continuing spread of these infections in the community. Compelling reasons exist for using saliva as a diagnostic fluid because it meets the demands of being an inexpensive, noninvasive and easy-to-use diagnostic method. Indeed, comparative analysis of the salivary proteome using mass spectrometry is a promising new strategy for identifying biomarkers. Our goal is to apply an Orbitrap-based quantitative approach to explore the salivary proteome profile in HBV- and HCV-infected patients. In the present study, whole saliva was obtained from 20 healthy, (control) 20 HBV-infected and 20 HCV-infected subjects. Two distinct pools containing saliva from 10 subjects of each group were obtained. The samples were ultracentrifuged and fractionated, and all fractions were hydrolyzed (trypsin) and injected into an LTQ-VELOS ORBITRAP. The identification and analyses of peptides were performed using Proteome Discoverer1.3 and ScaffoldQ + v.3.3.1. From a total of 362 distinct proteins identified, 344 proteins were identified in the HBV, 326 in the HCV and 303 in the control groups. Some blood proteins, such as flavin reductase (which converts biliverdin to bilirubin), were detected only in the HCV group. The data showed a reduced presence of complement C3, ceruloplasmin, alpha(1)-acid glycoprotein and alpha(2)-acid glycoprotein in the hepatitis-infected patients. Peptides of serotransferrin and haptoglobin were less detected in the HCV group. This study provides an integrated perspective of the salivary proteome, which should be further explored in future studies targeting specific disease markers for HBV and HCV infection. PMID:25423034

  15. Quantitative proteomic analysis of extracellular matrix extracted from mono- and dual-species biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis.

    PubMed

    Mohammed, Marwan Mansoor Ali; Pettersen, Veronika Kuchařová; Nerland, Audun H; Wiker, Harald G; Bakken, Vidar

    2017-04-01

    The Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis are members of a complex dental biofilm associated with periodontal disease. In this study, we cultured F. nucleatum and P. gingivalis as mono- and dual-species biofilms, and analyzed the protein composition of the biofilms extracellular polymeric matrix (EPM) by high-resolution liquid chromatography-tandem mass spectrometry. Label-free quantitative proteomic analysis was used for identification of proteins and sequence-based functional characterization for their classification and prediction of possible roles in EPM. We identified 542, 93 and 280 proteins in the matrix of F. nucleatum, P. gingivalis, and the dual-species biofilm, respectively. Nearly 70% of all EPM proteins in the dual-species biofilm originated from F. nucleatum, and a majority of these were cytoplasmic proteins, suggesting an enhanced lysis of F. nucleatum cells. The proteomic analysis also indicated an interaction between the two species: 22 F. nucleatum proteins showed differential levels between the mono and dual-species EPMs, and 11 proteins (8 and 3 from F. nucleatum and P. gingivalis, respectively) were exclusively detected in the dual-species EPM. Oxidoreductases and chaperones were among the most abundant proteins identified in all three EPMs. The biofilm matrices in addition contained several known and hypothetical virulence proteins, which can mediate adhesion to the host cells and disintegration of the periodontal tissues. This study demonstrated that the biofilm matrix of two important periodontal pathogens consists of a multitude of proteins whose amounts and functionalities vary largely. Relatively high levels of several of the detected proteins might facilitate their potential use as targets for the inhibition of biofilm development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. QPROT: Statistical method for testing differential expression using protein-level intensity data in label-free quantitative proteomics.

    PubMed

    Choi, Hyungwon; Kim, Sinae; Fermin, Damian; Tsou, Chih-Chiang; Nesvizhskii, Alexey I

    2015-11-03

    We introduce QPROT, a statistical framework and computational tool for differential protein expression analysis using protein intensity data. QPROT is an extension of the QSPEC suite, originally developed for spectral count data, adapted for the analysis using continuously measured protein-level intensity data. QPROT offers a new intensity normalization procedure and model-based differential expression analysis, both of which account for missing data. Determination of differential expression of each protein is based on the standardized Z-statistic based on the posterior distribution of the log fold change parameter, guided by the false discovery rate estimated by a well-known Empirical Bayes method. We evaluated the classification performance of QPROT using the quantification calibration data from the clinical proteomic technology assessment for cancer (CPTAC) study and a recently published Escherichia coli benchmark dataset, with evaluation of FDR accuracy in the latter. QPROT is a statistical framework with computational software tool for comparative quantitative proteomics analysis. It features various extensions of QSPEC method originally built for spectral count data analysis, including probabilistic treatment of missing values in protein intensity data. With the increasing popularity of label-free quantitative proteomics data, the proposed method and accompanying software suite will be immediately useful for many proteomics laboratories. This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Molecular diagnostics in medical microbiology: yesterday, today and tomorrow.

    PubMed

    van Belkum, Alex

    2003-10-01

    Clinical microbiology is clearly on the move, and various new diagnostic technologies have been introduced into laboratory practice over the past few decades. However, Henri D Isenberg recently stated that molecular biology techniques promised to revolutionise the diagnosis of infectious disease, but that, to date, this promise is still in its infancy. Molecular diagnostics have now surpassed these early stages and have definitely reached puberty. Currently, a second generation of automated molecular approaches is already within the microbiologists' reach. Quantitative amplification tests in combination with genomics, transcriptomics, proteomics and related methodologies will pave the way to further enhancement of innovative microbial detection and identification.

  18. Computational approaches to protein inference in shotgun proteomics

    PubMed Central

    2012-01-01

    Shotgun proteomics has recently emerged as a powerful approach to characterizing proteomes in biological samples. Its overall objective is to identify the form and quantity of each protein in a high-throughput manner by coupling liquid chromatography with tandem mass spectrometry. As a consequence of its high throughput nature, shotgun proteomics faces challenges with respect to the analysis and interpretation of experimental data. Among such challenges, the identification of proteins present in a sample has been recognized as an important computational task. This task generally consists of (1) assigning experimental tandem mass spectra to peptides derived from a protein database, and (2) mapping assigned peptides to proteins and quantifying the confidence of identified proteins. Protein identification is fundamentally a statistical inference problem with a number of methods proposed to address its challenges. In this review we categorize current approaches into rule-based, combinatorial optimization and probabilistic inference techniques, and present them using integer programing and Bayesian inference frameworks. We also discuss the main challenges of protein identification and propose potential solutions with the goal of spurring innovative research in this area. PMID:23176300

  19. Coupling Capillary Zone Electrophoresis to a Q Exactive HF Mass Spectrometer for Top-down Proteomics: 580 Proteoform Identifications from Yeast.

    PubMed

    Zhao, Yimeng; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J

    2016-10-07

    We used reversed-phase liquid chromatography to separate the yeast proteome into 23 fractions. These fractions were then analyzed using capillary zone electrophoresis (CZE) coupled to a Q-Exactive HF mass spectrometer using an electrokinetically pumped sheath flow interface. The parameters of the mass spectrometer were first optimized for top-down proteomics using a mixture of seven model proteins; we observed that intact protein mode with a trapping pressure of 0.2 and normalized collision energy of 20% produced the highest intact protein signals and most protein identifications. Then, we applied the optimized parameters for analysis of the fractionated yeast proteome. From this, 580 proteoforms and 180 protein groups were identified via database searching of the MS/MS spectra. This number of proteoform identifications is two times larger than that of previous CZE-MS/MS studies. An additional 3,243 protein species were detected based on the parent ion spectra. Post-translational modifications including N-terminal acetylation, signal peptide removal, and oxidation were identified.

  20. On the Reproducibility of Label-Free Quantitative Cross-Linking/Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Müller, Fränze; Fischer, Lutz; Chen, Zhuo Angel; Auchynnikava, Tania; Rappsilber, Juri

    2018-02-01

    Quantitative cross-linking/mass spectrometry (QCLMS) is an emerging approach to study conformational changes of proteins and multi-subunit complexes. Distinguishing protein conformations requires reproducibly identifying and quantifying cross-linked peptides. Here we analyzed the variation between multiple cross-linking reactions using bis[sulfosuccinimidyl] suberate (BS3)-cross-linked human serum albumin (HSA) and evaluated how reproducible cross-linked peptides can be identified and quantified by LC-MS analysis. To make QCLMS accessible to a broader research community, we developed a workflow that integrates the established software tools MaxQuant for spectra preprocessing, Xi for cross-linked peptide identification, and finally Skyline for quantification (MS1 filtering). Out of the 221 unique residue pairs identified in our sample, 124 were subsequently quantified across 10 analyses with coefficient of variation (CV) values of 14% (injection replica) and 32% (reaction replica). Thus our results demonstrate that the reproducibility of QCLMS is in line with the reproducibility of general quantitative proteomics and we establish a robust workflow for MS1-based quantitation of cross-linked peptides.

  1. Comparative analysis of cerebrospinal fluid from the meningo-encephalitic stage of T. b. gambiense and rhodesiense sleeping sickness patients using TMT quantitative proteomics.

    PubMed

    Tiberti, Natalia; Sanchez, Jean-Charles

    2015-09-01

    The quantitative proteomics data here reported are part of a research article entitled "Increased acute immune response during the meningo-encephalitic stage of Trypanosoma brucei rhodesiense sleeping sickness compared to Trypanosoma brucei gambiense", published by Tiberti et al., 2015. Transl. Proteomics 6, 1-9. Sleeping sickness (human African trypanosomiasis - HAT) is a deadly neglected tropical disease affecting mainly rural communities in sub-Saharan Africa. This parasitic disease is caused by the Trypanosoma brucei (T. b.) parasite, which is transmitted to the human host through the bite of the tse-tse fly. Two parasite sub-species, T. b. rhodesiense and T. b. gambiense, are responsible for two clinically different and geographically separated forms of sleeping sickness. The objective of the present study was to characterise and compare the cerebrospinal fluid (CSF) proteome of stage 2 (meningo-encephalitic stage) HAT patients suffering from T. b. gambiense or T. b. rhodesiense disease using high-throughput quantitative proteomics and the Tandem Mass Tag (TMT(®)) isobaric labelling. In order to evaluate the CSF proteome in the context of HAT pathophysiology, the protein dataset was then submitted to gene ontology and pathway analysis. Two significantly differentially expressed proteins (C-reactive protein and orosomucoid 1) were further verified on a larger population of patients (n=185) by ELISA, confirming the mass spectrometry results. By showing a predominant involvement of the acute immune response in rhodesiense HAT, the proteomics results obtained in this work will contribute to further understand the mechanisms of pathology occurring in HAT and to propose new biomarkers of potential clinical utility. The mass spectrometry raw data are available in the Pride Archive via ProteomeXchange through the identifier PXD001082.

  2. The Multinational Arabidopsis Steering Subcommittee for Proteomics Assembles the Largest Proteome Database Resource for Plant Systems Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weckwerth, Wolfram; Baginsky, Sacha; Van Wijk, Klass

    2009-12-01

    In the past 10 years, we have witnessed remarkable advances in the field of plant molecular biology. The rapid development of proteomic technologies and the speed with which these techniques have been applied to the field have altered our perception of how we can analyze proteins in complex systems. At nearly the same time, the availability of the complete genome for the model plant Arabidopsis thaliana was released; this effort provides an unsurpassed resource for the identification of proteins when researchers use MS to analyze plant samples. Recognizing the growth in this area, the Multinational Arabidopsis Steering Committee (MASC) establishedmore » a subcommittee for A. thaliana proteomics in 2006 with the objective of consolidating databases, technique standards, and experimentally validated candidate genes and functions. Since the establishment of the Multinational Arabidopsis Steering Subcommittee for Proteomics (MASCP), many new approaches and resources have become available. Recently, the subcommittee established a webpage to consolidate this information (www.masc-proteomics.org). It includes links to plant proteomic databases, general information about proteomic techniques, meeting information, a summary of proteomic standards, and other relevant resources. Altogether, this website provides a useful resource for the Arabidopsis proteomics community. In the future, the website will host discussions and investigate the cross-linking of databases. The subcommittee members have extensive experience in arabidopsis proteomics and collectively have produced some of the most extensive proteomics data sets for this model plant (Table S1 in the Supporting Information has a list of resources). The largest collection of proteomics data from a single study in A. thaliana was assembled into an accessible database (AtProteome; http://fgcz-atproteome.unizh.ch/index.php) and was recently published by the Baginsky lab.1 The database provides links to major Arabidopsis online resources, and raw data have been deposited in PRIDE and PRIDE BioMart. Included in this database is an Arabidopsis proteome map that provides evidence for the expression of {approx}50% of all predicted gene models, including several alternative gene models that are not represented in The Arabidopsis Information Resource (TAIR) protein database. A set of organ-specific biomarkers is provided, as well as organ-specific proteotypic peptides for 4105 proteins that can be used to facilitate targeted quantitative proteomic surveys. In the future, the AtProteome database will be linked to additional existing resources developed by MASCP members, such as PPDB, ProMEX, and SUBA. The most comprehensive study on the Arabidopsis chloroplast proteome, which includes information on chloroplast sorting signals, posttranslational modifications (PTMs), and protein abundances (analyzed by high-accuracy MS [Orbitrap]), was recently published by the van Wijk lab.2 These and previous data are available via the plant proteome database (PPDB; http://ppdb.tc.cornell.edu) for A. thaliana and maize. PPDB provides genome-wide experimental and functional characterization of the A. thaliana and maize proteomes, including PTMs and subcellular localization information, with an emphasis on leaf and plastid proteins. Maize and Arabidopsis proteome entries are directly linked via internal BLAST alignments within PPDB. Direct links for each protein to TAIR, SUBA, ProMEX, and other resources are also provided.« less

  3. Venomous snakes of Costa Rica: biological and medical implications of their venom proteomic profiles analyzed through the strategy of snake venomics.

    PubMed

    Lomonte, Bruno; Fernández, Julián; Sanz, Libia; Angulo, Yamileth; Sasa, Mahmood; Gutiérrez, José María; Calvete, Juan J

    2014-06-13

    In spite of its small territory of ~50,000km(2), Costa Rica harbors a remarkably rich biodiversity. Its herpetofauna includes 138 species of snakes, of which sixteen pit vipers (family Viperidae, subfamily Crotalinae), five coral snakes (family Elapidae, subfamily Elapinae), and one sea snake (Family Elapidae, subfamily Hydrophiinae) pose potential hazards to human and animal health. In recent years, knowledge on the composition of snake venoms has expanded dramatically thanks to the development of increasingly fast and sensitive analytical techniques in mass spectrometry and separation science applied to protein characterization. Among several analytical strategies to determine the overall protein/peptide composition of snake venoms, the methodology known as 'snake venomics' has proven particularly well suited and informative, by providing not only a catalog of protein types/families present in a venom, but also a semi-quantitative estimation of their relative abundances. Through a collaborative research initiative between Instituto de Biomedicina de Valencia (IBV) and Instituto Clodomiro Picado (ICP), this strategy has been applied to the study of venoms of Costa Rican snakes, aiming to obtain a deeper knowledge on their composition, geographic and ontogenic variations, relationships to taxonomy, correlation with toxic activities, and discovery of novel components. The proteomic profiles of venoms from sixteen out of the 22 species within the Viperidae and Elapidae families found in Costa Rica have been reported so far, and an integrative view of these studies is hereby presented. In line with other venomic projects by research groups focusing on a wide variety of snakes around the world, these studies contribute to a deeper understanding of the biochemical basis for the diverse toxic profiles evolved by venomous snakes. In addition, these studies provide opportunities to identify novel molecules of potential pharmacological interest. Furthermore, the establishment of venom proteomic profiles offers a fundamental platform to assess the detailed immunorecognition of individual proteins/peptides by therapeutic or experimental antivenoms, an evolving methodology for which the term 'antivenomics' was coined (as described in an accompanying paper in this special issue). Venoms represent an adaptive trait and an example of both divergent and convergent evolution. A deep understanding of the composition of venoms and of the principles governing the evolution of venomous systems is of applied importance for exploring the enormous potential of venoms as sources of chemical and pharmacological novelty but also to fight the consequences of snakebite envenomings. Key to this is the identification of evolutionary and ecological trends at different taxonomical levels. However, the evolution of venomous species and their venoms do not always follow the same course, and the identification of structural and functional convergences and divergences among venoms is often unpredictable by a phylogenetic hypothesis. Snake venomics is a proteomic-centered strategy to deconstruct the complex molecular phenotypes the venom proteomes. The proteomic profiles of venoms from sixteen out of the 22 venomous species within the Viperidae and Elapidae families found in Costa Rica have been completed so far. An integrative view of their venom composition, including the identification of geographic and ontogenic variations, is hereby presented. Venom proteomic profiles offer a fundamental platform to assess the detailed immunorecognition of individual venom components by therapeutic or experimental antivenoms. This aspect is reviewed in the companion paper. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Mass spectrometry and animal science: protein identification strategies and particularities of farm animal species.

    PubMed

    Soares, Renata; Franco, Catarina; Pires, Elisabete; Ventosa, Miguel; Palhinhas, Rui; Koci, Kamila; Martinho de Almeida, André; Varela Coelho, Ana

    2012-07-19

    Proteomic approaches are gaining increasing importance in the context of all fields of animal and veterinary sciences, including physiology, productive characterization, and disease/parasite tolerance, among others. Proteomic studies mainly aim the proteome characterization of a certain organ, tissue, cell type or organism, either in a specific condition or comparing protein differential expression within two or more selected situations. Due to the high complexity of samples, usually total protein extracts, proteomics relies heavily on separation procedures, being 2D-electrophoresis and HPLC the most common, as well as on protein identification using mass spectrometry (MS) based methodologies. Despite the increasing importance of MS in the context of animal and veterinary science studies, the usefulness of such tools is still poorly perceived by the animal science community. This is primarily due to the limited knowledge on mass spectrometry by animal scientists. Additionally, confidence and success in protein identification is hindered by the lack of information in public databases for most of farm animal species and their pathogens, with the exception of cattle (Bos taurus), pig (Sus scrofa) and chicken (Gallus gallus). In this article, we will briefly summarize the main methodologies available for protein identification using mass spectrometry providing a case study of specific applications in the field of animal science. We will also address the difficulties inherent to protein identification using MS, with particular reference to experiments using animal species poorly described in public databases. Additionally, we will suggest strategies to increase the rate of successful identifications when working with farm animal species. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Integration analysis of quantitative proteomics and transcriptomics data identifies potential targets of frizzled-8 protein-related antiproliferative factor in vivo.

    PubMed

    Yang, Wei; Kim, Yongsoo; Kim, Taek-Kyun; Keay, Susan K; Kim, Kwang Pyo; Steen, Hanno; Freeman, Michael R; Hwang, Daehee; Kim, Jayoung

    2012-12-01

    What's known on the subject? and What does the study add? Interstitial cystitis (IC) is a prevalent and debilitating pelvic disorder generally accompanied by chronic pain combined with chronic urinating problems. Over one million Americans are affected, especially middle-aged women. However, its aetiology or mechanism remains unclear. No efficient drug has been provided to patients. Several urinary biomarker candidates have been identified for IC; among the most promising is antiproliferative factor (APF), whose biological activity is detectable in urine specimens from >94% of patients with both ulcerative and non-ulcerative IC. The present study identified several important mediators of the effect of APF on bladder cell physiology, suggesting several candidate drug targets against IC. In an attempt to identify potential proteins and genes regulated by APF in vivo, and to possibly expand the APF-regulated network identified by stable isotope labelling by amino acids in cell culture (SILAC), we performed an integration analysis of our own SILAC data and the microarray data of Gamper et al. (2009) BMC Genomics 10: 199. Notably, two of the proteins (i.e. MAPKSP1 and GSPT1) that are down-regulated by APF are involved in the activation of mTORC1, suggesting that the mammalian target of rapamycin (mTOR) pathway is potentially a critical pathway regulated by APF in vivo. Several components of the mTOR pathway are currently being studied as potential therapeutic targets in other diseases. Our analysis suggests that this pathway might also be relevant in the design of diagnostic tools and medications targeting IC. • To enhance our understanding of the interstitial cystitis urine biomarker antiproliferative factor (APF), as well as interstitial cystitis biology more generally at the systems level, we reanalyzed recently published large-scale quantitative proteomics and in vivo transcriptomics data sets using an integration analysis tool that we have developed. • To identify more differentially expressed genes with a lower false discovery rate from a previously published microarray data set, an integrative hypothesis-testing statistical approach was applied. • For validation experiments, expression and phosphorylation levels of select proteins were evaluated by western blotting. • Integration analysis of this transcriptomics data set with our own quantitative proteomics data set identified 10 genes that are potentially regulated by APF in vivo from 4140 differentially expressed genes identified with a false discovery rate of 1%. • Of these, five (i.e. JUP, MAPKSP1, GSPT1, PTGS2/COX-2 and XPOT) were found to be prominent after network modelling of the common genes identified in the proteomics and microarray studies. • This molecular signature reflects the biological processes of cell adhesion, cell proliferation and inflammation, which is consistent with the known physiological effects of APF. • Lastly, we found the mammalian target of rapamycin pathway was down-regulated in response to APF. • This unbiased integration analysis of in vitro quantitative proteomics data with in vivo quantitative transcriptomics data led to the identification of potential downstream mediators of the APF signal transduction pathway. © 2012 THE AUTHORS. BJU INTERNATIONAL © 2012 BJU INTERNATIONAL.

  6. A Comparison of Protein Extraction Methods Suitable for Gel-Based Proteomic Studies of Aphid Proteins

    PubMed Central

    Cilia, M.; Fish, T.; Yang, X.; Mclaughlin, M.; Thannhauser, T. W.

    2009-01-01

    Protein extraction methods can vary widely in reproducibility and in representation of the total proteome, yet there are limited data comparing protein isolation methods. The methodical comparison of protein isolation methods is the first critical step for proteomic studies. To address this, we compared three methods for isolation, purification, and solubilization of insect proteins. The aphid Schizaphis graminum, an agricultural pest, was the source of insect tissue. Proteins were extracted using TCA in acetone (TCA-acetone), phenol, or multi-detergents in a chaotrope solution. Extracted proteins were solubilized in a multiple chaotrope solution and examined using 1-D and 2-D electrophoresis and compared directly using 2-D Difference Gel Electrophoresis (2-D DIGE). Mass spectrometry was used to identify proteins from each extraction type. We were unable to ascribe the differences in the proteins extracted to particular physical characteristics, cell location, or biological function. The TCA-acetone extraction yielded the greatest amount of protein from aphid tissues. Each extraction method isolated a unique subset of the aphid proteome. The TCA-acetone method was explored further for its quantitative reliability using 2-D DIGE. Principal component analysis showed that little of the variation in the data was a result of technical issues, thus demonstrating that the TCA-acetone extraction is a reliable method for preparing aphid proteins for a quantitative proteomics experiment. These data suggest that although the TCA-acetone method is a suitable method for quantitative aphid proteomics, a combination of extraction approaches is recommended for increasing proteome coverage when using gel-based separation techniques. PMID:19721822

  7. Top-down Proteomics: Technology Advancements and Applications to Heart Diseases

    PubMed Central

    Cai, Wenxuan; Tucholski, Trisha M.; Gregorich, Zachery R.; Ge, Ying

    2016-01-01

    Introduction Diseases of the heart are a leading cause of morbidity and mortality for both men and women worldwide, and impose significant economic burdens on the healthcare systems. Despite substantial effort over the last several decades, the molecular mechanisms underlying diseases of the heart remain poorly understood. Areas covered Altered protein post-translational modifications (PTMs) and protein isoform switching are increasingly recognized as important disease mechanisms. Top-down high-resolution mass spectrometry (MS)-based proteomics has emerged as the most powerful method for the comprehensive analysis of PTMs and protein isoforms. Here, we will review recent technology developments in the field of top-down proteomics, as well as highlight recent studies utilizing top-down proteomics to decipher the cardiac proteome for the understanding of the molecular mechanisms underlying diseases of the heart. Expert commentary Top-down proteomics is a premier method for the global and comprehensive study of protein isoforms and their PTMs, enabling the identification of novel protein isoforms and PTMs, characterization of sequence variations, and quantification of disease-associated alterations. Despite significant challenges, continuous development of top-down proteomics technology will greatly aid the dissection of the molecular mechanisms underlying diseases of the hearts for the identification of novel biomarkers and therapeutic targets. PMID:27448560

  8. Proteogenomics Dashboard for the Human Proteome Project.

    PubMed

    Tabas-Madrid, Daniel; Alves-Cruzeiro, Joao; Segura, Victor; Guruceaga, Elizabeth; Vialas, Vital; Prieto, Gorka; García, Carlos; Corrales, Fernando J; Albar, Juan Pablo; Pascual-Montano, Alberto

    2015-09-04

    dasHPPboard is a novel proteomics-based dashboard that collects and reports the experiments produced by the Spanish Human Proteome Project consortium (SpHPP) and aims to help HPP to map the entire human proteome. We have followed the strategy of analog genomics projects like the Encyclopedia of DNA Elements (ENCODE), which provides a vast amount of data on human cell lines experiments. The dashboard includes results of shotgun and selected reaction monitoring proteomics experiments, post-translational modifications information, as well as proteogenomics studies. We have also processed the transcriptomics data from the ENCODE and Human Body Map (HBM) projects for the identification of specific gene expression patterns in different cell lines and tissues, taking special interest in those genes having little proteomic evidence available (missing proteins). Peptide databases have been built using single nucleotide variants and novel junctions derived from RNA-Seq data that can be used in search engines for sample-specific protein identifications on the same cell lines or tissues. The dasHPPboard has been designed as a tool that can be used to share and visualize a combination of proteomic and transcriptomic data, providing at the same time easy access to resources for proteogenomics analyses. The dasHPPboard can be freely accessed at: http://sphppdashboard.cnb.csic.es.

  9. Less label, more free: approaches in label-free quantitative mass spectrometry.

    PubMed

    Neilson, Karlie A; Ali, Naveid A; Muralidharan, Sridevi; Mirzaei, Mehdi; Mariani, Michael; Assadourian, Gariné; Lee, Albert; van Sluyter, Steven C; Haynes, Paul A

    2011-02-01

    In this review we examine techniques, software, and statistical analyses used in label-free quantitative proteomics studies for area under the curve and spectral counting approaches. Recent advances in the field are discussed in an order that reflects a logical workflow design. Examples of studies that follow this design are presented to highlight the requirement for statistical assessment and further experiments to validate results from label-free quantitation. Limitations of label-free approaches are considered, label-free approaches are compared with labelling techniques, and forward-looking applications for label-free quantitative data are presented. We conclude that label-free quantitative proteomics is a reliable, versatile, and cost-effective alternative to labelled quantitation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Multidimensional electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research.

    PubMed

    Loroch, Stefan; Schommartz, Tim; Brune, Wolfram; Zahedi, René Peiman; Sickmann, Albert

    2015-05-01

    Quantitative proteomics and phosphoproteomics have become key disciplines in understanding cellular processes. Fundamental research can be done using cell culture providing researchers with virtually infinite sample amounts. In contrast, clinical, pre-clinical and biomedical research is often restricted to minute sample amounts and requires an efficient analysis with only micrograms of protein. To address this issue, we generated a highly sensitive workflow for combined LC-MS-based quantitative proteomics and phosphoproteomics by refining an ERLIC-based 2D phosphoproteomics workflow into an ERLIC-based 3D workflow covering the global proteome as well. The resulting 3D strategy was successfully used for an in-depth quantitative analysis of both, the proteome and the phosphoproteome of murine cytomegalovirus-infected mouse fibroblasts, a model system for host cell manipulation by a virus. In a 2-plex SILAC experiment with 150 μg of a tryptic digest per condition, the 3D strategy enabled the quantification of ~75% more proteins and even ~134% more peptides compared to the 2D strategy. Additionally, we could quantify ~50% more phosphoproteins by non-phosphorylated peptides, concurrently yielding insights into changes on the levels of protein expression and phosphorylation. Beside its sensitivity, our novel three-dimensional ERLIC-strategy has the potential for semi-automated sample processing rendering it a suitable future perspective for clinical, pre-clinical and biomedical research. Copyright © 2015. Published by Elsevier B.V.

  11. Hypothalamus proteomics from mouse models with obesity and anorexia reveals therapeutic targets of appetite regulation

    PubMed Central

    Manousopoulou, A; Koutmani, Y; Karaliota, S; Woelk, C H; Manolakos, E S; Karalis, K; Garbis, S D

    2016-01-01

    Objective: This study examined the proteomic profile of the hypothalamus in mice exposed to a high-fat diet (HFD) or with the anorexia of acute illness. This comparison could provide insight on the effects of these two opposite states of energy balance on appetite regulation. Methods: Four to six-week-old male C56BL/6J mice were fed a normal (control 1 group; n=7) or a HFD (HFD group; n=10) for 8 weeks. The control 2 (n=7) and lipopolysaccharide (LPS) groups (n=10) were fed a normal diet for 8 weeks before receiving an injection of saline and LPS, respectively. Hypothalamic regions were analysed using a quantitative proteomics method based on a combination of techniques including iTRAQ stable isotope labeling, orthogonal two-dimensional liquid chromatography hyphenated with nanospray ionization and high-resolution mass spectrometry. Key proteins were validated with quantitative PCR. Results: Quantitative proteomics of the hypothalamous regions profiled a total of 9249 protein groups (q<0.05). Of these, 7718 protein groups were profiled with a minimum of two unique peptides for each. Hierachical clustering of the differentiated proteome revealed distinct proteomic signatures for the hypothalamus under the HFD and LPS nutritional conditions. Literature research with in silico bioinformatics interpretation of the differentiated proteome identified key biological relevant proteins and implicated pathways. Furthermore, the study identified potential pharmacologic targets. In the LPS groups, the anorexigen pro-opiomelanocortin was downregulated. In mice with obesity, nuclear factor-κB, glycine receptor subunit alpha-4 (GlyR) and neuropeptide Y levels were elevated, whereas serotonin receptor 1B levels decreased. Conclusions: High-precision quantitative proteomics revealed that under acute systemic inflammation in the hypothalamus as a response to LPS, homeostatic mechanisms mediating loss of appetite take effect. Conversely, under chronic inflammation in the hypothalamus as a response to HFD, mechanisms mediating a sustained ‘perpetual cycle' of appetite enhancement were observed. The GlyR protein may constitute a novel treatment target for the reduction of central orexigenic signals in obesity. PMID:27110685

  12. Hypothalamus proteomics from mouse models with obesity and anorexia reveals therapeutic targets of appetite regulation.

    PubMed

    Manousopoulou, A; Koutmani, Y; Karaliota, S; Woelk, C H; Manolakos, E S; Karalis, K; Garbis, S D

    2016-04-25

    This study examined the proteomic profile of the hypothalamus in mice exposed to a high-fat diet (HFD) or with the anorexia of acute illness. This comparison could provide insight on the effects of these two opposite states of energy balance on appetite regulation. Four to six-week-old male C56BL/6J mice were fed a normal (control 1 group; n=7) or a HFD (HFD group; n=10) for 8 weeks. The control 2 (n=7) and lipopolysaccharide (LPS) groups (n=10) were fed a normal diet for 8 weeks before receiving an injection of saline and LPS, respectively. Hypothalamic regions were analysed using a quantitative proteomics method based on a combination of techniques including iTRAQ stable isotope labeling, orthogonal two-dimensional liquid chromatography hyphenated with nanospray ionization and high-resolution mass spectrometry. Key proteins were validated with quantitative PCR. Quantitative proteomics of the hypothalamous regions profiled a total of 9249 protein groups (q<0.05). Of these, 7718 protein groups were profiled with a minimum of two unique peptides for each. Hierachical clustering of the differentiated proteome revealed distinct proteomic signatures for the hypothalamus under the HFD and LPS nutritional conditions. Literature research with in silico bioinformatics interpretation of the differentiated proteome identified key biological relevant proteins and implicated pathways. Furthermore, the study identified potential pharmacologic targets. In the LPS groups, the anorexigen pro-opiomelanocortin was downregulated. In mice with obesity, nuclear factor-κB, glycine receptor subunit alpha-4 (GlyR) and neuropeptide Y levels were elevated, whereas serotonin receptor 1B levels decreased. High-precision quantitative proteomics revealed that under acute systemic inflammation in the hypothalamus as a response to LPS, homeostatic mechanisms mediating loss of appetite take effect. Conversely, under chronic inflammation in the hypothalamus as a response to HFD, mechanisms mediating a sustained 'perpetual cycle' of appetite enhancement were observed. The GlyR protein may constitute a novel treatment target for the reduction of central orexigenic signals in obesity.

  13. Global analysis of Brucella melitensis proteomes.

    PubMed

    Mujer, Cesar V; Wagner, Mary Ann; Eschenbrenner, Michel; Horn, Troy; Kraycer, Jo Ann; Redkar, Rajendra; Hagius, Sue; Elzer, Philip; Delvecchio, Vito G

    2002-10-01

    Brucella melitensis is a facultative, intracellular, gram-negative cocco-bacillus that causes Malta fever in humans and brucellosis in animals. There are at least six species in the genus, and the disease is classified as zoonotic because several species infect humans. Using 2-D gel electrophoresis and mass spectrometry, we have initiated (i) a comprehensive mapping and identification of all the expressed proteins of B. melitensis virulent strain 16M, and (ii) a comparative study of its proteome with the attentuated vaccinal strain Rev 1. Comprehensive proteome maps of all six Brucella species will be generated in order to obtain vital information for vaccine development, identification of pathogenicity islands, and establishment of host specificity and evolutionary relatedness.

  14. A Straightforward and Highly Efficient Precipitation/On-pellet Digestion Procedure Coupled to a Long Gradient Nano-LC Separation and Orbitrap Mass Spectrometry for Label-free Expression Profiling of the Swine Heart Mitochondrial Proteome

    PubMed Central

    Duan, Xiaotao; Young, Rebecca; Straubinger, Robert M.; Page, Brian J.; Cao, Jin; Wang, Hao; Yu, Haoying; Canty, John M.; Qu, Jun

    2009-01-01

    For label-free expression profiling of tissue proteomes, efficient protein extraction, thorough and quantitative sample cleanup and digestion procedures, as well as sufficient and reproducible chromatographic separation, are highly desirable but remain challenging. However, optimal methodology has remained elusive, especially for proteomes that are rich in membrane proteins, such as the mitochondria. Here we describe a straightforward and reproducible sample preparation procedure, coupled with a highly selective and sensitive nano-LC/Orbitrap analysis, which enables reliable and comprehensive expression profiling of tissue mitochondria. The mitochondrial proteome of swine heart was selected as a test system. Efficient protein extraction was accomplished using a strong buffer containing both ionic and non-ionic detergents. Overnight precipitation was used for cleanup of the extract, and the sample was subjected to an optimized 2-step, on-pellet digestion approach. In the first step, the protein pellet was dissolved via a 4 h tryptic digestion under vigorous agitation, which nano-LC/LTQ/ETD showed to produce large and incompletely cleaved tryptic peptides. The mixture was then reduced, alkylated, and digested into its full complement of tryptic peptides with additional trypsin. This solvent precipitation/on-pellet digestion procedure achieved significantly higher and more reproducible peptide recovery of the mitochondrial preparation, than observed using a prevalent alternative procedure for label-free expression profiling, SDS-PAGE/in-gel digestion (87% vs. 54%). Furthermore, uneven peptide losses were lower than observed with SDS-PAGE/in-gel digestion. The resulting peptides were sufficiently resolved by a 5 h gradient using a nano-LC configuration that features a low-void-volume, high chromatographic reproducibility, and an LTQ/Orbitrap analyzer for protein identification and quantification. The developed method was employed for label-free comparison of the mitochondrial proteomes of myocardium from healthy animals vs. those with hibernating myocardium. Each experimental group consisted of a relatively large number of animals (n=10), and samples were analyzed in random order to minimize quantitative false-positives. Using this approach, 904 proteins were identified and quantified with high confidence, and those mitochondrial proteins that were altered significantly between groups were compared with the results of a parallel 2D-DIGE analysis. The sample preparation and analytical strategy developed here represents an advancement that can be adapted to analyze other tissue proteomes. PMID:19290621

  15. Find Pairs: The Module for Protein Quantification of the PeakQuant Software Suite

    PubMed Central

    Eisenacher, Martin; Kohl, Michael; Wiese, Sebastian; Hebeler, Romano; Meyer, Helmut E.

    2012-01-01

    Abstract Accurate quantification of proteins is one of the major tasks in current proteomics research. To address this issue, a wide range of stable isotope labeling techniques have been developed, allowing one to quantitatively study thousands of proteins by means of mass spectrometry. In this article, the FindPairs module of the PeakQuant software suite is detailed. It facilitates the automatic determination of protein abundance ratios based on the automated analysis of stable isotope-coded mass spectrometric data. Furthermore, it implements statistical methods to determine outliers due to biological as well as technical variance of proteome data obtained in replicate experiments. This provides an important means to evaluate the significance in obtained protein expression data. For demonstrating the high applicability of FindPairs, we focused on the quantitative analysis of proteome data acquired in 14N/15N labeling experiments. We further provide a comprehensive overview of the features of the FindPairs software, and compare these with existing quantification packages. The software presented here supports a wide range of proteomics applications, allowing one to quantitatively assess data derived from different stable isotope labeling approaches, such as 14N/15N labeling, SILAC, and iTRAQ. The software is publicly available at http://www.medizinisches-proteom-center.de/software and free for academic use. PMID:22909347

  16. Proteomic and transcriptional analysis of Lactobacillus johnsonii PF01 during bile salt exposure by iTRAQ shotgun proteomics and quantitative RT-PCR.

    PubMed

    Lee, Ji Yoon; Pajarillo, Edward Alain B; Kim, Min Jeong; Chae, Jong Pyo; Kang, Dae-Kyung

    2013-01-04

    Lactobacillus johnsonii PF01 has been reported to be highly resistant to bile, a key property of probiotic microorganisms. Here, we examine the nature of the bile-salt tolerance of L. johnsonii PF01. Growth inhibition and surface morphology and physiology aberrations were observed after overnight exposure to bile stress. Quantitative proteomic profiles using iTRAQ-LC-MS/MS technology identified 8307 peptides from both untreated PF01 cells and those exposed to 0.1%, 0.2%, and 0.3% bile salts. Some 215 proteins exhibited changed levels in response to bile stress; of these, levels of 94 peptides increased while those of 121 decreased. These were classified into the following categories: stress responses, cell division, transcription, translation, nucleotide metabolism, carbohydrate transport and metabolism, cell wall biosynthesis, and amino acid biosynthesis, and 16 of unidentified function. Analysis of the mRNA expression of selected genes by quantitative reverse transcriptase-PCR verified the proteomic data. Both proteomic and mRNA data provided evidence for increased phosphotransferase activity and cell wall biosynthesis. In addition, three bile salt hydrolases were significantly upregulated by bile exposure. These findings provide a basis for future evaluations of the tolerance of potential probiotic strains toward the various gastrointestinal challenges, including bile stress.

  17. NOVEL METHODS FOR TARGET PROTEIN IDENTIFICATION USING IMMUNOPRECIPITATION - LC/MS/MS

    EPA Science Inventory

    Proteomics provides a powerful approach to screen and analyze responses to environmental exposures which induce alterations in protein expression, phosphorylation. ubiquitinylation, oxidation. and modulation of general proteome function. Post-translational modifications (PTM) of ...

  18. Comparative proteomics lends insight into genotype-specific pathogenicity.

    PubMed

    Guarnieri, Michael T

    2013-09-01

    Comparative proteomic analyses have emerged as a powerful tool for the identification of unique biomarkers and mechanisms of pathogenesis. In this issue of Proteomics, Murugaiyan et al. utilize difference gel electrophoresis (DIGE) to examine differential protein expression between nonpathogenic and pathogenic genotypes of Prototheca zopfii, a causative agent in bovine enteritis and mastitis. Their findings provide insights into molecular mechanisms of infection and evolutionary adaptation of pathogenic genotypes, demonstrating the power of comparative proteomic analyses. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Tissue-based quantitative proteome analysis of human hepatocellular carcinoma using tandem mass tags.

    PubMed

    Megger, Dominik Andre; Rosowski, Kristin; Ahrens, Maike; Bracht, Thilo; Eisenacher, Martin; Schlaak, Jörg F; Weber, Frank; Hoffmann, Andreas-Claudius; Meyer, Helmut E; Baba, Hideo A; Sitek, Barbara

    2017-03-01

    Human hepatocellular carcinoma (HCC) is a severe malignant disease, and accurate and reliable diagnostic markers are still needed. This study was aimed for the discovery of novel marker candidates by quantitative proteomics. Proteomic differences between HCC and nontumorous liver tissue were studied by mass spectrometry. Among several significantly upregulated proteins, translocator protein 18 (TSPO) and Ras-related protein Rab-1A (RAB1A) were selected for verification by immunohistochemistry in an independent cohort. For RAB1A, a high accuracy for the discrimination of HCC and nontumorous liver tissue was observed. RAB1A was verified to be a potent biomarker candidate for HCC.

  20. Proteomics Analysis of Bladder Cancer Exosomes*

    PubMed Central

    Welton, Joanne L.; Khanna, Sanjay; Giles, Peter J.; Brennan, Paul; Brewis, Ian A.; Staffurth, John; Mason, Malcolm D.; Clayton, Aled

    2010-01-01

    Exosomes are nanometer-sized vesicles, secreted by various cell types, present in biological fluids that are particularly rich in membrane proteins. Ex vivo analysis of exosomes may provide biomarker discovery platforms and form non-invasive tools for disease diagnosis and monitoring. These vesicles have never before been studied in the context of bladder cancer, a major malignancy of the urological tract. We present the first proteomics analysis of bladder cancer cell exosomes. Using ultracentrifugation on a sucrose cushion, exosomes were highly purified from cultured HT1376 bladder cancer cells and verified as low in contaminants by Western blotting and flow cytometry of exosome-coated beads. Solubilization in a buffer containing SDS and DTT was essential for achieving proteomics analysis using an LC-MALDI-TOF/TOF MS approach. We report 353 high quality identifications with 72 proteins not previously identified by other human exosome proteomics studies. Overrepresentation analysis to compare this data set with previous exosome proteomics studies (using the ExoCarta database) revealed that the proteome was consistent with that of various exosomes with particular overlap with exosomes of carcinoma origin. Interrogating the Gene Ontology database highlighted a strong association of this proteome with carcinoma of bladder and other sites. The data also highlighted how homology among human leukocyte antigen haplotypes may confound MASCOT designation of major histocompatability complex Class I nomenclature, requiring data from PCR-based human leukocyte antigen haplotyping to clarify anomalous identifications. Validation of 18 MS protein identifications (including basigin, galectin-3, trophoblast glycoprotein (5T4), and others) was performed by a combination of Western blotting, flotation on linear sucrose gradients, and flow cytometry, confirming their exosomal expression. Some were confirmed positive on urinary exosomes from a bladder cancer patient. In summary, the exosome proteomics data set presented is of unrivaled quality. The data will aid in the development of urine exosome-based clinical tools for monitoring disease and will inform follow-up studies into varied aspects of exosome manufacture and function. PMID:20224111

  1. Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol.

    PubMed

    Tian, Xiaoxu; Chen, Lei; Wang, Jiangxin; Qiao, Jianjun; Zhang, Weiwen

    2013-01-14

    Butanol is a promising biofuel, and recent metabolic engineering efforts have demonstrated the use of photosynthetic cyanobacterial hosts for its production. However, cyanobacteria have very low tolerance to butanol, limiting the economic viability of butanol production from these renewable producing systems. The existing knowledge of molecular mechanism involved in butanol tolerance in cyanobacteria is very limited. To build a foundation necessary to engineer robust butanol-producing cyanobacterial hosts, in this study, the responses of Synechocystis PCC 6803 to butanol were investigated using a quantitative proteomics approach with iTRAQ - LC-MS/MS technologies. The resulting high-quality dataset consisted of 25,347 peptides corresponding to 1452 unique proteins, a coverage of approximately 40% of the predicted proteins in Synechocystis. Comparative quantification of protein abundances led to the identification of 303 differentially regulated proteins by butanol. Annotation and GO term enrichment analysis showed that multiple biological processes were regulated, suggesting that Synechocystis probably employed multiple and synergistic resistance mechanisms in dealing with butanol stress. Notably, the analysis revealed the induction of heat-shock protein and transporters, along with modification of cell membrane and envelope were the major protection mechanisms against butanol. A conceptual cellular model of Synechocystis PCC 6803 responses to butanol stress was constructed to illustrate the putative molecular mechanisms employed to defend against butanol stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. ABRF-PRG07: advanced quantitative proteomics study.

    PubMed

    Falick, Arnold M; Lane, William S; Lilley, Kathryn S; MacCoss, Michael J; Phinney, Brett S; Sherman, Nicholas E; Weintraub, Susan T; Witkowska, H Ewa; Yates, Nathan A

    2011-04-01

    A major challenge for core facilities is determining quantitative protein differences across complex biological samples. Although there are numerous techniques in the literature for relative and absolute protein quantification, the majority is nonroutine and can be challenging to carry out effectively. There are few studies comparing these technologies in terms of their reproducibility, accuracy, and precision, and no studies to date deal with performance across multiple laboratories with varied levels of expertise. Here, we describe an Association of Biomolecular Resource Facilities (ABRF) Proteomics Research Group (PRG) study based on samples composed of a complex protein mixture into which 12 known proteins were added at varying but defined ratios. All of the proteins were present at the same concentration in each of three tubes that were provided. The primary goal of this study was to allow each laboratory to evaluate its capabilities and approaches with regard to: detection and identification of proteins spiked into samples that also contain complex mixtures of background proteins and determination of relative quantities of the spiked proteins. The results returned by 43 participants were compiled by the PRG, which also collected information about the strategies used to assess overall performance and as an aid to development of optimized protocols for the methodologies used. The most accurate results were generally reported by the most experienced laboratories. Among laboratories that used the same technique, values that were closer to the expected ratio were obtained by more experienced groups.

  3. Comparative Analyses of Data Independent Acquisition Mass Spectrometric Approaches: DIA, WiSIM‐DIA, and Untargeted DIA

    PubMed Central

    Ho, Jenny T. C.; Smit, August B.; Li, Ka Wan

    2018-01-01

    Abstract Data‐independent acquisition (DIA) is an emerging technology for quantitative proteomics. Current DIA focusses on the identification and quantitation of fragment ions that are generated from multiple peptides contained in the same selection window of several to tens of m/z. An alternative approach is WiSIM‐DIA, which combines conventional DIA with wide‐SIM (wide selected‐ion monitoring) windows to partition the precursor m/z space to produce high‐quality precursor ion chromatograms. However, WiSIM‐DIA has been underexplored; it remains unclear if it is a viable alternative to DIA. We demonstrate that WiSIM‐DIA quantified more than 24 000 unique peptides over five orders of magnitude in a single 2 h analysis of a neuronal synapse‐enriched fraction, compared to 31 000 in DIA. There is a strong correlation between abundance values of peptides quantified in both the DIA and WiSIM‐DIA datasets. Interestingly, the S/N ratio of these peptides is not correlated. We further show that peptide identification directly from DIA spectra identified >2000 proteins, which included unique peptides not found in spectral libraries generated by DDA. PMID:29134766

  4. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Jicheng; Gaffrey, Matthew J.; Qian, Wei-Jun

    Protein cysteine thiols play a crucial role in redox signaling, regulation of enzymatic activity and protein function, and maintaining redox homeostasis in living systems. The unique chemical reactivity of thiol groups makes cysteine susceptible to oxidative modifications by reactive oxygen and nitrogen species to form a broad array of reversible and irreversible protein post-translational modifications (PTMs). The reversible modifications in particular are one of the major components of redox signaling and are involved in regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in health and diseases has been increasingly recognized. Herein,more » we review the recent advances of quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including the general considerations of sample processing, various chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for addressing specific biological questions. Although some technological limitations remain, redox proteomics is paving the way towards a better understanding of redox signaling and regulation in human health and diseases.« less

  5. Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-Based Untargeted Quantitative Proteomic Approach To Identify Change of the Plasma Proteins by Salbutamol Abuse in Beef Cattle.

    PubMed

    Zhang, Kai; Tang, Chaohua; Liang, Xiaowei; Zhao, Qingyu; Zhang, Junmin

    2018-01-10

    Salbutamol, a selective β 2 -agonist, endangers the safety of animal products as a result of illegal use in food animals. In this study, an iTRAQ-based untargeted quantitative proteomic approach was applied to screen potential protein biomarkers in plasma of cattle before and after treatment with salbutamol for 21 days. A total of 62 plasma proteins were significantly affected by salbutamol treatment, which can be used as potential biomarkers to screen for the illegal use of salbutamol in beef cattle. Enzyme-linked immunosorbent assay measurements of five selected proteins demonstrated the reliability of iTRAQ-based proteomics in screening of candidate biomarkers among the plasma proteins. The plasma samples collected before and after salbutamol treatment were well-separated by principal component analysis (PCA) using the differentially expressed proteins. These results suggested that an iTRAQ-based untargeted quantitative proteomic strategy combined with PCA pattern recognition methods can discriminate differences in plasma protein profiles collected before and after salbutamol treatment.

  6. Teaching Expression Proteomics: From the Wet-Lab to the Laptop

    ERIC Educational Resources Information Center

    Teixeira, Miguel C.; Santos, Pedro M.; Rodrigues, Catarina; Sa-Correia, Isabel

    2009-01-01

    Expression proteomics has become, in recent years, a key genome-wide expression approach in fundamental and applied life sciences. This postgenomic technology aims the quantitative analysis of all the proteins or protein forms (the so-called proteome) of a given organism in a given environmental and genetic context. It is a challenge to provide…

  7. Strigolactone-regulated proteins revealed by iTRAQ-based quantitative proteomics in Arabidopsis.

    PubMed

    Li, Zhou; Czarnecki, Olaf; Chourey, Karuna; Yang, Jun; Tuskan, Gerald A; Hurst, Gregory B; Pan, Chongle; Chen, Jin-Gui

    2014-03-07

    Strigolactones (SLs) are a new class of plant hormones. In addition to acting as a key inhibitor of shoot branching, SLs stimulate seed germination of root parasitic plants and promote hyphal branching and root colonization of symbiotic arbuscular mycorrhizal fungi. They also regulate many other aspects of plant growth and development. At the transcription level, SL-regulated genes have been reported. However, nothing is known about the proteome regulated by this new class of plant hormones. A quantitative proteomics approach using an isobaric chemical labeling reagent, iTRAQ, to identify the proteome regulated by SLs in Arabidopsis seedlings is presented. It was found that SLs regulate the expression of about three dozen proteins that have not been previously assigned to SL pathways. These findings provide a new tool to investigate the molecular mechanism of action of SLs.

  8. A complete mass spectrometric map for the analysis of the yeast proteome and its application to quantitative trait analysis

    PubMed Central

    Picotti, Paola; Clement-Ziza, Mathieu; Lam, Henry; Campbell, David S.; Schmidt, Alexander; Deutsch, Eric W.; Röst, Hannes; Sun, Zhi; Rinner, Oliver; Reiter, Lukas; Shen, Qin; Michaelson, Jacob J.; Frei, Andreas; Alberti, Simon; Kusebauch, Ulrike; Wollscheid, Bernd; Moritz, Robert; Beyer, Andreas; Aebersold, Ruedi

    2013-01-01

    Complete reference maps or datasets, like the genomic map of an organism, are highly beneficial tools for biological and biomedical research. Attempts to generate such reference datasets for a proteome so far failed to reach complete proteome coverage, with saturation apparent at approximately two thirds of the proteomes tested, even for the most thoroughly characterized proteomes. Here, we used a strategy based on high-throughput peptide synthesis and mass spectrometry to generate a close to complete reference map (97% of the genome-predicted proteins) of the S. cerevisiae proteome. We generated two versions of this mass spectrometric map one supporting discovery- (shotgun) and the other hypothesis-driven (targeted) proteomic measurements. The two versions of the map, therefore, constitute a complete set of proteomic assays to support most studies performed with contemporary proteomic technologies. The reference libraries can be browsed via a web-based repository and associated navigation tools. To demonstrate the utility of the reference libraries we applied them to a protein quantitative trait locus (pQTL) analysis, which requires measurement of the same peptides over a large number of samples with high precision. Protein measurements over a set of 78 S. cerevisiae strains revealed a complex relationship between independent genetic loci, impacting on the levels of related proteins. Our results suggest that selective pressure favors the acquisition of sets of polymorphisms that maintain the stoichiometry of protein complexes and pathways. PMID:23334424

  9. Controlled vocabularies and ontologies in proteomics: Overview, principles and practice☆

    PubMed Central

    Mayer, Gerhard; Jones, Andrew R.; Binz, Pierre-Alain; Deutsch, Eric W.; Orchard, Sandra; Montecchi-Palazzi, Luisa; Vizcaíno, Juan Antonio; Hermjakob, Henning; Oveillero, David; Julian, Randall; Stephan, Christian; Meyer, Helmut E.; Eisenacher, Martin

    2014-01-01

    This paper focuses on the use of controlled vocabularies (CVs) and ontologies especially in the area of proteomics, primarily related to the work of the Proteomics Standards Initiative (PSI). It describes the relevant proteomics standard formats and the ontologies used within them. Software and tools for working with these ontology files are also discussed. The article also examines the “mapping files” used to ensure correct controlled vocabulary terms that are placed within PSI standards and the fulfillment of the MIAPE (Minimum Information about a Proteomics Experiment) requirements. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. PMID:23429179

  10. Analysis of the variability of human normal urine by 2D-GE reveals a "public" and a "private" proteome.

    PubMed

    Molina, Laurence; Salvetat, Nicolas; Ameur, Randa Ben; Peres, Sabine; Sommerer, Nicolas; Jarraya, Fayçal; Ayadi, Hammadi; Molina, Franck; Granier, Claude

    2011-12-10

    The characterization of the normal urinary proteome is steadily progressing and represents a major interest in the assessment of clinical urinary biomarkers. To estimate quantitatively the variability of the normal urinary proteome, urines of 20 healthy people were collected. We first evaluated the impact of the sample conservation temperature on urine proteome integrity. Keeping the urine sample at RT or at +4°C until storage at -80°C seems the best way for long-term storage of samples for 2D-GE analysis. The quantitative variability of the normal urinary proteome was estimated on the 20 urines mapped by 2D-GE. The occurrence of the 910 identified spots was analysed throughout the gels and represented in a virtual 2D gel. Sixteen percent of the spots were found to occur in all samples and 23% occurred in at least 90% of urines. About 13% of the protein spots were present only in 10% or less of the samples, thus representing the most variable part of the normal urinary proteome. Twenty proteins corresponding to a fraction of the fully conserved spots were identified by mass spectrometry. In conclusion, a "public" urinary proteome, common to healthy individuals, seems to coexist with a "private" urinary proteome, which is more specific to each individual. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. A unique proteomic profile on surface IgM ligation in unmutated chronic lymphocytic leukemia

    PubMed Central

    Perrot, Aurore; Pionneau, Cédric; Nadaud, Sophie; Davi, Frédéric; Leblond, Véronique; Jacob, Frédéric; Merle-Béral, Hélène; Herbrecht, Raoul; Béné, Marie-Christine; Gribben, John G.; Vallat, Laurent

    2011-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by a highly variable clinical course with 2 extreme subsets: indolent, ZAP70− and mutated immunoglobulin heavy chain gene (M-CLL); and aggressive, ZAP70+ and unmutated immunoglobulin heavy chain (UM-CLL). Given the long-term suspicion of antigenic stimulation as a primum movens in the disease, the role of the B-cell receptor has been extensively studied in various experimental settings; albeit scarcely in a comparative dynamic proteomic approach. Here we use a quantitative 2-dimensional fluorescence difference gel electrophoresis technology to compare 48 proteomic profiles of the 2 CLL subsets before and after anti-IgM ligation. Differentially expressed proteins were subsequently identified by mass spectrometry. We show that unstimulated M- and UM-CLL cells display distinct proteomic profiles. Furthermore, anti-IgM stimulation induces a specific proteomic response, more pronounced in the more aggressive CLL. Statistical analyses demonstrate several significant protein variations according to stimulation conditions. Finally, we identify an intermediate form of M-CLL cells, with an indolent profile (ZAP70−) but sharing aggressive proteomic profiles alike UM-CLL cells. Collectively, this first quantitative and dynamic proteome analysis of CLL further dissects the complex molecular pathway after B-cell receptor stimulation and depicts distinct proteomic profiles, which could lead to novel molecular stratification of the disease. PMID:21602524

  12. Proteomic Differences between Male and Female Anterior Cruciate Ligament and Patellar Tendon

    PubMed Central

    Little, Dianne; Thompson, J. Will; Dubois, Laura G.; Ruch, David S.; Moseley, M. Arthur; Guilak, Farshid

    2014-01-01

    The risk of anterior cruciate ligament (ACL) injury and re-injury is greater for women than men. Among other factors, compositional differences may play a role in this differential risk. Patellar tendon (PT) autografts are commonly used during reconstruction. The aim of the study was to compare protein expression in male and female ACL and PT. We hypothesized that there would be differences in key structural components between PT and ACL, and that components of the proteome critical for response to mechanical loading and response to injury would demonstrate significant differences between male and female. Two-dimensional liquid chromatography-tandem mass spectrometry and a label-free quantitative approach was used to identify proteomic differences between male and female PT and ACL. ACL contained less type I and more type III collagen than PT. There were tissue-specific differences in expression of proteoglycans, and ACL was enriched in elastin, tenascin C and X, cartilage oligomeric matrix protein, thrombospondin 4 and periostin. Between male and female donors, alcohol dehydrogenase 1B and complement component 9 were enriched in female compared to male. Myocilin was the major protein enriched in males compared to females. Important compositional differences between PT and ACL were identified, and we identified differences in pathways related to extracellular matrix regulation, complement, apoptosis, metabolism of advanced glycation end-products and response to mechanical loading between males and females. Identification of proteomic differences between male and female PT and ACL has identified novel pathways which may lead to improved understanding of differential ACL injury and re-injury risk between males and females. PMID:24818782

  13. A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data Sets.

    PubMed

    Savitski, Mikhail M; Wilhelm, Mathias; Hahne, Hannes; Kuster, Bernhard; Bantscheff, Marcus

    2015-09-01

    Calculating the number of confidently identified proteins and estimating false discovery rate (FDR) is a challenge when analyzing very large proteomic data sets such as entire human proteomes. Biological and technical heterogeneity in proteomic experiments further add to the challenge and there are strong differences in opinion regarding the conceptual validity of a protein FDR and no consensus regarding the methodology for protein FDR determination. There are also limitations inherent to the widely used classic target-decoy strategy that particularly show when analyzing very large data sets and that lead to a strong over-representation of decoy identifications. In this study, we investigated the merits of the classic, as well as a novel target-decoy-based protein FDR estimation approach, taking advantage of a heterogeneous data collection comprised of ∼19,000 LC-MS/MS runs deposited in ProteomicsDB (https://www.proteomicsdb.org). The "picked" protein FDR approach treats target and decoy sequences of the same protein as a pair rather than as individual entities and chooses either the target or the decoy sequence depending on which receives the highest score. We investigated the performance of this approach in combination with q-value based peptide scoring to normalize sample-, instrument-, and search engine-specific differences. The "picked" target-decoy strategy performed best when protein scoring was based on the best peptide q-value for each protein yielding a stable number of true positive protein identifications over a wide range of q-value thresholds. We show that this simple and unbiased strategy eliminates a conceptual issue in the commonly used "classic" protein FDR approach that causes overprediction of false-positive protein identification in large data sets. The approach scales from small to very large data sets without losing performance, consistently increases the number of true-positive protein identifications and is readily implemented in proteomics analysis software. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data Sets

    PubMed Central

    Savitski, Mikhail M.; Wilhelm, Mathias; Hahne, Hannes; Kuster, Bernhard; Bantscheff, Marcus

    2015-01-01

    Calculating the number of confidently identified proteins and estimating false discovery rate (FDR) is a challenge when analyzing very large proteomic data sets such as entire human proteomes. Biological and technical heterogeneity in proteomic experiments further add to the challenge and there are strong differences in opinion regarding the conceptual validity of a protein FDR and no consensus regarding the methodology for protein FDR determination. There are also limitations inherent to the widely used classic target–decoy strategy that particularly show when analyzing very large data sets and that lead to a strong over-representation of decoy identifications. In this study, we investigated the merits of the classic, as well as a novel target–decoy-based protein FDR estimation approach, taking advantage of a heterogeneous data collection comprised of ∼19,000 LC-MS/MS runs deposited in ProteomicsDB (https://www.proteomicsdb.org). The “picked” protein FDR approach treats target and decoy sequences of the same protein as a pair rather than as individual entities and chooses either the target or the decoy sequence depending on which receives the highest score. We investigated the performance of this approach in combination with q-value based peptide scoring to normalize sample-, instrument-, and search engine-specific differences. The “picked” target–decoy strategy performed best when protein scoring was based on the best peptide q-value for each protein yielding a stable number of true positive protein identifications over a wide range of q-value thresholds. We show that this simple and unbiased strategy eliminates a conceptual issue in the commonly used “classic” protein FDR approach that causes overprediction of false-positive protein identification in large data sets. The approach scales from small to very large data sets without losing performance, consistently increases the number of true-positive protein identifications and is readily implemented in proteomics analysis software. PMID:25987413

  15. Mixed-mode ion exchange-based integrated proteomics technology for fast and deep plasma proteome profiling.

    PubMed

    Xue, Lu; Lin, Lin; Zhou, Wenbin; Chen, Wendong; Tang, Jun; Sun, Xiujie; Huang, Peiwu; Tian, Ruijun

    2018-06-09

    Plasma proteome profiling by LC-MS based proteomics has drawn great attention recently for biomarker discovery from blood liquid biopsy. Due to standard multi-step sample preparation could potentially cause plasma protein degradation and analysis variation, integrated proteomics sample preparation technologies became promising solution towards this end. Here, we developed a fully integrated proteomics sample preparation technology for both fast and deep plasma proteome profiling under its native pH. All the sample preparation steps, including protein digestion and two-dimensional fractionation by both mixed-mode ion exchange and high-pH reversed phase mechanism were integrated into one spintip device for the first time. The mixed-mode ion exchange beads design achieved the sample loading at neutral pH and protein digestion within 30 min. Potential sample loss and protein degradation by pH changing could be voided. 1 μL of plasma sample with depletion of high abundant proteins was processed by the developed technology with 12 equally distributed fractions and analyzed with 12 h of LC-MS gradient time, resulting in the identification of 862 proteins. The combination of the Mixed-mode-SISPROT and data-independent MS method achieved fast plasma proteome profiling in 2 h with high identification overlap and quantification precision for a proof-of-concept study of plasma samples from 5 healthy donors. We expect that the Mixed-mode-SISPROT become a generally applicable sample preparation technology for clinical oriented plasma proteome profiling. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Improved Recovery and Identification of Membrane Proteins from Rat Hepatic Cells using a Centrifugal Proteomic Reactor*

    PubMed Central

    Zhou, Hu; Wang, Fangjun; Wang, Yuwei; Ning, Zhibin; Hou, Weimin; Wright, Theodore G.; Sundaram, Meenakshi; Zhong, Shumei; Yao, Zemin; Figeys, Daniel

    2011-01-01

    Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism. PMID:21749988

  17. Cell wall proteome of sugarcane stems: comparison of a destructive and a non-destructive extraction method showed differences in glycoside hydrolases and peroxidases.

    PubMed

    Calderan-Rodrigues, Maria Juliana; Jamet, Elisabeth; Douché, Thibaut; Bonassi, Maria Beatriz Rodrigues; Cataldi, Thaís Regiani; Fonseca, Juliana Guimarães; San Clemente, Hélène; Pont-Lezica, Rafael; Labate, Carlos Alberto

    2016-01-11

    Sugarcane has been used as the main crop for ethanol production for more than 40 years in Brazil. Recently, the production of bioethanol from bagasse and straw, also called second generation (2G) ethanol, became a reality with the first commercial plants started in the USA and Brazil. However, the industrial processes still need to be improved to generate a low cost fuel. One possibility is the remodeling of cell walls, by means of genetic improvement or transgenesis, in order to make the bagasse more accessible to hydrolytic enzymes. We aimed at characterizing the cell wall proteome of young sugarcane culms, to identify proteins involved in cell wall biogenesis. Proteins were extracted from the cell walls of 2-month-old culms using two protocols, non-destructive by vacuum infiltration vs destructive. The proteins were identified by mass spectrometry and bioinformatics. A predicted signal peptide was found in 84 different proteins, called cell wall proteins (CWPs). As expected, the non-destructive method showed a lower percentage of proteins predicted to be intracellular than the destructive one (33% vs 44%). About 19% of CWPs were identified with both methods, whilst the infiltration protocol could lead to the identification of 75% more CWPs. In both cases, the most populated protein functional classes were those of proteins related to lipid metabolism and oxido-reductases. Curiously, a single glycoside hydrolase (GH) was identified using the non-destructive method whereas 10 GHs were found with the destructive one. Quantitative data analysis allowed the identification of the most abundant proteins. The results highlighted the importance of using different protocols to extract proteins from cell walls to expand the coverage of the cell wall proteome. Ten GHs were indicated as possible targets for further studies in order to obtain cell walls less recalcitrant to deconstruction. Therefore, this work contributed to two goals: enlarge the coverage of the sugarcane cell wall proteome, and provide target proteins that could be used in future research to facilitate 2G ethanol production.

  18. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.

    PubMed

    Chavez, Juan D; Eng, Jimmy K; Schweppe, Devin K; Cilia, Michelle; Rivera, Keith; Zhong, Xuefei; Wu, Xia; Allen, Terrence; Khurgel, Moshe; Kumar, Akhilesh; Lampropoulos, Athanasios; Larsson, Mårten; Maity, Shuvadeep; Morozov, Yaroslav; Pathmasiri, Wimal; Perez-Neut, Mathew; Pineyro-Ruiz, Coriness; Polina, Elizabeth; Post, Stephanie; Rider, Mark; Tokmina-Roszyk, Dorota; Tyson, Katherine; Vieira Parrine Sant'Ana, Debora; Bruce, James E

    2016-01-01

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.

  19. Deciphering the proteomic profile of rice (Oryza sativa) bran: a pilot study.

    PubMed

    Ferrari, Fabio; Fumagalli, Marco; Profumo, Antonella; Viglio, Simona; Sala, Alberto; Dolcini, Lorenzo; Temporini, Caterina; Nicolis, Stefania; Merli, Daniele; Corana, Federica; Casado, Begona; Iadarola, Paolo

    2009-12-01

    The exact knowledge of the qualitative and quantitative protein components of rice bran is an essential aspect to be considered for a better understanding of the functional properties of this resource. Aim of the present investigation was to extract the largest number of rice bran proteins and to obtain their qualitative characterization. For this purpose, three different extraction protocols have been applied either on full-fat or on defatted rice bran. Likewise, to identify the highest number of proteins, MS data collected from 1-DE, 2-DE and gel-free procedures have been combined. These approaches allowed to unambiguously identify 43 proteins that were classified as signalling/regulation proteins (30%), proteins with enzymatic activity (30%), storage proteins (30%), transfer (5%) and structural (5%) proteins. The fact that all extraction and identification procedures have been performed in triplicate with an excellent reproducibility provides a rationale for considering the platform of proteins shown in this study as the potential proteome profile of rice bran. It also represents a source of information to evaluate better the qualities of rice bran as food resource.

  20. Identification of Potential Biomarkers for Rhegmatogenous Retinal Detachment Associated with Choroidal Detachment by Vitreous iTRAQ-Based Proteomic Profiling

    PubMed Central

    Wu, Zhifeng; Ding, Nannan; Yu, Mengxi; Wang, Ke; Luo, Shasha; Zou, Wenjun; Zhou, Ying; Yan, Biao; Jiang, Qin

    2016-01-01

    Rhegmatogenous retinal detachment associated with choroidal detachment (RRDCD) is a complicated and serious type of rhegmatogenous retinal detachment (RRD). In this study, we identified differentially expressed proteins in the vitreous humors of RRDCD and RRD using isobaric tags for relative and absolute quantitation (iTRAQ) combined with nano-liquid chromatography-electrospray ion trap-mass spectrometry-mass spectrometry (nano-LC-ESI-MS/MS) and bioinformatic analysis. Our result shows that 103 differentially expressed proteins, including 54 up-regulated and 49 down-regulated proteins were identified in RRDCD. Gene ontology (GO) analysis suggested that most of the differentially expressed proteins were extracellular.The Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis suggested that proteins related to complement and coagulation cascades were significantly enriched. iTRAQ-based proteomic profiling reveals that complement and coagulation cascades and inflammation may play important roles in the pathogenesis of RRDCD. This study may provide novel insights into the pathogenesis of RRDCD and offer potential opportunities for the diagnosis and treatment of RRDCD. PMID:27941623

  1. Detection and quantification of proteins and cells by use of elemental mass spectrometry: progress and challenges.

    PubMed

    Yan, Xiaowen; Yang, Limin; Wang, Qiuquan

    2013-07-01

    Much progress has been made in identification of the proteins in proteomes, and quantification of these proteins has attracted much interest. In addition to popular tandem mass spectrometric methods based on soft ionization, inductively coupled plasma mass spectrometry (ICPMS), a typical example of mass spectrometry based on hard ionization, usually used for analysis of elements, has unique advantages in absolute quantification of proteins by determination of an element with a definite stoichiometry in a protein or attached to the protein. In this Trends article, we briefly describe state-of-the-art ICPMS-based methods for quantification of proteins, emphasizing protein-labeling and element-tagging strategies developed on the basis of chemically selective reactions and/or biospecific interactions. Recent progress from protein to cell quantification by use of ICPMS is also discussed, and the possibilities and challenges of ICPMS-based protein quantification for universal, selective, or targeted quantification of proteins and cells in a biological sample are also discussed critically. We believe ICPMS-based protein quantification will become ever more important in targeted quantitative proteomics and bioanalysis in the near future.

  2. Cerebrospinal Fluid Proteome of Patients with Acute Lyme Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, Thomas E.; Jacobs, Jon M.; Smith, Robert P.

    2012-10-05

    Acute Lyme disease results from transmission of and infection by the bacterium Borrelia burgdorferi following a tick bite. During acute infection, bacteria can disseminate to the central nervous system (CNS) leading to the development of Lyme meningitis. Here we have analyzed pooled cerebrospinal fluid (CSF) allowing for a deep view into the proteome for a cohort of patients with early-disseminated Lyme disease and CSF inflammation leading to the identification of proteins that reflect host responses, which are distinct for subjects with acute Lyme disease. Additionally, we analyzed individual patient samples and quantified changes in protein abundance employing label-free quantitative massmore » spectrometry based methods. The measured changes in protein abundances reflect the impact of acute Lyme disease on the CNS as presented in CSF. We have identified 89 proteins that differ significantly in abundance in patients with acute Lyme disease. A number of the differentially abundant proteins have been found to be localized to brain synapse and thus constitute important leads for better understanding of the neurological consequence of disseminated Lyme disease.« less

  3. An integrated proteomic approach uncovers novel substrates and functions of the Lon protease in Escherichia coli.

    PubMed

    Arends, Jan; Griego, Marcena; Thomanek, Nikolas; Lindemann, Claudia; Kutscher, Blanka; Meyer, Helmut E; Narberhaus, Franz

    2018-04-30

    Controlling the cellular abundance and proper function of proteins by proteolysis is a universal process in all living organisms. In Escherichia coli, the ATP-dependent Lon protease is crucial for protein quality control and regulatory processes. To understand how diverse substrates are selected and degraded, unbiased global approaches are needed. We employed a quantitative Super-SILAC mass spectrometry approach and compared the proteomes of a lon mutant and a strain producing the protease to discover Lon-dependent physiological functions. To identify Lon substrates, we took advantage of a Lon trapping variant, which is able to translocate substrates but unable to degrade them. Lon-associated proteins were identified by label-free LC-MS/MS. The combination of both approaches revealed a total of 14 novel Lon substrates. Besides the identification of known pathways affected by Lon, for example the superoxide-stress response, our cumulative data suggests previously unrecognized fundamental functions of Lon in sulfur assimilation, nucleotide biosynthesis, amino acid and central energy metabolism. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Polyphemus, Odysseus and the ovine milk proteome.

    PubMed

    Cunsolo, Vincenzo; Fasoli, Elisa; Di Francesco, Antonella; Saletti, Rosaria; Muccilli, Vera; Gallina, Serafina; Righetti, Pier Giorgio; Foti, Salvatore

    2017-01-30

    In the last years the amount of ovine milk production, mainly used to formulate a wide range of different and exclusive dairy products often categorized as gourmet food, has been progressively increasing. Taking also into account that sheep milk (SM) also appears to be potentially less allergenic than cow's one, an in-depth information about its protein composition is essential to improve the comprehension of its potential benefits for human consumption. The present work reports the results of an in-depth characterization of SM whey proteome, carried out by coupling the CPLL technology with SDS-PAGE and high resolution UPLC-nESI MS/MS analysis. This approach allowed the identification of 718 different protein components, 644 of which are from unique genes. Particularly, this identification has expanded literature data about sheep whey proteome by 193 novel proteins previously undetected, many of which are involved in the defence/immunity mechanisms or in the nutrient delivery system. A comparative analysis of SM proteome known to date with cow's milk proteome, evidenced that while about 29% of SM proteins are also present in CM, 71% of the identified components appear to be unique of SM proteome and include a heterogeneous group of components which seem to have health-promoting benefits. The data have been deposited to the ProteomeXchange with identifier . Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Bioinformatics strategies in life sciences: from data processing and data warehousing to biological knowledge extraction.

    PubMed

    Thiele, Herbert; Glandorf, Jörg; Hufnagel, Peter

    2010-05-27

    With the large variety of Proteomics workflows, as well as the large variety of instruments and data-analysis software available, researchers today face major challenges validating and comparing their Proteomics data. Here we present a new generation of the ProteinScape bioinformatics platform, now enabling researchers to manage Proteomics data from the generation and data warehousing to a central data repository with a strong focus on the improved accuracy, reproducibility and comparability demanded by many researchers in the field. It addresses scientists; current needs in proteomics identification, quantification and validation. But producing large protein lists is not the end point in Proteomics, where one ultimately aims to answer specific questions about the biological condition or disease model of the analyzed sample. In this context, a new tool has been developed at the Spanish Centro Nacional de Biotecnologia Proteomics Facility termed PIKE (Protein information and Knowledge Extractor) that allows researchers to control, filter and access specific information from genomics and proteomic databases, to understand the role and relationships of the proteins identified in the experiments. Additionally, an EU funded project, ProDac, has coordinated systematic data collection in public standards-compliant repositories like PRIDE. This will cover all aspects from generating MS data in the laboratory, assembling the whole annotation information and storing it together with identifications in a standardised format.

  6. 2DB: a Proteomics database for storage, analysis, presentation, and retrieval of information from mass spectrometric experiments.

    PubMed

    Allmer, Jens; Kuhlgert, Sebastian; Hippler, Michael

    2008-07-07

    The amount of information stemming from proteomics experiments involving (multi dimensional) separation techniques, mass spectrometric analysis, and computational analysis is ever-increasing. Data from such an experimental workflow needs to be captured, related and analyzed. Biological experiments within this scope produce heterogenic data ranging from pictures of one or two-dimensional protein maps and spectra recorded by tandem mass spectrometry to text-based identifications made by algorithms which analyze these spectra. Additionally, peptide and corresponding protein information needs to be displayed. In order to handle the large amount of data from computational processing of mass spectrometric experiments, automatic import scripts are available and the necessity for manual input to the database has been minimized. Information is in a generic format which abstracts from specific software tools typically used in such an experimental workflow. The software is therefore capable of storing and cross analysing results from many algorithms. A novel feature and a focus of this database is to facilitate protein identification by using peptides identified from mass spectrometry and link this information directly to respective protein maps. Additionally, our application employs spectral counting for quantitative presentation of the data. All information can be linked to hot spots on images to place the results into an experimental context. A summary of identified proteins, containing all relevant information per hot spot, is automatically generated, usually upon either a change in the underlying protein models or due to newly imported identifications. The supporting information for this report can be accessed in multiple ways using the user interface provided by the application. We present a proteomics database which aims to greatly reduce evaluation time of results from mass spectrometric experiments and enhance result quality by allowing consistent data handling. Import functionality, automatic protein detection, and summary creation act together to facilitate data analysis. In addition, supporting information for these findings is readily accessible via the graphical user interface provided. The database schema and the implementation, which can easily be installed on virtually any server, can be downloaded in the form of a compressed file from our project webpage.

  7. Repeatability and Reproducibility in Proteomic Identifications by Liquid Chromatography—Tandem Mass Spectrometry

    PubMed Central

    Tabb, David L.; Vega-Montoto, Lorenzo; Rudnick, Paul A.; Variyath, Asokan Mulayath; Ham, Amy-Joan L.; Bunk, David M.; Kilpatrick, Lisa E.; Billheimer, Dean D.; Blackman, Ronald K.; Cardasis, Helene L.; Carr, Steven A.; Clauser, Karl R.; Jaffe, Jacob D.; Kowalski, Kevin A.; Neubert, Thomas A.; Regnier, Fred E.; Schilling, Birgit; Tegeler, Tony J.; Wang, Mu; Wang, Pei; Whiteaker, Jeffrey R.; Zimmerman, Lisa J.; Fisher, Susan J.; Gibson, Bradford W.; Kinsinger, Christopher R.; Mesri, Mehdi; Rodriguez, Henry; Stein, Steven E.; Tempst, Paul; Paulovich, Amanda G.; Liebler, Daniel C.; Spiegelman, Cliff

    2009-01-01

    The complexity of proteomic instrumentation for LC-MS/MS introduces many possible sources of variability. Data-dependent sampling of peptides constitutes a stochastic element at the heart of discovery proteomics. Although this variation impacts the identification of peptides, proteomic identifications are far from completely random. In this study, we analyzed interlaboratory data sets from the NCI Clinical Proteomic Technology Assessment for Cancer to examine repeatability and reproducibility in peptide and protein identifications. Included data spanned 144 LC-MS/MS experiments on four Thermo LTQ and four Orbitrap instruments. Samples included yeast lysate, the NCI-20 defined dynamic range protein mix, and the Sigma UPS 1 defined equimolar protein mix. Some of our findings reinforced conventional wisdom, such as repeatability and reproducibility being higher for proteins than for peptides. Most lessons from the data, however, were more subtle. Orbitraps proved capable of higher repeatability and reproducibility, but aberrant performance occasionally erased these gains. Even the simplest protein digestions yielded more peptide ions than LC-MS/MS could identify during a single experiment. We observed that peptide lists from pairs of technical replicates overlapped by 35–60%, giving a range for peptide-level repeatability in these experiments. Sample complexity did not appear to affect peptide identification repeatability, even as numbers of identified spectra changed by an order of magnitude. Statistical analysis of protein spectral counts revealed greater stability across technical replicates for Orbitraps, making them superior to LTQ instruments for biomarker candidate discovery. The most repeatable peptides were those corresponding to conventional tryptic cleavage sites, those that produced intense MS signals, and those that resulted from proteins generating many distinct peptides. Reproducibility among different instruments of the same type lagged behind repeatability of technical replicates on a single instrument by several percent. These findings reinforce the importance of evaluating repeatability as a fundamental characteristic of analytical technologies. PMID:19921851

  8. Proteomic profiling reveals crucial retinal protein alterations in the early phase of an experimental glaucoma model.

    PubMed

    Anders, Fabian; Teister, Julia; Funke, Sebstian; Pfeiffer, Norbert; Grus, Franz; Solon, Thanos; Prokosch, Verena

    2017-07-01

    Clinical glaucoma is difficult to assess in terms of molecular pathophysiology, prompting studies in experimental models of glaucoma. The purpose of this study was to investigate quantitative changes in retinal protein expression at the onset of experimental glaucoma in rats. Analyzing the proteome provides a suitable tool to decipher the pathophysiological processes in glaucomatous degeneration. Thermic cauterization of episcleral veins was utilized to elevate the intraocular pressure in Sprague Dawley rats. Morphological changes were surveyed on a cellular level with a staining of Brn3a-positive cells. The retinal nerve fiber layer was investigated using optical coherence tomography (OCT, Heidelberg Engineering) and the optic nerve was analyzed by an axonal grading system. Mass spectrometry-featured quantitative proteomics and immunohistochemical staining was used to identify specifically altered proteins in the course of intraocular pressure elevation and initial neurodegeneration. Proteomic data were further analyzed with Ingenuity Pathway Analysis and Cytoscape to analyze further molecular associations. The intraocular pressure rose significantly (p < 0.001) for the follow-up period of 3 weeks after which animals were sacrificed. Eyes exposed to an elevated intraocular pressure showed an initial decrease of retinal ganglion cells, retinal nerve fiber layer (p < 0.05) and an impairment of the optic nerve (p < 0.01). Mass spectrometry led to the identification and quantification of 931 retinal proteins, whereas 32 were considerably altered. Bioinformatics-assisted clustering revealed that a majority of these proteins are functionally associated with cell differentiation, apoptosis and stress response. The creation of an interactive protein network showed that numerous altered proteins are connected regarding their cellular function. Protein kinase b, mitogen-activated protein kinase 1 and the NF-κB complex seem to be essential molecules in this context. In conclusion, these results provide further lines of evidence that substantial molecular changes occur at the onset of the disease, identifying potential key players, which might be useful as biomarkers for diagnostics and development of medical treatment in the future.

  9. The role of proteomics in studies of protein moonlighting.

    PubMed

    Beynon, Robert J; Hammond, Dean; Harman, Victoria; Woolerton, Yvonne

    2014-12-01

    The increasing acceptance that proteins may exert multiple functions in the cell brings with it new analytical challenges that will have an impact on the field of proteomics. Many proteomics workflows begin by destroying information about the interactions between different proteins, and the reduction of a complex protein mixture to constituent peptides also scrambles information about the combinatorial potential of post-translational modifications. To bring the focus of proteomics on to the domain of protein moonlighting will require novel analytical and quantitative approaches.

  10. A statistical framework for protein quantitation in bottom-up MS-based proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpievitch, Yuliya; Stanley, Jeffrey R.; Taverner, Thomas

    2009-08-15

    ABSTRACT Motivation: Quantitative mass spectrometry-based proteomics requires protein-level estimates and confidence measures. Challenges include the presence of low-quality or incorrectly identified peptides and widespread, informative, missing data. Furthermore, models are required for rolling peptide-level information up to the protein level. Results: We present a statistical model for protein abundance in terms of peptide peak intensities, applicable to both label-based and label-free quantitation experiments. The model allows for both random and censoring missingness mechanisms and provides naturally for protein-level estimates and confidence measures. The model is also used to derive automated filtering and imputation routines. Three LC-MS datasets are used tomore » illustrate the methods. Availability: The software has been made available in the open-source proteomics platform DAnTE (Polpitiya et al. (2008)) (http://omics.pnl.gov/software/). Contact: adabney@stat.tamu.edu« less

  11. System-Wide Quantitative Proteomics of the Metabolic Syndrome in Mice: Genotypic and Dietary Effects.

    PubMed

    Terfve, Camille; Sabidó, Eduard; Wu, Yibo; Gonçalves, Emanuel; Choi, Meena; Vaga, Stefania; Vitek, Olga; Saez-Rodriguez, Julio; Aebersold, Ruedi

    2017-02-03

    Advances in mass spectrometry have made the quantitative measurement of proteins across multiple samples a reality, allowing for the study of complex biological systems such as the metabolic syndrome. Although the deregulation of lipid metabolism and increased hepatic storage of triacylglycerides are known to play a part in the onset of the metabolic syndrome, its molecular basis and dependency on dietary and genotypic factors are poorly characterized. Here, we used an experimental design with two different mouse strains and dietary and metabolic perturbations to generate a compendium of quantitative proteome data using three mass spectrometric techniques. The data reproduce known properties of the metabolic system and indicate differential molecular adaptation of the two mouse strains to perturbations, contributing to a better understanding of the metabolic syndrome. We show that high-quality, high-throughput proteomic data sets provide an unbiased broad overview of the behavior of complex systems after perturbation.

  12. Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria.

    PubMed

    Cheng, Keding; Chui, Huixia; Domish, Larissa; Hernandez, Drexler; Wang, Gehua

    2016-04-01

    Identification and typing of bacteria occupy a large fraction of time and work in clinical microbiology laboratories. With the certification of some MS platforms in recent years, more applications and tests of MS-based diagnosis methods for bacteria identification and typing have been created, not only on well-accepted MALDI-TOF-MS-based fingerprint matches, but also on solving the insufficiencies of MALDI-TOF-MS-based platforms and advancing the technology to areas such as targeted MS identification and typing of bacteria, bacterial toxin identification, antibiotics susceptibility/resistance tests, and MS-based diagnostic method development on unique bacteria such as Clostridium and Mycobacteria. This review summarizes the recent development in MS platforms and applications in bacteria identification and typing of common pathogenic bacteria. © 2016 The Authors. PROTEOMICS - Clinical Applications Published by WILEY-VCH Verlag GmbH & Co. KGaA.

  13. Highly Efficient Proteolysis Accelerated by Electromagnetic Waves for Peptide Mapping

    PubMed Central

    Chen, Qiwen; Liu, Ting; Chen, Gang

    2011-01-01

    Proteomics will contribute greatly to the understanding of gene functions in the post-genomic era. In proteome research, protein digestion is a key procedure prior to mass spectrometry identification. During the past decade, a variety of electromagnetic waves have been employed to accelerate proteolysis. This review focuses on the recent advances and the key strategies of these novel proteolysis approaches for digesting and identifying proteins. The subjects covered include microwave-accelerated protein digestion, infrared-assisted proteolysis, ultraviolet-enhanced protein digestion, laser-assisted proteolysis, and future prospects. It is expected that these novel proteolysis strategies accelerated by various electromagnetic waves will become powerful tools in proteome research and will find wide applications in high throughput protein digestion and identification. PMID:22379392

  14. Using the Proteomics Identifications Database (PRIDE).

    PubMed

    Martens, Lennart; Jones, Phil; Côté, Richard

    2008-03-01

    The Proteomics Identifications Database (PRIDE) is a public data repository designed to store, disseminate, and analyze mass spectrometry based proteomics datasets. The PRIDE database can accommodate any level of detailed metadata about the submitted results, which can be queried, explored, viewed, or downloaded via the PRIDE Web interface. The PRIDE database also provides a simple, yet powerful, access control mechanism that fully supports confidential peer-reviewing of data related to a manuscript, ensuring that these results remain invisible to the general public while allowing referees and journal editors anonymized access to the data. This unit describes in detail the functionality that PRIDE provides with regards to searching, viewing, and comparing the available data, as well as different options for submitting data to PRIDE.

  15. Identification of novel candidate maternal serum protein markers for Down syndrome by integrated proteomic and bioinformatic analysis.

    PubMed

    Kang, Yuan; Dong, Xinran; Zhou, Qiongjie; Zhang, Ying; Cheng, Yan; Hu, Rong; Su, Cuihong; Jin, Hong; Liu, Xiaohui; Ma, Duan; Tian, Weidong; Li, Xiaotian

    2012-03-01

    This study aimed to identify candidate protein biomarkers from maternal serum for Down syndrome (DS) by integrated proteomic and bioinformatics analysis. A pregnancy DS group of 18 women and a control group with the same number were prepared, and the maternal serum proteins were analyzed by isobaric tags for relative and absolute quantitation and mass spectrometry, to identify DS differentially expressed maternal serum proteins (DS-DEMSPs). Comprehensive bioinformatics analysis was then employed to analyze DS-DEMSPs both in this paper and seven related publications. Down syndrome differentially expressed maternal serum proteins from different studies are significantly enriched with common Gene Ontology functions, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, transcription factor binding sites, and Pfam protein domains, However, the DS-DEMSPs are less functionally related to known DS-related genes. These evidences suggest that common molecular mechanisms induced by secondary effects may be present upon DS carrying. A simple scoring scheme revealed Alpha-2-macroglobulin, Apolipoprotein A1, Apolipoprotein E, Complement C1s subcomponent, Complement component 5, Complement component 8, alpha polypeptide, Complement component 8, beta polypeptide and Fibronectin as potential DS biomarkers. The integration of proteomics and bioinformatics studies provides a novel approach to develop new prenatal screening methods for noninvasive yet accurate diagnosis of DS. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Evaluation of seminal plasma proteomics and relevance of FSH in identification of nonobstructive azoospermia: A preliminary study.

    PubMed

    Cui, Z; Agarwal, A; da Silva, B F; Sharma, R; Sabanegh, E

    2018-06-01

    Nonobstructive azoospermia (NOA) patients present with high levels of serum FSH. At the protein level, the aetiology and pathways underlying different subtypes of NOA are unclear. The aim was to evaluate quantitatively differences in proteomic profiles of NOA patients presenting with normal serum FSH and normal testicular volume and high serum FSH and small testicular volume. The study comprised of 14 nonobstructive azoospermic men (N = 4; normal FSH and normal testicular volume and N = 10; high FSH and small testicular volume) and seven normozoospermic men. Proteomic analysis was done using LC-MS. GSTM3 and PGK2 were less abundant in the normal and high FSH group compared to controls. HSPA4L and HSPA4 were exclusively present in control group whereas HSP90AB1, HSPA1B, HSP90AA1 and HSPA2 were less abundant and exclusive to the normal and high FSH group. We have identified six heat-shock proteins that may have a role in the pathology of NOA. FSH and testicular volume by itself are not good markers of NOA. The inverse association of GSTM3 and PGK2 regulation with FSH levels along with 12 proteins exclusively in NOA groups suggests further evaluation of their predictive potential in a larger cohort of patients. © 2018 Blackwell Verlag GmbH.

  17. Identification of BAG3 target proteins in anaplastic thyroid cancer cells by proteomic analysis.

    PubMed

    Galdiero, Francesca; Bello, Anna Maria; Spina, Anna; Capiluongo, Anna; Liuu, Sophie; De Marco, Margot; Rosati, Alessandra; Capunzo, Mario; Napolitano, Maria; Vuttariello, Emilia; Monaco, Mario; Califano, Daniela; Turco, Maria Caterina; Chiappetta, Gennaro; Vinh, Joëlle; Chiappetta, Giovanni

    2018-01-30

    BAG3 protein is an apoptosis inhibitor and is highly expressed in Anaplastic Thyroid Cancer. We investigated the entire set of proteins modulated by BAG3 silencing in the human anaplastic thyroid 8505C cancer cells by using the Stable-Isotope Labeling by Amino acids in Cell culture strategy combined with mass spectrometry analysis. By this approach we identified 37 up-regulated and 54 down-regulated proteins in BAG3-silenced cells. Many of these proteins are reportedly involved in tumor progression, invasiveness and resistance to therapies. We focused our attention on an oncogenic protein, CAV1, and a tumor suppressor protein, SERPINB2, that had not previously been reported to be modulated by BAG3. Their expression levels in BAG3-silenced cells were confirmed by qRT-PCR and western blot analyses, disclosing two novel targets of BAG3 pro-tumor activity. We also examined the dataset of proteins obtained by the quantitative proteomics analysis using two tools, Downstream Effect Analysis and Upstream Regulator Analysis of the Ingenuity Pathways Analysis software. Our analyses confirm the association of the proteome profile observed in BAG3-silenced cells with an increase in cell survival and a decrease in cell proliferation and invasion, and highlight the possible involvement of four tumor suppressor miRNAs and TP53/63 proteins in BAG3 activity.

  18. Proteomics in the investigation of HIV-1 interactions with host proteins.

    PubMed

    Li, Ming

    2015-02-01

    Productive HIV-1 infection depends on host machinery, including a broad array of cellular proteins. Proteomics has played a significant role in the discovery of HIV-1 host proteins. In this review, after a brief survey of the HIV-1 host proteins that were discovered by proteomic analyses, I focus on analyzing the interactions between the virion and host proteins, as well as the technologies and strategies used in those proteomic studies. With the help of proteomics, the identification and characterization of HIV-1 host proteins can be translated into novel antiretroviral therapeutics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Single-step inline hydroxyapatite enrichment facilitates identification and quantitation of phosphopeptides from mass-limited proteomes with MudPIT

    PubMed Central

    Fonslow, Bryan R.; Niessen, Sherry M.; Singh, Meha; Wong, Catherine C.; Xu, Tao; Carvalho, Paulo C.; Choi, Jeong; Park, Sung Kyu; Yates, John R.

    2012-01-01

    Herein we report the characterization and optimization of single-step inline enrichment of phosphopeptides directly from small amounts of whole cell and tissue lysates (100 – 500 μg) using a hydroxyapatite (HAP) microcolumn and Multidimensional Protein Identification Technology (MudPIT). In comparison to a triplicate HILIC-IMAC phosphopeptide enrichment study, ~80% of the phosphopeptides identified using HAP-MudPIT were unique. Similarly, analysis of the consensus phosphorylation motifs between the two enrichment methods illustrates the complementarity of calcium-and iron-based enrichment methods and the higher sensitivity and selectivity of HAP-MudPIT for acidic motifs. We demonstrate how the identification of more multiply phosphorylated peptides from HAP-MudPIT can be used to quantify phosphorylation cooperativity. Through optimization of HAP-MudPIT on a whole cell lysate we routinely achieved identification and quantification of ca. 1000 phosphopeptides from a ~1 hr enrichment and 12 hr MudPIT analysis on small quantities of material. Finally, we applied this optimized method to identify phosphorylation sites from a mass-limited mouse brain region, the amygdala (200 – 500 μg), identifying up to 4000 phosphopeptides per run. PMID:22509746

  20. Science, marketing and wishful thinking in quantitative proteomics.

    PubMed

    Hackett, Murray

    2008-11-01

    In a recent editorial (J. Proteome Res. 2007, 6, 1633) and elsewhere questions have been raised regarding the lack of attention paid to good analytical practice with respect to the reporting of quantitative results in proteomics. Using those comments as a starting point, several issues are discussed that relate to the challenges involved in achieving adequate sampling with MS-based methods in order to generate valid data for large-scale studies. The discussion touches on the relationships that connect sampling depth and the power to detect protein abundance change, conflict of interest, and strategies to overcome bureaucratic obstacles that impede the use of peer-to-peer technologies for transfer and storage of large data files generated in such experiments.

  1. An Overview of Advanced SILAC-Labeling Strategies for Quantitative Proteomics.

    PubMed

    Terzi, F; Cambridge, S

    2017-01-01

    Comparative, quantitative mass spectrometry of proteins provides great insight to protein abundance and function, but some molecular characteristics related to protein dynamics are not so easily obtained. Because the metabolic incorporation of stable amino acid isotopes allows the extraction of distinct temporal and spatial aspects of protein dynamics, the SILAC methodology is uniquely suited to be adapted for advanced labeling strategies. New SILAC strategies have emerged that allow deeper foraging into the complexity of cellular proteomes. Here, we review a few advanced SILAC-labeling strategies that have been published during last the years. Among them, different subsaturating-labeling as well as dual-labeling schemes are most prominent for a range of analyses including those of neuronal proteomes, secretion, or cell-cell-induced stimulations. These recent developments suggest that much more information can be gained from proteomic analyses if the labeling strategies are specifically tailored toward the experimental design. © 2017 Elsevier Inc. All rights reserved.

  2. Proteomic identification of potential biomarkers for cervical squamous cell carcinoma and human papillomavirus infection.

    PubMed

    Qing, Song; Tulake, Wuniqiemu; Ru, Mingfang; Li, Xiaohong; Yuemaier, Reziwanguli; Lidifu, Dilare; Rouzibilali, Aierken; Hasimu, Axiangu; Yang, Yun; Rouziahong, Reziya; Upur, Halmurat; Abudula, Abulizi

    2017-04-01

    It is known that high-risk human papillomavirus infection is the main etiological factor in cervical carcinogenesis. However, human papillomavirus screening is not sufficient for early diagnosis. In this study, we aimed to identify potential biomarkers common to cervical carcinoma and human papillomavirus infection by proteomics for human papillomavirus-based early diagnosis and prognosis. To this end, we collected 76 cases of fresh cervical tissues and 116 cases of paraffin-embedded tissue slices, diagnosed as cervical squamous cell carcinoma, cervical intraepithelial neoplasia II-III, or normal cervix from ethnic Uighur and Han women. Human papillomavirus infection by eight oncogenic human papillomavirus types was detected in tissue DNA samples using a quantitative polymerase chain reaction. The protein profile of cervical specimens from human papillomavirus 16-positive squamous cell carcinoma and human papillomavirus-negative normal controls was analyzed by proteomics and bioinformatics. The expression of candidate proteins was further determined by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. We identified 67 proteins that were differentially expressed in human papillomavirus 16-positive squamous cell carcinoma compared to normal cervix. The quantitative reverse transcriptase-polymerase chain reaction analysis verified the upregulation of ASAH1, PCBP2, DDX5, MCM5, TAGLN2, hnRNPA1, ENO1, TYPH, CYC, and MCM4 in squamous cell carcinoma compared to normal cervix ( p < 0.05). In addition, the transcription of PCBP2, MCM5, hnRNPA1, TYPH, and CYC was also significantly increased in cervical intraepithelial neoplasia II-III compared to normal cervix. Immunohistochemistry staining further confirmed the overexpression of PCBP2, hnRNPA1, ASAH1, and DDX5 in squamous cell carcinoma and cervical intraepithelial neoplasia II-III compared to normal controls ( p < 0.05). Our data suggest that the expression of ASAH1, PCBP2, DDX5, and hnRNPA1, and possibly MCM4, MCM5, CYC, ENO1, and TYPH, is upregulated during cervical carcinogenesis and potentially associated with human papillomavirus infection. Further validation studies of the profile will contribute to establishing auxiliary diagnostic markers for human papillomavirus-based cancer prognosis.

  3. Redefining the Breast Cancer Exosome Proteome by Tandem Mass Tag Quantitative Proteomics and Multivariate Cluster Analysis.

    PubMed

    Clark, David J; Fondrie, William E; Liao, Zhongping; Hanson, Phyllis I; Fulton, Amy; Mao, Li; Yang, Austin J

    2015-10-20

    Exosomes are microvesicles of endocytic origin constitutively released by multiple cell types into the extracellular environment. With evidence that exosomes can be detected in the blood of patients with various malignancies, the development of a platform that uses exosomes as a diagnostic tool has been proposed. However, it has been difficult to truly define the exosome proteome due to the challenge of discerning contaminant proteins that may be identified via mass spectrometry using various exosome enrichment strategies. To better define the exosome proteome in breast cancer, we incorporated a combination of Tandem-Mass-Tag (TMT) quantitative proteomics approach and Support Vector Machine (SVM) cluster analysis of three conditioned media derived fractions corresponding to a 10 000g cellular debris pellet, a 100 000g crude exosome pellet, and an Optiprep enriched exosome pellet. The quantitative analysis identified 2 179 proteins in all three fractions, with known exosomal cargo proteins displaying at least a 2-fold enrichment in the exosome fraction based on the TMT protein ratios. Employing SVM cluster analysis allowed for the classification 251 proteins as "true" exosomal cargo proteins. This study provides a robust and vigorous framework for the future development of using exosomes as a potential multiprotein marker phenotyping tool that could be useful in breast cancer diagnosis and monitoring disease progression.

  4. The Application of SILAC Mouse in Human Body Fluid Proteomics Analysis Reveals Protein Patterns Associated with IgA Nephropathy.

    PubMed

    Zhao, Shilin; Li, Rongxia; Cai, Xiaofan; Chen, Wanjia; Li, Qingrun; Xing, Tao; Zhu, Wenjie; Chen, Y Eugene; Zeng, Rong; Deng, Yueyi

    2013-01-01

    Body fluid proteome is the most informative proteome from a medical viewpoint. But the lack of accurate quantitation method for complicated body fluid limited its application in disease research and biomarker discovery. To address this problem, we introduced a novel strategy, in which SILAC-labeled mouse serum was used as internal standard for human serum and urine proteome analysis. The SILAC-labeled mouse serum was mixed with human serum and urine, and multidimensional separation coupled with tandem mass spectrometry (IEF-LC-MS/MS) analysis was performed. The shared peptides between two species were quantified by their SILAC pairs, and the human-only peptides were quantified by mouse peptides with coelution. The comparison for the results from two replicate experiments indicated the high repeatability of our strategy. Then the urine from Immunoglobulin A nephropathy patients treated and untreated was compared by this quantitation strategy. Fifty-three peptides were found to be significantly changed between two groups, including both known diagnostic markers for IgAN and novel candidates, such as Complement C3, Albumin, VDBP, ApoA,1 and IGFBP7. In conclusion, we have developed a practical and accurate quantitation strategy for comparison of complicated human body fluid proteome. The results from such strategy could provide potential disease-related biomarkers for evaluation of treatment.

  5. Quantitative proteomics-based analysis supports a significant role of GTG proteins in regulation of ABA response in Arabidopsis roots.

    PubMed

    Alvarez, Sophie; Roy Choudhury, Swarup; Hicks, Leslie M; Pandey, Sona

    2013-03-01

    Abscisic acid (ABA) is proposed to be perceived by multiple receptors in plants. We have previously reported on the role of two GPCR-type G-proteins (GTG proteins) as plasma membrane-localized ABA receptors in Arabidopsis thaliana. However, due to the presence of multiple transmembrane domains, detailed structural and biochemical characterization of GTG proteins remains limited. Since ABA induces substantial changes in the proteome of plants, a labeling LC-based quantitative proteomics approach was applied to elucidate the global effects and possible downstream targets of GTG1/GTG2 proteins. Quantitative differences in protein abundance between wild-type and gtg1gtg2 were analyzed for evaluation of the effect of ABA on the root proteome and its dependence on the presence of functional GTG1/GTG2 proteins. The results presented in this study reveal the most comprehensive ABA-responsive root proteome reported to date in Arabidopsis. Notably, the majority of ABA-responsive proteins required the presence of GTG proteins, supporting their key role in ABA signaling. These observations were further confirmed by additional experiments. Overall, comparison of the ABA-dependent protein abundance changes in wild-type versus gtg1gtg2 provides clues to their possible links with some of the well-established effectors of the ABA signaling pathways and their role in mediating phytohormone cross-talk.

  6. A Proteomic Approach to Investigating Gene Cluster Expression and Secondary Metabolite Functionality in Aspergillus fumigatus

    PubMed Central

    Owens, Rebecca A.; Hammel, Stephen; Sheridan, Kevin J.; Jones, Gary W.; Doyle, Sean

    2014-01-01

    A combined proteomics and metabolomics approach was utilised to advance the identification and characterisation of secondary metabolites in Aspergillus fumigatus. Here, implementation of a shotgun proteomic strategy led to the identification of non-redundant mycelial proteins (n = 414) from A. fumigatus including proteins typically under-represented in 2-D proteome maps: proteins with multiple transmembrane regions, hydrophobic proteins and proteins with extremes of molecular mass and pI. Indirect identification of secondary metabolite cluster expression was also achieved, with proteins (n = 18) from LaeA-regulated clusters detected, including GliT encoded within the gliotoxin biosynthetic cluster. Biochemical analysis then revealed that gliotoxin significantly attenuates H2O2-induced oxidative stress in A. fumigatus (p>0.0001), confirming observations from proteomics data. A complementary 2-D/LC-MS/MS approach further elucidated significantly increased abundance (p<0.05) of proliferating cell nuclear antigen (PCNA), NADH-quinone oxidoreductase and the gliotoxin oxidoreductase GliT, along with significantly attenuated abundance (p<0.05) of a heat shock protein, an oxidative stress protein and an autolysis-associated chitinase, when gliotoxin and H2O2 were present, compared to H2O2 alone. Moreover, gliotoxin exposure significantly reduced the abundance of selected proteins (p<0.05) involved in de novo purine biosynthesis. Significantly elevated abundance (p<0.05) of a key enzyme, xanthine-guanine phosphoribosyl transferase Xpt1, utilised in purine salvage, was observed in the presence of H2O2 and gliotoxin. This work provides new insights into the A. fumigatus proteome and experimental strategies, plus mechanistic data pertaining to gliotoxin functionality in the organism. PMID:25198175

  7. Determination of burn patient outcome by large-scale quantitative discovery proteomics

    PubMed Central

    Finnerty, Celeste C.; Jeschke, Marc G.; Qian, Wei-Jun; Kaushal, Amit; Xiao, Wenzhong; Liu, Tao; Gritsenko, Marina A.; Moore, Ronald J.; Camp, David G.; Moldawer, Lyle L.; Elson, Constance; Schoenfeld, David; Gamelli, Richard; Gibran, Nicole; Klein, Matthew; Arnoldo, Brett; Remick, Daniel; Smith, Richard D.; Davis, Ronald; Tompkins, Ronald G.; Herndon, David N.

    2013-01-01

    Objective Emerging proteomics techniques can be used to establish proteomic outcome signatures and to identify candidate biomarkers for survival following traumatic injury. We applied high-resolution liquid chromatography-mass spectrometry (LC-MS) and multiplex cytokine analysis to profile the plasma proteome of survivors and non-survivors of massive burn injury to determine the proteomic survival signature following a major burn injury. Design Proteomic discovery study. Setting Five burn hospitals across the U.S. Patients Thirty-two burn patients (16 non-survivors and 16 survivors), 19–89 years of age, were admitted within 96 h of injury to the participating hospitals with burns covering >20% of the total body surface area and required at least one surgical intervention. Interventions None. Measurements and Main Results We found differences in circulating levels of 43 proteins involved in the acute phase response, hepatic signaling, the complement cascade, inflammation, and insulin resistance. Thirty-two of the proteins identified were not previously known to play a role in the response to burn. IL-4, IL-8, GM-CSF, MCP-1, and β2-microglobulin correlated well with survival and may serve as clinical biomarkers. Conclusions These results demonstrate the utility of these techniques for establishing proteomic survival signatures and for use as a discovery tool to identify candidate biomarkers for survival. This is the first clinical application of a high-throughput, large-scale LC-MS-based quantitative plasma proteomic approach for biomarker discovery for the prediction of patient outcome following burn, trauma or critical illness. PMID:23507713

  8. Top-down proteomic identification of Shiga toxin 2 subtypes from Shiga toxin-producing Escherichia coli by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry.

    PubMed

    Fagerquist, Clifton K; Zaragoza, William J; Sultan, Omar; Woo, Nathan; Quiñones, Beatriz; Cooley, Michael B; Mandrell, Robert E

    2014-05-01

    We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption ionization (MALDI)-tandem time of flight (TOF-TOF) tandem mass spectrometry (MS/MS) and top-down proteomic analysis. STEC strains were induced to overexpress Stx2 by overnight culturing on solid agar supplemented with either ciprofloxacin or mitomycin C. Harvested cells were lysed by bead beating, and unfractionated bacterial cell lysates were ionized by MALDI. The A2 fragment of the A subunit and the mature B subunit of Stx2 were analyzed by MS/MS. Sequence-specific fragment ions were used to identify amino acid subtypes of Stx2 using top-down proteomic analysis using software developed in-house at the U.S. Department of Agriculture (USDA). Stx2 subtypes (a, c, d, f, and g) were identified on the basis of the mass of the A2 fragment and the B subunit as well as from their sequence-specific fragment ions by MS/MS (postsource decay). Top-down proteomic identification was in agreement with DNA sequencing of the full Stx2 operon (stx2) for all strains. Top-down results were also compared to a bioassay using a Vero-d2EGFP cell line. Our results suggest that top-down proteomic identification is a rapid, highly specific technique for distinguishing Stx2 subtypes.

  9. Top-Down Proteomic Identification of Shiga Toxin 2 Subtypes from Shiga Toxin-Producing Escherichia coli by Matrix-Assisted Laser Desorption Ionization–Tandem Time of Flight Mass Spectrometry

    PubMed Central

    Zaragoza, William J.; Sultan, Omar; Woo, Nathan; Quiñones, Beatriz; Cooley, Michael B.; Mandrell, Robert E.

    2014-01-01

    We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption ionization (MALDI)–tandem time of flight (TOF-TOF) tandem mass spectrometry (MS/MS) and top-down proteomic analysis. STEC strains were induced to overexpress Stx2 by overnight culturing on solid agar supplemented with either ciprofloxacin or mitomycin C. Harvested cells were lysed by bead beating, and unfractionated bacterial cell lysates were ionized by MALDI. The A2 fragment of the A subunit and the mature B subunit of Stx2 were analyzed by MS/MS. Sequence-specific fragment ions were used to identify amino acid subtypes of Stx2 using top-down proteomic analysis using software developed in-house at the U.S. Department of Agriculture (USDA). Stx2 subtypes (a, c, d, f, and g) were identified on the basis of the mass of the A2 fragment and the B subunit as well as from their sequence-specific fragment ions by MS/MS (postsource decay). Top-down proteomic identification was in agreement with DNA sequencing of the full Stx2 operon (stx2) for all strains. Top-down results were also compared to a bioassay using a Vero-d2EGFP cell line. Our results suggest that top-down proteomic identification is a rapid, highly specific technique for distinguishing Stx2 subtypes. PMID:24584253

  10. Quantitative proteomics reveals the kinetics of trypsin-catalyzed protein digestion.

    PubMed

    Pan, Yanbo; Cheng, Kai; Mao, Jiawei; Liu, Fangjie; Liu, Jing; Ye, Mingliang; Zou, Hanfa

    2014-10-01

    Trypsin is the popular protease to digest proteins into peptides in shotgun proteomics, but few studies have attempted to systematically investigate the kinetics of trypsin-catalyzed protein digestion in proteome samples. In this study, we applied quantitative proteomics via triplex stable isotope dimethyl labeling to investigate the kinetics of trypsin-catalyzed cleavage. It was found that trypsin cleaves the C-terminal to lysine (K) and arginine (R) residues with higher rates for R. And the cleavage sites surrounded by neutral residues could be quickly cut, while those with neighboring charged residues (D/E/K/R) or proline residue (P) could be slowly cut. In a proteome sample, a huge number of proteins with different physical chemical properties coexists. If any type of protein could be preferably digested, then limited digestion could be applied to reduce the sample complexity. However, we found that protein abundance and other physicochemical properties, such as molecular weight (Mw), grand average of hydropathicity (GRAVY), aliphatic index, and isoelectric point (pI) have no notable correlation with digestion priority of proteins.

  11. Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration

    PubMed Central

    2012-01-01

    Introduction Acquired tamoxifen resistance involves complex signaling events that are not yet fully understood. Successful therapeutic intervention to delay the onset of hormone resistance depends critically on mechanistic elucidation of viable molecular targets associated with hormone resistance. This study was undertaken to investigate the global proteomic alterations in a tamoxifen resistant MCF-7 breast cancer cell line obtained by long term treatment of the wild type MCF-7 cell line with 4-hydroxytamoxifen (4-OH Tam). Methods We cultured MCF-7 cells with 4-OH Tam over a period of 12 months to obtain the resistant cell line. A gel-free, quantitative proteomic method was used to identify and quantify the proteome of the resistant cell line. Nano-flow high-performance liquid chromatography coupled to high resolution Fourier transform mass spectrometry was used to analyze fractionated peptide mixtures that were isobarically labeled from the resistant and control cell lysates. Real time quantitative PCR and Western blots were used to verify selected proteomic changes. Lentiviral vector transduction was used to generate MCF-7 cells stably expressing S100P. Online pathway analysis was performed to assess proteomic signatures in tamoxifen resistance. Survival analysis was done to evaluate clinical relevance of altered proteomic expressions. Results Quantitative proteomic analysis revealed a wide breadth of signaling events during transition to acquired tamoxifen resistance. A total of 629 proteins were found significantly changed with 364 up-regulated and 265 down-regulated. Collectively, these changes demonstrated the suppressed state of estrogen receptor (ER) and ER-regulated genes, activated survival signaling and increased migratory capacity of the resistant cell line. The protein S100P was found to play a critical role in conferring tamoxifen resistance and enhanced cell motility. Conclusions Our data demonstrate that the adaptive changes in the proteome of tamoxifen resistant breast cancer cells are characterized by down-regulated ER signaling, activation of alternative survival pathways, and enhanced cell motility through regulation of the actin cytoskeleton dynamics. Evidence also emerged that S100P mediates acquired tamoxifen resistance and migration capacity. PMID:22417809

  12. MilQuant: a free, generic software tool for isobaric tagging-based quantitation.

    PubMed

    Zou, Xiao; Zhao, Minzhi; Shen, Hongyan; Zhao, Xuyang; Tong, Yuanpeng; Wang, Qingsong; Wei, Shicheng; Ji, Jianguo

    2012-09-18

    Isobaric tagging techniques such as iTRAQ and TMT are widely used in quantitative proteomics and especially useful for samples that demand in vitro labeling. Due to diversity in choices of MS acquisition approaches, identification algorithms, and relative abundance deduction strategies, researchers are faced with a plethora of possibilities when it comes to data analysis. However, the lack of generic and flexible software tool often makes it cumbersome for researchers to perform the analysis entirely as desired. In this paper, we present MilQuant, mzXML-based isobaric labeling quantitator, a pipeline of freely available programs that supports native acquisition files produced by all mass spectrometer types and collection approaches currently used in isobaric tagging based MS data collection. Moreover, aside from effective normalization and abundance ratio deduction algorithms, MilQuant exports various intermediate results along each step of the pipeline, making it easy for researchers to customize the analysis. The functionality of MilQuant was demonstrated by four distinct datasets from different laboratories. The compatibility and extendibility of MilQuant makes it a generic and flexible tool that can serve as a full solution to data analysis of isobaric tagging-based quantitation. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under iron-limited conditions.

    PubMed

    Hempel, Kristina; Herbst, Florian-Alexander; Moche, Martin; Hecker, Michael; Becher, Dörte

    2011-04-01

    Staphylococcus aureus is capable of colonizing and infecting humans by its arsenal of surface-exposed and secreted proteins. Iron-limited conditions in mammalian body fluids serve as a major environmental signal to bacteria to express virulence determinants. Here we present a comprehensive, gel-free, and GeLC-MS/MS-based quantitative proteome profiling of S. aureus under this infection-relevant situation. (14)N(15)N metabolic labeling and three complementing approaches were combined for relative quantitative analyses of surface-associated proteins. The surface-exposed and secreted proteome profiling approaches comprise trypsin shaving, biotinylation, and precipitation of the supernatant. By analysis of the outer subproteomic and cytoplasmic protein fraction, 1210 proteins could be identified including 221 surface-associated proteins. Thus, access was enabled to 70% of the predicted cell wall-associated proteins, 80% of the predicted sortase substrates, two/thirds of lipoproteins and more than 50% of secreted and cytoplasmic proteins. For iron-deficiency, 158 surface-associated proteins were quantified. Twenty-nine proteins were found in altered amounts showing particularly surface-exposed proteins strongly induced, such as the iron-regulated surface determinant proteins IsdA, IsdB, IsdC and IsdD as well as lipid-anchored iron compound-binding proteins. The work presents a crucial subject for understanding S. aureus pathophysiology by the use of methods that allow quantitative surface proteome profiling.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xing; Xu, Yanli; Meng, Qian

    Colorectal cancer (CRC) is one of the most common types of malignant tumor worldwide. Currently, although many researchers have been devoting themselves in CRC studies, the process of locating biomarkers for CRC early diagnosis and prognostic is still very slow. Using a centrifugal proteomic reactor-based proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling, 2620 protein groups were quantified between cancer mucosa and adjacent normal colorectal mucosa. Of which, 403 protein groups were differentially expressed with statistic significance between cancer and normal tissues, including 195 up-regulated and 208 down-regulated proteins in cancer tissues. Three proteins (SOD3, PRELP andmore » NGAL) were selected for further Western blot validation. And the resulting Western blot experimental results were consistent with the quantitative proteomic data. SOD3 and PRELP are down-regulated in CRC mucosa comparing to adjacent normal tissue, while NGAL is up-regulated in CRC mucosa. In conclusion, the centrifugal proteomic reactor-based label-free quantitative proteomic approach provides a highly sensitive and powerful tool for analyzing minute protein sample from tiny colorectal biopsies, which may facilitate CRC biomarkers discovery for diagnoses and prognoses. -- Highlights: •Minute amount of colonic biopsies by endoscopy is suitable for proteomic analysis. •Centrifugal proteomic reactor can be used for processing tiny clinic biopsy sample. •SOD3 and PRELP are down-regulated in CRC, while NGAL is up-regulated in CRC.« less

  15. IsobariQ: software for isobaric quantitative proteomics using IPTL, iTRAQ, and TMT.

    PubMed

    Arntzen, Magnus Ø; Koehler, Christian J; Barsnes, Harald; Berven, Frode S; Treumann, Achim; Thiede, Bernd

    2011-02-04

    Isobaric peptide labeling plays an important role in relative quantitative comparisons of proteomes. Isobaric labeling techniques utilize MS/MS spectra for relative quantification, which can be either based on the relative intensities of reporter ions in the low mass region (iTRAQ and TMT) or on the relative intensities of quantification signatures throughout the spectrum due to isobaric peptide termini labeling (IPTL). Due to the increased quantitative information found in MS/MS fragment spectra generated by the recently developed IPTL approach, new software was required to extract the quantitative information. IsobariQ was specifically developed for this purpose; however, support for the reporter ion techniques iTRAQ and TMT is also included. In addition, to address recently emphasized issues about heterogeneity of variance in proteomics data sets, IsobariQ employs the statistical software package R and variance stabilizing normalization (VSN) algorithms available therein. Finally, the functionality of IsobariQ is validated with data sets of experiments using 6-plex TMT and IPTL. Notably, protein substrates resulting from cleavage by proteases can be identified as shown for caspase targets in apoptosis.

  16. Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics.

    PubMed

    Kelstrup, Christian D; Bekker-Jensen, Dorte B; Arrey, Tabiwang N; Hogrebe, Alexander; Harder, Alexander; Olsen, Jesper V

    2018-01-05

    Progress in proteomics is mainly driven by advances in mass spectrometric (MS) technologies. Here we benchmarked the performance of the latest MS instrument in the benchtop Orbitrap series, the Q Exactive HF-X, against its predecessor for proteomics applications. A new peak-picking algorithm, a brighter ion source, and optimized ion transfers enable productive MS/MS acquisition above 40 Hz at 7500 resolution. The hardware and software improvements collectively resulted in improved peptide and protein identifications across all comparable conditions, with an increase of up to 50 percent at short LC-MS gradients, yielding identification rates of more than 1000 unique peptides per minute. Alternatively, the Q Exactive HF-X is capable of achieving the same proteome coverage as its predecessor in approximately half the gradient time or at 10-fold lower sample loads. The Q Exactive HF-X also enables rapid phosphoproteomics with routine analysis of more than 5000 phosphopeptides with short single-shot 15 min LC-MS/MS measurements, or 16 700 phosphopeptides quantified across ten conditions in six gradient hours using TMT10-plex and offline peptide fractionation. Finally, exciting perspectives for data-independent acquisition are highlighted with reproducible identification of 55 000 unique peptides covering 5900 proteins in half an hour of MS analysis.

  17. Toward an Upgraded Honey Bee (Apis mellifera L.) Genome Annotation Using Proteogenomics.

    PubMed

    McAfee, Alison; Harpur, Brock A; Michaud, Sarah; Beavis, Ronald C; Kent, Clement F; Zayed, Amro; Foster, Leonard J

    2016-02-05

    The honey bee is a key pollinator in agricultural operations as well as a model organism for studying the genetics and evolution of social behavior. The Apis mellifera genome has been sequenced and annotated twice over, enabling proteomics and functional genomics methods for probing relevant aspects of their biology. One troubling trend that emerged from proteomic analyses is that honey bee peptide samples consistently result in lower peptide identification rates compared with other organisms. This suggests that the genome annotation can be improved, or atypical biological processes are interfering with the mass spectrometry workflow. First, we tested whether high levels of polymorphisms could explain some of the missed identifications by searching spectra against the reference proteome (OGSv3.2) versus a customized proteome of a single honey bee, but our results indicate that this contribution was minor. Likewise, error-tolerant peptide searches lead us to eliminate unexpected post-translational modifications as a major factor in missed identifications. We then used a proteogenomic approach with ~1500 raw files to search for missing genes and new exons, to revive discarded annotations and to identify over 2000 new coding regions. These results will contribute to a more comprehensive genome annotation and facilitate continued research on this important insect.

  18. Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved in Zika Virus Infection.

    PubMed

    Xin, Qi-Lin; Deng, Cheng-Lin; Chen, Xi; Wang, Jun; Wang, Shao-Bo; Wang, Wei; Deng, Fei; Zhang, Bo; Xiao, Gengfu; Zhang, Lei-Ke

    2017-06-15

    Zika virus (ZIKV) is an emerging arbovirus belonging to the genus Flavivirus of the family Flaviviridae During replication processes, flavivirus manipulates host cell systems to facilitate its replication, while the host cells activate antiviral responses. Identification of host proteins involved in the flavivirus replication process may lead to the discovery of antiviral targets. The mosquitoes Aedes aegypti and Aedes albopictus are epidemiologically important vectors for ZIKV, and effective restrictions of ZIKV replication in mosquitoes will be vital in controlling the spread of virus. In this study, an iTRAQ-based quantitative proteomic analysis of ZIKV-infected Aedes albopictus C6/36 cells was performed to investigate host proteins involved in the ZIKV infection process. A total of 3,544 host proteins were quantified, with 200 being differentially regulated, among which CHCHD2 can be upregulated by ZIKV infection in both mosquito C6/36 and human HeLa cells. Our further study indicated that CHCHD2 can promote ZIKV replication and inhibit beta interferon (IFN-β) production in HeLa cells, suggesting that ZIKV infection may upregulate CHCHD2 to inhibit IFN-I production and thus promote virus replication. Bioinformatics analysis of regulated host proteins highlighted several ZIKV infection-regulated biological processes. Further study indicated that the ubiquitin proteasome system (UPS) plays roles in the ZIKV entry process and that an FDA-approved inhibitor of the 20S proteasome, bortezomib, can inhibit ZIKV infection in vivo Our study illustrated how host cells respond to ZIKV infection and also provided a candidate drug for the control of ZIKV infection in mosquitoes and treatment of ZIKV infection in patients. IMPORTANCE ZIKV infection poses great threats to human health, and there is no FDA-approved drug available for the treatment of ZIKV infection. During replication, ZIKV manipulates host cell systems to facilitate its replication, while host cells activate antiviral responses. Identification of host proteins involved in the ZIKV replication process may lead to the discovery of antiviral targets. In this study, the first quantitative proteomic analysis of ZIKV-infected cells was performed to investigate host proteins involved in the ZIKV replication process. Bioinformatics analysis highlighted several ZIKV infection-regulated biological processes. Further study indicated that the ubiquitin proteasome system (UPS) plays roles in the ZIKV entry process and that an FDA-approved inhibitor of the UPS, bortezomib, can inhibit ZIKV infection in vivo Our study not only illustrated how host cells respond to ZIKV infection but also provided a candidate drug for the control of ZIKV infection in mosquitoes and treatment of ZIKV infection in patients. Copyright © 2017 American Society for Microbiology.

  19. Evaluation of Proteomic Search Engines for the Analysis of Histone Modifications

    PubMed Central

    2015-01-01

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118. PMID:25167464

  20. Evaluation of proteomic search engines for the analysis of histone modifications.

    PubMed

    Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C; Garcia, Benjamin A

    2014-10-03

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118.

  1. Open source libraries and frameworks for mass spectrometry based proteomics: A developer's perspective☆

    PubMed Central

    Perez-Riverol, Yasset; Wang, Rui; Hermjakob, Henning; Müller, Markus; Vesada, Vladimir; Vizcaíno, Juan Antonio

    2014-01-01

    Data processing, management and visualization are central and critical components of a state of the art high-throughput mass spectrometry (MS)-based proteomics experiment, and are often some of the most time-consuming steps, especially for labs without much bioinformatics support. The growing interest in the field of proteomics has triggered an increase in the development of new software libraries, including freely available and open-source software. From database search analysis to post-processing of the identification results, even though the objectives of these libraries and packages can vary significantly, they usually share a number of features. Common use cases include the handling of protein and peptide sequences, the parsing of results from various proteomics search engines output files, and the visualization of MS-related information (including mass spectra and chromatograms). In this review, we provide an overview of the existing software libraries, open-source frameworks and also, we give information on some of the freely available applications which make use of them. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. PMID:23467006

  2. Open source libraries and frameworks for mass spectrometry based proteomics: a developer's perspective.

    PubMed

    Perez-Riverol, Yasset; Wang, Rui; Hermjakob, Henning; Müller, Markus; Vesada, Vladimir; Vizcaíno, Juan Antonio

    2014-01-01

    Data processing, management and visualization are central and critical components of a state of the art high-throughput mass spectrometry (MS)-based proteomics experiment, and are often some of the most time-consuming steps, especially for labs without much bioinformatics support. The growing interest in the field of proteomics has triggered an increase in the development of new software libraries, including freely available and open-source software. From database search analysis to post-processing of the identification results, even though the objectives of these libraries and packages can vary significantly, they usually share a number of features. Common use cases include the handling of protein and peptide sequences, the parsing of results from various proteomics search engines output files, and the visualization of MS-related information (including mass spectra and chromatograms). In this review, we provide an overview of the existing software libraries, open-source frameworks and also, we give information on some of the freely available applications which make use of them. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Quantitative proteomics analysis using 2D-PAGE to investigate the effects of cigarette smoke and aerosol of a prototypic modified risk tobacco product on the lung proteome in C57BL/6 mice.

    PubMed

    Elamin, Ashraf; Titz, Bjoern; Dijon, Sophie; Merg, Celine; Geertz, Marcel; Schneider, Thomas; Martin, Florian; Schlage, Walter K; Frentzel, Stefan; Talamo, Fabio; Phillips, Blaine; Veljkovic, Emilija; Ivanov, Nikolai V; Vanscheeuwijck, Patrick; Peitsch, Manuel C; Hoeng, Julia

    2016-08-11

    Smoking is associated with several serious diseases, such as lung cancer and chronic obstructive pulmonary disease (COPD). Within our systems toxicology framework, we are assessing whether potential modified risk tobacco products (MRTP) can reduce smoking-related health risks compared to conventional cigarettes. In this article, we evaluated to what extent 2D-PAGE/MALDI MS/MS (2D-PAGE) can complement the iTRAQ LC-MS/MS results from a previously reported mouse inhalation study, in which we assessed a prototypic MRTP (pMRTP). Selected differentially expressed proteins identified by both LC-MS/MS and 2D-PAGE approaches were further verified using reverse-phase protein microarrays. LC-MS/MS captured the effects of cigarette smoke (CS) on the lung proteome more comprehensively than 2D-PAGE. However, an integrated analysis of both proteomics data sets showed that 2D-PAGE data complement the LC-MS/MS results by supporting the overall trend of lower effects of pMRTP aerosol than CS on the lung proteome. Biological effects of CS exposure supported by both methods included increases in immune-related, surfactant metabolism, proteasome, and actin cytoskeleton protein clusters. Overall, while 2D-PAGE has its value, especially as a complementary method for the analysis of effects on intact proteins, LC-MS/MS approaches will likely be the method of choice for proteome analysis in systems toxicology investigations. Quantitative proteomics is anticipated to play a growing role within systems toxicology assessment frameworks in the future. To further understand how different proteomics technologies can contribute to toxicity assessment, we conducted a quantitative proteomics analysis using 2D-PAGE and isobaric tag-based LC-MS/MS approaches and compared the results produced from the 2 approaches. Using a prototypic modified risk tobacco product (pMRTP) as our test item, we show compared with cigarette smoke, how 2D-PAGE results can complement and support LC-MS/MS data, demonstrating the much lower effects of pMRTP aerosol than cigarette smoke on the mouse lung proteome. The combined analysis of 2D-PAGE and LC-MS/MS data identified an effect of cigarette smoke on the proteasome and actin cytoskeleton in the lung. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Evaluation of a High Intensity Focused Ultrasound-Immobilized Trypsin Digestion and 18O-Labeling Method for Quantitative Proteomics

    PubMed Central

    López-Ferrer, Daniel; Hixson, Kim K.; Smallwood, Heather; Squier, Thomas C.; Petritis, Konstantinos; Smith, Richard D.

    2009-01-01

    A new method that uses immobilized trypsin concomitant with ultrasonic irradiation results in ultra-rapid digestion and thorough 18O labeling for quantitative protein comparisons. The reproducible and highly efficient method provided effective digestions in <1 min with a minimized amount of enzyme required compared to traditional methods. This method was demonstrated for digestion of both simple and complex protein mixtures, including bovine serum albumin, a global proteome extract from the bacteria Shewanella oneidensis, and mouse plasma, as well as 18O labeling of such complex protein mixtures, which validated the application of this method for differential proteomic measurements. This approach is simple, reproducible, cost effective, rapid, and thus well-suited for automation. PMID:19555078

  5. Mass spectrometric identification of proteins in complex post-genomic projects. Soluble proteins of the metabolically versatile, denitrifying 'Aromatoleum' sp. strain EbN1.

    PubMed

    Hufnagel, Peter; Rabus, Ralf

    2006-01-01

    The rapidly developing proteomics technologies help to advance the global understanding of physiological and cellular processes. The lifestyle of a study organism determines the type and complexity of a given proteomic project. The complexity of this study is characterized by a broad collection of pathway-specific subproteomes, reflecting the metabolic versatility as well as the regulatory potential of the aromatic-degrading, denitrifying bacterium 'Aromatoleum' sp. strain EbN1. Differences in protein profiles were determined using a gel-based approach. Protein identification was based on a progressive application of MALDI-TOF-MS, MALDI-TOF-MS/MS and LC-ESI-MS/MS. This progression was result-driven and automated by software control. The identification rate was increased by the assembly of a project-specific list of background signals that was used for internal calibration of the MS spectra, and by the combination of two search engines using a dedicated MetaScoring algorithm. In total, intelligent bioinformatics could increase the identification yield from 53 to 70% of the analyzed 5,050 gel spots; a total of 556 different proteins were identified. MS identification was highly reproducible: most proteins were identified more than twice from parallel 2DE gels with an average sequence coverage of >50% and rather restrictive score thresholds (Mascot >or=95, ProFound >or=2.2, MetaScore >or=97). The MS technologies and bioinformatics tools that were implemented and integrated to handle this complex proteomic project are presented. In addition, we describe the basic principles and current developments of the applied technologies and provide an overview over the current state of microbial proteome research. Copyright (c) 2006 S. Karger AG, Basel.

  6. Unlocking the proteomic information encoded in MALDI-TOF-MS data used for microbial identification and characterization

    USDA-ARS?s Scientific Manuscript database

    Introduction: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS)is increasingly utilized as a rapid technique to identify microorganisms including pathogenic bacteria. However, little attention has been paid to the significant proteomic information encoded in ...

  7. Proteomics wants cRacker: automated standardized data analysis of LC-MS derived proteomic data.

    PubMed

    Zauber, Henrik; Schulze, Waltraud X

    2012-11-02

    The large-scale analysis of thousands of proteins under various experimental conditions or in mutant lines has gained more and more importance in hypothesis-driven scientific research and systems biology in the past years. Quantitative analysis by large scale proteomics using modern mass spectrometry usually results in long lists of peptide ion intensities. The main interest for most researchers, however, is to draw conclusions on the protein level. Postprocessing and combining peptide intensities of a proteomic data set requires expert knowledge, and the often repetitive and standardized manual calculations can be time-consuming. The analysis of complex samples can result in very large data sets (lists with several 1000s to 100,000 entries of different peptides) that cannot easily be analyzed using standard spreadsheet programs. To improve speed and consistency of the data analysis of LC-MS derived proteomic data, we developed cRacker. cRacker is an R-based program for automated downstream proteomic data analysis including data normalization strategies for metabolic labeling and label free quantitation. In addition, cRacker includes basic statistical analysis, such as clustering of data, or ANOVA and t tests for comparison between treatments. Results are presented in editable graphic formats and in list files.

  8. Differential expression profiling of serum proteins and metabolites for biomarker discovery

    NASA Astrophysics Data System (ADS)

    Roy, Sushmita Mimi; Anderle, Markus; Lin, Hua; Becker, Christopher H.

    2004-11-01

    A liquid chromatography-mass spectrometry (LC-MS) proteomics and metabolomics platform is presented for quantitative differential expression analysis. Proteome profiles obtained from 1.5 [mu]L of human serum show ~5000 de-isotoped and quantifiable molecular ions. Approximately 1500 metabolites are observed from 100 [mu]L of serum. Quantification is based on reproducible sample preparation and linear signal intensity as a function of concentration. The platform is validated using human serum, but is generally applicable to all biological fluids and tissues. The median coefficient of variation (CV) for ~5000 proteomic and ~1500 metabolomic molecular ions is approximately 25%. For the case of C-reactive protein, results agree with quantification by immunoassay. The independent contributions of two sources of variance, namely sample preparation and LC-MS analysis, are respectively quantified as 20.4 and 15.1% for the proteome, and 19.5 and 13.5% for the metabolome, for median CV values. Furthermore, biological diversity for ~20 healthy individuals is estimated by measuring the variance of ~6500 proteomic and metabolomic molecular ions in sera for each sample; the median CV is 22.3% for the proteome and 16.7% for the metabolome. Finally, quantitative differential expression profiling is applied to a clinical study comparing healthy individuals and rheumatoid arthritis (RA) patients.

  9. Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation

    PubMed Central

    Nunn, Brook L.; Faux, Jessica F.; Hippmann, Anna A.; Maldonado, Maria T.; Harvey, H. Rodger; Goodlett, David R.; Boyd, Philip W.; Strzepek, Robert F.

    2013-01-01

    Phytoplankton growth rates are limited by the supply of iron (Fe) in approximately one third of the open ocean, with major implications for carbon dioxide sequestration and carbon (C) biogeochemistry. To date, understanding how alteration of Fe supply changes phytoplankton physiology has focused on traditional metrics such as growth rate, elemental composition, and biophysical measurements such as photosynthetic competence (Fv/Fm). Researchers have subsequently employed transcriptomics to probe relationships between changes in Fe supply and phytoplankton physiology. Recently, studies have investigated longer-term (i.e. following acclimation) responses of phytoplankton to various Fe conditions. In the present study, the coastal diatom, Thalassiosira pseudonana, was acclimated (10 generations) to either low or high Fe conditions, i.e. Fe-limiting and Fe-replete. Quantitative proteomics and a newly developed proteomic profiling technique that identifies low abundance proteins were employed to examine the full complement of expressed proteins and consequently the metabolic pathways utilized by the diatom under the two Fe conditions. A total of 1850 proteins were confidently identified, nearly tripling previous identifications made from differential expression in diatoms. Given sufficient time to acclimate to Fe limitation, T. pseudonana up-regulates proteins involved in pathways associated with intracellular protein recycling, thereby decreasing dependence on extracellular nitrogen (N), C and Fe. The relative increase in the abundance of photorespiration and pentose phosphate pathway proteins reveal novel metabolic shifts, which create substrates that could support other well-established physiological responses, such as heavily silicified frustules observed for Fe-limited diatoms. Here, we discovered that proteins and hence pathways observed to be down-regulated in short-term Fe starvation studies are constitutively expressed when T. pseudonana is acclimated (i.e., nitrate and nitrite transporters, Photosystem II and Photosystem I complexes). Acclimation of the diatom to the desired Fe conditions and the comprehensive proteomic approach provides a more robust interpretation of this dynamic proteome than previous studies. PMID:24146769

  10. A proteomic signature of ovarian cancer tumor fluid identified by highthroughput and verified by targeted proteomics.

    PubMed

    Poersch, Aline; Grassi, Mariana Lopes; Carvalho, Vinícius Pereira de; Lanfredi, Guilherme Pauperio; Palma, Camila de Souza; Greene, Lewis Joel; de Sousa, Christiani Bisinoto; Carrara, Hélio Humberto Angotti; Candido Dos Reis, Francisco José; Faça, Vitor Marcel

    2016-08-11

    Tumor fluid samples have emerged as a rich source for the identification of ovarian cancer in the context of proteomics studies. To uncover differences among benign and malignant ovarian samples, we performed a quantitative proteomic study consisting of albumin immunodepletion, isotope labeling with acrylamide and in-depth proteomic profiling by LC-MS/MS in a pool of 10 samples of each histological type. 1135 proteins were identified, corresponding to 505 gene products. 223 proteins presented associated quantification and the comparative analysis of histological types revealed 75 differentially abundant proteins. Based on this, we developed a panel for targeted proteomic analysis using the multiple reaction monitoring (MRM) method for validation of 51 proteins in individual samples of high-grade serous ovarian tumor fluids (malignant) and benign serous cystadenoma tumor fluids. This analysis showed concordant results in terms of average amounts of proteins, and APOE, SERPINF2, SERPING1, ADAM17, CD44 and OVGP1 were statistically significant between benign and malignant group. The results observed in the MRM for APOE were confirmed by western blotting, where APOE was more abundant in malignant samples. This molecular signature can contribute to improve tumor stratification and shall be investigated in combination with current biomarkers in larger cohorts to improve ovarian cancer diagnosis. Despite advances in cancer research, ovarian cancer has a high mortality and remains a major challenge due to a number of particularities of the disease, especially late diagnosis caused by vague clinical symptoms, the cellular and molecular heterogeneity of tumors, and the lack of effective treatment. Thus, efforts are directed to better understand this neoplasia, its origin, development and, particularly the identification and validation of biomarkers for early detection of the disease in asymptomatic stage. In the present work, we confirmed by MRM method in individual ovarian tumor fluid samples the regulation of 27 proteins out of 33 identified in a highthroughput study. We speculate that the presence and/or differential abundance observed in tumor fluid is a cooperation primarily of high rates of secretion of such tumor proteins to extra tumor environment that will at the end accumulate in plasma, and also the accumulation of acute-phase proteins throughout the entire body. On top of that, consideration of physiological influences in the interpretation of expression observed, including age, menopause status, route-of-elimination kinetics and metabolism of the tumor marker, coexisting disease, hormonal imbalances, life-style influences (smoking, alcoholism, obesity), among others, are mandatory to enable the selection of good protein tumor marker candidates for extensive validation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Identification of Novel STAT6-Regulated Proteins in Mouse B Cells by Comparative Transcriptome and Proteome Analysis.

    PubMed

    Mokada-Gopal, Lavanya; Boeser, Alexander; Lehmann, Christian H K; Drepper, Friedel; Dudziak, Diana; Warscheid, Bettina; Voehringer, David

    2017-05-01

    The transcription factor STAT6 plays a key role in mediating signaling downstream of the receptors for IL-4 and IL-13. In B cells, STAT6 is required for class switch recombination to IgE and for germinal center formation during type 2 immune responses directed against allergens or helminths. In this study, we compared the transcriptomes and proteomes of primary mouse B cells from wild-type and STAT6-deficient mice cultured for 4 d in the presence or absence of IL-4. Microarray analysis revealed that 214 mRNAs were upregulated and 149 were downregulated >3-fold by IL-4 in a STAT6-dependent manner. Across all samples, ∼5000 proteins were identified by label-free quantitative liquid chromatography/mass spectrometry. A total of 149 proteins was found to be differentially expressed >3-fold between IL-4-stimulated wild-type and STAT6 -/- B cells (75 upregulated and 74 downregulated). Comparative analysis of the proteome and transcriptome revealed that expression of these proteins was mainly regulated at the transcriptional level, which argues against a major role for posttranscriptional mechanisms that modulate the STAT6-dependent proteome. Nine proteins were selected for confirmation by flow cytometry or Western blot. We show that CD30, CD79b, SLP-76, DEC205, IL-5Rα, STAT5, and Thy1 are induced by IL-4 in a STAT6-dependent manner. In contrast, Syk and Fc receptor-like 1 were downregulated. This dataset provides a framework for further functional analysis of newly identified IL-4-regulated proteins in B cells that may contribute to germinal center formation and IgE switching in type 2 immunity. Copyright © 2017 by The American Association of Immunologists, Inc.

  12. Quantitative Proteomic Analysis of Optimal Cutting Temperature (OCT) Embedded Core-Needle Biopsy of Lung Cancer

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaozheng; Huffman, Kenneth E.; Fujimoto, Junya; Canales, Jamie Rodriguez; Girard, Luc; Nie, Guangjun; Heymach, John V.; Wistuba, Igacio I.; Minna, John D.; Yu, Yonghao

    2017-10-01

    With recent advances in understanding the genomic underpinnings and oncogenic drivers of pathogenesis in different subtypes, it is increasingly clear that proper pretreatment diagnostics are essential for the choice of appropriate treatment options for non-small cell lung cancer (NSCLC). Tumor tissue preservation in optimal cutting temperature (OCT) compound is commonly used in the surgical suite. However, proteins recovered from OCT-embedded specimens pose a challenge for LC-MS/MS experiments, due to the large amounts of polymers present in OCT. Here we present a simple workflow for whole proteome analysis of OCT-embedded NSCLC tissue samples, which involves a simple trichloroacetic acid precipitation step. Comparisons of protein recovery between frozen versus OCT-embedded tissue showed excellent consistency with more than 9200 proteins identified. Using an isobaric labeling strategy, we quantified more than 5400 proteins in tumor versus normal OCT-embedded core needle biopsy samples. Gene ontology analysis indicated that a number of proliferative as well as squamous cell carcinoma (SqCC) marker proteins were overexpressed in the tumor, consistent with the patient's pathology based diagnosis of "poorly differentiated SqCC". Among the most downregulated proteins in the tumor sample, we noted a number of proteins with potential immunomodulatory functions. Finally, interrogation of the aberrantly expressed proteins using a candidate approach and cross-referencing with publicly available databases led to the identification of potential druggable targets in DNA replication and DNA damage repair pathways. We conclude that our approach allows LC-MS/MS proteomic analyses on OCT-embedded lung cancer specimens, opening the way to bring powerful proteomics into the clinic. [Figure not available: see fulltext.

  13. Heterosis-associated proteome analyses of maize (Zea mays L.) seminal roots by quantitative label-free LC-MS.

    PubMed

    Marcon, Caroline; Lamkemeyer, Tobias; Malik, Waqas Ahmed; Ungrue, Denise; Piepho, Hans-Peter; Hochholdinger, Frank

    2013-11-20

    Heterosis is the superior performance of heterozygous F1-hybrid plants compared to their homozygous genetically distinct parents. Seminal roots are embryonic roots that play an important role during early maize (Zea mays L.) seedling development. In the present study the most abundant soluble proteins of 2-4cm seminal roots of the reciprocal maize F1-hybrids B73×Mo17 and Mo17×B73 and their parental inbred lines B73 and Mo17 were quantified by label-free LC-MS/MS. In total, 1918 proteins were detected by this shot-gun approach. Among those, 970 were represented by at least two peptides and were further analyzed. Eighty-five proteins displayed non-additive accumulation in at least one hybrid. The functional category protein metabolism was the most abundant class of non-additive proteins represented by 27 proteins. Within this category 16 of 17 non-additively accumulated ribosomal proteins showed high or above high parent expression in seminal roots. These results imply that an increased protein synthesis rate in hybrids might be related to the early manifestation of hybrid vigor in seminal roots. In the present study a shot-gun proteomics approach allowed for the identification of 1917 proteins and analysis of 970 seminal root proteins of maize that were represented by at least 2 peptides. The comparison of proteome complexity of reciprocal hybrids and their parental inbred lines indicates an increased protein synthesis rate in hybrids that may contribute to the early manifestation of heterosis in seminal roots. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Anopheles salivary gland proteomes from major malaria vectors

    PubMed Central

    2012-01-01

    Background Antibody responses against Anopheles salivary proteins can indicate individual exposure to bites of malaria vectors. The extent to which these salivary proteins are species-specific is not entirely resolved. Thus, a better knowledge of the diversity among salivary protein repertoires from various malaria vector species is necessary to select relevant genus-, subgenus- and/or species-specific salivary antigens. Such antigens could be used for quantitative (mosquito density) and qualitative (mosquito species) immunological evaluation of malaria vectors/host contact. In this study, salivary gland protein repertoires (sialomes) from several Anopheles species were compared using in silico analysis and proteomics. The antigenic diversity of salivary gland proteins among different Anopheles species was also examined. Results In silico analysis of secreted salivary gland protein sequences retrieved from an NCBInr database of six Anopheles species belonging to the Cellia subgenus (An. gambiae, An. arabiensis, An. stephensi and An. funestus) and Nyssorhynchus subgenus (An. albimanus and An. darlingi) displayed a higher degree of similarity compared to salivary proteins from closely related Anopheles species. Additionally, computational hierarchical clustering allowed identification of genus-, subgenus- and species-specific salivary proteins. Proteomic and immunoblot analyses performed on salivary gland extracts from four Anopheles species (An. gambiae, An. arabiensis, An. stephensi and An. albimanus) indicated that heterogeneity of the salivary proteome and antigenic proteins was lower among closely related anopheline species and increased with phylogenetic distance. Conclusion This is the first report on the diversity of the salivary protein repertoire among species from the Anopheles genus at the protein level. This work demonstrates that a molecular diversity is exhibited among salivary proteins from closely related species despite their common pharmacological activities. The involvement of these proteins as antigenic candidates for genus-, subgenus- or species-specific immunological evaluation of individual exposure to Anopheles bites is discussed. PMID:23148599

  15. Proteome-wide changes in primary skin keratinocytes exposed to diesel particulate extract-A role for antioxidants in skin health.

    PubMed

    Rajagopalan, Pavithra; Jain, Ankit P; Nanjappa, Vishalakshi; Patel, Krishna; Mangalaparthi, Kiran K; Babu, Niraj; Cavusoglu, Nükhet; Roy, Nita; Soeur, Jeremie; Breton, Lionel; Pandey, Akhilesh; Gowda, Harsha; Chatterjee, Aditi; Misra, Namita

    2018-05-21

    Skin acts as a protective barrier against direct contact with pollutants but inhalation and systemic exposure have indirect effect on keratinocytes. Exposure to diesel exhaust has been linked to increased oxidative stress. To investigate global proteomic alterations in diesel particulate extract (DPE)/its vapor exposed skin keratinocytes. We employed Tandem Mass Tag (TMT)-based proteomics to study effect of DPE/DPE vapor on primary skin keratinocytes. We observed an increased expression of oxidative stress response protein NRF2, upon chronic exposure of primary keratinocytes to DPE/its vapor which includes volatile components such as polycyclic aromatic hydrocarbons (PAHs). Mass spectrometry-based quantitative proteomics led to identification 4490 proteins of which 201 and 374 proteins were significantly dysregulated (≥1.5 fold, p ≤ 0.05) in each condition, respectively. Proteins involved in cellular processes such as cornification (cornifin A), wound healing (antileukoproteinase) and differentiation (suprabasin) were significantly downregulated in primary keratinocytes exposed to DPE/DPE vapor. These results were corroborated in 3D skin models chronically exposed to DPE/DPE vapor. Bioinformatics analyses indicate that DPE and its vapor affect distinct molecular processes in skin keratinocytes. Components of mitochondrial oxidative phosphorylation machinery were seen to be exclusively overexpressed upon chronic DPE vapor exposure. In addition, treatment with an antioxidant like vitamin E partially restores expression of proteins altered upon exposure to DPE/DPE vapor. Our study highlights distinct adverse effects of chronic exposure to DPE/DPE vapor on skin keratinocytes and the potential role of vitamin E in alleviating adverse effects of environmental pollution. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Quantitative Profiling of Brain Lipid Raft Proteome in a Mouse Model of Fragile X Syndrome

    PubMed Central

    Kalinowska, Magdalena; Castillo, Catherine; Francesconi, Anna

    2015-01-01

    Fragile X Syndrome, a leading cause of inherited intellectual disability and autism, arises from transcriptional silencing of the FMR1 gene encoding an RNA-binding protein, Fragile X Mental Retardation Protein (FMRP). FMRP can regulate the expression of approximately 4% of brain transcripts through its role in regulation of mRNA transport, stability and translation, thus providing a molecular rationale for its potential pleiotropic effects on neuronal and brain circuitry function. Several intracellular signaling pathways are dysregulated in the absence of FMRP suggesting that cellular deficits may be broad and could result in homeostatic changes. Lipid rafts are specialized regions of the plasma membrane, enriched in cholesterol and glycosphingolipids, involved in regulation of intracellular signaling. Among transcripts targeted by FMRP, a subset encodes proteins involved in lipid biosynthesis and homeostasis, dysregulation of which could affect the integrity and function of lipid rafts. Using a quantitative mass spectrometry-based approach we analyzed the lipid raft proteome of Fmr1 knockout mice, an animal model of Fragile X syndrome, and identified candidate proteins that are differentially represented in Fmr1 knockout mice lipid rafts. Furthermore, network analysis of these candidate proteins reveals connectivity between them and predicts functional connectivity with genes encoding components of myelin sheath, axonal processes and growth cones. Our findings provide insight to aid identification of molecular and cellular dysfunctions arising from Fmr1 silencing and for uncovering shared pathologies between Fragile X syndrome and other autism spectrum disorders. PMID:25849048

  17. Identification of Proteins Using iTRAQ and Virus-Induced Gene Silencing Reveals Three Bread Wheat Proteins Involved in the Response to Combined Osmotic-Cold Stress.

    PubMed

    Zhang, Ning; Zhang, Lingran; Shi, Chaonan; Zhao, Lei; Cui, Dangqun; Chen, Feng

    2018-05-25

    Crops are often subjected to a combination of stresses in the field. To date, studies on the physiological and molecular responses of common wheat to a combination of osmotic and cold stresses, however, remain unknown. In this study, wheat seedlings exposed to osmotic-cold stress for 24 h showed inhibited growth, as well as increased lipid peroxidation, relative electrolyte leakage, and soluble sugar contents. iTRAQ-based quantitative proteome method was employed to determine the proteomic profiles of the roots and leaves of wheat seedlings exposed to osmotic-cold stress conditions. A total of 250 and 258 proteins with significantly altered abundance in the roots and leaves were identified, respectively, and the majority of these proteins displayed differential abundance, thereby revealing organ-specific differences in adaptation to osmotic-cold stress. Yeast two hybrid assay examined five pairs of stress/defense-related protein-protein interactions in the predicted protein interaction network. Furthermore, quantitative real-time PCR analysis indicated that abiotic stresses increased the expression of three candidate protein genes, i.e., TaGRP2, CDCP, and Wcor410c in wheat leaves. Virus-induced gene silencing indicated that three genes TaGRP2, CDCP, and Wcor410c were involved in modulating osmotic-cold stress in common wheat. Our study provides useful information for the elucidation of molecular and genetics bases of osmotic-cold combined stress in bread wheat.

  18. A Review: Proteomics in Retinal Artery Occlusion, Retinal Vein Occlusion, Diabetic Retinopathy and Acquired Macular Disorders.

    PubMed

    Cehofski, Lasse Jørgensen; Honoré, Bent; Vorum, Henrik

    2017-04-28

    Retinal artery occlusion (RAO), retinal vein occlusion (RVO), diabetic retinopathy (DR) and age-related macular degeneration (AMD) are frequent ocular diseases with potentially sight-threatening outcomes. In the present review we discuss major findings of proteomic studies of RAO, RVO, DR and AMD, including an overview of ocular proteome changes associated with anti-vascular endothelial growth factor (VEGF) treatments. Despite the severe outcomes of RAO, the proteome of the disease remains largely unstudied. There is also limited knowledge about the proteome of RVO, but proteomic studies suggest that RVO is associated with remodeling of the extracellular matrix and adhesion processes. Proteomic studies of DR have resulted in the identification of potential therapeutic targets such as carbonic anhydrase-I. Proliferative diabetic retinopathy is the most intensively studied stage of DR. Proteomic studies have established VEGF, pigment epithelium-derived factor (PEDF) and complement components as key factors associated with AMD. The aim of this review is to highlight the major milestones in proteomics in RAO, RVO, DR and AMD. Through large-scale protein analyses, proteomics is bringing new important insights into these complex pathological conditions.

  19. Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset.

    PubMed

    Ramus, Claire; Hovasse, Agnès; Marcellin, Marlène; Hesse, Anne-Marie; Mouton-Barbosa, Emmanuelle; Bouyssié, David; Vaca, Sebastian; Carapito, Christine; Chaoui, Karima; Bruley, Christophe; Garin, Jérôme; Cianférani, Sarah; Ferro, Myriam; Van Dorssaeler, Alain; Burlet-Schiltz, Odile; Schaeffer, Christine; Couté, Yohann; Gonzalez de Peredo, Anne

    2016-01-30

    Proteomic workflows based on nanoLC-MS/MS data-dependent-acquisition analysis have progressed tremendously in recent years. High-resolution and fast sequencing instruments have enabled the use of label-free quantitative methods, based either on spectral counting or on MS signal analysis, which appear as an attractive way to analyze differential protein expression in complex biological samples. However, the computational processing of the data for label-free quantification still remains a challenge. Here, we used a proteomic standard composed of an equimolar mixture of 48 human proteins (Sigma UPS1) spiked at different concentrations into a background of yeast cell lysate to benchmark several label-free quantitative workflows, involving different software packages developed in recent years. This experimental design allowed to finely assess their performances in terms of sensitivity and false discovery rate, by measuring the number of true and false-positive (respectively UPS1 or yeast background proteins found as differential). The spiked standard dataset has been deposited to the ProteomeXchange repository with the identifier PXD001819 and can be used to benchmark other label-free workflows, adjust software parameter settings, improve algorithms for extraction of the quantitative metrics from raw MS data, or evaluate downstream statistical methods. Bioinformatic pipelines for label-free quantitative analysis must be objectively evaluated in their ability to detect variant proteins with good sensitivity and low false discovery rate in large-scale proteomic studies. This can be done through the use of complex spiked samples, for which the "ground truth" of variant proteins is known, allowing a statistical evaluation of the performances of the data processing workflow. We provide here such a controlled standard dataset and used it to evaluate the performances of several label-free bioinformatics tools (including MaxQuant, Skyline, MFPaQ, IRMa-hEIDI and Scaffold) in different workflows, for detection of variant proteins with different absolute expression levels and fold change values. The dataset presented here can be useful for tuning software tool parameters, and also testing new algorithms for label-free quantitative analysis, or for evaluation of downstream statistical methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Proteomic landscape in Central and Eastern Europe: the 9th Central and Eastern European Proteomic Conference, Poznań, Poland.

    PubMed

    Gadher, Suresh Jivan; Marczak, Łukasz; Łuczak, Magdalena; Stobiecki, Maciej; Widlak, Piotr; Kovarova, Hana

    2016-01-01

    Every year since 2007, the Central and Eastern European Proteomic Conference (CEEPC) has excelled in representing state-of-the-art proteomics in and around Central and Eastern Europe, and linking it to international institutions worldwide. Its mission remains to contribute to all approaches of proteomics including traditional and often-revisited methodologies as well as the latest technological achievements in clinical, quantitative and structural proteomics with a view to systems biology of a variety of processes. The 9th CEEPC was held from June 15th to 18th, 2015, at the Institute of Bioorganic Chemistry, Polish Academy of Sciences in Poznań, Poland. The scientific program stimulated exchange of proteomic knowledge whilst the spectacular venue of the conference allowed participants to enjoy the cobblestoned historical city of Poznań.

  1. Spatially-Resolved Proteomics: Rapid Quantitative Analysis of Laser Capture Microdissected Alveolar Tissue Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clair, Geremy; Piehowski, Paul D.; Nicola, Teodora

    Global proteomics approaches allow characterization of whole tissue lysates to an impressive depth. However, it is now increasingly recognized that to better understand the complexity of multicellular organisms, global protein profiling of specific spatially defined regions/substructures of tissues (i.e. spatially-resolved proteomics) is essential. Laser capture microdissection (LCM) enables microscopic isolation of defined regions of tissues preserving crucial spatial information. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, and that impact measurement robustness, quantification, and throughput. Here, we coupled LCM with a fully automated sample preparation workflow thatmore » with a single manual step allows: protein extraction, tryptic digestion, peptide cleanup and LC-MS/MS analysis of proteomes from microdissected tissues. Benchmarking against the current state of the art in ultrasensitive global proteomic analysis, our approach demonstrated significant improvements in quantification and throughput. Using our LCM-SNaPP proteomics approach, we characterized to a depth of more than 3,400 proteins, the ontogeny of protein changes during normal lung development in laser capture microdissected alveolar tissue containing ~4,000 cells per sample. Importantly, the data revealed quantitative changes for 350 low abundance transcription factors and signaling molecules, confirming earlier transcript-level observations and defining seven modules of coordinated transcription factor/signaling molecule expression patterns, suggesting that a complex network of temporal regulatory control directs normal lung development with epigenetic regulation fine-tuning pre-natal developmental processes. Our LCM-proteomics approach facilitates efficient, spatially-resolved, ultrasensitive global proteomics analyses in high-throughput that will be enabling for several clinical and biological applications.« less

  2. Characterisation of the Manduca sexta sperm proteome: Genetic novelty underlying sperm composition in Lepidoptera.

    PubMed

    Whittington, Emma; Zhao, Qian; Borziak, Kirill; Walters, James R; Dorus, Steve

    2015-07-01

    The application of mass spectrometry based proteomics to sperm biology has greatly accelerated progress in understanding the molecular composition and function of spermatozoa. To date, these approaches have been largely restricted to model organisms, all of which produce a single sperm morph capable of oocyte fertilisation. Here we apply high-throughput mass spectrometry proteomic analysis to characterise sperm composition in Manduca sexta, the tobacco hornworm moth, which produce heteromorphic sperm, including one fertilisation competent (eupyrene) and one incompetent (apyrene) sperm type. This resulted in the high confidence identification of 896 proteins from a co-mixed sample of both sperm types, of which 167 are encoded by genes with strict one-to-one orthology in Drosophila melanogaster. Importantly, over half (55.1%) of these orthologous proteins have previously been identified in the D. melanogaster sperm proteome and exhibit significant conservation in quantitative protein abundance in sperm between the two species. Despite the complex nature of gene expression across spermatogenic stages, a significant correlation was also observed between sperm protein abundance and testis gene expression. Lepidopteran-specific sperm proteins (e.g., proteins with no homology to proteins in non-Lepidopteran taxa) were present in significantly greater abundance on average than those with homology outside the Lepidoptera. Given the disproportionate production of apyrene sperm (96% of all mature sperm in Manduca) relative to eupyrene sperm, these evolutionarily novel and highly abundant proteins are candidates for possessing apyrene-specific functions. Lastly, comparative genomic analyses of testis-expressed, ovary-expressed and sperm genes identified a concentration of novel sperm proteins shared amongst Lepidoptera of potential relevance to the evolutionary origin of heteromorphic spermatogenesis. As the first published Lepidopteran sperm proteome, this whole-cell proteomic characterisation will facilitate future evolutionary genetic and developmental studies of heteromorphic sperm production and parasperm function. Furthermore, the analyses presented here provide useful annotation information regarding sex-biased gene expression, novel Lepidopteran genes and gene function in the male gamete to complement the newly sequenced and annotated Manduca genome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. 2016 update of the PRIDE database and its related tools

    PubMed Central

    Vizcaíno, Juan Antonio; Csordas, Attila; del-Toro, Noemi; Dianes, José A.; Griss, Johannes; Lavidas, Ilias; Mayer, Gerhard; Perez-Riverol, Yasset; Reisinger, Florian; Ternent, Tobias; Xu, Qing-Wei; Wang, Rui; Hermjakob, Henning

    2016-01-01

    The PRoteomics IDEntifications (PRIDE) database is one of the world-leading data repositories of mass spectrometry (MS)-based proteomics data. Since the beginning of 2014, PRIDE Archive (http://www.ebi.ac.uk/pride/archive/) is the new PRIDE archival system, replacing the original PRIDE database. Here we summarize the developments in PRIDE resources and related tools since the previous update manuscript in the Database Issue in 2013. PRIDE Archive constitutes a complete redevelopment of the original PRIDE, comprising a new storage backend, data submission system and web interface, among other components. PRIDE Archive supports the most-widely used PSI (Proteomics Standards Initiative) data standard formats (mzML and mzIdentML) and implements the data requirements and guidelines of the ProteomeXchange Consortium. The wide adoption of ProteomeXchange within the community has triggered an unprecedented increase in the number of submitted data sets (around 150 data sets per month). We outline some statistics on the current PRIDE Archive data contents. We also report on the status of the PRIDE related stand-alone tools: PRIDE Inspector, PRIDE Converter 2 and the ProteomeXchange submission tool. Finally, we will give a brief update on the resources under development ‘PRIDE Cluster’ and ‘PRIDE Proteomes’, which provide a complementary view and quality-scored information of the peptide and protein identification data available in PRIDE Archive. PMID:26527722

  4. Molecular Diagnosis and Biomarker Identification on SELDI proteomics data by ADTBoost method.

    PubMed

    Wang, Lu-Yong; Chakraborty, Amit; Comaniciu, Dorin

    2005-01-01

    Clinical proteomics is an emerging field that will have great impact on molecular diagnosis, identification of disease biomarkers, drug discovery and clinical trials in the post-genomic era. Protein profiling in tissues and fluids in disease and pathological control and other proteomics techniques will play an important role in molecular diagnosis with therapeutics and personalized healthcare. We introduced a new robust diagnostic method based on ADTboost algorithm, a novel algorithm in proteomics data analysis to improve classification accuracy. It generates classification rules, which are often smaller and easier to interpret. This method often gives most discriminative features, which can be utilized as biomarkers for diagnostic purpose. Also, it has a nice feature of providing a measure of prediction confidence. We carried out this method in amyotrophic lateral sclerosis (ALS) disease data acquired by surface enhanced laser-desorption/ionization-time-of-flight mass spectrometry (SELDI-TOF MS) experiments. Our method is shown to have outstanding prediction capacity through the cross-validation, ROC analysis results and comparative study. Our molecular diagnosis method provides an efficient way to distinguish ALS disease from neurological controls. The results are expressed in a simple and straightforward alternating decision tree format or conditional format. We identified most discriminative peaks in proteomic data, which can be utilized as biomarkers for diagnosis. It will have broad application in molecular diagnosis through proteomics data analysis and personalized medicine in this post-genomic era.

  5. Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review

    PubMed Central

    Lee, Chang-Ro; Lee, Jung Hun; Park, Kwang Seung; Jeong, Byeong Chul; Lee, Sang Hee

    2015-01-01

    The increase of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) poses a worldwide and serious health threat. Although new antibiotics, such as daptomycin and linezolid, have been developed for the treatment of infections of Gram-positive pathogens, the emergence of daptomycin-resistant and linezolid-resistant strains during therapy has now increased clinical treatment failures. In the past few years, studies using quantitative proteomic methods have provided a considerable progress in understanding antibiotic resistance mechanisms. In this review, to understand the resistance mechanisms to four clinically important antibiotics (methicillin, vancomycin, linezolid, and daptomycin) used in the treatment of Gram-positive pathogens, we summarize recent advances in studies on resistance mechanisms using quantitative proteomic methods, and also examine proteins playing an important role in the bacterial mechanisms of resistance to the four antibiotics. Proteomic researches can identify proteins whose expression levels are changed in the resistance mechanism to only one antibiotic, such as LiaH in daptomycin resistance and PrsA in vancomycin resistance, and many proteins simultaneously involved in resistance mechanisms to various antibiotics. Most of resistance-related proteins, which are simultaneously associated with resistance mechanisms to several antibiotics, play important roles in regulating bacterial envelope biogenesis, or compensating for the fitness cost of antibiotic resistance. Therefore, proteomic data confirm that antibiotic resistance requires the fitness cost and the bacterial envelope is an important factor in antibiotic resistance. PMID:26322035

  6. The developmental proteome of Drosophila melanogaster

    PubMed Central

    Casas-Vila, Nuria; Bluhm, Alina; Sayols, Sergi; Dinges, Nadja; Dejung, Mario; Altenhein, Tina; Kappei, Dennis; Altenhein, Benjamin; Roignant, Jean-Yves; Butter, Falk

    2017-01-01

    Drosophila melanogaster is a widely used genetic model organism in developmental biology. While this model organism has been intensively studied at the RNA level, a comprehensive proteomic study covering the complete life cycle is still missing. Here, we apply label-free quantitative proteomics to explore proteome remodeling across Drosophila’s life cycle, resulting in 7952 proteins, and provide a high temporal-resolved embryogenesis proteome of 5458 proteins. Our proteome data enabled us to monitor isoform-specific expression of 34 genes during development, to identify the pseudogene Cyp9f3Ψ as a protein-coding gene, and to obtain evidence of 268 small proteins. Moreover, the comparison with available transcriptomic data uncovered examples of poor correlation between mRNA and protein, underscoring the importance of proteomics to study developmental progression. Data integration of our embryogenesis proteome with tissue-specific data revealed spatial and temporal information for further functional studies of yet uncharacterized proteins. Overall, our high resolution proteomes provide a powerful resource and can be explored in detail in our interactive web interface. PMID:28381612

  7. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.).

    PubMed

    Qiu, Jiehua; Hou, Yuxuan; Tong, Xiaohong; Wang, Yifeng; Lin, Haiyan; Liu, Qing; Zhang, Wen; Li, Zhiyong; Nallamilli, Babi R; Zhang, Jian

    2016-02-01

    Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development.

  8. Advancing Cell Biology Through Proteomics in Space and Time (PROSPECTS)*

    PubMed Central

    Lamond, Angus I.; Uhlen, Mathias; Horning, Stevan; Makarov, Alexander; Robinson, Carol V.; Serrano, Luis; Hartl, F. Ulrich; Baumeister, Wolfgang; Werenskiold, Anne Katrin; Andersen, Jens S.; Vorm, Ole; Linial, Michal; Aebersold, Ruedi; Mann, Matthias

    2012-01-01

    The term “proteomics” encompasses the large-scale detection and analysis of proteins and their post-translational modifications. Driven by major improvements in mass spectrometric instrumentation, methodology, and data analysis, the proteomics field has burgeoned in recent years. It now provides a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16 research papers reporting major recent progress by the PROSPECTS groups, including improvements to the resolution and sensitivity of the Orbitrap family of mass spectrometers, systematic detection of proteins using highly characterized antibody collections, and new methods for absolute as well as relative quantification of protein levels. Manuscripts in this issue exemplify approaches for performing quantitative measurements of cell proteomes and for studying their dynamic responses to perturbation, both during normal cellular responses and in disease mechanisms. Here we present a perspective on how the proteomics field is moving beyond simply identifying proteins with high sensitivity toward providing a powerful and versatile set of assay systems for characterizing proteome dynamics and thereby creating a new “third generation” proteomics strategy that offers an indispensible tool for cell biology and molecular medicine. PMID:22311636

  9. Recent advances in mass spectrometry-based approaches for proteomics and biologics: Great contribution for developing therapeutic antibodies.

    PubMed

    Iwamoto, Noriko; Shimada, Takashi

    2018-05-01

    Since the turn of the century, mass spectrometry (MS) technologies have continued to improve dramatically, and advanced strategies that were impossible a decade ago are increasingly becoming available. The basic characteristics behind these advancements are MS resolution, quantitative accuracy, and information science for appropriate data processing. The spectral data from MS contain various types of information. The benefits of improving the resolution of MS data include accurate molecular structural-derived information, and as a result, we can obtain a refined biomolecular structure determination in a sequential and large-scale manner. Moreover, in MS data, not only accurate structural information but also the generated ion amount plays an important rule. This progress has greatly contributed a research field that captures biological events as a system by comprehensively tracing the various changes in biomolecular dynamics. The sequential changes of proteome expression in biological pathways are very essential, and the amounts of the changes often directly become the targets of drug discovery or indicators of clinical efficacy. To take this proteomic approach, it is necessary to separate the individual MS spectra derived from each biomolecule in the complexed biological samples. MS itself is not so infinite to perform the all peak separation, and we should consider improving the methods for sample processing and purification to make them suitable for injection into MS. The above-described characteristics can only be achieved using MS with any analytical instrument. Moreover, MS is expected to be applied and expand into many fields, not only basic life sciences but also forensic medicine, plant sciences, materials, and natural products. In this review, we focus on the technical fundamentals and future aspects of the strategies for accurate structural identification, structure-indicated quantitation, and on the challenges for pharmacokinetics of high-molecular-weight protein biopharmaceuticals. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Decoding 2D-PAGE complex maps: relevance to proteomics.

    PubMed

    Pietrogrande, Maria Chiara; Marchetti, Nicola; Dondi, Francesco; Righetti, Pier Giorgio

    2006-03-20

    This review describes two mathematical approaches useful for decoding the complex signal of 2D-PAGE maps of protein mixtures. These methods are helpful for interpreting the large amount of data of each 2D-PAGE map by extracting all the analytical information hidden therein by spot overlapping. Here the basic theory and application to 2D-PAGE maps are reviewed: the means for extracting information from the experimental data and their relevance to proteomics are discussed. One method is based on the quantitative theory of statistical model of peak overlapping (SMO) using the spot experimental data (intensity and spatial coordinates). The second method is based on the study of the 2D-autocovariance function (2D-ACVF) computed on the experimental digitised map. They are two independent methods that are able to extract equal and complementary information from the 2D-PAGE map. Both methods permit to obtain fundamental information on the sample complexity and the separation performance and to single out ordered patterns present in spot positions: the availability of two independent procedures to compute the same separation parameters is a powerful tool to estimate the reliability of the obtained results. The SMO procedure is an unique tool to quantitatively estimate the degree of spot overlapping present in the map, while the 2D-ACVF method is particularly powerful in simply singling out the presence of order in the spot position from the complexity of the whole 2D map, i.e., spot trains. The procedures were validated by extensive numerical computation on computer-generated maps describing experimental 2D-PAGE gels of protein mixtures. Their applicability to real samples was tested on reference maps obtained from literature sources. The review describes the most relevant information for proteomics: sample complexity, separation performance, overlapping extent, identification of spot trains related to post-translational modifications (PTMs).

  11. Quantitative phosphoproteomic analysis of host responses in human lung epithelial (A549) cells during influenza virus infection.

    PubMed

    Dapat, Clyde; Saito, Reiko; Suzuki, Hiroshi; Horigome, Tsuneyoshi

    2014-01-22

    The emergence of antiviral drug-resistant influenza viruses highlights the need for alternative therapeutic strategies. Elucidation of host factors required during virus infection provides information not only on the signaling pathways involved but also on the identification of novel drug targets. RNA interference screening method had been utilized by several studies to determine these host factors; however, proteomics data on influenza host factors are currently limited. In this study, quantitative phosphoproteomic analysis of human lung cell line (A549) infected with 2009 pandemic influenza virus A (H1N1) virus was performed. Phosphopeptides were enriched from tryptic digests of total protein of infected and mock-infected cells using a titania column on an automated purification system followed by iTRAQ labeling. Identification and quantitative analysis of iTRAQ-labeled phosphopeptides were performed using LC-MS/MS. We identified 366 phosphorylation sites on 283 proteins. Of these, we detected 43 upregulated and 35 downregulated proteins during influenza virus infection. Gene ontology enrichment analysis showed that majority of the identified proteins are phosphoproteins involved in RNA processing, immune system process and response to infection. Host-virus interaction network analysis had identified 23 densely connected subnetworks. Of which, 13 subnetworks contained proteins with altered phosphorylation levels during by influenza virus infection. Our results will help to identify potential drug targets that can be pursued for influenza antiviral drug development. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A Statistical Framework for Protein Quantitation in Bottom-Up MS-Based Proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpievitch, Yuliya; Stanley, Jeffrey R.; Taverner, Thomas

    2009-08-15

    Motivation: Quantitative mass spectrometry-based proteomics requires protein-level estimates and associated confidence measures. Challenges include the presence of low quality or incorrectly identified peptides and informative missingness. Furthermore, models are required for rolling peptide-level information up to the protein level. Results: We present a statistical model that carefully accounts for informative missingness in peak intensities and allows unbiased, model-based, protein-level estimation and inference. The model is applicable to both label-based and label-free quantitation experiments. We also provide automated, model-based, algorithms for filtering of proteins and peptides as well as imputation of missing values. Two LC/MS datasets are used to illustrate themore » methods. In simulation studies, our methods are shown to achieve substantially more discoveries than standard alternatives. Availability: The software has been made available in the opensource proteomics platform DAnTE (http://omics.pnl.gov/software/). Contact: adabney@stat.tamu.edu Supplementary information: Supplementary data are available at Bioinformatics online.« less

  13. Fractal-like Distributions over the Rational Numbers in High-throughput Biological and Clinical Data

    NASA Astrophysics Data System (ADS)

    Trifonov, Vladimir; Pasqualucci, Laura; Dalla-Favera, Riccardo; Rabadan, Raul

    2011-12-01

    Recent developments in extracting and processing biological and clinical data are allowing quantitative approaches to studying living systems. High-throughput sequencing (HTS), expression profiles, proteomics, and electronic health records (EHR) are some examples of such technologies. Extracting meaningful information from those technologies requires careful analysis of the large volumes of data they produce. In this note, we present a set of fractal-like distributions that commonly appear in the analysis of such data. The first set of examples are drawn from a HTS experiment. Here, the distributions appear as part of the evaluation of the error rate of the sequencing and the identification of tumorogenic genomic alterations. The other examples are obtained from risk factor evaluation and analysis of relative disease prevalence and co-mordbidity as these appear in EHR. The distributions are also relevant to identification of subclonal populations in tumors and the study of quasi-species and intrahost diversity of viral populations.

  14. Comprehensive Identification of Glycated Peptides and Their Glycation Motifs in Plasma and Erythrocytes of Control and Diabetic Subjects

    PubMed Central

    Zhang, Qibin; Monroe, Matthew E.; Schepmoes, Athena A.; Clauss, Therese R. W.; Gritsenko, Marina A.; Meng, Da; Petyuk, Vladislav A.; Smith, Richard D.; Metz, Thomas O.

    2011-01-01

    Non-enzymatic glycation of proteins sets the stage for formation of advanced glycation end-products and development of chronic complications of diabetes. In this report, we extended our previous methods on proteomics analysis of glycated proteins to comprehensively identify glycated proteins in control and diabetic human plasma and erythrocytes. Using immunodepletion, enrichment, and fractionation strategies, we identified 7749 unique glycated peptides, corresponding to 3742 unique glycated proteins. Semi-quantitative comparisons showed that glycation levels of a number of proteins were significantly increased in diabetes and that erythrocyte proteins were more extensively glycated than plasma proteins. A glycation motif analysis revealed that some amino acids were favored more than others in the protein primary structures in the vicinity of the glycation sites in both sample types. The glycated peptides and corresponding proteins reported here provide a foundation for potential identification of novel markers for diabetes, hyperglycemia, and diabetic complications in future studies. PMID:21612289

  15. Mspire-Simulator: LC-MS shotgun proteomic simulator for creating realistic gold standard data.

    PubMed

    Noyce, Andrew B; Smith, Rob; Dalgleish, James; Taylor, Ryan M; Erb, K C; Okuda, Nozomu; Prince, John T

    2013-12-06

    The most important step in any quantitative proteomic pipeline is feature detection (aka peak picking). However, generating quality hand-annotated data sets to validate the algorithms, especially for lower abundance peaks, is nearly impossible. An alternative for creating gold standard data is to simulate it with features closely mimicking real data. We present Mspire-Simulator, a free, open-source shotgun proteomic simulator that goes beyond previous simulation attempts by generating LC-MS features with realistic m/z and intensity variance along with other noise components. It also includes machine-learned models for retention time and peak intensity prediction and a genetic algorithm to custom fit model parameters for experimental data sets. We show that these methods are applicable to data from three different mass spectrometers, including two fundamentally different types, and show visually and analytically that simulated peaks are nearly indistinguishable from actual data. Researchers can use simulated data to rigorously test quantitation software, and proteomic researchers may benefit from overlaying simulated data on actual data sets.

  16. Monitoring Peptidase Activities in Complex Proteomes by MALDI-TOF Mass Spectrometry

    PubMed Central

    Villanueva, Josep; Nazarian, Arpi; Lawlor, Kevin; Tempst, Paul

    2009-01-01

    Measuring enzymatic activities in biological fluids is a form of activity-based proteomics and may be utilized as a means of developing disease biomarkers. Activity-based assays allow amplification of output signals, thus potentially visualizing low-abundant enzymes on a virtually transparent whole-proteome background. The protocol presented here describes a semi-quantitative in vitro assay of proteolytic activities in complex proteomes by monitoring breakdown of designer peptide-substrates using robotic extraction and a MALDI-TOF mass spectrometric read-out. Relative quantitation of the peptide metabolites is done by comparison with spiked internal standards, followed by statistical analysis of the resulting mini-peptidome. Partial automation provides reproducibility and throughput essential for comparing large sample sets. The approach may be employed for diagnostic or predictive purposes and enables profiling of 96 samples in 30 hours. It could be tailored to many diagnostic and pharmaco-dynamic purposes, as a read-out of catalytic and metabolic activities in body fluids or tissues. PMID:19617888

  17. Mapping the Extracellular and Membrane Proteome Associated with the Vasculature and the Stroma in the Embryo*

    PubMed Central

    Soulet, Fabienne; Kilarski, Witold W.; Roux-Dalvai, Florence; Herbert, John M. J.; Sacewicz, Izabela; Mouton-Barbosa, Emmanuelle; Bicknell, Roy; Lalor, Patricia; Monsarrat, Bernard; Bikfalvi, Andreas

    2013-01-01

    In order to map the extracellular or membrane proteome associated with the vasculature and the stroma in an embryonic organism in vivo, we developed a biotinylation technique for chicken embryo and combined it with mass spectrometry and bioinformatic analysis. We also applied this procedure to implanted tumors growing on the chorioallantoic membrane or after the induction of granulation tissue. Membrane and extracellular matrix proteins were the most abundant components identified. Relative quantitative analysis revealed differential protein expression patterns in several tissues. Through a bioinformatic approach, we determined endothelial cell protein expression signatures, which allowed us to identify several proteins not yet reported to be associated with endothelial cells or the vasculature. This is the first study reported so far that applies in vivo biotinylation, in combination with robust label-free quantitative proteomics approaches and bioinformatic analysis, to an embryonic organism. It also provides the first description of the vascular and matrix proteome of the embryo that might constitute the starting point for further developments. PMID:23674615

  18. PRIDE Inspector Toolsuite: Moving Toward a Universal Visualization Tool for Proteomics Data Standard Formats and Quality Assessment of ProteomeXchange Datasets.

    PubMed

    Perez-Riverol, Yasset; Xu, Qing-Wei; Wang, Rui; Uszkoreit, Julian; Griss, Johannes; Sanchez, Aniel; Reisinger, Florian; Csordas, Attila; Ternent, Tobias; Del-Toro, Noemi; Dianes, Jose A; Eisenacher, Martin; Hermjakob, Henning; Vizcaíno, Juan Antonio

    2016-01-01

    The original PRIDE Inspector tool was developed as an open source standalone tool to enable the visualization and validation of mass-spectrometry (MS)-based proteomics data before data submission or already publicly available in the Proteomics Identifications (PRIDE) database. The initial implementation of the tool focused on visualizing PRIDE data by supporting the PRIDE XML format and a direct access to private (password protected) and public experiments in PRIDE.The ProteomeXchange (PX) Consortium has been set up to enable a better integration of existing public proteomics repositories, maximizing its benefit to the scientific community through the implementation of standard submission and dissemination pipelines. Within the Consortium, PRIDE is focused on supporting submissions of tandem MS data. The increasing use and popularity of the new Proteomics Standards Initiative (PSI) data standards such as mzIdentML and mzTab, and the diversity of workflows supported by the PX resources, prompted us to design and implement a new suite of algorithms and libraries that would build upon the success of the original PRIDE Inspector and would enable users to visualize and validate PX "complete" submissions. The PRIDE Inspector Toolsuite supports the handling and visualization of different experimental output files, ranging from spectra (mzML, mzXML, and the most popular peak lists formats) and peptide and protein identification results (mzIdentML, PRIDE XML, mzTab) to quantification data (mzTab, PRIDE XML), using a modular and extensible set of open-source, cross-platform libraries. We believe that the PRIDE Inspector Toolsuite represents a milestone in the visualization and quality assessment of proteomics data. It is freely available at http://github.com/PRIDE-Toolsuite/. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. PRIDE Inspector Toolsuite: Moving Toward a Universal Visualization Tool for Proteomics Data Standard Formats and Quality Assessment of ProteomeXchange Datasets*

    PubMed Central

    Perez-Riverol, Yasset; Xu, Qing-Wei; Wang, Rui; Uszkoreit, Julian; Griss, Johannes; Sanchez, Aniel; Reisinger, Florian; Csordas, Attila; Ternent, Tobias; del-Toro, Noemi; Dianes, Jose A.; Eisenacher, Martin; Hermjakob, Henning; Vizcaíno, Juan Antonio

    2016-01-01

    The original PRIDE Inspector tool was developed as an open source standalone tool to enable the visualization and validation of mass-spectrometry (MS)-based proteomics data before data submission or already publicly available in the Proteomics Identifications (PRIDE) database. The initial implementation of the tool focused on visualizing PRIDE data by supporting the PRIDE XML format and a direct access to private (password protected) and public experiments in PRIDE. The ProteomeXchange (PX) Consortium has been set up to enable a better integration of existing public proteomics repositories, maximizing its benefit to the scientific community through the implementation of standard submission and dissemination pipelines. Within the Consortium, PRIDE is focused on supporting submissions of tandem MS data. The increasing use and popularity of the new Proteomics Standards Initiative (PSI) data standards such as mzIdentML and mzTab, and the diversity of workflows supported by the PX resources, prompted us to design and implement a new suite of algorithms and libraries that would build upon the success of the original PRIDE Inspector and would enable users to visualize and validate PX “complete” submissions. The PRIDE Inspector Toolsuite supports the handling and visualization of different experimental output files, ranging from spectra (mzML, mzXML, and the most popular peak lists formats) and peptide and protein identification results (mzIdentML, PRIDE XML, mzTab) to quantification data (mzTab, PRIDE XML), using a modular and extensible set of open-source, cross-platform libraries. We believe that the PRIDE Inspector Toolsuite represents a milestone in the visualization and quality assessment of proteomics data. It is freely available at http://github.com/PRIDE-Toolsuite/. PMID:26545397

  20. Biomarker Candidates of Chlamydophila pneumoniae Proteins and Protein Fragments Identified by Affinity-Proteomics Using FTICR-MS and LC-MS/MS

    NASA Astrophysics Data System (ADS)

    Susnea, Iuliana; Bunk, Sebastian; Wendel, Albrecht; Hermann, Corinna; Przybylski, Michael

    2011-04-01

    We report here an affinity-proteomics approach that combines 2D-gel electrophoresis and immunoblotting with high performance mass spectrometry to the identification of both full length protein antigens and antigenic fragments of Chlamydophila pneumoniae (C. pneumoniae). The present affinity-mass spectrometry approach effectively utilized high resolution FTICR mass spectrometry and LC-tandem-MS for protein identification, and enabled the identification of several new highly antigenic C. pneumoniae proteins that were not hitherto reported or previously detected only in other Chlamydia species, such as Chlamydia trachomatis. Moreover, high resolution affinity-MS provided the identification of several neo-antigenic protein fragments containing N- and C-terminal, and central domains such as fragments of the membrane protein Pmp21 and the secreted chlamydial proteasome-like factor (Cpaf), representing specific biomarker candidates.

  1. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology.

    PubMed

    Nomura, Fumio

    2015-06-01

    Rapid and accurate identification of microorganisms, a prerequisite for appropriate patient care and infection control, is a critical function of any clinical microbiology laboratory. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a quick and reliable method for identification of microorganisms, including bacteria, yeast, molds, and mycobacteria. Indeed, there has been a revolutionary shift in clinical diagnostic microbiology. In the present review, the state of the art and advantages of MALDI-TOF MS-based bacterial identification are described. The potential of this innovative technology for use in strain typing and detection of antibiotic resistance is also discussed. This article is part of a Special Issue entitled: Medical Proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes

    PubMed Central

    Zhang, Yanling; Zhang, Yong; Adachi, Jun; Olsen, Jesper V.; Shi, Rong; de Souza, Gustavo; Pasini, Erica; Foster, Leonard J.; Macek, Boris; Zougman, Alexandre; Kumar, Chanchal; Wiśniewski, Jacek R.; Jun, Wang; Mann, Matthias

    2007-01-01

    Mass spectrometry (MS)-based proteomics has become a powerful technology to map the protein composition of organelles, cell types and tissues. In our department, a large-scale effort to map these proteomes is complemented by the Max-Planck Unified (MAPU) proteome database. MAPU contains several body fluid proteomes; including plasma, urine, and cerebrospinal fluid. Cell lines have been mapped to a depth of several thousand proteins and the red blood cell proteome has also been analyzed in depth. The liver proteome is represented with 3200 proteins. By employing high resolution MS and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools. PMID:17090601

  3. Isobaric Tags for Relative and Absolute Quantitation-Based Proteomic Analysis of Patent and Constricted Ductus Arteriosus Tissues Confirms the Systemic Regulation of Ductus Arteriosus Closure.

    PubMed

    Hong, Haifa; Ye, Lincai; Chen, Huiwen; Xia, Yu; Liu, Yue; Liu, Jinfen; Lu, Yanan; Zhang, Haibo

    2015-08-01

    We aimed to evaluate global changes in protein expression associated with patency by undertaking proteomic analysis of human constricted and patent ductus arteriosus (DA). Ten constricted and 10 patent human DAs were excised from infants with ductal-dependent heart disease during surgery. Using isobaric tags for relative and absolute quantitation-based quantitative proteomics, 132 differentially expressed proteins were identified. Of 132 proteins, voltage-gated sodium channel 1.3 (SCN3A), myosin 1d (Myo1d), Rho GTPase activating protein 26 (ARHGAP26), and retinitis pigmentosa 1 (RP1) were selected for validation by Western blot and quantitative real-time polymerase chain reaction analyses. Significant upregulation of SCN3A, Myo1d, and RP1 messenger RNA, and protein levels was observed in the patent DA group (all P ≤ 0.048). ARHGAP26 messenger RNA and protein levels were decreased in patent DA tissue (both P ≤ 0.018). Immunohistochemistry analysis revealed that Myo1d, ARHGAP26, and RP1 were specifically expressed in the subendothelial region of constricted DAs; however, diffuse expression of these proteins was noted in the patent group. Proteomic analysis revealed global changes in the expression of proteins that regulate oxygen sensing, ion channels, smooth muscle cell migration, nervous system, immune system, and metabolism, suggesting a basis for the systemic regulation of DA patency by diverse signaling pathways, which will be confirmed in further studies.

  4. Quantitative proteomic analysis of paired colorectal cancer and non-tumorigenic tissues reveals signature proteins and perturbed pathways involved in CRC progression and metastasis.

    PubMed

    Sethi, Manveen K; Thaysen-Andersen, Morten; Kim, Hoguen; Park, Cheol Keun; Baker, Mark S; Packer, Nicolle H; Paik, Young-Ki; Hancock, William S; Fanayan, Susan

    2015-08-03

    Modern proteomics has proven instrumental in our understanding of the molecular deregulations associated with the development and progression of cancer. Herein, we profile membrane-enriched proteome of tumor and adjacent normal tissues from eight CRC patients using label-free nanoLC-MS/MS-based quantitative proteomics and advanced pathway analysis. Of the 948 identified proteins, 184 proteins were differentially expressed (P<0.05, fold change>1.5) between the tumor and non-tumor tissue (69 up-regulated and 115 down-regulated in tumor tissues). The CRC tumor and non-tumor tissues clustered tightly in separate groups using hierarchical cluster analysis of the differentially expressed proteins, indicating a strong CRC-association of this proteome subset. Specifically, cancer associated proteins such as FN1, TNC, DEFA1, ITGB2, MLEC, CDH17, EZR and pathways including actin cytoskeleton and RhoGDI signaling were deregulated. Stage-specific proteome signatures were identified including up-regulated ribosomal proteins and down-regulated annexin proteins in early stage CRC. Finally, EGFR(+) CRC tissues showed an EGFR-dependent down-regulation of cell adhesion molecules, relative to EGFR(-) tissues. Taken together, this study provides a detailed map of the altered proteome and associated protein pathways in CRC, which enhances our mechanistic understanding of CRC biology and opens avenues for a knowledge-driven search for candidate CRC protein markers. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Human body fluid proteome analysis

    PubMed Central

    Hu, Shen; Loo, Joseph A.; Wong, David T.

    2010-01-01

    The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future. PMID:17083142

  6. Human body fluid proteome analysis.

    PubMed

    Hu, Shen; Loo, Joseph A; Wong, David T

    2006-12-01

    The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future.

  7. Understanding Cullin-RING E3 Biology through Proteomics-based Substrate Identification*

    PubMed Central

    Harper, J. Wade; Tan, Meng-Kwang Marcus

    2012-01-01

    Protein turnover through the ubiquitin-proteasome pathway controls numerous developmental decisions and biochemical processes in eukaryotes. Central to protein ubiquitylation are ubiquitin ligases, which provide specificity in targeted ubiquitylation. With more than 600 ubiquitin ligases encoded by the human genome, many of which remain to be studied, considerable effort is being placed on the development of methods for identifying substrates of specific ubiquitin ligases. In this review, we describe proteomic technologies for the identification of ubiquitin ligase targets, with a particular focus on members of the cullin-RING E3 class of ubiquitin ligases, which use F-box proteins as substrate specific adaptor proteins. Various proteomic methods are described and are compared with genetic approaches that are available. The continued development of such methods is likely to have a substantial impact on the ubiquitin-proteasome field. PMID:22962057

  8. Understanding cullin-RING E3 biology through proteomics-based substrate identification.

    PubMed

    Harper, J Wade; Tan, Meng-Kwang Marcus

    2012-12-01

    Protein turnover through the ubiquitin-proteasome pathway controls numerous developmental decisions and biochemical processes in eukaryotes. Central to protein ubiquitylation are ubiquitin ligases, which provide specificity in targeted ubiquitylation. With more than 600 ubiquitin ligases encoded by the human genome, many of which remain to be studied, considerable effort is being placed on the development of methods for identifying substrates of specific ubiquitin ligases. In this review, we describe proteomic technologies for the identification of ubiquitin ligase targets, with a particular focus on members of the cullin-RING E3 class of ubiquitin ligases, which use F-box proteins as substrate specific adaptor proteins. Various proteomic methods are described and are compared with genetic approaches that are available. The continued development of such methods is likely to have a substantial impact on the ubiquitin-proteasome field.

  9. Steps for successful implementation of proteomic research in the OR.

    PubMed

    Martin, Chidima Tsion; Henry, Linda; Martin, Lisa; Ad, Niv

    2010-02-01

    Proteomic studies (ie, the investigation and identification of proteins found in biological samples such as blood and tissue) are at the forefront of the identification of disease biomarkers and the understanding of proteins. These studies promise to enhance diagnostic and prognostic analysis across all disciplines of clinical practice. As the practice of nursing and medicine becomes more preventative in nature and predictive in terms of patient care, successfully integrating and implementing proteomic research will become increasingly important, especially in the OR. It is imperative that perioperative nurses and researchers establish a collaborative process for specimen collection. Steps in establishing and maintaining a successful specimen collection program include implementing and evaluating a protocol, developing good communication, and keeping all participants up to date on the progress of the study. Copyright 2010 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  10. Immunodepletion Plasma Proteomics by TripleTOF 5600 and Orbitrap Elite/LTQ-Orbitrap Velos/Q Exactive Mass Spectrometers

    PubMed Central

    Patel, Bhavinkumar B.; Kelsen, Steven G.; Braverman, Alan; Swinton, Derrick J.; Gafken, Philip R.; Jones, Lisa A.; Lane, William S.; Neveu, John M.; Leung, Hon-Chiu E.; Shaffer, Scott A.; Leszyk, John D.; Stanley, Bruce A.; Fox, Todd E.; Stanley, Anne; Hall, Michael J.; Hampel, Heather; South, Christopher D.; de la Chapelle, Albert; Burt, Randall W.; Jones, David A.; Kopelovich, Levy; Yeung, Anthony T.

    2013-01-01

    Plasma proteomic experiments performed rapidly and economically using several of the latest high-resolution mass spectrometers were compared. Four quantitative hyperfractionated plasma proteomics experiments were analyzed in replicates by two AB SCIEX TripleTOF 5600 and three Thermo Scientific Orbitrap (Elite/LTQ-Orbitrap Velos/Q Exactive) instruments. Each experiment compared two iTRAQ isobaric-labeled immunodepleted plasma proteomes, provided as 30 labeled peptide fractions. 480 LC-MS/MS runs delivered >250 GB of data in two months. Several analysis algorithms were compared. At 1 % false discovery rate, the relative comparative findings concluded that the Thermo Scientific Q Exactive Mass Spectrometer resulted in the highest number of identified proteins and unique sequences with iTRAQ quantitation. The confidence of iTRAQ fold-change for each protein is dependent on the overall ion statistics (Mascot Protein Score) attainable by each instrument. The benchmarking also suggested how to further improve the mass spectrometry parameters and HPLC conditions. Our findings highlight the special challenges presented by the low abundance peptide ions of iTRAQ plasma proteome because the dynamic range of plasma protein abundance is uniquely high compared with cell lysates, necessitating high instrument sensitivity. PMID:24004147

  11. Infrared Multiphoton Dissociation for Quantitative Shotgun Proteomics

    PubMed Central

    Ledvina, Aaron R.; Lee, M. Violet; McAlister, Graeme C.; Westphall, Michael S.; Coon, Joshua J.

    2012-01-01

    We modified a dual-cell linear ion trap mass spectrometer to perform infrared multiphoton dissociation (IRMPD) in the low pressure trap of a dual-cell quadrupole linear ion trap (dual cell QLT) and perform large-scale IRMPD analyses of complex peptide mixtures. Upon optimization of activation parameters (precursor q-value, irradiation time, and photon flux), IRMPD subtly, but significantly outperforms resonant excitation CAD for peptides identified at a 1% false-discovery rate (FDR) from a yeast tryptic digest (95% confidence, p = 0.019). We further demonstrate that IRMPD is compatible with the analysis of isobaric-tagged peptides. Using fixed QLT RF amplitude allows for the consistent retention of reporter ions, but necessitates the use of variable IRMPD irradiation times, dependent upon precursor mass-to-charge (m/z). We show that IRMPD activation parameters can be tuned to allow for effective peptide identification and quantitation simultaneously. We thus conclude that IRMPD performed in a dual-cell ion trap is an effective option for the large-scale analysis of both unmodified and isobaric-tagged peptides. PMID:22480380

  12. Automatic and rapid identification of glycopeptides by nano-UPLC-LTQ-FT-MS and proteomic search engine.

    PubMed

    Giménez, Estela; Gay, Marina; Vilaseca, Marta

    2017-01-30

    Here we demonstrate the potential of nano-UPLC-LTQ-FT-MS and the Byonic™ proteomic search engine for the separation, detection, and identification of N- and O-glycopeptide glycoforms in standard glycoproteins. The use of a BEH C18 nanoACQUITY column allowed the separation of the glycopeptides present in the glycoprotein digest and a baseline-resolution of the glycoforms of the same glycopeptide on the basis of the number of sialic acids. Moreover, we evaluated several acquisition strategies in order to improve the detection and characterization of glycopeptide glycoforms with the maximum number of identification percentages. The proposed strategy is simple to set up with the technology platforms commonly used in proteomic labs. The method allows the straightforward and rapid obtention of a general glycosylated map of a given protein, including glycosites and their corresponding glycosylated structures. The MS strategy selected in this work, based on a gas phase fractionation approach, led to 136 unique peptides from four standard proteins, which represented 78% of the total number of peptides identified. Moreover, the method does not require an extra glycopeptide enrichment step, thus preventing the bias that this step could cause towards certain glycopeptide species. Data are available via ProteomeXchange with identifier PXD003578. We propose a simple and high-throughput glycoproteomics-based methodology that allows the separation of glycopeptide glycoforms on the basis of the number of sialic acids, and their automatic and rapid identification without prior knowledge of protein glycosites or type and structure of the glycans. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Generic comparison of protein inference engines.

    PubMed

    Claassen, Manfred; Reiter, Lukas; Hengartner, Michael O; Buhmann, Joachim M; Aebersold, Ruedi

    2012-04-01

    Protein identifications, instead of peptide-spectrum matches, constitute the biologically relevant result of shotgun proteomics studies. How to appropriately infer and report protein identifications has triggered a still ongoing debate. This debate has so far suffered from the lack of appropriate performance measures that allow us to objectively assess protein inference approaches. This study describes an intuitive, generic and yet formal performance measure and demonstrates how it enables experimentalists to select an optimal protein inference strategy for a given collection of fragment ion spectra. We applied the performance measure to systematically explore the benefit of excluding possibly unreliable protein identifications, such as single-hit wonders. Therefore, we defined a family of protein inference engines by extending a simple inference engine by thousands of pruning variants, each excluding a different specified set of possibly unreliable identifications. We benchmarked these protein inference engines on several data sets representing different proteomes and mass spectrometry platforms. Optimally performing inference engines retained all high confidence spectral evidence, without posterior exclusion of any type of protein identifications. Despite the diversity of studied data sets consistently supporting this rule, other data sets might behave differently. In order to ensure maximal reliable proteome coverage for data sets arising in other studies we advocate abstaining from rigid protein inference rules, such as exclusion of single-hit wonders, and instead consider several protein inference approaches and assess these with respect to the presented performance measure in the specific application context.

  14. Quantitative Dynamics of Proteome, Acetylome, and Succinylome during Stem-Cell Differentiation into Hepatocyte-like Cells.

    PubMed

    Liu, Zekun; Zhang, Qing-Bin; Bu, Chen; Wang, Dawei; Yu, Kai; Gan, Zhixue; Chang, Jianfeng; Cheng, Zhongyi; Liu, Zexian

    2018-06-21

    Stem-cell differentiation is a complex biological process controlled by a series of functional protein clusters and signaling transductions, especially metabolism-related pathways. Although previous studies have quantified the proteome and phosphoproteome for stem-cell differentiation, the investigation of acylation-mediated regulation is still absent. In this study, we quantitatively profiled the proteome, acetylome, and succinylome in pluripotent human embryonic stem cells (hESCs) and differentiated hepatocyte-like cells (HLCs). In total, 3843 proteins, 185 acetylation sites in 103 proteins, and 602 succinylation sites in 391 proteins were quantified. The quantitative proteome showed that in differentiated HLCs the TGF-β, JAK-STAT, and RAS signaling pathways were activated, whereas ECM-related processes such as sulfates and leucine degradation were depressed. Interestingly, it was observed that the acetylation and succinylation were more intensive in hESCs, whereas protein processing in endoplasmic reticulum and the carbon metabolic pathways were especially highly succinylated. Because the metabolism patterns in pluripotent hESCs and the differentiated HLCs were different, we proposed that the dynamic acylations, especially succinylation, might regulate the Warburg-like effect and TCA cycle during differentiation. Taken together, we systematically profiled the protein and acylation levels of regulation in pluripotent hESCs and differentiated HLCs, and the results indicated the important roles of acylation in pluripotency maintenance and differentiation.

  15. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer.

    PubMed

    Shah, Anup D; Inder, Kerry L; Shah, Alok K; Cristino, Alexandre S; McKie, Arthur B; Gabra, Hani; Davis, Melissa J; Hill, Michelle M

    2016-10-07

    Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.

  16. Proteomic analysis of mitochondria in respiratory epithelial cells infected with human respiratory syncytial virus and functional implications for virus and cell biology.

    PubMed

    Munday, Diane C; Howell, Gareth; Barr, John N; Hiscox, Julian A

    2015-03-01

    The aim of this study was to quantitatively characterise the mitochondrial proteome of airway epithelial cells infected with human respiratory syncytial virus (HRSV), a major cause of paediatric illness. Quantitative proteomics, underpinned by stable isotope labelling with amino acids in cell culture, coupled to LC-MS/MS, was applied to mitochondrial fractions prepared from HRSV-infected and mock-infected cells 12 and 24 h post-infection. Datasets were analysed using ingenuity pathway analysis, and the results were validated and characterised using bioimaging, targeted inhibition and gene depletion. The data quantitatively indicated that antiviral signalling proteins converged on mitochondria during HRSV infection. The mitochondrial receptor protein Tom70 was found to act in an antiviral manner, while its chaperone, Hsp90, was confirmed to be a positive viral factor. Proteins associated with different organelles were also co-enriched in the mitochondrial fractions from HRSV-infected cells, suggesting that alterations in organelle dynamics and membrane associations occur during virus infection. Protein and pathway-specific alterations occur to the mitochondrial proteome in a spatial and temporal manner during HRSV infection, suggesting that this organelle may have altered functions. These could be targeted as part of potential therapeutic strategies to disrupt virus biology. © 2014 Royal Pharmaceutical Society.

  17. ATAQS: A computational software tool for high throughput transition optimization and validation for selected reaction monitoring mass spectrometry

    PubMed Central

    2011-01-01

    Background Since its inception, proteomics has essentially operated in a discovery mode with the goal of identifying and quantifying the maximal number of proteins in a sample. Increasingly, proteomic measurements are also supporting hypothesis-driven studies, in which a predetermined set of proteins is consistently detected and quantified in multiple samples. Selected reaction monitoring (SRM) is a targeted mass spectrometric technique that supports the detection and quantification of specific proteins in complex samples at high sensitivity and reproducibility. Here, we describe ATAQS, an integrated software platform that supports all stages of targeted, SRM-based proteomics experiments including target selection, transition optimization and post acquisition data analysis. This software will significantly facilitate the use of targeted proteomic techniques and contribute to the generation of highly sensitive, reproducible and complete datasets that are particularly critical for the discovery and validation of targets in hypothesis-driven studies in systems biology. Result We introduce a new open source software pipeline, ATAQS (Automated and Targeted Analysis with Quantitative SRM), which consists of a number of modules that collectively support the SRM assay development workflow for targeted proteomic experiments (project management and generation of protein, peptide and transitions and the validation of peptide detection by SRM). ATAQS provides a flexible pipeline for end-users by allowing the workflow to start or end at any point of the pipeline, and for computational biologists, by enabling the easy extension of java algorithm classes for their own algorithm plug-in or connection via an external web site. This integrated system supports all steps in a SRM-based experiment and provides a user-friendly GUI that can be run by any operating system that allows the installation of the Mozilla Firefox web browser. Conclusions Targeted proteomics via SRM is a powerful new technique that enables the reproducible and accurate identification and quantification of sets of proteins of interest. ATAQS is the first open-source software that supports all steps of the targeted proteomics workflow. ATAQS also provides software API (Application Program Interface) documentation that enables the addition of new algorithms to each of the workflow steps. The software, installation guide and sample dataset can be found in http://tools.proteomecenter.org/ATAQS/ATAQS.html PMID:21414234

  18. Proteomics of blood-based therapeutics: a promising tool for quality assurance in transfusion medicine.

    PubMed

    Thiele, Thomas; Steil, Leif; Völker, Uwe; Greinacher, Andreas

    2007-01-01

    Blood-based therapeutics are cellular or plasma components derived from human blood. Their production requires appropriate selection and treatment of the donor and processing of cells or plasma proteins. In contrast to clearly defined, chemically synthesized drugs, blood-derived therapeutics are highly complex mixtures of plasma proteins or even more complex cells. Pathogen transmission by the product as well as changes in the integrity of blood constituents resulting in loss of function or immune modulation are currently important issues in transfusion medicine. Protein modifications can occur during various steps of the production process, such as acquisition, enrichment of separate components (e.g. coagulation factors, cell populations), virus inactivation, conservation, and storage. Contemporary proteomic strategies allow a comprehensive assessment of protein modifications with high coverage, offer capabilities for qualitative and even quantitative analysis, and for high-throughput protein identification. Traditionally, proteomics approaches predominantly relied on two-dimensional gel electrophoresis (2-DE). Even if 2-DE is still state of the art, it has inherent limitations that are mainly based on the physicochemical properties of the proteins analyzed; for example, proteins with extremes in molecular mass and hydrophobicity (most membrane proteins) are difficult to assess by 2-DE. These limitations have fostered the development of mass spectrometry centered on non-gel-based separation approaches, which have proven to be highly successful and are thus complementing and even partially replacing 2-DE-based approaches. Although blood constituents have been extensively analyzed by proteomics, this technology has not been widely applied to assess or even improve blood-derived therapeutics, or to monitor the production processes. As proteomic technologies have the capacity to provide comprehensive information about changes occurring during processing and storage of blood products, proteomics can potentially guide improvement of pathogen inactivation procedures and engineering of stem cells, and may also allow a better understanding of factors influencing the immunogenicity of blood-derived therapeutics. An important development in proteomics is the reduction of inter-assay variability. This now allows the screening of samples taken from the same product over time or before and after processing. Optimized preparation procedures and storage conditions will reduce the risk of protein alterations, which in turn may contribute to better recovery, reduced exposure to allogeneic proteins, and increased transfusion safety.

  19. Quantitative Proteomic Analysis Reveals Metabolic Alterations, Calcium Dysregulation, and Increased Expression of Extracellular Matrix Proteins in Laminin α2 Chain–deficient Muscle*

    PubMed Central

    de Oliveira, Bruno Menezes; Matsumura, Cintia Y.; Fontes-Oliveira, Cibely C.; Gawlik, Kinga I.; Acosta, Helena; Wernhoff, Patrik; Durbeej, Madeleine

    2014-01-01

    Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain–deficient dy3K/dy3K mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain–deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978). PMID:24994560

  20. Sys-BodyFluid: a systematical database for human body fluid proteome research

    PubMed Central

    Li, Su-Jun; Peng, Mao; Li, Hong; Liu, Bo-Shu; Wang, Chuan; Wu, Jia-Rui; Li, Yi-Xue; Zeng, Rong

    2009-01-01

    Recently, body fluids have widely become an important target for proteomic research and proteomic study has produced more and more body fluid related protein data. A database is needed to collect and analyze these proteome data. Thus, we developed this web-based body fluid proteome database Sys-BodyFluid. It contains eleven kinds of body fluid proteomes, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, seminal fluid, human milk and amniotic fluid. Over 10 000 proteins are presented in the Sys-BodyFluid. Sys-BodyFluid provides the detailed protein annotations, including protein description, Gene Ontology, domain information, protein sequence and involved pathways. These proteome data can be retrieved by using protein name, protein accession number and sequence similarity. In addition, users can query between these different body fluids to get the different proteins identification information. Sys-BodyFluid database can facilitate the body fluid proteomics and disease proteomics research as a reference database. It is available at http://www.biosino.org/bodyfluid/. PMID:18978022

Top