Sample records for quantitative resistance loci

  1. Quantitative trait loci associated with anthracnose resistance in sorghum

    USDA-ARS?s Scientific Manuscript database

    With an aim to develop a durable resistance to the fungal disease anthracnose, two unique genetic sources of resistance were selected to create genetic mapping populations to identify regions of the sorghum genome that encode anthracnose resistance. A series of quantitative trait loci were identifi...

  2. Evaluation and Quantitative trait loci mapping of resistance to powdery mildew in lettuce

    USDA-ARS?s Scientific Manuscript database

    Lettuce (Lactuca sativa L.) is the major leafy vegetable that is susceptible to powdery mildew disease under greenhouse and field conditions. We mapped quantitative trait loci (QTLs) for resistance to powdery mildew under greenhouse conditions in an interspecific population derived from a cross betw...

  3. Quantitative trait loci from the host genetic background modulate the durability of a resistance gene: a rational basis for sustainable resistance breeding in plants.

    PubMed

    Quenouille, J; Paulhiac, E; Moury, B; Palloix, A

    2014-06-01

    The combination of major resistance genes with quantitative resistance factors is hypothesized as a promising breeding strategy to preserve the durability of resistant cultivar, as recently observed in different pathosystems. Using the pepper (Capsicum annuum)/Potato virus Y (PVY, genus Potyvirus) pathosystem, we aimed at identifying plant genetic factors directly affecting the frequency of virus adaptation to the major resistance gene pvr2(3) and at comparing them with genetic factors affecting quantitative resistance. The resistance breakdown frequency was a highly heritable trait (h(2)=0.87). Four loci including additive quantitative trait loci (QTLs) and epistatic interactions explained together 70% of the variance of pvr2(3) breakdown frequency. Three of the four QTLs controlling pvr2(3) breakdown frequency were also involved in quantitative resistance, strongly suggesting that QTLs controlling quantitative resistance have a pleiotropic effect on the durability of the major resistance gene. With the first mapping of QTLs directly affecting resistance durability, this study provides a rationale for sustainable resistance breeding. Surprisingly, a genetic trade-off was observed between the durability of PVY resistance controlled by pvr2(3) and the spectrum of the resistance against different potyviruses. This trade-off seemed to have been resolved by the combination of minor-effect durability QTLs under long-term farmer selection.

  4. New quantitative trait loci in wheat for flag leaf resistance to Stagonospora nodorum blotch.

    PubMed

    Francki, M G; Shankar, M; Walker, E; Loughman, R; Golzar, H; Ohm, H

    2011-11-01

    Stagonospora nodorum blotch (SNB) is a significant disease in some wheat-growing regions of the world. Resistance in wheat to Stagonospora nodorum is complex, whereby genes for seedling, flag leaf, and glume resistance are independent. The aims of this study were to identify alternative genes for flag leaf resistance, to compare and contrast with known quantitative trait loci (QTL) for SNB resistance, and to determine the potential role of host-specific toxins for SNB QTL. Novel QTL for flag leaf resistance were identified on chromosome 2AS inherited from winter wheat parent 'P92201D5' and chromosome 1BS from spring wheat parent 'EGA Blanco'. The chromosomal map position of markers associated with QTL on 1BS and 2AS indicated that they were unlikely to be associated with known host-toxin insensitivity loci. A QTL on chromosome 5BL inherited from EGA Blanco had highly significant association with markers fcp001 and fcp620 based on disease evaluation in 2007 and, therefore, is likely to be associated with Tsn1-ToxA insensitivity for flag leaf resistance. However, fcp001 and fcp620 were not associated with a QTL detected based on disease evaluation in 2008, indicating two linked QTL for flag leaf resistance with multiple genes residing on 5BL. This study identified novel QTL and their effects in controlling flag leaf SNB resistance.

  5. Quantitative trait loci and metabolic pathways

    PubMed Central

    McMullen, M. D.; Byrne, P. F.; Snook, M. E.; Wiseman, B. R.; Lee, E. A.; Widstrom, N. W.; Coe, E. H.

    1998-01-01

    The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for “channeling” of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits. PMID:9482823

  6. Quantitative trait loci for resistance to stripe rust of wheat revealed using global field nurseries and opportunities for stacking resistance genes.

    PubMed

    Bokore, Firdissa E; Cuthbert, Richard D; Knox, Ron E; Randhawa, Harpinder S; Hiebert, Colin W; DePauw, Ron M; Singh, Asheesh K; Singh, Arti; Sharpe, Andrew G; N'Diaye, Amidou; Pozniak, Curtis J; McCartney, Curt; Ruan, Yuefeng; Berraies, Samia; Meyer, Brad; Munro, Catherine; Hay, Andy; Ammar, Karim; Huerta-Espino, Julio; Bhavani, Sridhar

    2017-12-01

    Quantitative trait loci controlling stripe rust resistance were identified in adapted Canadian spring wheat cultivars providing opportunity for breeders to stack loci using marker-assisted breeding. Stripe rust or yellow rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss., is a devastating disease of common wheat (Triticum aestivum L.) in many regions of the world. The objectives of this research were to identify and map quantitative trait loci (QTL) associated with stripe rust resistance in adapted Canadian spring wheat cultivars that are effective globally, and investigate opportunities for stacking resistance. Doubled haploid (DH) populations from the crosses Vesper/Lillian, Vesper/Stettler, Carberry/Vesper, Stettler/Red Fife and Carberry/AC Cadillac were phenotyped for stripe rust severity and infection response in field nurseries in Canada (Lethbridge and Swift Current), New Zealand (Lincoln), Mexico (Toluca) and Kenya (Njoro), and genotyped with SNP markers. Six QTL for stripe rust resistance in the population of Vesper/Lillian, five in Vesper/Stettler, seven in Stettler/Red Fife, four in Carberry/Vesper and nine in Carberry/AC Cadillac were identified. Lillian contributed stripe rust resistance QTL on chromosomes 4B, 5A, 6B and 7D, AC Cadillac on 2A, 2B, 3B and 5B, Carberry on 1A, 1B, 4A, 4B, 7A and 7D, Stettler on 1A, 2A, 3D, 4A, 5B and 6A, Red Fife on 2D, 3B and 4B, and Vesper on 1B, 2B and 7A. QTL on 1A, 1B, 2A, 2B, 3B, 4A, 4B, 5B, 7A and 7D were observed in multiple parents. The populations are compelling sources of recombination of many stripe rust resistance QTL for stacking disease resistance. Gene pyramiding should be possible with little chance of linkage drag of detrimental genes as the source parents were mostly adapted cultivars widely grown in Canada.

  7. Quantitative Resistance: More Than Just Perception of a Pathogen.

    PubMed

    Corwin, Jason A; Kliebenstein, Daniel J

    2017-04-01

    Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition. Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative resistance. © 2017 American Society of Plant Biologists. All rights reserved.

  8. Quantitative Resistance: More Than Just Perception of a Pathogen

    PubMed Central

    2017-01-01

    Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition. Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative resistance. PMID:28302676

  9. Genome-wide Association Study Identifies New Loci for Resistance to Leptosphaeria maculans in Canola

    PubMed Central

    Raman, Harsh; Raman, Rosy; Coombes, Neil; Song, Jie; Diffey, Simon; Kilian, Andrzej; Lindbeck, Kurt; Barbulescu, Denise M.; Batley, Jacqueline; Edwards, David; Salisbury, Phil A.; Marcroft, Steve

    2016-01-01

    Key message “We identified both quantitative and quantitative resistance loci to Leptosphaeria maculans, a fungal pathogen, causing blackleg disease in canola. Several genome-wide significant associations were detected at known and new loci for blackleg resistance. We further validated statistically significant associations in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance in canola.” Blackleg, caused by Leptosphaeria maculans, is a significant disease which affects the sustainable production of canola (Brassica napus). This study reports a genome-wide association study based on 18,804 polymorphic SNPs to identify loci associated with qualitative and quantitative resistance to L. maculans. Genomic regions delimited with 694 significant SNP markers, that are associated with resistance evaluated using 12 single spore isolates and pathotypes from four canola stubble were identified. Several significant associations were detected at known disease resistance loci including in the vicinity of recently cloned Rlm2/LepR3 genes, and at new loci on chromosomes A01/C01, A02/C02, A03/C03, A05/C05, A06, A08, and A09. In addition, we validated statistically significant associations on A01, A07, and A10 in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance and mapped within 13.2 kb from Arabidopsis R gene of TIR-NBS class. We showed that resistance loci are located in the vicinity of R genes of Arabidopsis thaliana and Brassica napus on the sequenced genome of B. napus cv. Darmor-bzh. Significantly associated SNP markers provide a valuable tool to enrich germplasm for favorable alleles in order to improve the level of resistance to L. maculans in

  10. Quantitative Trait Loci Mapping of Genome Regions Controlling Permethrin Resistance in the Mosquito Aedes aegypti

    PubMed Central

    Saavedra-Rodriguez, Karla; Strode, Clare; Flores Suarez, Adriana; Fernandez Salas, Ildefonso; Ranson, Hilary; Hemingway, Janet; Black, William C.

    2008-01-01

    The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Permethrin is an insecticide used to suppress Ae. aegypti adult populations but metabolic and target site resistance to pyrethroids has evolved in many locations worldwide. Quantitative trait loci (QTL) controlling permethrin survival in Ae. aegypti were mapped in an F3 advanced intercross line. Parents came from a collection of mosquitoes from Isla Mujeres, México, that had been selected for permethrin resistance for two generations and a reference permethrin-susceptible strain originally from New Orleans. Following a 1-hr permethrin exposure, 439 F3 adult mosquitoes were phenotyped as knockdown resistant, knocked down/recovered, or dead. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 22 loci with potential antixenobiotic activity including genes encoding cytochrome P450s (CYP), esterases (EST), or glutathione transferases (GST) and at 12 previously mapped loci. Seven antixenobiotic genes mapped to chromosome I, six to chromosome II, and nine to chromosome III. Two QTL of major effect were detected on chromosome III. One corresponds with a SNP previously associated with permethrin resistance in the para sodium channel gene and the second with the CCEunk7o esterase marker. Additional QTL but of relatively minor effect were also found. These included two sex-linked QTL on chromosome I affecting knockdown and recovery and a QTL affecting survival and recovery. On chromosome II, one QTL affecting survival and a second affecting recovery were detected. The patterns confirm that mutations in the para gene cause target-site insensitivity and are the major source of permethrin resistance but that other genes dispersed throughout the genome contribute to recovery and survival of mosquitoes following permethrin exposure. PMID:18723882

  11. Quantitative Trait Loci for High-Temperature Adult-Plant Resistance to Stripe Rust (Puccinia Striiformis f. sp. tritici) in a Hard Red Winter Wheat Germplasm IDO444

    USDA-ARS?s Scientific Manuscript database

    High-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) is a durable type of resistance in wheat. The objective of this study was to identify quantitative trait loci (QTL) conferring the HTAP resistance to stripe rust in a population consisted of 179 F7:8...

  12. Identification of quantitative trait loci affecting resistance to gastro-intestinal parasites in a double backcross population of Red Maasai and Dorper sheep

    USDA-ARS?s Scientific Manuscript database

    A genome-wide scan for quantitative trait loci (QTL) affecting gastrointestinal (GI) nematode resistance was completed using a double backcross sheep population derived from Red Maasai and Dorper ewes bred to F1 rams. These breeds were chosen, because Red Maasai sheep are known to be more tolerant ...

  13. Shades of gray: The world of quantitative disease resistance

    USDA-ARS?s Scientific Manuscript database

    Quantitative disease resistance, conditioned by many loci of relatively small effect, is important in ecological and agricultural systems. The importance of quantitative resistance in agricultural systems has lead to much applied research in this area and the accumulation of a building body of kno...

  14. Quantitative trait loci detection of Edwardsiella tarda resistance in Japanese flounder Paralichthys olivaceus using bulked segregant analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Xu, Wenteng; Liu, Yang; Wang, Lei; Sun, Hejun; Wang, Lei; Chen, Songlin

    2016-11-01

    In recent years, Edwardsiella tarda has become one of the most deadly pathogens of Japanese flounder ( Paralichthys olivaceus), causing serious annual losses in commercial production. In contrast to the rapid advances in the aquaculture of P. olivaceus, the study of E. tarda resistance-related markers has lagged behind, hindering the development of a disease-resistant strain. Thus, a marker-trait association analysis was initiated, combining bulked segregant analysis (BSA) and quantitative trait loci (QTL) mapping. Based on 180 microsatellite loci across all chromosomes, 106 individuals from the F1333 (♀: F0768 ×♂: F0915) (Nomenclature rule: F+year+family number) were used to detect simple sequence repeats (SSRs) and QTLs associated with E. tarda resistance. After a genomic scan, three markers (Scaffold 404-21589, Scaffold 404-21594 and Scaffold 270-13812) from the same linkage group (LG)-1 exhibited a significant difference between DNA, pooled/bulked from the resistant and susceptible groups (P <0.001). Therefore, 106 individuals were genotyped using all the SSR markers in LG1 by single marker analysis. Two different analytical models were then employed to detect SSR markers with different levels of significance in LG1, where 17 and 18 SSR markers were identified, respectively. Each model found three resistance-related QTLs by composite interval mapping (CIM). These six QTLs, designated qE1-6, explained 16.0%-89.5% of the phenotypic variance. Two of the QTLs, qE-2 and qE-4, were located at the 66.7 cM region, which was considered a major candidate region for E. tarda resistance. This study will provide valuable data for further investigations of E. tarda resistance genes and facilitate the selective breeding of disease-resistant Japanese flounder in the future.

  15. Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci.

    PubMed

    Mangin, B; Thoquet, P; Olivier, J; Grimsley, N H

    1999-03-01

    Ralstonia solanacearum is a soil-borne bacterium that causes the serious disease known as bacterial wilt in many plant species. In tomato, several QTL controlling resistance have been found, but in different studies, markers spanning a large region of chromosome 6 showed strong association with the resistance. By using two different approaches to analyze the data from a field test F3 population, we show that at least two separate loci approximately 30 cM apart on this chromosome are most likely involved in the resistance. First, a temporal analysis of the progression of symptoms reveals a distal locus early in the development of the disease. As the disease progresses, the maximum LOD peak observed shifts toward the proximal end of the chromosome, obscuring the distal locus. Second, although classical interval mapping could only detect the presence of one locus, a statistical "two-QTL model" test, specifically adapted for the resolution of linked QTL, strongly supported the hypothesis for the presence of two loci. These results are discussed in the context of current molecular knowledge about disease resistance genes on chromosome 6 and observations made by tomato breeders during the production of bacterial wilt-resistant varieties.

  16. Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci.

    PubMed Central

    Mangin, B; Thoquet, P; Olivier, J; Grimsley, N H

    1999-01-01

    Ralstonia solanacearum is a soil-borne bacterium that causes the serious disease known as bacterial wilt in many plant species. In tomato, several QTL controlling resistance have been found, but in different studies, markers spanning a large region of chromosome 6 showed strong association with the resistance. By using two different approaches to analyze the data from a field test F3 population, we show that at least two separate loci approximately 30 cM apart on this chromosome are most likely involved in the resistance. First, a temporal analysis of the progression of symptoms reveals a distal locus early in the development of the disease. As the disease progresses, the maximum LOD peak observed shifts toward the proximal end of the chromosome, obscuring the distal locus. Second, although classical interval mapping could only detect the presence of one locus, a statistical "two-QTL model" test, specifically adapted for the resolution of linked QTL, strongly supported the hypothesis for the presence of two loci. These results are discussed in the context of current molecular knowledge about disease resistance genes on chromosome 6 and observations made by tomato breeders during the production of bacterial wilt-resistant varieties. PMID:10049932

  17. QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomyces euteiches in four sources of resistance in pea

    USDA-ARS?s Scientific Manuscript database

    More knowledge about diversity of Quantitative Trait Loci (QTL) controlling polygenic disease resistance in natural genetic variation of crop species is required for durably improving plant genetic resistances to pathogens. Polygenic partial resistance to Aphanomyces root rot, due to Aphanomcyces eu...

  18. Validation of consensus quantitative trait loci associated with resistance to multiple foliar pathogens of maize.

    PubMed

    Asea, Godfrey; Vivek, Bindiganavile S; Bigirwa, George; Lipps, Patrick E; Pratt, Richard C

    2009-05-01

    Maize production in sub-Saharan Africa incurs serious losses to epiphytotics of foliar diseases. Quantitative trait loci conditioning partial resistance (rQTL) to infection by causal agents of gray leaf spot (GLS), northern corn leaf blight (NCLB), and maize streak have been reported. Our objectives were to identify simple-sequence repeat (SSR) molecular markers linked to consensus rQTL and one recently identified rQTL associated with GLS, and to determine their suitability as tools for selection of improved host resistance. We conducted evaluations of disease severity phenotypes in separate field nurseries, each containing 410 F2:3 families derived from a cross between maize inbred CML202 (NCLB and maize streak resistant) and VP31 (a GLS-resistant breeding line) that possess complimentary rQTL. F2:3 families were selected for resistance based on genotypic (SSR marker), phenotypic, or combined data and the selected F3:4 families were reevaluated. Phenotypic values associated with SSR markers for consensus rQTL in bins 4.08 for GLS, 5.04 for NCLB, and 1.04 for maize streak significantly reduced disease severity in both generations based on single-factor analysis of variance and marker-interval analysis. These results were consistent with the presence of homozygous resistant parent alleles, except in bin 8.06, where markers were contributed by the NCLB-susceptible parent. Only one marker associated with resistance could be confirmed in bins 2.09 (GLS) and 3.06 (NCLB), illustrating the need for more robust rQTL discovery, fine-mapping, and validation prior to undertaking marker-based selection.

  19. Comparative mapping of Raphanus sativus genome using Brassica markers and quantitative trait loci analysis for the Fusarium wilt resistance trait.

    PubMed

    Yu, Xiaona; Choi, Su Ryun; Ramchiary, Nirala; Miao, Xinyang; Lee, Su Hee; Sun, Hae Jeong; Kim, Sunggil; Ahn, Chun Hee; Lim, Yong Pyo

    2013-10-01

    Fusarium wilt (FW), caused by the soil-borne fungal pathogen Fusarium oxysporum is a serious disease in cruciferous plants, including the radish (Raphanus sativus). To identify quantitative trait loci (QTL) or gene(s) conferring resistance to FW, we constructed a genetic map of R. sativus using an F2 mapping population derived by crossing the inbred lines '835' (susceptible) and 'B2' (resistant). A total of 220 markers distributed in 9 linkage groups (LGs) were mapped in the Raphanus genome, covering a distance of 1,041.5 cM with an average distance between adjacent markers of 4.7 cM. Comparative analysis of the R. sativus genome with that of Arabidopsis thaliana and Brassica rapa revealed 21 and 22 conserved syntenic regions, respectively. QTL mapping detected a total of 8 loci conferring FW resistance that were distributed on 4 LGs, namely, 2, 3, 6, and 7 of the Raphanus genome. Of the detected QTL, 3 QTLs (2 on LG 3 and 1 on LG 7) were constitutively detected throughout the 2-year experiment. QTL analysis of LG 3, flanked by ACMP0609 and cnu_mBRPGM0085, showed a comparatively higher logarithm of the odds (LOD) value and percentage of phenotypic variation. Synteny analysis using the linked markers to this QTL showed homology to A. thaliana chromosome 3, which contains disease-resistance gene clusters, suggesting conservation of resistance genes between them.

  20. In silico mapping of quantitative trait loci in maize.

    PubMed

    Parisseaux, B; Bernardo, R

    2004-08-01

    Quantitative trait loci (QTL) are most often detected through designed mapping experiments. An alternative approach is in silico mapping, whereby genes are detected using existing phenotypic and genomic databases. We explored the usefulness of in silico mapping via a mixed-model approach in maize (Zea mays L.). Specifically, our objective was to determine if the procedure gave results that were repeatable across populations. Multilocation data were obtained from the 1995-2002 hybrid testing program of Limagrain Genetics in Europe. Nine heterotic patterns comprised 22,774 single crosses. These single crosses were made from 1,266 inbreds that had data for 96 simple sequence repeat (SSR) markers. By a mixed-model approach, we estimated the general combining ability effects associated with marker alleles in each heterotic pattern. The numbers of marker loci with significant effects--37 for plant height, 24 for smut [Ustilago maydis (DC.) Cda.] resistance, and 44 for grain moisture--were consistent with previous results from designed mapping experiments. Each trait had many loci with small effects and few loci with large effects. For smut resistance, a marker in bin 8.05 on chromosome 8 had a significant effect in seven (out of a maximum of 18) instances. For this major QTL, the maximum effect of an allele substitution ranged from 5.4% to 41.9%, with an average of 22.0%. We conclude that in silico mapping via a mixed-model approach can detect associations that are repeatable across different populations. We speculate that in silico mapping will be more useful for gene discovery than for selection in plant breeding programs. Copyright 2004 Springer-Verlag

  1. Similar Genetic Architecture with Shared and Unique Quantitative Trait Loci for Bacterial Cold Water Disease Resistance in Two Rainbow Trout Breeding Populations

    PubMed Central

    Vallejo, Roger L.; Liu, Sixin; Gao, Guangtu; Fragomeni, Breno O.; Hernandez, Alvaro G.; Leeds, Timothy D.; Parsons, James E.; Martin, Kyle E.; Evenhuis, Jason P.; Welch, Timothy J.; Wiens, Gregory D.; Palti, Yniv

    2017-01-01

    Bacterial cold water disease (BCWD) causes significant mortality and economic losses in salmonid aquaculture. In previous studies, we identified moderate-large effect quantitative trait loci (QTL) for BCWD resistance in rainbow trout (Oncorhynchus mykiss). However, the recent availability of a 57 K SNP array and a reference genome assembly have enabled us to conduct genome-wide association studies (GWAS) that overcome several experimental limitations from our previous work. In the current study, we conducted GWAS for BCWD resistance in two rainbow trout breeding populations using two genotyping platforms, the 57 K Affymetrix SNP array and restriction-associated DNA (RAD) sequencing. Overall, we identified 14 moderate-large effect QTL that explained up to 60.8% of the genetic variance in one of the two populations and 27.7% in the other. Four of these QTL were found in both populations explaining a substantial proportion of the variance, although major differences were also detected between the two populations. Our results confirm that BCWD resistance is controlled by the oligogenic inheritance of few moderate-large effect loci and a large-unknown number of loci each having a small effect on BCWD resistance. We detected differences in QTL number and genome location between two GWAS models (weighted single-step GBLUP and Bayes B), which highlights the utility of using different models to uncover QTL. The RAD-SNPs detected a greater number of QTL than the 57 K SNP array in one population, suggesting that the RAD-SNPs may uncover polymorphisms that are more unique and informative for the specific population in which they were discovered. PMID:29109734

  2. Similar Genetic Architecture with Shared and Unique Quantitative Trait Loci for Bacterial Cold Water Disease Resistance in Two Rainbow Trout Breeding Populations.

    PubMed

    Vallejo, Roger L; Liu, Sixin; Gao, Guangtu; Fragomeni, Breno O; Hernandez, Alvaro G; Leeds, Timothy D; Parsons, James E; Martin, Kyle E; Evenhuis, Jason P; Welch, Timothy J; Wiens, Gregory D; Palti, Yniv

    2017-01-01

    Bacterial cold water disease (BCWD) causes significant mortality and economic losses in salmonid aquaculture. In previous studies, we identified moderate-large effect quantitative trait loci (QTL) for BCWD resistance in rainbow trout ( Oncorhynchus mykiss ). However, the recent availability of a 57 K SNP array and a reference genome assembly have enabled us to conduct genome-wide association studies (GWAS) that overcome several experimental limitations from our previous work. In the current study, we conducted GWAS for BCWD resistance in two rainbow trout breeding populations using two genotyping platforms, the 57 K Affymetrix SNP array and restriction-associated DNA (RAD) sequencing. Overall, we identified 14 moderate-large effect QTL that explained up to 60.8% of the genetic variance in one of the two populations and 27.7% in the other. Four of these QTL were found in both populations explaining a substantial proportion of the variance, although major differences were also detected between the two populations. Our results confirm that BCWD resistance is controlled by the oligogenic inheritance of few moderate-large effect loci and a large-unknown number of loci each having a small effect on BCWD resistance. We detected differences in QTL number and genome location between two GWAS models (weighted single-step GBLUP and Bayes B), which highlights the utility of using different models to uncover QTL. The RAD-SNPs detected a greater number of QTL than the 57 K SNP array in one population, suggesting that the RAD-SNPs may uncover polymorphisms that are more unique and informative for the specific population in which they were discovered.

  3. Genotyping-by-sequencing markers facilitate the identification of quantitative trait loci controlling resistance to Penicillium expansum in Malus sieversii

    PubMed Central

    Wisniewski, Michael; Fazio, Gennaro; Burchard, Erik; Gutierrez, Benjamin; Levin, Elena; Droby, Samir

    2017-01-01

    Blue mold caused by Penicillium expansum is the most important postharvest disease of apple worldwide and results in significant financial losses. There are no defined sources of resistance to blue mold in domesticated apple. However, resistance has been described in wild Malus sieversii accessions, including plant introduction (PI)613981. The objective of the present study was to identify the genetic loci controlling resistance to blue mold in this accession. We describe the first quantitative trait loci (QTL) reported in the Rosaceae tribe Maleae conditioning resistance to P. expansum on genetic linkage group 3 (qM-Pe3.1) and linkage group 10 (qM-Pe10.1). These loci were identified in a M.× domestica ‘Royal Gala’ X M. sieversii PI613981 family (GMAL4593) based on blue mold lesion diameter seven days post-inoculation in mature, wounded apple fruit inoculated with P. expansum. Phenotypic analyses were conducted in 169 progeny over a four year period. PI613981 was the source of the resistance allele for qM-Pe3.1, a QTL with a major effect on blue mold resistance, accounting for 27.5% of the experimental variability. The QTL mapped from 67.3 to 74 cM on linkage group 3 of the GMAL4593 genetic linkage map. qM-Pe10.1 mapped from 73.6 to 81.8 cM on linkage group 10. It had less of an effect on resistance, accounting for 14% of the experimental variation. ‘Royal Gala’ was the primary contributor to the resistance effect of this QTL. However, resistance-associated alleles in both parents appeared to contribute to the least square mean blue mold lesion diameter in an additive manner at qM-Pe10.1. A GMAL4593 genetic linkage map composed of simple sequence repeats and ‘Golden Delicious’ single nucleotide polymorphism markers was able to detect qM-Pe10.1, but failed to detect qM-Pe3.1. The subsequent addition of genotyping-by-sequencing markers to the linkage map provided better coverage of the PI613981 genome on linkage group 3 and facilitated discovery of q

  4. Quantitative trait loci underlying resistance to sudden death syndrome (SDS) in MD96-5722 by 'Spencer' recombinant inbred line population of soybean.

    PubMed

    Anderson, J; Akond, M; Kassem, M A; Meksem, K; Kantartzi, S K

    2015-04-01

    The best way to protect yield loss of soybean [Glycine max (L.) Merr.] due to sudden death syndrome (SDS), caused by Fusarium virguliforme (Aoki, O'Donnel, Homma & Lattanzi), is the development and use of resistant lines. Mapping quantitative trait loci (QTL) linked to SDS help developing resistant soybean germplasm through molecular marker-assisted selection strategy. QTL for SDS presented herein are from a high-density SNP-based genetic linkage map of MD 96-5722 (a.k.a 'Monocacy') by 'Spencer' recombinant inbred line using SoySNP6K Illumina Infinium BeadChip genotyping array. Ninety-four F 5:7 lines were evaluated for 2 years (2010 and 2011) at two locations (Carbondale and Valmeyer) in southern Illinois, USA to identify QTL controlling SDS resistance using disease index (DX). Composite interval mapping identified 19 SDS controlling QTL which were mapped on 11 separate linkage group (LG) or chromosomes (Chr) out of 20 LG or Chr of soybean genome. Many of these significant QTL identified in one environment/year were confirmed in another year or environment, which suggests a common genetic effects and modes of the pathogen. These new QTL are useful sources for SDS resistance studies in soybean breeding, complementing previously reported loci.

  5. Identification of Quantitative Trait Loci Controlling Gene Expression during the Innate Immunity Response of Soybean1[W][OA

    PubMed Central

    Valdés-López, Oswaldo; Thibivilliers, Sandra; Qiu, Jing; Xu, Wayne Wenzhong; Nguyen, Tran H.N.; Libault, Marc; Le, Brandon H.; Goldberg, Robert B.; Hill, Curtis B.; Hartman, Glen L.; Diers, Brian; Stacey, Gary

    2011-01-01

    Microbe-associated molecular pattern-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we report on variation in both the microbe-associated molecular pattern-triggered oxidative burst and gene expression across four soybean (Glycine max) genotypes. Variation in MTI correlated with the level of pathogen resistance for each genotype. A quantitative trait locus analysis on these traits identified four loci that appeared to regulate gene expression during MTI in soybean. Likewise, we observed that both MTI variation and pathogen resistance were quantitatively inherited. The approach utilized in this study may have utility for identifying key resistance loci useful for developing improved soybean cultivars. PMID:21963820

  6. High Density Single Nucleotide Polymorphism (SNP) Mapping and Quantitative Trait Loci (QTL) Analysis in a Biparental Spring Triticale Population Localized Major and Minor Effect Fusarium Head Blight Resistance and Associated Traits QTL

    PubMed Central

    Dhariwal, Raman; Fedak, George; Dion, Yves; Pozniak, Curtis; Laroche, André; Eudes, François; Randhawa, Harpinder Singh

    2018-01-01

    Triticale (xTriticosecale Wittmack) is an important feed crop which suffers severe yield, grade and end-use quality losses due to Fusarium head blight (FHB). Development of resistant triticale cultivars is hindered by lack of effective genetic resistance sources. To dissect FHB resistance, a doubled haploid spring triticale population produced from the cross TMP16315/AC Ultima using a microspore culture method, was phenotyped for FHB incidence, severity, visual rating index (VRI), deoxynivalenol (DON) and some associated traits (ergot, grain protein content, test weight, yield, plant height and lodging) followed by single nucleotide polymorphism (SNP) genotyping. A high-density map consisting of 5274 SNPs, mapped on all 21 chromosomes with a map density of 0.48 cM/SNP, was constructed. Together, 17 major quantitative trait loci were identified for FHB on chromosomes 1A, 2B, 3A, 4A, 4R, 5A, 5R and 6B; two of incidence loci (on 2B and 5R) also co-located with loci for severity and VRI, and two other loci of VRI (on 1A and 4R) with DON accumulation. Major and minor loci were also identified for all other traits in addition to many epistasis loci. This study provides new insight into the genetic basis of FHB resistance and their association with other traits in triticale. PMID:29304028

  7. Identification of Quantitative Trait Loci for Resistance to RSIVD in Red Sea Bream (Pagrus major).

    PubMed

    Sawayama, Eitaro; Tanizawa, Shiho; Kitamura, Shin-Ichi; Nakayama, Kei; Ohta, Kohei; Ozaki, Akiyuki; Takagi, Motohiro

    2017-12-01

    Red sea bream iridoviral disease (RSIVD) is a major viral disease in red sea bream farming in Japan. Previously, we identified one candidate male individual of red sea bream that was significantly associated with convalescent individuals after RSIVD. The purpose of this study is to identify the quantitative trait loci (QTL) linked to the RSIVD-resistant trait for future marker-assisted selection (MAS). Two test families were developed using the candidate male in 2014 (Fam-2014) and 2015 (Fam-2015). These test families were challenged with RSIV, and phenotypes were evaluated. Then, de novo genome sequences of red sea bream were obtained through next-generation sequencing, and microsatellite markers were searched and selected for linkage map construction. One immune-related gene, MHC class IIβ, was also used for linkage map construction. Of the microsatellite markers searched, 148 and 197 were mapped on 23 and 27 linkage groups in the female and male linkage maps, respectively, covering approximately 65% of genomes in both sexes. One QTL linked to an RSIVD-resistant trait was found in linkage group 2 of the candidate male in Fam-2014, and the phenotypic variance of the QTL was 31.1%. The QTL was closely linked to MHC class IIβ. Moreover, the QTL observed in Fam-2014 was also significantly linked to an RSIVD-resistant trait in the candidate male of Fam-2015. Our results suggest that the RSIVD-resistant trait in the candidate male was controlled by one major QTL closely linked to the MHC class IIβ gene and could be useful for MAS of red sea bream.

  8. Quantitative trait loci analysis of Verticillium wilt resistance in interspecific backcross populations of Gossypium hirsutum × Gossypium barbadense.

    PubMed

    Shi, Yuzhen; Zhang, Baocai; Liu, Aiying; Li, Wentan; Li, Junwen; Lu, Quanwei; Zhang, Zhen; Li, Shaoqi; Gong, Wankui; Shang, Haihong; Gong, Juwu; Chen, Tingting; Ge, Qun; Wang, Tao; Zhu, Heqin; Liu, Zhi; Yuan, Youlu

    2016-11-05

    Verticillium wilt (VW) caused by Verticillium dahliae (Kleb) is one of the most destructive diseases of cotton. The identification of highly resistant QTLs or genes in the whole cotton genome is quite important for developing a VW-resistant variety and for further molecular design breeding. In the present study, BC 1 F 1 , BC 1 S 1 , and BC 2 F 1 populations derived from an interspecific backcross between the highly resistant line Hai1 (Gossypium barbadense L.) and the susceptible variety CCRI36 (G. hirsutum L.) as the recurrent parent were constructed. Quantitative trait loci (QTL) related to VW resistance were detected in the whole cotton genome using a high-density simple sequence repeat (SSR) genetic linkage map from the BC 1 F 1 population, with 2292 loci covering 5115.16 centiMorgan (cM) of the cotton (AD) genome, and the data concerning VW resistance that were obtained from four dates of BC 2 F 1 in the artificial disease nursery and one date of BC 1 S 1 and BC 2 F 1 in the field. A total of 48 QTLs for VW resistance were identified, and 37 of these QTLs had positive additive effects, which indicated that the G. barbadense alleles increased resistance to VW and decreased the disease index (DI) by about 2.2-10.7. These QTLs were located on 19 chromosomes, in which 33 in the A subgenome and 15 QTLs in the D subgenome. The 6 QTLs were found to be stable. The 6 QTLs were consistent with those identified previously, and another 42 were new, unreported QTLs, of which 31 QTLs were from G. barbadense. By meta-analysis, 17 QTL hotspot regions were identified and 10 of them were new, unreported hotspot regions. 29 QTLs in this paper were in 12 hotspot regions and were all from G. barbadense. These stable or consensus QTL regions warrant further investigation to better understand the genetics and molecular mechanisms underlying VW resistance. This study provides useful information for further comparative analysis and marker-assisted selection in the breeding of disease-resistant

  9. Identification and confirmation of greenbug resistance loci in an advanced mapping population of sorghum

    USDA-ARS?s Scientific Manuscript database

    Greenbug infestations to sorghum can cause severe and above economic threshold damage in the Great Plains of the United States. This study was to identify quantitative trait loci (QTL) and potential candidate genes residing within the QTL region responsible for greenbug resistance in an advanced ma...

  10. Identification of quantitative trait Loci for resistance to southern leaf blight and days to anthesis in a maize recombinant inbred line population.

    PubMed

    Balint-Kurti, P J; Krakowsky, M D; Jines, M P; Robertson, L A; Molnár, T L; Goodman, M M; Holl, J B

    2006-10-01

    ABSTRACT A recombinant inbred line population derived from a cross between the maize lines NC300 (resistant) and B104 (susceptible) was evaluated for resistance to southern leaf blight (SLB) disease caused by Cochliobolus heterostrophus race O and for days to anthesis in four environments (Clayton, NC, and Tifton, GA, in both 2004 and 2005). Entry mean and average genetic correlations between disease ratings in different environments were high (0.78 to 0.89 and 0.9, respectively) and the overall entry mean heritability for SLB resistance was 0.89. When weighted mean disease ratings were fitted to a model using multiple interval mapping, seven potential quantitative trait loci (QTL) were identified, the two strongest being on chromosomes 3 (bin 3.04) and 9 (bin 9.03-9.04). These QTL explained a combined 80% of the phenotypic variation for SLB resistance. Some time-point-specific SLB resistance QTL were also identified. There was no significant correlation between disease resistance and days to anthesis. Six putative QTL for time to anthesis were identified, none of which coincided with any SLB resistance QTL.

  11. Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata.

    PubMed

    Lan, Caixia; Zhang, Yelun; Herrera-Foessel, Sybil A; Basnet, Bhoja R; Huerta-Espino, Julio; Lagudah, Evans S; Singh, Ravi P

    2015-03-01

    Two new co-located resistance loci, QLr.cim - 1AS/QYr.cim - 1AS and QLr.cim - 7BL/YrSuj , in combination with Lr46 / Yr29 and Lr67/Yr46 , and a new leaf rust resistance quantitative trait loci, conferred high resistance to rusts in adult plant stage. The tall Indian bread wheat cultivar Sujata displays high and low infection types to leaf rust and stripe rust, respectively, at the seedling stage in greenhouse tests. It was also highly resistant to both rusts at adult plant stage in field trials in Mexico. The genetic basis of this resistance was investigated in a population of 148 F5 recombinant inbred lines (RILs) derived from the cross Avocet × Sujata. The parents and RIL population were characterized in field trials for resistance to leaf rust during 2011 at El Batán, and 2012 and 2013 at Ciudad Obregón, Mexico, and for stripe rust during 2011 and 2012 at Toluca, Mexico; they were also characterized three times for stripe rust at seedling stage in the greenhouse. The RILs were genotyped with diversity arrays technology and simple sequence repeat markers. The final genetic map was constructed with 673 polymorphic markers. Inclusive composite interval mapping analysis detected two new significant co-located resistance loci, QLr.cim-1AS/QYr.cim-1AS and QLr.cim-7BL/YrSuj, on chromosomes 1AS and 7BL, respectively. The chromosomal position of QLr.cim-7BL overlapped with the seedling stripe rust resistance gene, temporarily designated as YrSuj. Two previously reported pleiotropic adult plant resistance genes, Lr46/Yr29 and Lr67/Yr46, and a new leaf rust resistance quantitative trait loci derived from Avocet were also mapped in the population. The two new co-located resistance loci are expected to contribute to breeding durable rust resistance in wheat. Closely linked molecular markers can be used to transfer all four resistance loci simultaneously to modern wheat varieties.

  12. Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance.

    PubMed

    Geffroy, V; Sévignac, M; De Oliveira, J C; Fouilloux, G; Skroch, P; Thoquet, P; Gepts, P; Langin, T; Dron, M

    2000-03-01

    Anthracnose, one of the most important diseases of common bean (Phaseolus vulgaris), is caused by the fungus Colletotrichum lindemuthianum. A "candidate gene" approach was used to map anthracnose resistance quantitative trait loci (QTL). Candidate genes included genes for both pathogen recognition (resistance genes and resistance gene analogs [RGAs]) and general plant defense (defense response genes). Two strains of C. lindemuthianum, identified in a world collection of 177 strains, displayed a reproducible and differential aggressiveness toward BAT93 and JaloEEP558, two parental lines of P. vulgaris representing the two major gene pools of this crop. A reliable test was developed to score partial resistance in aerial organs of the plant (stem, leaf, petiole) under controlled growth chamber conditions. BAT93 was more resistant than JaloEEP558 regardless of the organ or strain tested. With a recombinant inbred line (RIL) population derived from a cross between these two parental lines, 10 QTL were located on a genetic map harboring 143 markers, including known defense response genes, anthracnose-specific resistance genes, and RGAs. Eight of the QTL displayed isolate specificity. Two were co-localized with known defense genes (phenylalanine ammonia-lyase and hydroxyproline-rich glycoprotein) and three with anthracnose-specific resistance genes and/or RGAs. Interestingly, two QTL, with different allelic contribution, mapped on linkage group B4 in a 5.0 cM interval containing Andean and Mesoamerican specific resistance genes against C. lindemuthianum and 11 polymorphic fragments revealed with a RGA probe. The possible relationship between genes underlying specific and partial resistance is discussed.

  13. Identifying Quantitative Trait Loci (QTLs) and Developing Diagnostic Markers Linked to Orange Rust Resistance in Sugarcane (Saccharum spp.)

    PubMed Central

    Yang, Xiping; Islam, Md. S.; Sood, Sushma; Maya, Stephanie; Hanson, Erik A.; Comstock, Jack; Wang, Jianping

    2018-01-01

    Sugarcane (Saccharum spp.) is an important economic crop, contributing up to 80% of table sugar used in the world and has become a promising feedstock for biofuel production. Sugarcane production has been threatened by many diseases, and fungicide applications for disease control have been opted out for sustainable agriculture. Orange rust is one of the major diseases impacting sugarcane production worldwide. Identifying quantitative trait loci (QTLs) and developing diagnostic markers are valuable for breeding programs to expedite release of superior sugarcane cultivars for disease control. In this study, an F1 segregating population derived from a cross between two hybrid sugarcane clones, CP95-1039 and CP88-1762, was evaluated for orange rust resistance in replicated trails. Three QTLs controlling orange rust resistance in sugarcane (qORR109, qORR4 and qORR102) were identified for the first time ever, which can explain 58, 12 and 8% of the phenotypic variation, separately. We also characterized 1,574 sugarcane putative resistance (R) genes. These sugarcane putative R genes and simple sequence repeats in the QTL intervals were further used to develop diagnostic markers for marker-assisted selection of orange rust resistance. A PCR-based Resistance gene-derived maker, G1 was developed, which showed significant association with orange rust resistance. The putative QTLs and marker developed in this study can be effectively utilized in sugarcane breeding programs to facilitate the selection process, thus contributing to the sustainable agriculture for orange rust disease control. PMID:29616061

  14. Identifying Quantitative Trait Loci (QTLs) and Developing Diagnostic Markers Linked to Orange Rust Resistance in Sugarcane (Saccharum spp.).

    PubMed

    Yang, Xiping; Islam, Md S; Sood, Sushma; Maya, Stephanie; Hanson, Erik A; Comstock, Jack; Wang, Jianping

    2018-01-01

    Sugarcane ( Saccharum spp.) is an important economic crop, contributing up to 80% of table sugar used in the world and has become a promising feedstock for biofuel production. Sugarcane production has been threatened by many diseases, and fungicide applications for disease control have been opted out for sustainable agriculture. Orange rust is one of the major diseases impacting sugarcane production worldwide. Identifying quantitative trait loci (QTLs) and developing diagnostic markers are valuable for breeding programs to expedite release of superior sugarcane cultivars for disease control. In this study, an F 1 segregating population derived from a cross between two hybrid sugarcane clones, CP95-1039 and CP88-1762, was evaluated for orange rust resistance in replicated trails. Three QTLs controlling orange rust resistance in sugarcane (qORR109, qORR4 and qORR102) were identified for the first time ever, which can explain 58, 12 and 8% of the phenotypic variation, separately. We also characterized 1,574 sugarcane putative resistance ( R ) genes. These sugarcane putative R genes and simple sequence repeats in the QTL intervals were further used to develop diagnostic markers for marker-assisted selection of orange rust resistance. A PCR-based Resistance gene-derived maker, G1 was developed, which showed significant association with orange rust resistance. The putative QTLs and marker developed in this study can be effectively utilized in sugarcane breeding programs to facilitate the selection process, thus contributing to the sustainable agriculture for orange rust disease control.

  15. Identification of Ganoderma Disease Resistance Loci Using Natural Field Infection of an Oil Palm Multiparental Population

    PubMed Central

    Tisné, Sébastien; Pomiès, Virginie; Riou, Virginie; Syahputra, Indra; Cochard, Benoît; Denis, Marie

    2017-01-01

    Multi-parental populations are promising tools for identifying quantitative disease resistance loci. Stem rot caused by Ganoderma boninense is a major threat to palm oil production, with yield losses of up to 80% prompting premature replantation of palms. There is evidence of genetic resistance sources, but the genetic architecture of Ganoderma resistance has not yet been investigated. This study aimed to identify Ganoderma resistance loci using an oil palm multi-parental population derived from nine major founders of ongoing breeding programs. A total of 1200 palm trees of the multi-parental population was planted in plots naturally infected by Ganoderma, and their health status was assessed biannually over 25 yr. The data were treated as survival data, and modeled using the Cox regression model, including a spatial effect to take the spatial component in the spread of Ganoderma into account. Based on the genotypes of 757 palm trees out of the 1200 planted, and on pedigree information, resistance loci were identified using a random effect with identity-by-descent kinship matrices as covariance matrices in the Cox model. Four Ganoderma resistance loci were identified, two controlling the occurrence of the first Ganoderma symptoms, and two the death of palm trees, while favorable haplotypes were identified among a major gene pool for ongoing breeding programs. This study implemented an efficient and flexible QTL mapping approach, and generated unique valuable information for the selection of oil palm varieties resistant to Ganoderma disease. PMID:28592650

  16. Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans

    PubMed Central

    Bassi, Denis; Briñez, Boris; Rosa, Juliana Santa; Oblessuc, Paula Rodrigues; de Almeida, Caléo Panhoca; Nucci, Stella Maris; da Silva, Larissa Chariel Domingos; Chiorato, Alisson Fernando; Vianello, Rosana Pereira; Camargo, Luis Eduardo Aranha; Blair, Matthew Wohlgemuth; Benchimol-Reis, Luciana Lasry

    2017-01-01

    Abstract Angular leaf spot (ALS) and powdery mildew (PWM) are two important fungi diseases causing significant yield losses in common beans. In this study, a new genetic linkage map was constructed using single sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), in a segregating population derived from the AND 277 x SEA 5 cross, with 105 recombinant inbred lines. Phenotypic evaluations were performed in the greenhouse to identify quantitative trait loci (QTLs) associated with resistance by means of the composite interval mapping analysis. Four QTLs were identified for ALS resistance. The QTL ALS11AS, linked on the SNP BAR 5054, mapped on chromosome Pv11, showed the greatest effect (R2 = 26.5%) on ALS phenotypic variance. For PWM resistance, two QTLs were detected, PWM2AS and PWM11AS, on Pv2 and Pv11, explaining 7% and 66% of the phenotypic variation, respectively. Both QTLs on Pv11 were mapped on the same genomic region, suggesting that it is a pleiotropic region. The present study resulted in the identification of new markers closely linked to ALS and PWM QTLs, which can be used for marker-assisted selection, fine mapping and positional cloning. PMID:28222201

  17. Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans.

    PubMed

    Bassi, Denis; Briñez, Boris; Rosa, Juliana Santa; Oblessuc, Paula Rodrigues; Almeida, Caléo Panhoca de; Nucci, Stella Maris; Silva, Larissa Chariel Domingos da; Chiorato, Alisson Fernando; Vianello, Rosana Pereira; Camargo, Luis Eduardo Aranha; Blair, Matthew Wohlgemuth; Benchimol-Reis, Luciana Lasry

    2017-01-01

    Angular leaf spot (ALS) and powdery mildew (PWM) are two important fungi diseases causing significant yield losses in common beans. In this study, a new genetic linkage map was constructed using single sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), in a segregating population derived from the AND 277 x SEA 5 cross, with 105 recombinant inbred lines. Phenotypic evaluations were performed in the greenhouse to identify quantitative trait loci (QTLs) associated with resistance by means of the composite interval mapping analysis. Four QTLs were identified for ALS resistance. The QTL ALS11AS, linked on the SNP BAR 5054, mapped on chromosome Pv11, showed the greatest effect (R2 = 26.5%) on ALS phenotypic variance. For PWM resistance, two QTLs were detected, PWM2AS and PWM11AS, on Pv2 and Pv11, explaining 7% and 66% of the phenotypic variation, respectively. Both QTLs on Pv11 were mapped on the same genomic region, suggesting that it is a pleiotropic region. The present study resulted in the identification of new markers closely linked to ALS and PWM QTLs, which can be used for marker-assisted selection, fine mapping and positional cloning.

  18. Identification of Ganoderma Disease Resistance Loci Using Natural Field Infection of an Oil Palm Multiparental Population.

    PubMed

    Tisné, Sébastien; Pomiès, Virginie; Riou, Virginie; Syahputra, Indra; Cochard, Benoît; Denis, Marie

    2017-06-07

    Multi-parental populations are promising tools for identifying quantitative disease resistance loci. Stem rot caused by Ganoderma boninense is a major threat to palm oil production, with yield losses of up to 80% prompting premature replantation of palms. There is evidence of genetic resistance sources, but the genetic architecture of Ganoderma resistance has not yet been investigated. This study aimed to identify Ganoderma resistance loci using an oil palm multi-parental population derived from nine major founders of ongoing breeding programs. A total of 1200 palm trees of the multi-parental population was planted in plots naturally infected by Ganoderma , and their health status was assessed biannually over 25 yr. The data were treated as survival data, and modeled using the Cox regression model, including a spatial effect to take the spatial component in the spread of Ganoderma into account. Based on the genotypes of 757 palm trees out of the 1200 planted, and on pedigree information, resistance loci were identified using a random effect with identity-by-descent kinship matrices as covariance matrices in the Cox model. Four Ganoderma resistance loci were identified, two controlling the occurrence of the first Ganoderma symptoms, and two the death of palm trees, while favorable haplotypes were identified among a major gene pool for ongoing breeding programs. This study implemented an efficient and flexible QTL mapping approach, and generated unique valuable information for the selection of oil palm varieties resistant to Ganoderma disease. Copyright © 2017 Tisné et al.

  19. Genome-wide association mapping reveals a rich genetic architecture of stripe rust resistance loci in emmer wheat (Triticum turgidum ssp. dicoccum).

    PubMed

    Liu, Weizhen; Maccaferri, Marco; Chen, Xianming; Laghetti, Gaetano; Pignone, Domenico; Pumphrey, Michael; Tuberosa, Roberto

    2017-11-01

    SNP-based genome scanning in worldwide domesticated emmer germplasm showed high genetic diversity, rapid linkage disequilibrium decay and 51 loci for stripe rust resistance, a large proportion of which were novel. Cultivated emmer wheat (Triticum turgidum ssp. dicoccum), one of the oldest domesticated crops in the world, is a potentially rich reservoir of variation for improvement of resistance/tolerance to biotic and abiotic stresses in wheat. Resistance to stripe rust (Puccinia striiformis f. sp. tritici) in emmer wheat has been under-investigated. Here, we employed genome-wide association (GWAS) mapping with a mixed linear model to dissect effective stripe rust resistance loci in a worldwide collection of 176 cultivated emmer wheat accessions. Adult plants were tested in six environments and seedlings were evaluated with five races from the United States and one from Italy under greenhouse conditions. Five accessions were resistant across all experiments. The panel was genotyped with the wheat 90,000 Illumina iSelect single nucleotide polymorphism (SNP) array and 5106 polymorphic SNP markers with mapped positions were obtained. A high level of genetic diversity and fast linkage disequilibrium decay were observed. In total, we identified 14 loci associated with field resistance in multiple environments. Thirty-seven loci were significantly associated with all-stage (seedling) resistance and six of them were effective against multiple races. Of the 51 total loci, 29 were mapped distantly from previously reported stripe rust resistance genes or quantitative trait loci and represent newly discovered resistance loci. Our results suggest that GWAS is an effective method for characterizing genes in cultivated emmer wheat and confirm that emmer wheat is a rich source of stripe rust resistance loci that can be used for wheat improvement.

  20. Mapping of new quantitative trait loci for sudden death syndrome and soybean cyst nematode resistance in two soybean populations.

    PubMed

    Swaminathan, Sivakumar; Abeysekara, Nilwala S; Knight, Joshua M; Liu, Min; Dong, Jia; Hudson, Matthew E; Bhattacharyya, Madan K; Cianzio, Silvia R

    2018-05-01

    Novel QTL conferring resistance to both the SDS and SCN was detected in two RIL populations. Dual resistant RILs could be used in breeding programs for developing resistant soybean cultivars. Soybean cultivars, susceptible to the fungus Fusarium virguliforme, which causes sudden death syndrome (SDS), and to the soybean cyst nematode (SCN) (Heterodera glycines), suffer yield losses valued over a billion dollars annually. Both pathogens may occur in the same production fields. Planting of cultivars genetically resistant to both pathogens is considered one of the most effective means to control the two pathogens. The objective of the study was to map quantitative trait loci (QTL) underlying SDS and SCN resistances. Two recombinant inbred line (RIL) populations were developed by crossing 'A95-684043', a high-yielding maturity group (MG) II line resistant to SCN, with 'LS94-3207' and 'LS98-0582' of MG IV, resistant to both F. virguliforme and SCN. Two hundred F 7 derived recombinant inbred lines from each population AX19286 (A95-684043 × LS94-3207) and AX19287 (A95-684043 × LS98-0582) were screened for resistance to each pathogen under greenhouse conditions. Five hundred and eighty and 371 SNP markers were used for mapping resistance QTL in each population. In AX19286, one novel SCN resistance QTL was mapped to chromosome 8. In AX19287, one novel SDS resistance QTL was mapped to chromosome 17 and one novel SCN resistance QTL was mapped to chromosome 11. Previously identified additional SDS and SCN resistance QTL were also detected in the study. Lines possessing superior resistance to both pathogens were also identified and could be used as germplasm sources for breeding SDS- and SCN-resistant soybean cultivars.

  1. Mapping of quantitative trait loci associated with partial resistance to phytophthora sojae and flooding tolerance in soybean

    USDA-ARS?s Scientific Manuscript database

    Phytophthora root rot (PRR) caused by Phytophthora sojae Kaufm. & Gerd. and flooding can limit growth and productivity, of soybean [Glycine max (L.) Merr.], especially on poorly drained soils. The primary objective of this research project was to map quantitative trait loci (QTL) associated with f...

  2. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection.

    PubMed

    Pilet-Nayel, Marie-Laure; Moury, Benoît; Caffier, Valérie; Montarry, Josselin; Kerlan, Marie-Claire; Fournet, Sylvain; Durel, Charles-Eric; Delourme, Régine

    2017-01-01

    Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R) genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.

  3. Genomic selection for quantitative adult plant stem rust resistance in wheat

    USDA-ARS?s Scientific Manuscript database

    Quantitative adult plant resistance (APR) to stem rust (Puccinia graminis f. sp. tritici) is an important breeding target in wheat (Triticum aestivum L.) and a potential target for genomic selection (GS). To evaluate the relative importance of known APR loci in applying genomic selection, we charact...

  4. Major Quantitative Trait Loci Affecting Honey Bee Foraging Behavior

    PubMed Central

    Hunt, G. J.; Page-Jr., R. E.; Fondrk, M. K.; Dullum, C. J.

    1995-01-01

    We identified two genomic regions that affect the amount of pollen stored in honey bee colonies and influence whether foragers will collect pollen or nectar. We selected for the amount of pollen stored in combs of honey bee colonies, a colony-level trait, and then used random amplified polymorphic DNA (RAPD) markers and interval mapping procedures with data from backcross colonies to identify two quantitative trait loci (pln1 and pln2, LOD 3.1 and 2.3, respectively). Quantitative trait loci effects were confirmed in a separate cross by demonstrating the cosegregation of marker alleles with the foraging behavior of individual workers. Both pln1 and pln2 had an effect on the amount of pollen carried by foragers returning to the colony, as inferred by the association between linked RAPD marker alleles, D8-.3f and 301-.55, and the individual pollen load weights of returning foragers. The alleles of the two marker loci were nonrandomly distributed with respect to foraging task. The two loci appeared to have different effects on foraging behavior. Individuals with alternative alleles for the marker linked to pln2 (but not pln1) differed with respect to the nectar sugar concentration of their nectar loads. PMID:8601492

  5. Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula.

    PubMed

    Kamphuis, Lars G; Lichtenzveig, Judith; Oliver, Richard P; Ellwood, Simon R

    2008-03-26

    Knowledge of the genetic basis of plant resistance to necrotrophic pathogens is incomplete and has been characterised in relatively few pathosystems. In this study, the cytology and genetics of resistance to spring black stem and leaf spot caused by Phoma medicaginis, an economically important necrotrophic pathogen of Medicago spp., was examined in the model legume M. truncatula. Macroscopically, the resistant response of accession SA27063 was characterised by small, hypersensitive-like spots following inoculation while the susceptible interaction with accessions A17 and SA3054 showed necrotic lesions and spreading chlorosis. No unique cytological differences were observed during early infection (<48 h) between the resistant and susceptible genotypes, except pathogen growth was restricted to one or a few host cells in SA27063. In both interactions reactive oxygen intermediates and phenolic compounds were produced, and cell death occurred. Two F2 populations segregating for resistance to spring black stem and leaf spot were established between SA27063 and the two susceptible accessions, A17 and SA3054. The cross between SA27063 and A17 represented a wider cross than between SA27063 and SA3054, as evidenced by higher genetic polymorphism, reduced fertility and aberrant phenotypes of F2 progeny. In the SA27063 x A17 F2 population a highly significant quantitative trait locus (QTL, LOD = 7.37; P < 0.00001) named resistance to the necrotroph Phoma medicaginis one (rnpm1) genetically mapped to the top arm of linkage group 4 (LG4). rnpm1 explained 33.6% of the phenotypic variance in the population's response to infection depicted on a 1-5 scale and was tightly linked to marker AW256637. A second highly significant QTL (LOD = 6.77; P < 0.00001), rnpm2, was located on the lower arm of LG8 in the SA27063 x SA3054 map. rnpm2 explained 29.6% of the phenotypic variance and was fine mapped to a 0.8 cM interval between markers h2_16a6a and h2_21h11d. rnpm1 is tightly linked to a

  6. Loci on chromosomes 1A and 2A affect resistance to tan (yellow) spot in wheat populations not segregating for tsn1.

    PubMed

    Shankar, Manisha; Jorgensen, Dorthe; Taylor, Julian; Chalmers, Ken J; Fox, Rebecca; Hollaway, Grant J; Neate, Stephen M; McLean, Mark S; Vassos, Elysia; Golzar, Hossein; Loughman, Robert; Mather, Diane E

    2017-12-01

    QTL for tan spot resistance were mapped on wheat chromosomes 1A and 2A. Lines were developed with resistance alleles at these loci and at the tsn1 locus on chromosome 5B. These lines expressed significantly higher resistance than the parent with tsn1 only. Tan spot (syn. yellow spot and yellow leaf spot) caused by Pyrenophora tritici-repentis is an important foliar disease of wheat in Australia. Few resistance genes have been mapped in Australian germplasm and only one, known as tsn1 located on chromosome 5B, is known in Australian breeding programs. This gene confers insensitivity to the fungal effector ToxA. The main aim of this study was to map novel resistance loci in two populations: Calingiri/Wyalkatchem, which is fixed for the ToxA-insensitivity allele tsn1, and IGW2574/Annuello, which is fixed for the ToxA-sensitivity allele Tsn1. A second aim was to combine new loci with tsn1 to develop lines with improved resistance. Tan spot severity was evaluated at various growth stages and in multiple environments. Symptom severity traits exhibited quantitative variation. The most significant quantitative trait loci (QTL) were detected on chromosomes 2A and 1A. The QTL on 2A explained up to 29.2% of the genotypic variation in the Calingiri/Wyalkatchem population with the resistance allele contributed by Wyalkatchem. The QTL on 1A explained up to 28.1% of the genotypic variation in the IGW2574/Annuello population with the resistance allele contributed by Annuello. The resistance alleles at both QTL were successfully combined with tsn1 to develop lines that express significantly better resistance at both seedling and adult plant stages than Calingiri which has tsn1 only.

  7. Qualitative and quantitative trait loci conditioning resistance to Puccinia coronata pathotypes NQMG and LGCG in the oat (Avena sativa L.) cultivars Ogle and TAM O-301.

    PubMed

    Jackson, E W; Obert, D E; Menz, M; Hu, G; Bonman, J M

    2008-02-01

    Mapping disease resistance loci relies on the type and precision of phenotypic measurements. For crown rust of oat, disease severity is commonly assessed based on visual ratings of infection types (IT) and/or diseased leaf area (DLA) of infected plants in the greenhouse or field. These data can be affected by several variables including; (i) non-uniform disease development in the field; (ii) atypical symptom development in the greenhouse; (iii) the presence of multiple pathogenic races or pathotypes in the field, and (iv) rating bias. To overcome these limitations, we mapped crown rust resistance to single isolates in the Ogle/TAM O-301 (OT) recombinant inbred line (RIL) population using detailed measurements of IT, uredinia length (UL) and relative fungal DNA (FDNA) estimates determined by q-PCR. Measurements were taken on OT parents and recombinant inbred lines (RIL) inoculated with Puccinia coronata pathotypes NQMG and LGCG in separate greenhouse and field tests. Qualitative mapping identified an allele conferred by TAM O-301 on linkage group (LG) OT-11, which produced a bleached fleck phenotype to both NQMG and LGCG. Quantitative mapping identified two major quantitative trait loci (QTL) originating from TAM O-301 on LGs OT-11 and OT-32 which reduced UL and FDNA of both isolates in all experiments. Additionally, minor QTLs that reduced UL and FDNA were detected on LGs OT-15 and OT-8, originating from TAM O-301, and on LG OT-27, originating from Ogle. Detailed assessments of the OT population using two pathotypes in both the greenhouse and field provided comprehensive information to effectively map the genes responsible for crown rust resistance in Ogle and TAM O-301 to NQMG and LGCG.

  8. Mapping of quantitative trait loci for resistance to fall armyworm and southwestern corn borer leaf-feeding damage in maize.

    USDA-ARS?s Scientific Manuscript database

    Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), and southwestern corn borer (SWCB), Diatraea grandiosella Dyar are damaging insect pests of maize resulting in significant yield and economic losses. A previous study identified quantitative trait loci (QTL) that contribute to reduced leaf-fe...

  9. Quantitative trait loci for maysin synthesis in maize (Zea mays L.) lines selected for high silk maysin content.

    PubMed

    Meyer, J D F; Snook, M E; Houchins, K E; Rector, B G; Widstrom, N W; McMullen, M D

    2007-06-01

    Maysin is a naturally occurring C-glycosyl flavone found in maize (Zea mays L.) silk tissue that confers resistance to corn earworm (Helicoverpa zea, Boddie). Recently, two new maize populations were derived for high silk maysin. The two populations were named the exotic populations of maize (EPM) and the southern inbreds of maize (SIM). Quantitative trait locus (QTL) analysis was employed to determine which loci were responsible for elevated maysin levels in inbred lines derived from the EPM and SIM populations. The candidate genes consistent with QTL position included the p (pericarp color), c2 (colorless2), whp1 (white pollen1) and in1 (intensifier1) loci. The role of these loci in controlling high maysin levels in silks was tested by expression analysis and use of the loci as genetic markers onto the QTL populations. These studies support p, c2 and whp1, but not in1, as loci controlling maysin. Through this study, we determined that the p locus regulates whp1 transcription and that increased maysin in these inbred lines was primarily due to alleles at both structural and regulatory loci promoting increased flux through the flavone pathway by increasing chalcone synthase activity.

  10. Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17

    PubMed Central

    Betsiashvili, Mariam; Ahern, Kevin R.; Jander, Georg

    2015-01-01

    Plants show considerable within-species variation in their resistance to insect herbivores. In the case of Zea mays (cultivated maize), Rhopalosiphum maidis (corn leaf aphids) produce approximately twenty times more progeny on inbred line B73 than on inbred line Mo17. Genetic mapping of this difference in maize aphid resistance identified quantitative trait loci (QTL) on chromosomes 4 and 6, with the Mo17 allele reducing aphid reproduction in each case. The chromosome 4 QTL mapping interval includes several genes involved in the biosynthesis of DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one), a maize defensive metabolite that also is required for callose accumulation in response to aphid feeding. Consistent with the known association of callose with plant defence against aphids, R. maidis reproduction on B73×Mo17 recombinant inbred lines was negatively correlated with both DIMBOA content and callose formation. Further genetic mapping, as well as experiments with near-isogenic lines, confirmed that the Mo17 allele causes increased DIMBOA accumulation relative to the B73 allele. The chromosome 6 aphid resistance QTL functions independently of DIMBOA accumulation and has an effect that is additive to that of the chromosome 4 QTL. Thus, at least two separate defence mechanisms account for the higher level of R. maidis resistance in Mo17 compared with B73. PMID:25249072

  11. The Red Queen lives: Epistasis between linked resistance loci.

    PubMed

    Metzger, César M J A; Luijckx, Pepijn; Bento, Gilberto; Mariadassou, Mahendra; Ebert, Dieter

    2016-02-01

    A popular theory explaining the maintenance of genetic recombination (sex) is the Red Queen Theory. This theory revolves around the idea that time-lagged negative frequency-dependent selection by parasites favors rare host genotypes generated through recombination. Although the Red Queen has been studied for decades, one of its key assumptions has remained unsupported. The signature host-parasite specificity underlying the Red Queen, where infection depends on a match between host and parasite genotypes, relies on epistasis between linked resistance loci for which no empirical evidence exists. We performed 13 genetic crosses and tested over 7000 Daphnia magna genotypes for resistance to two strains of the bacterial pathogen Pasteuria ramosa. Results reveal the presence of strong epistasis between three closely linked resistance loci. One locus masks the expression of the other two, while these two interact to produce a single resistance phenotype. Changing a single allele on one of these interacting loci can reverse resistance against the tested parasites. Such a genetic mechanism is consistent with host and parasite specificity assumed by the Red Queen Theory. These results thus provide evidence for a fundamental assumption of this theory and provide a genetic basis for understanding the Red Queen dynamics in the Daphnia-Pasteuria system. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  12. Molecularly tagged genes and quantitative trait loci in cucumber

    USDA-ARS?s Scientific Manuscript database

    Since the release of the cucumber draft genome, significant progress has been made in molecular mapping, tagging or cloning of horticulturally important genes and quantitative trait loci (QTLs) in cucumber, which provides the foundation for practicing marker-assisted selection in cucumber breeding. ...

  13. Discovery of quantitative trait loci for resistance to parasitic nematode infection in sheep: I. Analysis of outcross pedigrees

    PubMed Central

    Crawford, Allan M; Paterson, Korena A; Dodds, Ken G; Diez Tascon, Cristina; Williamson, Penny A; Roberts Thomson, Meredith; Bisset, Stewart A; Beattie, Anne E; Greer, Gordon J; Green, Richard S; Wheeler, Roger; Shaw, Richard J; Knowler, Kevin; McEwan, John C

    2006-01-01

    Background Currently most pastoral farmers rely on anthelmintic drenches to control gastrointestinal parasitic nematodes in sheep. Resistance to anthelmintics is rapidly increasing in nematode populations such that on some farms none of the drench families are now completely effective. It is well established that host resistance to nematode infection is a moderately heritable trait. This study was undertaken to identify regions of the genome, quantitative trait loci (QTL) that contain genes affecting resistance to parasitic nematodes. Results Rams obtained from crossing nematode parasite resistant and susceptible selection lines were used to derive five large half-sib families comprising between 348 and 101 offspring per sire. Total offspring comprised 940 lambs. Extensive measurements for a range of parasite burden and immune function traits in all offspring allowed each lamb in each pedigree to be ranked for relative resistance to nematode parasites. Initially the 22 most resistant and 22 most susceptible progeny from each pedigree were used in a genome scan that used 203 microsatellite markers spread across all sheep autosomes. This study identified 9 chromosomes with regions showing sufficient linkage to warrant the genotyping of all offspring. After genotyping all offspring with markers covering Chromosomes 1, 3, 4, 5, 8, 12, 13, 22 and 23, the telomeric end of chromosome 8 was identified as having a significant QTL for parasite resistance as measured by the number of Trichostrongylus spp. adults in the abomasum and small intestine at the end of the second parasite challenge. Two further QTL for associated immune function traits of total serum IgE and T. colubiformis specific serum IgG, at the end of the second parasite challenge, were identified on chromosome 23. Conclusion Despite parasite resistance being a moderately heritable trait, this large study was able to identify only a single significant QTL associated with it. The QTL concerned adult parasite

  14. Discovery of quantitative trait loci for resistance to parasitic nematode infection in sheep: I. Analysis of outcross pedigrees.

    PubMed

    Crawford, Allan M; Paterson, Korena A; Dodds, Ken G; Diez Tascon, Cristina; Williamson, Penny A; Roberts Thomson, Meredith; Bisset, Stewart A; Beattie, Anne E; Greer, Gordon J; Green, Richard S; Wheeler, Roger; Shaw, Richard J; Knowler, Kevin; McEwan, John C

    2006-07-18

    Currently most pastoral farmers rely on anthelmintic drenches to control gastrointestinal parasitic nematodes in sheep. Resistance to anthelmintics is rapidly increasing in nematode populations such that on some farms none of the drench families are now completely effective. It is well established that host resistance to nematode infection is a moderately heritable trait. This study was undertaken to identify regions of the genome, quantitative trait loci (QTL) that contain genes affecting resistance to parasitic nematodes. Rams obtained from crossing nematode parasite resistant and susceptible selection lines were used to derive five large half-sib families comprising between 348 and 101 offspring per sire. Total offspring comprised 940 lambs. Extensive measurements for a range of parasite burden and immune function traits in all offspring allowed each lamb in each pedigree to be ranked for relative resistance to nematode parasites. Initially the 22 most resistant and 22 most susceptible progeny from each pedigree were used in a genome scan that used 203 microsatellite markers spread across all sheep autosomes. This study identified 9 chromosomes with regions showing sufficient linkage to warrant the genotyping of all offspring. After genotyping all offspring with markers covering Chromosomes 1, 3, 4, 5, 8, 12, 13, 22 and 23, the telomeric end of chromosome 8 was identified as having a significant QTL for parasite resistance as measured by the number of Trichostrongylus spp. adults in the abomasum and small intestine at the end of the second parasite challenge. Two further QTL for associated immune function traits of total serum IgE and T. colubiformis specific serum IgG, at the end of the second parasite challenge, were identified on chromosome 23. Despite parasite resistance being a moderately heritable trait, this large study was able to identify only a single significant QTL associated with it. The QTL concerned adult parasite burdens at the end of the second

  15. Educational Software for Mapping Quantitative Trait Loci (QTL)

    ERIC Educational Resources Information Center

    Helms, T. C.; Doetkott, C.

    2007-01-01

    This educational software was developed to aid teachers and students in their understanding of how the process of identifying the most likely quantitative trait loci (QTL) position is determined between two flanking DNA markers. The objective of the software that we developed was to: (1) show how a QTL is mapped to a position on a chromosome using…

  16. The IQ Quantitative Trait Loci Project: A Critique.

    ERIC Educational Resources Information Center

    King, David

    1998-01-01

    Describes the IQ Quantitative Trait Loci (QTL) project, an attempt to identify genes underlying IQ score variations using maps from the Human Genome Project. The essay argues against funding the IQ QTL project because it will end the debates about the genetic basis of intelligence and may lead directly to eugenic programs of genetic testing. (SLD)

  17. Confirming and identifying new loci for rice blast disease resistance using magnaporthe oryzae field isolates in the US

    USDA-ARS?s Scientific Manuscript database

    Quantitative trait loci (QTL) in rice play important roles in controlling rice blast disease. In the present study, 10 field isolates of the races IA1, IB1, IB17, and IC1 of U.S. rice blast fungus Magnaporthe oryzae collected in 1996 and 2009 were used to identify blast resistance QTL with a recombi...

  18. Identification of Quantitative Trait Loci Conditioning the Main Biomass Yield Components and Resistance to Melampsora spp. in Salix viminalis × Salix schwerinii Hybrids

    PubMed Central

    Sulima, Paweł; Przyborowski, Jerzy A.; Kuszewska, Anna; Załuski, Dariusz; Jędryczka, Małgorzata; Irzykowski, Witold

    2017-01-01

    The biomass of Salix viminalis is the most highly valued source of green energy, followed by S. schwerinii, S. dasyclados and other species. Significant variability in productivity and leaf rust resistance are noted both within and among willow species, which creates new opportunities for improving willow yield parameters through selection of desirable recombinants supported with molecular markers. The aim of this study was to identify quantitative trait loci (QTLs) linked with biomass yield-related traits and the resistance/susceptibility of Salix mapping population to leaf rust. The experimental material comprised a mapping population developed based on S. viminalis × S. schwerinii hybrids. Phenotyping was performed on plants grown in a field experiment that had a balanced incomplete block design with 10 replications. Based on a genetic map, 11 QTLs were identified for plant height, 9 for shoot diameter, 3 for number of shoots and 11 for resistance/susceptibility to leaf rust. The QTLs identified in our study explained 3%–16% of variability in the analyzed traits. Our findings make significant contributions to the development of willow breeding programs and research into shrubby willow crops grown for energy. PMID:28327519

  19. Towards Positional Isolation of Three Quantitative Trait Loci Conferring Resistance to Powdery Mildew in Two Spanish Barley Landraces

    PubMed Central

    Silvar, Cristina; Perovic, Dragan; Nussbaumer, Thomas; Spannagl, Manuel; Usadel, Björn; Casas, Ana; Igartua, Ernesto; Ordon, Frank

    2013-01-01

    Three quantitative trait loci (QTL) conferring broad spectrum resistance to powdery mildew, caused by the fungus Blumeria graminis f. sp. hordei, were previously identified on chromosomes 7HS, 7HL and 6HL in the Spanish barley landrace-derived lines SBCC097 and SBCC145. In the present work, a genome-wide putative linear gene index of barley (Genome Zipper) and the first draft of the physical, genetic and functional sequence of the barley genome were used to go one step further in the shortening and explicit demarcation on the barley genome of these regions conferring resistance to powdery mildew as well as in the identification of candidate genes. First, a comparative analysis of the target regions to the barley Genome Zippers of chromosomes 7H and 6H allowed the development of 25 new gene-based molecular markers, which slightly better delimit the QTL intervals. These new markers provided the framework for anchoring of genetic and physical maps, figuring out the outline of the barley genome at the target regions in SBCC097 and SBCC145. The outermost flanking markers of QTLs on 7HS, 7HL and 6HL defined a physical area of 4 Mb, 3.7 Mb and 3.2 Mb, respectively. In total, 21, 10 and 16 genes on 7HS, 7HL and 6HL, respectively, could be interpreted as potential candidates to explain the resistance to powdery mildew, as they encode proteins of related functions with respect to the known pathogen defense-related processes. The majority of these were annotated as belonging to the NBS-LRR class or protein kinase family. PMID:23826271

  20. Lessons from a Phenotyping Center Revealed by the Genome-Guided Mapping of Powdery Mildew Resistance Loci.

    PubMed

    Cadle-Davidson, Lance; Gadoury, David; Fresnedo-Ramírez, Jonathan; Yang, Shanshan; Barba, Paola; Sun, Qi; Demmings, Elizabeth M; Seem, Robert; Schaub, Michelle; Nowogrodzki, Anna; Kasinathan, Hema; Ledbetter, Craig; Reisch, Bruce I

    2016-10-01

    The genomics era brought unprecedented opportunities for genetic analysis of host resistance, but it came with the challenge that accurate and reproducible phenotypes are needed so that genomic results appropriately reflect biology. Phenotyping host resistance by natural infection in the field can produce variable results due to the uncontrolled environment, uneven distribution and genetics of the pathogen, and developmentally regulated resistance among other factors. To address these challenges, we developed highly controlled, standardized methodologies for phenotyping powdery mildew resistance in the context of a phenotyping center, receiving samples of up to 140 grapevine progeny per F 1 family. We applied these methodologies to F 1 families segregating for REN1- or REN2-mediated resistance and validated that some but not all bioassays identified the REN1 or REN2 locus. A point-intercept method (hyphal transects) to quantify colony density objectively at 8 or 9 days postinoculation proved to be the phenotypic response most reproducibly predicted by these resistance loci. Quantitative trait locus (QTL) mapping with genotyping-by-sequencing maps defined the REN1 and REN2 loci at relatively high resolution. In the reference PN40024 genome under each QTL, nucleotide-binding site-leucine-rich repeat candidate resistance genes were identified-one gene for REN1 and two genes for REN2. The methods described here for centralized resistance phenotyping and high-resolution genetic mapping can inform strategies for breeding resistance to powdery mildews and other pathogens on diverse, highly heterozygous hosts.

  1. Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii.

    PubMed

    Pap, Dániel; Riaz, Summaira; Dry, Ian B; Jermakow, Angelica; Tenscher, Alan C; Cantu, Dario; Oláh, Róbert; Walker, M Andrew

    2016-07-29

    Grapevine powdery mildew Erysiphe necator is a major fungal disease in all grape growing countries worldwide. Breeding for resistance to this disease is crucial to avoid extensive fungicide applications that are costly, labor intensive and may have detrimental effects on the environment. In the past decade, Chinese Vitis species have attracted attention from grape breeders because of their strong resistance to powdery mildew and their lack of negative fruit quality attributes that are often present in resistant North American species. In this study, we investigated powdery mildew resistance in multiple accessions of the Chinese species Vitis piasezkii that were collected during the 1980 Sino-American botanical expedition to the western Hubei province of China. A framework genetic map was developed using simple sequence repeat markers in 277 seedlings of an F1 mapping population arising from a cross of the powdery mildew susceptible Vitis vinifera selection F2-35 and a resistant accession of V. piasezkii DVIT2027. Quantitative trait locus analyses identified two major powdery mildew resistance loci on chromosome 9 (Ren6) and chromosome 19 (Ren7) explaining 74.8 % of the cumulative phenotypic variation. The quantitative trait locus analysis for each locus, in the absence of the other, explained 95.4 % phenotypic variation for Ren6, while Ren7 accounted for 71.9 % of the phenotypic variation. Screening of an additional 259 seedlings of the F1 population and 910 seedlings from four pseudo-backcross populations with SSR markers defined regions of 22 kb and 330 kb for Ren6 and Ren7 in the V. vinifera PN40024 (12X) genome sequence, respectively. Both R loci operate post-penetration through the induction of programmed cell death, but vary significantly in the speed of response and degree of resistance; Ren6 confers complete resistance whereas Ren7 confers partial resistance to the disease with reduced colony size. A comparison of the kinetics of induction of powdery

  2. Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome.

    PubMed

    Kazi, S; Shultz, J; Afzal, J; Johnson, J; Njiti, V N; Lightfoot, D A

    2008-05-01

    Soybean [Glycine max (L.) Merr.] cultivars show differences in their resistance to both the leaf scorch and root rot of sudden death syndrome (SDS). The syndrome is caused by root colonization by Fusarium virguliforme (ex. F. solani f. sp. glycines). Root susceptibility combined with reduced leaf scorch resistance has been associated with resistance to Heterodera glycines HG Type 1.3.6.7 (race 14) of the soybean cyst nematode (SCN). In contrast, the rhg1 locus underlying resistance to Hg Type 0 was found clustered with three loci for resistance to SDS leaf scorch and one for root infection. The aims of this study were to compare the inheritance of resistance to leaf scorch and root infection in a population that segregated for resistance to SCN and to identify the underlying quantitative trait loci (QTL). "Hartwig", a cultivar partially resistant to SDS leaf scorch, F. virguliforme root infection and SCN HG Type 1.3.6.7 was crossed with the partially susceptible cultivar "Flyer". Ninety-two F5-derived recombinant inbred lines and 144 markers were used for map development. Four QTL found in earlier studies were confirmed. One contributed resistance to leaf scorch on linkage group (LG) C2 (Satt277; P = 0.004, R2 = 15%). Two on LG G underlay root infection at R8 (Satt038; P = 0.0001 R2 = 28.1%; Satt115; P = 0.003, R2 = 12.9%). The marker Satt038 was linked to rhg1 underlying resistance to SCN Hg Type 0. The fourth QTL was on LG D2 underlying resistance to root infection at R6 (Satt574; P = 0.001, R2 = 10%). That QTL was in an interval previously associated with resistance to both SDS leaf scorch and SCN Hg Type 1.3.6.7. The QTL showed repulsion linkage with resistance to SCN that may explain the relative susceptibility to SDS of some SCN resistant cultivars. One additional QTL was discovered on LG G underlying resistance to SDS leaf scorch measured by disease index (Satt130; P = 0.003, R2 = 13%). The loci and markers will provide tagged alleles with which to improve

  3. Quantitative genome re-sequencing defines multiple mutations conferring chloroquine resistance in rodent malaria

    PubMed Central

    2012-01-01

    Background Drug resistance in the malaria parasite Plasmodium falciparum severely compromises the treatment and control of malaria. A knowledge of the critical mutations conferring resistance to particular drugs is important in understanding modes of drug action and mechanisms of resistances. They are required to design better therapies and limit drug resistance. A mutation in the gene (pfcrt) encoding a membrane transporter has been identified as a principal determinant of chloroquine resistance in P. falciparum, but we lack a full account of higher level chloroquine resistance. Furthermore, the determinants of resistance in the other major human malaria parasite, P. vivax, are not known. To address these questions, we investigated the genetic basis of chloroquine resistance in an isogenic lineage of rodent malaria parasite P. chabaudi in which high level resistance to chloroquine has been progressively selected under laboratory conditions. Results Loci containing the critical genes were mapped by Linkage Group Selection, using a genetic cross between the high-level chloroquine-resistant mutant and a genetically distinct sensitive strain. A novel high-resolution quantitative whole-genome re-sequencing approach was used to reveal three regions of selection on chr11, chr03 and chr02 that appear progressively at increasing drug doses on three chromosomes. Whole-genome sequencing of the chloroquine-resistant parent identified just four point mutations in different genes on these chromosomes. Three mutations are located at the foci of the selection valleys and are therefore predicted to confer different levels of chloroquine resistance. The critical mutation conferring the first level of chloroquine resistance is found in aat1, a putative aminoacid transporter. Conclusions Quantitative trait loci conferring selectable phenotypes, such as drug resistance, can be mapped directly using progressive genome-wide linkage group selection. Quantitative genome-wide short

  4. Stripe rust and leaf rust resistance QTL mapping, epistatic interactions, and co-localization with stem rust resistance loci in spring wheat evaluated over three continents.

    PubMed

    Singh, A; Knox, R E; DePauw, R M; Singh, A K; Cuthbert, R D; Campbell, H L; Shorter, S; Bhavani, S

    2014-11-01

    In wheat, advantageous gene-rich or pleiotropic regions for stripe, leaf, and stem rust and epistatic interactions between rust resistance loci should be accounted for in plant breeding strategies. Leaf rust (Puccinia triticina Eriks.) and stripe rust (Puccinia striiformis f. tritici Eriks) contribute to major production losses in many regions worldwide. The objectives of this research were to identify and study epistatic interactions of quantitative trait loci (QTL) for stripe and leaf rust resistance in a doubled haploid (DH) population derived from the cross of Canadian wheat cultivars, AC Cadillac and Carberry. The relationship of leaf and stripe rust resistance QTL that co-located with stem rust resistance QTL previously mapped in this population was also investigated. The Carberry/AC Cadillac population was genotyped with DArT(®) and simple sequence repeat markers. The parents and population were phenotyped for stripe rust severity and infection response in field rust nurseries in Kenya (Njoro), Canada (Swift Current), and New Zealand (Lincoln); and for leaf rust severity and infection response in field nurseries in Canada (Swift Current) and New Zealand (Lincoln). AC Cadillac was a source of stripe rust resistance QTL on chromosomes 2A, 2B, 3A, 3B, 5B, and 7B; and Carberry was a source of resistance on chromosomes 2B, 4B, and 7A. AC Cadillac contributed QTL for resistance to leaf rust on chromosome 2A and Carberry contributed QTL on chromosomes 2B and 4B. Stripe rust resistance QTL co-localized with previously reported stem rust resistance QTL on 2B, 3B, and 7B, while leaf rust resistance QTL co-localized with 4B stem rust resistance QTL. Several epistatic interactions were identified both for stripe and leaf rust resistance QTL. We have identified useful combinations of genetic loci with main and epistatic effects. Multiple disease resistance regions identified on chromosomes 2A, 2B, 3B, 4B, 5B, and 7B are prime candidates for further investigation and

  5. Mapping Quantitative Field Resistance Against Apple Scab in a 'Fiesta' x 'Discovery' Progeny.

    PubMed

    Liebhard, R; Koller, B; Patocchi, A; Kellerhals, M; Pfammatter, W; Jermini, M; Gessler, C

    2003-04-01

    ABSTRACT Breeding of resistant apple cultivars (Malus x domestica) as a disease management strategy relies on the knowledge and understanding of the underlying genetics. The availability of molecular markers and genetic linkage maps enables the detection and the analysis of major resistance genes as well as of quantitative trait loci (QTL) contributing to the resistance of a genotype. Such a genetic linkage map was constructed, based on a segregating population of the cross between apple cvs. Fiesta (syn. Red Pippin) and Discovery. The progeny was observed for 3 years at three different sites in Switzerland and field resistance against apple scab (Venturia inaequalis) was assessed. Only a weak correlation was detected between leaf scab and fruit scab. A QTL analysis was performed, based on the genetic linkage map consisting of 804 molecular markers and covering all 17 chromosomes of apple. With the maximum likelihood-based interval mapping method, eight genomic regions were identified, six conferring resistance against leaf scab and two conferring fruit scab resistance. Although cv. Discovery showed a much stronger resistance against scab in the field, most QTL identified were attributed to the more susceptible parent 'Fiesta'. This indicated a high degree of homozygosity at the scab resistance loci in 'Discovery', preventing their detection in the progeny due to the lack of segregation.

  6. Six quantitative trait loci influence task thresholds for hygienic behaviour in honeybees (Apis mellifera).

    PubMed

    Oxley, Peter R; Spivak, Marla; Oldroyd, Benjamin P

    2010-04-01

    Honeybee hygienic behaviour provides colonies with protection from many pathogens and is an important model system of the genetics of a complex behaviour. It is a textbook example of complex behaviour under simple genetic control: hygienic behaviour consists of two components--uncapping a diseased brood cell, followed by removal of the contents--each of which are thought to be modulated independently by a few loci of medium to large effect. A worker's genetic propensity to engage in hygienic tasks affects the intensity of the stimulus required before she initiates the behaviour. Genetic diversity within colonies leads to task specialization among workers, with a minority of workers performing the majority of nest-cleaning tasks. We identify three quantitative trait loci that influence the likelihood that workers will engage in hygienic behaviour and account for up to 30% of the phenotypic variability in hygienic behaviour in our population. Furthermore, we identify two loci that influence the likelihood that a worker will perform uncapping behaviour only, and one locus that influences removal behaviour. We report the first candidate genes associated with engaging in hygienic behaviour, including four genes involved in olfaction, learning and social behaviour, and one gene involved in circadian locomotion. These candidates will allow molecular characterization of this distinctive behavioural mode of disease resistance, as well as providing the opportunity for marker-assisted selection for this commercially significant trait.

  7. Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons.

    PubMed

    Moscou, Matthew J; Lauter, Nick; Steffenson, Brian; Wise, Roger P

    2011-07-01

    Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host-pathogen interaction with enhancement

  8. Quantitative and Qualitative Stem Rust Resistance Factors in Barley Are Associated with Transcriptional Suppression of Defense Regulons

    PubMed Central

    Moscou, Matthew J.; Lauter, Nick; Steffenson, Brian; Wise, Roger P.

    2011-01-01

    Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host–pathogen interaction with enhancement

  9. Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing.

    PubMed

    Branham, Sandra E; Stansell, Zachary J; Couillard, David M; Farnham, Mark W

    2017-03-01

    Five quantitative trait loci and one epistatic interaction were associated with heat tolerance in a doubled haploid population of broccoli evaluated in three summer field trials. Predicted rising global temperatures due to climate change have generated a demand for crops that are resistant to yield and quality losses from heat stress. Broccoli (Brassica oleracea var. italica) is a cool weather crop with high temperatures during production decreasing both head quality and yield. Breeding for heat tolerance in broccoli has potential to both expand viable production areas and extend the growing season but breeding efficiency is constrained by limited genetic information. A doubled haploid (DH) broccoli population segregating for heat tolerance was evaluated for head quality in three summer fields in Charleston, SC, USA. Multiple quantitative trait loci (QTL) mapping of 1,423 single nucleotide polymorphisms developed through genotyping-by-sequencing identified five QTL and one positive epistatic interaction that explained 62.1% of variation in heat tolerance. The QTL identified here can be used to develop markers for marker-assisted selection and to increase our understanding of the molecular mechanisms underlying plant response to heat stress.

  10. Molecular Diversity Analysis and Genetic Mapping of Pod Shatter Resistance Loci in Brassica carinata L.

    PubMed Central

    Raman, Rosy; Qiu, Yu; Coombes, Neil; Song, Jie; Kilian, Andrzej; Raman, Harsh

    2017-01-01

    Seed lost due to easy pod dehiscence at maturity (pod shatter) is a major problem in several members of Brassicaceae family. We investigated the level of pod shatter resistance in Ethiopian mustard (Brassica carinata) and identified quantitative trait loci (QTL) for targeted introgression of this trait in Ethiopian mustard and its close relatives of the genus Brassica. A set of 83 accessions of B. carinata, collected from the Australian Grains Genebank, was evaluated for pod shatter resistance based on pod rupture energy (RE). In comparison to B. napus (RE = 2.16 mJ), B. carinata accessions had higher RE values (2.53 to 20.82 mJ). A genetic linkage map of an F2 population from two contrasting B. carinata selections, BC73526 (shatter resistant with high RE) and BC73524 (shatter prone with low RE) comprising 300 individuals, was constructed using a set of 6,464 high quality DArTseq markers and subsequently used for QTL analysis. Genetic analysis of the F2 and F2:3 derived lines revealed five statistically significant QTL (LOD ≥ 3) that are linked with pod shatter resistance on chromosomes B1, B3, B8, and C5. Herein, we report for the first time, identification of genetic loci associated with pod shatter resistance in B. carinata. These characterized accessions would be useful in Brassica breeding programs for introgression of pod shatter resistance alleles in to elite breeding lines. Molecular markers would assist marker-assisted selection for tracing the introgression of resistant alleles. Our results suggest that the value of the germplasm collections can be harnessed through genetic and genomics tools. PMID:29250080

  11. Genetic analysis and mapping of adult plant resistance loci to leaf rust in durum wheat cultivar Bairds.

    PubMed

    Lan, Caixia; Basnet, Bhoja R; Singh, Ravi P; Huerta-Espino, Julio; Herrera-Foessel, Sybil A; Ren, Yong; Randhawa, Mandeep S

    2017-03-01

    New leaf rust adult plant resistance (APR) QTL QLr.cim - 6BL was mapped and confirmed the known pleotropic APR gene Lr46 effect on leaf rust in durum wheat line Bairds. CIMMYT-derived durum wheat line Bairds displays an adequate level of adult plant resistance (APR) to leaf rust in Mexican field environments. A recombinant inbred line (RIL) population developed from a cross of Bairds with susceptible parent Atred#1 was phenotyped for leaf rust response at Ciudad Obregon, Mexico, during 2013, 2014, 2015 and 2016 under artificially created epidemics of Puccinia triticina (Pt) race BBG/BP. The RIL population and its parents were genotyped with the 50 K diversity arrays technology (DArT) sequence system and simple sequence repeat (SSR) markers. A genetic map comprising 1150 markers was used to map the resistance loci. Four significant quantitative trait loci (QTLs) were detected on chromosomes 1BL, 2BC (centromere region), 5BL and 6BL. These QTLs, named Lr46, QLr.cim-2BC, QLr.cim-5BL and QLr.cim-6BL, respectively, explained 13.5-60.8%, 9.0-14.3%, 2.8-13.9%, and 11.6-29.4%, respectively, of leaf rust severity variation by the inclusive composite interval mapping method. All of these resistance loci were contributed by the resistant parent Bairds, except for QLr.cim-2BC, which came from susceptible parent Atred#1. Among these, the QTL on chromosome 1BL was the known pleiotropic APR gene Lr46, whereas QLr.cim-6BL, a consistently detected locus, should be a new leaf rust resistance locus in durum wheat. The mean leaf rust severity of RILs carrying all four QTLs ranged from 8.0 to 17.5%, whereas it ranged from 10.9 to 38.5% for three QTLs (Lr46 + 5BL + 6BL) derived from the resistant parent Bairds. Two RILs with four QTLs combinations can be used as sources of complex APR in durum wheat breeding.

  12. Quantitative Trait Loci Mapping of Western Corn Rootworm (Coleoptera: Chrysomelidae) Host Plant Resistance in Two Populations of Doubled Haploid Lines in Maize (Zea mays L.).

    PubMed

    Bohn, Martin O; Marroquin, Juan J; Flint-Garcia, Sherry; Dashiell, Kenton; Willmot, David B; Hibbard, Bruce E

    2018-02-09

    Over the last 70 yr, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera (LeConte; Coleoptera: Chrysomelidae), larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Selected genotypes were mostly characterized by large root systems and superior root regrowth after root damage caused by western corn rootworm larvae. However, no hybrids claiming native (i.e., host plant) resistance to western corn rootworm larval feeding are currently commercially available. We investigated the genetic basis of western corn rootworm resistance in maize materials with improved levels of resistance using linkage disequilibrium mapping approaches. Two populations of topcrossed doubled haploid maize lines (DHLs) derived from crosses between resistant and susceptible maize lines were evaluated for their level of resistance in three to four different environments. For each DHL topcross an average root damage score was estimated and used for quantitative trait loci (QTL) analysis. We found genomic regions contributing to western corn rootworm resistance on all maize chromosomes, except for chromosome 4. Models fitting all QTL simultaneously explained about 30 to 50% of the genotypic variance for root damage scores in both mapping populations. Our findings confirm the complex genetic structure of host plant resistance against western corn rootworm larval feeding in maize. Interestingly, three of these QTL regions also carry genes involved in ascorbate biosynthesis, a key compound we hypothesize is involved in the expression of western corn rootworm resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Effects of stacked quantitative resistances to downy mildew in lettuce do not simply add up.

    PubMed

    den Boer, Erik; Pelgrom, Koen T B; Zhang, Ningwen W; Visser, Richard G F; Niks, Rients E; Jeuken, Marieke J W

    2014-08-01

    In a stacking study of eight resistance QTLs in lettuce against downy mildew, only three out of ten double combinations showed an increased resistance effect under field conditions. Complete race nonspecific resistance to lettuce downy mildew, as observed for the nonhost wild lettuce species Lactuca saligna, is desired in lettuce cultivation. Genetic dissection of L. saligna's complete resistance has revealed several quantitative loci (QTL) for resistance with field infection reductions of 30-50 %. To test the effect of stacking these QTL, we analyzed interactions between homozygous L. saligna CGN05271 chromosome segments introgressed into the genetic background of L. sativa cv. Olof. Eight different backcross inbred lines (BILs) with single introgressions of 30-70 cM and selected predominately for quantitative resistance in field situations were intercrossed. Ten developed homozygous lines with stacked introgression segments (double combinations) were evaluated for resistance in the field. Seven double combinations showed a similar infection as the individual most resistant parental BIL, revealing epistatic interactions with 'less-than-additive' effects. Three double combinations showed an increased resistance level compared to their parental BILs and their interactions were additive, 'less-than-additive' epistatic and 'more-than-additive' epistatic, respectively. The additive interaction reduced field infection by 73 %. The double combination with a 'more-than-additive' epistatic effect, derived from a combination between a susceptible and a resistant BIL with 0 and 30 % infection reduction, respectively, showed an average field infection reduction of 52 %. For the latter line, an attempt to genetically dissect its underlying epistatic loci by substitution mapping did not result in smaller mapping intervals as none of the 22 substitution lines reached a similar high resistance level. Implications for breeding and the inheritance of L. saligna's complete

  14. Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks.

    PubMed Central

    Byrne, P F; McMullen, M D; Snook, M E; Musket, T A; Theuri, J M; Widstrom, N W; Wiseman, B R; Coe, E H

    1996-01-01

    Interpretation of quantitative trait locus (QTL) studies of agronomic traits is limited by lack of knowledge of biochemical pathways leading to trait expression. To more fully elucidate the biological significance of detected QTL, we chose a trait that is the product of a well-characterized pathway, namely the concentration of maysin, a C-glycosyl flavone, in silks of maize, Zea mays L. Maysin is a host-plant resistance factor against the corn earworm, Helicoverpa zea (Boddie). We determined silk maysin concentrations and restriction fragment length polymorphism genotypes at flavonoid pathway loci or linked markers for 285 F2 plants derived from the cross of lines GT114 and GT119. Single-factor analysis of variance indicated that the p1 region on chromosome 1 accounted for 58.0% of the phenotypic variance and showed additive gene action. The p1 locus is a transcription activator for portions of the flavonoid pathway. A second QTL, represented by marker umc 105a near the brown pericarp1 locus on chromosome 9, accounted for 10.8% of the variance. Gene action of this region was dominant for low maysin, but was only expressed in the presence of a functional p1 allele. The model explaining the greatest proportion of phenotypic variance (75.9%) included p1, umc105a, umc166b (chromosome 1), r1 (chromosome 10), and two epistatic interaction terms, p1 x umc105a and p1 x r1. Our results provide evidence that regulatory loci have a central role and that there is a complex interplay among different branches of the flavonoid pathway in the expression of this trait. PMID:11607699

  15. Comparative mapping reveals quantitative trait loci that affect spawning time in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Araneda, Cristian; Díaz, Nelson F.; Gomez, Gilda; López, María Eugenia; Iturra, Patricia

    2012-01-01

    Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss), various quantitative trait loci (QTL) that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch). The four loci were identified in females from two populations (early and late spawners) produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC) that were strongly associated with spawning time in coho salmon (p < 0.0002) were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10) with a suggestive association (p = 0.00035) mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map. PMID:22888302

  16. Quantitative trait loci associated with the tocochromanol (vitamin E) pathway in barley

    USDA-ARS?s Scientific Manuscript database

    In this study, the Genome-Wide Association Studies approach was used to detect Quantitative Trait Loci associated with tocochromanol concentrations using a panel of 1,466 barley accessions. All major tocochromanol types- alpha-, beta-, delta-, gamma-tocopherol and tocotrienol- were assayed. We found...

  17. Quantitative Trait Loci Associated with the Tocochromanol (Vitamin E) Pathway in Barley.

    PubMed

    Graebner, Ryan C; Wise, Mitchell; Cuesta-Marcos, Alfonso; Geniza, Matthew; Blake, Tom; Blake, Victoria C; Butler, Joshua; Chao, Shiaomen; Hole, David J; Horsley, Rich; Jaiswal, Pankaj; Obert, Don; Smith, Kevin P; Ullrich, Steven; Hayes, Patrick M

    2015-01-01

    The Genome-Wide Association Studies approach was used to detect Quantitative Trait Loci associated with tocochromanol concentrations using a panel of 1,466 barley accessions. All major tocochromanol types- α-, β-, δ-, γ-tocopherol and tocotrienol- were assayed. We found 13 single nucleotide polymorphisms associated with the concentration of one or more of these tocochromanol forms in barley, seven of which were within 2 cM of sequences homologous to cloned genes associated with tocochromanol production in barley and/or other plants. These associations confirmed a prior report based on bi-parental QTL mapping. This knowledge will aid future efforts to better understand the role of tocochromanols in barley, with specific reference to abiotic stress resistance. It will also be useful in developing barley varieties with higher tocochromanol concentrations, although at current recommended daily consumption amounts, barley would not be an effective sole source of vitamin E. However, it could be an important contributor in the context of whole grains in a balanced diet.

  18. Identification of quantitative trait loci affecting resistance to gastrointestinal parasites in a double backcross population of Red Maasai and Dorper sheep.

    PubMed

    Silva, M V B; Sonstegard, T S; Hanotte, O; Mugambi, J M; Garcia, J F; Nagda, S; Gibson, J P; Iraqi, F A; McClintock, A E; Kemp, S J; Boettcher, P J; Malek, M; Van Tassell, C P; Baker, R L

    2012-02-01

    A genome-wide scan for quantitative trait loci (QTL) affecting gastrointestinal nematode resistance in sheep was completed using a double backcross population derived from Red Maasai and Dorper ewes bred to F(1) rams. This design provided an opportunity to map potentially unique genetic variation associated with a parasite-tolerant breed like Red Maasai, a breed developed to survive East African grazing conditions. Parasite indicator phenotypes (blood packed cell volume - PCV and faecal egg count - FEC) were collected on a weekly basis from 1064 lambs during a single 3-month post-weaning grazing challenge on infected pastures. The averages of last measurements for FEC (AVFEC) and PCV (AVPCV), along with decline in PCV from challenge start to end (PCVD), were used to select lambs (N = 371) for genotyping that represented the tails (10% threshold) of the phenotypic distributions. Marker genotypes for 172 microsatellite loci covering 25 of 26 autosomes (1560.7 cm) were scored and corrected by Genoprob prior to qxpak analysis that included Box-Cox transformed AVFEC and arcsine transformed PCV statistics. Significant QTL for AVFEC and AVPCV were detected on four chromosomes, and this included a novel AVFEC QTL on chromosome 6 that would have remained undetected without Box-Cox transformation methods. The most significant P-values for AVFEC, AVPCV and PCVD overlapped the same marker interval on chromosome 22, suggesting the potential for a single causative mutation, which remains unknown. In all cases, the favourable QTL allele was always contributed from Red Maasai, providing support for the idea that future marker-assisted selection for genetic improvement of production in East Africa will rely on markers in linkage disequilibrium with these QTL. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.

  19. Location of Vibrio anguillarum resistance-associated trait loci in half-smooth tongue sole Cynoglossus semilaevis at its microsatellite linkage map

    NASA Astrophysics Data System (ADS)

    Tang, Zhihong; Guo, Li; Liu, Yang; Shao, Changwei; Chen, Songlin; Yang, Guanpin

    2016-11-01

    A cultured female half-smooth tongue sole ( Cynoglossus semilaevis) was crossed with a wild male, yielding the first filial generation of pseudo-testcrossing from which 200 fish were randomly selected to locate the Vibrio anguillarum resistance trait in half-smooth tongue sole at its microsatellite linkage map. In total, 129 microsatellites were arrayed into 18 linkage groups, ≥4 each. The map reconstructed was 852.85 cM in length with an average spacing of 7.68 cM, covering 72.07% of that expected (1 183.35 cM). The V. anguillarum resistance trait was a composite rather than a unit trait, which was tentatively partitioned into Survival time in Hours After V. anguillarum Infection (SHAVI) and Immunity of V. Anguillarum Infection (IVAI). Above a logarithm of the odds (LOD) threshold of 2.5, 18 loci relative to SHAVI and 3 relative to IVAI were identified. The 3 loci relative to IVAI explained 18.78%, 5.87% and 6.50% of the total phenotypic variation in immunity. The microsatellites bounding the 3 quantitative trait loci (QTLs) of IVAI may in future aid to the selection of V. anguillarum-immune half-smooth tongue sole varieties, and facilitate cloning the gene(s) controlling such immunity.

  20. Quantitative trait loci for response to ethanol in an intercontinental set of recombinant inbred lines of Drosophila melanogaster.

    PubMed

    Defays, Raquel; Bertoli, Carlos Ignacio

    2012-12-01

    Alcohol, a drug widely abused, impacts the central nervous system functioning of diverse organisms. The behavioral responses to acute alcohol exposure are remarkably similar among humans and fruit flies. In its natural environment, rich in fermentation products, the fruit fly Drosophila melanogaster encounters relatively high levels of ethanol. The effects of ethanol and its metabolites on Drosophila have been studied for decades, as a model for adaptive evolution. Although extensive work has been done for elucidating patterns of genetic variation, substantially less is known about the genomic regions or genes that underlie the genetic variation of this important trait. To identify regions containing genes involved in the responses to ethanol, we used a mapping population of recombinant inbred (RIL) lines to map quantitative trait loci (QTL) that affect variation in resistance and recovery from ethanol sedation in adults and ethanol resistance in larvae. We mapped fourteen QTL affecting the response to ethanol on the three chromosomes. Seven of the QTL influence the resistance to ethanol in adults, two QTL are related to ethanol-coma recovery in adults and five affect the survival to ethanol in larvae. Most of the QTL were trait specific, suggesting that overlapping but generally unique genetic architectures underlie each trait. Each QTL explained up to 16.8% of the genetic variance among lines. Potential candidate loci contained within our QTL regions were identified and analyzed. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster.

    PubMed Central

    Pasyukova, E G; Vieira, C; Mackay, T F

    2000-01-01

    In a previous study, sex-specific quantitative trait loci (QTL) affecting adult longevity were mapped by linkage to polymorphic roo transposable element markers, in a population of recombinant inbred lines derived from the Oregon and 2b strains of Drosophila melanogaster. Two life span QTL were each located on chromosomes 2 and 3, within sections 33E-46C and 65D-85F on the cytological map, respectively. We used quantitative deficiency complementation mapping to further resolve the locations of life span QTL within these regions. The Oregon and 2b strains were each crossed to 47 deficiencies spanning cytological regions 32F-44E and 64C-76B, and quantitative failure of the QTL alleles to complement the deficiencies was assessed. We initially detected a minimum of five and four QTL in the chromosome 2 and 3 regions, respectively, illustrating that multiple linked factors contribute to each QTL detected by recombination mapping. The QTL locations inferred from deficiency mapping did not generally correspond to those of candidate genes affecting oxidative and thermal stress or glucose metabolism. The chromosome 2 QTL in the 35B-E region was further resolved to a minimum of three tightly linked QTL, containing six genetically defined loci, 24 genes, and predicted genes that are positional candidates corresponding to life span QTL. This region was also associated with quantitative variation in life span in a sample of 10 genotypes collected from nature. Quantitative deficiency complementation is an efficient method for fine-scale QTL mapping in Drosophila and can be further improved by controlling the background genotype of the strains to be tested. PMID:11063689

  2. Identification of seedling vigor-associated quantitative trait loci in temperate japonica rice

    USDA-ARS?s Scientific Manuscript database

    A quantitative trait loci (QTL) analysis of seedling vigor traits was conducted under dry-seeded conditions using 176 recombinant inbred lines developed from a cross of two California temperate japonica rice varieties M-203 and M-206. Height at early seedling (HES) and late seedling (HLS) stage, gro...

  3. Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine

    Treesearch

    A. Groover; M. Devey; T. Fiddler; J. Lee; R. Megraw; T. Mitchel-Olds; B. Sherman; S. Vujcic; C. Williams; D. Neale

    1994-01-01

    We report the identification of quantitative trait loci (QTL) influencing wood specific gravity (WSG) in an outbred pedigree of loblolly pine (Pinus taeda L.) . QTL mapping in an outcrossing species is complicated by the presence of multiple alleles (>2) at QTL and marker loci. Multiple alleles at QTL allow the examination of interaction among...

  4. The first genetic map of the American cranberry: exploration of synteny conservation and quantitative trait loci.

    PubMed

    Georgi, Laura; Johnson-Cicalese, Jennifer; Honig, Josh; Das, Sushma Parankush; Rajah, Veeran D; Bhattacharya, Debashish; Bassil, Nahla; Rowland, Lisa J; Polashock, James; Vorsa, Nicholi

    2013-03-01

    The first genetic map of cranberry (Vaccinium macrocarpon) has been constructed, comprising 14 linkage groups totaling 879.9 cM with an estimated coverage of 82.2 %. This map, based on four mapping populations segregating for field fruit-rot resistance, contains 136 distinct loci. Mapped markers include blueberry-derived simple sequence repeat (SSR) and cranberry-derived sequence-characterized amplified region markers previously used for fingerprinting cranberry cultivars. In addition, SSR markers were developed near cranberry sequences resembling genes involved in flavonoid biosynthesis or defense against necrotrophic pathogens, or conserved orthologous set (COS) sequences. The cranberry SSRs were developed from next-generation cranberry genomic sequence assemblies; thus, the positions of these SSRs on the genomic map provide information about the genomic location of the sequence scaffold from which they were derived. The use of SSR markers near COS and other functional sequences, plus 33 SSR markers from blueberry, facilitates comparisons of this map with maps of other plant species. Regions of the cranberry map were identified that showed conservation of synteny with Vitis vinifera and Arabidopsis thaliana. Positioned on this map are quantitative trait loci (QTL) for field fruit-rot resistance (FFRR), fruit weight, titratable acidity, and sound fruit yield (SFY). The SFY QTL is adjacent to one of the fruit weight QTL and may reflect pleiotropy. Two of the FFRR QTL are in regions of conserved synteny with grape and span defense gene markers, and the third FFRR QTL spans a flavonoid biosynthetic gene.

  5. Identification of New Resistance Loci to African Stem Rust Race TTKSK in Tetraploid Wheats Based on Linkage and Genome-Wide Association Mapping.

    PubMed

    Laidò, Giovanni; Panio, Giosuè; Marone, Daniela; Russo, Maria A; Ficco, Donatella B M; Giovanniello, Valentina; Cattivelli, Luigi; Steffenson, Brian; de Vita, Pasquale; Mastrangelo, Anna M

    2015-01-01

    Stem rust, caused by Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn. (Pgt), is one of the most destructive diseases of wheat. Races of the pathogen in the "Ug99 lineage" are of international concern due to their virulence for widely used stem rust resistance genes and their spread throughout Africa. Disease resistant cultivars provide one of the best means for controlling stem rust. To identify quantitative trait loci (QTL) conferring resistance to African stem rust race TTKSK at the seedling stage, we evaluated an association mapping (AM) panel consisting of 230 tetraploid wheat accessions under greenhouse conditions. A high level of phenotypic variation was observed in response to race TTKSK in the AM panel, allowing for genome-wide association mapping of resistance QTL in wild, landrace, and cultivated tetraploid wheats. Thirty-five resistance QTL were identified on all chromosomes, and seventeen are of particular interest as identified by multiple associations. Many of the identified resistance loci were coincident with previously identified rust resistance genes; however, nine on chromosomes 1AL, 2AL, 4AL, 5BL, and 7BS may be novel. To validate AM results, a biparental population of 146 recombinant inbred lines was also considered, which derived from a cross between the resistant cultivar "Cirillo" and susceptible "Neodur." The stem rust resistance of Cirillo was conferred by a single gene on the distal region of chromosome arm 6AL in an interval map coincident with the resistance gene Sr13, and confirmed one of the resistance loci identified by AM. A search for candidate resistance genes was carried out in the regions where QTL were identified, and many of them corresponded to NBS-LRR genes and protein kinases with LRR domains. The results obtained in the present study are of great interest as a high level of genetic variability for resistance to race TTKSK was described in a germplasm panel comprising most of the tetraploid wheat sub-species.

  6. Dominant Epistasis Between Two Quantitative Trait Loci Governing Sporulation Efficiency in Yeast Saccharomyces cerevisiae

    PubMed Central

    Bergman, Juraj; Mitrikeski, Petar T.

    2015-01-01

    Summary Sporulation efficiency in the yeast Saccharomyces cerevisiae is a well-established model for studying quantitative traits. A variety of genes and nucleotides causing different sporulation efficiencies in laboratory, as well as in wild strains, has already been extensively characterised (mainly by reciprocal hemizygosity analysis and nucleotide exchange methods). We applied a different strategy in order to analyze the variation in sporulation efficiency of laboratory yeast strains. Coupling classical quantitative genetic analysis with simulations of phenotypic distributions (a method we call phenotype modelling) enabled us to obtain a detailed picture of the quantitative trait loci (QTLs) relationships underlying the phenotypic variation of this trait. Using this approach, we were able to uncover a dominant epistatic inheritance of loci governing the phenotype. Moreover, a molecular analysis of known causative quantitative trait genes and nucleotides allowed for the detection of novel alleles, potentially responsible for the observed phenotypic variation. Based on the molecular data, we hypothesise that the observed dominant epistatic relationship could be caused by the interaction of multiple quantitative trait nucleotides distributed across a 60--kb QTL region located on chromosome XIV and the RME1 locus on chromosome VII. Furthermore, we propose a model of molecular pathways which possibly underlie the phenotypic variation of this trait. PMID:27904371

  7. Quantitative Trait Loci Differentiating the Outbreeding Mimulus Guttatus from the Inbreeding M. Platycalyx

    PubMed Central

    Lin, J. Z.; Ritland, K.

    1997-01-01

    Theoretical predictions about the evolution of selfing depend on the genetic architecture of loci controlling selfing (monogenic vs. polygenic determination, large vs. small effect of alleles, dominance vs. recessiveness), and studies of such architecture are lacking. We inferred the genetic basis of mating system differences between the outbreeding Mimulus guttatus and the inbreeding M. platycalyx by quantitative trait locus (QTL) mapping using random amplified polymorphic DNA and isozyme markers. One to three QTL were detected for each of five mating system characters, and each QTL explained 7.6-28.6% of the phenotypic variance. Taken together, QTL accounted for up to 38% of the variation in mating system characters, and a large proportion of variation was unaccounted for. Inferred QTL often affected more than one trait, contributing to the genetic correlation between those traits. These results are consistent with the hypothesis that quantitative variation in plant mating system characters is primarily controlled by loci with small effect. PMID:9215912

  8. Quantitative Trait Loci (QTL)-Guided Metabolic Engineering of a Complex Trait.

    PubMed

    Maurer, Matthew J; Sutardja, Lawrence; Pinel, Dominic; Bauer, Stefan; Muehlbauer, Amanda L; Ames, Tyler D; Skerker, Jeffrey M; Arkin, Adam P

    2017-03-17

    Engineering complex phenotypes for industrial and synthetic biology applications is difficult and often confounds rational design. Bioethanol production from lignocellulosic feedstocks is a complex trait that requires multiple host systems to utilize, detoxify, and metabolize a mixture of sugars and inhibitors present in plant hydrolysates. Here, we demonstrate an integrated approach to discovering and optimizing host factors that impact fitness of Saccharomyces cerevisiae during fermentation of a Miscanthus x giganteus plant hydrolysate. We first used high-resolution Quantitative Trait Loci (QTL) mapping and systematic bulk Reciprocal Hemizygosity Analysis (bRHA) to discover 17 loci that differentiate hydrolysate tolerance between an industrially related (JAY291) and a laboratory (S288C) strain. We then used this data to identify a subset of favorable allelic loci that were most amenable for strain engineering. Guided by this "genetic blueprint", and using a dual-guide Cas9-based method to efficiently perform multikilobase locus replacements, we engineered an S288C-derived strain with superior hydrolysate tolerance than JAY291. Our methods should be generalizable to engineering any complex trait in S. cerevisiae, as well as other organisms.

  9. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. III

    Treesearch

    Kathleen D. Jermstad; Daniel L. Bassoni; Keith S. Jech; Gary A. Ritchie; Nicholas C. Wheeler; David B. Neale

    2003-01-01

    Quantitative trait loci (QTL) were mapped in the woody perennial Douglas fir (Pseudotsuga menziesii var. menziesii [Mirb.] Franco) for complex traits controlling the timing of growth initiation and growth cessation. QTL were estimated under controlled environmental conditions to identify QTL interactions with photoperiod, moisture stress, winter chilling, and spring...

  10. Quantitative trait loci analysis for resistance to Cephalosporium stripe, a vascular wilt disease of wheat.

    PubMed

    Quincke, Martin C; Peterson, C James; Zemetra, Robert S; Hansen, Jennifer L; Chen, Jianli; Riera-Lizarazu, Oscar; Mundt, Christopher C

    2011-05-01

    Cephalosporium stripe, caused by Cephalosporium gramineum, can cause severe loss of wheat (Triticum aestivum L.) yield and grain quality and can be an important factor limiting adoption of conservation tillage practices. Selecting for resistance to Cephalosporium stripe is problematic; however, as optimum conditions for disease do not occur annually under natural conditions, inoculum levels can be spatially heterogeneous, and little is known about the inheritance of resistance. A population of 268 recombinant inbred lines (RILs) derived from a cross between two wheat cultivars was characterized using field screening and molecular markers to investigate the inheritance of resistance to Cephalosporium stripe. Whiteheads (sterile heads caused by pathogen infection) were measured on each RIL in three field environments under artificially inoculated conditions. A linkage map for this population was created based on 204 SSR and DArT markers. A total of 36 linkage groups were resolved, representing portions of all chromosomes except for chromosome 1D, which lacked a sufficient number of polymorphic markers. Quantitative trait locus (QTL) analysis identified seven regions associated with resistance to Cephalosporium stripe, with approximately equal additive effects. Four QTL derived from the more susceptible parent (Brundage) and three came from the more resistant parent (Coda), but the cumulative, additive effect of QTL from Coda was greater than that of Brundage. Additivity of QTL effects was confirmed through regression analysis and demonstrates the advantage of accumulating multiple QTL alleles to achieve high levels of resistance.

  11. CBCL Pediatric Bipolar Disorder Profile and ADHD: Comorbidity and Quantitative Trait Loci Analysis

    ERIC Educational Resources Information Center

    McGough, James J.; Loo, Sandra K.; McCracken, James T.; Dang, Jeffery; Clark, Shaunna; Nelson, Stanley F.; Smalley, Susan L.

    2008-01-01

    The pediatric bipolar disorder profile of the Child Behavior checklist is used to differentiate patterns of comorbidity and to search for quantitative trait loci in multiple affected ADHD sibling pairs. The CBCL-PBD profiling identified 8 percent of individuals with severe psychopathology and increased rates of oppositional defiant, conduct and…

  12. A journey from a SSR-based low density map to a SNP-based high density map for identification of disease resistance quantitative trait loci in peanut

    USDA-ARS?s Scientific Manuscript database

    Mapping and identification of quantitative trait loci (QTLs) are important for efficient marker-assisted breeding. Diseases such as leaf spots and Tomato spotted wilt virus (TSWV) cause significant loses to peanut growers. The U.S. Peanut Genome Initiative (PGI) was launched in 2004, and expanded to...

  13. RFLP-facilitated investigation of the quantitative resistance of rice to brown planthopper ( Nilaparvata lugens).

    PubMed

    Xu, X. F.; Mei, H. W.; Luo, L. J.; Cheng, X. N.; Li, Z. K.

    2002-02-01

    Quantitative trait loci (QTLs), conferring quantitative resistance to rice brown planthopper (BPH), were investigated using 160 F(11) recombinant inbred lines (RILs) from the Lemont/Teqing cross, a complete RFLP map, and replicated phenotyping of seedbox inoculation. The paternal indica parent, Teqing, was more-resistant to BPH than the maternal japonica parent, Lemont. The RILs showed transgressive segregation for resistance to BPH. Seven main-effect QTLs and many epistatic QTL pairs were identified and mapped on the 12 rice chromosomes. Collectively, the main-effect and epistatic QTLs accounted for over 70% of the total variation in damage scores. Teqing has the resistance allele at four main-effect QTLs, and the Lemont allele resulted in resistance at the other three. Of the main-effect QTLs identified, QBphr5b was mapped to the vicinity of gl1, a major gene controlling leaf and stem pubescence. The Teqing allele controlling leaf and stem pubescence was associated with resistance, while the Lemont allele for glabrous stem and leaves was associated with susceptibility, indicating that this gene may have contributed to resistance through antixenosis. Similar to the reported BPH resistance genes, the other six detected main-effect QTLs were all mapped to regions where major disease resistance genes locate, suggesting they might have contributed either to antibiosis or tolerance. Our results indicated that marker-aided pyramiding of major resistance genes and QTLs should provide effective and stable control over this devastating pest.

  14. Using Genotyping by Sequencing to Map Two Novel Anthracnose Resistance Loci in Sorghum bicolor.

    PubMed

    J Felderhoff, Terry; M McIntyre, Lauren; Saballos, Ana; Vermerris, Wilfred

    2016-07-07

    Colletotrichum sublineola is an aggressive fungal pathogen that causes anthracnose in sorghum [Sorghum bicolor (L.) Moench]. The obvious symptoms of anthracnose are leaf blight and stem rot. Sorghum, the fifth most widely grown cereal crop in the world, can be highly susceptible to the disease, most notably in hot and humid environments. In the southeastern United States the acreage of sorghum has been increasing steadily in recent years, spurred by growing interest in producing biofuels, bio-based products, and animal feed. Resistance to anthracnose is, therefore, of paramount importance for successful sorghum production in this region. To identify anthracnose resistance loci present in the highly resistant cultivar 'Bk7', a biparental mapping population of F3:4 and F4:5 sorghum lines was generated by crossing 'Bk7' with the susceptible inbred 'Early Hegari-Sart'. Lines were phenotyped in three environments and in two different years following natural infection. The population was genotyped by sequencing. Following a stringent custom filtering protocol, totals of 5186 and 2759 informative SNP markers were identified in the two populations. Segregation data and association analysis identified resistance loci on chromosomes 7 and 9, with the resistance alleles derived from 'Bk7'. Both loci contain multiple classes of defense-related genes based on sequence similarity and gene ontologies. Genetic analysis following an independent selection experiment of lines derived from a cross between 'Bk7' and sweet sorghum 'Mer81-4' narrowed the resistance locus on chromosome 9 substantially, validating this QTL. As observed in other species, sorghum appears to have regions of clustered resistance genes. Further characterization of these regions will facilitate the development of novel germplasm with resistance to anthracnose and other diseases. Copyright © 2016 Felderhoff et al.

  15. Using Genotyping by Sequencing to Map Two Novel Anthracnose Resistance Loci in Sorghum bicolor

    PubMed Central

    J. Felderhoff, Terry; M. McIntyre, Lauren; Saballos, Ana; Vermerris, Wilfred

    2016-01-01

    Colletotrichum sublineola is an aggressive fungal pathogen that causes anthracnose in sorghum [Sorghum bicolor (L.) Moench]. The obvious symptoms of anthracnose are leaf blight and stem rot. Sorghum, the fifth most widely grown cereal crop in the world, can be highly susceptible to the disease, most notably in hot and humid environments. In the southeastern United States the acreage of sorghum has been increasing steadily in recent years, spurred by growing interest in producing biofuels, bio-based products, and animal feed. Resistance to anthracnose is, therefore, of paramount importance for successful sorghum production in this region. To identify anthracnose resistance loci present in the highly resistant cultivar ‘Bk7’, a biparental mapping population of F3:4 and F4:5 sorghum lines was generated by crossing ‘Bk7’ with the susceptible inbred ‘Early Hegari-Sart’. Lines were phenotyped in three environments and in two different years following natural infection. The population was genotyped by sequencing. Following a stringent custom filtering protocol, totals of 5186 and 2759 informative SNP markers were identified in the two populations. Segregation data and association analysis identified resistance loci on chromosomes 7 and 9, with the resistance alleles derived from ‘Bk7’. Both loci contain multiple classes of defense-related genes based on sequence similarity and gene ontologies. Genetic analysis following an independent selection experiment of lines derived from a cross between ‘Bk7’ and sweet sorghum ‘Mer81-4’ narrowed the resistance locus on chromosome 9 substantially, validating this QTL. As observed in other species, sorghum appears to have regions of clustered resistance genes. Further characterization of these regions will facilitate the development of novel germplasm with resistance to anthracnose and other diseases. PMID:27194807

  16. Using genotyping by sequencing to map two novel anthracnose resistance Loci in Sorghum bicolor

    DOE PAGES

    Felderhoff, Terry J.; McIntyre, Lauren M.; Saballos, Ana; ...

    2016-05-18

    Colletotrichum sublineola is an aggressive fungal pathogen that causes anthracnose in sorghum [ Sorghum bicolor (L.) Moench]. The obvious symptoms of anthracnose are leaf blight and stem rot. Sorghum, the fifth most widely grown cereal crop in the world, can be highly susceptible to the disease, most notably in hot and humid environments. In the southeastern United States the acreage of sorghum has been increasing steadily in recent years, spurred by growing interest in producing biofuels, bio-based products, and animal feed. Resistance to anthracnose is, therefore, of paramount importance for successful sorghum production in this region. To identify anthracnose resistancemore » loci present in the highly resistant cultivar ‘Bk7’, a biparental mapping population of F 3:4 and F 4:5 sorghum lines was generated by crossing ‘Bk7’ with the susceptible inbred ‘Early Hegari-Sart’. Lines were phenotyped in three environments and in two different years following natural infection. The population was genotyped by sequencing. Following a stringent custom filtering protocol, totals of 5186 and 2759 informative SNP markers were identified in the two populations. Segregation data and association analysis identified resistance loci on chromosomes 7 and 9, with the resistance alleles derived from ‘Bk7’. Both loci contain multiple classes of defense-related genes based on sequence similarity and gene ontologies. In addition, genetic analysis following an independent selection experiment of lines derived from a cross between ‘Bk7’ and sweet sorghum ‘Mer81-4’ narrowed the resistance locus on chromosome 9 substantially, validating this QTL. As observed in other species, sorghum appears to have regions of clustered resistance genes. Further characterization of these regions will facilitate the development of novel germplasm with resistance to anthracnose and other diseases.« less

  17. Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.).

    PubMed

    Jiang, Congcong; Shi, Jiaqin; Li, Ruiyuan; Long, Yan; Wang, Hao; Li, Dianrong; Zhao, Jianyi; Meng, Jinling

    2014-04-01

    This report describes an integrative analysis of seed-oil-content quantitative trait loci (QTL) in Brassica napus , using a high-density genetic map to align QTL among different populations. Rapeseed (Brassica napus) is an important source of edible oil and sustainable energy. Given the challenge involved in using only a few genes to substantially increase the oil content of rapeseed without affecting the fatty acid composition, exploitation of a greater number of genetic loci that regulate the oil content variation among rapeseed germplasm is of fundamental importance. In this study, we investigated variation in the seed-oil content among two related genetic populations of Brassica napus, the TN double-haploid population and its derivative reconstructed-F2 population. Each population was grown in multiple experiments under different environmental conditions. Mapping of quantitative trait loci (QTL) identified 41 QTL in the TN populations. Furthermore, of the 20 pairs of epistatic interaction loci detected, approximately one-third were located within the QTL intervals. The use of common markers on different genetic maps and the TN genetic map as a reference enabled us to project QTL from an additional three genetic populations onto the TN genetic map. In summary, we used the TN genetic map of the B. napus genome to identify 46 distinct QTL regions that control seed-oil content on 16 of the 19 linkage groups of B. napus. Of these, 18 were each detected in multiple populations. The present results are of value for ongoing efforts to breed rapeseed with high oil content, and alignment of the QTL makes an important contribution to the development of an integrative system for genetic studies of rapeseed.

  18. Signatures of Evolutionary Adaptation in Quantitative Trait Loci Influencing Trace Element Homeostasis in Liver

    PubMed Central

    Sabidó, Eduard; Bosch, Elena

    2016-01-01

    Essential trace elements possess vital functions at molecular, cellular, and physiological levels in health and disease, and they are tightly regulated in the human body. In order to assess variability and potential adaptive evolution of trace element homeostasis, we quantified 18 trace elements in 150 liver samples, together with the expression levels of 90 genes and abundances of 40 proteins involved in their homeostasis. Additionally, we genotyped 169 single nucleotide polymorphism (SNPs) in the same sample set. We detected significant associations for 8 protein quantitative trait loci (pQTL), 10 expression quantitative trait loci (eQTLs), and 15 micronutrient quantitative trait loci (nutriQTL). Six of these exceeded the false discovery rate cutoff and were related to essential trace elements: 1) one pQTL for GPX2 (rs10133290); 2) two previously described eQTLs for HFE (rs12346) and SELO (rs4838862) expression; and 3) three nutriQTLs: The pathogenic C282Y mutation at HFE affecting iron (rs1800562), and two SNPs within several clustered metallothionein genes determining selenium concentration (rs1811322 and rs904773). Within the complete set of significant QTLs (which involved 30 SNPs and 20 gene regions), we identified 12 SNPs with extreme patterns of population differentiation (FST values in the top 5% percentile in at least one HapMap population pair) and significant evidence for selective sweeps involving QTLs at GPX1, SELENBP1, GPX3, SLC30A9, and SLC39A8. Overall, this detailed study of various molecular phenotypes illustrates the role of regulatory variants in explaining differences in trace element homeostasis among populations and in the human adaptive response to environmental pressures related to micronutrients. PMID:26582562

  19. Two whitebacked planthopper resistance genes in rice share the same loci with those for brown planthopper resistance.

    PubMed

    Tan, G X; Weng, Q M; Ren, X; Huang, Z; Zhu, L L; He, G C

    2004-03-01

    The whitebacked planthopper (WBPH), Sogatella furcifera, and brown planthopper (BPH) Nilaparvata lugens Stål are important sucking insects of rice (Oryza sativa L.) crops throughout the world. Rice 'B5', which has derived its resistance genes from the wild rice O. officinalis Wall ex Watt, is a line that is highly resistant to both WBPH and BPH. Previously, two resistance genes against BPH, Qbp1, and Qbp2 in 'B5' had been mapped onto chromosome 3 and chromosome 4, respectively. In this study, we employed a mapping population composed of 187 recombinant inbred lines (RILs), produced from a cross between 'B5' and susceptible variety 'Minghui63', to locate the WBPH and BPH resistance genes. A RFLP survey of the bulked extremes from the RIL population identified two genomic regions, one on chromosome 3 and the other on chromosome 4, likely containing the resistance genes to planthoppers. QTL analysis of the RILs further confirmed that two WBPH resistance genes were mapped on the same loci as Qbp1 and Qbp2, using a linkage map with 242 molecular markers distributed on 12 rice chromosomes. Of the two WBPH resistance genes, one designated Wbph7(t) was located within a 1.1-cM region between R1925 and G1318 on chromosome 3, the other designated Wbph8(t) was within a 0.3-cM region flanked by R288 and S11182 on chromosome 4. A two-way analysis of variance showed that two loci acted independently with each other in determining WBPH resistance. The results have significant implications in studying the interactions between sucking insects and plants and in breeding programs of resistance to rice planthoppers.

  20. Quantitative trait loci analysis for net ginning energy requirements in upland cotton (Gossypium hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    Cotton cultivars with reduced fiber-seed attachment force have the potential to be ginned faster with less energy. The objective of this study was to identify quantitative trait loci (QTL) for net ginning energy (NGE) requirement, and its relationship with other fiber quality traits in upland cotton...

  1. Characterization of Novel Gene Yr79 and Four Additional Quantitative Trait Loci for All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat PI 182103.

    PubMed

    Feng, Junyan; Wang, Meinan; See, Deven R; Chao, Shiaoman; Zheng, Youliang; Chen, Xianming

    2018-06-01

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. Exploring new resistance genes is essential for breeding resistant wheat cultivars. PI 182103, a spring wheat landrace originally from Pakistan, has shown a high level of resistance to stripe rust in fields for many years, but genes for resistance to stripe rust in the variety have not been studied. To map the resistance gene(s) in PI 182103, 185 recombinant inbred lines (RILs) were developed from a cross with Avocet Susceptible (AvS). The RIL population was genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism markers and tested with races PST-100 and PST-114 at the seedling stage under controlled greenhouse conditions and at the adult-plant stage in fields at Pullman and Mt. Vernon, Washington under natural infection by the stripe rust pathogen in 2011, 2012, and 2013. A total of five quantitative trait loci (QTL) were detected. QyrPI182103.wgp-2AS and QyrPI182103.wgp-3AL were detected at the seedling stage, QyrPI182103.wgp-4DL was detected only in Mt. Vernon field tests, and QyrPI182103.wgp-5BS was detected in both seedling and field tests. QyrPI182103.wgp-7BL was identified as a high-temperature adult-plant resistance gene and detected in all field tests. Interactions among the QTL were mostly additive, but some negative interactions were detected. The 7BL QTL was mapped in chromosomal bin 7BL 0.40 to 0.45 and identified as a new gene, permanently designated as Yr79. SSR markers Xbarc72 and Xwmc335 flanking the Yr79 locus were highly polymorphic in various wheat genotypes, indicating that the molecular markers are useful for incorporating the new gene for potentially durable stripe rust resistance into new wheat cultivars.

  2. Genome-wide search of stem rust resistance loci at the seedling stage in durum wheat

    USDA-ARS?s Scientific Manuscript database

    Puccinia graminis f. sp. tritici, the causative agent of stem rust in wheat, is known to rapidly evolve new virulence to resistance genes. While more than 50 stem rust resistance (Sr) loci have been identified in wheat, only a few remain effective, particularly against the highly virulent race Ug99 ...

  3. Use of single nucleotide polymorphisms (SNP) to fine-map quantitative trait loci (QTL) in swine

    USDA-ARS?s Scientific Manuscript database

    Mapping quantitative trait loci (QTL) in swine at the US Meat Animal Research Center has relied heavily on linkage mapping in either F2 or Backcross families. QTL identified in the initial scans typically have very broad confidence intervals and further refinement of the QTL’s position is needed bef...

  4. Identification of expression quantitative trait loci by the interaction analysis using genetic algorithm.

    PubMed

    Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung

    2007-01-01

    Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene x gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene x gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms.

  5. Linkage disequilibrium interval mapping of quantitative trait loci.

    PubMed

    Boitard, Simon; Abdallah, Jihad; de Rochambeau, Hubert; Cierco-Ayrolles, Christine; Mangin, Brigitte

    2006-03-16

    For many years gene mapping studies have been performed through linkage analyses based on pedigree data. Recently, linkage disequilibrium methods based on unrelated individuals have been advocated as powerful tools to refine estimates of gene location. Many strategies have been proposed to deal with simply inherited disease traits. However, locating quantitative trait loci is statistically more challenging and considerable research is needed to provide robust and computationally efficient methods. Under a three-locus Wright-Fisher model, we derived approximate expressions for the expected haplotype frequencies in a population. We considered haplotypes comprising one trait locus and two flanking markers. Using these theoretical expressions, we built a likelihood-maximization method, called HAPim, for estimating the location of a quantitative trait locus. For each postulated position, the method only requires information from the two flanking markers. Over a wide range of simulation scenarios it was found to be more accurate than a two-marker composite likelihood method. It also performed as well as identity by descent methods, whilst being valuable in a wider range of populations. Our method makes efficient use of marker information, and can be valuable for fine mapping purposes. Its performance is increased if multiallelic markers are available. Several improvements can be developed to account for more complex evolution scenarios or provide robust confidence intervals for the location estimates.

  6. An eQTL Analysis of Partial Resistance to Puccinia hordei in Barley

    PubMed Central

    Chen, Xinwei; Hackett, Christine A.; Niks, Rients E.; Hedley, Peter E.; Booth, Clare; Druka, Arnis; Marcel, Thierry C.; Vels, Anton; Bayer, Micha; Milne, Iain; Morris, Jenny; Ramsay, Luke; Marshall, David; Cardle, Linda; Waugh, Robbie

    2010-01-01

    Background Genetic resistance to barley leaf rust caused by Puccinia hordei involves both R genes and quantitative trait loci. The R genes provide higher but less durable resistance than the quantitative trait loci. Consequently, exploring quantitative or partial resistance has become a favorable alternative for controlling disease. Four quantitative trait loci for partial resistance to leaf rust have been identified in the doubled haploid Steptoe (St)/Morex (Mx) mapping population. Further investigations are required to study the molecular mechanisms underpinning partial resistance and ultimately identify the causal genes. Methodology/Principal Findings We explored partial resistance to barley leaf rust using a genetical genomics approach. We recorded RNA transcript abundance corresponding to each probe on a 15K Agilent custom barley microarray in seedlings from St and Mx and 144 doubled haploid lines of the St/Mx population. A total of 1154 and 1037 genes were, respectively, identified as being P. hordei-responsive among the St and Mx and differentially expressed between P. hordei-infected St and Mx. Normalized ratios from 72 distant-pair hybridisations were used to map the genetic determinants of variation in transcript abundance by expression quantitative trait locus (eQTL) mapping generating 15685 eQTL from 9557 genes. Correlation analysis identified 128 genes that were correlated with resistance, of which 89 had eQTL co-locating with the phenotypic quantitative trait loci (pQTL). Transcript abundance in the parents and conservation of synteny with rice allowed us to prioritise six genes as candidates for Rphq11, the pQTL of largest effect, and highlight one, a phospholipid hydroperoxide glutathione peroxidase (HvPHGPx) for detailed analysis. Conclusions/Significance The eQTL approach yielded information that led to the identification of strong candidate genes underlying pQTL for resistance to leaf rust in barley and on the general pathogen response pathway

  7. Mapping quantitative trait loci for binary trait in the F2:3 design.

    PubMed

    Zhu, Chengsong; Zhang, Yuan-Ming; Guo, Zhigang

    2008-12-01

    In the analysis of inheritance of quantitative traits with low heritability, an F(2:3) design that genotypes plants in F(2) and phenotypes plants in F(2:3) progeny is often used in plant genetics. Although statistical approaches for mapping quantitative trait loci (QTL) in the F(2:3) design have been well developed, those for binary traits of biological interest and economic importance are seldom addressed. In this study, an attempt was made to map binary trait loci (BTL) in the F(2:3) design. The fundamental idea was: the F(2) plants were genotyped, all phenotypic values of each F(2:3) progeny were measured for binary trait, and these binary trait values and the marker genotype informations were used to detect BTL under the penetrance and liability models. The proposed method was verified by a series of Monte-Carlo simulation experiments. These results showed that maximum likelihood approaches under the penetrance and liability models provide accurate estimates for the effects and the locations of BTL with high statistical power, even under of low heritability. Moreover, the penetrance model is as efficient as the liability model, and the F(2:3) design is more efficient than classical F(2) design, even though only a single progeny is collected from each F(2:3) family. With the maximum likelihood approaches under the penetrance and the liability models developed in this study, we can map binary traits as we can do for quantitative trait in the F(2:3) design.

  8. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5’ accessions

    PubMed Central

    2012-01-01

    Background Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large-effect quantitative trait locus (QTL) for fire blight resistance has been reported on linkage group 3 of Malus ‘Robusta 5’. In this study we identified markers derived from putative fire blight resistance genes associated with the QTL by integrating further genetic mapping studies with bioinformatics analysis of transcript profiling data and genome sequence databases. Results When several defined E.amylovora strains were used to inoculate three progenies from international breeding programs, all with ‘Robusta 5’ as a common parent, two distinct QTLs were detected on linkage group 3, where only one had previously been mapped. In the New Zealand ‘Malling 9’ X ‘Robusta 5’ population inoculated with E. amylovora ICMP11176, the proximal QTL co-located with SNP markers derived from a leucine-rich repeat, receptor-like protein ( MxdRLP1) and a closely linked class 3 peroxidase gene. While the QTL detected in the German ‘Idared’ X ‘Robusta 5’ population inoculated with E. amylovora strains Ea222_JKI or ICMP11176 was approximately 6 cM distal to this, directly below a SNP marker derived from a heat shock 90 family protein gene ( HSP90). In the US ‘Otawa3’ X ‘Robusta5’ population inoculated with E. amylovora strains Ea273 or E2002a, the position of the LOD score peak on linkage group 3 was dependent upon the pathogen strains used for inoculation. One of the five MxdRLP1 alleles identified in fire blight resistant and susceptible cultivars was genetically associated with resistance and used to develop a high resolution melting PCR marker. A resistance QTL detected on linkage group 7 of the US population co-located with another HSP90 gene-family member and a WRKY transcription factor

  9. Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea.

    PubMed

    Lan, T H; Paterson, A H

    2000-08-01

    The enlarged inflorescence (curd) of cauliflower and broccoli provide not only a popular vegetable for human consumption, but also a unique opportunity for scientists who seek to understand the genetic basis of plant growth and development. By the comparison of quantitative trait loci (QTL) maps constructed from three different F(2) populations, we identified a total of 86 QTL that control eight curd-related traits in Brassica oleracea. The 86 QTL may reflect allelic variation in as few as 67 different genetic loci and 54 ancestral genes. Although the locations of QTL affecting a trait occasionally corresponded between different populations or between different homeologous Brassica chromosomes, our data supported other molecular and morphological data in suggesting that the Brassica genus is rapidly evolving. Comparative data enabled us to identify a number of candidate genes from Arabidopsis that warrant further investigation to determine if some of them might account for Brassica QTL. The Arabidopsis/Brassica system is an important example of both the challenges and opportunities associated with extrapolation of genomic information from facile models to large-genome taxa including major crops.

  10. Identification of expression quantitative trait loci by the interaction analysis using genetic algorithm

    PubMed Central

    Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung

    2007-01-01

    Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene × gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene × gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms. PMID:18466570

  11. Genetic localization of diuron- and mucidin-resistant mutants relative to a group of loci of the mitochondrial DNA controlling coenzyme QH2-cytochrome c reductase in Saccharomyces cerevisiae.

    PubMed

    Colson, A M; Slonimski, P P

    1979-01-02

    Diuron-resistance, DIU (Colson et al., 1977), antimycin-resistance, ANA (Michaelis, 1976; Burger et al., 1976), funiculosin-resistance, FUN (Pratje and Michaelis, 1977; Burger et al., 1977) and mucidin-resistance, MUC (Subik et al., 1977) are each coded by a pair of genetic loci on the mit DNA of S. cerevisiae. In the present paper, these respiratiory-competent, drug-resistant loci are localized relative to respiratory-deficient BOX mutants deficient in coenzyme QH2-cytochrome c reductase (Kotylak and Slonimski, 1976, 1977) using deletion and recombination mapping. Three drug-resistant loci possessing distinct mutated allelic forms are distinguished. DIU1 is allelic or closely linked to ANA2, FUN1 and BOX1; DIU2 is allelic or closely linked to ANA1, MUC1 and BOX4/5; MUC2 is allelic to BOX6. The high recombinant frequencies observed between the three loci (13% on the average for 33 various combinations analyzed) suggest the existence of either three genes coding for three distinct polypeptides or of a single gene coding for a single polypeptide but subdivided into three easily separable segments. The resistance of the respiratory-chain observed in vitro in the drug-resistant mutants and the allelism relationships between respiratory-competent, drug-resistant loci and coQH2-cyt c reductase deficient, BOX, loci strongly suggest that each of the three drug-resistant loci codes for a structural gene-product which is essential for the normal coQH2-cyt c reductase activity and is obviously a good candidate for a gene product of the drug-resistant loci mapped in this paper. Polypeptide length modifications of cytochrome b were observed in mutants deficient in the coQH2-cyt c red and localized at the BOX1, BOX4 and BOX6 genetic loci (Claisse et al., 1977, 1978) which are precisely the loci allelic to drug resistant mutants as shown in the present work. Taken together these two sets of data provide a strong evidence in favor of the idea that there exist three non contiguous

  12. Mapping, fine mapping, and molecular dissection of quantitative trait Loci in domestic animals.

    PubMed

    Georges, Michel

    2007-01-01

    Artificial selection has created myriad breeds of domestic animals, each characterized by unique phenotypes pertaining to behavior, morphology, physiology, and disease. Most domestic animal populations share features with isolated founder populations, making them well suited for positional cloning. Genome sequences are now available for most domestic species, and with them a panoply of tools including high-density single-nucleotide polymorphism panels. As a result, domestic animal populations are becoming invaluable resources for studying the molecular architecture of complex traits and of adaptation. Here we review recent progress and issues in the positional identification of genes underlying complex traits in domestic animals. As many phenotypes studied in animals are quantitative, we focus on mapping, fine mapping, and cloning of quantitative trait loci.

  13. Using SNP markers to dissect linkage disequilibrium at a major quantitative trait locus for resistance to the potato cyst nematode Globodera pallida on potato chromosome V.

    PubMed

    Achenbach, Ute; Paulo, Joao; Ilarionova, Evgenyia; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhard; Gebhardt, Christiane

    2009-02-01

    The damage caused by the parasitic root cyst nematode Globodera pallida is a major yield-limiting factor in potato cultivation . Breeding for resistance is facilitated by the PCR-based marker 'HC', which is diagnostic for an allele conferring high resistance against G. pallida pathotype Pa2/3 that has been introgressed from the wild potato species Solanum vernei into the Solanum tuberosum tetraploid breeding pool. The major quantitative trait locus (QTL) controlling this nematode resistance maps on potato chromosome V in a hot spot for resistance to various pathogens including nematodes and the oomycete Phytophthora infestans. An unstructured sample of 79 tetraploid, highly heterozygous varieties and breeding clones was selected based on presence (41 genotypes) or absence (38 genotypes) of the HC marker. Testing the clones for resistance to G. pallida confirmed the diagnostic power of the HC marker. The 79 individuals were genotyped for 100 single nucleotide polymorphisms (SNPs) at 10 loci distributed over 38 cM on chromosome V. Forty-five SNPs at six loci spanning 2 cM in the interval between markers GP21-GP179 were associated with resistance to G. pallida. Based on linkage disequilibrium (LD) between SNP markers, six LD groups comprising between 2 and 18 SNPs were identified. The LD groups indicated the existence of multiple alleles at a single resistance locus or at several, physically linked resistance loci. LD group C comprising 18 SNPs corresponded to the 'HC' marker. LD group E included 16 SNPs and showed an association peak, which positioned one nematode resistance locus physically close to the R1 gene family.

  14. A genome scan for selection signatures comparing farmed Atlantic salmon with two wild populations: Testing colocalization among outlier markers, candidate genes, and quantitative trait loci for production traits.

    PubMed

    Liu, Lei; Ang, Keng Pee; Elliott, J A K; Kent, Matthew Peter; Lien, Sigbjørn; MacDonald, Danielle; Boulding, Elizabeth Grace

    2017-03-01

    Comparative genome scans can be used to identify chromosome regions, but not traits, that are putatively under selection. Identification of targeted traits may be more likely in recently domesticated populations under strong artificial selection for increased production. We used a North American Atlantic salmon 6K SNP dataset to locate genome regions of an aquaculture strain (Saint John River) that were highly diverged from that of its putative wild founder population (Tobique River). First, admixed individuals with partial European ancestry were detected using STRUCTURE and removed from the dataset. Outlier loci were then identified as those showing extreme differentiation between the aquaculture population and the founder population. All Arlequin methods identified an overlapping subset of 17 outlier loci, three of which were also identified by BayeScan. Many outlier loci were near candidate genes and some were near published quantitative trait loci (QTLs) for growth, appetite, maturity, or disease resistance. Parallel comparisons using a wild, nonfounder population (Stewiacke River) yielded only one overlapping outlier locus as well as a known maturity QTL. We conclude that genome scans comparing a recently domesticated strain with its wild founder population can facilitate identification of candidate genes for traits known to have been under strong artificial selection.

  15. Quantitative trait loci controlling leaf venation in Arabidopsis.

    PubMed

    Rishmawi, Louai; Bühler, Jonas; Jaegle, Benjamin; Hülskamp, Martin; Koornneef, Maarten

    2017-08-01

    Leaf veins provide the mechanical support and are responsible for the transport of nutrients and water to the plant. High vein density is a prerequisite for plants to have C4 photosynthesis. We investigated the genetic variation and genetic architecture of leaf venation traits within the species Arabidopsis thaliana using natural variation. Leaf venation traits, including leaf vein density (LVD) were analysed in 66 worldwide accessions and 399 lines of the multi-parent advanced generation intercross population. It was shown that there is no correlation between LVD and photosynthesis parameters within A. thaliana. Association mapping was performed for LVD and identified 16 and 17 putative quantitative trait loci (QTLs) in the multi-parent advanced generation intercross and worldwide sets, respectively. There was no overlap between the identified QTLs suggesting that many genes can affect the traits. In addition, linkage mapping was performed using two biparental recombinant inbred line populations. Combining linkage and association mapping revealed seven candidate genes. For one of the candidate genes, RCI2c, we demonstrated its function in leaf venation patterning. © 2017 John Wiley & Sons Ltd.

  16. Linkage disequilibrium fine mapping of quantitative trait loci: A simulation study

    PubMed Central

    Abdallah, Jihad M; Goffinet, Bruno; Cierco-Ayrolles, Christine; Pérez-Enciso, Miguel

    2003-01-01

    Recently, the use of linkage disequilibrium (LD) to locate genes which affect quantitative traits (QTL) has received an increasing interest, but the plausibility of fine mapping using linkage disequilibrium techniques for QTL has not been well studied. The main objectives of this work were to (1) measure the extent and pattern of LD between a putative QTL and nearby markers in finite populations and (2) investigate the usefulness of LD in fine mapping QTL in simulated populations using a dense map of multiallelic or biallelic marker loci. The test of association between a marker and QTL and the power of the test were calculated based on single-marker regression analysis. The results show the presence of substantial linkage disequilibrium with closely linked marker loci after 100 to 200 generations of random mating. Although the power to test the association with a frequent QTL of large effect was satisfactory, the power was low for the QTL with a small effect and/or low frequency. More powerful, multi-locus methods may be required to map low frequent QTL with small genetic effects, as well as combining both linkage and linkage disequilibrium information. The results also showed that multiallelic markers are more useful than biallelic markers to detect linkage disequilibrium and association at an equal distance. PMID:12939203

  17. Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain

    USDA-ARS?s Scientific Manuscript database

    In this study, quantitative trait loci (QTLs) affecting the concentrations of 16 elements in whole, unmilled rice (Oryza sativa L.) grain were identified. Two rice mapping populations, the ‘Lemont’ x ‘TeQing’ recombinant inbred lines (LT-RILs), and the TeQing-into-Lemont backcross introgression lin...

  18. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georges, M.; Nielsen, D.; Mackinnon, M.

    1995-02-01

    We have exploited {open_quotes}progeny testing{close_quotes} to map quantitative trait loci (QTL) underlying the genetic variation of milk production in a selected dairy cattle population. A total of 1,518 sires, with progeny tests based on the milking performances of >150,000 daughters jointly, was genotyped for 159 autosomal microsatellites bracketing 1645 centimorgan or approximately two thirds of the bovine genome. Using a maximum likelihood multilocus linkage analysis accounting for variance heterogeneity of the phenotypes, we identified five chromosomes giving very strong evidence (LOD score {ge} 3) for the presence of a QTL controlling milk production: chromosomes 1, 6, 9, 10 and 20.more » These findings demonstrate that loci with considerable effects on milk production are still segregating in highly selected populations and pave the way toward marker-assisted selection in dairy cattle breeding. 44 refs., 4 figs., 3 tabs.« less

  19. Mapping the Rust Resistant Loci MXC3 and MER in P. trichocarpa and Assessing the Intermarker Linkage Disequilibrium in MXC3 Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Tongming; Difazio, Stephen P.; Gunter, Lee E

    In an attempt to elucidate the molecular mechanisms of Melampsora rust resistance in Populus trichocarpa, we have mapped two resistance loci, MXC3 and MER, and intensively characterized the flanking genomic sequence for the MXC3 locus and the level of linkage disequilibrium (LD) in natural populations. We used an interspecific backcross pedigree and a genetic map that was highly saturated with AFLP and SSR markers, and assembled shotgun-sequence data in the region containing markers linked to MXC3. The two loci were mapped to different linkage groups. Linkage disequilibrium for MXC3 was confined to two closely linked regions spanning 34 and 16more » kb, respectively. The MXC3 region also contained six disease-resistance candidate genes. The MER and MXC3 loci are clearly distinct, and may have different mechanisms of resistance, as different classes of putative resistance genes were present near each locus. The suppressed recombination previously observed in the MXC3 region was possibly caused by extensive hemizygous rearrangements confined to the original parent tree. The relatively low observed LD may facilitate association studies using candidate genes for rust resistance, but will probably inhibit marker-aided selection.« less

  20. Quantitative Trait Loci Controlling Vegetative Growth Rate in the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Idareta, Eneko; Arana, Dani; Ritter, Enrique; Pisabarro, Antonio G.; Ramírez, Lucia

    2002-01-01

    Mycelium growth rate is a quantitative characteristic that exhibits continuous variation. This trait has applied interest, as growth rate is correlated with production yield and increased advantage against competitors. In this work, we studied growth rate variation in the edible basidiomycete Pleurotus ostreatus growing as monokaryotic or dikaryotic mycelium on Eger medium or on wheat straw. Our analysis resulted in identification of several genomic regions (quantitative trait loci [QTLs]) involved in the control of growth rate that can be mapped on the genetic linkage map of this fungus. In some cases monokaryotic and dikaryotic QTLs clustered at the same map position, indicating that there are principal genomic areas responsible for growth rate control. The availability of this linkage map of growth rate QTLs can help in the design of rational strain breeding programs based on genomic information. PMID:11872457

  1. Quantitative trait loci for seed isoflavones contents in 'MD96-5722' by 'Spencer' recombinant inbred lines of soybean

    USDA-ARS?s Scientific Manuscript database

    Isoflavones from soybeans (Glycine max L. Merr.) have significant impact on human health in reducing the risk of several major diseases. Breeding soybean for high isoflavones content in the seed is possible through marker assisted selection (MAS), which can be based on quantitative trait loci (QTL)....

  2. Complementary epistasis involving Sr12 explains adult plant resistance to stem rust in Thatcher wheat (Triticum aestivum L.).

    PubMed

    Rouse, Matthew N; Talbert, Luther E; Singh, Davinder; Sherman, Jamie D

    2014-07-01

    Quantitative trait loci conferring adult plant resistance to Ug99 stem rust in Thatcher wheat display complementary gene action suggesting multiple quantitative trait loci are needed for effective resistance. Adult plant resistance (APR) in wheat (Triticum aestivum L.) to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is desirable because this resistance can be Pgt race non-specific. Resistance derived from cultivar Thatcher can confer high levels of APR to the virulent Pgt race TTKSK (Ug99) when combined with stem rust resistance gene Sr57 (Lr34). To identify the loci conferring APR in Thatcher, we evaluated 160 RILs derived from Thatcher crossed to susceptible cultivar McNeal for field stem rust reaction in Kenya for two seasons and in St. Paul for one season. All RILs and parents were susceptible as seedlings to race TTKSK. However, adult plant stem rust severities in Kenya varied from 5 to 80 %. Composite interval mapping identified four quantitative trait loci (QTL). Three QTL were inherited from Thatcher and one, Sr57, was inherited from McNeal. The markers closest to the QTL peaks were used in an ANOVA to determine the additive and epistatic effects. A QTL on 3BS was detected in all three environments and explained 27-35 % of the variation. The peak of this QTL was at the same location as the Sr12 seedling resistance gene effective to race SCCSC. Epistatic interactions were significant between Sr12 and QTL on chromosome arms 1AL and 2BS. Though Sr12 cosegregated with the largest effect QTL, lines with Sr12 were not always resistant. The data suggest that Sr12 or a linked gene, though not effective to race TTKSK alone, confers APR when combined with other resistance loci.

  3. Reappraisal of known malaria resistance loci in a large multi-centre study

    PubMed Central

    Rockett, Kirk A.; Clarke, Geraldine M.; Fitzpatrick, Kathryn; Hubbart, Christina; Jeffreys, Anna E.; Rowlands, Kate; Craik, Rachel; Jallow, Muminatou; Conway, David J.; Bojang, Kalifa A.; Pinder, Margaret; Usen, Stanley; Sisay-Joof, Fatoumatta; Sirugo, Giorgio; Toure, Ousmane; Thera, Mahamadou A.; Konate, Salimata; Sissoko, Sibiry; Niangaly, Amadou; Poudiougou, Belco; Mangano, Valentina D.; Bougouma, Edith C.; Sirima, Sodiomon B.; Modiano, David; Amenga-Etego, Lucas N.; Ghansah, Anita; Koram, Kwadwo A.; Wilson, Michael D.; Enimil, Anthony; Evans, Jennifer; Amodu, Olukemi; Olaniyan, Subulade; Apinjoh, Tobias; Mugri, Regina; Ndi, Andre; Ndila, Carolyne M.; Uyoga, Sophie; Macharia, Alexander; Peshu, Norbert; Williams, Thomas N.; Manjurano, Alphaxard; Riley, Eleanor; Drakeley, Chris; Reyburn, Hugh; Nyirongo, Vysaul; Kachala, David; Molyneux, Malcolm; Dunstan, Sarah J.; Phu, Nguyen Hoan; Ngoc Quyen, Nguyen Thi; Thai, Cao Quang; Hien, Tran Tinh; Manning, Laurens; Laman, Moses; Siba, Peter; Karunajeewa, Harin; Allen, Steve; Allen, Angela; Davis, Timothy M. E.; Michon, Pascal; Mueller, Ivo; Green, Angie; Molloy, Sile; Johnson, Kimberly J.; Kerasidou, Angeliki; Cornelius, Victoria; Hart, Lee; Vanderwal, Aaron; SanJoaquin, Miguel; Band, Gavin; Le, Si Quang; Pirinen, Matti; Sepúlveda, Nuno; Spencer, Chris C.A.; Clark, Taane G.; Agbenyega, Tsiri; Achidi, Eric; Doumbo, Ogobara; Farrar, Jeremy; Marsh, Kevin; Taylor, Terrie; Kwiatkowski, Dominic P.

    2015-01-01

    Many human genetic associations with resistance to malaria have been reported but few have been reliably replicated. We collected data on 11,890 cases of severe malaria due to Plasmodium falciparum and 17,441 controls from 12 locations in Africa, Asia and Oceania. There was strong evidence of association with the HBB, ABO, ATP2B4, G6PD and CD40LG loci but previously reported associations at 22 other loci did not replicate in the multi-centre analysis. The large sample size made it possible to identify authentic genetic effects that are heterogeneous across populations or phenotypes, a striking example being the main African form of G6PD deficiency, which reduced the risk of cerebral malaria but increased the risk of severe malarial anaemia. The finding that G6PD deficiency has opposing effects on different fatal complications of P. falciparum infection indicates that the evolutionary origins of this common human genetic disorder are more complex than previously supposed. PMID:25261933

  4. A Genome-Wide Association Study Reveals New Loci for Resistance to Clubroot Disease in Brassica napus

    PubMed Central

    Li, Lixia; Luo, Yujie; Chen, Biyun; Xu, Kun; Zhang, Fugui; Li, Hao; Huang, Qian; Xiao, Xin; Zhang, Tianyao; Hu, Jihong; Li, Feng; Wu, Xiaoming

    2016-01-01

    Rapeseed (Brassica napus L.) is one of the most important oil crops in the world. However, the yield and quality of rapeseed were largely decreased by clubroot (Plasmodiophora brassicae Woronin). Therefore, it is of great importance for screening more resistant germplasms or genes and improving the resistance to P. brassicae in rapeseed breeding. In this study, a massive resistant identification for a natural global population was conducted in two environments with race/pathotype 4 of P. brassicae which was the most predominant in China, and a wide range of phenotypic variation was found in the population. In addition, a genome-wide association study of 472 accessions for clubroot resistance (CR) was performed with 60K Brassica Infinium SNP arrays for the first time. In total, nine QTLs were detected, seven of which were novel through integrative analysis. Furthermore, additive effects in genetic control of CR in rapeseed among the above loci were found. By bioinformatic analyses, the candidate genes of these loci were predicted, which indicated that TIR-NBS gene family might play an important role in CR. It is believable that the results presented in our study could provide valuable information for understanding the genetic mechanism and molecular regulation of CR. PMID:27746804

  5. SplicePlot: a utility for visualizing splicing quantitative trait loci.

    PubMed

    Wu, Eric; Nance, Tracy; Montgomery, Stephen B

    2014-04-01

    RNA sequencing has provided unprecedented resolution of alternative splicing and splicing quantitative trait loci (sQTL). However, there are few tools available for visualizing the genotype-dependent effects of splicing at a population level. SplicePlot is a simple command line utility that produces intuitive visualization of sQTLs and their effects. SplicePlot takes mapped RNA sequencing reads in BAM format and genotype data in VCF format as input and outputs publication-quality Sashimi plots, hive plots and structure plots, enabling better investigation and understanding of the role of genetics on alternative splicing and transcript structure. Source code and detailed documentation are available at http://montgomerylab.stanford.edu/spliceplot/index.html under Resources and at Github. SplicePlot is implemented in Python and is supported on Linux and Mac OS. A VirtualBox virtual machine running Ubuntu with SplicePlot already installed is also available.

  6. Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance.

    PubMed

    Nyerges, Ákos; Csörgő, Bálint; Draskovits, Gábor; Kintses, Bálint; Szili, Petra; Ferenc, Györgyi; Révész, Tamás; Ari, Eszter; Nagy, István; Bálint, Balázs; Vásárhelyi, Bálint Márk; Bihari, Péter; Számel, Mónika; Balogh, Dávid; Papp, Henrietta; Kalapis, Dorottya; Papp, Balázs; Pál, Csaba

    2018-06-19

    Antibiotic development is frequently plagued by the rapid emergence of drug resistance. However, assessing the risk of resistance development in the preclinical stage is difficult. Standard laboratory evolution approaches explore only a small fraction of the sequence space and fail to identify exceedingly rare resistance mutations and combinations thereof. Therefore, new rapid and exhaustive methods are needed to accurately assess the potential of resistance evolution and uncover the underlying mutational mechanisms. Here, we introduce directed evolution with random genomic mutations (DIvERGE), a method that allows an up to million-fold increase in mutation rate along the full lengths of multiple predefined loci in a range of bacterial species. In a single day, DIvERGE generated specific mutation combinations, yielding clinically significant resistance against trimethoprim and ciprofloxacin. Many of these mutations have remained previously undetected or provide resistance in a species-specific manner. These results indicate pathogen-specific resistance mechanisms and the necessity of future narrow-spectrum antibacterial treatments. In contrast to prior claims, we detected the rapid emergence of resistance against gepotidacin, a novel antibiotic currently in clinical trials. Based on these properties, DIvERGE could be applicable to identify less resistance-prone antibiotics at an early stage of drug development. Finally, we discuss potential future applications of DIvERGE in synthetic and evolutionary biology. Copyright © 2018 the Author(s). Published by PNAS.

  7. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir.II. Spring and fall cold-hardiness

    Treesearch

    K.D. Jermstad; D.L. Bassoni; N.C. Wheeler; T.S. Anekonda; S.N. Aitken; W.T. Adams; D.B. Neale

    2001-01-01

    Abstract Quantitative trait loci (QTLs) affecting fall and spring cold-hardiness were identified in a three-generation outbred pedigree of coastal Douglas-fir [Pseudotsuga meniziesii (Mirb.) Franco var. menziesii]. Eleven QTLs controlling fall cold-hardiness were detected on four linkage groups, and 15 QTLs controlling spring cold-hardiness were detected on four...

  8. Two Quantitative Trait Loci Influence Whipworm (Trichuris trichiura) Infection in a Nepalese Population

    PubMed Central

    Williams-Blangero, Sarah; VandeBerg, John L.; Subedi, Janardan; Jha, Bharat; Dyer, T.D.; Blangero, John

    2014-01-01

    Background Whipworm (Trichuris trichiura) is a soil-transmitted helminth which infects over a billion people. It is a serious public health problem in many developing countries and can result in deficits in growth and cognitive development. In a follow-up study of a significant heritability for whipworm infection, we conducted the first genome scan for susceptibility to this important parasitic disease. Methods We assessed whipworm eggs per gram of feces in 1253 members of the Jirel population of eastern Nepal. All sampled individuals belonged to a single pedigree containing over 26,000 relative pairs that are informative for genetic analysis. Results Linkage analysis of genome scan data generated for the pedigree provided unambiguous evidence for two quantitative trait loci influencing susceptibility to whipworm infection, one located on chromosome 9 (LOD = 3.35, genome-wide p = 0.0138) and the other located on chromosome 18 (LOD = 3.29, genome-wide p = 0.0159). There was also suggestive evidence for two loci located on chromosomes 12 and 13 influencing whipworm infection. Conclusion The results of this first genome scan for susceptibility to whipworm infection may ultimately lead to the identification of novel targets for vaccine and drug development efforts. PMID:18462166

  9. Microarray-assisted fine-mapping of quantitative trait loci for cold tolerance in rice.

    PubMed

    Liu, Fengxia; Xu, Wenying; Song, Qian; Tan, Lubin; Liu, Jiayong; Zhu, Zuofeng; Fu, Yongcai; Su, Zhen; Sun, Chuanqing

    2013-05-01

    Many important agronomic traits, including cold stress resistance, are complex and controlled by quantitative trait loci (QTLs). Isolation of these QTLs will greatly benefit the agricultural industry but it is a challenging task. This study explored an integrated strategy by combining microarray with QTL-mapping in order to identify cold-tolerant QTLs from a cold-tolerant variety IL112 at early-seedling stage. All the early seedlings of IL112 survived normally for 9 d at 4-5°C, while Guichao2 (GC2), an indica cultivar, died after 4 d under the same conditions. Using the F2:3 population derived from the progeny of GC2 and IL112, we identified seven QTLs for cold tolerance. Furthermore, we performed Affymetrix rice whole-genome array hybridization and obtained the expression profiles of IL112 and GC2 under both low-temperature and normal conditions. Four genes were selected as cold QTL-related candidates, based on microarray data mining and QTL-mapping. One candidate gene, LOC_Os07g22494, was shown to be highly associated with cold tolerance in a number of rice varieties and in the F2:3 population, and its overexpression transgenic rice plants displayed strong tolerance to low temperature at early-seedling stage. The results indicated that overexpression of this gene (LOC_Os07g22494) could increase cold tolerance in rice seedlings. Therefore, this study provides a promising strategy for identifying candidate genes in defined QTL regions.

  10. Nonparametric modeling of longitudinal covariance structure in functional mapping of quantitative trait loci.

    PubMed

    Yap, John Stephen; Fan, Jianqing; Wu, Rongling

    2009-12-01

    Estimation of the covariance structure of longitudinal processes is a fundamental prerequisite for the practical deployment of functional mapping designed to study the genetic regulation and network of quantitative variation in dynamic complex traits. We present a nonparametric approach for estimating the covariance structure of a quantitative trait measured repeatedly at a series of time points. Specifically, we adopt Huang et al.'s (2006, Biometrika 93, 85-98) approach of invoking the modified Cholesky decomposition and converting the problem into modeling a sequence of regressions of responses. A regularized covariance estimator is obtained using a normal penalized likelihood with an L(2) penalty. This approach, embedded within a mixture likelihood framework, leads to enhanced accuracy, precision, and flexibility of functional mapping while preserving its biological relevance. Simulation studies are performed to reveal the statistical properties and advantages of the proposed method. A real example from a mouse genome project is analyzed to illustrate the utilization of the methodology. The new method will provide a useful tool for genome-wide scanning for the existence and distribution of quantitative trait loci underlying a dynamic trait important to agriculture, biology, and health sciences.

  11. Cooperative effects between two acyclovir resistance loci in herpes simplex virus.

    PubMed Central

    Darby, G; Churcher, M J; Larder, B A

    1984-01-01

    The acyclovir-resistant mutant SC16 R9C2 (H.J. Field, G. Darby, and P. Wildy , J. Gen. Virol. 49:115-124, 1980) has been shown to contain two resistance loci which segregate independently on recombination with wild-type virus. One locus is in thymidine kinase, and the other is in DNA polymerase. Both induced enzymes have altered properties, thymidine kinase showing a low affinity for acyclovir and low activity, and DNA polymerase showing a low affinity for acyclovir triphosphate. Other properties of both enzymes are described which distinguish them from their wild-type counterparts. Recombinants containing either mutant thymidine kinase ( RSC -11) or mutant DNA polymerase ( RSC -26), but not both, have been used to investigate the relative contribution of each lesion to resistance and pathogenicity. Although SC16 R9C2 and both recombinants grow as well as does wild-type virus in tissue culture, they are considerably attenuated in vivo, the greatest attenuation of virulence being seen with SC16 R9C2 and RSC -26. With respect to both acyclovir resistance and in vivo growth, the lesions appear to behave synergistically. Cross resistance studies have shown the recombinant RSC -26, which contains mutant DNA polymerase but which evidently expresses wild-type thymidine kinase, to be cross resistant to both 5-iodo-2'-deoxyuridine and 5-trifluoromethyl-2'-deoxyuridine but not to (E)-5-(2-bromovinyl)-2'-deoxyuridine or 9-beta-D-arabinofuranosyladenine. Images PMID:6328014

  12. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. I. Timing of vegetative bud flush.

    Treesearch

    K.D. Jermstad; D.L. Bassoni; K.S. Jech; N.C. Wheeler; D.B. Neale

    2001-01-01

    Abstract Thirty three unique quantitative trait loci (QTLs) affecting the timing of spring bud flush have been identified in an intraspecific mapping population of coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii]. Both terminal and lateral bud flush were measured over a 4-year period on clonal replicates at two test sites, allowing for the...

  13. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea.

    PubMed

    Desgroux, Aurore; Baudais, Valentin N; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie

    2017-01-01

    Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes ( PsLE, PsTFL1 ) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6 , was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven

  14. Comparative Genome-Wide-Association Mapping Identifies Common Loci Controlling Root System Architecture and Resistance to Aphanomyces euteiches in Pea

    PubMed Central

    Desgroux, Aurore; Baudais, Valentin N.; Aubert, Véronique; Le Roy, Gwenola; de Larambergue, Henri; Miteul, Henri; Aubert, Grégoire; Boutet, Gilles; Duc, Gérard; Baranger, Alain; Burstin, Judith; Manzanares-Dauleux, Maria; Pilet-Nayel, Marie-Laure; Bourion, Virginie

    2018-01-01

    Combining plant genetic resistance with architectural traits that are unfavorable to disease development is a promising strategy for reducing epidemics. However, few studies have identified root system architecture (RSA) traits with the potential to limit root disease development. Pea is a major cultivated legume worldwide and has a wide level of natural genetic variability for plant architecture. The root pathogen Aphanomyces euteiches is a major limiting factor of pea crop yield. This study aimed to increase the knowledge on the diversity of loci and candidate genes controlling RSA traits in pea and identify RSA genetic loci associated with resistance to A. euteiches which could be combined with resistance QTL in breeding. A comparative genome wide association (GWA) study of plant architecture and resistance to A. euteiches was conducted at the young plant stage in a collection of 266 pea lines contrasted for both traits. The collection was genotyped using 14,157 SNP markers from recent pea genomic resources. It was phenotyped for ten root, shoot and overall plant architecture traits, as well as three disease resistance traits in controlled conditions, using image analysis. We identified a total of 75 short-size genomic intervals significantly associated with plant architecture and overlapping with 46 previously detected QTL. The major consistent intervals included plant shoot architecture or flowering genes (PsLE, PsTFL1) with putative pleiotropic effects on root architecture. A total of 11 genomic intervals were significantly associated with resistance to A. euteiches confirming several consistent previously identified major QTL. One significant SNP, mapped to the major QTL Ae-Ps7.6, was associated with both resistance and RSA traits. At this marker, the resistance-enhancing allele was associated with an increased total root projected area, in accordance with the correlation observed between resistance and larger root systems in the collection. Seven additional

  15. Characterization of molecular diversity and genome-wide mapping of loci associated with resistance to stripe rust and stem rust in Ethiopian bread wheat accessions.

    PubMed

    Muleta, Kebede T; Rouse, Matthew N; Rynearson, Sheri; Chen, Xianming; Buta, Bedada G; Pumphrey, Michael O

    2017-08-04

    The narrow genetic basis of resistance in modern wheat cultivars and the strong selection response of pathogen populations have been responsible for periodic and devastating epidemics of the wheat rust diseases. Characterizing new sources of resistance and incorporating multiple genes into elite cultivars is the most widely accepted current mechanism to achieve durable varietal performance against changes in pathogen virulence. Here, we report a high-density molecular characterization and genome-wide association study (GWAS) of stripe rust and stem rust resistance in 190 Ethiopian bread wheat lines based on phenotypic data from multi-environment field trials and seedling resistance screening experiments. A total of 24,281 single nucleotide polymorphism (SNP) markers filtered from the wheat 90 K iSelect genotyping assay was used to survey Ethiopian germplasm for population structure, genetic diversity and marker-trait associations. Upon screening for field resistance to stripe rust in the Pacific Northwest of the United States and Ethiopia over multiple growing seasons, and against multiple races of stripe rust and stem rust at seedling stage, eight accessions displayed resistance to all tested races of stem rust and field resistance to stripe rust in all environments. Our GWAS results show 15 loci were significantly associated with seedling and adult plant resistance to stripe rust at false discovery rate (FDR)-adjusted probability (P) <0.10. GWAS also detected 9 additional genomic regions significantly associated (FDR-adjusted P < 0.10) with seedling resistance to stem rust in the Ethiopian wheat accessions. Many of the identified resistance loci were mapped close to previously identified rust resistance genes; however, three loci on the short arms of chromosomes 5A and 7B for stripe rust resistance and two on chromosomes 3B and 7B for stem rust resistance may be novel. Our results demonstrate that considerable genetic variation resides within the landrace

  16. Identification of RFLP and NBS/PK profiling markers for disease resistance loci in genetic maps of oats.

    PubMed

    Sanz, M J; Loarce, Y; Fominaya, A; Vossen, J H; Ferrer, E

    2013-01-01

    Two of the domains most widely shared among R genes are the nucleotide binding site (NBS) and protein kinase (PK) domains. The present study describes and maps a number of new oat resistance gene analogues (RGAs) with two purposes in mind: (1) to identify genetic regions that contain R genes and (2) to determine whether RGAs can be used as molecular markers for qualitative loci and for QTLs affording resistance to Puccinia coronata. Such genes have been mapped in the diploid A. strigosa × A. wiestii (Asw map) and the hexaploid MN841801-1 × Noble-2 (MN map). Genomic and cDNA NBS-RGA probes from oat, barley and wheat were used to produce RFLPs and to obtain markers by motif-directed profiling based on the NBS (NBS profiling) and PK (PK profiling) domains. The efficiency of primers used in NBS/PK profiling to amplify RGA fragments was assessed by sequencing individual marker bands derived from genomic and cDNA fragments. The positions of 184 markers were identified in the Asw map, while those for 99 were identified in the MN map. Large numbers of NBS and PK profiling markers were found in clusters across different linkage groups, with the PK profiling markers more evenly distributed. The location of markers throughout the genetic maps and the composition of marker clusters indicate that NBS- and PK-based markers cover partly complementary regions of oat genomes. Markers of the different classes obtained were found associated with the two resistance loci, PcA and R-284B-2, mapped on Asw, and with five out of eight QTLs for partial resistance in the MN map. 53 RGA-RFLPs and 187 NBS/PK profiling markers were also mapped on the hexaploid map A. byzantina cv. Kanota × A. sativa cv. Ogle. Significant co-localization was seen between the RGA markers in the KO map and other markers closely linked to resistance loci, such as those for P. coronata and barley yellow dwarf virus (Bydv) that were previously mapped in other segregating populations.

  17. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.).

    PubMed

    Zhang, Zhen; Shang, Haihong; Shi, Yuzhen; Huang, Long; Li, Junwen; Ge, Qun; Gong, Juwu; Liu, Aiying; Chen, Tingting; Wang, Dan; Wang, Yanling; Palanga, Koffi Kibalou; Muhammad, Jamshed; Li, Weijie; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Song, Weiwu; Cai, Juan; Li, Pengtao; Rashid, Harun or; Gong, Wankui; Yuan, Youlu

    2016-04-11

    Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a powerful method to identify single nucleotide polymorphism markers on a large scale for the construction of a high-density genetic map for quantitative trait loci mapping. In this research, a recombinant inbred lines population developed from two upland cotton cultivars 0-153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative trait loci and were detected in at least three out of 11 environments and explained 4.15-16.70 % of the observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and eukaryotic orthologous groups analysis. This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding breeding of functional genes as well as marker-assisted selection.

  18. Genes and quantitative trait loci (QTL) controlling trace element concentrations in perennial grasses grown on phytotoxic soil contaminated with heavy metals

    USDA-ARS?s Scientific Manuscript database

    Perennial grasses cover diverse soils throughout the world, including sites contaminated with heavy metals, producing forages that must be safe for livestock and wildlife. Chromosome regions known as quantitative trait loci (QTLs) controlling forage mineral concentrations were mapped in a populatio...

  19. Identification of quantitative trait loci (QTL) for fruit quality traits and number of weeks of flowering in the cultivated strawberry

    USDA-ARS?s Scientific Manuscript database

    Fruit quality traits and dayneutrality are two major foci of several strawberry breeding programs. The identification of quantitative trait loci (QTL) and molecular markers linked to these traits could improve breeding efficiency. In this work, an F1 population derived from the cross ‘Delmarvel’ × ...

  20. Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Induri, Brahma R; Ellis, Danielle R; Slavov, Goncho T.

    2012-01-01

    Understanding genetic variation for the response of Populus to heavy metals like cadmium (Cd) is an important step in elucidating the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa Torr. & Gray and Populus deltoides Bart. was characterized for growth and performance traits after Cd exposure. A total of 16 quantitative trait loci (QTL) at logarithm of odds (LOD) ratio 2.5 were detected for total dry weight, its components and root volume. Major QTL for Cd responses were mapped to two different linkage groups and the relative allelic effects were in opposing directions on themore » two chromosomes, suggesting differential mechanisms at these two loci. The phenotypic variance explained by Cd QTL ranged from 5.9 to 11.6% and averaged 8.2% across all QTL. A whole-genome microarray study led to the identification of nine Cd-responsive genes from these QTL. Promising candidates for Cd tolerance include an NHL repeat membrane-spanning protein, a metal transporter and a putative transcription factor. Additional candidates in the QTL intervals include a putative homolog of a glutamate cysteine ligase, and a glutathione-S-transferase. Functional characterization of these candidate genes should enhance our understanding of Cd metabolism and transport and phytoremediation capabilities of Populus.« less

  1. Two quantitative trait loci influence whipworm (Trichuris trichiura) infection in a Nepalese population.

    PubMed

    Williams-Blangero, Sarah; Vandeberg, John L; Subedi, Janardan; Jha, Bharat; Dyer, Tom D; Blangero, John

    2008-04-15

    Whipworm (Trichuris trichiura) infection is a soil-transmitted helminth infection that affects >1 billion people. It is a serious public health problem in many developing countries and can result in deficits in growth and cognitive development. In a follow-up study of significant heritability for whipworm infection, we conducted the first genome scan for quantitative trait loci (QTL) influencing the heritability of susceptibility to this important parasitic disease. Whipworm egg counts were determined for 1,253 members of the Jirel population of eastern Nepal. All individuals in the study sample belonged to a single pedigree including >26,000 pairs of relatives that are informative for genetic analysis. Linkage analysis of genome scan data generated for the pedigree provided unambiguous evidence for 2 QTL influencing susceptibility to whipworm infection, one located on chromosome 9 (logarithm of the odds ratio [LOD] score, 3.35; genomewide P = .0138) and the other located on chromosome 18 (LOD score, 3.29; genomewide P = .0159). There was also suggestive evidence that 2 loci located on chromosomes 12 and 13 influenced whipworm infection. The results of this first genome scan for T. trichiura egg counts provides new information on the determinants of genetic predisposition to whipworm infection.

  2. The genetic architecture of resistance to virus infection in Drosophila.

    PubMed

    Cogni, Rodrigo; Cao, Chuan; Day, Jonathan P; Bridson, Calum; Jiggins, Francis M

    2016-10-01

    Variation in susceptibility to infection has a substantial genetic component in natural populations, and it has been argued that selection by pathogens may result in it having a simpler genetic architecture than many other quantitative traits. This is important as models of host-pathogen co-evolution typically assume resistance is controlled by a small number of genes. Using the Drosophila melanogaster multiparent advanced intercross, we investigated the genetic architecture of resistance to two naturally occurring viruses, the sigma virus and DCV (Drosophila C virus). We found extensive genetic variation in resistance to both viruses. For DCV resistance, this variation is largely caused by two major-effect loci. Sigma virus resistance involves more genes - we mapped five loci, and together these explained less than half the genetic variance. Nonetheless, several of these had a large effect on resistance. Models of co-evolution typically assume strong epistatic interactions between polymorphisms controlling resistance, but we were only able to detect one locus that altered the effect of the main effect loci we had mapped. Most of the loci we mapped were probably at an intermediate frequency in natural populations. Overall, our results are consistent with major-effect genes commonly affecting susceptibility to infectious diseases, with DCV resistance being a near-Mendelian trait. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  3. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition.

    PubMed

    Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith

    2011-05-01

    Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mapping Quantitative Trait Loci in Crosses between Outbred Lines Using Least Squares

    PubMed Central

    Haley, C. S.; Knott, S. A.; Elsen, J. M.

    1994-01-01

    The use of genetic maps based upon molecular markers has allowed the dissection of some of the factors underlying quantitative variation in crosses between inbred lines. For many species crossing inbred lines is not a practical proposition, although crosses between genetically very different outbred lines are possible. Here we develop a least squares method for the analysis of crosses between outbred lines which simultaneously uses information from multiple linked markers. The method is suitable for crosses where the lines may be segregating at marker loci but can be assumed to be fixed for alternative alleles at the major quantitative trait loci (QTLs) affecting the traits under analysis (e.g., crosses between divergent selection lines or breeds with different selection histories). The simultaneous use of multiple markers from a linkage group increases the sensitivity of the test statistic, and thus the power for the detection of QTLs, compared to the use of single markers or markers flanking an interval. The gain is greater for more closely spaced markers and for markers of lower information content. Use of multiple markers can also remove the bias in the estimated position and effect of a QTL which may result when different markers in a linkage group vary in their heterozygosity in the F(1) (and thus in their information content) and are considered only singly or a pair at a time. The method is relatively simple to apply so that more complex models can be fitted than is currently possible by maximum likelihood. Thus fixed effects and effects of background genotype can be fitted simultaneously with the exploration of a single linkage group which will increase the power to detect QTLs by reducing the residual variance. More complex models with several QTLs in the same linkage group and two-locus interactions between QTLs can similarly be examined. Thus least squares provides a powerful tool to extend the range of crosses from which QTLs can be dissected whilst at

  5. Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean

    USDA-ARS?s Scientific Manuscript database

    Bi-parental mapping populations have been commonly utilized to identify and characterize quantitative trait loci (QTL) controlling resistance to soybean cyst nematode (SCN, Heterodera glycines Ichinohe). Although this approach successfully mapped a large number of SCN resistance QTL, it captures onl...

  6. Estimation of genetic parameters and detection of quantitative trait loci for metabolites in Danish Holstein milk.

    PubMed

    Buitenhuis, A J; Sundekilde, U K; Poulsen, N A; Bertram, H C; Larsen, L B; Sørensen, P

    2013-05-01

    Small components and metabolites in milk are significant for the utilization of milk, not only in dairy food production but also as disease predictors in dairy cattle. This study focused on estimation of genetic parameters and detection of quantitative trait loci for metabolites in bovine milk. For this purpose, milk samples were collected in mid lactation from 371 Danish Holstein cows in first to third parity. A total of 31 metabolites were detected and identified in bovine milk by using (1)H nuclear magnetic resonance (NMR) spectroscopy. Cows were genotyped using a bovine high-density single nucleotide polymorphism (SNP) chip. Based on the SNP data, a genomic relationship matrix was calculated and used as a random factor in a model together with 2 fixed factors (herd and lactation stage) to estimate the heritability and breeding value for individual metabolites in the milk. Heritability was in the range of 0 for lactic acid to >0.8 for orotic acid and β-hydroxybutyrate. A single SNP association analysis revealed 7 genome-wide significant quantitative trait loci [malonate: Bos taurus autosome (BTA)2 and BTA7; galactose-1-phosphate: BTA2; cis-aconitate: BTA11; urea: BTA12; carnitine: BTA25; and glycerophosphocholine: BTA25]. These results demonstrate that selection for metabolites in bovine milk may be possible. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.).

    PubMed

    Li, Haobing; Vaillancourt, René; Mendham, Neville; Zhou, Meixue

    2008-08-27

    Resistance to soil waterlogging stress is an important plant breeding objective in high rainfall or poorly drained areas across many countries in the world. The present study was conducted to identify quantitative trait loci (QTLs) associated with waterlogging tolerance (e.g. leaf chlorosis, plant survival and biomass reduction) in barley and compare the QTLs identified across two seasons and in two different populations using a composite map constructed with SSRs, RFLP and Diversity Array Technology (DArT) markers. Twenty QTLs for waterlogging tolerance related traits were found in the two barley double haploid (DH) populations. Several of these QTLs were validated through replication of experiments across seasons or by co-location across populations. Some of these QTLs affected multiple waterlogging tolerance related traits, for example, QTL Qwt4-1 contributed not only to reducing barley leaf chlorosis, but also increasing plant biomass under waterlogging stress, whereas other QTLs controlled both leaf chlorosis and plant survival. Improving waterlogging tolerance in barley is still at an early stage compared with other traits. QTLs identified in this study have made it possible to use marker assisted selection (MAS) in combination with traditional field selection to significantly enhance barley breeding for waterlogging tolerance. There may be some degree of homoeologous relationship between QTLs controlling barley waterlogging tolerance and that in other crops as discussed in this study.

  8. Selection on domestication traits and quantitative trait loci in crop-wild sunflower hybrids.

    PubMed

    Baack, Eric J; Sapir, Yuval; Chapman, Mark A; Burke, John M; Rieseberg, Loren H

    2008-01-01

    The strength and extent of gene flow from crops into wild populations depends, in part, on the fitness of the crop alleles, as well as that of alleles at linked loci. Interest in crop-wild gene flow has increased with the advent of transgenic plants, but nontransgenic crop-wild hybrids can provide case studies to understand the factors influencing introgression, provided that the genetic architecture and the fitness effects of loci are known. This study used recombinant inbred lines (RILs) generated from a cross between crop and wild sunflowers to assess selection on domestication traits and quantitative trait loci (QTL) in two contrasting environments, in Indiana and Nebraska, USA. Only a small fraction of plants (9%) produced seed in Nebraska, due to adverse weather conditions, while the majority of plants (79%) in Indiana reproduced. Phenotypic selection analysis found that a mixture of crop and wild traits were favoured in Indiana (i.e. had significant selection gradients), including larger leaves, increased floral longevity, larger disk diameter, reduced ray flower size and smaller achene (seed) mass. Selection favouring early flowering was detected in Nebraska. QTLs for fitness were found at the end of linkage groups six (LG6) and nine (LG9) in both field sites, each explaining 11-12% of the total variation. Crop alleles were favoured on LG9, but wild alleles were favoured on LG6. QTLs for numerous domestication traits overlapped with the fitness QTLs, including flowering date, achene mass, head number, and disk diameter. It remains to be seen if these QTL clusters are the product of multiple linked genes, or individual genes with pleiotropic effects. These results indicate that crop trait values and alleles may sometimes be favoured in a noncrop environment and across broad geographical regions.

  9. Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes.

    PubMed

    Marone, Daniela; Russo, Maria A; Laidò, Giovanni; De Vita, Pasquale; Papa, Roberto; Blanco, Antonio; Gadaleta, Agata; Rubiales, Diego; Mastrangelo, Anna M

    2013-08-19

    Powdery mildew (Blumeria graminis f. sp. tritici) is one of the most damaging diseases of wheat. The objective of this study was to identify the wheat genomic regions that are involved in the control of powdery mildew resistance through a quantitative trait loci (QTL) meta-analysis approach. This meta-analysis allows the use of collected QTL data from different published studies to obtain consensus QTL across different genetic backgrounds, thus providing a better definition of the regions responsible for the trait, and the possibility to obtain molecular markers that will be suitable for marker-assisted selection. Five QTL for resistance to powdery mildew were identified under field conditions in the durum-wheat segregating population Creso × Pedroso. An integrated map was developed for the projection of resistance genes/ alleles and the QTL from the present study and the literature, and to investigate their distribution in the wheat genome. Molecular markers that correspond to candidate genes for plant responses to pathogens were also projected onto the map, particularly considering NBS-LRR and receptor-like protein kinases. More than 80 independent QTL and 51 resistance genes from 62 different mapping populations were projected onto the consensus map using the Biomercator statistical software. Twenty-four MQTL that comprised 2-6 initial QTL that had widely varying confidence intervals were found on 15 chromosomes. The co-location of the resistance QTL and genes was investigated. Moreover, from analysis of the sequences of DArT markers, 28 DArT clones mapped on wheat chromosomes have been shown to be associated with the NBS-LRR genes and positioned in the same regions as the MQTL for powdery mildew resistance. The results from the present study provide a detailed analysis of the genetic basis of resistance to powdery mildew in wheat. The study of the Creso × Pedroso durum-wheat population has revealed some QTL that had not been previously identified. Furthermore

  10. Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes

    PubMed Central

    2013-01-01

    Background Powdery mildew (Blumeria graminis f. sp. tritici) is one of the most damaging diseases of wheat. The objective of this study was to identify the wheat genomic regions that are involved in the control of powdery mildew resistance through a quantitative trait loci (QTL) meta-analysis approach. This meta-analysis allows the use of collected QTL data from different published studies to obtain consensus QTL across different genetic backgrounds, thus providing a better definition of the regions responsible for the trait, and the possibility to obtain molecular markers that will be suitable for marker-assisted selection. Results Five QTL for resistance to powdery mildew were identified under field conditions in the durum-wheat segregating population Creso × Pedroso. An integrated map was developed for the projection of resistance genes/ alleles and the QTL from the present study and the literature, and to investigate their distribution in the wheat genome. Molecular markers that correspond to candidate genes for plant responses to pathogens were also projected onto the map, particularly considering NBS-LRR and receptor-like protein kinases. More than 80 independent QTL and 51 resistance genes from 62 different mapping populations were projected onto the consensus map using the Biomercator statistical software. Twenty-four MQTL that comprised 2–6 initial QTL that had widely varying confidence intervals were found on 15 chromosomes. The co-location of the resistance QTL and genes was investigated. Moreover, from analysis of the sequences of DArT markers, 28 DArT clones mapped on wheat chromosomes have been shown to be associated with the NBS-LRR genes and positioned in the same regions as the MQTL for powdery mildew resistance. Conclusions The results from the present study provide a detailed analysis of the genetic basis of resistance to powdery mildew in wheat. The study of the Creso × Pedroso durum-wheat population has revealed some QTL that had

  11. Genetic Mapping of Quantitative Trait Loci for Grain Yield under Drought in Rice under Controlled Greenhouse Conditions

    NASA Astrophysics Data System (ADS)

    Solis, Julio; Gutierrez, Andres; Mangu, Venkata; Sanchez, Eduardo; Bedre, Renesh; Linscombe, Steve; Baisakh, Niranjan

    2017-12-01

    Drought stress is a constant threat to rice production worldwide. Most Mmodern rice cultivars are sensitive to drought, and the effect is severe at the reproductive stage. Conventional breeding for drought resistant (DR) rice varieties is slow and limited due to the quantitative nature of the DR traits. Identification of genes (QTLs)/markers associated with DR traits is a prerequisite for marker-assisted breeding. Grain yield is the most important trait and to this end drought yield QTLs have been identified under field conditions. The present study reports identification of drought yield QTLs under controlled conditions without confounding effects of other factors prevalent under natural conditions. A linkage map covering 1,781.5 cM with an average resolution of 9.76 cM was constructed using an F2 population from a cross between two Japonica cultivars, Cocodrie (drought sensitive) and Vandana (drought tolerant) with 213 markers distributed over 12 rice chromosomes. A subset of 59 markers (22 genic SSRs and 37 SNPs) derived from the transcriptome of the parents were also placed in the map. Single marker analysis using 187 F2:3 progeny identified 6 markers distributed on chromosomes 1, 5, and 8 to be associated with grain yield under drought (GYD). Composite interval mapping identified six genomic regions/quantitative trait loci (QTL) on chromosome 1, 5, 8, and 9 to be associated with GYD. QTLs located on chromosome 1 (qGYD1.2, qGYD1.3), chromosome 5 (qGYD5.1) and chromosome 8 (qGYD8.1) were contributed by Vandana alleles, whereas the QTLs, qGYD1.1 and qQYD9.1 were contributed by Cocodrie alelles. The additive positive phenotypic variance explained by the QTLs ranged from 30.0% to 34.0%. Candidate genes annotation within QTLs suggested the role of transcription factors and genes involved in osmotic potential regulation through catalytic/metabolic pathways in drought resistance tolerance mechanism contributing to yield.

  12. Combination of Eight Alleles at Four Quantitative Trait Loci Determines Grain Length in Rice

    PubMed Central

    Zeng, Yuxiang; Ji, Zhijuan; Wen, Zhihua; Liang, Yan; Yang, Changdeng

    2016-01-01

    Grain length is an important quantitative trait in rice (Oryza sativa L.) that influences both grain yield and exterior quality. Although many quantitative trait loci (QTLs) for grain length have been identified, it is still unclear how different alleles from different QTLs regulate grain length coordinately. To explore the mechanisms of QTL combination in the determination of grain length, five mapping populations, including two F2 populations, an F3 population, an F7 recombinant inbred line (RIL) population, and an F8 RIL population, were developed from the cross between the U.S. tropical japonica variety ‘Lemont’ and the Chinese indica variety ‘Yangdao 4’ and grown under different environmental conditions. Four QTLs (qGL-3-1, qGL-3-2, qGL-4, and qGL-7) for grain length were detected using both composite interval mapping and multiple interval mapping methods in the mapping populations. In each locus, there was an allele from one parent that increased grain length and another allele from another parent that decreased it. The eight alleles in the four QTLs were analyzed to determine whether these alleles act additively across loci, and lead to a linear relationship between the predicted breeding value of QTLs and phenotype. Linear regression analysis suggested that the combination of eight alleles determined grain length. Plants carrying more grain length-increasing alleles had longer grain length than those carrying more grain length-decreasing alleles. This trend was consistent in all five mapping populations and demonstrated the regulation of grain length by the four QTLs. Thus, these QTLs are ideal resources for modifying grain length in rice. PMID:26942914

  13. Quantitative trait loci and candidate genes associated with starch pasting viscosity characteristics in cassava (Manihot esculenta Crantz).

    PubMed

    Thanyasiriwat, T; Sraphet, S; Whankaew, S; Boonseng, O; Bao, J; Lightfoot, D A; Tangphatsornruang, S; Triwitayakorn, K

    2014-01-01

    Starch pasting viscosity is an important quality trait in cassava (Manihot esculenta Crantz) cultivars. The aim here was to identify loci and candidate genes associated with the starch pasting viscosity. Quantitative trait loci (QTL) mapping for seven pasting viscosity parameters was carried out using 100 lines of an F1 mapping population from a cross between two cassava cultivars Huay Bong 60 and Hanatee. Starch samples were obtained from roots of cassava grown in 2008 and 2009 at Rayong, and in 2009 at Lop Buri province, Thailand. The traits showed continuous distribution among the F1 progeny with transgressive variation. Fifteen QTL were identified from mean trait data, with Logarithm of Odds (LOD) values from 2.77-13.01 and phenotype variations explained (PVE) from10.0-48.4%. In addition, 48 QTL were identified in separate environments. The LOD values ranged from 2.55-8.68 and explained 6.6-43.7% of phenotype variation. The loci were located on 19 linkage groups. The most important QTL for pasting temperature (PT) (qPT.1LG1) from mean trait values showed largest effect with highest LOD value (13.01) and PVE (48.4%). The QTL co-localised with PT and pasting time (PTi) loci that were identified in separate environments. Candidate genes were identified within the QTL peak regions. However, the major genes of interest, encoding the family of glycosyl or glucosyl transferases and hydrolases, were located at the periphery of QTL peaks. The loci identified could be effectively applied in breeding programmes to improve cassava starch quality. Alleles of candidate genes should be further studied in order to better understand their effects on starch quality traits. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Characterization and Mapping of Leaf Rust and Stripe Rust Resistance Loci in Hexaploid Wheat Lines UC1110 and PI610750 under Mexican Environments.

    PubMed

    Lan, Caixia; Hale, Iago L; Herrera-Foessel, Sybil A; Basnet, Bhoja R; Randhawa, Mandeep S; Huerta-Espino, Julio; Dubcovsky, Jorge; Singh, Ravi P

    2017-01-01

    Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by the globally important wheat leaf rust (LR) and stripe rust (YR) diseases. In this study, a population of 186 F 8 recombinant inbred lines (RILs) derived from a cross between a synthetic wheat derivative (PI610750) and an adapted common wheat line (cv. "UC1110") were phenotyped for LR and YR response at both seedling and adult plant stages over multiple seasons. Using a genetic linkage map consisting of single sequence repeats and diversity arrays technology markers, in combination with inclusive composite interval mapping analysis, we detected a new LR adult plant resistance (APR) locus, QLr.cim-2DS , contributed by UC1110. One co-located resistance locus to both rusts, QLr.cim-3DC/QYr.cim-3DC , and the known seedling resistance gene Lr26 were also mapped. QLr.cim-2DS and QLr.cim-3DC showed a marginally significant interaction for LR resistance in the adult plant stage. In addition, two previously reported YR APR loci, QYr.ucw-3BS and Yr48 , were found to exhibit stable performances in rust environments in both Mexico and the United States and showed a highly significant interaction in the field. Yr48 was also observed to confer intermediate seedling resistance against Mexican YR races, thus suggesting it should be re-classified as an all-stage resistance gene. We also identified 5 and 2 RILs that possessed all detected YR and LR resistance loci, respectively. With the closely linked molecular markers reported here, these RILs could be used as donors for multiple resistance loci to both rusts in wheat breeding programs.

  15. Quantitative trait loci for maternal performance for offspring survival in mice.

    PubMed Central

    Peripato, Andréa C; De Brito, Reinaldo A; Vaughn, Ty T; Pletscher, L Susan; Matioli, Sergio R; Cheverud, James M

    2002-01-01

    Maternal performance refers to the effect that the environment provided by mothers has on their offspring's phenotypes, such as offspring survival and growth. Variations in maternal behavior and physiology are responsible for variations in maternal performance, which in turn affects offspring survival. In our study we found females that failed to nurture their offspring and showed abnormal maternal behaviors. The genetic architecture of maternal performance for offspring survival was investigated in 241 females of an F(2) intercross of the SM/J and LG/J inbred mouse strains. Using interval-mapping methods we found two quantitative trait loci (QTL) affecting maternal performance at D2Mit17 + 6 cM and D7Mit21 + 2 cM on chromosomes 2 and 7, respectively. In a two-way genome-wide epistasis scan we found 15 epistatic interactions involving 23 QTL distributed across all chromosomes except 12, 16, and 17. These loci form several small sets of interacting QTL, suggesting a complex set of mechanisms operating to determine maternal performance for offspring survival. Taken all together and correcting for the large number of significant factors, QTL and their interactions explain almost 35% of the phenotypic variation for maternal performance for offspring survival in this cross. This study allowed the identification of many possible candidate genes, as well as the relative size of gene effects and patterns of gene action affecting maternal performance in mice. Detailed behavior observation of mothers from later generations suggests that offspring survival in the first week is related to maternal success in building nests, grooming their pups, providing milk, and/or manifesting aggressive behavior against intruders. PMID:12454078

  16. Mapping quantitative trait loci controlling early growth in a (longleaf pine × slash pine) × slash pine BC1 family

    Treesearch

    C. Weng; Thomas L. Kubisiak; C. Dana Nelson; M. Stine

    2002-01-01

    Random amplified polymorphic DNA (RAPD) markers were employed to map the genome and quantitative trait loci controlling the early growth of a pine hybrid F1 tree (Pinus palustris Mill. × P. elliottii Engl.) and a recurrent slash pine tree (P. ellottii Engl.) in a (longleaf pine × slash pine...

  17. Quantitative proteomics to study carbapenem resistance in Acinetobacter baumannii

    PubMed Central

    Tiwari, Vishvanath; Tiwari, Monalisa

    2014-01-01

    Acinetobacter baumannii is an opportunistic pathogen causing pneumonia, respiratory infections and urinary tract infections. The prevalence of this lethal pathogen increases gradually in the clinical setup where it can grow on artificial surfaces, utilize ethanol as a carbon source. Moreover it resists desiccation. Carbapenems, a β-lactam, are the most commonly prescribed drugs against A. baumannii. Resistance against carbapenem has emerged in Acinetobacter baumannii which can create significant health problems and is responsible for high morbidity and mortality. With the development of quantitative proteomics, a considerable progress has been made in the study of carbapenem resistance of Acinetobacter baumannii. Recent updates showed that quantitative proteomics has now emerged as an important tool to understand the carbapenem resistance mechanism in Acinetobacter baumannii. Present review also highlights the complementary nature of different quantitative proteomic methods used to study carbapenem resistance and suggests to combine multiple proteomic methods for understanding the response to antibiotics by Acinetobacter baumannii. PMID:25309531

  18. Genetic dissection of milk yield traits and mastitis resistance quantitative trait loci on chromosome 20 in dairy cattle.

    PubMed

    Kadri, Naveen K; Guldbrandtsen, Bernt; Lund, Mogens S; Sahana, Goutam

    2015-12-01

    Intense selection to increase milk yield has had negative consequences for mastitis incidence in dairy cattle. Due to low heritability of mastitis resistance and an unfavorable genetic correlation with milk yield, a reduction in mastitis through traditional breeding has been difficult to achieve. Here, we examined quantitative trait loci (QTL) that segregate for clinical mastitis and milk yield on Bos taurus autosome 20 (BTA20) to determine whether both traits are affected by a single polymorphism (pleiotropy) or by multiple closely linked polymorphisms. In the latter but not the former situation, undesirable genetic correlation could potentially be broken by selecting animals that have favorable variants for both traits. First, we performed a within-breed association study using a haplotype-based method in Danish Holstein cattle (HOL). Next, we analyzed Nordic Red dairy cattle (RDC) and Danish Jersey cattle (JER) with the goal of determining whether these QTL identified in Holsteins were segregating across breeds. Genotypes for 12,566 animals (5,966 HOL, 5,458 RDC, and 1,142 JER) were determined by using the Illumina Bovine SNP50 BeadChip (50K; Illumina, San Diego, CA), which identifies 1,568 single nucleotide polymorphisms on BTA20. Data were combined, phased, and clustered into haplotype states, followed by within- and across-breed haplotype-based association analyses using a linear mixed model. Association signals for both clinical mastitis and milk yield peaked in the 26- to 40-Mb region on BTA20 in HOL. Single-variant association analyses were carried out in the QTL region using whole sequence level variants imputed from references of 2,036 HD genotypes (BovineHD BeadChip; Illumina) and 242 whole-genome sequences. The milk QTL were also segregating in RDC and JER on the BTA20-targeted region; however, an indication of differences in the causal factor(s) was observed across breeds. A previously reported F279Y mutation (rs385640152) within the growth hormone

  19. Current and future developments in patents for quantitative trait loci in dairy cattle.

    PubMed

    Weller, Joel I

    2007-01-01

    Many studies have proposed that rates of genetic gain in dairy cattle can be increased by direct selection on the individual quantitative loci responsible for the genetic variation in these traits, or selection on linked genetic markers. The development of DNA-level genetic markers has made detection of QTL nearly routine in all major livestock species. The studies that attempted to detect genes affecting quantitative traits can be divided into two categories: analysis of candidate genes, and genome scans based on within-family genetic linkage. To date, 12 patent cooperative treaty (PCT) and US patents have been registered for DNA sequences claimed to be associated with effects on economic traits in dairy cattle. All claim effects on milk production, but other traits are also included in some of the claims. Most of the sequences found by the candidate gene approach are of dubious validity, and have been repeated in only very few independent studies. The two missense mutations on chromosomes 6 and 14 affecting milk concentration derived from genome scans are more solidly based, but the claims are also disputed. A few PCT in dairy cattle are commercialized as genetic tests where commercial dairy farmers are the target market.

  20. Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites.

    PubMed

    Routtu, J; Ebert, D

    2015-02-01

    Understanding the genetic architecture of host resistance is key for understanding the evolution of host-parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host-parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host-parasite systems. Only the Pasteuria-Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium-Daphnia system remains unclear.

  1. Mapping of epistatic quantitative trait loci in four-way crosses.

    PubMed

    He, Xiao-Hong; Qin, Hongde; Hu, Zhongli; Zhang, Tianzhen; Zhang, Yuan-Ming

    2011-01-01

    Four-way crosses (4WC) involving four different inbred lines often appear in plant and animal commercial breeding programs. Direct mapping of quantitative trait loci (QTL) in these commercial populations is both economical and practical. However, the existing statistical methods for mapping QTL in a 4WC population are built on the single-QTL genetic model. This simple genetic model fails to take into account QTL interactions, which play an important role in the genetic architecture of complex traits. In this paper, therefore, we attempted to develop a statistical method to detect epistatic QTL in 4WC population. Conditional probabilities of QTL genotypes, computed by the multi-point single locus method, were used to sample the genotypes of all putative QTL in the entire genome. The sampled genotypes were used to construct the design matrix for QTL effects. All QTL effects, including main and epistatic effects, were simultaneously estimated by the penalized maximum likelihood method. The proposed method was confirmed by a series of Monte Carlo simulation studies and real data analysis of cotton. The new method will provide novel tools for the genetic dissection of complex traits, construction of QTL networks, and analysis of heterosis.

  2. Detection of QTL for forage yield, lodging resistance and spring vigor traits in alfalfa (Medicago sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa L.) is an internationally significant forage crop. Forage yield, lodging resistance and spring vigor are important agronomic traits conditioned by quantitative genetic and environmental effects. The objective of this study was to identify quantitative trait loci (QTL) and mo...

  3. Quantitative genetic tools for insecticide resistance risk assessment: estimating the heritability of resistance

    Treesearch

    Michael J. Firko; Jane Leslie Hayes

    1990-01-01

    Quantitative genetic studies of resistance can provide estimates of genetic parameters not available with other types of genetic analyses. Three methods are discussed for estimating the amount of additive genetic variation in resistance to individual insecticides and subsequent estimation of heritability (h2) of resistance. Sibling analysis and...

  4. Slow erosion of a quantitative apple resistance to Venturia inaequalis based on an isolate-specific Quantitative Trait Locus.

    PubMed

    Caffier, Valérie; Le Cam, Bruno; Al Rifaï, Mehdi; Bellanger, Marie-Noëlle; Comby, Morgane; Denancé, Caroline; Didelot, Frédérique; Expert, Pascale; Kerdraon, Tifenn; Lemarquand, Arnaud; Ravon, Elisa; Durel, Charles-Eric

    2016-10-01

    Quantitative plant resistance affects the aggressiveness of pathogens and is usually considered more durable than qualitative resistance. However, the efficiency of a quantitative resistance based on an isolate-specific Quantitative Trait Locus (QTL) is expected to decrease over time due to the selection of isolates with a high level of aggressiveness on resistant plants. To test this hypothesis, we surveyed scab incidence over an eight-year period in an orchard planted with susceptible and quantitatively resistant apple genotypes. We sampled 79 Venturia inaequalis isolates from this orchard at three dates and we tested their level of aggressiveness under controlled conditions. Isolates sampled on resistant genotypes triggered higher lesion density and exhibited a higher sporulation rate on apple carrying the resistance allele of the QTL T1 compared to isolates sampled on susceptible genotypes. Due to this ability to select aggressive isolates, we expected the QTL T1 to be non-durable. However, our results showed that the quantitative resistance based on the QTL T1 remained efficient in orchard over an eight-year period, with only a slow decrease in efficiency and no detectable increase of the aggressiveness of fungal isolates over time. We conclude that knowledge on the specificity of a QTL is not sufficient to evaluate its durability. Deciphering molecular mechanisms associated with resistance QTLs, genetic determinants of aggressiveness and putative trade-offs within pathogen populations is needed to help in understanding the erosion processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Quantitative trait loci for resistance to two fungal pathogens in Quercus robur

    Treesearch

    Cécile Robin; Amira Mougou-Hamdane; Jean-Marc Gion; Antoine Kremer; Marie-Laure Desprez-Loustau

    2012-01-01

    Powdery mildew, caused by Erysiphe alphitoides (Ascomycete), is the most frequent disease of oaks, which are also known to be host plants for Phytophthora cinnamomi (Oomycete), the causal agent of ink disease. Components of genetic resistance to these two pathogens, infecting either leaves or root and collar, were...

  6. Quantitative trait loci associated with resistance to powdery mildew in cornus florida

    USDA-ARS?s Scientific Manuscript database

    Powdery mildew of flowering dogwood (Cornus florida) caused by Erysiphe pulchra is one of the most destructive diseases in nursery production of flowering dogwood throughout the southeastern U.S. Since the mid-1990s, efforts to breed for resistance to the disease have been undertaken, but to-date on...

  7. New consistent QTL in pea associated with partial resistance to Aphanomyces euteiches in multiple field and controlled environments from France and the United States

    USDA-ARS?s Scientific Manuscript database

    Partial resistances, often controlled by QTL (Quantitative Trait Loci), are considered to be more durable than monogenic resistances. Prior to develop efficient breeding programs for polygenic resistance to pathogens, a higher understanding of genetic diversity and stability of resistance QTL in pla...

  8. A genome-wide linkage scan for quantitative trait loci underlying obesity related phenotypes in 434 Caucasian families.

    PubMed

    Zhao, Lan-Juan; Xiao, Peng; Liu, Yong-Jun; Xiong, Dong-Hai; Shen, Hui; Recker, Robert R; Deng, Hong-Wen

    2007-03-01

    To identify quantitative trait loci (QTLs) that contribute to obesity, we performed a large-scale whole genome linkage scan (WGS) involving 4,102 individuals from 434 Caucasian families. The most pronounced linkage evidence was found at the genomic region 20p11-12 for fat mass (LOD = 3.31) and percentage fat mass (PFM) (LOD = 2.92). We also identified several regions showing suggestive linkage signals (threshold LOD = 1.9) for obesity phenotypes, including 5q35, 8q13, 10p12, and 17q11.

  9. Two dominant loci determine resistance to Phomopsis cane lesions in F1 families of hybrid grapevines.

    PubMed

    Barba, Paola; Lillis, Jacquelyn; Luce, R Stephen; Travadon, Renaud; Osier, Michael; Baumgartner, Kendra; Wilcox, Wayne F; Reisch, Bruce I; Cadle-Davidson, Lance

    2018-05-01

    Rapid characterization of novel NB-LRR-associated resistance to Phomopsis cane spot on grapevine using high-throughput sampling and low-coverage sequencing for genotyping, locus mapping and transcriptome analysis provides insights into genetic resistance to a hemibiotrophic fungus. Phomopsis cane and leaf spot, caused by the hemibiotrophic fungus Diaporthe ampelina (syn = Phomopsis viticola), reduces the productivity in grapevines. Host resistance was studied on three F 1 families derived from crosses involving resistant genotypes 'Horizon', Illinois 547-1, Vitis cinerea B9 and V. vinifera 'Chardonnay'. All families had progeny with extremely susceptible phenotypes, developing lesions on both dormant canes and maturing fruit clusters. Segregation of symptoms was observed under natural levels of inoculum in the field, while phenotypes on green shoots were confirmed under controlled inoculations in greenhouse. High-density genetic maps were used to localize novel qualitative resistance loci named Rda1 and Rda2 from V. cinerea B9 and 'Horizon', respectively. Co-linearity between reference genetic and physical maps allowed localization of Rda2 locus between 1.5 and 2.4 Mbp on chromosome 7, and Rda1 locus between 19.3 and 19.6 Mbp of chromosome 15, which spans a cluster of five NB-LRR genes. Further dissection of this locus was obtained by QTL mapping of gene expression values 14 h after inoculation across a subset of the 'Chardonnay' × V. cinerea B9 progeny. This provided evidence for the association between transcript levels of two of these NB-LRR genes with Rda1, with increased NB-LRR expression among susceptible progeny. In resistant parent V. cinerea B9, inoculation with D. ampelina was characterized by up-regulation of SA-associated genes and down-regulation of ethylene pathways, suggesting an R-gene-mediated response. With dominant effects associated with disease-free berries and minimal symptoms on canes, Rda1 and Rda2 are promising loci for grapevine

  10. Comparative mapping of quantitative trait loci for Fusarium head blight resistance and anther retention in the winter wheat population Capo × Arina.

    PubMed

    Buerstmayr, Maria; Buerstmayr, Hermann

    2015-08-01

    Fusarium resistance in Arina is highly quantitative and governed by multiple small effect QTL. Anther retention has a high correlation with FHB susceptibility and appears a practicable indirect selection target for enhancing FHB resistance. The Swiss winter wheat cultivar Arina possesses a high resistance level constituted by a number of small to medium effect QTL reported from three independent mapping populations. Yet these overlap only for one resistance QTL on the long arm of chromosome 1B. The present study characterized Fusarium head blight (FHB) resistance in a population of 171 recombinant inbred lines from a cross between Arina (resistant) and Capo (moderately resistant). The population was evaluated for FHB resistance under field conditions for 3 years. Additionally, we phenotyped anther retention, plant height and flowering date to analyze their association with resistance. Lines with a low proportion of retained anthers after flowering and tall plants were significantly less diseased, while flowering date had no association with FHB severity. QTL analysis identified eight small to medium effect QTL for FHB severity, of which QTL on 1BS, 3B, 4AL and 6BL likely correspond to resistance alleles already detected in previously studied Arina populations. QTL for anther retention mapped to 4AL, 6BL and 5AS. Notably, QTL on 4AL and 6BL overlapped with QTL for FHB severity. A single small effect QTL for plant height was detected on 5AS and no QTL was identified for flowering date. Genotypes having three or four resistance alleles in combination showed a good resistance level, indicating pyramiding resistance QTL as a powerful approach for breeding resistant cultivars. Selection for rapid and complete anther extrusion appears promising as an indirect selection criterion for enhancing FHB resistance.

  11. Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841

    USDA-ARS?s Scientific Manuscript database

    Phytophthora root and stem rot caused by Phytophthora sojae Kaufmann and Gerdmann is one of the most severe soybean [Glycine max (L.) Merr] diseases in the US. Partial resistance is as effective in managing this disease as single-gene (Rps) mediated resistance and is more durable. The objective of t...

  12. Berry and phenology-related traits in grapevine (Vitis vinifera L.): From Quantitative Trait Loci to underlying genes

    PubMed Central

    Costantini, Laura; Battilana, Juri; Lamaj, Flutura; Fanizza, Girolamo; Grando, Maria Stella

    2008-01-01

    Background The timing of grape ripening initiation, length of maturation period, berry size and seed content are target traits in viticulture. The availability of early and late ripening varieties is desirable for staggering harvest along growing season, expanding production towards periods when the fruit gets a higher value in the market and ensuring an optimal plant adaptation to climatic and geographic conditions. Berry size determines grape productivity; seedlessness is especially demanded in the table grape market and is negatively correlated to fruit size. These traits result from complex developmental processes modified by genetic, physiological and environmental factors. In order to elucidate their genetic determinism we carried out a quantitative analysis in a 163 individuals-F1 segregating progeny obtained by crossing two table grape cultivars. Results Molecular linkage maps covering most of the genome (2n = 38 for Vitis vinifera) were generated for each parent. Eighteen pairs of homologous groups were integrated into a consensus map spanning over 1426 cM with 341 markers (mainly microsatellite, AFLP and EST-derived markers) and an average map distance between loci of 4.2 cM. Segregating traits were evaluated in three growing seasons by recording flowering, veraison and ripening dates and by measuring berry size, seed number and weight. QTL (Quantitative Trait Loci) analysis was carried out based on single marker and interval mapping methods. QTLs were identified for all but one of the studied traits, a number of them steadily over more than one year. Clusters of QTLs for different characters were detected, suggesting linkage or pleiotropic effects of loci, as well as regions affecting specific traits. The most interesting QTLs were investigated at the gene level through a bioinformatic analysis of the underlying Pinot noir genomic sequence. Conclusion Our results revealed novel insights into the genetic control of relevant grapevine features. They

  13. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus 'Robusta 5' accessions

    USDA-ARS?s Scientific Manuscript database

    Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large effect QTL for fire blight resistance has been pre...

  14. Identification of loci Associated with Resistance to Root-Rot Diseases in Autotetraploid Alfalfa using Genome-Wide Sequencing and Association Mapping

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa L.) is the world-wide forage crop. Changing trends to multipurpose uses increases demand for alfalfa. However, the production of alfalfa is challenged by endemic and emerging diseases. Identification of genes/loci controlling disease resistance will facilitate breeding for i...

  15. Mapping of quantitative adult plant field resistance to leaf rust and stripe rust in two European winter wheat populations reveals co-location of three QTL conferring resistance to both rust pathogens.

    PubMed

    Buerstmayr, Maria; Matiasch, Lydia; Mascher, Fabio; Vida, Gyula; Ittu, Marianna; Robert, Olivier; Holdgate, Sarah; Flath, Kerstin; Neumayer, Anton; Buerstmayr, Hermann

    2014-09-01

    We detected several, most likely novel QTL for adult plant resistance to rusts. Notably three QTL improved resistance to leaf rust and stripe rust simultaneously indicating broad spectrum resistance QTL. The rusts of wheat (Puccinia spp.) are destructive fungal wheat diseases. The deployment of resistant cultivars plays a central role in integrated rust disease management. Durability of resistance would be preferred, but is difficult to analyse. The Austrian winter wheat cultivar Capo was released in the 1989 and grown on a large acreage during more than two decades and maintained a good level of quantitative leaf rust and stripe rust resistance. Two bi-parental mapping populations: Capo × Arina and Capo × Furore were tested in multiple environments for severity of leaf rust and stripe rust at the adult plant stage in replicated field experiments. Quantitative trait loci associated with leaf rust and stripe rust severity were mapped using DArT and SSR markers. Five QTL were detected in multiple environments associated with resistance to leaf rust designated as QLr.ifa-2AL, QLr.ifa-2BL, QLr.ifa-2BS, QLr.ifa-3BS, and QLr.ifa-5BL, and five for resistance to stripe rust QYr.ifa-2AL, QYr.ifa-2BL, QYr.ifa-3AS, QYr.ifa-3BS, and QYr.ifa-5A. For all QTL apart from two (QYr.ifa-3AS, QLr.ifa-5BL) Capo contributed the resistance improving allele. The leaf rust and stripe rust resistance QTL on 2AL, 2BL and 3BS mapped to the same chromosome positions, indicating either closely linked genes or pleiotropic gene action. These three multiple disease resistance QTL (QLr.ifa-2AL/QYr.ifa-2AL, QLr.ifa.2BL/QYr.ifa-2BL, QLr.ifa-3BS/QYr.ifa.3BS) potentially contribute novel resistance sources for stripe rust and leaf rust. The long-lasting resistance of Capo apparently rests upon a combination of several genes. The described germplasm, QTL and markers are applicable for simultaneous resistance improvement against leaf rust and stripe rust.

  16. Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites

    PubMed Central

    Routtu, J; Ebert, D

    2015-01-01

    Understanding the genetic architecture of host resistance is key for understanding the evolution of host–parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host–parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host–parasite systems. Only the Pasteuria–Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium–Daphnia system remains unclear. PMID:25335558

  17. Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7.

    PubMed

    Zhao, Xue; Teng, Weili; Li, Yinghui; Liu, Dongyuan; Cao, Guanglu; Li, Dongmei; Qiu, Lijuan; Zheng, Hongkun; Han, Yingpeng; Li, Wenbin

    2017-06-14

    Soybean (Glycine max L. Merr.) cyst nematode (SCN, Heterodera glycines I,) is a major pest of soybean worldwide. The most effective strategy to control this pest involves the use of resistant cultivars. The aim of the present study was to investigate the genome-wide genetic architecture of resistance to SCN HG Type 2.5.7 (race 1) in landrace and elite cultivated soybeans. A total of 200 diverse soybean accessions were screened for resistance to SCN HG Type 2.5.7 and genotyped through sequencing using the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach with a 6.14-fold average sequencing depth. A total of 33,194 SNPs were identified with minor allele frequencies (MAF) over 4%, covering 97% of all the genotypes. Genome-wide association mapping (GWAS) revealed thirteen SNPs associated with resistance to SCN HG Type 2.5.7. These SNPs were distributed on five chromosomes (Chr), including Chr7, 8, 14, 15 and 18. Four SNPs were novel resistance loci and nine SNPs were located near known QTL. A total of 30 genes were identified as candidate genes underlying SCN resistance. A total of sixteen novel soybean accessions were identified with significant resistance to HG Type 2.5.7. The beneficial alleles and candidate genes identified by GWAS might be valuable for improving marker-assisted breeding efficiency and exploring the molecular mechanisms underlying SCN resistance.

  18. Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea.

    PubMed

    Desgroux, Aurore; L'Anthoëne, Virginie; Roux-Duparque, Martine; Rivière, Jean-Philippe; Aubert, Grégoire; Tayeh, Nadim; Moussart, Anne; Mangin, Pierre; Vetel, Pierrick; Piriou, Christophe; McGee, Rebecca J; Coyne, Clarice J; Burstin, Judith; Baranger, Alain; Manzanares-Dauleux, Maria; Bourion, Virginie; Pilet-Nayel, Marie-Laure

    2016-02-20

    Genome-wide association (GWA) mapping has recently emerged as a valuable approach for refining the genetic basis of polygenic resistance to plant diseases, which are increasingly used in integrated strategies for durable crop protection. Aphanomyces euteiches is a soil-borne pathogen of pea and other legumes worldwide, which causes yield-damaging root rot. Linkage mapping studies reported quantitative trait loci (QTL) controlling resistance to A. euteiches in pea. However the confidence intervals (CIs) of these QTL remained large and were often linked to undesirable alleles, which limited their application in breeding. The aim of this study was to use a GWA approach to validate and refine CIs of the previously reported Aphanomyces resistance QTL, as well as identify new resistance loci. A pea-Aphanomyces collection of 175 pea lines, enriched in germplasm derived from previously studied resistant sources, was evaluated for resistance to A. euteiches in field infested nurseries in nine environments and with two strains in climatic chambers. The collection was genotyped using 13,204 SNPs from the recently developed GenoPea Infinium® BeadChip. GWA analysis detected a total of 52 QTL of small size-intervals associated with resistance to A. euteiches, using the recently developed Multi-Locus Mixed Model. The analysis validated six of the seven previously reported main Aphanomyces resistance QTL and detected novel resistance loci. It also provided marker haplotypes at 14 consistent QTL regions associated with increased resistance and highlighted accumulation of favourable haplotypes in the most resistant lines. Previous linkages between resistance alleles and undesired late-flowering alleles for dry pea breeding were mostly confirmed, but the linkage between loci controlling resistance and coloured flowers was broken due to the high resolution of the analysis. A high proportion of the putative candidate genes underlying resistance loci encoded stress-related proteins and

  19. Mapping of quantitative trait loci using the skew-normal distribution.

    PubMed

    Fernandes, Elisabete; Pacheco, António; Penha-Gonçalves, Carlos

    2007-11-01

    In standard interval mapping (IM) of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. When this assumption of normality is violated, the most commonly adopted strategy is to use the previous model after data transformation. However, an appropriate transformation may not exist or may be difficult to find. Also this approach can raise interpretation issues. An interesting alternative is to consider a skew-normal mixture model in standard IM, and the resulting method is here denoted as skew-normal IM. This flexible model that includes the usual symmetric normal distribution as a special case is important, allowing continuous variation from normality to non-normality. In this paper we briefly introduce the main peculiarities of the skew-normal distribution. The maximum likelihood estimates of parameters of the skew-normal distribution are obtained by the expectation-maximization (EM) algorithm. The proposed model is illustrated with real data from an intercross experiment that shows a significant departure from the normality assumption. The performance of the skew-normal IM is assessed via stochastic simulation. The results indicate that the skew-normal IM has higher power for QTL detection and better precision of QTL location as compared to standard IM and nonparametric IM.

  20. Genome-wide mapping of virulence in brown planthopper identifies loci that break down host plant resistance.

    PubMed

    Jing, Shengli; Zhang, Lei; Ma, Yinhua; Liu, Bingfang; Zhao, Yan; Yu, Hangjin; Zhou, Xi; Qin, Rui; Zhu, Lili; He, Guangcun

    2014-01-01

    Insects and plants have coexisted for over 350 million years and their interactions have affected ecosystems and agricultural practices worldwide. Variation in herbivorous insects' virulence to circumvent host resistance has been extensively documented. However, despite decades of investigation, the genetic foundations of virulence are currently unknown. The brown planthopper (Nilaparvata lugens) is the most destructive rice (Oryza sativa) pest in the world. The identification of the resistance gene Bph1 and its introduction in commercial rice varieties prompted the emergence of a new virulent brown planthopper biotype that was able to break the resistance conferred by Bph1. In this study, we aimed to construct a high density linkage map for the brown planthopper and identify the loci responsible for its virulence in order to determine their genetic architecture. Based on genotyping data for hundreds of molecular markers in three mapping populations, we constructed the most comprehensive linkage map available for this species, covering 96.6% of its genome. Fifteen chromosomes were anchored with 124 gene-specific markers. Using genome-wide scanning and interval mapping, the Qhp7 locus that governs preference for Bph1 plants was mapped to a 0.1 cM region of chromosome 7. In addition, two major QTLs that govern the rate of insect growth on resistant rice plants were identified on chromosomes 5 (Qgr5) and 14 (Qgr14). This is the first study to successfully locate virulence in the genome of this important agricultural insect by marker-based genetic mapping. Our results show that the virulence which overcomes the resistance conferred by Bph1 is controlled by a few major genes and that the components of virulence originate from independent genetic characters. The isolation of these loci will enable the elucidation of the molecular mechanisms underpinning the rice-brown planthopper interaction and facilitate the development of durable approaches for controlling this most

  1. Genome-Wide Mapping of Virulence in Brown Planthopper Identifies Loci That Break Down Host Plant Resistance

    PubMed Central

    Jing, Shengli; Zhang, Lei; Ma, Yinhua; Liu, Bingfang; Zhao, Yan; Yu, Hangjin; Zhou, Xi; Qin, Rui; Zhu, Lili; He, Guangcun

    2014-01-01

    Insects and plants have coexisted for over 350 million years and their interactions have affected ecosystems and agricultural practices worldwide. Variation in herbivorous insects' virulence to circumvent host resistance has been extensively documented. However, despite decades of investigation, the genetic foundations of virulence are currently unknown. The brown planthopper (Nilaparvata lugens) is the most destructive rice (Oryza sativa) pest in the world. The identification of the resistance gene Bph1 and its introduction in commercial rice varieties prompted the emergence of a new virulent brown planthopper biotype that was able to break the resistance conferred by Bph1. In this study, we aimed to construct a high density linkage map for the brown planthopper and identify the loci responsible for its virulence in order to determine their genetic architecture. Based on genotyping data for hundreds of molecular markers in three mapping populations, we constructed the most comprehensive linkage map available for this species, covering 96.6% of its genome. Fifteen chromosomes were anchored with 124 gene-specific markers. Using genome-wide scanning and interval mapping, the Qhp7 locus that governs preference for Bph1 plants was mapped to a 0.1 cM region of chromosome 7. In addition, two major QTLs that govern the rate of insect growth on resistant rice plants were identified on chromosomes 5 (Qgr5) and 14 (Qgr14). This is the first study to successfully locate virulence in the genome of this important agricultural insect by marker-based genetic mapping. Our results show that the virulence which overcomes the resistance conferred by Bph1 is controlled by a few major genes and that the components of virulence originate from independent genetic characters. The isolation of these loci will enable the elucidation of the molecular mechanisms underpinning the rice-brown planthopper interaction and facilitate the development of durable approaches for controlling this most

  2. Identification of genetic loci that contribute to Campylobacter resistance to fowlicidin-1, a chicken host defense peptide

    PubMed Central

    Hoang, Ky Van; Wang, Ying; Lin, Jun

    2012-01-01

    Antimicrobial peptides (AMPs) are critical components of host defense limiting bacterial infections at the gastrointestinal mucosal surface. Bacterial pathogens have co-evolved with host innate immunity and developed means to counteract the effect of endogenous AMPs. However, molecular mechanisms of AMP resistance in Campylobacter, an important human food-borne pathogen with poultry as a major reservoir, are still largely unknown. In this study, random transposon mutagenesis and targeted site-directed mutagenesis approaches were used to identify genetic loci contributing Campylobacter resistance to fowlicidin-1, a chicken AMP belonging to cathelicidin family. An efficient transposon mutagenesis approach (EZ::TN™ Transposome) in conjunction with a microtiter plate screening identified three mutants whose susceptibilities to fowlicidin-1 were significantly increased. Backcrossing of the transposon mutations into parent strain confirmed that the AMP-sensitive phenotype in each mutant was linked to the specific transposon insertion. Direct sequencing showed that these mutants have transposon inserted in the genes encoding two-component regulator CbrR, transporter CjaB, and putative trigger factor Tig. Genomic analysis also revealed an operon (Cj1580c-1584c) that is homologous to sapABCDF, an operon conferring resistance to AMP in other pathogens. Insertional inactivation of Cj1583c (sapB) significantly increased susceptibility of Campylobacter to fowlicidin-1. The sapB as well as tig and cjaB mutants were significantly impaired in their ability to compete with their wild-type strain 81–176 to colonize the chicken cecum. Together, this study identified four genetic loci in Campylobacter that will be useful for characterizing molecular basis of Campylobacter resistance to AMPs, a significant knowledge gap in Campylobacter pathogenesis. PMID:22919624

  3. Clinical chemistry of congenic mice with quantitative trait loci for predicted responses to Trypanosoma congolense infection.

    PubMed

    Rathkolb, Birgit; Noyes, Harry A; Brass, Andy; Dark, Paul; Fuchs, Helmut; Gailus-Durner, Valérie; Gibson, John; de Angelis, Martin Hrabé; Ogugo, Moses; Iraqi, Fuad; Kemp, Steve J; Naessens, Jan; Pope, Mathew E; Wolf, Eckhard; Agaba, Morris

    2009-09-01

    Trypanosoma congolense is a protozoan parasite that causes severe diseases in livestock. Three major quantative trait loci (QTL), Tir1, Tir2, and Tir3, control the survival time of mice after infection with T. congolense. Congenic mice carrying the C57BL/6 resistance alleles on the A/J background were developed for each of these loci. The congenic mice were used to physically map the regions containing the QTL gene(s) and to investigate the physiological effect of each locus. Clinical chemistry data for infected A/J, C57BL/6, and BALB/c mice were obtained for 15 analytes at five time points. Congenic mice were assessed for survival, parasitemia, and anemia as well as seven clinical-chemical analytes. The survival times were significantly increased in the Tir1 and Tir2 mice but not Tir3 congenic mice. The survival time of the parental inbred mice correlated negatively with parasitemia but positively with alanine aminotransferase activities in serum, suggesting that inflammatory reactions in the liver had a beneficial effect possibly associated with reduced parasitemia. However, there was no difference in parasitemia or liver enzyme activities of Tir1 and Tir2 congenic mice relative to their controls, showing that survival, parasitemia, and degree of liver damage are not associated with each other, despite the correlation in the parental lines. These data suggest that the congenic loci affect survival but do not affect control of parasite number. They may therefore act by limiting the pathological consequences of T. congolense infection.

  4. Construction of a high-density genetic map using specific length amplified fragment markers and identification of a quantitative trait locus for anthracnose resistance in walnut (Juglans regia L.).

    PubMed

    Zhu, Yufeng; Yin, Yanfei; Yang, Keqiang; Li, Jihong; Sang, Yalin; Huang, Long; Fan, Shu

    2015-08-18

    Walnut (Juglans regia, 2n = 32, approximately 606 Mb per 1C genome) is an economically important tree crop. Resistance to anthracnose, caused by Colletotrichum gloeosporioides, is a major objective of walnut genetic improvement in China. The recently developed specific length amplified fragment sequencing (SLAF-seq) is an efficient strategy that can obtain large numbers of markers with sufficient sequence information to construct high-density genetic maps and permits detection of quantitative trait loci (QTLs) for molecular breeding. SLAF-seq generated 161.64 M paired-end reads. 153,820 SLAF markers were obtained, of which 49,174 were polymorphic. 13,635 polymorphic markers were sorted into five segregation types and 2,577 markers of them were used to construct genetic linkage maps: 2,395 of these fell into 16 linkage groups (LGs) for the female map, 448 markers for the male map, and 2,577 markers for the integrated map. Taking into account the size of all LGs, the marker coverage was 2,664.36 cM for the female map, 1,305.58 cM for the male map, and 2,457.82 cM for the integrated map. The average intervals between two adjacent mapped markers were 1.11 cM, 2.91 cM and 0.95 cM for three maps, respectively. 'SNP_only' markers accounted for 89.25% of the markers on the integrated map. Mapping markers contained 5,043 single nucleotide polymorphisms (SNPs) loci, which corresponded to two SNP loci per SLAF marker. According to the integrated map, we used interval mapping (Logarithm of odds, LOD > 3.0) to detect our quantitative trait. One QTL was detected for anthracnose resistance. The interval of this QTL ranged from 165.51 cM to 176.33 cM on LG14, and ten markers in this interval that were above the threshold value were considered to be linked markers to the anthracnose resistance trait. The phenotypic variance explained by each marker ranged from 16.2 to 19.9%, and their LOD scores varied from 3.22 to 4.04. High-density genetic maps for walnut containing 16

  5. Identification of Loci Associated with Drought Resistance Traits in Heterozygous Autotetraploid Alfalfa (Medicago sativa L.) Using Genome-Wide Association Studies with Genotyping by Sequencing.

    PubMed

    Zhang, Tiejun; Yu, Long-Xi; Zheng, Ping; Li, Yajun; Rivera, Martha; Main, Dorrie; Greene, Stephanie L

    2015-01-01

    Drought resistance is an important breeding target for enhancing alfalfa productivity in arid and semi-arid regions. Identification of genes involved in drought tolerance will facilitate breeding for improving drought resistance and water use efficiency in alfalfa. Our objective was to use a diversity panel of alfalfa accessions comprised of 198 cultivars and landraces to identify genes involved in drought tolerance. The panel was selected from the USDA-ARS National Plant Germplasm System alfalfa collection and genotyped using genotyping by sequencing. A greenhouse procedure was used for phenotyping two important traits associated with drought tolerance: drought resistance index (DRI) and relative leaf water content (RWC). Marker-trait association identified nineteen and fifteen loci associated with DRI and RWC, respectively. Alignments of target sequences flanking to the resistance loci against the reference genome of M. truncatula revealed multiple chromosomal locations. Markers associated with DRI are located on all chromosomes while markers associated with RWC are located on chromosomes 1, 2, 3, 4, 5, 6 and 7. Co-localizations of significant markers between DRI and RWC were found on chromosomes 3, 5 and 7. Most loci associated with DRI in this work overlap with the reported QTLs associated with biomass under drought in alfalfa. Additional significant markers were targeted to several contigs with unknown chromosomal locations. BLAST search using their flanking sequences revealed homology to several annotated genes with functions in stress tolerance. With further validation, these markers may be used for marker-assisted breeding new alfalfa varieties with drought resistance and enhanced water use efficiency.

  6. RFLP Mapping of Genes Conferring Complete and Partial Resistance to Blast in a Durably Resistant Rice Cultivar

    PubMed Central

    Wang, G. L.; Mackill, D. J.; Bonman, J. M.; McCouch, S. R.; Champoux, M. C.; Nelson, R. J.

    1994-01-01

    Moroberekan, a japonica rice cultivar with durable resistance to blast disease in Asia, was crossed to the highly susceptible indica cultivar, CO39, and 281 F(7) recombinant inbred (RI) lines were produced by single seed descent. The population was evaluated for blast resistance in the greenhouse and the field, and was analyzed with 127 restriction fragment length polymorphism (RFLP) markers. Two dominant loci associated with qualitative resistance to five isolates of the fungus were tentatively named Pi-5(t) and Pi-7(t). They were mapped on chromosomes 4 and 11, respectively. To identify quantitative trait loci (QTLs) affecting partial resistance, RI lines were inoculated with isolate PO6-6 of Pyricularia oryzae in polycyclic tests. Ten chromosomal segments were found to be associated with effects on lesion number (P < 0.0001 and LOD > 6.0). Three of the markers associated with QTLs for partial resistance had been reported to be linked to complete blast resistance in previous studies. QTLs identified in greenhouse tests were good predictors of blast resistance at two field sites. This study illustrates the usefulness of RI lines for mapping a complex trait such as blast resistance and suggests that durable resistance in the traditional variety, Moroberekan, involves a complex of genes associated with both partial and complete resistance. PMID:7912216

  7. Genome-wide identification of QTLs conferring high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) in wheat

    USDA-ARS?s Scientific Manuscript database

    High-temperature adult-plant (HTAP) resistance to stripe rust (caused by Puccinia striiformis f. sp. tritici) is a durable type of resistance in wheat. The objective of this study was to identify quantitative trait loci (QTL) conferring HTAP resistance to stripe rust in a population consisting of 16...

  8. Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis.

    PubMed

    Kraus, William E; Muoio, Deborah M; Stevens, Robert; Craig, Damian; Bain, James R; Grass, Elizabeth; Haynes, Carol; Kwee, Lydia; Qin, Xuejun; Slentz, Dorothy H; Krupp, Deidre; Muehlbauer, Michael; Hauser, Elizabeth R; Gregory, Simon G; Newgard, Christopher B; Shah, Svati H

    2015-11-01

    Levels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6-2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk.

  9. Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis

    PubMed Central

    Kraus, William E.; Muoio, Deborah M.; Stevens, Robert; Craig, Damian; Bain, James R.; Grass, Elizabeth; Haynes, Carol; Kwee, Lydia; Qin, Xuejun; Slentz, Dorothy H.; Krupp, Deidre; Muehlbauer, Michael; Hauser, Elizabeth R.; Gregory, Simon G.; Newgard, Christopher B.; Shah, Svati H.

    2015-01-01

    Levels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6–2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk. PMID:26540294

  10. Genotyping-by-sequencing-based genome-wide association studies on Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.).

    PubMed

    Yu, Long-Xi; Zheng, Ping; Zhang, Tiejun; Rodringuez, Jonas; Main, Dorrie

    2017-02-01

    Verticillium wilt (VW) is a fungal disease that causes severe yield losses in alfalfa. The most effective method to control the disease is through the development and use of resistant varieties. The identification of marker loci linked to VW resistance can facilitate breeding for disease-resistant alfalfa. In the present investigation, we applied an integrated framework of genome-wide association with genotyping-by-sequencing (GBS) to identify VW resistance loci in a panel of elite alfalfa breeding lines. Phenotyping was performed by manual inoculation of the pathogen to healthy seedlings, and scoring for disease resistance was carried out according to the standard test of the North America Alfalfa Improvement Conference (NAAIC). Marker-trait association by linkage disequilibrium identified 10 single nucleotide polymorphism (SNP) markers significantly associated with VW resistance. Alignment of the SNP marker sequences to the M. truncatula genome revealed multiple quantitative trait loci (QTLs). Three, two, one and five markers were located on chromosomes 5, 6, 7 and 8, respectively. Resistance loci found on chromosomes 7 and 8 in the present study co-localized with the QTLs reported previously. A pairwise alignment (blastn) using the flanking sequences of the resistance loci against the M. truncatula genome identified potential candidate genes with putative disease resistance function. With further investigation, these markers may be implemented into breeding programmes using marker-assisted selection, ultimately leading to improved VW resistance in alfalfa. PUBLISHED 2016. THIS ARTICLE IS A U.S. GOVERNMENT WORK AND IS IN THE PUBLIC DOMAIN IN THE USA.

  11. Development and Evaluation of Glycine max Germplasm Lines with Quantitative Resistance to Sclerotinia sclerotiorum

    PubMed Central

    McCaghey, Megan; Willbur, Jaime; Ranjan, Ashish; Grau, Craig R.; Chapman, Scott; Diers, Brian; Groves, Carol; Kabbage, Mehdi; Smith, Damon L.

    2017-01-01

    Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot, is a devastating fungal pathogen of soybean that can cause significant yield losses to growers when environmental conditions are favorable for the disease. The development of resistant varieties has proven difficult. However, poor resistance in commercial cultivars can be improved through additional breeding efforts and understanding the genetic basis of resistance. The objective of this project was to develop soybean germplasm lines that have a high level of Sclerotinia stem rot resistance to be used directly as cultivars or in breeding programs as a source of improved Sclerotinia stem rot resistance. Sclerotinia stem rot-resistant soybean germplasm was developed by crossing two sources of resistance, W04-1002 and AxN-1-55, with lines exhibiting resistance to Heterodera glycines and Cadophora gregata in addition to favorable agronomic traits. Following greenhouse evaluations of 1,076 inbred lines derived from these crosses, 31 lines were evaluated for resistance in field tests during the 2014 field season. Subsequently, 11 Sclerotinia stem rot resistant breeding lines were moved forward for field evaluation in 2015, and seven elite breeding lines were selected and evaluated in the 2016 field season. To better understand resistance mechanisms, a marker analysis was conducted to identify quantitative trait loci linked to resistance. Thirteen markers associated with Sclerotinia stem rot resistance were identified on chromosomes 15, 16, 17, 18, and 19. Our markers confirm previously reported chromosomal regions associated with Sclerotinia stem rot resistance as well as a novel region of chromosome 16. The seven elite germplasm lines were also re-evaluated within a greenhouse setting using a cut petiole technique with multiple S. sclerotiorum isolates to test the durability of physiological resistance of the lines in a controlled environment. This work presents a novel and comprehensive classical

  12. Allelic Analysis of Sheath Blight Resistance with Association Mapping in Rice

    PubMed Central

    Jia, Limeng; Yan, Wengui; Zhu, Chengsong; Agrama, Hesham A.; Jackson, Aaron; Yeater, Kathleen; Li, Xiaobai; Huang, Bihu; Hu, Biaolin; McClung, Anna; Wu, Dianxing

    2012-01-01

    Sheath blight (ShB) caused by the soil-borne pathogen Rhizoctonia solani is one of the most devastating diseases in rice world-wide. Global attention has focused on examining individual mapping populations for quantitative trait loci (QTLs) for ShB resistance, but to date no study has taken advantage of association mapping to examine hundreds of lines for potentially novel QTLs. Our objective was to identify ShB QTLs via association mapping in rice using 217 sub-core entries from the USDA rice core collection, which were phenotyped with a micro-chamber screening method and genotyped with 155 genome-wide markers. Structure analysis divided the mapping panel into five groups, and model comparison revealed that PCA5 with genomic control was the best model for association mapping of ShB. Ten marker loci on seven chromosomes were significantly associated with response to the ShB pathogen. Among multiple alleles in each identified loci, the allele contributing the greatest effect to ShB resistance was named the putative resistant allele. Among 217 entries, entry GSOR 310389 contained the most putative resistant alleles, eight out of ten. The number of putative resistant alleles presented in an entry was highly and significantly correlated with the decrease of ShB rating (r = −0.535) or the increase of ShB resistance. Majority of the resistant entries that contained a large number of the putative resistant alleles belonged to indica, which is consistent with a general observation that most ShB resistant accessions are of indica origin. These findings demonstrate the potential to improve breeding efficiency by using marker-assisted selection to pyramid putative resistant alleles from various loci in a cultivar for enhanced ShB resistance in rice. PMID:22427867

  13. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations

    PubMed Central

    Jupe, Florian; Witek, Kamil; Verweij, Walter; Śliwka, Jadwiga; Pritchard, Leighton; Etherington, Graham J; Maclean, Dan; Cock, Peter J; Leggett, Richard M; Bryan, Glenn J; Cardle, Linda; Hein, Ingo; Jones, Jonathan DG

    2013-01-01

    Summary RenSeq is a NB-LRR (nucleotide binding-site leucine-rich repeat) gene-targeted, Resistance gene enrichment and sequencing method that enables discovery and annotation of pathogen resistance gene family members in plant genome sequences. We successfully applied RenSeq to the sequenced potato Solanum tuberosum clone DM, and increased the number of identified NB-LRRs from 438 to 755. The majority of these identified R gene loci reside in poorly or previously unannotated regions of the genome. Sequence and positional details on the 12 chromosomes have been established for 704 NB-LRRs and can be accessed through a genome browser that we provide. We compared these NB-LRR genes and the corresponding oligonucleotide baits with the highest sequence similarity and demonstrated that ∼80% sequence identity is sufficient for enrichment. Analysis of the sequenced tomato S. lycopersicum ‘Heinz 1706’ extended the NB-LRR complement to 394 loci. We further describe a methodology that applies RenSeq to rapidly identify molecular markers that co-segregate with a pathogen resistance trait of interest. In two independent segregating populations involving the wild Solanum species S. berthaultii (Rpi-ber2) and S. ruiz-ceballosii (Rpi-rzc1), we were able to apply RenSeq successfully to identify markers that co-segregate with resistance towards the late blight pathogen Phytophthora infestans. These SNP identification workflows were designed as easy-to-adapt Galaxy pipelines. PMID:23937694

  14. Genetic Mapping of Resistance to Meloidogyne arenaria in Arachis stenosperma: A New Source of Nematode Resistance for Peanut

    PubMed Central

    Leal-Bertioli, Soraya C. M.; Moretzsohn, Márcio C.; Roberts, Philip A.; Ballén-Taborda, Carolina; Borba, Tereza C. O.; Valdisser, Paula A.; Vianello, Rosana P.; Araújo, Ana Cláudia G; Guimarães, Patricia M.; Bertioli, David J.

    2015-01-01

    Root-knot nematodes (RKN; Meloidogyne sp.) are a major threat to crops in tropical and subtropical regions worldwide. The use of resistant crop varieties is the preferred method of control because nematicides are expensive, and hazardous to humans and the environment. Peanut (Arachis hypogaea) is infected by four species of RKN, the most damaging being M. arenaria, and commercial cultivars rely on a single source of resistance. In this study, we genetically characterize RKN resistance of the wild Arachis species A. stenosperma using a population of 93 recombinant inbred lines developed from a cross between A. duranensis and A. stenosperma. Four quantitative trait loci (QTL) located on linkage groups 02, 04, and 09 strongly influenced nematode root galling and egg production. Drought-related, domestication and agronomically relevant traits were also evaluated, revealing several QTL. Using the newly available Arachis genome sequence, easy-to-use KASP (kompetitive allele specific PCR) markers linked to the newly identified RKN resistance loci were developed and validated in a tetraploid context. Therefore, we consider that A. stenosperma has high potential as a new source of RKN resistance in peanut breeding programs. PMID:26656152

  15. Expression quantitative trait loci: replication, tissue- and sex-specificity in mice.

    PubMed

    van Nas, Atila; Ingram-Drake, Leslie; Sinsheimer, Janet S; Wang, Susanna S; Schadt, Eric E; Drake, Thomas; Lusis, Aldons J

    2010-07-01

    By treating the transcript abundance as a quantitative trait, gene expression can be mapped to local or distant genomic regions relative to the gene encoding the transcript. Local expression quantitative trait loci (eQTL) generally act in cis (that is, control the expression of only the contiguous structural gene), whereas distal eQTL act in trans. Distal eQTL are more difficult to identify with certainty due to the fact that significant thresholds are very high since all regions of the genome must be tested, and confounding factors such as batch effects can produce false positives. Here, we compare findings from two large genetic crosses between mouse strains C3H/HeJ and C57BL/6J to evaluate the reliability of distal eQTL detection, including "hotspots" influencing the expression of multiple genes in trans. We found that >63% of local eQTL and >18% of distal eQTL were replicable at a threshold of LOD > 4.3 between crosses and 76% of local and >24% of distal eQTL at a threshold of LOD > 6. Additionally, at LOD > 4.3 four tissues studied (adipose, brain, liver, and muscle) exhibited >50% preservation of local eQTL and >17% preservation of distal eQTL. We observed replicated distal eQTL hotspots between the crosses on chromosomes 9 and 17. Finally, >69% of local eQTL and >10% of distal eQTL were preserved in most tissues between sexes. We conclude that most local eQTL are highly replicable between mouse crosses, tissues, and sex as compared to distal eQTL, which exhibited modest replicability.

  16. Construction of a high-density linkage map and mapping quantitative trait loci for somatic embryogenesis using leaf petioles as explants in upland cotton (Gossypium hirsutum L.).

    PubMed

    Xu, Zhenzhen; Zhang, Chaojun; Ge, Xiaoyang; Wang, Ni; Zhou, Kehai; Yang, Xiaojie; Wu, Zhixia; Zhang, Xueyan; Liu, Chuanliang; Yang, Zuoren; Li, Changfeng; Liu, Kun; Yang, Zhaoen; Qian, Yuyuan; Li, Fuguang

    2015-07-01

    The first high-density linkage map was constructed to identify quantitative trait loci (QTLs) for somatic embryogenesis (SE) in cotton ( Gossypium hirsutum L.) using leaf petioles as explants. Cotton transformation is highly limited by only a few regenerable genotypes and the lack of understanding of the genetic and molecular basis of somatic embryogenesis (SE) in cotton (Gossypium hirsutum L.). To construct a more saturated linkage map and further identify quantitative trait loci (QTLs) for SE using leaf petioles as explants, a high embryogenesis frequency line (W10) from the commercial Chinese cotton cultivar CRI24 was crossed with TM-1, a genetic standard upland cotton with no embryogenesis frequency. The genetic map spanned 2300.41 cM in genetic distance and contained 411 polymorphic simple sequence repeat (SSR) loci. Of the 411 mapped loci, 25 were developed from unigenes identified for SE in our previous study. Six QTLs for SE were detected by composite interval mapping method, each explaining 6.88-37.07% of the phenotypic variance. Single marker analysis was also performed to verify the reliability of QTLs detection, and the SSR markers NAU3325 and DPL0209 were detected by the two methods. Further studies on the relatively stable and anchoring QTLs/markers for SE in an advanced population of W10 × TM-1 and other cross combinations with different SE abilities may shed light on the genetic and molecular mechanism of SE in cotton.

  17. Allelic analysis of sheath blight resistance with association mapping in rice

    USDA-ARS?s Scientific Manuscript database

    Sheath blight is one of the most devastating diseases world-wide in rice. For the first time, we adopted association mapping to identify quantitative trait loci for sheath blight resistance from the USDA rice mini-core collection. The phenotyping was conducted with a newly developed micro-chamber me...

  18. Two quantitative trait loci affect ACE activities in Mexican-Americans.

    PubMed

    Kammerer, Candace M; Gouin, Nicolas; Samollow, Paul B; VandeBerg, Jane F; Hixson, James E; Cole, Shelley A; MacCluer, Jean W; Atwood, Larry D

    2004-02-01

    Angiotensin-converting enzyme (ACE) activity is highly heritable and has been associated with cardiovascular disease. We are studying the effects of genes and environmental factors on hypertension and related phenotypes, such as ACE activity, in Mexican-American families. In the current study, we performed multipoint linkage analysis to search for quantitative trait loci (QTLs) that affect ACE activities on data from 793 individuals from 29 pedigrees from the San Antonio Family Heart Study. As expected, we obtained strong evidence (maximum log of the odds [LOD]=4.57, genomic P=0.003) that a QTL for ACE activity is located on chromosome 17 near the ACE structural locus. We subsequently performed linkage analyses conditional on the effect of this QTL and obtained strong evidence (LOD=3.34) for a second QTL on chromosome 4 near D4S1548. We next incorporated the ACEIns/Del genotypes in our analyses and removed the evidence for the chromosome 17 QTL (maximum LOD=0.60); however, we retained our evidence for the QTL on chromosome 4q. We conclude that the QTL on chromosome 17 is tightly linked to ACE and is in strong disequilibrium with the insertion/deletion polymorphism, which is consistent with other reports. We also have evidence that an additional QTL affects ACE activity. Identification of this additional QTL might lead to alternate means of prophylaxis.

  19. Fine-mapping diabetes-related traits, including insulin resistance, in heterogeneous stock rats

    PubMed Central

    Holl, Katie L.; Oreper, Daniel; Xie, Yuying; Tsaih, Shirng-Wern; Valdar, William

    2012-01-01

    Type 2 diabetes (T2D) is a disease of relative insulin deficiency resulting from both insulin resistance and beta cell failure. We have previously used heterogeneous stock (HS) rats to fine-map a locus for glucose tolerance. We show here that glucose intolerance in the founder strains of the HS colony is mediated by different mechanisms: insulin resistance in WKY and an insulin secretion defect in ACI, and we demonstrate a high degree of variability for measures of insulin resistance and insulin secretion in HS rats. As such, our goal was to use HS rats to fine-map several diabetes-related traits within a region on rat chromosome 1. We measured blood glucose and plasma insulin levels after a glucose tolerance test in 782 male HS rats. Using 97 SSLP markers, we genotyped a 68 Mb region on rat chromosome 1 previously implicated in glucose and insulin regulation. We used linkage disequilibrium mapping by mixed model regression with inferred descent to identify a region from 198.85 to 205.9 that contains one or more quantitative trait loci (QTL) for fasting insulin and a measure of insulin resistance, the quantitative insulin sensitivity check index. This region also encompasses loci identified for fasting glucose and Insulin_AUC (area under the curve). A separate <3 Mb QTL was identified for body weight. Using a novel penalized regression method we then estimated effects of alternative haplotype pairings under each locus. These studies highlight the utility of HS rats for fine-mapping genetic loci involved in the underlying causes of T2D. PMID:22947656

  20. Rin4 causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid.

    PubMed

    Jeuken, Marieke J W; Zhang, Ningwen W; McHale, Leah K; Pelgrom, Koen; den Boer, Erik; Lindhout, Pim; Michelmore, Richard W; Visser, Richard G F; Niks, Rients E

    2009-10-01

    Some inter- and intraspecific crosses may result in reduced viability or sterility in the offspring, often due to genetic incompatibilities resulting from interactions between two or more loci. Hybrid necrosis is a postzygotic genetic incompatibility that is phenotypically manifested as necrotic lesions on the plant. We observed hybrid necrosis in interspecific lettuce (Lactuca sativa and Lactuca saligna) hybrids that correlated with resistance to downy mildew. Segregation analysis revealed a specific allelic combination at two interacting loci to be responsible. The allelic interaction had two consequences: (1) a quantitative temperature-dependent autoimmunity reaction leading to necrotic lesions, lethality, and quantitative resistance to an otherwise virulent race of Bremia lactucae; and (2) a qualitative temperature-independent race-specific resistance to an avirulent race of B. lactucae. We demonstrated by transient expression and silencing experiments that one of the two interacting genes was Rin4. In Arabidopsis thaliana, RIN4 is known to interact with multiple R gene products, and their interactions result in hypersensitive resistance to Pseudomonas syringae. Site-directed mutation studies on the necrosis-eliciting allele of Rin4 in lettuce showed that three residues were critical for hybrid necrosis.

  1. Identification of Single-Nucleotide Polymorphic Loci Associated with Biomass Yield under Water Deficit in Alfalfa (Medicago sativa L.) Using Genome-Wide Sequencing and Association Mapping

    PubMed Central

    Yu, Long-Xi

    2017-01-01

    Alfalfa is a worldwide grown forage crop and is important due to its high biomass production and nutritional value. However, the production of alfalfa is challenged by adverse environmental factors such as drought and other stresses. Developing drought resistance alfalfa is an important breeding target for enhancing alfalfa productivity in arid and semi-arid regions. In the present study, we used genotyping-by-sequencing and genome-wide association to identify marker loci associated with biomass yield under drought in the field in a panel of diverse germplasm of alfalfa. A total of 28 markers at 22 genetic loci were associated with yield under water deficit, whereas only four markers associated with the same trait under well-watered condition. Comparisons of marker-trait associations between water deficit and well-watered conditions showed non-similarity except one. Most of the markers were identical across harvest periods within the treatment, although different levels of significance were found among the three harvests. The loci associated with biomass yield under water deficit located throughout all chromosomes in the alfalfa genome agreed with previous reports. Our results suggest that biomass yield under drought is a complex quantitative trait with polygenic inheritance and may involve a different mechanism compared to that of non-stress. BLAST searches of the flanking sequences of the associated loci against DNA databases revealed several stress-responsive genes linked to the drought resistance loci, including leucine-rich repeat receptor-like kinase, B3 DNA-binding domain protein, translation initiation factor IF2, and phospholipase-like protein. With further investigation, those markers closely linked to drought resistance can be used for MAS to accelerate the development of new alfalfa cultivars with improved resistance to drought and other abiotic stresses. PMID:28706532

  2. Major Quantitative Trait Loci and Putative Candidate Genes for Powdery Mildew Resistance and Fruit-Related Traits Revealed by an Intraspecific Genetic Map for Watermelon (Citrullus lanatus var. lanatus).

    PubMed

    Kim, Kwang-Hwan; Hwang, Ji-Hyun; Han, Dong-Yeup; Park, Minkyu; Kim, Seungill; Choi, Doil; Kim, Yongjae; Lee, Gung Pyo; Kim, Sun-Tae; Park, Young-Hoon

    2015-01-01

    An intraspecific genetic map for watermelon was constructed using an F2 population derived from 'Arka Manik' × 'TS34' and transcript sequence variants and quantitative trait loci (QTL) for resistance to powdery mildew (PMR), seed size (SS), and fruit shape (FS) were analyzed. The map consists of 14 linkage groups (LGs) defined by 174 cleaved amplified polymorphic sequences (CAPS), 2 derived-cleaved amplified polymorphic sequence markers, 20 sequence-characterized amplified regions, and 8 expressed sequence tag-simple sequence repeat markers spanning 1,404.3 cM, with a mean marker interval of 6.9 cM and an average of 14.6 markers per LG. Genetic inheritance and QTL analyses indicated that each of the PMR, SS, and FS traits is controlled by an incompletely dominant effect of major QTLs designated as pmr2.1, ss2.1, and fsi3.1, respectively. The pmr2.1, detected on chromosome 2 (Chr02), explained 80.0% of the phenotypic variation (LOD = 30.76). This QTL was flanked by two CAPS markers, wsb2-24 (4.00 cM) and wsb2-39 (13.97 cM). The ss2.1, located close to pmr2.1 and CAPS marker wsb2-13 (1.00 cM) on Chr02, explained 92.3% of the phenotypic variation (LOD = 68.78). The fsi3.1, detected on Chr03, explained 79.7% of the phenotypic variation (LOD = 31.37) and was flanked by two CAPS, wsb3-24 (1.91 cM) and wsb3-9 (7.00 cM). Candidate gene-based CAPS markers were developed from the disease resistance and fruit shape gene homologs located on Chr.02 and Chr03 and were mapped on the intraspecific map. Colocalization of these markers with the major QTLs indicated that watermelon orthologs of a nucleotide-binding site-leucine-rich repeat class gene containing an RPW8 domain and a member of SUN containing the IQ67 domain are candidate genes for pmr2.1 and fsi3.1, respectively. The results presented herein provide useful information for marker-assisted breeding and gene cloning for PMR and fruit-related traits.

  3. Major Quantitative Trait Loci and Putative Candidate Genes for Powdery Mildew Resistance and Fruit-Related Traits Revealed by an Intraspecific Genetic Map for Watermelon (Citrullus lanatus var. lanatus)

    PubMed Central

    Kim, Kwang-Hwan; Hwang, Ji-Hyun; Han, Dong-Yeup; Park, Minkyu; Kim, Seungill; Choi, Doil; Kim, Yongjae; Lee, Gung Pyo; Kim, Sun-Tae; Park, Young-Hoon

    2015-01-01

    An intraspecific genetic map for watermelon was constructed using an F2 population derived from ‘Arka Manik’ × ‘TS34’ and transcript sequence variants and quantitative trait loci (QTL) for resistance to powdery mildew (PMR), seed size (SS), and fruit shape (FS) were analyzed. The map consists of 14 linkage groups (LGs) defined by 174 cleaved amplified polymorphic sequences (CAPS), 2 derived-cleaved amplified polymorphic sequence markers, 20 sequence-characterized amplified regions, and 8 expressed sequence tag-simple sequence repeat markers spanning 1,404.3 cM, with a mean marker interval of 6.9 cM and an average of 14.6 markers per LG. Genetic inheritance and QTL analyses indicated that each of the PMR, SS, and FS traits is controlled by an incompletely dominant effect of major QTLs designated as pmr2.1, ss2.1, and fsi3.1, respectively. The pmr2.1, detected on chromosome 2 (Chr02), explained 80.0% of the phenotypic variation (LOD = 30.76). This QTL was flanked by two CAPS markers, wsb2-24 (4.00 cM) and wsb2-39 (13.97 cM). The ss2.1, located close to pmr2.1 and CAPS marker wsb2-13 (1.00 cM) on Chr02, explained 92.3% of the phenotypic variation (LOD = 68.78). The fsi3.1, detected on Chr03, explained 79.7% of the phenotypic variation (LOD = 31.37) and was flanked by two CAPS, wsb3-24 (1.91 cM) and wsb3-9 (7.00 cM). Candidate gene-based CAPS markers were developed from the disease resistance and fruit shape gene homologs located on Chr.02 and Chr03 and were mapped on the intraspecific map. Colocalization of these markers with the major QTLs indicated that watermelon orthologs of a nucleotide-binding site-leucine-rich repeat class gene containing an RPW8 domain and a member of SUN containing the IQ67 domain are candidate genes for pmr2.1 and fsi3.1, respectively. The results presented herein provide useful information for marker-assisted breeding and gene cloning for PMR and fruit-related traits. PMID:26700647

  4. Identification of five novel modifier loci of ApcMin harbored in the BXH14 recombinant inbred strain

    PubMed Central

    Siracusa, Linda D.

    2012-01-01

    Every year thousands of people in the USA are diagnosed with small intestine and colorectal cancers (CRC). Although environmental factors affect disease etiology, uncovering underlying genetic factors is imperative for risk assessment and developing preventative therapies. Familial adenomatous polyposis is a heritable genetic disorder in which individuals carry germ-line mutations in the adenomatous polyposis coli (APC) gene that predisposes them to CRC. The Apc Min mouse model carries a point mutation in the Apc gene and develops polyps along the intestinal tract. Inbred strain background influences polyp phenotypes in Apc Min mice. Several Modifier of Min (Mom) loci that alter tumor phenotypes associated with the Apc Min mutation have been identified to date. We screened BXH recombinant inbred (RI) strains by crossing BXH RI females with C57BL/6J (B6) Apc Min males and quantitating tumor phenotypes in backcross progeny. We found that the BXH14 RI strain harbors five modifier loci that decrease polyp multiplicity. Furthermore, we show that resistance is determined by varying combinations of these modifier loci. Gene interaction network analysis shows that there are multiple networks with proven gene–gene interactions, which contain genes from all five modifier loci. We discuss the implications of this result for studies that define susceptibility loci, namely that multiple networks may be acting concurrently to alter tumor phenotypes. Thus, the significance of this work resides not only with the modifier loci we identified but also with the combinations of loci needed to get maximal protection against polyposis and the impact of this finding on human disease studies. Abbreviations:APCadenomatous polyposis coliGWASgenome-wide association studiesQTLquantitative trait lociSNPsingle-nucleotide polymorphism. PMID:22637734

  5. Genome-wide identification of expression quantitative trait loci for human telomerase.

    PubMed

    Kim, Hanseol; Ryu, Jihye; Lee, Chaeyoung

    2016-10-01

    A genome-wide association study was conducted to identify expression quantitative trait loci (eQTL) for human telomerase.We tested the genetic associations of nucleotide variants with expression of the genes encoding human telomerase reverse transcriptase (hTERT) and telomerase RNA components (TERC) in lymphoblastoid cell lines derived from 373 Europeans.Our results revealed 6 eQTLs associated with hTERT (P < 5 × 10). One eQTL (rs17755753) was located in the intron 1 of the gene encoding R-spondin-3 (RSPO3), a well-known Wnt signaling regulator. Transcriptome-wide association analysis for these eQTLs revealed their additional associations with the expression of 29 genes (P < 4.75 × 10), including prickle planar cell polarity protein 2 (PRICKLE2) gene important for the Wnt signaling pathway. This concurs with previous studies in which significant expressional relationships between hTERT and some genes (β-catenin and Wnt-3a) in the Wnt signaling pathway have been observed.This study suggested 6 novel eQTLs for hTERT and the association of hTERT with the Wnt signaling pathway. Further studies are needed to understand their underlying mechanisms to improve our understanding of the role of hTERT in cancer.

  6. Defeating the Warrior: genetic architecture of triticale resistance against a novel aggressive yellow rust race.

    PubMed

    Losert, Dominik; Maurer, Hans Peter; Leiser, Willmar L; Würschum, Tobias

    2017-04-01

    Genome-wide association mapping of resistance against the novel, aggressive 'Warrior' race of yellow rust in triticale revealed a genetic architecture with some medium-effect QTL and a quantitative component, which in combination confer high levels of resistance on both leaves and ears. Yellow rust is an important destructive fungal disease in small grain cereals and the exotic 'Warrior' race has recently conquered Europe. The aim of this study was to investigate the genetic architecture of yellow rust resistance in hexaploid winter triticale as the basis for a successful resistance breeding. To this end, a diverse panel of 919 genotypes was evaluated for yellow rust infection on leaves and ears in multi-location field trials and genotyped by genotyping-by-sequencing as well as for known Yr resistance loci. Genome-wide association mapping identified ten quantitative trait loci (QTL) for yellow rust resistance on the leaves and seven of these also for ear resistance. The total genotypic variance explained by the QTL amounted to 44.0% for leaf and 26.0% for ear resistance. The same three medium-effect QTL were identified for both traits on chromosomes 1B, 2B, and 7B. Interestingly, plants pyramiding the resistance allele of all three medium-effect QTL were generally most resistant, but constitute less than 5% of the investigated triticale breeding material. Nevertheless, a genome-wide prediction yielded a higher predictive ability than prediction based on these three QTL. Taken together, our results show that yellow rust resistance in winter triticale is genetically complex, including both medium-effect QTL as well as a quantitative resistance component. Resistance to the novel 'Warrior' race of this fungal pathogen is consequently best achieved by recurrent selection in the field based on identified resistant lines and can potentially be assisted by genomic approaches.

  7. Quantitative trait loci affecting lactose and total solids on chromosome 6 in Brazilian Gir dairy cattle.

    PubMed

    Silva, A A; Azevedo, A L S; Gasparini, K; Verneque, R S; Peixoto, M G C D; Panetto, B R; Guimarães, S E F; Machado, M A

    2011-10-31

    Fourteen Brazilian Gir sire families with 657 daughters were analyzed for quantitative trait loci (QTL) on chromosome 6 affecting lactose and total solids. Cows and sires were genotyped with 27 microsatellites with a mean spacing between markers of 4.9 cM. We used a 1% chromosome-wide threshold for QTL qualification. A QTL for lactose yield was found close to marker MNB66 in three families. A QTL for total solid yield was identified close to marker BMS2508 in three families. A QTL for lactose percentage, close to marker DIK1182, was identified in two families. A QTL for total solid percentage, close to marker MNB208, was identified in four families. These QTLs could be used for selection of animals in dairy production systems.

  8. Association mapping utilizing diverse barley lines reveals net form net blotch seedling resistance/susceptibility loci

    USDA-ARS?s Scientific Manuscript database

    Pyrenophora teres f. teres is a necrotrophic fungal pathogen and the causal agent of the economically important foliar disease net form net blotch (NFNB) of barley. The deployment of effective and durable resistance against P. teres f. teres has been hindered by the complexity of quantitative resist...

  9. Rin4 Causes Hybrid Necrosis and Race-Specific Resistance in an Interspecific Lettuce Hybrid[W

    PubMed Central

    Jeuken, Marieke J.W.; Zhang, Ningwen W.; McHale, Leah K.; Pelgrom, Koen; den Boer, Erik; Lindhout, Pim; Michelmore, Richard W.; Visser, Richard G.F.; Niks, Rients E.

    2009-01-01

    Some inter- and intraspecific crosses may result in reduced viability or sterility in the offspring, often due to genetic incompatibilities resulting from interactions between two or more loci. Hybrid necrosis is a postzygotic genetic incompatibility that is phenotypically manifested as necrotic lesions on the plant. We observed hybrid necrosis in interspecific lettuce (Lactuca sativa and Lactuca saligna) hybrids that correlated with resistance to downy mildew. Segregation analysis revealed a specific allelic combination at two interacting loci to be responsible. The allelic interaction had two consequences: (1) a quantitative temperature-dependent autoimmunity reaction leading to necrotic lesions, lethality, and quantitative resistance to an otherwise virulent race of Bremia lactucae; and (2) a qualitative temperature-independent race-specific resistance to an avirulent race of B. lactucae. We demonstrated by transient expression and silencing experiments that one of the two interacting genes was Rin4. In Arabidopsis thaliana, RIN4 is known to interact with multiple R gene products, and their interactions result in hypersensitive resistance to Pseudomonas syringae. Site-directed mutation studies on the necrosis-eliciting allele of Rin4 in lettuce showed that three residues were critical for hybrid necrosis. PMID:19855048

  10. Genome-Wide Association Mapping of Stem Rust Resistance in Hordeum vulgare subsp. spontaneum

    PubMed Central

    Sallam, Ahmad H.; Tyagi, Priyanka; Brown-Guedira, Gina; Muehlbauer, Gary J.; Hulse, Alex; Steffenson, Brian J.

    2017-01-01

    Stem rust was one of the most devastating diseases of barley in North America. Through the deployment of cultivars with the resistance gene Rpg1, losses to stem rust have been minimal over the past 70 yr. However, there exist both domestic (QCCJB) and foreign (TTKSK aka isolate Ug99) pathotypes with virulence for this important gene. To identify new sources of stem rust resistance for barley, we evaluated the Wild Barley Diversity Collection (WBDC) (314 ecogeographically diverse accessions of Hordeum vulgare subsp. spontaneum) for seedling resistance to four pathotypes (TTKSK, QCCJB, MCCFC, and HKHJC) of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici, Pgt) and one isolate (92-MN-90) of the rye stem rust pathogen (P. graminis f. sp. secalis, Pgs). Based on a coefficient of infection, the frequency of resistance in the WBDC was low ranging from 0.6% with HKHJC to 19.4% with 92-MN-90. None of the accessions was resistant to all five cultures of P. graminis. A genome-wide association study (GWAS) was conducted to map stem rust resistance loci using 50,842 single-nucleotide polymorphic markers generated by genotype-by-sequencing and ordered using the new barley reference genome assembly. After proper accounting for genetic relatedness and structure among accessions, 45 quantitative trait loci were identified for resistance to P. graminis across all seven barley chromosomes. Three novel loci associated with resistance to TTKSK, QCCJB, MCCFC, and 92-MN-90 were identified on chromosomes 5H and 7H, and two novel loci associated with resistance to HKHJC were identified on chromosomes 1H and 3H. These novel alleles will enhance the diversity of resistance available for cultivated barley. PMID:28855281

  11. Genome-Wide Association Mapping of Stem Rust Resistance in Hordeum vulgare subsp. spontaneum.

    PubMed

    Sallam, Ahmad H; Tyagi, Priyanka; Brown-Guedira, Gina; Muehlbauer, Gary J; Hulse, Alex; Steffenson, Brian J

    2017-10-05

    Stem rust was one of the most devastating diseases of barley in North America. Through the deployment of cultivars with the resistance gene Rpg1 , losses to stem rust have been minimal over the past 70 yr. However, there exist both domestic (QCCJB) and foreign (TTKSK aka isolate Ug99) pathotypes with virulence for this important gene. To identify new sources of stem rust resistance for barley, we evaluated the Wild Barley Diversity Collection (WBDC) (314 ecogeographically diverse accessions of Hordeum vulgare subsp. spontaneum ) for seedling resistance to four pathotypes (TTKSK, QCCJB, MCCFC, and HKHJC) of the wheat stem rust pathogen ( Puccinia graminis f. sp. tritici , Pgt ) and one isolate (92-MN-90) of the rye stem rust pathogen ( P. graminis f. sp. secalis , Pgs ). Based on a coefficient of infection, the frequency of resistance in the WBDC was low ranging from 0.6% with HKHJC to 19.4% with 92-MN-90. None of the accessions was resistant to all five cultures of P. graminis A genome-wide association study (GWAS) was conducted to map stem rust resistance loci using 50,842 single-nucleotide polymorphic markers generated by genotype-by-sequencing and ordered using the new barley reference genome assembly. After proper accounting for genetic relatedness and structure among accessions, 45 quantitative trait loci were identified for resistance to P. graminis across all seven barley chromosomes. Three novel loci associated with resistance to TTKSK, QCCJB, MCCFC, and 92-MN-90 were identified on chromosomes 5H and 7H, and two novel loci associated with resistance to HKHJC were identified on chromosomes 1H and 3H. These novel alleles will enhance the diversity of resistance available for cultivated barley. Copyright © 2017 Sallam et al.

  12. Yield effecgs of two southern leaf blight resistance loci in maize hybrids

    USDA-ARS?s Scientific Manuscript database

    Plants need to balance resources between yield and defense. This phenomenon has rarely been investigated in the context of naturally-occurring quantitative resistance alleles in an agricultural production environment. B73-3B and B73-6A are two near-isogenic lines (NILs) in the background of the mai...

  13. Rapid quantitation of neuraminidase inhibitor drug resistance in influenza virus quasispecies.

    PubMed

    Lackenby, Angie; Democratis, Jane; Siqueira, Marilda M; Zambon, Maria C

    2008-01-01

    Emerging resistance of influenza viruses to neuraminidase inhibitors is a concern, both in surveillance of global circulating strains and in treatment of individual patients. Current methodologies to detect resistance rely on the use of cultured virus, thus taking time to complete or lacking the sensitivity to detect mutations in viral quasispecies. Methodology for rapid detection of clinically meaningful resistance is needed to assist individual patient management and to track the transmission of resistant viruses in the community. We have developed a pyrosequencing methodology to detect and quantitate influenza neuraminidase inhibitor resistance mutations in cultured virus and directly in clinical material. Our assays target polymorphisms associated with drug resistance in the neuraminidase genes of human influenza A H1N1 as well as human and avian H5N1 viruses. Quantitation can be achieved using viral RNA extracted directly from respiratory or tissue samples, thus eliminating the need for virus culture and allowing the assay of highly pathogenic viruses such as H5N1 without high containment laboratory facilities. Antiviral-resistant quasispecies are detected and quantitated accurately when present in the total virus population at levels as low as 10%. Pyrosequencing is a real-time assay; therefore, results can be obtained within a clinically relevant timeframe and provide information capable of informing individual patient or outbreak management. Pyrosequencing is ideally suited for early identification of emerging antiviral resistance in human and avian influenza infection and is a useful tool for laboratory surveillance and pandemic preparedness.

  14. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes

    PubMed Central

    Dimkpa, Stanley O. N.; Lahari, Zobaida; Shrestha, Roshi; Douglas, Alex; Gheysen, Godelieve; Price, Adam H.

    2016-01-01

    The root-knot nematode Meloidogyne graminicola is one of the most serious nematode pests worldwide and represents a major constraint on rice production. While variation in the susceptibility of Asian rice (Oryza sativa) exists, so far no strong and reliable resistance has been reported. Quantitative trait loci for partial resistance have been reported but no underlying genes have been tagged or cloned. Here, 332 accessions of the Rice Diversity Panel 1 were assessed for gall formation, revealing large variation across all subpopulations of rice and higher susceptibility in temperate japonica accessions. Accessions Khao Pahk Maw and LD 24 appeared to be resistant, which was confirmed in large pot experiments where no galls were observed. Detailed observations on these two accessions revealed no nematodes inside the roots 2 days after inoculation and very few females after 17 days (5 in Khao Pahk Maw and <1 in LD 24, in comparison with >100 in the susceptible controls). These two cultivars appear ideal donors for breeding root-knot nematode resistance. A genome-wide association study revealed 11 quantitative trait loci, two of which are close to epistatic loci detected in the Bala x Azucena population. The discussion highlights a small number of candidate genes worth exploring further, in particular many genes with lectin domains and genes on chromosome 11 with homology to the Hordeum Mla locus. PMID:26552884

  15. Bone Mineral Density Variation in Men is influenced by Sex-Specific and Non Sex-Specific Quantitative Trait Loci

    PubMed Central

    Peacock, Munro; Koller, Daniel L.; Lai, Dongbing; Hui, Siu; Foroud, Tatiana; Econs, Michael J.

    2009-01-01

    Introduction A major predictor of age-related osteoporotic fracture is peak areal bone mineral density (aBMD) which is a highly heritable trait. However, few linkage and association studies have been performed in men to identify the genes contributing to normal variation in aBMD. The aim of this study was to perform a genome wide scan in healthy men to identify quantitative trait loci (QTL) that were significantly linked to aBMD and to test whether any of these might be sex-specific. Methods aBMD at the spine and hip were measured in 515 pairs of brothers, aged 18-61 (405 white pairs, 110 black pairs). Linkage analysis in the brother sample was compared with results in a previously published sample of 774 sister pairs to identify sex-specific quantitative trait loci (QTL). Results A genome wide scan identified significant QTL (LOD>3.6) for aBMD on chromosomes 4q21 (hip), 7q34 (spine), 14q32 (hip), 19p13 (hip), 21q21 (hip), and 22q13 (hip). Analysis suggested that the QTL on chromosome 7q34, 14q32, and 21q21 were male-specific whereas the others were not sex-specific. Conclusions This study demonstrates that six QTL were significantly linked with aBMD in men. One was linked to spine and five were linked to hip. When compared to published data in women from the same geographical region, the QTL on chromosomes 7, 14 and 21 were male-specific. The occurrence of sex-specific genes in humans for aBMD has important implications for the pathogenesis and treatment of osteoporosis. PMID:19427925

  16. Field evaluation of three sources of genetic resistance to sudden death syndrome of soybean

    USDA-ARS?s Scientific Manuscript database

    Sudden death syndrome (SDS) of soybean [Glycine max (L.) Merrill] is a disease that causes yield loss in soybean growing regions across the USA and worldwide. While several quantitative trait loci (QTL) for SDS resistance have been mapped, studies to further evaluate these QTL are limited. The objec...

  17. Genome-Wide Delineation of Natural Variation for Pod Shatter Resistance in Brassica napus

    PubMed Central

    Raman, Harsh; Raman, Rosy; Kilian, Andrzej; Detering, Frank; Carling, Jason; Coombes, Neil; Diffey, Simon; Kadkol, Gururaj; Edwards, David; McCully, Margaret; Ruperao, Pradeep; Parkin, Isobel A. P.; Batley, Jacqueline; Luckett, David J.; Wratten, Neil

    2014-01-01

    Resistance to pod shattering (shatter resistance) is a target trait for global rapeseed (canola, Brassica napus L.), improvement programs to minimise grain loss in the mature standing crop, and during windrowing and mechanical harvest. We describe the genetic basis of natural variation for shatter resistance in B. napus and show that several quantitative trait loci (QTL) control this trait. To identify loci underlying shatter resistance, we used a novel genotyping-by-sequencing approach DArT-Seq. QTL analysis detected a total of 12 significant QTL on chromosomes A03, A07, A09, C03, C04, C06, and C08; which jointly account for approximately 57% of the genotypic variation in shatter resistance. Through Genome-Wide Association Studies, we show that a large number of loci, including those that are involved in shattering in Arabidopsis, account for variation in shatter resistance in diverse B. napus germplasm. Our results indicate that genetic diversity for shatter resistance genes in B. napus is limited; many of the genes that might control this trait were not included during the natural creation of this species, or were not retained during the domestication and selection process. We speculate that valuable diversity for this trait was lost during the natural creation of B. napus. To improve shatter resistance, breeders will need to target the introduction of useful alleles especially from genotypes of other related species of Brassica, such as those that we have identified. PMID:25006804

  18. Quantitative trait loci from two genotypes of oat (Avena sativa L.) conditioning resistance to Puccinia coronata

    USDA-ARS?s Scientific Manuscript database

    Developing oat cultivars with partial resistance to crown rust would be beneficial for disease management. Two recombinant inbred line (RIL) populations were derived by crossing the susceptible cultivar ‘Provena’ with two partially resistant sources, ‘CDC Boyer’ and breeding line 94197A1-9-2-2-2-5. ...

  19. Mapping QTLs for Fusarium Head Blight Resistance in an Interspecific Wheat Population

    PubMed Central

    Giancaspro, Angelica; Giove, Stefania L.; Zito, Daniela; Blanco, A.; Gadaleta, Agata

    2016-01-01

    Fusarium head blight (scab) is one of the most widespread and damaging diseases of wheat, causing grain yield and quality losses and production of harmful mycotoxins. Development of resistant varieties is hampered by lack of effective resistance sources in the tetraploid wheat primary gene pool. Here we dissected the genetic basis of resistance in a new durum wheat (Triticum turgidum ssp. durum) Recombinant inbred lines (RILs) population obtained by crossing an hexaploid resistant line and a durum susceptible cultivar. A total of 135 RILs were used for constituting a genetic linkage map and mapping loci for head blight incidence, severity, and disease-related plant morphological traits (plant height, spike compactness, and awn length). The new genetic map accounted for 4,366 single nucleotide polymorphism markers assembled in 52 linkage groups covering a total length of 4,227.37 cM. Major quantitative trait loci (QTL) for scab incidence and severity were mapped on chromosomes 2AS, 3AL, and 2AS, 2BS, 4BL, respectively. Plant height loci were identified on 3A, 3B, and 4B, while major QTL for ear compactness were found on 4A, 5A, 5B, 6A, and 7A. In this work, resistance to Fusarium was transferred from hexaploid to durum wheat, and correlations between the disease and morphological traits were assessed. PMID:27746787

  20. Molecular Evolution Perspectives on Intraspecific Lateral DNA Transfer of Topoisomerase and Gyrase Loci in Streptococcus pneumoniae, with Implications for Fluoroquinolone Resistance Development and Spread

    PubMed Central

    Stanhope, Michael J.; Walsh, Stacey L.; Becker, Julie A.; Italia, Michael J.; Ingraham, Karen A.; Gwynn, Michael N.; Mathie, Tom; Poupard, James A.; Miller, Linda A.; Brown, James R.; Amrine-Madsen, Heather

    2005-01-01

    Fluoroquinolones are an important class of antibiotics for the treatment of infections arising from the gram-positive respiratory pathogen Streptococcus pneumoniae. Although there is evidence supporting interspecific lateral DNA transfer of fluoroquinolone target loci, no studies have specifically been designed to assess the role of intraspecific lateral transfer of these genes in the spread of fluoroquinolone resistance. This study involves a comparative evolutionary perspective, in which the evolutionary history of a diverse set of S. pneumoniae clinical isolates is reconstructed from an expanded multilocus sequence typing data set, with putative recombinants excluded. This control history is then assessed against networks of each of the four fluoroquinolone target loci from the same isolates. The results indicate that although the majority of fluoroquinolone target loci from this set of 60 isolates are consistent with a clonal dissemination hypothesis, 3 to 10% of the sequences are consistent with an intraspecific lateral transfer hypothesis. Also evident were examples of interspecific transfer, with two isolates possessing a parE-parC gene region arising from viridans group streptococci. The Spain 23F-1 clone is the most dominant fluoroquinolone-nonsusceptible clone in this set of isolates, and the analysis suggests that its members act as frequent donors of fluoroquinolone-nonsusceptible loci. Although the majority of fluoroquinolone target gene sequences in this set of isolates can be explained on the basis of clonal dissemination, a significant number are more parsimoniously explained by intraspecific lateral DNA transfer, and in situations of high S. pneumoniae population density, such events could be an important means of resistance spread. PMID:16189113

  1. Quantile-based permutation thresholds for quantitative trait loci hotspots.

    PubMed

    Neto, Elias Chaibub; Keller, Mark P; Broman, Andrew F; Attie, Alan D; Jansen, Ritsert C; Broman, Karl W; Yandell, Brian S

    2012-08-01

    Quantitative trait loci (QTL) hotspots (genomic locations affecting many traits) are a common feature in genetical genomics studies and are biologically interesting since they may harbor critical regulators. Therefore, statistical procedures to assess the significance of hotspots are of key importance. One approach, randomly allocating observed QTL across the genomic locations separately by trait, implicitly assumes all traits are uncorrelated. Recently, an empirical test for QTL hotspots was proposed on the basis of the number of traits that exceed a predetermined LOD value, such as the standard permutation LOD threshold. The permutation null distribution of the maximum number of traits across all genomic locations preserves the correlation structure among the phenotypes, avoiding the detection of spurious hotspots due to nongenetic correlation induced by uncontrolled environmental factors and unmeasured variables. However, by considering only the number of traits above a threshold, without accounting for the magnitude of the LOD scores, relevant information is lost. In particular, biologically interesting hotspots composed of a moderate to small number of traits with strong LOD scores may be neglected as nonsignificant. In this article we propose a quantile-based permutation approach that simultaneously accounts for the number and the LOD scores of traits within the hotspots. By considering a sliding scale of mapping thresholds, our method can assess the statistical significance of both small and large hotspots. Although the proposed approach can be applied to any type of heritable high-volume "omic" data set, we restrict our attention to expression (e)QTL analysis. We assess and compare the performances of these three methods in simulations and we illustrate how our approach can effectively assess the significance of moderate and small hotspots with strong LOD scores in a yeast expression data set.

  2. Functional mapping of quantitative trait loci associated with rice tillering.

    PubMed

    Liu, G F; Li, M; Wen, J; Du, Y; Zhang, Y-M

    2010-10-01

    Several biologically significant parameters that are related to rice tillering are closely associated with rice grain yield. Although identification of the genes that control rice tillering and therefore influence crop yield would be valuable for rice production management and genetic improvement, these genes remain largely unidentified. In this study, we carried out functional mapping of quantitative trait loci (QTLs) for rice tillering in 129 doubled haploid lines, which were derived from a cross between IR64 and Azucena. We measured the average number of tillers in each plot at seven developmental stages and fit the growth trajectory of rice tillering with the Wang-Lan-Ding mathematical model. Four biologically meaningful parameters in this model--the potential maximum for tiller number (K), the optimum tiller time (t(0)), and the increased rate (r), or the reduced rate (c) at the time of deviation from t(0)--were our defined variables for multi-marker joint analysis under the framework of penalized maximum likelihood, as well as composite interval mapping. We detected a total of 27 QTLs that accounted for 2.49-8.54% of the total phenotypic variance. Nine common QTLs across multi-marker joint analysis and composite interval mapping showed high stability, while one QTL was environment-specific and three were epistatic. We also identified several genomic segments that are associated with multiple traits. Our results describe the genetic basis of rice tiller development, enable further marker-assisted selection in rice cultivar development, and provide useful information for rice production management.

  3. Mapping of a quantitative trait locus for resistance against infectious salmon anaemia in Atlantic salmon (Salmo Salar): comparing survival analysis with analysis on affected/resistant data

    PubMed Central

    Moen, Thomas; Sonesson, Anna K; Hayes, Ben; Lien, Sigbjørn; Munck, Hege; Meuwissen, Theo HE

    2007-01-01

    Background Infectious Salmon Anaemia (ISA) is a viral disease affecting farmed Atlantic salmon (Salmo salar) worldwide. The identification of Quantitative Trait Loci (QTL) affecting resistance to the disease could improve our understanding of the genetics underlying the trait and provide a means for Marker-Assisted Selection. We previously performed a genome scan on commercial Atlantic salmon families challenge tested for ISA resistance, identifying several putative QTL. In the present study, we set out to validate the strongest of these QTL in a larger family material coming from the same challenge test, and to determine the position of the QTL by interval mapping. We also wanted to explore different ways of performing QTL analysis within a survival analysis framework (i.e. using time-to-event data), and to compare results using survival analysis with results from analysis on the dichotomous trait 'affected/resistant'. Results The QTL, located on Atlantic salmon linkage group 8 (following SALMAP notation), was confirmed in the new data set. Its most likely position was at a marker cluster containing markers BHMS130, BHMS170 and BHMS553. Significant segregation distortion was observed in the same region, but was shown to be unrelated to the QTL. A maximum likelihood procedure for identifying QTL, based on the Cox proportional hazard model, was developed. QTL mapping was also done using the Haley-Knott method (affected/resistant data), and within a variance-component framework (affected/resistant data and time-to-event data). In all cases, analysis using affected/resistant data gave stronger evidence for a QTL than did analysis using time-to-event data. Conclusion A QTL for resistance to Infectious Salmon Anaemia in Atlantic salmon was validated in this study, and its more precise location on linkage group eight was determined. The QTL explained 6% of the phenotypic variation in resistance to the disease. The linkage group also displayed significant segregation

  4. Effective marker alleles associated with type II resistance of wheat to Fusarium head blight infection in fields

    USDA-ARS?s Scientific Manuscript database

    Molecular markers associated with known quantitative trait loci (QTLs) for type 2 resistance to Fusarium head blight (FHB) in bi-parental mapping populations usually have more than two alleles in breeding populations. Therefore, understanding the association of each allele with FHB response is parti...

  5. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding.

    PubMed

    Brown, James K M; Chartrain, Laëtitia; Lasserre-Zuber, Pauline; Saintenac, Cyrille

    2015-06-01

    This paper reviews current knowledge about genes for resistance to Septoria tritici blotch (STB) of wheat, caused by Zymoseptoria tritici (formerly Mycosphaerella graminicola). These genes can be placed into two classes, although a few may have characteristics of both classes. Qualitative resistance is controlled by genes which control large fractions of genetic variation, 21 of which have been discovered and mapped so far. Most of them have been shown to be genotype-specific, being effective against the minority of Z. tritici isolates which are avirulent, and Stb6 has been shown to control a gene-for-gene relationship. Most qualitative resistances are unlikely to be durable and some formerly effective genes have been overcome by the evolution of pathogen virulence. Quantitative resistance is generally controlled by genes with small-to-moderate effects on STB. They have generally weaker specificity than qualitative genes and have provided more durable resistance. 89 genome regions carrying quantitative trait loci (QTL) or meta-QTL have been identified to date. Some QTL have been mapped at or near loci of qualitative genes, especially Stb6, which is present in several sources of resistance. Another gene of particular interest is Stb16q, which has been effective against all Z. tritici isolates tested so far. In addition to resistance, the susceptibility of wheat cultivars to STB can also be reduced by disease escape traits, some of which may be undesirable in breeding. The fundamental requirements for breeding for STB-resistance are genetic diversity for resistance in wheat germplasm and a field trial site at which STB epidemics occur regularly and effective selection can be conducted for resistance combined with other desirable traits. If these are in place, knowledge of resistance genes can be applied to improving control of STB. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines: III. Fat deposition and intramuscular fat content.

    PubMed

    Nassar, M K; Goraga, Z S; Brockmann, G A

    2013-02-01

    In this study, a genome scan was performed to detect genomic loci that affect fat deposition in white adipose tissues and muscles in 278 F (2) males of reciprocal crosses between the genetically and phenotypically extreme inbred chicken lines New Hampshire (NHI) and White Leghorn (WL77). Genome-wide highly significant quantitative trait loci (QTL) influencing fat deposition in white adipose tissues were found on GGA2 and 4. The peak QTL positions for different visceral and subcutaneous white adipose tissues were located between 41.4 and 112.4 Mb on GGA2 and between 76.2 and 78.7 Mb on GGA4, which explained 4.2-10.4% and 4.3-11.6% respectively of the phenotypic F (2) variances. Contrary to our expectations, the QTL allele descending from the lean line WL77 on GGA4 led to increased fat deposition. We suggest a transgressive action of the obesity allele only if it is not in the genetic background of the line WL77. Additional highly significant loci for subcutaneous adipose tissue mass were identified on GGA12 and 15. For intramuscular fat content, a suggestive QTL was located on GGA14. The analysed crosses provide a valuable resource for further fine mapping of fatness genes and subsequent gene discovery. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  7. Genome wide scan for quantitative trait loci affecting tick resistance in cattle (Bos taurus × Bos indicus)

    PubMed Central

    2010-01-01

    Background In tropical countries, losses caused by bovine tick Rhipicephalus (Boophilus) microplus infestation have a tremendous economic impact on cattle production systems. Genetic variation between Bos taurus and Bos indicus to tick resistance and molecular biology tools might allow for the identification of molecular markers linked to resistance traits that could be used as an auxiliary tool in selection programs. The objective of this work was to identify QTL associated with tick resistance/susceptibility in a bovine F2 population derived from the Gyr (Bos indicus) × Holstein (Bos taurus) cross. Results Through a whole genome scan with microsatellite markers, we were able to map six genomic regions associated with bovine tick resistance. For most QTL, we have found that depending on the tick evaluation season (dry and rainy) different sets of genes could be involved in the resistance mechanism. We identified dry season specific QTL on BTA 2 and 10, rainy season specific QTL on BTA 5, 11 and 27. We also found a highly significant genome wide QTL for both dry and rainy seasons in the central region of BTA 23. Conclusions The experimental F2 population derived from Gyr × Holstein cross successfully allowed the identification of six highly significant QTL associated with tick resistance in cattle. QTL located on BTA 23 might be related with the bovine histocompatibility complex. Further investigation of these QTL will help to isolate candidate genes involved with tick resistance in cattle. PMID:20433753

  8. Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus.

    PubMed

    Gyawali, Sanjaya; Harrington, Myrtle; Durkin, Jonathan; Horner, Kyla; Parkin, Isobel A P; Hegedus, Dwayne D; Bekkaoui, Diana; Buchwaldt, Lone

    The fungal pathogen Sclerotinia sclerotiorum causes stem rot of oilseed rape ( Brassica napus ) worldwide. In preparation for genome-wide association mapping (GWAM) of sclerotinia resistance in B. napus , 152 accessions from diverse geographical regions were screened with a single Canadian isolate, #321. Plants were inoculated by attaching mycelium plugs to the main stem at full flower. Lesion lengths measured 7, 14 and 21 days after inoculation were used to calculate the area under the disease progress curve (AUDPC). Depth of penetration was noted and used to calculate percent soft and collapsed lesions (% s + c). The two disease traits were highly correlated ( r  = 0.93). Partially resistant accessions (AUDPC <7 and % s + c <2) were identified primarily from South Korea and Japan with a few from Pakistan, China and Europe. Genotyping of accessions with 84 simple sequence repeat markers provided 690 polymorphic loci for GWAM. The general linear model in TASSEL best fitted the data when adjusted for population structure (STRUCTURE), GLM + Q. After correction for positive false discovery rate, 34 loci were significantly associated with both disease traits of which 21 alleles contributed to resistance, while the remaining enhanced susceptibility. The phenotypic variation explained by the loci ranged from 6 to 25 %. Five loci mapped to published quantitative trait loci conferring sclerotinia resistance in Chinese lines.

  9. Genome-wide association study meta-analysis for quantitative ultrasound parameters of bone identifies five novel loci for broadband ultrasound attenuation.

    PubMed

    Mullin, Benjamin H; Zhao, Jing Hua; Brown, Suzanne J; Perry, John R B; Luan, Jian'an; Zheng, Hou-Feng; Langenberg, Claudia; Dudbridge, Frank; Scott, Robert; Wareham, Nick J; Spector, Tim D; Richards, J Brent; Walsh, John P; Wilson, Scott G

    2017-07-15

    Osteoporosis is a common and debilitating bone disease that is characterised by low bone mineral density, typically assessed using dual-energy X-ray absorptiometry. Quantitative ultrasound (QUS), commonly utilising the two parameters velocity of sound (VOS) and broadband ultrasound attenuation (BUA), is an alternative technology used to assess bone properties at peripheral skeletal sites. The genetic influence on the bone qualities assessed by QUS remains an under-studied area. We performed a comprehensive genome-wide association study (GWAS) including low-frequency variants (minor allele frequency ≥0.005) for BUA and VOS using a discovery population of individuals with whole-genome sequence (WGS) data from the UK10K project (n = 1268). These results were then meta-analysed with those from two deeply imputed GWAS replication cohorts (n = 1610 and 13 749). In the gender-combined analysis, we identified eight loci associated with BUA and five with VOS at the genome-wide significance level, including three novel loci for BUA at 8p23.1 (PPP1R3B), 11q23.1 (LOC387810) and 22q11.21 (SEPT5) (P = 2.4 × 10-8 to 1.6 × 10-9). Gene-based association testing in the gender-combined dataset revealed eight loci associated with BUA and seven with VOS after correction for multiple testing, with one novel locus for BUA at FAM167A (8p23.1) (P = 1.4 × 10-6). An additional novel locus for BUA was seen in the male-specific analysis at DEFB103B (8p23.1) (P = 1.8 × 10-6). Fracture analysis revealed significant associations between variation at the WNT16 and RSPO3 loci and fracture risk (P = 0.004 and 4.0 × 10-4, respectively). In conclusion, by performing a large GWAS meta-analysis for QUS parameters of bone using a combination of WGS and deeply imputed genotype data, we have identified five novel genetic loci associated with BUA. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email

  10. Uropathogenic Escherichia coli are less likely than paired fecal E. coli to have CRISPR loci.

    PubMed

    Dang, Trang Nguyen Doan; Zhang, Lixin; Zöllner, Sebastian; Srinivasan, Usha; Abbas, Khadija; Marrs, Carl F; Foxman, Betsy

    2013-10-01

    CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) are short fragments of DNA that act as an adaptive immune system protecting bacteria against invasion by phages, plasmids or other forms of foreign DNA. Bacteria without a CRISPR locus may more readily adapt to environmental changes by acquiring foreign genetic material. Uropathogenic Escherichia coli (UPEC) live in a number of environments suggesting an ability to rapidly adapt to new environments. If UPEC are more adaptive than commensal E. coli we would expect that UPEC would have fewer CRISPR loci, and--if loci are present--that they would harbor fewer spacers than CRISPR loci in fecal E. coli. We tested this in vivo by comparing the number of CRISPR loci and spacers, and sensitivity to antibiotics (resistance is often obtained via plasmids) among 81 pairs of UPEC and fecal E. coli isolated from women with urinary tract infection. Each pair included one uropathogen and one commensal (fecal) sample from the same female patient. Fecal isolates had more repeats (p=0.009) and more unique spacers (p<0.0001) at four CRISPR loci than uropathogens. By contrast, uropathogens were more likely than fecal E. coli to be resistant to ampicillin, cefazolin and trimethoprim/sulfamethoxazole. However, no consistent association between CRISPRs and antibiotic resistance was identified. To our knowledge, this is the first study to compare fecal E. coli and pathogenic E. coli from the same individuals, and to test the association of CRISPR loci with antibiotic resistance. Our results suggest that the absence of CRISPR loci may make UPEC more susceptible to infection by phages or plasmids and allow them to adapt more quickly to various environments. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes.

    PubMed

    Dimkpa, Stanley O N; Lahari, Zobaida; Shrestha, Roshi; Douglas, Alex; Gheysen, Godelieve; Price, Adam H

    2016-02-01

    The root-knot nematode Meloidogyne graminicola is one of the most serious nematode pests worldwide and represents a major constraint on rice production. While variation in the susceptibility of Asian rice (Oryza sativa) exists, so far no strong and reliable resistance has been reported. Quantitative trait loci for partial resistance have been reported but no underlying genes have been tagged or cloned. Here, 332 accessions of the Rice Diversity Panel 1 were assessed for gall formation, revealing large variation across all subpopulations of rice and higher susceptibility in temperate japonica accessions. Accessions Khao Pahk Maw and LD 24 appeared to be resistant, which was confirmed in large pot experiments where no galls were observed. Detailed observations on these two accessions revealed no nematodes inside the roots 2 days after inoculation and very few females after 17 days (5 in Khao Pahk Maw and <1 in LD 24, in comparison with >100 in the susceptible controls). These two cultivars appear ideal donors for breeding root-knot nematode resistance. A genome-wide association study revealed 11 quantitative trait loci, two of which are close to epistatic loci detected in the Bala x Azucena population. The discussion highlights a small number of candidate genes worth exploring further, in particular many genes with lectin domains and genes on chromosome 11 with homology to the Hordeum Mla locus. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Untargeted Metabolic Quantitative Trait Loci Analyses Reveal a Relationship between Primary Metabolism and Potato Tuber Quality1[W][OA

    PubMed Central

    Carreno-Quintero, Natalia; Acharjee, Animesh; Maliepaard, Chris; Bachem, Christian W.B.; Mumm, Roland; Bouwmeester, Harro; Visser, Richard G.F.; Keurentjes, Joost J.B.

    2012-01-01

    Recent advances in -omics technologies such as transcriptomics, metabolomics, and proteomics along with genotypic profiling have permitted dissection of the genetics of complex traits represented by molecular phenotypes in nonmodel species. To identify the genetic factors underlying variation in primary metabolism in potato (Solanum tuberosum), we have profiled primary metabolite content in a diploid potato mapping population, derived from crosses between S. tuberosum and wild relatives, using gas chromatography-time of flight-mass spectrometry. In total, 139 polar metabolites were detected, of which we identified metabolite quantitative trait loci for approximately 72% of the detected compounds. In order to obtain an insight into the relationships between metabolic traits and classical phenotypic traits, we also analyzed statistical associations between them. The combined analysis of genetic information through quantitative trait locus coincidence and the application of statistical learning methods provide information on putative indicators associated with the alterations in metabolic networks that affect complex phenotypic traits. PMID:22223596

  13. Quantitative trait loci mapping of the mouse plasma proteome (pQTL).

    PubMed

    Holdt, Lesca M; von Delft, Annette; Nicolaou, Alexandros; Baumann, Sven; Kostrzewa, Markus; Thiery, Joachim; Teupser, Daniel

    2013-02-01

    A current challenge in the era of genome-wide studies is to determine the responsible genes and mechanisms underlying newly identified loci. Screening of the plasma proteome by high-throughput mass spectrometry (MALDI-TOF MS) is considered a promising approach for identification of metabolic and disease processes. Therefore, plasma proteome screening might be particularly useful for identifying responsible genes when combined with analysis of variation in the genome. Here, we describe a proteomic quantitative trait locus (pQTL) study of plasma proteome screens in an F(2) intercross of 455 mice mapped with 177 genetic markers across the genome. A total of 69 of 176 peptides revealed significant LOD scores (≥5.35) demonstrating strong genetic regulation of distinct components of the plasma proteome. Analyses were confirmed by mechanistic studies and MALDI-TOF/TOF, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the two strongest pQTLs: A pQTL for mass-to-charge ratio (m/z) 3494 (LOD 24.9, D11Mit151) was identified as the N-terminal 35 amino acids of hemoglobin subunit A (Hba) and caused by genetic variation in Hba. Another pQTL for m/z 8713 (LOD 36.4; D1Mit111) was caused by variation in apolipoprotein A2 (Apoa2) and cosegregated with HDL cholesterol. Taken together, we show that genome-wide plasma proteome profiling in combination with genome-wide genetic screening aids in the identification of causal genetic variants affecting abundance of plasma proteins.

  14. Genetic Complexity and Quantitative Trait Loci Mapping of Yeast Morphological Traits

    PubMed Central

    Nogami, Satoru; Ohya, Yoshikazu; Yvert, Gaël

    2007-01-01

    Functional genomics relies on two essential parameters: the sensitivity of phenotypic measures and the power to detect genomic perturbations that cause phenotypic variations. In model organisms, two types of perturbations are widely used. Artificial mutations can be introduced in virtually any gene and allow the systematic analysis of gene function via mutants fitness. Alternatively, natural genetic variations can be associated to particular phenotypes via genetic mapping. However, the access to genome manipulation and breeding provided by model organisms is sometimes counterbalanced by phenotyping limitations. Here we investigated the natural genetic diversity of Saccharomyces cerevisiae cellular morphology using a very sensitive high-throughput imaging platform. We quantified 501 morphological parameters in over 50,000 yeast cells from a cross between two wild-type divergent backgrounds. Extensive morphological differences were found between these backgrounds. The genetic architecture of the traits was complex, with evidence of both epistasis and transgressive segregation. We mapped quantitative trait loci (QTL) for 67 traits and discovered 364 correlations between traits segregation and inheritance of gene expression levels. We validated one QTL by the replacement of a single base in the genome. This study illustrates the natural diversity and complexity of cellular traits among natural yeast strains and provides an ideal framework for a genetical genomics dissection of multiple traits. Our results did not overlap with results previously obtained from systematic deletion strains, showing that both approaches are necessary for the functional exploration of genomes. PMID:17319748

  15. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    PubMed

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  16. Expansion of the Knockdown Resistance Frequency Map for Human Head Lice (Phthiraptera: Pediculidae) in the United States Using Quantitative Sequencing

    PubMed Central

    Gellatly, Kyle J.; Krim, Sarah; Palenchar, Daniel J.; Shepherd, Katie; Yoon, Kyong Sup; Rhodes, Christopher J.; Lee, Si Hyeock; Marshall Clark, J.

    2016-01-01

    Pediculosis is a prevalent parasitic infestation of humans, which is increasing due, in part, to the selection of lice resistant to either the pyrethrins or pyrethroid insecticides by the knockdown resistance (kdr) mechanism. To determine the extent and magnitude of the kdr-type mutations responsible for this resistance, lice were collected from 138 collection sites in 48 U.S. states from 22 July 2013 to 11 May 2015 and analyzed by quantitative sequencing. Previously published data were used for comparisons of the changes in the frequency of the kdr-type mutations over time. Mean percent resistance allele frequency (mean % RAF) values across the three mutation loci were determined from each collection site. The overall mean % RAF (±SD) for all analyzed lice was 98.3 ± 10%. 132/138 sites (95.6%) had a mean % RAF of 100%, five sites (3.7%) had intermediate values, and only a single site had no mutations (0.0%). Forty-two states (88%) had a mean % RAF of 100%. The frequencies of kdr-type mutations did not differ regardless of the human population size that the lice were collected from, indicating a uniformly high level of resistant alleles. The loss of efficacy of the Nix formulation (Prestige Brand, Tarrytown, NY) from 1998 to 2013 was correlated to the increase in kdr-type mutations. These data provide a plausible reason for the decrease in the effectiveness of permethrin in the Nix formulation, which is the parallel increase of kdr-type mutations in lice over time. PMID:27032417

  17. Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) is one of the frequent causes of elevated mortality in salmonid aquaculture. Previously, we identified and validated microsatellites associated with QTL (quantitative trait loci) for BCWD resistance and spleen size in rainbow trout. The objective of this study was...

  18. Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) is one of the frequent causes of elevated mortality in salmonid aquaculture. Previously, we identified and validated microsatellite markers associated with QTL (quantitative trait loci) for BCWD resistance and spleen size in rainbow trout. The objective of this st...

  19. SNP discovery and QTL mapping of Sclerotinia basal stalk rot resistance in sunflower using genotyping-by-sequencing (GBS)

    USDA-ARS?s Scientific Manuscript database

    Basal stalk rot (BSR) caused by the ascomycete fungus Sclerotinia sclerotiorum (Lib.) de Bary is a serious disease of sunflower (Helianthus annuus L.) in the cool and humid production areas of the world. Quantitative trait loci (QTL) for BSR resistance were identified in a sunflower recombinant inbr...

  20. Soybean seed extracts preferentially express genomic loci of Bradyrhizobium japonicum in the initial interaction with soybean, Glycine max (L.) Merr.

    PubMed

    Wei, Min; Yokoyama, Tadashi; Minamisawa, Kiwamu; Mitsui, Hisayuki; Itakura, Manabu; Kaneko, Takakazu; Tabata, Satoshi; Saeki, Kazuhiko; Omori, Hirofumi; Tajima, Shigeyuki; Uchiumi, Toshiki; Abe, Mikiko; Ohwada, Takuji

    2008-08-01

    Initial interaction between rhizobia and legumes actually starts via encounters of both partners in the rhizosphere. In this study, the global expression profiles of Bradyrhizobium japonicum USDA 110 in response to soybean (Glycine max) seed extracts (SSE) and genistein, a major soybean-released isoflavone for nod genes induction of B. japonicum, were compared. SSE induced many genomic loci as compared with genistein (5.0 microM), nevertheless SSE-supplemented medium contained 4.7 microM genistein. SSE markedly induced four predominant genomic regions within a large symbiosis island (681 kb), which include tts genes (type III secretion system) and various nod genes. In addition, SSE-treated cells expressed many genomic loci containing genes for polygalacturonase (cell-wall degradation), exopolysaccharide synthesis, 1-aminocyclopropane-1-carboxylate deaminase, ribosome proteins family and energy metabolism even outside symbiosis island. On the other hand, genistein-treated cells exclusively showed one expression cluster including common nod gene operon within symbiosis island and six expression loci including multidrug resistance, which were shared with SSE-treated cells. Twelve putatively regulated genes were indeed validated by quantitative RT-PCR. Several SSE-induced genomic loci likely participate in the initial interaction with legumes. Thus, these results can provide a basic knowledge for screening novel genes relevant to the B. japonicum- soybean symbiosis.

  1. Inheritance analysis and mapping of quantitative trait loci (QTL) controlling individual anthocyanin compounds in purple barley (Hordeum vulgare L.) grains.

    PubMed

    Zhang, Xiao-Wei; Jiang, Qian-Tao; Wei, Yu-Ming; Liu, Chunji

    2017-01-01

    Anthocyanin-rich barley can have great potential in promoting human health and in developing nutraceuticals and functional foods. As different anthocyanin compounds have different antioxidant activities, breeding cultivars with pre-designed anthocyanin compositions could be highly desirable. Working toward this possibility, we assessed and reported for the first time the genetic control of individual anthocyanin compounds in barley. Of the ten anthocyanins assessed, two, peonidin-3-glucoside (P3G) and cyanidin-3-glucoside (C3G), were major components in the purple pericarp barley genotype RUSSIA68. Quantitative trait locus (QTL) mapping showed that both anthocyanin compounds were the interactive products of two loci, one located on chromosome arm 2HL and the other on 7HS. However, the two different anthocyanin components seem to be controlled by different interactions between the two loci. The effects of the 7HS locus on P3G and C3G were difficult to detect without removing the effect of the 2HL locus. At least one copy of the 2HL alleles from the purple pericarp parent was required for the synthesis of P3G. This does not seem to be the case for the production of C3G which was produced in each of all the different allele combinations between the two loci. Typical maternal effect was also observed in the inheritance of purple pericarp grains in barley. The varied values of different compounds, coupled with their different genetic controls, highlight the need for targeting individual anthocyanins in crop breeding and food processing.

  2. Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations.

    PubMed

    Jiang, Gonghao; Zeng, Jing; He, Yuqing

    2014-02-25

    Chlorophyll content, one of the most important physiological parameters related to plant photosynthesis, is usually used to predict yield potential. To map the quantitative trait loci (QTLs) underlying the chlorophyll content of rice leaves, a double haploid (DH) population was developed from an indica/japonica (Zhenshan 97/Wuyujing 2) crossing and two backcross populations were established subsequently by backcrossing DH lines with each of their parents. The contents of chlorophyll a and chlorophyll b were determined by using a spectrophotometer to directly measure the leaf chlorophyll extracts. To determine the leaf chlorophyll retention along with maturation, all measurements were performed on the day of heading and were repeated 30 days later. A total of 60 QTLs were resolved for all the traits using these three populations. These QTLs were distributed on 10 rice chromosomes, except chromosomes 5 and 10; the closer the traits, the more clustering of the QTLs residing on common rice chromosomal regions. In general, the majority of QTLs that specify chlorophyll a content also play a role in determining chlorophyll b content. Strangely, chlorophyll content in this study was found mostly to be lacking or to have a negative correlation with yield. In both backcross F1 populations, overdominant (or underdominant) loci were more important than complete or partially dominant loci for main-effect QTLs and epistatic QTLs, thereby supporting previous findings that overdominant effects are the primary genetic basis for depression in inbreeding and heterosis in rice. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Identification of genomic region controlling resistance to aflatoxin contamination in a peanut recombinant inbred line population (Tifrunner x GT-C20)

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination of peanut is a significant threat to global food safety. In this study we performed quantitative trait loci (QTL) analysis to identify peanut genomic regions contributing to aflatoxin contamination resistance in a recombinant inbred line (RIL) population derived from the Tifr...

  4. Chromosomal mapping of quantitative trait loci controlling elastin content in rat aorta.

    PubMed

    Gauguier, Dominique; Behmoaras, Jacques; Argoud, Karène; Wilder, Steven P; Pradines, Christelle; Bihoreau, Marie Thérèse; Osborne-Pellegrin, Mary; Jacob, Marie Paule

    2005-03-01

    Extracellular matrix molecules such as elastin and collagens provide mechanical support to the vessel wall. In addition to its structural role, elastin is a regulator that maintains homeostasis through biologic signaling. Genetically determined minor modifications in elastin and collagen in the aorta could influence the onset and evolution of arterial pathology, such as hypertension and its complications. We previously demonstrated that the inbred Brown Norway (BN) rat shows an aortic elastin deficit in both abdominal and thoracic segments, partly because of a decrease in tropoelastin synthesis when compared with the LOU rat, that elastin gene polymorphisms in these strains do not significantly account for. After a genome-wide search for quantitative trait loci (QTL) influencing the aortic elastin, collagen, and cell protein contents in an F2 population derived from BN and LOU rats, we identified on chromosomes 2 and 14, 3 QTL specifically controlling elastin levels, and a further highly significant QTL on chromosome 17 linked to the level of cell proteins. We also mapped 3 highly significant QTL linked to body weight (on chromosomes 1 and 3) and heart weight (on chromosome 1) in the cross. This study demonstrates the polygenic control of the content of key components of the arterial wall. Such information represents a first step in understanding possible mechanisms involved in dysregulation of these parameters in arterial pathology.

  5. Quantitative disease resistance: to better understand parasite-mediated selection on major histocompatibility complex

    PubMed Central

    Westerdahl, Helena; Asghar, Muhammad; Hasselquist, Dennis; Bensch, Staffan

    2012-01-01

    We outline a descriptive framework of how candidate alleles of the immune system associate with infectious diseases in natural populations of animals. Three kinds of alleles can be separated when both prevalence of infection and infection intensity are measured—qualitative disease resistance, quantitative disease resistance and susceptibility alleles. Our descriptive framework demonstrates why alleles for quantitative resistance and susceptibility cannot be separated based on prevalence data alone, but are distinguishable on infection intensity. We then present a case study to evaluate a previous finding of a positive association between prevalence of a severe avian malaria infection (GRW2, Plasmodium ashfordi) and a major histocompatibility complex (MHC) class I allele (B4b) in great reed warblers Acrocephalus arundinaceus. Using the same dataset, we find that individuals with allele B4b have lower GRW2 infection intensities than individuals without this allele. Therefore, allele B4b provides quantitative resistance rather than increasing susceptibility to infection. This implies that birds carrying B4b can mount an immune response that suppresses the acute-phase GRW2 infection, while birds without this allele cannot and may die. We argue that it is important to determine whether MHC alleles related to infections are advantageous (quantitative and qualitative resistance) or disadvantageous (susceptibility) to obtain a more complete picture of pathogen-mediated balancing selection. PMID:21733902

  6. Quantitative disease resistance: to better understand parasite-mediated selection on major histocompatibility complex.

    PubMed

    Westerdahl, Helena; Asghar, Muhammad; Hasselquist, Dennis; Bensch, Staffan

    2012-02-07

    We outline a descriptive framework of how candidate alleles of the immune system associate with infectious diseases in natural populations of animals. Three kinds of alleles can be separated when both prevalence of infection and infection intensity are measured--qualitative disease resistance, quantitative disease resistance and susceptibility alleles. Our descriptive framework demonstrates why alleles for quantitative resistance and susceptibility cannot be separated based on prevalence data alone, but are distinguishable on infection intensity. We then present a case study to evaluate a previous finding of a positive association between prevalence of a severe avian malaria infection (GRW2, Plasmodium ashfordi) and a major histocompatibility complex (MHC) class I allele (B4b) in great reed warblers Acrocephalus arundinaceus. Using the same dataset, we find that individuals with allele B4b have lower GRW2 infection intensities than individuals without this allele. Therefore, allele B4b provides quantitative resistance rather than increasing susceptibility to infection. This implies that birds carrying B4b can mount an immune response that suppresses the acute-phase GRW2 infection, while birds without this allele cannot and may die. We argue that it is important to determine whether MHC alleles related to infections are advantageous (quantitative and qualitative resistance) or disadvantageous (susceptibility) to obtain a more complete picture of pathogen-mediated balancing selection.

  7. Mapping of iron and zinc quantitative trait loci in soybean for association to iron deficiency chlorosis resistance

    USDA-ARS?s Scientific Manuscript database

    Iron deficiency chlorosis (IDC) is a nutritional disease of soybean (Glycine max (L.) Merr.) which when left unchecked can result in a severe yield penalty or even death in the most extreme cases. In order to curb these effects, resistance to the disease is needed. Breeding for resistance has been ...

  8. Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes.

    PubMed

    Gong, Wen-Bing; Li, Lei; Zhou, Yan; Bian, Yin-Bing; Kwan, Hoi-Shan; Cheung, Man-Kit; Xiao, Yang

    2016-06-01

    To provide a better understanding of the genetic architecture of fruiting body formation of Lentinula edodes, quantitative trait loci (QTLs) mapping was employed to uncover the loci underlying seven fruiting body-related traits (FBRTs). An improved L. edodes genetic linkage map, comprising 572 markers on 12 linkage groups with a total map length of 983.7 cM, was constructed by integrating 82 genomic sequence-based insertion-deletion (InDel) markers into a previously published map. We then detected a total of 62 QTLs for seven target traits across two segregating testcross populations, with individual QTLs contributing 5.5 %-30.2 % of the phenotypic variation. Fifty-three out of the 62 QTLs were clustered in six QTL hotspots, suggesting the existence of main genomic regions regulating the morphological characteristics of fruiting bodies in L. edodes. A stable QTL hotspot on MLG2, containing QTLs for all investigated traits, was identified in both testcross populations. QTLs for related traits were frequently co-located on the linkage groups, demonstrating the genetic basis for phenotypic correlation of traits. Meta-QTL (mQTL) analysis was performed and identified 16 mQTLs with refined positions and narrow confidence intervals (CIs). Nine genes, including those encoding MAP kinase, blue-light photoreceptor, riboflavin-aldehyde-forming enzyme and cyclopropane-fatty-acyl-phospholipid synthase, and cytochrome P450s, were likely to be candidate genes controlling the shape of fruiting bodies. The study has improved our understanding of the genetic architecture of fruiting body formation in L. edodes. To our knowledge, this is the first genome-wide QTL detection of FBRTs in L. edodes. The improved genetic map, InDel markers and QTL hotspot regions revealed here will assist considerably in the conduct of future genetic and breeding studies of L. edodes.

  9. Genome-wide meta-analysis identifies new susceptibility loci for migraine.

    PubMed

    Anttila, Verneri; Winsvold, Bendik S; Gormley, Padhraig; Kurth, Tobias; Bettella, Francesco; McMahon, George; Kallela, Mikko; Malik, Rainer; de Vries, Boukje; Terwindt, Gisela; Medland, Sarah E; Todt, Unda; McArdle, Wendy L; Quaye, Lydia; Koiranen, Markku; Ikram, M Arfan; Lehtimäki, Terho; Stam, Anine H; Ligthart, Lannie; Wedenoja, Juho; Dunham, Ian; Neale, Benjamin M; Palta, Priit; Hamalainen, Eija; Schürks, Markus; Rose, Lynda M; Buring, Julie E; Ridker, Paul M; Steinberg, Stacy; Stefansson, Hreinn; Jakobsson, Finnbogi; Lawlor, Debbie A; Evans, David M; Ring, Susan M; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari A; Freilinger, Tobias; Schoenen, Jean; Frants, Rune R; Pelzer, Nadine; Weller, Claudia M; Zielman, Ronald; Heath, Andrew C; Madden, Pamela A F; Montgomery, Grant W; Martin, Nicholas G; Borck, Guntram; Göbel, Hartmut; Heinze, Axel; Heinze-Kuhn, Katja; Williams, Frances M K; Hartikainen, Anna-Liisa; Pouta, Anneli; van den Ende, Joyce; Uitterlinden, Andre G; Hofman, Albert; Amin, Najaf; Hottenga, Jouke-Jan; Vink, Jacqueline M; Heikkilä, Kauko; Alexander, Michael; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Wichmann, Heinz Erich; Aromaa, Arpo; Eriksson, Johan G; Traynor, Bryan; Trabzuni, Daniah; Rossin, Elizabeth; Lage, Kasper; Jacobs, Suzanne B R; Gibbs, J Raphael; Birney, Ewan; Kaprio, Jaakko; Penninx, Brenda W; Boomsma, Dorret I; van Duijn, Cornelia; Raitakari, Olli; Jarvelin, Marjo-Riitta; Zwart, John-Anker; Cherkas, Lynn; Strachan, David P; Kubisch, Christian; Ferrari, Michel D; van den Maagdenberg, Arn M J M; Dichgans, Martin; Wessman, Maija; Smith, George Davey; Stefansson, Kari; Daly, Mark J; Nyholt, Dale R; Chasman, Daniel; Palotie, Aarno

    2013-08-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P<5×10(-8)). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.

  10. Genome-wide association links candidate genes to resistance to Plum Pox Virus in apricot (Prunus armeniaca).

    PubMed

    Mariette, Stéphanie; Wong Jun Tai, Fabienne; Roch, Guillaume; Barre, Aurélien; Chague, Aurélie; Decroocq, Stéphane; Groppi, Alexis; Laizet, Yec'han; Lambert, Patrick; Tricon, David; Nikolski, Macha; Audergon, Jean-Marc; Abbott, Albert G; Decroocq, Véronique

    2016-01-01

    In fruit tree species, many important traits have been characterized genetically by using single-family descent mapping in progenies segregating for the traits. However, most mapped loci have not been sufficiently resolved to the individual genes due to insufficient progeny sizes for high resolution mapping and the previous lack of whole-genome sequence resources of the study species. To address this problem for Plum Pox Virus (PPV) candidate resistance gene identification in Prunus species, we implemented a genome-wide association (GWA) approach in apricot. This study exploited the broad genetic diversity of the apricot (Prunus armeniaca) germplasm containing resistance to PPV, next-generation sequence-based genotyping, and the high-quality peach (Prunus persica) genome reference sequence for single nucleotide polymorphism (SNP) identification. The results of this GWA study validated previously reported PPV resistance quantitative trait loci (QTL) intervals, highlighted other potential resistance loci, and resolved each to a limited set of candidate genes for further study. This work substantiates the association genetics approach for resolution of QTL to candidate genes in apricot and suggests that this approach could simplify identification of other candidate genes for other marked trait intervals in this germplasm. © 2015 INRA, UMR 1332 BFP New Phytologist © 2015 New Phytologist Trust.

  11. Quantitative Trait Loci Mapping of the Mouse Plasma Proteome (pQTL)

    PubMed Central

    Holdt, Lesca M.; von Delft, Annette; Nicolaou, Alexandros; Baumann, Sven; Kostrzewa, Markus; Thiery, Joachim; Teupser, Daniel

    2013-01-01

    A current challenge in the era of genome-wide studies is to determine the responsible genes and mechanisms underlying newly identified loci. Screening of the plasma proteome by high-throughput mass spectrometry (MALDI-TOF MS) is considered a promising approach for identification of metabolic and disease processes. Therefore, plasma proteome screening might be particularly useful for identifying responsible genes when combined with analysis of variation in the genome. Here, we describe a proteomic quantitative trait locus (pQTL) study of plasma proteome screens in an F2 intercross of 455 mice mapped with 177 genetic markers across the genome. A total of 69 of 176 peptides revealed significant LOD scores (≥5.35) demonstrating strong genetic regulation of distinct components of the plasma proteome. Analyses were confirmed by mechanistic studies and MALDI-TOF/TOF, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the two strongest pQTLs: A pQTL for mass-to-charge ratio (m/z) 3494 (LOD 24.9, D11Mit151) was identified as the N-terminal 35 amino acids of hemoglobin subunit A (Hba) and caused by genetic variation in Hba. Another pQTL for m/z 8713 (LOD 36.4; D1Mit111) was caused by variation in apolipoprotein A2 (Apoa2) and cosegregated with HDL cholesterol. Taken together, we show that genome-wide plasma proteome profiling in combination with genome-wide genetic screening aids in the identification of causal genetic variants affecting abundance of plasma proteins. PMID:23172855

  12. Mapping quantitative trait loci for fear-like behaviors in mice.

    PubMed

    Gershenfeld, H K; Paul, S M

    1997-11-15

    Two mouse models developed for screening anxiolytic drugs were selected for genetic analysis, namely "wall-seeking" tendency in an open field ("thigmotaxis") and the light-to-dark transition (LD) paradigm, a conflict test. These tests measure differences in naturalistic tendencies of mice to explore a novel environment and to avoid a bright light or the center of an open field. In an F2 intercross of two strains of mice (A/J and C57BL/6J) that differ markedly in these behaviors, we estimated a broad sense heritability ranging from 0.3 to 0.59. With this intercross (n = 518), we have mapped several quantitative trait loci (QTL) for these behaviors by performing a genome-wide search. A significant QTL on chromosome 10 (near D10Mit237; LOD of 9.3) that affects LD behavior was identified, and suggestive QTL (LOD > 2.8) were mapped to chromosomes 6, 15, 19, and X. For center time behaviors, QTL were identified on chromosome 1 (LOD of 7.7 and 4.0 for the initial 5-min epoch and the first trial average of the next two 5-min epochs, respectively), and suggestive QTL (LOD > 2.8) were mapped to chromosomes 6 and 14. These QTL individually explain from 2.3 to 8.4% of the phenotypic variance. Collectively, the multiple independent QTL explain from 3.5 to 26.5% of the F2 population's phenotypic variance, depending on the trait. The complexity and heterogeneity of the genetic factors underlying these fear-like behaviors are illustrated by the lack of shared QTL between paradigms and by mapping different QTL for repeated trials of behavior. The identification of QTL affecting individual differences in fear-like behavior may lead to the identification of new gene products and pathways that modulate behavior, providing targets for rational drug design.

  13. Fifteen years of quantitative trait loci studies in fish: challenges and future directions.

    PubMed

    Ashton, David T; Ritchie, Peter A; Wellenreuther, Maren

    2017-03-01

    Understanding the genetic basis of phenotypic variation is a major challenge in biology. Here, we systematically evaluate 146 quantitative trait loci (QTL) studies on teleost fish over the last 15 years to investigate (i) temporal trends and (ii) factors affecting QTL detection and fine-mapping. The number of fish QTL studies per year increased over the review period and identified a cumulative number of 3632 putative QTLs. Most studies used linkage-based mapping approaches and were conducted on nonmodel species with limited genomic resources. A gradual and moderate increase in the size of the mapping population and a sharp increase in marker density from 2011 onwards were observed; however, the number of QTLs and variance explained by QTLs changed only minimally over the review period. Based on these findings, we discuss the causative factors and outline how larger sample sizes, phenomics, comparative genomics, epigenetics and software development could improve both the quantity and quality of QTLs in future genotype-phenotype studies. Given that the technical limitations on DNA sequencing have mostly been overcome in recent years, a renewed focus on these and other study design factors will likely lead to significant improvements in QTL studies in the future. © 2016 John Wiley & Sons Ltd.

  14. Carboxylesterase-mediated insecticide resistance: Quantitative increase induces broader metabolic resistance than qualitative change.

    PubMed

    Cui, Feng; Li, Mei-Xia; Chang, Hai-Jing; Mao, Yun; Zhang, Han-Ying; Lu, Li-Xia; Yan, Shuai-Guo; Lang, Ming-Lin; Liu, Li; Qiao, Chuan-Ling

    2015-06-01

    Carboxylesterases are mainly involved in the mediation of metabolic resistance of many insects to organophosphate (OP) insecticides. Carboxylesterases underwent two divergent evolutionary events: (1) quantitative mechanism characterized by the overproduction of carboxylesterase protein; and (2) qualitative mechanism caused by changes in enzymatic properties because of mutation from glycine/alanine to aspartate at the 151 site (G/A151D) or from tryptophan to leucine at the 271 site (W271L), following the numbering of Drosophila melanogaster AChE. Qualitative mechanism has been observed in few species. However, whether this carboxylesterase mutation mechanism is prevalent in insects remains unclear. In this study, wild-type, G/A151D and W271L mutant carboxylesterases from Culex pipiens and Aphis gossypii were subjected to germline transformation and then transferred to D. melanogaster. These germlines were ubiquitously expressed as induced by tub-Gal4. In carboxylesterase activity assay, the introduced mutant carboxylesterase did not enhance the overall carboxylesterase activity of flies. This result indicated that G/A151D or W271L mutation disrupted the original activities of the enzyme. Less than 1.5-fold OP resistance was only observed in flies expressing A. gossypii mutant carboxylesterases compared with those expressing A. gossypii wild-type carboxylesterase. However, transgenic flies universally showed low resistance to OP insecticides compared with non-transgenic flies. The flies expressing A. gossypii W271L mutant esterase exhibited 1.5-fold resistance to deltamethrin, a pyrethroid insecticide compared with non-transgenic flies. The present transgenic Drosophila system potentially showed that a quantitative increase in carboxylesterases induced broader resistance of insects to insecticides than a qualitative change. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci

    PubMed Central

    2013-01-01

    Background Cucumber is an important vegetable crop that is susceptible to many pathogens, but no disease resistance (R) genes have been cloned. The availability of whole genome sequences provides an excellent opportunity for systematic identification and characterization of the nucleotide binding and leucine-rich repeat (NB-LRR) type R gene homolog (RGH) sequences in the genome. Cucumber has a very narrow genetic base making it difficult to construct high-density genetic maps. Development of a consensus map by synthesizing information from multiple segregating populations is a method of choice to increase marker density. As such, the objectives of the present study were to identify and characterize NB-LRR type RGHs, and to develop a high-density, integrated cucumber genetic-physical map anchored with RGH loci. Results From the Gy14 draft genome, 70 NB-containing RGHs were identified and characterized. Most RGHs were in clusters with uneven distribution across seven chromosomes. In silico analysis indicated that all 70 RGHs had EST support for gene expression. Phylogenetic analysis classified 58 RGHs into two clades: CNL and TNL. Comparative analysis revealed high-degree sequence homology and synteny in chromosomal locations of these RGH members between the cucumber and melon genomes. Fifty-four molecular markers were developed to delimit 67 of the 70 RGHs, which were integrated into a genetic map through linkage analysis. A 1,681-locus cucumber consensus map including 10 gene loci and spanning 730.0 cM in seven linkage groups was developed by integrating three component maps with a bin-mapping strategy. Physically, 308 scaffolds with 193.2 Mbp total DNA sequences were anchored onto this consensus map that covered 52.6% of the 367 Mbp cucumber genome. Conclusions Cucumber contains relatively few NB-LRR RGHs that are clustered and unevenly distributed in the genome. All RGHs seem to be transcribed and shared significant sequence homology and synteny with the melon

  16. QTL mapping of genome regions controlling temephos resistance in larvae of the mosquito Aedes aegypti.

    PubMed

    Reyes-Solis, Guadalupe Del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C

    2014-10-01

    The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome.

  17. QTL Mapping of Genome Regions Controlling Temephos Resistance in Larvae of the Mosquito Aedes aegypti

    PubMed Central

    Reyes-Solis, Guadalupe del Carmen; Saavedra-Rodriguez, Karla; Suarez, Adriana Flores; Black, William C.

    2014-01-01

    Introduction The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations. Methodology/Principal Findings Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México. Conclusions/Significance Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome. PMID:25330200

  18. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma.

    PubMed

    Law, Matthew H; Bishop, D Timothy; Lee, Jeffrey E; Brossard, Myriam; Martin, Nicholas G; Moses, Eric K; Song, Fengju; Barrett, Jennifer H; Kumar, Rajiv; Easton, Douglas F; Pharoah, Paul D P; Swerdlow, Anthony J; Kypreou, Katerina P; Taylor, John C; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A; Andresen, Per A; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M; Dębniak, Tadeusz; Duffy, David L; Elder, David E; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M; Goldstein, Alisa M; Gruis, Nelleke A; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A; Chen, Wei V; Landi, Maria Teresa; Lang, Julie; Lathrop, G Mark; Lubiński, Jan; Mackie, Rona M; Mann, Graham J; Molven, Anders; Montgomery, Grant W; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A; Radford-Smith, Graham L; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C; Craig, Jamie E; Schadendorf, Dirk; Simms, Lisa A; Burdon, Kathryn P; Nyholt, Dale R; Pooley, Karen A; Orr, Nick; Stratigos, Alexander J; Cust, Anne E; Ward, Sarah V; Hayward, Nicholas K; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M; Bishop, Julia A Newton; Demenais, Florence; Amos, Christopher I; MacGregor, Stuart; Iles, Mark M

    2015-09-01

    Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5 × 10(-8)), as did 2 previously reported but unreplicated loci and all 13 established loci. Newly associated SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes in the associated regions, including one involved in telomere biology.

  19. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma

    PubMed Central

    Law, Matthew H.; Bishop, D. Timothy; Martin, Nicholas G.; Moses, Eric K.; Song, Fengju; Barrett, Jennifer H.; Kumar, Rajiv; Easton, Douglas F.; Pharoah, Paul D. P.; Swerdlow, Anthony J.; Kypreou, Katerina P.; Taylor, John C.; Harland, Mark; Randerson-Moor, Juliette; Akslen, Lars A.; Andresen, Per A.; Avril, Marie-Françoise; Azizi, Esther; Scarrà, Giovanna Bianchi; Brown, Kevin M.; Dębniak, Tadeusz; Duffy, David L.; Elder, David E.; Fang, Shenying; Friedman, Eitan; Galan, Pilar; Ghiorzo, Paola; Gillanders, Elizabeth M.; Goldstein, Alisa M.; Gruis, Nelleke A.; Hansson, Johan; Helsing, Per; Hočevar, Marko; Höiom, Veronica; Ingvar, Christian; Kanetsky, Peter A.; Chen, Wei V.; Landi, Maria Teresa; Lang, Julie; Lathrop, G. Mark; Lubiński, Jan; Mackie, Rona M.; Mann, Graham J.; Molven, Anders; Montgomery, Grant W.; Novaković, Srdjan; Olsson, Håkan; Puig, Susana; Puig-Butille, Joan Anton; Qureshi, Abrar A.; Radford-Smith, Graham L.; van der Stoep, Nienke; van Doorn, Remco; Whiteman, David C.; Craig, Jamie E.; Schadendorf, Dirk; Simms, Lisa A.; Burdon, Kathryn P.; Nyholt, Dale R.; Pooley, Karen A.; Orr, Nick; Stratigos, Alexander J.; Cust, Anne E.; Ward, Sarah V.; Hayward, Nicholas K.; Han, Jiali; Schulze, Hans-Joachim; Dunning, Alison M.; Bishop, Julia A. Newton; MacGregor, Stuart; Iles, Mark M.

    2015-01-01

    Thirteen common susceptibility loci have been reproducibly associated with cutaneous malignant melanoma (CMM). We report the results of an international 2-stage meta-analysis of CMM genome-wide association studies (GWAS). This meta-analysis combines 11 GWAS (5 previously unpublished) and a further three stage 2 data sets, totaling 15,990 CMM cases and 26,409 controls. Five loci not previously associated with CMM risk reached genome-wide significance (P < 5×10–8), as did two previously-reported but un-replicated loci and all thirteen established loci. Novel SNPs fall within putative melanocyte regulatory elements, and bioinformatic and expression quantitative trait locus (eQTL) data highlight candidate genes including one involved in telomere biology. PMID:26237428

  20. Expansion of the Knockdown Resistance Frequency Map for Human Head Lice (Phthiraptera: Pediculidae) in the United States Using Quantitative Sequencing.

    PubMed

    Gellatly, Kyle J; Krim, Sarah; Palenchar, Daniel J; Shepherd, Katie; Yoon, Kyong Sup; Rhodes, Christopher J; Lee, Si Hyeock; Marshall Clark, J

    2016-05-01

    Pediculosis is a prevalent parasitic infestation of humans, which is increasing due, in part, to the selection of lice resistant to either the pyrethrins or pyrethroid insecticides by the knockdown resistance (kdr) mechanism. To determine the extent and magnitude of the kdr-type mutations responsible for this resistance, lice were collected from 138 collection sites in 48 U.S. states from 22 July 2013 to 11 May 2015 and analyzed by quantitative sequencing. Previously published data were used for comparisons of the changes in the frequency of the kdr-type mutations over time. Mean percent resistance allele frequency (mean % RAF) values across the three mutation loci were determined from each collection site. The overall mean % RAF (±SD) for all analyzed lice was 98.3 ± 10%. 132/138 sites (95.6%) had a mean % RAF of 100%, five sites (3.7%) had intermediate values, and only a single site had no mutations (0.0%). Forty-two states (88%) had a mean % RAF of 100%. The frequencies of kdr-type mutations did not differ regardless of the human population size that the lice were collected from, indicating a uniformly high level of resistant alleles. The loss of efficacy of the Nix formulation (Prestige Brand, Tarrytown, NY) from 1998 to 2013 was correlated to the increase in kdr-type mutations. These data provide a plausible reason for the decrease in the effectiveness of permethrin in the Nix formulation, which is the parallel increase of kdr-type mutations in lice over time. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  1. Combining quantitative trait loci analysis with physiological models to predict genotype-specific transpiration rates.

    PubMed

    Reuning, Gretchen A; Bauerle, William L; Mullen, Jack L; McKay, John K

    2015-04-01

    Transpiration is controlled by evaporative demand and stomatal conductance (gs ), and there can be substantial genetic variation in gs . A key parameter in empirical models of transpiration is minimum stomatal conductance (g0 ), a trait that can be measured and has a large effect on gs and transpiration. In Arabidopsis thaliana, g0 exhibits both environmental and genetic variation, and quantitative trait loci (QTL) have been mapped. We used this information to create a genetically parameterized empirical model to predict transpiration of genotypes. For the parental lines, this worked well. However, in a recombinant inbred population, the predictions proved less accurate. When based only upon their genotype at a single g0 QTL, genotypes were less distinct than our model predicted. Follow-up experiments indicated that both genotype by environment interaction and a polygenic inheritance complicate the application of genetic effects into physiological models. The use of ecophysiological or 'crop' models for predicting transpiration of novel genetic lines will benefit from incorporating further knowledge of the genetic control and degree of independence of core traits/parameters underlying gs variation. © 2014 John Wiley & Sons Ltd.

  2. Quantitative trait locus linkage analysis in a large Amish pedigree identifies novel candidate loci for erythrocyte traits

    PubMed Central

    Hinckley, Jesse D; Abbott, Diana; Burns, Trudy L; Heiman, Meadow; Shapiro, Amy D; Wang, Kai; Di Paola, Jorge

    2013-01-01

    We characterized a large Amish pedigree and, in 384 pedigree members, analyzed the genetic variance components with covariate screen as well as genome-wide quantitative trait locus (QTL) linkage analysis of red blood cell count (RBC), hemoglobin (HB), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), red cell distribution width (RDW), platelet count (PLT), and white blood cell count (WBC) using SOLAR. Age and gender were found to be significant covariates in many CBC traits. We obtained significant heritability estimates for RBC, MCV, MCH, MCHC, RDW, PLT, and WBC. We report four candidate loci with Logarithm of the odds (LOD) scores above 2.0: 6q25 (MCH), 9q33 (WBC), 10p12 (RDW), and 20q13 (MCV). We also report eleven candidate loci with LOD scores between 1.5 and <2.0. Bivariate linkage analysis of MCV and MCH on chromosome 20 resulted in a higher maximum LOD score of 3.14. Linkage signals on chromosomes 4q28, 6p22, 6q25, and 20q13 are concomitant with previously reported QTL. All other linkage signals reported herein represent novel evidence of candidate QTL. Interestingly rs1800562, the most common causal variant of hereditary hemochromatosis in HFE (6p22) was associated with MCH and MCHC in this family. Linkage studies like the one presented here will allow investigators to focus the search for rare variants amidst the noise encountered in the large amounts of data generated by whole-genome sequencing. PMID:24058921

  3. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum

    PubMed Central

    Mallick, Prashant K.; Sutton, Patrick L.; Singh, Ruchi; Singh, Om P.; Dash, Aditya P.; Singh, Ashok K.; Carlton, Jane M.; Bhasin, Virendra K.

    2013-01-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite’s acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST = 0.253, P<0.001) suggests a long period of isolation or a possibility of different origin between them. A pattern of significant isolation by distance was observed in low transmission areas (r = 0.49, P=0.003, N = 83, Mantel test). An unanticipated pattern of spread of hitchhiking suggests genetic structure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation

  4. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum.

    PubMed

    Mallick, Prashant K; Sutton, Patrick L; Singh, Ruchi; Singh, Om P; Dash, Aditya P; Singh, Ashok K; Carlton, Jane M; Bhasin, Virendra K

    2013-10-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite's acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST=0.253, P<0.001) suggests a long period of isolation or a possibility of different origin between them. A pattern of significant isolation by distance was observed in low transmission areas (r=0.49, P=0.003, N=83, Mantel test). An unanticipated pattern of spread of hitchhiking suggests genetic structure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation at both

  5. Quantitative Trait Loci for Yield and Yield-Related Traits in Spring Barley Populations Derived from Crosses between European and Syrian Cultivars

    PubMed Central

    Krystkowiak, Karolina; Sawikowska, Aneta; Frohmberg, Wojciech; Górny, Andrzej; Kędziora, Andrzej; Jankowiak, Janusz; Józefczyk, Damian; Karg, Grzegorz; Andrusiak, Joanna; Krajewski, Paweł; Szarejko, Iwona; Surma, Maria; Adamski, Tadeusz; Guzy-Wróbelska, Justyna; Kuczyńska, Anetta

    2016-01-01

    In response to climatic changes, breeding programmes should be aimed at creating new cultivars with improved resistance to water scarcity. The objective of this study was to examine the yield potential of barley recombinant inbred lines (RILs) derived from three cross-combinations of European and Syrian spring cultivars, and to identify quantitative trait loci (QTLs) for yield-related traits in these populations. RILs were evaluated in field experiments over a period of three years (2011 to 2013) and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers; a genetic map for each population was constructed and then one consensus map was developed. Biological interpretation of identified QTLs was achieved by reference to Ensembl Plants barley gene space. Twelve regions in the genomes of studied RILs were distinguished after QTL analysis. Most of the QTLs were identified on the 2H chromosome, which was the hotspot region in all three populations. Syrian parental cultivars contributed alleles decreasing traits' values at majority of QTLs for grain weight, grain number, spike length and time to heading, and numerous alleles increasing stem length. The phenomic and molecular approaches distinguished the lines with an acceptable grain yield potential combining desirable features or alleles from their parents, that is, early heading from the Syrian breeding line (Cam/B1/CI08887//CI05761) and short plant stature from the European semidwarf cultivar (Maresi). PMID:27227880

  6. The development of a dense SNP-based consensus map and QTL detection for black spot resistance in five diploid rose populations [abstract

    USDA-ARS?s Scientific Manuscript database

    Black spot (BS) disease (Diplocarpon rosae (Lib.) Wolf) of rose is the most important leaf disease of garden roses in warm humid areas. Although the partial (horizontal) resistance to black spot has been shown to be moderately heritable, the responsible quantitative trait loci (QTL) remain unidentif...

  7. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat.

    PubMed

    Mao, Donghai; Yu, Li; Chen, Dazhou; Li, Lanying; Zhu, Yuxing; Xiao, Yeqing; Zhang, Dechun; Chen, Caiyan

    2015-07-01

    Dongxiang wild rice is phylogenetically close to temperate japonica and contains multiple cold resistance loci conferring its adaptation to high-latitude habitat. Understanding the nature of adaptation in wild populations will benefit crop breeding in the development of climate-resilient crop varieties. Dongxiang wild rice (DXWR), the northernmost common wild rice known, possesses a high degree of cold tolerance and can survive overwintering in its native habitat. However, to date, it is still unclear how DXWR evolved to cope with low-temperature environment, resulting in limited application of DXWR in rice breeding programs. In this study, we carried out both QTL mapping and phylogenetic analysis to discern the genetic mechanism underlying the strong cold resistance. Through a combination of interval mapping and single locus analysis in two genetic populations, at least 13 QTLs for seedling cold tolerance were identified in DXWR. A phylogenetic study using both genome-wide InDel markers and markers associated with cold tolerance loci reveals that DXWR belongs to the Or-III group, which is most closely related to cold-tolerant Japonica rice rather than to the Indica cultivars that are predominant in the habitat where DXWR grows. Our study paves the way toward an understanding of the nature of adaptation to a northern habitat in O. rufipogon. The QTLs identified in DXWR in this study will be useful for molecular breeding of cold-tolerant rice.

  8. A Genome-Wide Association Study of Resistance to Stripe Rust (Puccinia striiformis f. sp. tritici) in a Worldwide Collection of Hexaploid Spring Wheat (Triticum aestivum L.)

    PubMed Central

    Maccaferri, Marco; Zhang, Junli; Bulli, Peter; Abate, Zewdie; Chao, Shiaoman; Cantu, Dario; Bossolini, Eligio; Chen, Xianming; Pumphrey, Michael; Dubcovsky, Jorge

    2015-01-01

    New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease. PMID:25609748

  9. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.).

    PubMed

    Maccaferri, Marco; Zhang, Junli; Bulli, Peter; Abate, Zewdie; Chao, Shiaoman; Cantu, Dario; Bossolini, Eligio; Chen, Xianming; Pumphrey, Michael; Dubcovsky, Jorge

    2015-01-20

    New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease. Copyright © 2015 Maccaferri et al.

  10. Constructing high-density genetic maps for polypoid sugarcane (Saccharum spp.) and identifying quantitative trait loci controlling brown rust resistance

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum spp.) is an important economic crop for producing edible sugar and bioethanol. Brown rust had long been a major disease impacting sugarcane production world widely. Resistance resource and markers linked to the resistance are valuable tools for disease resistance improvement. An...

  11. Constructing high-density genetic maps for polyploid sugarcane (Saccharum spp.) and identifying quantitative trait loci controlling brown rust resistance

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum spp.) is an important economic crop for producing edible sugar and bioethanol. Brown rust had long been a major disease impacting sugarcane production world widely. Resistance resource and markers linked to the resistance are valuable tools for disease resistance improvement. An...

  12. Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula

    PubMed Central

    Kamphuis, Lars G.; Lichtenzveig, Judith; Peng, Kefan; Guo, Su-Min; Klingler, John P.

    2013-01-01

    Aphids cause significant yield losses in agricultural crops worldwide. Medicago truncatula, a model legume, cultivated pasture species in Australia and close relative of alfalfa (Medicago sativa), was used to study the defence response against Therioaphis trifolii f. maculate [spotted alfalfa aphid (SAA)]. Aphid performance and plant damage were compared among three accessions. A20 is highly susceptible, A17 has moderate resistance, and Jester is strongly resistant. Subsequent analyses using A17 and A20, reciprocal F1s and an A17×A20 recombinant inbred line (RIL) population revealed that this moderate resistance is phloem mediated and involves antibiosis and tolerance but not antixenosis. Electrical penetration graph analysis also identified a novel waveform termed extended potential drop, which occurred following SAA infestation of M. truncatula. Genetic dissection using the RIL population revealed three quantitative trait loci on chromosomes 3, 6, and 7 involved in distinct modes of aphid defence including antibiosis and tolerance. An antibiosis locus resides on linkage group 3 (LG3) and is derived from A17, whereas a plant tolerance and antibiosis locus resides on LG6 and is derived from A20, which exhibits strong temporary tolerance. The loci identified reside in regions harbouring classical resistance genes, and introgression of these loci in current medic cultivars may help provide durable resistance to SAA, while elucidation of their molecular mechanisms may provide valuable insight into other aphid–plant interactions. PMID:24058162

  13. Genome-wide Linkage Analysis for Identifying Quantitative Trait Loci Involved in the Regulation of Lipoprotein a (Lpa) Levels

    PubMed Central

    López, Sonia; Buil, Alfonso; Ordoñez, Jordi; Souto, Juan Carlos; Almasy, Laura; Lathrop, Mark; Blangero, John; Blanco-Vaca, Francisco; Fontcuberta, Jordi; Soria, José Manuel

    2009-01-01

    Lipoprotein Lp(a) levels are highly heritable and are associated with cardiovascular risk. We performed a genome-wide linkage analysis to delineate the genomic regions that influence the concentration of Lp(a) in families from the Genetic Analysis of Idiopathic Thrombophilia (GAIT) Project. Lp(a) levels were measured in 387 individuals belonging to 21 extended Spanish families. A total of 485 DNA microsatellite markers were genotyped to provide a 7.1 cM genetic map. A variance component linkage method was used to evaluate linkage and to detect quantitative trait loci (QTLs). The main QTL that showed strong evidence of linkage with Lp(a) levels was located at the structural gene for apo(a) on Chromosome 6 (LOD score=13.8). Interestingly, another QTL influencing Lp(a) concentration was located on Chromosome 2 with a LOD score of 2.01. This region contains several candidate genes. One of them is the tissue factor pathway inhibitor (TFPI), which has antithrombotic action and also has the ability to bind lipoproteins. However, quantitative trait association analyses performed with 12 SNPs in TFPI gene revealed no association with Lp(a) levels. Our study confirms previous results on the genetic basis of Lp(a) levels. In addition, we report a new QTL on Chromosome 2 involved in the quantitative variation of Lp(a). These data should serve as the basis for further detection of candidate genes and to elucidate the relationship between the concentration of Lp(a) and cardiovascular risk. PMID:18560444

  14. A search for imprinted quantitative trait loci (QTLs) for birth weight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandya, A.; Llewellyn, B.; Schieken, R.

    1994-09-01

    Previous studies have generally provided strong evidence that maternal effects are a much more important determinant of birth weight than the genes of the fetus. In the past, these findings have been interpreted as reflecting a genetically determined maternal constraint on fetal growth. However, the recognition that the expression of a gene can be influenced by its parental origin has provided an alternative explanation for apparent maternal effects. In the mouse, a growing number of imprinted genes have been identified which can profoundly influence birth weight or body size including IGF-1, IGF-2, and their respective receptor loci. To determine whethermore » any of the loci are QTLs for body size in man, we have used parental typing data to classify dizygotic twins according to their identity by descent (IBD) for polymorphic markers at or near the candidate loci. The contrast between the correlations of DZ pairs sharing both alleles IBD and no alleles IBD can provide evidence for a candidate gene effect while the contrast between twins sharing one maternal or one paternal allele IBD can provide evidence for any effect of imprinting that may exist at the locus. Finally, the inclusion of data on MZ twins in an overall analysis permits the resolution of the imprinting and marker gene effects from other sources of genetic and environmental variation. We have applied this model to birth weight data on 181 pairs of twins who were classified according to their allele sharing at the IGF-1 locus. In keeping with other observations, the data show no evidence that the IGF-1 locus is imprinted in man. Although our results are consistent with the possibility that this locus may account for 15-20% of the genetic variation, the apparent effect is not statistically significant. Partitioned twin analysis appears to be a useful method for detecting the effects of specific candidate gene on continuously distributed traits.« less

  15. Quantitative trait loci mapping for Gibberella ear rot resistance and associated agronomic traits using genotyping-by-sequencing in maize.

    PubMed

    Kebede, Aida Z; Woldemariam, Tsegaye; Reid, Lana M; Harris, Linda J

    2016-01-01

    Unique and co-localized chromosomal regions affecting Gibberella ear rot disease resistance and correlated agronomic traits were identified in maize. Dissecting the mechanisms underlying resistance to Gibberella ear rot (GER) disease in maize provides insight towards more informed breeding. To this goal, we evaluated 410 recombinant inbred lines (RIL) for GER resistance over three testing years using silk channel and kernel inoculation techniques. RILs were also evaluated for agronomic traits like days to silking, husk cover, and kernel drydown rate. The RILs showed significant genotypic differences for all traits with above average to high heritability estimates. Significant (P < 0.01) but weak genotypic correlations were observed between disease severity and agronomic traits, indicating the involvement of agronomic traits in disease resistance. Common QTLs were detected for GER resistance and kernel drydown rate, suggesting the existence of pleiotropic genes that could be exploited to improve both traits at the same time. The QTLs identified for silk and kernel resistance shared some common regions on chromosomes 1, 2, and 8 and also had some regions specific to each tissue on chromosomes 9 and 10. Thus, effective GER resistance breeding could be achieved by considering screening methods that allow exploitation of tissue-specific disease resistance mechanisms and include kernel drydown rate either in an index or as indirect selection criterion.

  16. Detection of a quantitative trait locus associated with resistance to infection with Trichuris suis in pigs.

    PubMed

    Skallerup, P; Thamsborg, S M; Jørgensen, C B; Mejer, H; Göring, H H H; Archibald, A L; Fredholm, M; Nejsum, P

    2015-06-15

    Whipworms (Trichuris spp.) infect a variety of hosts, including domestic animals and humans. Of considerable interest is the porcine whipworm, T. suis, which is particularly prevalent in outdoor production systems. High infection levels may cause growth retardation, anaemia and haemorrhagic diarrhoea. A significant proportion of the variation in Trichuris faecal egg count (FEC) has been attributed to the host's genetic make-up. The aim of the present study was to identify genetic loci associated with resistance to T. suis in pigs. We used single nucleotide polymorphism (SNP) markers to perform a whole-genome scan of an F1 resource population (n = 195) trickle-infected with T. suis. A measured genotype analysis revealed a putative quantitative trait locus (QTL) for T. suis FEC on chromosome 13 covering ∼ 4.5 Mbp, although none of the SNPs reached genome-wide significance. We tested the hypothesis that this region of SSC13 harboured genes with effects on T. suis burden by genotyping three SNPs within the putative QTL in unrelated pigs exposed to either experimental or natural T. suis infections and from which we had FEC (n = 113) or worm counts (n = 178). In these studies, two of the SNPs (rs55618716, ST) were associated with FEC (P < 0.01), thus confirming our initial findings. However, we did not find any of the SNPs to be associated with T. suis worm burden. In conclusion, our study demonstrates that genetic markers for resistance to T. suis as indicated by low FEC can be identified in pigs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Gene pyramiding enhances durable blast disease resistance in rice

    PubMed Central

    Fukuoka, Shuichi; Saka, Norikuni; Mizukami, Yuko; Koga, Hironori; Yamanouchi, Utako; Yoshioka, Yosuke; Hayashi, Nagao; Ebana, Kaworu; Mizobuchi, Ritsuko; Yano, Masahiro

    2015-01-01

    Effective control of blast, a devastating fungal disease of rice, would increase and stabilize worldwide food production. Resistance mediated by quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, is a promising alternative to less durable race-specific resistance for crop improvement, yet evidence that validates the impact of QTL combinations (pyramids) on the durability of plant disease resistance has been lacking. Here, we developed near-isogenic experimental lines representing all possible combinations of four QTL alleles from a durably resistant cultivar. These lines enabled us to evaluate the QTLs singly and in combination in a homogeneous genetic background. We present evidence that pyramiding QTL alleles, each controlling a different response to M. oryzae, confers strong, non-race-specific, environmentally stable resistance to blast disease. Our results suggest that this robust defence system provides durable resistance, thus avoiding an evolutionary “arms race” between a crop and its pathogen. PMID:25586962

  18. Gene pyramiding enhances durable blast disease resistance in rice.

    PubMed

    Fukuoka, Shuichi; Saka, Norikuni; Mizukami, Yuko; Koga, Hironori; Yamanouchi, Utako; Yoshioka, Yosuke; Hayashi, Nagao; Ebana, Kaworu; Mizobuchi, Ritsuko; Yano, Masahiro

    2015-01-14

    Effective control of blast, a devastating fungal disease of rice, would increase and stabilize worldwide food production. Resistance mediated by quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, is a promising alternative to less durable race-specific resistance for crop improvement, yet evidence that validates the impact of QTL combinations (pyramids) on the durability of plant disease resistance has been lacking. Here, we developed near-isogenic experimental lines representing all possible combinations of four QTL alleles from a durably resistant cultivar. These lines enabled us to evaluate the QTLs singly and in combination in a homogeneous genetic background. We present evidence that pyramiding QTL alleles, each controlling a different response to M. oryzae, confers strong, non-race-specific, environmentally stable resistance to blast disease. Our results suggest that this robust defence system provides durable resistance, thus avoiding an evolutionary "arms race" between a crop and its pathogen.

  19. Comparative quantitative trait loci for silique length and seed weight in Brassica napus.

    PubMed

    Fu, Ying; Wei, Dayong; Dong, Hongli; He, Yajun; Cui, Yixin; Mei, Jiaqin; Wan, Huafang; Li, Jiana; Snowdon, Rod; Friedt, Wolfgang; Li, Xiaorong; Qian, Wei

    2015-09-23

    Silique length (SL) and seed weight (SW) are important yield-associated traits in rapeseed (Brassica napus). Although many quantitative trait loci (QTL) for SL and SW have been identified in B. napus, comparative analysis for those QTL is seldom performed. In the present study, 20 and 21 QTL for SL and SW were identified in doubled haploid (DH) and DH-derived reconstructed F2 populations in rapeseed, explaining 55.1-74.3% and 24.4-62.9% of the phenotypic variation across three years, respectively. Of which, 17 QTL with partially or completely overlapped confidence interval on chromosome A09, were homologous with two overlapped QTL on chromosome C08 by aligning QTL confidence intervals with the reference genomes of Brassica crops. By high density selective genotyping of DH lines with extreme phenotypes, using a Brassica single-nucleotide polymorphism (SNP) array, the QTL on chromosome A09 was narrowed, and aligned into 1.14-Mb region from 30.84 to 31.98 Mb on chromosome R09 of B. rapa and 1.05-Mb region from 27.21 to 28.26 Mb on chromosome A09 of B. napus. The alignment of QTL with Brassica reference genomes revealed homologous QTL on A09 and C08 for SL. The narrowed QTL region provides clues for gene cloning and breeding cultivars by marker-assisted selection.

  20. Quantitative trait loci for abdominal fat and BMI in Hispanic-Americans and African-Americans: the IRAS Family study.

    PubMed

    Norris, J M; Langefeld, C D; Scherzinger, A L; Rich, S S; Bookman, E; Beck, S R; Saad, M F; Haffner, S M; Bergman, R N; Bowden, D W; Wagenknecht, L E

    2005-01-01

    To conduct linkage analysis for body mass index (BMI, kg/m2), waist-to-hip ratio (WHR), visceral adipose tissue mass (VAT, cm2) and subcutaneous adipose tissue mass (SAT, cm2) using a whole genome scan. Cross-sectional family study. African-American families from Los Angeles (AA, n=21 extended pedigrees) and Hispanic-American families (HA) from San Antonio, TX (HA-SA, n=33 extended pedigrees) and San Luis Valley, CO (HA-SLV, n=12 extended pedigrees), totaling 1049 individuals in the Insulin Resistance and Atherosclerosis (IRAS) Family Study. VAT and SAT were measured using a computed tomography scan obtained at the fourth and fifth lumbar vertebrae. All phenotypes were adjusted for age, gender, and study center. VAT, SAT, and WHR were analyzed both unadjusted and adjusted for BMI. Significant linkage to BMI was found at D3S2387 (LOD=3.67) in African-Americans, and at D17S1290 in Hispanic-Americans (LOD=2.76). BMI-adjusted WHR was linked to 12q13-21 (D12S297 (LOD=2.67) and D12S1052 (LOD=2.60)) in Hispanic-Americans. The peak LOD score for BMI-adjusted VAT was found at D11S2006 (2.36) in Hispanic families from San Antonio. BMI-adjusted SAT was linked to D5S820 in Hispanic families (LOD=2.64). Evidence supporting linkage of WHR at D11S2006, VAT at D17S1290, and SAT at D1S1609, D3S2387, and D6S1056 was dependent on BMI, such that the LOD scores became nonsignificant after adjustment of these phenotypes for BMI. Our findings both replicate previous linkage regions and suggest novel regions in the genome that may harbor quantitative trait locis contributing to variation in measures of adiposity.

  1. Genome-Wide Search for Quantitative Trait Loci Controlling Important Plant and Flower Traits in Petunia Using an Interspecific Recombinant Inbred Population of Petunia axillaris and Petunia exserta.

    PubMed

    Cao, Zhe; Guo, Yufang; Yang, Qian; He, Yanhong; Fetouh, Mohammed; Warner, Ryan M; Deng, Zhanao

    2018-05-15

    A major bottleneck in plant breeding has been the much limited genetic base and much reduced genetic diversity in domesticated, cultivated germplasm. Identification and utilization of favorable gene loci or alleles from wild or progenitor species can serve as an effective approach to increasing genetic diversity and breaking this bottleneck in plant breeding. This study was conducted to identify quantitative trait loci (QTL) in wild or progenitor petunia species that can be used to improve important horticultural traits in garden petunia. An F 7 recombinant inbred population derived between Petunia axillaris and P. exserta was phenotyped for plant height, plant spread, plant size, flower counts, flower diameter, flower length, and days to anthesis, in Florida in two consecutive years. Transgressive segregation was observed for all seven traits in both years. The broad-sense heritability estimates for the traits ranged from 0.20 (days to anthesis) to 0.62 (flower length). A genome-wide genetic linkage map consisting 368 single nucleotide polymorphism bins and extending over 277 cM was searched to identify QTL for these traits. Nineteen QTL were identified and localized to five linkage groups. Eleven of the loci were identified consistently in both years; several loci explained up to 34.0% and 24.1% of the phenotypic variance for flower length and flower diameter, respectively. Multiple loci controlling different traits are co-localized in four intervals in four linkage groups. These intervals contain desirable alleles that can be introgressed into commercial petunia germplasm to expand the genetic base and improve plant performance and flower characteristics in petunia. Copyright © 2018, G3: Genes, Genomes, Genetics.

  2. A generalised individual-based algorithm for modelling the evolution of quantitative herbicide resistance in arable weed populations.

    PubMed

    Liu, Chun; Bridges, Melissa E; Kaundun, Shiv S; Glasgow, Les; Owen, Micheal Dk; Neve, Paul

    2017-02-01

    Simulation models are useful tools for predicting and comparing the risk of herbicide resistance in weed populations under different management strategies. Most existing models assume a monogenic mechanism governing herbicide resistance evolution. However, growing evidence suggests that herbicide resistance is often inherited in a polygenic or quantitative fashion. Therefore, we constructed a generalised modelling framework to simulate the evolution of quantitative herbicide resistance in summer annual weeds. Real-field management parameters based on Amaranthus tuberculatus (Moq.) Sauer (syn. rudis) control with glyphosate and mesotrione in Midwestern US maize-soybean agroecosystems demonstrated that the model can represent evolved herbicide resistance in realistic timescales. Sensitivity analyses showed that genetic and management parameters were impactful on the rate of quantitative herbicide resistance evolution, whilst biological parameters such as emergence and seed bank mortality were less important. The simulation model provides a robust and widely applicable framework for predicting the evolution of quantitative herbicide resistance in summer annual weed populations. The sensitivity analyses identified weed characteristics that would favour herbicide resistance evolution, including high annual fecundity, large resistance phenotypic variance and pre-existing herbicide resistance. Implications for herbicide resistance management and potential use of the model are discussed. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Estimation of loci involved in non-shattering of seeds in early rice domestication.

    PubMed

    Ishikawa, Ryo; Nishimura, Akinori; Htun, Than Myint; Nishioka, Ryo; Oka, Yumi; Tsujimura, Yuki; Inoue, Chizuru; Ishii, Takashige

    2017-04-01

    Rice (Oryza sativa L.) is widely cultivated around the world and is known to be domesticated from its wild form, O. rufipogon. A loss of seed shattering is one of the most obvious phenotypic changes selected for during rice domestication. Previously, three seed-shattering loci, qSH1, sh4, and qSH3 were reported to be involved in non-shattering of seeds of Japonica-type cultivated rice, O. sativa cv. Nipponbare. In this study, we focused on non-shattering characteristics of O. sativa Indica cv. IR36 having functional allele at qSH1. We produced backcross recombinant inbred lines having chromosomal segments from IR36 in the genetic background of wild rice, O. rufipogon W630. Histological and quantitative trait loci analyses of abscission layer formation were conducted. In the analysis of quantitative trait loci, a strong peak was observed close to sh4. We, nevertheless, found that some lines showed complete abscission layer formation despite carrying the IR36 allele at sh4, implying that non-shattering of seeds of IR36 could be regulated by the combination of mutations at sh4 and other seed-shattering loci. We also genotyped qSH3, a recently identified seed-shattering locus. Lines that have the IR36 alleles at sh4 and qSH3 showed inhibition of abscission layer formation but the degree of seed shattering was different from that of IR36. On the basis of these results, we estimated that non-shattering of seeds in early rice domestication involved mutations in at least three loci, and these genetic materials produced in this study may help to identify novel seed-shattering loci.

  4. Genome-Wide Association Studies of Anthracnose and Angular Leaf Spot Resistance in Common Bean (Phaseolus vulgaris L.)

    PubMed Central

    Perseguini, Juliana Morini Küpper Cardoso; Oblessuc, Paula Rodrigues; Rosa, João Ricardo Bachega Feijó; Gomes, Kleber Alves; Chiorato, Alisson Fernando; Carbonell, Sérgio Augusto Morais; Garcia, Antonio Augusto Franco; Vianello, Rosana Pereira; Benchimol-Reis, Luciana Lasry

    2016-01-01

    The common bean (Phaseolus vulgaris L.) is the world’s most important legume for human consumption. Anthracnose (ANT; Colletotrichum lindemuthianum) and angular leaf spot (ALS; Pseudocercospora griseola) are complex diseases that cause major yield losses in common bean. Depending on the cultivar and environmental conditions, anthracnose and angular leaf spot infections can reduce crop yield drastically. This study aimed to estimate linkage disequilibrium levels and identify quantitative resistance loci (QRL) controlling resistance to both ANT and ALS diseases of 180 accessions of common bean using genome-wide association analysis. A randomized complete block design with four replicates was performed for the ANT and ALS experiments, with four plants per genotype in each replicate. Association mapping analyses were performed for ANT and ALS using a mixed linear model approach implemented in TASSEL. A total of 17 and 11 significant statistically associations involving SSRs were detected for ANT and ALS resistance loci, respectively. Using SNPs, 21 and 17 significant statistically associations were obtained for ANT and angular ALS, respectively, providing more associations with this marker. The SSR-IAC167 and PvM95 markers, both located on chromosome Pv03, and the SNP scaffold00021_89379, were associated with both diseases. The other markers were distributed across the entire common bean genome, with chromosomes Pv03 and Pv08 showing the greatest number of loci associated with ANT resistance. The chromosome Pv04 was the most saturated one, with six markers associated with ALS resistance. The telomeric region of this chromosome showed four markers located between approximately 2.5 Mb and 4.4 Mb. Our results demonstrate the great potential of genome-wide association studies to identify QRLs related to ANT and ALS in common bean. The results indicate a quantitative and complex inheritance pattern for both diseases in common bean. Our findings will contribute to more

  5. Genome-Wide Association Studies of Anthracnose and Angular Leaf Spot Resistance in Common Bean (Phaseolus vulgaris L.).

    PubMed

    Perseguini, Juliana Morini Küpper Cardoso; Oblessuc, Paula Rodrigues; Rosa, João Ricardo Bachega Feijó; Gomes, Kleber Alves; Chiorato, Alisson Fernando; Carbonell, Sérgio Augusto Morais; Garcia, Antonio Augusto Franco; Vianello, Rosana Pereira; Benchimol-Reis, Luciana Lasry

    2016-01-01

    The common bean (Phaseolus vulgaris L.) is the world's most important legume for human consumption. Anthracnose (ANT; Colletotrichum lindemuthianum) and angular leaf spot (ALS; Pseudocercospora griseola) are complex diseases that cause major yield losses in common bean. Depending on the cultivar and environmental conditions, anthracnose and angular leaf spot infections can reduce crop yield drastically. This study aimed to estimate linkage disequilibrium levels and identify quantitative resistance loci (QRL) controlling resistance to both ANT and ALS diseases of 180 accessions of common bean using genome-wide association analysis. A randomized complete block design with four replicates was performed for the ANT and ALS experiments, with four plants per genotype in each replicate. Association mapping analyses were performed for ANT and ALS using a mixed linear model approach implemented in TASSEL. A total of 17 and 11 significant statistically associations involving SSRs were detected for ANT and ALS resistance loci, respectively. Using SNPs, 21 and 17 significant statistically associations were obtained for ANT and angular ALS, respectively, providing more associations with this marker. The SSR-IAC167 and PvM95 markers, both located on chromosome Pv03, and the SNP scaffold00021_89379, were associated with both diseases. The other markers were distributed across the entire common bean genome, with chromosomes Pv03 and Pv08 showing the greatest number of loci associated with ANT resistance. The chromosome Pv04 was the most saturated one, with six markers associated with ALS resistance. The telomeric region of this chromosome showed four markers located between approximately 2.5 Mb and 4.4 Mb. Our results demonstrate the great potential of genome-wide association studies to identify QRLs related to ANT and ALS in common bean. The results indicate a quantitative and complex inheritance pattern for both diseases in common bean. Our findings will contribute to more

  6. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar 'Stephens' in multi-environment trials.

    PubMed

    Dolores Vazquez, M; James Peterson, C; Riera-Lizarazu, Oscar; Chen, Xianming; Heesacker, Adam; Ammar, Karim; Crossa, Jose; Mundt, Christopher C

    2012-01-01

    The wheat (Triticum aestivum L.) cultivar 'Stephens' has been grown commercially in the USA Pacific Northwest for 30 years. The durable resistance of 'Stephens' to stripe rust (Puccinia striiformis f. sp. tritici) was believed to be due to a combination of seedling and adult plant resistance genes. Multilocation field trials, diversity array technology (DArT), and simple sequence repeat (SSR) markers were used to identify quantitative trait loci (QTL) for resistance. Recombinant inbred lines were assessed for stripe rust response in eight locations/years, five in 2008 and three in 2009. The data from Mt. Vernon, WA, differed from all other environments, and composite interval mapping (CIM) identified three QTL, QYrst.orr-1AL, QYrst.orr-4BS, and QYrpl.orr-6AL, which accounted for 12, 11, and 6% of the phenotypic variance, respectively. CIM across the remaining six environments identified four main QTL. Two QTL, QYrst.orr-2BS.2 and QYrst.orr-7AS, were detected in five of six environments and explained 11 and 15% of the phenotypic variance, respectively. Two other QTL, QYrst.orr-2AS and QYrpl.orr-4BL, were detected across four and three of six environments, and explained 19 and 9% of the phenotypic variance, respectively. The susceptible parent 'Platte' contributed QYrpl.orr-4BL and QYrpl.orr-6AL, with the remaining QTL originating from 'Stephens'. For each environment, additional minor QTL were detected, each accounting for 6-10% of the phenotypic variance. Different QTL with moderate effects were identified in both 'Stephens' and 'Platte'. Significant QTL × environment interactions were evident, suggesting that specificity to plant stage, pathogen genotype, and/or temperature was important.

  7. Fine mapping of regulatory loci for mammalian gene expression using radiation hybrids

    PubMed Central

    Park, Christopher C; Ahn, Sangtae; Bloom, Joshua S; Lin, Andy; Wang, Richard T; Wu, Tongtong; Sekar, Aswin; Khan, Arshad H; Farr, Christine J; Lusis, Aldons J; Leahy, Richard M; Lange, Kenneth; Smith, Desmond J

    2010-01-01

    We mapped regulatory loci for nearly all protein-coding genes in mammals using comparative genomic hybridization and expression array measurements from a panel of mouse–hamster radiation hybrid cell lines. The large number of breaks in the mouse chromosomes and the dense genotyping of the panel allowed extremely sharp mapping of loci. As the regulatory loci result from extra gene dosage, we call them copy number expression quantitative trait loci, or ceQTLs. The −2log10P support interval for the ceQTLs was <150 kb, containing an average of <2–3 genes. We identified 29,769 trans ceQTLs with −log10P > 4, including 13 hotspots each regulating >100 genes in trans. Further, this work identifies 2,761 trans ceQTLs harboring no known genes, and provides evidence for a mode of gene expression autoregulation specific to the X chromosome. PMID:18362883

  8. Association Mapping of Quantitative Disease Resistance in a Natural Population of Loblolly Pine (Pinus taeda L.)

    PubMed Central

    Quesada, Tania; Gopal, Vikneswaran; Cumbie, W. Patrick; Eckert, Andrew J.; Wegrzyn, Jill L.; Neale, David B.; Goldfarb, Barry; Huber, Dudley A.; Casella, George; Davis, John M.

    2010-01-01

    Genetic resistance to disease incited by necrotrophic pathogens is not well understood in plants. Whereas resistance is often quantitative, there is limited information on the genes that underpin quantitative variation in disease resistance. We used a population genomic approach to identify genes in loblolly pine (Pinus taeda) that are associated with resistance to pitch canker, a disease incited by the necrotrophic pathogen Fusarium circinatum. A set of 498 largely unrelated, clonally propagated genotypes were inoculated with F. circinatum microconidia and lesion length, a measure of disease resistance, data were collected 4, 8, and 12 weeks after inoculation. Best linear unbiased prediction was used to adjust for imbalance in number of observations and to identify highly susceptible and highly resistant genotypes (“tails”). The tails were reinoculated to validate the results of the full population screen. Significant associations were detected in 10 single nucleotide polymorphisms (SNPs) (out of 3938 tested). As hypothesized for genes involved in quantitative resistance, the 10 SNPs had small effects and proposed roles in basal resistance, direct defense, and signal transduction. We also discovered associated genes with unknown function, which would have remained undetected in a candidate gene approach constrained by annotation for disease resistance or stress response. PMID:20628037

  9. Genome-Wide Association Mapping Reveals Novel QTL for Seedling Leaf Rust Resistance in a Worldwide Collection of Winter Wheat.

    PubMed

    Li, Genqiao; Xu, Xiangyang; Bai, Guihua; Carver, Brett F; Hunger, Robert; Bonman, J Michael; Kolmer, James; Dong, Hongxu

    2016-11-01

    Leaf rust of wheat ( L.) is a major disease that causes significant yield losses worldwide. The short-lived nature of leaf rust resistance () genes necessitates a continuous search for novel sources of resistance. We performed a genome-wide association study (GWAS) on a panel of 1596 wheat accessions. The panel was evaluated for leaf rust reaction by testing with a bulk of Eriks. () isolates collected from multiple fields of Oklahoma in 2013 and two predominant races in the fields of Oklahoma in 2015. The panel was genotyped with a set of 5011 single-nucleotide polymorphism (SNP) markers. A total of 14 quantitative trait loci (QTL) for leaf rust resistance were identified at a false discovery rate (FDR) of 0.01 using the mixed linear model (MLM). Of these, eight QTL reside in the vicinity of known genes or QTL, and more studies are needed to determine their relationship with known loci. is a new QTL to bread wheat but is close to a locus previously identified in durum wheat [ L. subsp. (Desf.) Husn.]. The other five QTL, including , , , , and , are likely novel loci for leaf rust resistance. The uneven distribution of the 14 QTL in the six subpopulations of the panel suggests that wheat breeders can enhance leaf rust resistance by selectively introgressing some of these QTL into their breeding materials. In addition, another 31 QTL were significantly associated with leaf rust resistance at a FDR of 0.05. Copyright © 2016 Crop Science Society of America.

  10. Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans

    PubMed Central

    Sugimoto, Takuma; Kato, Masayasu; Yoshida, Shinya; Matsumoto, Isao; Kobayashi, Tamotsu; Kaga, Akito; Hajika, Makita; Yamamoto, Ryo; Watanabe, Kazuhiko; Aino, Masataka; Matoh, Toru; Walker, David R.; Biggs, Alan R.; Ishimoto, Masao

    2012-01-01

    Phytophthora stem and root rot, caused by Phytophthora sojae, is one of the most destructive diseases of soybean [Glycine max (L.) Merr.], and the incidence of this disease has been increasing in several soybean-producing areas around the world. This presents serious limitations for soybean production, with yield losses from 4 to 100%. The most effective method to reduce damage would be to grow Phytophthora-resistant soybean cultivars, and two types of host resistance have been described. Race-specific resistance conditioned by single dominant Rps (“resistance to Phytophthora sojae”) genes and quantitatively inherited partial resistance conferred by multiple genes could both provide protection from the pathogen. Molecular markers linked to Rps genes or quantitative trait loci (QTLs) underlying partial resistance have been identified on several molecular linkage groups corresponding to chromosomes. These markers can be used to screen for Phytophthora-resistant plants rapidly and efficiently, and to combine multiple resistance genes in the same background. This paper reviews what is currently known about pathogenic races of P. sojae in the USA and Japan, selection of sources of Rps genes or minor genes providing partial resistance, and the current state and future scope of breeding Phytophthora-resistant soybean cultivars. PMID:23136490

  11. Impacts of using inbred animals in studies for detection of quantitative trait loci.

    PubMed

    Freyer, G; Vukasinovic, N; Cassell, B

    2009-02-01

    Effects of utilizing inbred and noninbred family structures in experiments for detection of quantitative trait loci (QTL) were compared in this simulation study. Simulations were based on a general pedigree design originating from 2 unrelated sires. A variance component approach of mapping QTL was applied to simulated data that reflected common family structures from dairy populations. Five different family structures were considered: FS0 without inbreeding, FS1 with an inbred sire from an aunt-nephew mating, FS2 with an inbred sire originating from a half-sib mating, FS3 and FS4 based on FS2 but containing an increased number of offspring of the inbred sire (FS3), and another extremely inbred sire with its final offspring (FS4). Sixty replicates each of the 5 family structures in 2 simulation scenarios each were analyzed to provide a praxis-like situation of QTL analysis. The largest proportion of QTL position estimates within the correct interval of 3 cM, best test statistic profiles and the smallest average bias were obtained from the pedigrees described by FS4 and FS2. The approach does not depend on the kind and number of genetic markers. Inbreeding is not a recommended practice for commercial dairy production because of possible inbreeding depression, but inbred animals and their offspring that already exist could be advantageous for QTL mapping, because of reduced genetic variance in inbred parents.

  12. The identification of candidate rice genes that confer resistance to the brown planthopper (Nilaparvata lugens) through representational difference analysis.

    PubMed

    Park, Dong-Soo; Lee, Sang-Kyu; Lee, Jong-Hee; Song, Min-Young; Song, Song-Yi; Kwak, Do-Yeon; Yeo, Un-Sang; Jeon, Nam-Soo; Park, Soo-Kwon; Yi, Gihwan; Song, You-Chun; Nam, Min-Hee; Ku, Yeon-Chung; Jeon, Jong-Seong

    2007-08-01

    The development of rice varieties (Oryza sativa L.) that are resistant to the brown planthopper (BPH; Nilaparvata lugens Stål) is an important objective in current breeding programs. In this study, we generated 132 BC(5)F(5) near-isogenic rice lines (NILs) by five backcrosses of Samgangbyeo, a BPH resistant indica variety carrying the Bph1 locus, with Nagdongbyeo, a BPH susceptible japonica variety. To identify genes that confer BPH resistance, we employed representational difference analysis (RDA) to detect transcripts that were exclusively expressed in one of our BPH resistant NIL, SNBC61, during insect feeding. The chromosomal mapping of the RDA clones that we subsequently isolated revealed that they are located in close proximity either to known quantitative trait loci or to an introgressed SSR marker from the BPH resistant donor parent Samgangbyeo. Genomic DNA gel-blot analysis further revealed that loci of all RDA clones in SNBC61 correspond to the alleles of Samgangbyeo. Most of the RDA clones were found to be exclusively expressed in SNBC61 and could be assigned to functional groups involved in plant defense. These RDA clones therefore represent candidate defense genes for BPH resistance.

  13. Durable resistance: A key to sustainable management of pathogens and pests

    PubMed Central

    Mundt, Christopher C.

    2014-01-01

    This review briefly addresses what has been learned about resistance durability in recent years, as well as the questions that still remain. Molecular analyses of major gene interactions have potential to contribute to both breeding for resistance and improved understanding of virulence impacts on pathogen fitness. Though the molecular basis of quantitative resistance is less clear substantial evidence has accumulated for the relative simplicity of inheritance. There is increasing evidence for specific interactions with quantitative resistance, though implications o this for durability are still unknown. Mechanisms by which resistance gene pyramids contribute to durability remain elusive, though ideas have been generated for identifying gene combinations that may be more durable. Though cultivar mixtures and related approaches have been used successfully, identifying the diseases and conditions that are most conducive to the use of diversity has been surprisingly difficult, and the selective influence of diversity on pathogen populations is complex. The importance of considering resistance durability in a landscape context has received increasing emphasis and is an important future area of research. Experimental systems are being developed to test resistance gene deployment strategies that previously could be addressed only with logic and observation. The value of molecular markers for identifying and pyramiding major genes is quite clear, but the successful use of quantitative trait loci (QTL) for marker-assisted selection of quantitative resistance will depend greatly on the degree to which the identified QTL are expressed in different genetic backgrounds. Transgenic approaches will likely provide opportunities for control of some recalcitrant pathogens, though issues of durability for transgenes are likely to be no different than other genes for resistance. The need for high quality phenotypic analysis and screening methodologies is a priority, and field

  14. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea) Using QTL-seq Reveals Markers for Marker-Assisted Selection.

    PubMed

    Clevenger, Josh; Chu, Ye; Chavarro, Carolina; Botton, Stephanie; Culbreath, Albert; Isleib, Thomas G; Holbrook, C C; Ozias-Akins, Peggy

    2018-01-01

    Late leaf spot (LLS; Cercosporidium personatum ) is a major fungal disease of cultivated peanut ( Arachis hypogaea ). A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL) using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools. Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping.

  15. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea) Using QTL-seq Reveals Markers for Marker-Assisted Selection

    PubMed Central

    Clevenger, Josh; Chu, Ye; Chavarro, Carolina; Botton, Stephanie; Culbreath, Albert; Isleib, Thomas G.; Holbrook, C. C.; Ozias-Akins, Peggy

    2018-01-01

    Late leaf spot (LLS; Cercosporidium personatum) is a major fungal disease of cultivated peanut (Arachis hypogaea). A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL) using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools. Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping. PMID:29459876

  16. Hydroxycinnamate Synthesis and Association with Mediterranean Corn Borer Resistance.

    PubMed

    Santiago, Rogelio; Malvar, Rosa Ana; Barros-Rios, Jaime; Samayoa, Luis Fernando; Butrón, Ana

    2016-01-27

    Previous results suggest a relationship between maize hydroxycinnamate concentration in the pith tissues and resistance to stem tunneling by Mediterranean corn borer (MCB, Sesamia nonagrioides Lef.) larvae. This study performs a more precise experiment, mapping an F2 derived from the cross between two inbreds with contrasting levels for hydroxycinnamates EP125 × PB130. We aimed to co-localize genomic regions involved in hydroxycinnamate synthesis and resistance to MCB and to highlight the particular route for each hydroxycinnamate component in relation to the better known phenylpropanoid pathway. Seven quantitative trait loci (QTLs) for p-coumarate, two QTLs for ferulate, and seven QTLs for total diferulates explained 81.7, 26.9, and 57.8% of the genotypic variance, respectively. In relation to borer resistance, alleles for increased hydroxycinnamate content (affecting one or more hydroxycinnamate compounds) could be associated with favorable effects on stem resistance to MCB, particularly the putative role of p-coumarate in borer resistance.

  17. Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Genotypes That Are Susceptible, Resistant, and Hypersensitive to Reniform Nematode (Rotylenchulus reniformis).

    PubMed

    Li, Ruijuan; Rashotte, Aaron M; Singh, Narendra K; Lawrence, Kathy S; Weaver, David B; Locy, Robert D

    2015-01-01

    Reniform nematode is a semi-endoparasitic nematode species causing significant yield loss in numerous crops, including cotton (Gossypium hirsutum L.). An RNA-sequencing analysis was conducted to measure transcript abundance in reniform nematode susceptible (DP90 & SG747), resistant (BARBREN-713), and hypersensitive (LONREN-1) genotypes of cotton (Gossypium hirsutum L.) with and without reniform nematode infestation. Over 90 million trimmed high quality reads were assembled into 84,711 and 80, 353 transcripts using the G. arboreum and the G. raimondii genomes as references. Many transcripts were significantly differentially expressed between the three different genotypes both prior to and during nematode pathogenesis, including transcripts corresponding to the gene ontology categories of cell wall, hormone metabolism and signaling, redox reactions, secondary metabolism, transcriptional regulation, stress responses, and signaling. Further analysis revealed that a number of these differentially expressed transcripts mapped to the G. raimondii and/or the G. arboreum genomes within 1 megabase of quantitative trait loci that had previously been linked to reniform nematode resistance. Several resistance genes encoding proteins known to be strongly linked to pathogen perception and resistance, including LRR-like and NBS-LRR domain-containing proteins, were among the differentially expressed transcripts mapping near these quantitative trait loci. Further investigation is required to confirm a role for these transcripts in reniform nematode susceptibility, hypersensitivity, and/or resistance. This study presents the first systemic investigation of reniform nematode resistance-associated genes using different genotypes of cotton. The candidate reniform nematode resistance-associated genes identified in this study can serve as the basis for further functional analysis and aid in further development of reniform a nematode resistant cotton germplasm.

  18. Quantitative phenotyping of X-disease resistance in chokecherry using real-time PCR.

    PubMed

    Huang, Danqiong; Walla, James A; Dai, Wenhao

    2014-03-01

    A quantitative real-time SYBR Green PCR (qPCR) assay has been developed to detect and quantify X-disease phytoplasmas in chokecherry. An X-disease phytoplasma-specific and high sensitivity primer pair was designed based on the 16S rRNA gene sequence of X-disease phytoplasmas. This primer pair was specific to the 16SrIII group (X-disease) phytoplasmas. The qPCR method can quantify phytoplasmas from a DNA mix (a mix of both chokecherry and X-disease phytoplasma DNA) at as low as 0.001 ng, 10-fold lower than conventional PCR using the same primer pair. A significant correlation between the copy number of phytoplasmas and visual phenotypic rating scores of X-disease resistance in chokecherry plants was observed. Disease resistant chokecherries had a significantly lower titer of X-disease phytoplasmas than susceptible plants. This suggests that the qPCR assay provides a more objective tool to phenotype phytoplasma disease severity, particularly for early evaluation of host resistance; therefore, this method will facilitate quantitative phenotyping of disease resistance and has great potential in enhancing plant breeding. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Modularization and epistatic hierarchy determine homeostatic actions of multiple blood pressure quantitative trait loci.

    PubMed

    Chauvet, Cristina; Crespo, Kimberley; Ménard, Annie; Roy, Julie; Deng, Alan Y

    2013-11-15

    Hypertension, the most frequently diagnosed clinical condition world-wide, predisposes individuals to morbidity and mortality, yet its underlying pathological etiologies are poorly understood. So far, a large number of quantitative trait loci (QTLs) have been identified in both humans and animal models, but how they function together in determining overall blood pressure (BP) in physiological settings is unknown. Here, we systematically and comprehensively performed pair-wise comparisons of individual QTLs to create a global picture of their functionality in an inbred rat model. Rather than each of numerous QTLs contributing to infinitesimal BP increments, a modularized pattern arises: two epistatic 'blocks' constitute basic functional 'units' for nearly all QTLs, designated as epistatic module 1 (EM1) and EM2. This modularization dictates the magnitude and scope of BP effects. Any EM1 member can contribute to BP additively to that of EM2, but not to those of the same module. Members of each EM display epistatic hierarchy, which seems to reflect a related functional pathway. Rat homologues of 11 human BP QTLs belong to either EM1 or EM2. Unique insights emerge into the novel genetic mechanism and hierarchy determining BP in the Dahl salt-sensitive SS/Jr (DSS) rat model that implicate a portion of human QTLs. Elucidating the pathways underlying EM1 and EM2 may reveal the genetic regulation of BP.

  20. Mapping four quantitative trait loci associated with type I Fusarium head blight resistance in winter wheat ‘INW0412’

    USDA-ARS?s Scientific Manuscript database

    Fusarium head blight (FHB) has become one of the most damaging wheat diseases in humid and semi-humid regions around the world. Breeding efforts have focused on resistance mechanisms that limit the spread once a spike is infected, or type II resistance. But resistance to initial infection, type I re...

  1. Genotyping-by-sequencing markers facilitate the identification of quantitative trait loci controlling resistance to Penicillium expansum in Malus sieversii

    USDA-ARS?s Scientific Manuscript database

    Blue mold caused by Penicillium expansum is the most important postharvest disease of apple worldwide and results in significant financial losses. There are no defined sources of resistance to blue mold in domesticated apple; however, resistance has been described in wild Malus sieversii accessions...

  2. Confirming a major QTL and finding additional loci responsible for field resistance to brown spot (Bipolaris oryzae) in rice.

    PubMed

    Sato, Hiroyuki; Matsumoto, Kengo; Ota, Chihiro; Yamakawa, Tomohiro; Kihara, Junichi; Mizobuchi, Ritsuko

    2015-03-01

    Brown spot is a devastating rice disease. Quantitative resistance has been observed in local varieties (e.g., 'Tadukan'), but no economically useful resistant variety has been bred. Using quantitative trait locus (QTL) analysis of recombinant inbred lines (RILs) from 'Tadukan' (resistant) × 'Hinohikari' (susceptible), we previously found three QTLs (qBS2, qBS9, and qBS11) that conferred resistance in seedlings in a greenhouse. To confirm their effect, the parents and later generations of RILs were transplanted into paddy fields where brown spot severely occurred. Three new resistance QTLs (qBSfR1, qBSfR4, and qBSfR11) were detected on chromosomes 1, 4, and 11, respectively. The 'Tadukan' alleles at qBSfR1 and qBSfR11 and the 'Hinohikari' allele at qBSfR4 increased resistance. The major QTL qBSfR11 coincided with qBS11 from the previous study, whereas qBSfR1 and qBSfR4 were new but neither qBS2 nor qBS9 were detected. To verify the qBSfR1 and qBSfR11 'Tadukan' resistance alleles, near-isogenic lines (NILs) with one or both QTLs in a susceptible background ('Koshihikari') were evaluated under field conditions. NILs with qBSfR11 acquired significant field resistance; those with qBSfR1 did not. This confirms the effectiveness of qBSfR11. Genetic markers flanking qBSfR11 will be powerful tools for marker-assisted selection to improve brown spot resistance.

  3. Restriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severson, D.W.; Thathy, V.; Mori, A.

    Susceptibility of the mosquito Aedes aegypti to the malarial parasite Plasmodium gallinaceum was investigated as a quantitative trait using restriction fragment length polymorphisms (RFLP). Two F{sub 2} populations of mosquitoes were independently prepared from pairwise matings between a highly susceptible and a refractory strain of A. aegypti. RFLP were tested for association with oocyst development on the mosquito midgut. Two putative quantitative trait loci (QTL) were identified that significantly affect susceptibility. One QTL, pgs [2,LF98], is located on chromosome 2 and accounted for 65 and 49% of the observed phenotypic variance in the two populations, respectively. A second QTL, pgs[3,MalI],more » is located on chromosome 3 and accounted for 14 and 10% of the observed phenotypic variance in the two populations, respectively. Both QTL exhibit a partial dominance effect on susceptibility, wherein the dominance effect is derived from the refractory parent. No indication of epistasis between these QTL was detected. Evidence suggests that either a tightly linked cluster of independent genes or a single locus affecting susceptibility to various mosquito-borne parasites and pathogens has evolved near the LF98 locus; in addition to P. gallinaceum susceptibility, this general genome region has previously been implicated in susceptibility to the filaria nematode Brugia malayi and the yellow fever virus. 35 refs., 2 figs., 3 tabs.« less

  4. Relationship of the Interaction Between Two Quantitative Trait Loci with γ-Globin Expression in β-Thalassemia Intermedia Patients.

    PubMed

    NickAria, Shiva; Haghpanah, Sezaneh; Ramzi, Mani; Karimi, Mehran

    2018-05-10

    Globin switching is a significant factor on blood hemoglobin (Hb) level but its molecular mechanisms have not yet been identified, however, several quantitative trait loci (QTL) and polymorphisms involved regions on chromosomes 2p, 6q, 8q and X account for variation in the γ-globin expression level. We studied the effect of interaction between a region on intron six of the TOX gene, chromosome 8q (chr8q) and XmnI locus on the γ-globin promoter, chr11p on γ-globin expression in 150 β-thalassemia intermedia (β-TI) patients, evaluated by statistical interaction analysis. Our results showed a significant interaction between one QTL on intron six of the TOX gene (rs9693712) and XmnI locus that effect γ-globin expression. Interchromosomal interaction mediates through transcriptional machanisms to preserve true genome architectural features, chromosomes localization and DNA bending. This interaction can be a part of the unknown molecular mechanism of globin switching and regulation of gene expression.

  5. Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express

    USDA-ARS?s Scientific Manuscript database

    Wheat cultivar Express has durable, high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici). To elucidate the genetic basis of the resistance, Express was crossed with ‘Avocet Susceptible’ (AVS). A mapping population of 146 F5 recombinant inbred lines (R...

  6. Genome-Wide Association Mapping of Acid Soil Resistance in Barley (Hordeum vulgare L.)

    PubMed Central

    Zhou, Gaofeng; Broughton, Sue; Zhang, Xiao-Qi; Ma, Yanling; Zhou, Meixue; Li, Chengdao

    2016-01-01

    Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) have been used to detect QTLs underlying complex traits in major crops. In this study, we collected 218 barley (Hordeum vulgare L.) lines including wild barley and cultivated barley from China, Canada, Australia, and Europe. A total of 408 polymorphic markers were used for population structure and LD analysis. GWAS for acid soil resistance were performed on the population using a general linkage model (GLM) and a mixed linkage model (MLM), respectively. A total of 22 QTLs (quantitative trait loci) were detected with the GLM and MLM analyses. Two QTLs, close to markers bPb-1959 (133.1 cM) and bPb-8013 (86.7 cM), localized on chromosome 1H and 4H respectively, were consistently detected in two different trials with both the GLM and MLM analyses. Furthermore, bPb-8013, the closest marker to the major Al3+ resistance gene HvAACT1 in barley, was identified to be QTL5. The QTLs could be used in marker-assisted selection to identify and pyramid different loci for improved acid soil resistance in barley. PMID:27064793

  7. Identification, Replication, and Functional Fine-Mapping of Expression Quantitative Trait Loci in Primary Human Liver Tissue

    PubMed Central

    Stanaway, Ian B.; Gamazon, Eric R.; Smith, Joshua D.; Mirkov, Snezana; Ramirez, Jacqueline; Liu, Wanqing; Lin, Yvonne S.; Moloney, Cliona; Aldred, Shelly Force; Trinklein, Nathan D.; Schuetz, Erin; Nickerson, Deborah A.; Thummel, Ken E.; Rieder, Mark J.; Rettie, Allan E.; Ratain, Mark J.; Cox, Nancy J.; Brown, Christopher D.

    2011-01-01

    The discovery of expression quantitative trait loci (“eQTLs”) can help to unravel genetic contributions to complex traits. We identified genetic determinants of human liver gene expression variation using two independent collections of primary tissue profiled with Agilent (n = 206) and Illumina (n = 60) expression arrays and Illumina SNP genotyping (550K), and we also incorporated data from a published study (n = 266). We found that ∼30% of SNP-expression correlations in one study failed to replicate in either of the others, even at thresholds yielding high reproducibility in simulations, and we quantified numerous factors affecting reproducibility. Our data suggest that drug exposure, clinical descriptors, and unknown factors associated with tissue ascertainment and analysis have substantial effects on gene expression and that controlling for hidden confounding variables significantly increases replication rate. Furthermore, we found that reproducible eQTL SNPs were heavily enriched near gene starts and ends, and subsequently resequenced the promoters and 3′UTRs for 14 genes and tested the identified haplotypes using luciferase assays. For three genes, significant haplotype-specific in vitro functional differences correlated directly with expression levels, suggesting that many bona fide eQTLs result from functional variants that can be mechanistically isolated in a high-throughput fashion. Finally, given our study design, we were able to discover and validate hundreds of liver eQTLs. Many of these relate directly to complex traits for which liver-specific analyses are likely to be relevant, and we identified dozens of potential connections with disease-associated loci. These included previously characterized eQTL contributors to diabetes, drug response, and lipid levels, and they suggest novel candidates such as a role for NOD2 expression in leprosy risk and C2orf43 in prostate cancer. In general, the work presented here will be valuable for

  8. Bile Stress Response in Listeria monocytogenes LO28: Adaptation, Cross-Protection, and Identification of Genetic Loci Involved in Bile Resistance

    PubMed Central

    Begley, Máire; Gahan, Cormac G. M.; Hill, Colin

    2002-01-01

    Bile is one of many barriers that Listeria monocytogenes must overcome in the human gastrointestinal tract in order to infect and cause disease. We demonstrated that stationary-phase cultures of L. monocytogenes LO28 were able to tolerate concentrations of bovine, porcine, and human bile and bile acids well in excess of those encountered in vivo. Strain LO28 was relatively bile resistant compared with other clinical isolates of L. monocytogenes, as well as with Listeria innocua, Salmonella enterica serovar Typhimurium LT2, and Lactobacillus sakei. While exponential-phase L. monocytogenes LO28 cells were exquisitely sensitive to unconjugated bile acids, prior adaptation to sublethal levels of bile acids or heterologous stresses, such as acid, heat, salt, or sodium dodecyl sulfate (SDS), significantly enhanced bile resistance. This adaptive response was independent of protein synthesis, and in the cases of bile and SDS adaptation, occurred in seconds. In order to identify genetic loci involved in the bile tolerance phenotype of L. monocytogenes LO28, transposon (Tn917) and plasmid (pORI19) integration banks were screened for bile-sensitive mutants. The disrupted genes included a homologue of the capA locus required for capsule formation in Bacillus anthracis; a gene encoding the transcriptional regulator ZurR; a homologue of an Escherichia coli gene, lytB, involved in isoprenoid biosynthesis; a gene encoding a homologue of the Bacillus subtilis membrane protein YxiO; and a gene encoding an amino acid transporter with a putative role in pH homeostasis, gadE. Interestingly, all of the identified loci play putative roles in maintenance of the cell envelope or in stress responses. PMID:12450822

  9. Response of rice to Al stress and identification of quantitative trait Loci for Al tolerance.

    PubMed

    Ma, Jian Feng; Shen, Renfang; Zhao, Zhuqing; Wissuwa, Matthias; Takeuchi, Yoshinobu; Ebitani, Takeshi; Yano, Masahiro

    2002-06-01

    Rice (Oryza sativa L.) shows the highest tolerance to Al toxicity among small-grain cereal crops, however, the mechanisms and genetics responsible for its high Al tolerance are not yet well understood. We investigated the response of rice to Al stress using the japonica variety Koshihikari in comparison to the indica variety Kasalath. Koshihikari showed higher tolerance at various Al concentrations than Kasalath. The Al content in root apexes was less in Koshihikari than in Kasalath, suggesting that exclusion mechanisms rather than internal detoxification are acting in Koshihikari. Al-induced secretion of citrate was observed in both Koshihikari and Kasalath, however, it is unlikely to be the mechanism for Al tolerance because there was no significant difference in the amount of citrate secreted between Koshihikari and Kasalath. Quantitative trait loci (QTLs) for Al tolerance were mapped in a population of 183 backcross inbred lines (BILs) derived from a cross of Koshihikari and Kasalath. Three putative QTLs controlling Al tolerance were detected on chromosomes 1, 2 and 6. Kasalath QTL alleles on chromosome 1 and 2 reduced Al tolerance but increased tolerance on chromosome 6. The three QTLs explained about 27% of the phenotypic variation in Al tolerance. The existence of QTLs for Al tolerance was confirmed in substitution lines for corresponding chromosomal segments.

  10. New genetic loci link adipose and insulin biology to body fat distribution.

    PubMed

    Shungin, Dmitry; Winkler, Thomas W; Croteau-Chonka, Damien C; Ferreira, Teresa; Locke, Adam E; Mägi, Reedik; Strawbridge, Rona J; Pers, Tune H; Fischer, Krista; Justice, Anne E; Workalemahu, Tsegaselassie; Wu, Joseph M W; Buchkovich, Martin L; Heard-Costa, Nancy L; Roman, Tamara S; Drong, Alexander W; Song, Ci; Gustafsson, Stefan; Day, Felix R; Esko, Tonu; Fall, Tove; Kutalik, Zoltán; Luan, Jian'an; Randall, Joshua C; Scherag, André; Vedantam, Sailaja; Wood, Andrew R; Chen, Jin; Fehrmann, Rudolf; Karjalainen, Juha; Kahali, Bratati; Liu, Ching-Ti; Schmidt, Ellen M; Absher, Devin; Amin, Najaf; Anderson, Denise; Beekman, Marian; Bragg-Gresham, Jennifer L; Buyske, Steven; Demirkan, Ayse; Ehret, Georg B; Feitosa, Mary F; Goel, Anuj; Jackson, Anne U; Johnson, Toby; Kleber, Marcus E; Kristiansson, Kati; Mangino, Massimo; Leach, Irene Mateo; Medina-Gomez, Carolina; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Peters, Marjolein J; Prokopenko, Inga; Stančáková, Alena; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Van Vliet-Ostaptchouk, Jana V; Yengo, Loïc; Zhang, Weihua; Albrecht, Eva; Ärnlöv, Johan; Arscott, Gillian M; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blüher, Matthias; Böhringer, Stefan; Bonnet, Fabrice; Böttcher, Yvonne; Bruinenberg, Marcel; Carba, Delia B; Caspersen, Ida H; Clarke, Robert; Daw, E Warwick; Deelen, Joris; Deelman, Ewa; Delgado, Graciela; Doney, Alex Sf; Eklund, Niina; Erdos, Michael R; Estrada, Karol; Eury, Elodie; Friedrich, Nele; Garcia, Melissa E; Giedraitis, Vilmantas; Gigante, Bruna; Go, Alan S; Golay, Alain; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grewal, Jagvir; Groves, Christopher J; Haller, Toomas; Hallmans, Goran; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heikkilä, Kauko; Herzig, Karl-Heinz; Helmer, Quinta; Hillege, Hans L; Holmen, Oddgeir; Hunt, Steven C; Isaacs, Aaron; Ittermann, Till; James, Alan L; Johansson, Ingegerd; Juliusdottir, Thorhildur; Kalafati, Ioanna-Panagiota; Kinnunen, Leena; Koenig, Wolfgang; Kooner, Ishminder K; Kratzer, Wolfgang; Lamina, Claudia; Leander, Karin; Lee, Nanette R; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Mach, François; Magnusson, Patrik Ke; Mahajan, Anubha; McArdle, Wendy L; Menni, Cristina; Merger, Sigrun; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Moayyeri, Alireza; Monda, Keri L; Mooijaart, Simon P; Mühleisen, Thomas W; Mulas, Antonella; Müller, Gabriele; Müller-Nurasyid, Martina; Nagaraja, Ramaiah; Nalls, Michael A; Narisu, Narisu; Glorioso, Nicola; Nolte, Ilja M; Olden, Matthias; Rayner, Nigel W; Renstrom, Frida; Ried, Janina S; Robertson, Neil R; Rose, Lynda M; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Sennblad, Bengt; Seufferlein, Thomas; Sitlani, Colleen M; Smith, Albert Vernon; Stirrups, Kathleen; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Swift, Amy J; Syvänen, Ann-Christine; Tayo, Bamidele O; Thorand, Barbara; Thorleifsson, Gudmar; Tomaschitz, Andreas; Troffa, Chiara; van Oort, Floor Va; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Wennauer, Roman; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Zhang, Qunyuan; Zhao, Jing Hua; Brennan, Eoin P; Choi, Murim; Eriksson, Per; Folkersen, Lasse; Franco-Cereceda, Anders; Gharavi, Ali G; Hedman, Åsa K; Hivert, Marie-France; Huang, Jinyan; Kanoni, Stavroula; Karpe, Fredrik; Keildson, Sarah; Kiryluk, Krzysztof; Liang, Liming; Lifton, Richard P; Ma, Baoshan; McKnight, Amy J; McPherson, Ruth; Metspalu, Andres; Min, Josine L; Moffatt, Miriam F; Montgomery, Grant W; Murabito, Joanne M; Nicholson, George; Nyholt, Dale R; Olsson, Christian; Perry, John Rb; Reinmaa, Eva; Salem, Rany M; Sandholm, Niina; Schadt, Eric E; Scott, Robert A; Stolk, Lisette; Vallejo, Edgar E; Westra, Harm-Jan; Zondervan, Krina T; Amouyel, Philippe; Arveiler, Dominique; Bakker, Stephan Jl; Beilby, John; Bergman, Richard N; Blangero, John; Brown, Morris J; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chines, Peter S; Claudi-Boehm, Simone; Collins, Francis S; Crawford, Dana C; Danesh, John; de Faire, Ulf; de Geus, Eco Jc; Dörr, Marcus; Erbel, Raimund; Eriksson, Johan G; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Forouhi, Nita G; Forrester, Terrence; Franco, Oscar H; Gansevoort, Ron T; Gieger, Christian; Gudnason, Vilmundur; Haiman, Christopher A; Harris, Tamara B; Hattersley, Andrew T; Heliövaara, Markku; Hicks, Andrew A; Hingorani, Aroon D; Hoffmann, Wolfgang; Hofman, Albert; Homuth, Georg; Humphries, Steve E; Hyppönen, Elina; Illig, Thomas; Jarvelin, Marjo-Riitta; Johansen, Berit; Jousilahti, Pekka; Jula, Antti M; Kaprio, Jaakko; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Lakka, Timo A; Langenberg, Claudia; Le Marchand, Loic; Lehtimäki, Terho; Lyssenko, Valeriya; Männistö, Satu; Marette, André; Matise, Tara C; McKenzie, Colin A; McKnight, Barbara; Musk, Arthur W; Möhlenkamp, Stefan; Morris, Andrew D; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J; Ong, Ken K; Palmer, Lyle J; Penninx, Brenda W; Peters, Annette; Pramstaller, Peter P; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rice, Treva K; Ridker, Paul M; Ritchie, Marylyn D; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J; Saramies, Jouko; Sarzynski, Mark A; Schwarz, Peter Eh; Shuldiner, Alan R; Staessen, Jan A; Steinthorsdottir, Valgerdur; Stolk, Ronald P; Strauch, Konstantin; Tönjes, Anke; Tremblay, Angelo; Tremoli, Elena; Vohl, Marie-Claude; Völker, Uwe; Vollenweider, Peter; Wilson, James F; Witteman, Jacqueline C; Adair, Linda S; Bochud, Murielle; Boehm, Bernhard O; Bornstein, Stefan R; Bouchard, Claude; Cauchi, Stéphane; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Cooper, Richard S; Dedoussis, George; Ferrucci, Luigi; Froguel, Philippe; Grabe, Hans-Jörgen; Hamsten, Anders; Hui, Jennie; Hveem, Kristian; Jöckel, Karl-Heinz; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; März, Winfried; Munroe, Patricia B; Njølstad, Inger; Oostra, Ben A; Palmer, Colin Na; Pedersen, Nancy L; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Rivadeneira, Fernando; Saaristo, Timo E; Saleheen, Danish; Sinisalo, Juha; Slagboom, P Eline; Snieder, Harold; Spector, Tim D; Stefansson, Kari; Stumvoll, Michael; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Veronesi, Giovanni; Walker, Mark; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Abecasis, Goncalo R; Assimes, Themistocles L; Berndt, Sonja I; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Franke, Lude; Frayling, Timothy M; Groop, Leif C; Hunter, David J; Kaplan, Robert C; O'Connell, Jeffrey R; Qi, Lu; Schlessinger, David; Strachan, David P; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Willer, Cristen J; Visscher, Peter M; Yang, Jian; Hirschhorn, Joel N; Zillikens, M Carola; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Fox, Caroline S; Barroso, Inês; Franks, Paul W; Ingelsson, Erik; Heid, Iris M; Loos, Ruth Jf; Cupples, L Adrienne; Morris, Andrew P; Lindgren, Cecilia M; Mohlke, Karen L

    2015-02-12

    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.

  11. New genetic loci link adipose and insulin biology to body fat distribution

    PubMed Central

    Strawbridge, Rona J; Pers, Tune H; Fischer, Krista; Justice, Anne E; Workalemahu, Tsegaselassie; Wu, Joseph M.W.; Buchkovich, Martin L; Heard-Costa, Nancy L; Roman, Tamara S; Drong, Alexander W; Song, Ci; Gustafsson, Stefan; Day, Felix R; Esko, Tonu; Fall, Tove; Kutalik, Zoltán; Luan, Jian’an; Randall, Joshua C; Scherag, André; Vedantam, Sailaja; Wood, Andrew R; Chen, Jin; Fehrmann, Rudolf; Karjalainen, Juha; Kahali, Bratati; Liu, Ching-Ti; Schmidt, Ellen M; Absher, Devin; Amin, Najaf; Anderson, Denise; Beekman, Marian; Bragg-Gresham, Jennifer L; Buyske, Steven; Demirkan, Ayse; Ehret, Georg B; Feitosa, Mary F; Goel, Anuj; Jackson, Anne U; Johnson, Toby; Kleber, Marcus E; Kristiansson, Kati; Mangino, Massimo; Leach, Irene Mateo; Medina-Gomez, Carolina; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Peters, Marjolein J; Prokopenko, Inga; Stančáková, Alena; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Van Vliet-Ostaptchouk, Jana V; Yengo, Loïc; Zhang, Weihua; Albrecht, Eva; Ärnlöv, Johan; Arscott, Gillian M; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blüher, Matthias; Böhringer, Stefan; Bonnet, Fabrice; Böttcher, Yvonne; Bruinenberg, Marcel; Carba, Delia B; Caspersen, Ida H; Clarke, Robert; Daw, E Warwick; Deelen, Joris; Deelman, Ewa; Delgado, Graciela; Doney, Alex SF; Eklund, Niina; Erdos, Michael R; Estrada, Karol; Eury, Elodie; Friedrich, Nele; Garcia, Melissa E; Giedraitis, Vilmantas; Gigante, Bruna; Go, Alan S; Golay, Alain; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grewal, Jagvir; Groves, Christopher J; Haller, Toomas; Hallmans, Goran; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heikkilä, Kauko; Herzig, Karl-Heinz; Helmer, Quinta; Hillege, Hans L; Holmen, Oddgeir; Hunt, Steven C; Isaacs, Aaron; Ittermann, Till; James, Alan L; Johansson, Ingegerd; Juliusdottir, Thorhildur; Kalafati, Ioanna-Panagiota; Kinnunen, Leena; Koenig, Wolfgang; Kooner, Ishminder K; Kratzer, Wolfgang; Lamina, Claudia; Leander, Karin; Lee, Nanette R; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Mach, François; Magnusson, Patrik KE; Mahajan, Anubha; McArdle, Wendy L; Menni, Cristina; Merger, Sigrun; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Moayyeri, Alireza; Monda, Keri L; Mooijaart, Simon P; Mühleisen, Thomas W; Mulas, Antonella; Müller, Gabriele; Müller-Nurasyid, Martina; Nagaraja, Ramaiah; Nalls, Michael A; Narisu, Narisu; Glorioso, Nicola; Nolte, Ilja M; Olden, Matthias; Rayner, Nigel W; Renstrom, Frida; Ried, Janina S; Robertson, Neil R; Rose, Lynda M; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Sennblad, Bengt; Seufferlein, Thomas; Sitlani, Colleen M; Smith, Albert Vernon; Stirrups, Kathleen; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Swift, Amy J; Syvänen, Ann-Christine; Tayo, Bamidele O; Thorand, Barbara; Thorleifsson, Gudmar; Tomaschitz, Andreas; Troffa, Chiara; van Oort, Floor VA; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Wennauer, Roman; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Zhang, Qunyuan; Zhao, Jing Hua; Brennan, Eoin P.; Choi, Murim; Eriksson, Per; Folkersen, Lasse; Franco-Cereceda, Anders; Gharavi, Ali G; Hedman, Åsa K; Hivert, Marie-France; Huang, Jinyan; Kanoni, Stavroula; Karpe, Fredrik; Keildson, Sarah; Kiryluk, Krzysztof; Liang, Liming; Lifton, Richard P; Ma, Baoshan; McKnight, Amy J; McPherson, Ruth; Metspalu, Andres; Min, Josine L; Moffatt, Miriam F; Montgomery, Grant W; Murabito, Joanne M; Nicholson, George; Nyholt, Dale R; Olsson, Christian; Perry, John RB; Reinmaa, Eva; Salem, Rany M; Sandholm, Niina; Schadt, Eric E; Scott, Robert A; Stolk, Lisette; Vallejo, Edgar E.; Westra, Harm-Jan; Zondervan, Krina T; Amouyel, Philippe; Arveiler, Dominique; Bakker, Stephan JL; Beilby, John; Bergman, Richard N; Blangero, John; Brown, Morris J; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chines, Peter S; Claudi-Boehm, Simone; Collins, Francis S; Crawford, Dana C; Danesh, John; de Faire, Ulf; de Geus, Eco JC; Dörr, Marcus; Erbel, Raimund; Eriksson, Johan G; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Forouhi, Nita G; Forrester, Terrence; Franco, Oscar H; Gansevoort, Ron T; Gieger, Christian; Gudnason, Vilmundur; Haiman, Christopher A; Harris, Tamara B; Hattersley, Andrew T; Heliövaara, Markku; Hicks, Andrew A; Hingorani, Aroon D; Hoffmann, Wolfgang; Hofman, Albert; Homuth, Georg; Humphries, Steve E; Hyppönen, Elina; Illig, Thomas; Jarvelin, Marjo-Riitta; Johansen, Berit; Jousilahti, Pekka; Jula, Antti M; Kaprio, Jaakko; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Lakka, Timo A; Langenberg, Claudia; Le Marchand, Loic; Lehtimäki, Terho; Lyssenko, Valeriya; Männistö, Satu; Marette, André; Matise, Tara C; McKenzie, Colin A; McKnight, Barbara; Musk, Arthur W; Möhlenkamp, Stefan; Morris, Andrew D; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J; Ong, Ken K; Palmer, Lyle J; Penninx, Brenda W; Peters, Annette; Pramstaller, Peter P; Raitakari, Olli T; Rankinen, Tuomo; Rao, DC; Rice, Treva K; Ridker, Paul M; Ritchie, Marylyn D.; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J; Saramies, Jouko; Sarzynski, Mark A; Schwarz, Peter EH; Shuldiner, Alan R; Staessen, Jan A; Steinthorsdottir, Valgerdur; Stolk, Ronald P; Strauch, Konstantin; Tönjes, Anke; Tremblay, Angelo; Tremoli, Elena; Vohl, Marie-Claude; Völker, Uwe; Vollenweider, Peter; Wilson, James F; Witteman, Jacqueline C; Adair, Linda S; Bochud, Murielle; Boehm, Bernhard O; Bornstein, Stefan R; Bouchard, Claude; Cauchi, Stéphane; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Cooper, Richard S; Dedoussis, George; Ferrucci, Luigi; Froguel, Philippe; Grabe, Hans-Jörgen; Hamsten, Anders; Hui, Jennie; Hveem, Kristian; Jöckel, Karl-Heinz; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; März, Winfried; Munroe, Patricia B; Njølstad, Inger; Oostra, Ben A; Palmer, Colin NA; Pedersen, Nancy L; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Rivadeneira, Fernando; Saaristo, Timo E; Saleheen, Danish; Sinisalo, Juha; Slagboom, P Eline; Snieder, Harold; Spector, Tim D; Stefansson, Kari; Stumvoll, Michael; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Veronesi, Giovanni; Walker, Mark; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Abecasis, Goncalo R; Assimes, Themistocles L; Berndt, Sonja I; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Franke, Lude; Frayling, Timothy M; Groop, Leif C; Hunter, David J.; Kaplan, Robert C; O’Connell, Jeffrey R; Qi, Lu; Schlessinger, David; Strachan, David P; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Willer, Cristen J; Visscher, Peter M; Yang, Jian; Hirschhorn, Joel N; Zillikens, M Carola; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Fox, Caroline S; Barroso, Inês; Franks, Paul W; Ingelsson, Erik; Heid, Iris M; Loos, Ruth JF; Cupples, L Adrienne; Morris, Andrew P; Lindgren, Cecilia M; Mohlke, Karen L

    2014-01-01

    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, we conducted genome-wide association meta-analyses of waist and hip circumference-related traits in up to 224,459 individuals. We identified 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (WHRadjBMI) and an additional 19 loci newly associated with related waist and hip circumference measures (P<5×10−8). Twenty of the 49 WHRadjBMI loci showed significant sexual dimorphism, 19 of which displayed a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation, and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms. PMID:25673412

  12. Assessing Quantitative Resistance against Leptosphaeria maculans (Phoma Stem Canker) in Brassica napus (Oilseed Rape) in Young Plants

    PubMed Central

    Huang, Yong-Ju; Qi, Aiming; King, Graham J.; Fitt, Bruce D. L.

    2014-01-01

    Quantitative resistance against Leptosphaeria maculans in Brassica napus is difficult to assess in young plants due to the long period of symptomless growth of the pathogen from the appearance of leaf lesions to the appearance of canker symptoms on the stem. By using doubled haploid (DH) lines A30 (susceptible) and C119 (with quantitative resistance), quantitative resistance against L. maculans was assessed in young plants in controlled environments at two stages: stage 1, growth of the pathogen along leaf veins/petioles towards the stem by leaf lamina inoculation; stage 2, growth in stem tissues to produce stem canker symptoms by leaf petiole inoculation. Two types of inoculum (ascospores; conidia) and three assessment methods (extent of visible necrosis; symptomless pathogen growth visualised using the GFP reporter gene; amount of pathogen DNA quantified by PCR) were used. In stage 1 assessments, significant differences were observed between lines A30 and C119 in area of leaf lesions, distance grown along veins/petioles assessed by visible necrosis or by viewing GFP and amount of L. maculans DNA in leaf petioles. In stage 2 assessments, significant differences were observed between lines A30 and C119 in severity of stem canker and amount of L. maculans DNA in stem tissues. GFP-labelled L. maculans spread more quickly from the stem cortex to the stem pith in A30 than in C119. Stem canker symptoms were produced more rapidly by using ascospore inoculum than by using conidial inoculum. These results suggest that quantitative resistance against L. maculans in B. napus can be assessed in young plants in controlled conditions. Development of methods to phenotype quantitative resistance against plant pathogens in young plants in controlled environments will help identification of stable quantitative resistance for control of crop diseases. PMID:24454767

  13. Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum.

    PubMed

    Ali, M Liakat; Taylor, Jeff H; Jie, Liu; Sun, Genlou; William, Manilal; Kasha, Ken J; Reid, Lana M; Pauls, K Peter

    2005-06-01

    Gibberella ear rot, caused by the fungus Fusarium graminearum Schwabe, is a serious disease of corn (Zea mays) grown in northern climates. Infected corn is lower yielding and contains toxins that are dangerous to livestock and humans. Resistance to ear rot in corn is quantitative, specific to the mode of fungal entry (silk channels or kernel wounds), and highly influenced by the environment. Evaluations of ear rot resistance are complex and subjective; and they need to be repeated over several years. All of these factors have hampered attempts to develop F. graminearum resistant corn varieties. The aim of this study was to identify molecular markers linked to the genes for resistance to Gibberella ear rot. A recombinant inbred (RI) population, produced from a cross between a Gibberella ear rot resistant line (CO387) and a susceptible line (CG62), was field-inoculated and scored for Gibberella ear rot symptoms in the F4, F6, and F7 generations. The distributions of disease scores were continuous, indicating that resistance is probably conditioned by multiple loci. A molecular linkage map, based on segregation in the F5 RI population, contained 162 markers distributed over 10 linkage groups and had a total length of 2237 cM with an average distance between markers of 13.8 cM. Composite interval mapping identified 11 quantitative trait loci (QTLs) for Gibberella ear rot resistance following silk inoculation and 18 QTLs following kernel inoculation in 4 environments that accounted for 6.7%-35% of the total phenotypic variation. Only 2 QTLs (on linkage group 7) were detected in more than 1 test for silk resistance, and only 1 QTL (on linkage group 5) was detected in more than 1 test for kernel resistance, confirming the strong influence of the environment on these traits. The majority of the favorable alleles were derived from the resistant parent (CO387). The germplasm and markers for QTLs with significant phenotypic effects may be useful for marker-assisted selection

  14. Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection.

    PubMed

    Huang, Jing; Guo, Na; Li, Yinghui; Sun, Jutao; Hu, Guanjun; Zhang, Haipeng; Li, Yanfei; Zhang, Xing; Zhao, Jinming; Xing, Han; Qiu, Lijuan

    2016-06-18

    Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most serious diseases affecting soybean (Glycine max (L.) Merr.) production all over the world. The most economical and environmentally-friendly way to control the disease is the exploration and utilization of resistant varieties. We screened a soybean mini core collection composed of 224 germplasm accessions for resistance against eleven P. sojae isolates. Soybean accessions from the Southern and Huanghuai regions, especially the Hubei, Jiangsu, Sichuan and Fujian provinces, had the most varied and broadest spectrum of resistance. Based on gene postulation, Rps1b, Rps1c, Rps4, Rps7 and novel resistance genes were identified in resistant accessions. Consequently, association mapping of resistance to each isolate was performed with 1,645 single nucleotide polymorphism (SNP) markers. A total of 14 marker-trait associations for Phytophthora resistance were identified. Among them, four were located in known PRR resistance loci intervals, five were located in other disease resistance quantitative trait locus (QTL) regions, and five associations unmasked novel loci for PRR resistance. In addition, we also identified candidate genes related to resistance. This is the first P. sojae resistance evaluation conducted using the Chinese soybean mini core collection, which is a representative sample of Chinese soybean cultivars. The resistance reaction analyses provided an excellent database of resistant resources and genetic variations for future breeding programs. The SNP markers associated with resistance will facilitate marker-assisted selection (MAS) in breeding programs for resistance to PRR, and the candidate genes may be useful for exploring the mechanism underlying P. sojae resistance.

  15. Quantitative Trait Loci Mapping in Brassica rapa Revealed the Structural and Functional Conservation of Genetic Loci Governing Morphological and Yield Component Traits in the A, B, and C Subgenomes of Brassica Species

    PubMed Central

    Li, Xiaonan; Ramchiary, Nirala; Dhandapani, Vignesh; Choi, Su Ryun; Hur, Yoonkang; Nou, Ill-Sup; Yoon, Moo Kyoung; Lim, Yong Pyo

    2013-01-01

    Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. juncea, and Arabidopsis thaliana to identify candidate genes and conserved QTL blocks between them. A total of 95 QTL were identified in different crucifer blocks of the B. rapa genome. Through synteny analysis with A. thaliana, B. rapa candidate genes and intronic and exonic single nucleotide polymorphisms in the parental lines were detected from whole genome resequenced data, a few of which were validated by mapping them to the QTL regions. Semi-quantitative reverse transcriptase PCR analysis showed differences in the expression levels of a few genes in parental lines. Comparative mapping identified five key major evolutionarily conserved crucifer blocks (R, J, F, E, and W) harbouring QTL for morphological and yield components traits between the A, B, and C subgenomes of B. rapa, B. juncea, and B. napus. The information of the identified candidate genes could be used for breeding B. rapa and other related Brassica species. PMID:23223793

  16. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat

    PubMed Central

    Maccaferri, Marco; El-Feki, Walid; Nazemi, Ghasemali; Salvi, Silvio; Canè, Maria Angela; Colalongo, Maria Chiara; Stefanelli, Sandra; Tuberosa, Roberto

    2016-01-01

    Optimization of root system architecture (RSA) traits is an important objective for modern wheat breeding. Linkage and association mapping for RSA in two recombinant inbred line populations and one association mapping panel of 183 elite durum wheat (Triticum turgidum L. var. durum Desf.) accessions evaluated as seedlings grown on filter paper/polycarbonate screening plates revealed 20 clusters of quantitative trait loci (QTLs) for root length and number, as well as 30 QTLs for root growth angle (RGA). Divergent RGA phenotypes observed by seminal root screening were validated by root phenotyping of field-grown adult plants. QTLs were mapped on a high-density tetraploid consensus map based on transcript-associated Illumina 90K single nucleotide polymorphisms (SNPs) developed for bread and durum wheat, thus allowing for an accurate cross-referencing of RSA QTLs between durum and bread wheat. Among the main QTL clusters for root length and number highlighted in this study, 15 overlapped with QTLs for multiple RSA traits reported in bread wheat, while out of 30 QTLs for RGA, only six showed co-location with previously reported QTLs in wheat. Based on their relative additive effects/significance, allelic distribution in the association mapping panel, and co-location with QTLs for grain weight and grain yield, the RSA QTLs have been prioritized in terms of breeding value. Three major QTL clusters for root length and number (RSA_QTL_cluster_5#, RSA_QTL_cluster_6#, and RSA_QTL_cluster_12#) and nine RGA QTL clusters (QRGA.ubo-2A.1, QRGA.ubo-2A.3, QRGA.ubo-2B.2/2B.3, QRGA.ubo-4B.4, QRGA.ubo-6A.1, QRGA.ubo-6A.2, QRGA.ubo-7A.1, QRGA.ubo-7A.2, and QRGA.ubo-7B) appear particularly valuable for further characterization towards a possible implementation of breeding applications in marker-assisted selection and/or cloning of the causal genes underlying the QTLs. PMID:26880749

  17. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat.

    PubMed

    Maccaferri, Marco; El-Feki, Walid; Nazemi, Ghasemali; Salvi, Silvio; Canè, Maria Angela; Colalongo, Maria Chiara; Stefanelli, Sandra; Tuberosa, Roberto

    2016-02-01

    Optimization of root system architecture (RSA) traits is an important objective for modern wheat breeding. Linkage and association mapping for RSA in two recombinant inbred line populations and one association mapping panel of 183 elite durum wheat (Triticum turgidum L. var. durum Desf.) accessions evaluated as seedlings grown on filter paper/polycarbonate screening plates revealed 20 clusters of quantitative trait loci (QTLs) for root length and number, as well as 30 QTLs for root growth angle (RGA). Divergent RGA phenotypes observed by seminal root screening were validated by root phenotyping of field-grown adult plants. QTLs were mapped on a high-density tetraploid consensus map based on transcript-associated Illumina 90K single nucleotide polymorphisms (SNPs) developed for bread and durum wheat, thus allowing for an accurate cross-referencing of RSA QTLs between durum and bread wheat. Among the main QTL clusters for root length and number highlighted in this study, 15 overlapped with QTLs for multiple RSA traits reported in bread wheat, while out of 30 QTLs for RGA, only six showed co-location with previously reported QTLs in wheat. Based on their relative additive effects/significance, allelic distribution in the association mapping panel, and co-location with QTLs for grain weight and grain yield, the RSA QTLs have been prioritized in terms of breeding value. Three major QTL clusters for root length and number (RSA_QTL_cluster_5#, RSA_QTL_cluster_6#, and RSA_QTL_cluster_12#) and nine RGA QTL clusters (QRGA.ubo-2A.1, QRGA.ubo-2A.3, QRGA.ubo-2B.2/2B.3, QRGA.ubo-4B.4, QRGA.ubo-6A.1, QRGA.ubo-6A.2, QRGA.ubo-7A.1, QRGA.ubo-7A.2, and QRGA.ubo-7B) appear particularly valuable for further characterization towards a possible implementation of breeding applications in marker-assisted selection and/or cloning of the causal genes underlying the QTLs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Expression quantitative trait loci (eQTL) mapping in Puerto Rican children.

    PubMed

    Chen, Wei; Brehm, John M; Lin, Jerome; Wang, Ting; Forno, Erick; Acosta-Pérez, Edna; Boutaoui, Nadia; Canino, Glorisa; Celedón, Juan C

    2015-01-01

    Expression quantitative trait loci (eQTL) have been identified using tissue or cell samples from diverse human populations, thus enhancing our understanding of regulation of gene expression. However, few studies have attempted to identify eQTL in racially admixed populations such as Hispanics. We performed a systematic eQTL study to identify regulatory variants of gene expression in whole blood from 121 Puerto Rican children with (n = 63) and without (n = 58) asthma. Genome-wide genotyping was conducted using the Illumina Omni2.5M Bead Chip, and gene expression was assessed using the Illumina HT-12 microarray. After completing quality control, we performed a pair-wise genome analysis of ~15 K transcripts and ~1.3 M SNPs for both local and distal effects. This analysis was conducted under a regression framework adjusting for age, gender and principal components derived from both genotypic and mRNA data. We used a false discovery rate (FDR) approach to identify significant eQTL signals, which were next compared to top eQTL signals from existing eQTL databases. We then performed a pathway analysis for our top genes. We identified 36,720 local pairs in 3,391 unique genes and 1,851 distal pairs in 446 unique genes at FDR <0.05, corresponding to unadjusted P values lower than 1.5x10-4 and 4.5x10-9, respectively. A significant proportion of genes identified in our study overlapped with those identified in previous studies. We also found an enrichment of disease-related genes in our eQTL list. We present results from the first eQTL study in Puerto Rican children, who are members of a unique Hispanic cohort disproportionately affected with asthma, prematurity, obesity and other common diseases. Our study confirmed eQTL signals identified in other ethnic groups, while also detecting additional eQTLs unique to our study population. The identified eQTLs will help prioritize findings from future genome-wide association studies in Puerto Ricans.

  19. Germicidal Activity against Carbapenem/Colistin-Resistant Enterobacteriaceae Using a Quantitative Carrier Test Method.

    PubMed

    Kanamori, Hajime; Rutala, William A; Gergen, Maria F; Sickbert-Bennett, Emily E; Weber, David J

    2018-05-07

    Susceptibility to germicides for carbapenem/colistin-resistant Enterobacteriaceae is poorly described. We investigated the efficacy of multiple germicides against these emerging antibiotic-resistant pathogens using the disc-based quantitative carrier test method that can produce results more similar to those encountered in healthcare settings than a suspension test. Our study results demonstrated that germicides commonly used in healthcare facilities likely will be effective against carbapenem/colistin-resistant Enterobacteriaceae when used appropriately in healthcare facilities. Copyright © 2018 American Society for Microbiology.

  20. Candidate Loci for Insulin Sensitivity and Disposition Index from a Genome Wide Association Analysis of Hispanics in the IRAS Family Study

    PubMed Central

    Palmer, N. D.; Langefeld, C. D.; Ziegler, J. T.; Hsu, F.; Haffner, S. M.; Fingerlin, T.; Norris, J. M.; Chen, Y. I.; Rich, S. S.; Haritunians, T.; Taylor, K. D.; Bergman, R. N.; Rotter, J. I.; Bowden, D. W.

    2009-01-01

    Aims/Hypothesis —The majority of type 2 diabetes Genome Wide Association Studies (GWAS) to date have been performed in European-derived populations and have identified few variants that mediate their effect through insulin resistance. The aim of this study was to evaluate two quantitative, directly assessed measures of insulin resistance (SI and DI) in Hispanic Americans using an agnostic, high-density SNP scan and validate these findings in additional samples. Methods —A two-stage GWAS was performed in IRAS-FS Hispanic-American samples. In Stage 1, 317K single nucleotide polymorphisms (SNPs) were assessed 229 DNA samples. SNPs with evidence of association with glucose homeostasis and adiposity traits were then genotyped on the entire set of Hispanic-American samples (n=1190). This report focuses on the glucose homeostasis traits: insulin sensitivity index (SI) and disposition index (DI). Results —Although evidence of association did not reach genome-wide significance (P=5×10−7), in the combined analysis SNPs had admixture-adjusted PADD=0.00010–0.0020 with 8–41% differences in genotypic means for SI and DI. Conclusions/Interpretation —Several candidate loci have been identified which are nominally associated with SI and/or DI in Hispanic Americans. Replication of these findings in independent cohorts and additional focused analysis of these loci is warranted. PMID:19902172

  1. Mapping quantitative trait loci affecting Arabidopsis thaliana seed morphology features extracted computationally from images.

    PubMed

    Moore, Candace R; Gronwall, David S; Miller, Nathan D; Spalding, Edgar P

    2013-01-01

    Seeds are studied to understand dispersal and establishment of the next generation, as units of agricultural yield, and for other important reasons. Thus, elucidating the genetic architecture of seed size and shape traits will benefit basic and applied plant biology research. This study sought quantitative trait loci (QTL) controlling the size and shape of Arabidopsis thaliana seeds by computational analysis of seed phenotypes in recombinant inbred lines derived from the small-seeded Landsberg erecta × large-seeded Cape Verde Islands accessions. On the order of 10(3) seeds from each recombinant inbred line were automatically measured with flatbed photo scanners and custom image analysis software. The eight significant QTL affecting seed area explained 63% of the variation, and overlapped with five of the six major-axis (length) QTL and three of the five minor-axis (width) QTL, which accounted for 57% and 38% of the variation in those traits, respectively. Because the Arabidopsis seed is exalbuminous, lacking an endosperm at maturity, the results are relatable to embryo length and width. The Cvi allele generally had a positive effect of 2.6-4.0%. Analysis of variance showed heritability of the three traits ranged between 60% and 73%. Repeating the experiment with 2.2 million seeds from a separate harvest of the RIL population and approximately 0.5 million seeds from 92 near-isogenic lines confirmed the aforementioned results. Structured for download are files containing phenotype measurements, all sets of seed images, and the seed trait measuring tool.

  2. Genetic variation affecting host-parasite interactions: major-effect quantitative trait loci affect the transmission of sigma virus in Drosophila melanogaster.

    PubMed

    Bangham, Jenny; Knott, Sara A; Kim, Kang-Wook; Young, Robert S; Jiggins, Francis M

    2008-09-01

    In natural populations, genetic variation affects resistance to disease. Whether that genetic variation comprises lots of small-effect polymorphisms or a small number of large-effect polymorphisms has implications for adaptation, selection and how genetic variation is maintained in populations. Furthermore, how much genetic variation there is, and the genes that underlie this variation, affects models of co-evolution between parasites and their hosts. We are studying the genetic variation that affects the resistance of Drosophila melanogaster to its natural pathogen--the vertically transmitted sigma virus. We have carried out three separate quantitative trait locus mapping analyses to map gene variants on the second chromosome that cause variation in the rate at which males transmit the infection to their offspring. All three crosses identified a locus in a similar chromosomal location that causes a large drop in the rate at which the virus is transmitted. We also found evidence for an additional smaller-effect quantitative trait locus elsewhere on the chromosome. Our data, together with previous experiments on the sigma virus and parasitoid wasps, indicate that the resistance of D. melanogaster to co-evolved pathogens is controlled by a limited number of major-effect polymorphisms.

  3. Molecular Epidemiology of Mutations in Antimicrobial Resistance Loci of Pseudomonas aeruginosa Isolates from Airways of Cystic Fibrosis Patients.

    PubMed

    Greipel, Leonie; Fischer, Sebastian; Klockgether, Jens; Dorda, Marie; Mielke, Samira; Wiehlmann, Lutz; Cramer, Nina; Tümmler, Burkhard

    2016-11-01

    The chronic airway infections with Pseudomonas aeruginosa in people with cystic fibrosis (CF) are treated with aerosolized antibiotics, oral fluoroquinolones, and/or intravenous combination therapy with aminoglycosides and β-lactam antibiotics. An international strain collection of 361 P. aeruginosa isolates from 258 CF patients seen at 30 CF clinics was examined for mutations in 17 antimicrobial susceptibility and resistance loci that had been identified as hot spots of mutation by genome sequencing of serial isolates from a single CF clinic. Combinatorial amplicon sequencing of pooled PCR products identified 1,112 sequence variants that were not present in the genomes of representative strains of the 20 most common clones of the global P. aeruginosa population. A high frequency of singular coding variants was seen in spuE, mexA, gyrA, rpoB, fusA1, mexZ, mexY, oprD, ampD, parR, parS, and envZ (amgS), reflecting the pressure upon P. aeruginosa in lungs of CF patients to generate novel protein variants. The proportion of nonneutral amino acid exchanges was high. Of the 17 loci, mexA, mexZ, and pagL were most frequently affected by independent stop mutations. Private and de novo mutations seem to play a pivotal role in the response of P. aeruginosa populations to the antimicrobial load and the individual CF host. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways.

    PubMed

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian'an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O'Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tõnu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês

    2012-09-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.

  5. Pyramids of QTLs enhance host-plant resistance and Bt-mediated resistance to leaf-chewing insects in soybean.

    PubMed

    Ortega, María A; All, John N; Boerma, H Roger; Parrott, Wayne A

    2016-04-01

    QTL-M and QTL-E enhance soybean resistance to insects. Pyramiding these QTLs with cry1Ac increases protection against Bt-tolerant pests, presenting an opportunity to effectively deploy Bt with host-plant resistance genes. Plant resistance to leaf-chewing insects minimizes the need for insecticide applications, reducing crop production costs and pesticide concerns. In soybean [Glycine max (L.) Merr.], resistance to a broad range of leaf-chewing insects is found in PI 229358 and PI 227687. PI 229358's resistance is conferred by three quantitative trait loci (QTLs): M, G, and H. PI 227687's resistance is conferred by QTL-E. The letters indicate the soybean Linkage groups (LGs) on which the QTLs are located. This study aimed to determine if pyramiding PI 229358 and PI 227687 QTLs would enhance soybean resistance to leaf-chewing insects, and if pyramiding these QTLs with Bt (cry1Ac) enhances resistance against Bt-tolerant pests. The near-isogenic lines (NILs): Benning(ME), Benning(MGHE), and Benning(ME+cry1Ac) were developed. Benning(ME) and Benning(MGHE) were evaluated in detached-leaf and greenhouse assays with soybean looper [SBL, Chrysodeixis includens (Walker)], corn earworm [CEW, Helicoverpa zea (Boddie)], fall armyworm [FAW, Spodoptera frugiperda (J.E. Smith)], and velvetbean caterpillar [VBC, Anticarsia gemmatalis (Hübner)]; and in field-cage assays with SBL. Benning(ME+cry1Ac) was tested in detached-leaf assays against SBL, VBC, and Southern armyworm [SAW, Spodoptera eridania (Cramer)]. In the detached-leaf assay, Benning(ME) showed the strongest antibiosis against CEW, FAW, and VBC. In field-cage conditions, Benning(ME) and Benning(MGHE) suffered 61 % less defoliation than Benning. Benning(ME+cry1Ac) was more resistant than Benning(ME) and Benning (cry1Ac) against SBL and SAW. Agriculturally relevant levels of resistance in soybean can be achieved with just two loci, QTL-M and QTL-E. ME+cry1Ac could present an opportunity to protect the durability of Bt

  6. A subset of skin tumor modifier loci determines survival time of tumor-bearing mice

    PubMed Central

    Nagase, Hiroki; Mao, Jian-Hua; Balmain, Allan

    1999-01-01

    Studies of mouse models of human cancer have established the existence of multiple tumor modifiers that influence parameters of cancer susceptibility such as tumor multiplicity, tumor size, or the probability of malignant progression. We have carried out an analysis of skin tumor susceptibility in interspecific Mus musculus/Mus spretus hybrid mice and have identified another seven loci showing either significant (six loci) or suggestive (one locus) linkage to tumor susceptibility or resistance. A specific search was carried out for skin tumor modifier loci associated with time of survival after development of a malignant tumor. A combination of resistance alleles at three markers [D6Mit15 (Skts12), D7Mit12 (Skts2), and D17Mit7 (Skts10)], all of which are close to or the same as loci associated with carcinoma incidence and/or papilloma multiplicity, is significantly associated with increased survival of mice with carcinomas, whereas the reverse combination of susceptibility alleles is significantly linked to early mortality caused by rapid carcinoma growth (χ2 = 25.22; P = 5.1 × 10−8). These data indicate that host genetic factors may be used to predict carcinoma growth rate and/or survival of individual backcross mice exposed to the same carcinogenic stimulus and suggest that mouse models may provide an approach to the identification of genetic modifiers of cancer survival in humans. PMID:10611333

  7. Selecting soybean resistant to the cyst nematode Heterodera glycines using simple sequence repeat (microssatellite) markers.

    PubMed

    Espindola, S M C G; Hamawaki, O T; Oliveira, A P; Hamawaki, C D L; Hamawaki, R L; Takahashi, L M

    2016-03-11

    The soybean cyst nematode (SCN) is a major cause of soybean yield reduction. The objective of this study was to evaluate the efficiency of marker-assisted selection to identify genotypes resistant to SCN race 3 infection, using Sat_168 and Sat-141 resistance quantitative trait loci. The experiment was carried out under greenhouse conditions, using soybean populations originated from crosses between susceptible and resistant parent stock: CD-201 (susceptible) and Foster IAC (resistant), Conquista (susceptible) and S83-30 (resistant), La-Suprema (susceptible) and S57-11 (resistant), and Parecis (susceptible) and S65-50 (resistant). Plants were inoculated with SCN and evaluated according to the female index (FI), those with FI < 10% were classified as resistant to nematode infection. Plants were genotyped for SCN resistance using microsatellite markers Sat-141 and Sat_168. Marker selection efficiency was analyzed by a contingency table, taking into account genotypic versus phenotypic evaluations for each line. These markers were shown to be useful tool for selection of SCN race 3.

  8. Quantitative trait loci × environment interactions for plant morphology vary over ontogeny in Brassica rapa.

    PubMed

    Dechaine, Jennifer M; Brock, Marcus T; Iniguez-Luy, Federico L; Weinig, Cynthia

    2014-01-01

    Growth in plants occurs via the addition of repeating modules, suggesting that the genetic architecture of similar subunits may vary between earlier- and later-developing modules. These complex environment × ontogeny interactions are not well elucidated, as studies examining quantitative trait loci (QTLs) expression over ontogeny have not included multiple environments. Here, we characterized the genetic architecture of vegetative traits and onset of reproduction over ontogeny in recombinant inbred lines of Brassica rapa in the field and glasshouse. The magnitude of genetic variation in plasticity of seedling internodes was greater than in those produced later in ontogeny. We correspondingly detected that QTLs for seedling internode length were environment-specific, whereas later in ontogeny the majority of QTLs affected internode lengths in all treatments. The relationship between internode traits and onset of reproduction varied with environment and ontogenetic stage. This relationship was observed only in the glasshouse environment and was largely attributable to one environment-specific QTL. Our results provide the first evidence of a QTL × environment × ontogeny interaction, and provide QTL resolution for differences between early- and later-stage plasticity for stem elongation. These results also suggest potential constraints on morphological evolution in early vs later modules as a result of associations with reproductive timing. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  9. Mapping X-Disease Phytoplasma Resistance in Prunus virginiana.

    PubMed

    Lenz, Ryan R; Dai, Wenhao

    2017-01-01

    Phytoplasmas such as " Candidatus Phytoplasma pruni," the causal agent of X-disease of stone fruits, lack detailed biological analysis. This has limited the understanding of plant resistance mechanisms. Chokecherry ( Prunus virginiana L.) is a promising model to be used for the plant-phytoplasma interaction due to its documented ability to resist X-disease infection. A consensus chokecherry genetic map "Cho" was developed with JoinMap 4.0 by joining two parental maps. The new map contains a complete set of 16 linkage groups, spanning a genetic distance of 2,172 cM with an average marker density of 3.97 cM. Three significant quantitative trait loci (QTL) associated with X-disease resistance were identified contributing to a total of 45.9% of the phenotypic variation. This updated genetic linkage map and the identified QTL will provide the framework needed to facilitate molecular genetics, genomics, breeding, and biotechnology research concerning X-disease in chokecherry and other Prunus species.

  10. Mapping X-Disease Phytoplasma Resistance in Prunus virginiana

    PubMed Central

    Lenz, Ryan R.; Dai, Wenhao

    2017-01-01

    Phytoplasmas such as “Candidatus Phytoplasma pruni,” the causal agent of X-disease of stone fruits, lack detailed biological analysis. This has limited the understanding of plant resistance mechanisms. Chokecherry (Prunus virginiana L.) is a promising model to be used for the plant-phytoplasma interaction due to its documented ability to resist X-disease infection. A consensus chokecherry genetic map “Cho” was developed with JoinMap 4.0 by joining two parental maps. The new map contains a complete set of 16 linkage groups, spanning a genetic distance of 2,172 cM with an average marker density of 3.97 cM. Three significant quantitative trait loci (QTL) associated with X-disease resistance were identified contributing to a total of 45.9% of the phenotypic variation. This updated genetic linkage map and the identified QTL will provide the framework needed to facilitate molecular genetics, genomics, breeding, and biotechnology research concerning X-disease in chokecherry and other Prunus species. PMID:29238359

  11. Two developmentally temporal quantitative trait loci underlie convergent evolution of increased branchial bone length in sticklebacks

    PubMed Central

    Erickson, Priscilla A.; Glazer, Andrew M.; Cleves, Phillip A.; Smith, Alyson S.; Miller, Craig T.

    2014-01-01

    In convergent evolution, similar phenotypes evolve repeatedly in independent populations, often reflecting adaptation to similar environments. Understanding whether convergent evolution proceeds via similar or different genetic and developmental mechanisms offers insight towards the repeatability and predictability of evolution. Oceanic populations of threespine stickleback fish, Gasterosteus aculeatus, have repeatedly colonized countless freshwater lakes and streams, where new diets lead to morphological adaptations related to feeding. Here, we show that heritable increases in branchial bone length have convergently evolved in two independently derived freshwater stickleback populations. In both populations, an increased bone growth rate in juveniles underlies the convergent adult phenotype, and one population also has a longer cartilage template. Using F2 crosses from these two freshwater populations, we show that two quantitative trait loci (QTL) control branchial bone length at distinct points in development. In both populations, a QTL on chromosome 21 controls bone length throughout juvenile development, and a QTL on chromosome 4 controls bone length only in adults. In addition to these similar developmental profiles, these QTL show similar chromosomal locations in both populations. Our results suggest that sticklebacks have convergently evolved longer branchial bones using similar genetic and developmental programmes in two independently derived populations. PMID:24966315

  12. Quantitative Trait Loci for Mercury Accumulation in Maize (Zea mays L.) Identified Using a RIL Population

    PubMed Central

    Zhang, Qinbin; Wang, Long; Zhang, Xiaoxiang; Song, Guiliang; Fu, Zhiyuan; Ding, Dong; Liu, Zonghua; Tang, Jihua

    2014-01-01

    To investigate the genetic mechanism of mercury accumulation in maize (Zea mays L.), a population of 194 recombinant inbred lines derived from an elite hybrid Yuyu 22, was used to identify quantitative trait loci (QTLs) for mercury accumulation at two locations. The results showed that the average Hg concentration in the different tissues of maize followed the order: leaves > bracts > stems > axis > kernels. Twenty-three QTLs for mercury accumulation in five tissues were detected on chromosomes 1, 4, 7, 8, 9 and 10, which explained 6.44% to 26.60% of the phenotype variance. The QTLs included five QTLs for Hg concentration in kernels, three QTLs for Hg concentration in the axis, six QTLs for Hg concentration in stems, four QTLs for Hg concentration in bracts and five QTLs for Hg concentration in leaves. Interestingly, three QTLs, qKHC9a, qKHC9b, and qBHC9 were in linkage with two QTLs for drought tolerance. In addition, qLHC1 was in linkage with two QTLs for arsenic accumulation. The study demonstrated the concentration of Hg in Hg-contaminated paddy soil could be reduced, and maize production maintained simultaneously by selecting and breeding maize Hg pollution-safe cultivars (PSCs). PMID:25210737

  13. Quantitative trait loci for a neurocranium deformity, lack of operculum, in gilthead seabream (Sparus aurata L.).

    PubMed

    Negrín-Báez, D; Navarro, A; Afonso, J M; Toro, M A; Zamorano, M J

    2016-04-01

    Lack of operculum, a neurocranial deformity, is the most common external abnormality to be found among industrially produced gilthead seabream (Sparus aurata L.), and this entails significant financial losses. This study conducts, for the first time in this species, a quantitative trait loci (QTL) analysis of the lack of operculum. A total of 142 individuals from a paternal half-sibling family (six full-sibling families) were selected for QTL mapping. They had previously shown a highly significant association with the prevalence of lack of operculum in a segregation analysis. All the fish were genotyped for 106 microsatellite markers using a set of multiplex PCRs (ReMsa1-ReMsa13). A linear regression methodology was used for the QTL analysis. Four QTL were detected for this deformity, two of which (QTLOP1 and QTLOP2) were significant. They were located at LG (linkage group) nine and LG10 respectively. Both QTL showed a large effect (about 27%), and furthermore, the association between lack of operculum and sire allelic segregation observed was statistically significant in the QTLOP1 analysis. These results represent a significant step towards including marker-assisted selection for this deformity in genetic breeding programmes to reduce the incidence of the deformity in the species. © 2016 Stichting International Foundation for Animal Genetics.

  14. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes

    PubMed Central

    McKay, James D.; Hung, Rayjean J.; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C.; Caporaso, Neil E.; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A.; Qian, David C.; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N.; Bojesen, Stig E.; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C.; Bush, William S.; Tardon, Adonina; Rennert, Gad; Teare, M. Dawn; Field, John K.; Kiemeney, Lambertus A.; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B.; Andrew, Angeline S.; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C.; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S.; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A.; Wilkens, Lynne R.; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F.M.; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael PA; Marcus, Michael W.; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C.; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A.; Barnett, Matt P.; Chen, Chu; Goodman, Gary E.; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H.-Erich; Manz, Judith; Muley, Thomas R.; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A.; Tsao, Ming-Sound; Arnold, Susanne M.; Haura, Eric B.; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M.; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J.; Butler, Lesley M.; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S.; McLaughlin, John; Stevens, Victoria L.; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C.; Obeidat, Ma’en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D.; Wain, Louise V.; Rafnar, Thorunn; Thorgeirsson, Thorgeir E.; Reginsson, Gunnar W.; Stefansson, Kari; Hancock, Dana B.; Bierut, Laura J.; Spitz, Margaret R.; Gaddis, Nathan C.; Lutz, Sharon M.; Gu, Fangyi; Johnson, Eric O.; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F.; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I.

    2017-01-01

    Summary While several lung cancer susceptibility loci have been identified, much of lung cancer heritability remains unexplained. Here, 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated GWAS analysis of lung cancer on 29,266 patients and 56,450 controls. We identified 18 susceptibility loci achieving genome wide significance, including 10 novel loci. The novel loci highlighted the striking heterogeneity in genetic susceptibility across lung cancer histological subtypes, with four loci associated with lung cancer overall and six with lung adenocarcinoma. Gene expression quantitative trait analysis (eQTL) in 1,425 normal lung tissues highlighted RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes, OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer. PMID:28604730

  15. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.

    PubMed

    McKay, James D; Hung, Rayjean J; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C; Caporaso, Neil E; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A; Qian, David C; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N; Bojesen, Stig E; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C; Bush, William S; Tardon, Adonina; Rennert, Gad; Teare, M Dawn; Field, John K; Kiemeney, Lambertus A; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B; Andrew, Angeline S; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A; Wilkens, Lynne R; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F M; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael P A; Marcus, Michael W; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A; Barnett, Matt P; Chen, Chu; Goodman, Gary E; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H-Erich; Manz, Judith; Muley, Thomas R; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A; Tsao, Ming-Sound; Arnold, Susanne M; Haura, Eric B; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J; Butler, Lesley M; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S; McLaughlin, John; Stevens, Victoria L; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C; Obeidat, Ma'en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D; Wain, Louise V; Rafnar, Thorunn; Thorgeirsson, Thorgeir E; Reginsson, Gunnar W; Stefansson, Kari; Hancock, Dana B; Bierut, Laura J; Spitz, Margaret R; Gaddis, Nathan C; Lutz, Sharon M; Gu, Fangyi; Johnson, Eric O; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I

    2017-07-01

    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer.

  16. Mapping quantitative trait loci for traits defined as ratios.

    PubMed

    Yang, Runqing; Li, Jiahan; Xu, Shizhong

    2008-03-01

    Many traits are defined as ratios of two quantitative traits. Methods of QTL mapping for regular quantitative traits are not optimal when applied to ratios due to lack of normality for traits defined as ratios. We develop a new method of QTL mapping for traits defined as ratios. The new method uses a special linear combination of the two component traits, and thus takes advantage of the normal property of the new variable. Simulation study shows that the new method can substantially increase the statistical power of QTL detection relative to the method which treats ratios as regular quantitative traits. The new method also outperforms the method that uses Box-Cox transformed ratio as the phenotype. A real example of QTL mapping for relative growth rate in soybean demonstrates that the new method can detect more QTL than existing methods of QTL mapping for traits defined as ratios.

  17. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk

    PubMed Central

    Dupuis, Josée; Langenberg, Claudia; Prokopenko, Inga; Saxena, Richa; Soranzo, Nicole; Jackson, Anne U; Wheeler, Eleanor; Glazer, Nicole L; Bouatia-Naji, Nabila; Gloyn, Anna L; Lindgren, Cecilia M; Mägi, Reedik; Morris, Andrew P; Randall, Joshua; Johnson, Toby; Elliott, Paul; Rybin, Denis; Thorleifsson, Gudmar; Steinthorsdottir, Valgerdur; Henneman, Peter; Grallert, Harald; Dehghan, Abbas; Hottenga, Jouke Jan; Franklin, Christopher S; Navarro, Pau; Song, Kijoung; Goel, Anuj; Perry, John R B; Egan, Josephine M; Lajunen, Taina; Grarup, Niels; Sparsø, Thomas; Doney, Alex; Voight, Benjamin F; Stringham, Heather M; Li, Man; Kanoni, Stavroula; Shrader, Peter; Cavalcanti-Proença, Christine; Kumari, Meena; Qi, Lu; Timpson, Nicholas J; Gieger, Christian; Zabena, Carina; Rocheleau, Ghislain; Ingelsson, Erik; An, Ping; O’Connell, Jeffrey; Luan, Jian'an; Elliott, Amanda; McCarroll, Steven A; Payne, Felicity; Roccasecca, Rosa Maria; Pattou, François; Sethupathy, Praveen; Ardlie, Kristin; Ariyurek, Yavuz; Balkau, Beverley; Barter, Philip; Beilby, John P; Ben-Shlomo, Yoav; Benediktsson, Rafn; Bennett, Amanda J; Bergmann, Sven; Bochud, Murielle; Boerwinkle, Eric; Bonnefond, Amélie; Bonnycastle, Lori L; Borch-Johnsen, Knut; Böttcher, Yvonne; Brunner, Eric; Bumpstead, Suzannah J; Charpentier, Guillaume; Chen, Yii-Der Ida; Chines, Peter; Clarke, Robert; Coin, Lachlan J M; Cooper, Matthew N; Cornelis, Marilyn; Crawford, Gabe; Crisponi, Laura; Day, Ian N M; de Geus, Eco; Delplanque, Jerome; Dina, Christian; Erdos, Michael R; Fedson, Annette C; Fischer-Rosinsky, Antje; Forouhi, Nita G; Fox, Caroline S; Frants, Rune; Franzosi, Maria Grazia; Galan, Pilar; Goodarzi, Mark O; Graessler, Jürgen; Groves, Christopher J; Grundy, Scott; Gwilliam, Rhian; Gyllensten, Ulf; Hadjadj, Samy; Hallmans, Göran; Hammond, Naomi; Han, Xijing; Hartikainen, Anna-Liisa; Hassanali, Neelam; Hayward, Caroline; Heath, Simon C; Hercberg, Serge; Herder, Christian; Hicks, Andrew A; Hillman, David R; Hingorani, Aroon D; Hofman, Albert; Hui, Jennie; Hung, Joe; Isomaa, Bo; Johnson, Paul R V; Jørgensen, Torben; Jula, Antti; Kaakinen, Marika; Kaprio, Jaakko; Kesaniemi, Y Antero; Kivimaki, Mika; Knight, Beatrice; Koskinen, Seppo; Kovacs, Peter; Kyvik, Kirsten Ohm; Lathrop, G Mark; Lawlor, Debbie A; Le Bacquer, Olivier; Lecoeur, Cécile; Li, Yun; Lyssenko, Valeriya; Mahley, Robert; Mangino, Massimo; Manning, Alisa K; Martínez-Larrad, María Teresa; McAteer, Jarred B; McCulloch, Laura J; McPherson, Ruth; Meisinger, Christa; Melzer, David; Meyre, David; Mitchell, Braxton D; Morken, Mario A; Mukherjee, Sutapa; Naitza, Silvia; Narisu, Narisu; Neville, Matthew J; Oostra, Ben A; Orrù, Marco; Pakyz, Ruth; Palmer, Colin N A; Paolisso, Giuseppe; Pattaro, Cristian; Pearson, Daniel; Peden, John F; Pedersen, Nancy L.; Perola, Markus; Pfeiffer, Andreas F H; Pichler, Irene; Polasek, Ozren; Posthuma, Danielle; Potter, Simon C; Pouta, Anneli; Province, Michael A; Psaty, Bruce M; Rathmann, Wolfgang; Rayner, Nigel W; Rice, Kenneth; Ripatti, Samuli; Rivadeneira, Fernando; Roden, Michael; Rolandsson, Olov; Sandbaek, Annelli; Sandhu, Manjinder; Sanna, Serena; Sayer, Avan Aihie; Scheet, Paul; Scott, Laura J; Seedorf, Udo; Sharp, Stephen J; Shields, Beverley; Sigurðsson, Gunnar; Sijbrands, Erik J G; Silveira, Angela; Simpson, Laila; Singleton, Andrew; Smith, Nicholas L; Sovio, Ulla; Swift, Amy; Syddall, Holly; Syvänen, Ann-Christine; Tanaka, Toshiko; Thorand, Barbara; Tichet, Jean; Tönjes, Anke; Tuomi, Tiinamaija; Uitterlinden, André G; van Dijk, Ko Willems; van Hoek, Mandy; Varma, Dhiraj; Visvikis-Siest, Sophie; Vitart, Veronique; Vogelzangs, Nicole; Waeber, Gérard; Wagner, Peter J; Walley, Andrew; Walters, G Bragi; Ward, Kim L; Watkins, Hugh; Weedon, Michael N; Wild, Sarah H; Willemsen, Gonneke; Witteman, Jaqueline C M; Yarnell, John W G; Zeggini, Eleftheria; Zelenika, Diana; Zethelius, Björn; Zhai, Guangju; Zhao, Jing Hua; Zillikens, M Carola; Borecki, Ingrid B; Loos, Ruth J F; Meneton, Pierre; Magnusson, Patrik K E; Nathan, David M; Williams, Gordon H; Hattersley, Andrew T; Silander, Kaisa; Salomaa, Veikko; Smith, George Davey; Bornstein, Stefan R; Schwarz, Peter; Spranger, Joachim; Karpe, Fredrik; Shuldiner, Alan R; Cooper, Cyrus; Dedoussis, George V; Serrano-Ríos, Manuel; Morris, Andrew D; Lind, Lars; Palmer, Lyle J; Hu, Frank B.; Franks, Paul W; Ebrahim, Shah; Marmot, Michael; Kao, W H Linda; Pankow, James S; Sampson, Michael J; Kuusisto, Johanna; Laakso, Markku; Hansen, Torben; Pedersen, Oluf; Pramstaller, Peter Paul; Wichmann, H Erich; Illig, Thomas; Rudan, Igor; Wright, Alan F; Stumvoll, Michael; Campbell, Harry; Wilson, James F; Hamsten, Anders; Bergman, Richard N; Buchanan, Thomas A; Collins, Francis S; Mohlke, Karen L; Tuomilehto, Jaakko; Valle, Timo T; Altshuler, David; Rotter, Jerome I; Siscovick, David S; Penninx, Brenda W J H; Boomsma, Dorret; Deloukas, Panos; Spector, Timothy D; Frayling, Timothy M; Ferrucci, Luigi; Kong, Augustine; Thorsteinsdottir, Unnur; Stefansson, Kari; van Duijn, Cornelia M; Aulchenko, Yurii S; Cao, Antonio; Scuteri, Angelo; Schlessinger, David; Uda, Manuela; Ruokonen, Aimo; Jarvelin, Marjo-Riitta; Waterworth, Dawn M; Vollenweider, Peter; Peltonen, Leena; Mooser, Vincent; Abecasis, Goncalo R; Wareham, Nicholas J; Sladek, Robert; Froguel, Philippe; Watanabe, Richard M; Meigs, James B; Groop, Leif; Boehnke, Michael; McCarthy, Mark I; Florez, Jose C; Barroso, Inês

    2010-01-01

    Circulating glucose levels are tightly regulated. To identify novel glycemic loci, we performed meta-analyses of 21 genome-wide associations studies informative for fasting glucose (FG), fasting insulin (FI) and indices of β-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 non-diabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with FG/HOMA-B and two associated with FI/HOMA-IR. These include nine new FG loci (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and FAM148B) and one influencing FI/HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB/TMEM195 with type 2 diabetes (T2D). Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify T2D risk loci, as well as loci that elevate FG modestly, but do not cause overt diabetes. PMID:20081858

  18. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    PubMed Central

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian’an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O’Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tönu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have raised the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional follow-up of these newly discovered loci will further improve our understanding of glycemic control. PMID:22885924

  19. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens.

    PubMed

    Yang, Qin; He, Yijian; Kabahuma, Mercy; Chaya, Timothy; Kelly, Amy; Borrego, Eli; Bian, Yang; El Kasmi, Farid; Yang, Li; Teixeira, Paulo; Kolkman, Judith; Nelson, Rebecca; Kolomiets, Michael; L Dangl, Jeffery; Wisser, Randall; Caplan, Jeffrey; Li, Xu; Lauter, Nick; Balint-Kurti, Peter

    2017-09-01

    Alleles that confer multiple disease resistance (MDR) are valuable in crop improvement, although the molecular mechanisms underlying their functions remain largely unknown. A quantitative trait locus, qMdr 9.02 , associated with resistance to three important foliar maize diseases-southern leaf blight, gray leaf spot and northern leaf blight-has been identified on maize chromosome 9. Through fine-mapping, association analysis, expression analysis, insertional mutagenesis and transgenic validation, we demonstrate that ZmCCoAOMT2, which encodes a caffeoyl-CoA O-methyltransferase associated with the phenylpropanoid pathway and lignin production, is the gene within qMdr 9.02 conferring quantitative resistance to both southern leaf blight and gray leaf spot. We suggest that resistance might be caused by allelic variation at the level of both gene expression and amino acid sequence, thus resulting in differences in levels of lignin and other metabolites of the phenylpropanoid pathway and regulation of programmed cell death.

  20. Obesity-Related Genomic Loci Are Associated with Type 2 Diabetes in a Han Chinese Population

    PubMed Central

    Zhao, Qi; He, Jiang; Chen, Li; Zhao, Zhigang; Li, Qiang; Ge, Jiapu; Chen, Gang; Guo, Xiaohui; Lu, Juming; Weng, Jianping; Jia, Weiping; Ji, Linong; Xiao, Jianzhong; Shan, Zhongyan; Liu, Jie; Tian, Haoming; Ji, Qiuhe; Zhu, Dalong; Zhou, Zhiguang; Shan, Guangliang; Yang, Wenying

    2014-01-01

    Background and Aims Obesity is a well-known risk factor for type 2 diabetes. Genome-wide association studies have identified a number of genetic loci associated with obesity. The aim of this study is to examine the contribution of obesity-related genomic loci to type 2 diabetes in a Chinese population. Methods We successfully genotyped 18 obesity-related single nucleotide polymorphisms among 5338 type 2 diabetic patients and 4663 controls. Both individual and joint effects of these single nucleotide polymorphisms on type 2 diabetes and quantitative glycemic traits (assessing β-cell function and insulin resistance) were analyzed using logistic and linear regression models, respectively. Results Two single nucleotide polymorphisms near MC4R and GNPDA2 genes were significantly associated with type 2 diabetes before adjusting for body mass index and waist circumference (OR (95% CI) = 1.14 (1.06, 1.22) for the A allele of rs12970134, P = 4.75×10−4; OR (95% CI) = 1.10 (1.03, 1.17) for the G allele of rs10938397, P = 4.54×10−3). When body mass index and waist circumference were further adjusted, the association of MC4R with type 2 diabetes remained significant (P = 1.81×10−2) and that of GNPDA2 was attenuated (P = 1.26×10−1), suggesting the effect of the locus including GNPDA2 on type 2 diabetes may be mediated through obesity. Single nucleotide polymorphism rs2260000 within BAT2 was significantly associated with type 2 diabetes after adjusting for body mass index and waist circumference (P = 1.04×10−2). In addition, four single nucleotide polymorphisms (near or within SEC16B, BDNF, MAF and PRL genes) showed significant associations with quantitative glycemic traits in controls even after adjusting for body mass index and waist circumference (all P values<0.05). Conclusions This study indicates that obesity-related genomic loci were associated with type 2 diabetes and glycemic traits in the Han Chinese population. PMID:25093408

  1. A Quantitative Chemotherapy Genetic Interaction Map Reveals Factors Associated with PARP Inhibitor Resistance.

    PubMed

    Hu, Hsien-Ming; Zhao, Xin; Kaushik, Swati; Robillard, Lilliane; Barthelet, Antoine; Lin, Kevin K; Shah, Khyati N; Simmons, Andy D; Raponi, Mitch; Harding, Thomas C; Bandyopadhyay, Sourav

    2018-04-17

    Chemotherapy is used to treat most cancer patients, yet our understanding of factors that dictate response and resistance to such drugs remains limited. We report the generation of a quantitative chemical-genetic interaction map in human mammary epithelial cells charting the impact of the knockdown of 625 genes related to cancer and DNA repair on sensitivity to 29 drugs, covering all classes of chemotherapy. This quantitative map is predictive of interactions maintained in other cell lines, identifies DNA-repair factors, predicts cancer cell line responses to therapy, and prioritizes synergistic drug combinations. We identify that ARID1A loss confers resistance to PARP inhibitors in cells and ovarian cancer patients and that loss of GPBP1 causes resistance to cisplatin and PARP inhibitors through the regulation of genes involved in homologous recombination. This map helps navigate patient genomic data and optimize chemotherapeutic regimens by delineating factors involved in the response to specific types of DNA damage. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Novel Sources of Stripe Rust Resistance Identified by Genome-Wide Association Mapping in Ethiopian Durum Wheat (Triticum turgidum ssp. durum)

    PubMed Central

    Liu, Weizhen; Maccaferri, Marco; Rynearson, Sheri; Letta, Tesfaye; Zegeye, Habtemariam; Tuberosa, Roberto; Chen, Xianming; Pumphrey, Michael

    2017-01-01

    Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is a global concern for wheat production, and has been increasingly destructive in Ethiopia, as well as in the United States and in many other countries. As Ethiopia has a long history of stripe rust epidemics, its native wheat germplasm harbors potentially valuable resistance loci. Moreover, the Ethiopian germplasm has been historically underutilized in breeding of modern wheat worldwide and thus the resistance alleles from the Ethiopian germplasm represent potentially novel sources. The objective of this study was to identify loci conferring resistance to predominant Pst races in Ethiopia and the United States. Using a high-density 90 K wheat single nucleotide polymorphism array, a genome-wide association analysis (GWAS) was conducted on 182 durum wheat landrace accessions and contemporary varieties originating from Ethiopia. Landraces were detected to be more resistant at the seedling stage while cultivars were more resistant at the adult-plant stages. GWAS identified 68 loci associated with seedling resistance to one or more races. Six loci on chromosome arms 1AS, 1BS, 3AS, 4BL, and 5BL were associated with resistance against at least two races at the seedling stage, and five loci were previously undocumented. GWAS analysis of field resistance reactions identified 12 loci associated with resistance on chromosomes 1A, 1B, 2BS, 3BL, 4AL, 4B and 5AL, which were detected in at least two of six field screening nurseries at the adult-plant stage. Comparison with previously mapped resistance loci indicates that six of the 12 resistance loci are newly documented. This study reports effective sources of resistance to contemporary races in Ethiopia and the United States and reveals that Ethiopian durum wheat landraces are abundant in novel Pst resistance loci that may be transferred into adapted cultivars to provide resistance against Pst. PMID:28553306

  3. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus.

    PubMed

    Li, Fagen; Zhou, Changpin; Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10-56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa.

  4. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus

    PubMed Central

    Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10–56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa. PMID:26695430

  5. Genome-Wide Association Studies of Drug-Resistance Determinants.

    PubMed

    Volkman, Sarah K; Herman, Jonathan; Lukens, Amanda K; Hartl, Daniel L

    2017-03-01

    Population genetic strategies that leverage association, selection, and linkage have identified drug-resistant loci. However, challenges and limitations persist in identifying drug-resistance loci in malaria. In this review we discuss the genetic basis of drug resistance and the use of genome-wide association studies, complemented by selection and linkage studies, to identify and understand mechanisms of drug resistance and response. We also discuss the implications of nongenetic mechanisms of drug resistance recently reported in the literature, and present models of the interplay between nongenetic and genetic processes that contribute to the emergence of drug resistance. Throughout, we examine artemisinin resistance as an example to emphasize challenges in identifying phenotypes suitable for population genetic studies as well as complications due to multiple-factor drug resistance. Copyright © 2016. Published by Elsevier Ltd.

  6. [Fine mapping of complex disease susceptibility loci].

    PubMed

    Song, Qingfeng; Zhang, Hongxing; Ma, Yilong; Zhou, Gangqiao

    2014-01-01

    Genome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers have identified more than 3800 susceptibility loci for more than 660 diseases or traits. However, the most significantly associated variants or causative variants in these loci and their biological functions have remained to be clarified. These causative variants can help to elucidate the pathogenesis and discover new biomarkers of complex diseases. One of the main goals in the post-GWAS era is to identify the causative variants and susceptibility genes, and clarify their functional aspects by fine mapping. For common variants, imputation or re-sequencing based strategies were implemented to increase the number of analyzed variants and help to identify the most significantly associated variants. In addition, functional element, expression quantitative trait locus (eQTL) and haplotype analyses were performed to identify functional common variants and susceptibility genes. For rare variants, fine mapping was carried out by re-sequencing, rare haplotype analysis, family-based analysis, burden test, etc.This review summarizes the strategies and problems for fine mapping.

  7. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47.

    PubMed

    Anderson, Carl A; Boucher, Gabrielle; Lees, Charlie W; Franke, Andre; D'Amato, Mauro; Taylor, Kent D; Lee, James C; Goyette, Philippe; Imielinski, Marcin; Latiano, Anna; Lagacé, Caroline; Scott, Regan; Amininejad, Leila; Bumpstead, Suzannah; Baidoo, Leonard; Baldassano, Robert N; Barclay, Murray; Bayless, Theodore M; Brand, Stephan; Büning, Carsten; Colombel, Jean-Frédéric; Denson, Lee A; De Vos, Martine; Dubinsky, Marla; Edwards, Cathryn; Ellinghaus, David; Fehrmann, Rudolf S N; Floyd, James A B; Florin, Timothy; Franchimont, Denis; Franke, Lude; Georges, Michel; Glas, Jürgen; Glazer, Nicole L; Guthery, Stephen L; Haritunians, Talin; Hayward, Nicholas K; Hugot, Jean-Pierre; Jobin, Gilles; Laukens, Debby; Lawrance, Ian; Lémann, Marc; Levine, Arie; Libioulle, Cecile; Louis, Edouard; McGovern, Dermot P; Milla, Monica; Montgomery, Grant W; Morley, Katherine I; Mowat, Craig; Ng, Aylwin; Newman, William; Ophoff, Roel A; Papi, Laura; Palmieri, Orazio; Peyrin-Biroulet, Laurent; Panés, Julián; Phillips, Anne; Prescott, Natalie J; Proctor, Deborah D; Roberts, Rebecca; Russell, Richard; Rutgeerts, Paul; Sanderson, Jeremy; Sans, Miquel; Schumm, Philip; Seibold, Frank; Sharma, Yashoda; Simms, Lisa A; Seielstad, Mark; Steinhart, A Hillary; Targan, Stephan R; van den Berg, Leonard H; Vatn, Morten; Verspaget, Hein; Walters, Thomas; Wijmenga, Cisca; Wilson, David C; Westra, Harm-Jan; Xavier, Ramnik J; Zhao, Zhen Z; Ponsioen, Cyriel Y; Andersen, Vibeke; Torkvist, Leif; Gazouli, Maria; Anagnou, Nicholas P; Karlsen, Tom H; Kupcinskas, Limas; Sventoraityte, Jurgita; Mansfield, John C; Kugathasan, Subra; Silverberg, Mark S; Halfvarson, Jonas; Rotter, Jerome I; Mathew, Christopher G; Griffiths, Anne M; Gearry, Richard; Ahmad, Tariq; Brant, Steven R; Chamaillard, Mathias; Satsangi, Jack; Cho, Judy H; Schreiber, Stefan; Daly, Mark J; Barrett, Jeffrey C; Parkes, Miles; Annese, Vito; Hakonarson, Hakon; Radford-Smith, Graham; Duerr, Richard H; Vermeire, Séverine; Weersma, Rinse K; Rioux, John D

    2011-03-01

    Genome-wide association studies and candidate gene studies in ulcerative colitis have identified 18 susceptibility loci. We conducted a meta-analysis of six ulcerative colitis genome-wide association study datasets, comprising 6,687 cases and 19,718 controls, and followed up the top association signals in 9,628 cases and 12,917 controls. We identified 29 additional risk loci (P < 5 × 10(-8)), increasing the number of ulcerative colitis-associated loci to 47. After annotating associated regions using GRAIL, expression quantitative trait loci data and correlations with non-synonymous SNPs, we identified many candidate genes that provide potentially important insights into disease pathogenesis, including IL1R2, IL8RA-IL8RB, IL7R, IL12B, DAP, PRDM1, JAK2, IRF5, GNA12 and LSP1. The total number of confirmed inflammatory bowel disease risk loci is now 99, including a minimum of 28 shared association signals between Crohn's disease and ulcerative colitis.

  8. Genetical Genomics Identifies the Genetic Architecture for Growth and Weevil Resistance in Spruce

    PubMed Central

    Porth, Ilga; White, Richard; Jaquish, Barry; Alfaro, René; Ritland, Carol; Ritland, Kermit

    2012-01-01

    In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck.) in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids) that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs) for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL) co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1) genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2) master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce. PMID:22973444

  9. Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid.

    PubMed

    Cnaani, A; Zilberman, N; Tinman, S; Hulata, G; Ron, M

    2004-09-01

    We searched for genetic linkage between DNA markers and quantitative trait loci (QTLs) for innate immunity, response to stress, biochemical parameters of blood, and fish size in an F2 population derived from an interspecific tilapia hybrid (Oreochromis mossambicusx O. aureus). A family of 114 fish was scanned for 40 polymorphic microsatellite DNA markers and two polymorphic genes, covering approximately 80% of the tilapia genome. These fish had previously been phenotyped for seven immune-response traits and six blood parameters. Critical values for significance were P <0.05 with the false discovery rate (FDR) controlled at 40%. The genome-scan analysis resulted in 35 significant marker-trait associations, involving 26 markers in 16 linkage groups. In a second experiment, nine markers were re-sampled in a second family of 79 fish of the same species hybrid. Seven markers (GM180, GM553, MHC-I, UNH848, UNH868, UNH898 and UNH925) in five linkage groups (LG 1, 3, 4, 22 and 23) were associated with stress response traits. An additional six markers (GM47, GM552, UNH208, UNH881, UNH952, UNH998) in five linkage groups (LG 4, 16, 19, 20 and 23) were verified for their associations with immune response traits, by linkage to several different traits. The portion of variance explained by each QTL was 11% on average, with a maximum of 29%. The average additive effect of QTLs was 0.2 standard deviation units of stress response traits and fish size, with a maximum of 0.33. In three linkage groups (LG 1, 3 and 23) markers were associated with stress response, body weight and sex determination, confirming the location of QTLs reported by several other studies.

  10. Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review

    PubMed Central

    Lee, Chang-Ro; Lee, Jung Hun; Park, Kwang Seung; Jeong, Byeong Chul; Lee, Sang Hee

    2015-01-01

    The increase of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) poses a worldwide and serious health threat. Although new antibiotics, such as daptomycin and linezolid, have been developed for the treatment of infections of Gram-positive pathogens, the emergence of daptomycin-resistant and linezolid-resistant strains during therapy has now increased clinical treatment failures. In the past few years, studies using quantitative proteomic methods have provided a considerable progress in understanding antibiotic resistance mechanisms. In this review, to understand the resistance mechanisms to four clinically important antibiotics (methicillin, vancomycin, linezolid, and daptomycin) used in the treatment of Gram-positive pathogens, we summarize recent advances in studies on resistance mechanisms using quantitative proteomic methods, and also examine proteins playing an important role in the bacterial mechanisms of resistance to the four antibiotics. Proteomic researches can identify proteins whose expression levels are changed in the resistance mechanism to only one antibiotic, such as LiaH in daptomycin resistance and PrsA in vancomycin resistance, and many proteins simultaneously involved in resistance mechanisms to various antibiotics. Most of resistance-related proteins, which are simultaneously associated with resistance mechanisms to several antibiotics, play important roles in regulating bacterial envelope biogenesis, or compensating for the fitness cost of antibiotic resistance. Therefore, proteomic data confirm that antibiotic resistance requires the fitness cost and the bacterial envelope is an important factor in antibiotic resistance. PMID:26322035

  11. Genetic mapping of common bunt resistance and plant height QTL in wheat.

    PubMed

    Singh, Arti; Knox, Ron E; DePauw, R M; Singh, A K; Cuthbert, R D; Kumar, S; Campbell, H L

    2016-02-01

    Breeding for field resistance to common bunt in wheat will need to account for multiple genes and epistatic and QTL by environment interactions. Loci associated with quantitative resistance to common bunt are co-localized with other beneficial traits including plant height and rust resistance. Common bunt, also known as stinking smut, is caused by seed borne fungi Tilletia tritici (Bjerk.) Wint. [syn. Tilletia caries (DC.) Tul.] and Tilletia laevis Kühn [syn. Tilletia foetida (Wallr.) Liro.]. Common bunt is known to cause grain yield and quality losses in wheat due to bunt ball formation and infestation of the grain. The objectives of this research were to identify and map quantitative trait loci (QTL) for common bunt resistance, to study the epistatic interactions between the identified QTL, and investigate the co-localization of bunt resistance with plant height. A population of 261 doubled haploid lines from the cross Carberry/AC Cadillac and checks were genotyped with polymorphic genome wide microsatellite and DArT(®) markers. The lines were grown in 2011, 2012, and 2013 in separate nurseries for common bunt incidence and height evaluation. AC Cadillac contributed a QTL (QCbt.spa-6D) for common bunt resistance on chromosome 6D at markers XwPt-1695, XwPt-672044, and XwPt-5114. Carberry contributed QTL for bunt resistance on chromosomes 1B (QCbt.spa-1B at XwPt743523) 4B (QCbt.spa-4B at XwPt-744434-Xwmc617), 4D (QCbt.spa-4D at XwPt-9747), 5B (QCbt.spa-5B at XtPt-3719) and 7D (QCbt.spa-7D at Xwmc273). Significant epistatic interactions were identified for percent bunt incidence between QCbt.spa-1B × QCbt.spa-4B and QCbt.spa-1B × QCbt.spa-6D, and QTL by environment interaction between QCbt.spa-1B × QCbt.spa-6D. Plant height QTL were found on chromosomes 4B (QPh.spa-4B) and 6D (QPh.spa-6D) that co-located with bunt resistance QTL. The identification of previously unreported common bunt resistance QTL (on chromosomes 4B, 4D and 7D), and new understanding of QTL

  12. Whole-genome scan identifies quantitative trait loci for chronic pastern dermatitis in German draft horses.

    PubMed

    Mittmann, E Henrike; Mömke, Stefanie; Distl, Ottmar

    2010-02-01

    Chronic pastern dermatitis (CPD), also known as chronic progressive lymphedema (CPL), is a skin disease that affects draft horses. This disease causes painful lower-leg swelling, nodule formation, and skin ulceration, interfering with movement. The aim of this whole-genome scan was to identify quantitative trait loci (QTL) for CPD in German draft horses. We recorded clinical data for CPD in 917 German draft horses and collected blood samples from these horses. Of these 917 horses, 31 paternal half-sib families comprising 378 horses from the breeds Rhenish German, Schleswig, Saxon-Thuringian, and South German were chosen for genotyping. Each half-sib family was constituted by only one draft horse breed. Genotyping was done for 318 polymorphic microsatellites evenly distributed on all equine autosomes and the X chromosome with a mean distance of 7.5 Mb. An across-breed multipoint linkage analysis revealed chromosome-wide significant QTL on horse chromosomes (ECA) 1, 9, 16, and 17. Analyses by breed confirmed the QTL on ECA1 in South German and the QTL on ECA9, 16, and 17 in Saxon-Thuringian draft horses. For the Rhenish German and Schleswig draft horses, additional QTL on ECA4 and 10 and for the South German draft horses an additional QTL on ECA7 were found. This is the first whole-genome scan for CPD in draft horses and it is an important step toward the identification of candidate genes.

  13. Mapping Grain Iron and Zinc Content Quantitative Trait Loci in an Iniadi-Derived Immortal Population of Pearl Millet

    PubMed Central

    Kumar, Sushil; Hash, Charles Tom; Nepolean, Thirunavukkarasu; Mahendrakar, Mahesh D.; Satyavathi, Chellapilla Tara; Singh, Govind; Rathore, Abhishek; Gupta, Rajeev; Srivastava, Rakesh K.

    2018-01-01

    Pearl millet is a climate-resilient nutritious crop requiring low inputs and is capable of giving economic returns in marginal agro-ecologies. In this study, we report large-effect iron (Fe) and zinc (Zn) content quantitative trait loci (QTLs) using diversity array technology (DArT) and simple sequence repeats (SSRs) markers to generate a genetic linkage map using 317 recombinant inbred line (RIL) population derived from the (ICMS 8511-S1-17-2-1-1-B-P03 × AIMP 92901-S1-183-2-2-B-08) cross. The base map [seven linkage groups (LGs)] of 196 loci was 964.2 cM in length (Haldane). AIMP 92901-S1-183-2-2-B-08 is an Iniadi line with high grain Fe and Zn, tracing its origin to the Togolese Republic, West Africa. The content of grain Fe in the RIL population ranged between 20 and 131 ppm (parts per million), and that of Zn from 18 to 110 ppm. QTL analysis revealed a large number of QTLs for high grain iron (Fe) and zinc (Zn) content. A total of 19 QTLs for Fe and Zn were detected, of which 11 were for Fe and eight were for Zn. The portion of the observed phenotypic variance explained by different QTLs for grain Fe and Zn content varied from 9.0 to 31.9% (cumulative 74%) and from 9.4 to 30.4% (cumulative 65%), respectively. Three large-effect QTLs for both minerals were co-mapped in this population, one on LG1 and two on LG7. The favorable QTL alleles of both mineral micronutrients were contributed by the male parent (AIMP 92901-deriv-08). Three putative epistasis interactions were observed for Fe content, while a single digenic interaction was found for Zn content. The reported QTLs may be useful in marker-assisted selection (MAS) programs, in genomic selection (GS) breeding pipelines for seed and restorer parents, and in population improvement programs for pearl millet. PMID:29751669

  14. Mapping Grain Iron and Zinc Content Quantitative Trait Loci in an Iniadi-Derived Immortal Population of Pearl Millet.

    PubMed

    Kumar, Sushil; Hash, Charles Tom; Nepolean, Thirunavukkarasu; Mahendrakar, Mahesh D; Satyavathi, Chellapilla Tara; Singh, Govind; Rathore, Abhishek; Yadav, Rattan S; Gupta, Rajeev; Srivastava, Rakesh K

    2018-05-11

    Pearl millet is a climate-resilient nutritious crop requiring low inputs and is capable of giving economic returns in marginal agro-ecologies. In this study, we report large-effect iron (Fe) and zinc (Zn) content quantitative trait loci ( QTLs) using diversity array technology (DArT) and simple sequence repeats (SSRs) markers to generate a genetic linkage map using 317 recombinant inbred line (RIL) population derived from the (ICMS 8511-S1-17-2-1-1-B-P03 × AIMP 92901-S1-183-2-2-B-08) cross. The base map [seven linkage groups (LGs)] of 196 loci was 964.2 cM in length (Haldane). AIMP 92901-S1-183-2-2-B-08 is an Iniadi line with high grain Fe and Zn, tracing its origin to the Togolese Republic, West Africa. The content of grain Fe in the RIL population ranged between 20 and 131 ppm (parts per million), and that of Zn from 18 to 110 ppm. QTL analysis revealed a large number of QTLs for high grain iron (Fe) and zinc (Zn) content. A total of 19 QTLs for Fe and Zn were detected, of which 11 were for Fe and eight were for Zn. The portion of the observed phenotypic variance explained by different QTLs for grain Fe and Zn content varied from 9.0 to 31.9% (cumulative 74%) and from 9.4 to 30.4% (cumulative 65%), respectively. Three large-effect QTLs for both minerals were co-mapped in this population, one on LG1 and two on LG7. The favorable QTL alleles of both mineral micronutrients were contributed by the male parent (AIMP 92901-deriv-08). Three putative epistasis interactions were observed for Fe content, while a single digenic interaction was found for Zn content. The reported QTLs may be useful in marker-assisted selection (MAS) programs, in genomic selection (GS) breeding pipelines for seed and restorer parents, and in population improvement programs for pearl millet.

  15. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress.

    PubMed

    Van Goor, Angelica; Ashwell, Christopher M; Persia, Michael E; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2016-04-14

    Heat stress in poultry results in considerable economic losses and is a concern for both animal health and welfare. Physiological changes occur during periods of heat stress, including changes in blood chemistry components. A highly advanced intercross line, created from a broiler (heat susceptible) by Fayoumi (heat resistant) cross, was exposed to daily heat cycles for seven days starting at 22 days of age. Blood components measured pre-heat treatment and on the seventh day of heat treatment included pH, pCO2, pO2, base excess, HCO3, TCO2, K, Na, ionized Ca, hematocrit, hemoglobin, sO2, and glucose. A genome-wide association study (GWAS) for these traits and their calculated changes was conducted to identify quantitative trait loci (QTL) using a 600 K SNP panel. There were significant increases in pH, base excess, HCO3, TCO2, ionized Ca, hematocrit, hemoglobin, and sO2, and significant decreases in pCO2 and glucose after 7 days of heat treatment. Heritabilities ranged from 0.01-0.21 for pre-heat measurements, 0.01-0.23 for measurements taken during heat, and 0.00-0.10 for the calculated change due to heat treatment. All blood components were highly correlated within measurement days, but not correlated between measurement days. The GWAS revealed 61 QTL for all traits, located on GGA (Gallus gallus chromosome) 1, 3, 6, 9, 10, 12-14, 17, 18, 21-28, and Z. A functional analysis of the genes in these QTL regions identified the Angiopoietin pathway as significant. The QTL that co-localized for three or more traits were on GGA10, 22, 26, 28, and Z and revealed candidate genes for birds' response to heat stress. The results of this study contribute to our knowledge of levels and heritabilities of several blood components of chickens under thermoneutral and heat stress conditions. Most components responded to heat treatment. Mapped QTL may serve as markers for genomic selection to enhance heat tolerance in poultry. The Angiopoietin pathway is likely involved in the

  16. Fine Mapping of QUICK ROOTING 1 and 2, Quantitative Trait Loci Increasing Root Length in Rice.

    PubMed

    Kitomi, Yuka; Nakao, Emari; Kawai, Sawako; Kanno, Noriko; Ando, Tsuyu; Fukuoka, Shuichi; Irie, Kenji; Uga, Yusaku

    2018-02-02

    The volume that the root system can occupy is associated with the efficiency of water and nutrient uptake from soil. Genetic improvement of root length, which is a limiting factor for root distribution, is necessary for increasing crop production. In this report, we describe identification of two quantitative trait loci (QTLs) for maximal root length, QUICK ROOTING 1 ( QRO1 ) on chromosome 2 and QRO2 on chromosome 6, in cultivated rice ( Oryza sativa L.). We measured the maximal root length in 26 lines carrying chromosome segments from the long-rooted upland rice cultivar Kinandang Patong in the genetic background of the short-rooted lowland cultivar IR64. Five lines had longer roots than IR64. By rough mapping of the target regions in BC 4 F 2 populations, we detected putative QTLs for maximal root length on chromosomes 2, 6, and 8. To fine-map these QTLs, we used BC 4 F 3 recombinant homozygous lines. QRO1 was mapped between markers RM5651 and RM6107, which delimit a 1.7-Mb interval on chromosome 2, and QRO2 was mapped between markers RM20495 and RM3430-1, which delimit an 884-kb interval on chromosome 6. Both QTLs may be promising gene resources for improving root system architecture in rice. Copyright © 2018 Kitomi et al.

  17. Multigenic Control of Pod Shattering Resistance in Chinese Rapeseed Germplasm Revealed by Genome-Wide Association and Linkage Analyses

    PubMed Central

    Liu, Jia; Wang, Jun; Wang, Hui; Wang, Wenxiang; Zhou, Rijin; Mei, Desheng; Cheng, Hongtao; Yang, Juan; Raman, Harsh; Hu, Qiong

    2016-01-01

    The majority of rapeseed cultivars shatter seeds upon maturity especially under hot-dry and windy conditions, reducing yield and gross margin return to growers. Here, we identified quantitative trait loci (QTL) for resistance to pod shatter in an unstructured diverse panel of 143 rapeseed accessions, and two structured populations derived from bi-parental doubled haploid (DH) and inter-mated (IF2) crosses derived from R1 (resistant to pod shattering) and R2 (prone to pod shattering) accessions. Genome-wide association analysis identified six significant QTL for resistance to pod shatter located on chromosomes A01, A06, A07, A09, C02, and C05. Two of the QTL, qSRI.A09 delimited with the SNP marker Bn-A09-p30171993 (A09) and qSRI.A06 delimited with the SNP marker Bn-A06-p115948 (A06) could be repeatedly detected across environments in a diversity panel, DH and IF2 populations, suggesting that at least two loci on chromosomes A06 and A09 were the main contributors to pod shatter resistance in Chinese germplasm. Significant SNP markers identified in this study especially those that appeared repeatedly across environments provide a cost-effective and an efficient method for introgression and pyramiding of favorable alleles for pod shatter resistance via marker-assisted selection in rapeseed improvement programs. PMID:27493651

  18. Quantitative Assessment of Combination Antimicrobial Therapy against Multidrug-Resistant Acinetobacter baumannii▿

    PubMed Central

    Lim, Tze-Peng; Ledesma, Kimberly R.; Chang, Kai-Tai; Hou, Jing-Guo; Kwa, Andrea L.; Nikolaou, Michael; Quinn, John P.; Prince, Randall A.; Tam, Vincent H.

    2008-01-01

    Treatment of multidrug-resistant bacterial infections poses a therapeutic challenge to clinicians; combination therapy is often the only viable option for multidrug-resistant infections. A quantitative method was developed to assess the combined killing abilities of antimicrobial agents. Time-kill studies (TKS) were performed using a multidrug-resistant clinical isolate of Acinetobacter baumannii with escalating concentrations of cefepime (0 to 512 mg/liter), amikacin (0 to 256 mg/liter), and levofloxacin (0 to 64 mg/liter). The bacterial burden data in single and combined (two of the three agents with clinically achievable concentrations in serum) TKS at 24 h were mathematically modeled to provide an objective basis for comparing various antimicrobial agent combinations. Synergy and antagonism were defined as interaction indices of <1 and >1, respectively. A hollow-fiber infection model (HFIM) simulating various clinical (fluctuating concentrations over time) dosing exposures was used to selectively validate our quantitative assessment of the combined killing effect. Model fits in all single-agent TKS were satisfactory (r2 > 0.97). An enhanced combined overall killing effect was seen in the cefepime-amikacin combination (interactive index, 0.698; 95% confidence interval [CI], 0.675 to 0.722) and the cefepime-levofloxacin combination (interactive index, 0.929; 95% CI, 0.903 to 0.956), but no significant difference in the combined overall killing effect for the levofloxacin-amikacin combination was observed (interactive index, 0.994; 95% CI, 0.982 to 1.005). These assessments were consistent with observations in HFIM validation studies. Our method could be used to objectively rank the combined killing activities of two antimicrobial agents when used together against a multidrug-resistant A. baumannii isolate. It may offer better insights into the effectiveness of various antimicrobial combinations and warrants further investigations. PMID:18505848

  19. Plant Genetic Background Increasing the Efficiency and Durability of Major Resistance Genes to Root-knot Nematodes Can Be Resolved into a Few Resistance QTLs

    PubMed Central

    Barbary, Arnaud; Djian-Caporalino, Caroline; Marteu, Nathalie; Fazari, Ariane; Caromel, Bernard; Castagnone-Sereno, Philippe; Palloix, Alain

    2016-01-01

    With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs) in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes). However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a quantitative trait loci (QTL) analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, Meloidogyne incognita, M. arenaria, and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS–LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes. PMID:27242835

  20. Genetic and Physiological Characterization of Two Clusters of Quantitative Trait Loci Associated With Seed Dormancy and Plant Height in Rice

    PubMed Central

    Ye, Heng; Beighley, Donn H.; Feng, Jiuhuan; Gu, Xing-You

    2013-01-01

    Seed dormancy and plant height have been well-studied in plant genetics, but their relatedness and shared regulatory mechanisms in natural variants remain unclear. The introgression of chromosomal segments from weedy into cultivated rice (Oryza sativa) prompted the detection of two clusters (qSD1-2/qPH1 and qSD7-2/qPH7) of quantitative trait loci both associated with seed dormancy and plant height. Together, these two clusters accounted for >96% of the variances for plant height and ~71% of the variances for germination rate in an isogenic background across two environments. On the initial introgression segments, qSD1-2/qPH1 was dissected genetically from OsVp1 for vivipary and qSD7-2/qPH7 separated from Sdr4 for seed dormancy. The narrowed qSD1-2/qPH1 region encompasses the semidwarf1 (sd1) locus for gibberellin (GA) biosynthesis. The qSD1-2/qPH1 allele from the cultivar reduced germination and stem elongation and the mutant effects were recovered by exogenous GA, suggesting that sd1 is a candidate gene of the cluster. In contrast, the effect-reducing allele at qSD7-2/qPH7 was derived from the weedy line; this allele was GA-insensitive and blocked GA responses of qSD1-2/qPH1, including the transcription of a GA-inducible α-amylase gene in imbibed endosperm, suggesting that qSD7-2/qPH7 may work downstream from qSD1-2/qPH1 in GA signaling. Thus, this research established the seed dormancy-plant height association that is likely mediated by GA biosynthesis and signaling pathways in natural populations. The detected association contributed to weed mimicry for the plant stature in the agro-ecosystem dominated by semidwarf cultivars and revealed the potential benefit of semidwarf genes in resistance to preharvest sprouting. PMID:23390608

  1. Genetic and physiological characterization of two clusters of quantitative trait Loci associated with seed dormancy and plant height in rice.

    PubMed

    Ye, Heng; Beighley, Donn H; Feng, Jiuhuan; Gu, Xing-You

    2013-02-01

    Seed dormancy and plant height have been well-studied in plant genetics, but their relatedness and shared regulatory mechanisms in natural variants remain unclear. The introgression of chromosomal segments from weedy into cultivated rice (Oryza sativa) prompted the detection of two clusters (qSD1-2/qPH1 and qSD7-2/qPH7) of quantitative trait loci both associated with seed dormancy and plant height. Together, these two clusters accounted for >96% of the variances for plant height and ~71% of the variances for germination rate in an isogenic background across two environments. On the initial introgression segments, qSD1-2/qPH1 was dissected genetically from OsVp1 for vivipary and qSD7-2/qPH7 separated from Sdr4 for seed dormancy. The narrowed qSD1-2/qPH1 region encompasses the semidwarf1 (sd1) locus for gibberellin (GA) biosynthesis. The qSD1-2/qPH1 allele from the cultivar reduced germination and stem elongation and the mutant effects were recovered by exogenous GA, suggesting that sd1 is a candidate gene of the cluster. In contrast, the effect-reducing allele at qSD7-2/qPH7 was derived from the weedy line; this allele was GA-insensitive and blocked GA responses of qSD1-2/qPH1, including the transcription of a GA-inducible α-amylase gene in imbibed endosperm, suggesting that qSD7-2/qPH7 may work downstream from qSD1-2/qPH1 in GA signaling. Thus, this research established the seed dormancy-plant height association that is likely mediated by GA biosynthesis and signaling pathways in natural populations. The detected association contributed to weed mimicry for the plant stature in the agro-ecosystem dominated by semidwarf cultivars and revealed the potential benefit of semidwarf genes in resistance to preharvest sprouting.

  2. Multiple Avirulence Loci and Allele-Specific Effector Recognition Control the Pm3 Race-Specific Resistance of Wheat to Powdery Mildew[OPEN

    PubMed Central

    Roffler, Stefan; Stirnweis, Daniel; Treier, Georges; Herren, Gerhard; Korol, Abraham B.; Wicker, Thomas

    2015-01-01

    In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3a2/f2 from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 a2/f2 revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes. PMID:26452600

  3. An Improved Method for Measuring Quantitative Resistance to the Wheat Pathogen Zymoseptoria tritici Using High-Throughput Automated Image Analysis.

    PubMed

    Stewart, Ethan L; Hagerty, Christina H; Mikaberidze, Alexey; Mundt, Christopher C; Zhong, Ziming; McDonald, Bruce A

    2016-07-01

    Zymoseptoria tritici causes Septoria tritici blotch (STB) on wheat. An improved method of quantifying STB symptoms was developed based on automated analysis of diseased leaf images made using a flatbed scanner. Naturally infected leaves (n = 949) sampled from fungicide-treated field plots comprising 39 wheat cultivars grown in Switzerland and 9 recombinant inbred lines (RIL) grown in Oregon were included in these analyses. Measures of quantitative resistance were percent leaf area covered by lesions, pycnidia size and gray value, and pycnidia density per leaf and lesion. These measures were obtained automatically with a batch-processing macro utilizing the image-processing software ImageJ. All phenotypes in both locations showed a continuous distribution, as expected for a quantitative trait. The trait distributions at both sites were largely overlapping even though the field and host environments were quite different. Cultivars and RILs could be assigned to two or more statistically different groups for each measured phenotype. Traditional visual assessments of field resistance were highly correlated with quantitative resistance measures based on image analysis for the Oregon RILs. These results show that automated image analysis provides a promising tool for assessing quantitative resistance to Z. tritici under field conditions.

  4. Ranking Quantitative Resistance to Septoria tritici Blotch in Elite Wheat Cultivars Using Automated Image Analysis.

    PubMed

    Karisto, Petteri; Hund, Andreas; Yu, Kang; Anderegg, Jonas; Walter, Achim; Mascher, Fabio; McDonald, Bruce A; Mikaberidze, Alexey

    2018-05-01

    Quantitative resistance is likely to be more durable than major gene resistance for controlling Septoria tritici blotch (STB) on wheat. Earlier studies hypothesized that resistance affecting the degree of host damage, as measured by the percentage of leaf area covered by STB lesions, is distinct from resistance that affects pathogen reproduction, as measured by the density of pycnidia produced within lesions. We tested this hypothesis using a collection of 335 elite European winter wheat cultivars that was naturally infected by a diverse population of Zymoseptoria tritici in a replicated field experiment. We used automated image analysis of 21,420 scanned wheat leaves to obtain quantitative measures of conditional STB intensity that were precise, objective, and reproducible. These measures allowed us to explicitly separate resistance affecting host damage from resistance affecting pathogen reproduction, enabling us to confirm that these resistance traits are largely independent. The cultivar rankings based on host damage were different from the rankings based on pathogen reproduction, indicating that the two forms of resistance should be considered separately in breeding programs aiming to increase STB resistance. We hypothesize that these different forms of resistance are under separate genetic control, enabling them to be recombined to form new cultivars that are highly resistant to STB. We found a significant correlation between rankings based on automated image analysis and rankings based on traditional visual scoring, suggesting that image analysis can complement conventional measurements of STB resistance, based largely on host damage, while enabling a much more precise measure of pathogen reproduction. We showed that measures of pathogen reproduction early in the growing season were the best predictors of host damage late in the growing season, illustrating the importance of breeding for resistance that reduces pathogen reproduction in order to minimize

  5. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, III, William B.

    1997-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation.

  6. Whole-genome scan to detect quantitative trait loci associated with milk protein composition in 3 French dairy cattle breeds.

    PubMed

    Sanchez, M P; Govignon-Gion, A; Ferrand, M; Gelé, M; Pourchet, D; Amigues, Y; Fritz, S; Boussaha, M; Capitan, A; Rocha, D; Miranda, G; Martin, P; Brochard, M; Boichard, D

    2016-10-01

    In the context of the PhénoFinLait project, a genome-wide analysis was performed to detect quantitative trait loci (QTL) that affect milk protein composition estimated using mid-infrared spectrometry in the Montbéliarde (MO), Normande (NO), and Holstein (HO) French dairy cattle breeds. The 6 main milk proteins (α-lactalbumin, β-lactoglobulin, and αS1-, αS2-, β-, and κ-caseins) expressed as grams per 100g of milk (% of milk) or as grams per 100g of protein (% of protein) were estimated in 848,068 test-day milk samples from 156,660 cows. Genotyping was performed for 2,773 MO, 2,673 NO, and 2,208 HO cows using the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). Individual test-day records were adjusted for environmental effects and then averaged per cow to define the phenotypes analyzed. Quantitative trait loci detection was performed within each breed using a linkage disequilibrium and linkage analysis approach. A total of 39 genomic regions distributed on 20 of the 29 Bos taurus autosomes (BTA) were significantly associated with milk protein composition at a genome-wide level of significance in at least 1 of the 3 breeds. The 9 most significant QTL were located on BTA2 (133 Mbp), BTA6 (38, 47, and 87 Mbp), BTA11 (103 Mbp), BTA14 (1.8 Mbp), BTA20 (32 and 58 Mbp), and BTA29 (8 Mbp). The BTA6 (87 Mbp), BTA11, and BTA20 (58 Mbp) QTL were found in all 3 breeds, and they had highly significant effects on κ-casein, β-lactoglobulin, and α-lactalbumin, expressed as a percentage of protein, respectively. Each of these QTL explained between 13% (BTA14) and 51% (BTA11) of the genetic variance of the trait. Many other QTL regions were also identified in at least one breed. They were located on 14 additional chromosomes (1, 3, 4, 5, 7, 15, 17, 19, 21, 22, 24, 25, 26, and 27), and they explained 2 to 8% of the genetic variance of 1 or more protein composition traits. Concordance analyses, performed between QTL status and sequence-derived polymorphisms from

  7. Genetic Basis of Haloperidol Resistance in Saccharomyces cerevisiae Is Complex and Dose Dependent

    PubMed Central

    Wang, Xin; Kruglyak, Leonid

    2014-01-01

    The genetic basis of most heritable traits is complex. Inhibitory compounds and their effects in model organisms have been used in many studies to gain insights into the genetic architecture underlying quantitative traits. However, the differential effect of compound concentration has not been studied in detail. In this study, we used a large segregant panel from a cross between two genetically divergent yeast strains, BY4724 (a laboratory strain) and RM11_1a (a vineyard strain), to study the genetic basis of variation in response to different doses of a drug. Linkage analysis revealed that the genetic architecture of resistance to the small-molecule therapeutic drug haloperidol is highly dose-dependent. Some of the loci identified had effects only at low doses of haloperidol, while other loci had effects primarily at higher concentrations of the drug. We show that a major QTL affecting resistance across all concentrations of haloperidol is caused by polymorphisms in SWH1, a homologue of human oxysterol binding protein. We identify a complex set of interactions among the alleles of the genes SWH1, MKT1, and IRA2 that are most pronounced at a haloperidol dose of 200 µM and are only observed when the remainder of the genome is of the RM background. Our results provide further insight into the genetic basis of drug resistance. PMID:25521586

  8. Identification of new loci involved in the host susceptibility to Salmonella Typhimurium in collaborative cross mice.

    PubMed

    Zhang, Jing; Malo, Danielle; Mott, Richard; Panthier, Jean-Jacques; Montagutelli, Xavier; Jaubert, Jean

    2018-04-27

    Salmonella is a Gram-negative bacterium causing a wide range of clinical syndromes ranging from typhoid fever to diarrheic disease. Non-typhoidal Salmonella (NTS) serovars infect humans and animals, causing important health burden in the world. Susceptibility to salmonellosis varies between individuals under the control of host genes, as demonstrated by the identification of over 20 genetic loci in various mouse crosses. We have investigated the host response to S. Typhimurium infection in 35 Collaborative Cross (CC) strains, a genetic population which involves wild-derived strains that had not been previously assessed. One hundred and forty-eight mice from 35 CC strains were challenged intravenously with 1000 colony-forming units (CFUs) of S. Typhimurium. Bacterial load was measured in spleen and liver at day 4 post-infection. CC strains differed significantly (P < 0.0001) in spleen and liver bacterial loads, while sex and age had no effect. Two significant quantitative trait loci (QTLs) on chromosomes 8 and 10 and one suggestive QTL on chromosome 1 were found for spleen bacterial load, while two suggestive QTLs on chromosomes 6 and 17 were found for liver bacterial load. These QTLs are caused by distinct allelic patterns, principally involving alleles originating from the wild-derived founders. Using sequence variations between the eight CC founder strains combined with database mining for expression in target organs and known immune phenotypes, we were able to refine the QTLs intervals and establish a list of the most promising candidate genes. Furthermore, we identified one strain, CC042/GeniUnc (CC042), as highly susceptible to S. Typhimurium infection. By exploring a broader genetic variation, the Collaborative Cross population has revealed novel loci of resistance to Salmonella Typhimurium. It also led to the identification of CC042 as an extremely susceptible strain.

  9. Association mapping of stem rust race TTKSK resistance in US barley breeding germplasm.

    PubMed

    Zhou, H; Steffenson, B J; Muehlbauer, Gary; Wanyera, Ruth; Njau, Peter; Ndeda, Sylvester

    2014-06-01

    Loci conferring resistance to the highly virulent African stem rust race TTKSK were identified in advanced barley breeding germplasm and positioned to chromosomes 5H and 7H using an association mapping approach. African races of the stem rust pathogen (Puccinia graminis f. sp. tritici) are a serious threat to barley production worldwide because of their wide virulence. To discover and characterize resistance to African stem rust race TTKSK in US barley breeding germplasm, over 3,000 lines/cultivars were assessed for resistance at the seedling stage in the greenhouse and also the adult plant stage in the field in Kenya. Only 12 (0.3 %) and 64 (2.1 %) lines exhibited a resistance level comparable to the resistant control at the seedling and adult plant stage, respectively. To map quantitative trait loci (QTL) for resistance to race TTKSK, an association mapping approach was conducted, utilizing 3,072 single nucleotide polymorphism (SNP) markers. At the seedling stage, two neighboring SNP markers (0.8 cM apart) on chromosome 7H (11_21491 and 12_30528) were found significantly associated with resistance. The most significant one found was 12_30528; thus, the resistance QTL was named Rpg-qtl-7H-12_30528. At the adult plant stage, two SNP markers on chromosome 5H (11_11355 and 12_31427) were found significantly associated with resistance. This resistance QTL was named Rpg-qtl-5H-11_11355 for the most significant marker identified. Adult plant resistance is of paramount importance for stem rust. The marker associated with Rpg-qtl-5H-11_11355 for adult plant resistance explained only a small portion of the phenotypic variation (0.02); however, this QTL reduced disease severity up to 55.0 % under low disease pressure and up to 21.1 % under heavy disease pressure. SNP marker 11_11355 will be valuable for marker-assisted selection of adult plant stem rust resistance in barley breeding.

  10. Quantitative Trait Loci for Cold Tolerance of Rice Recombinant Inbred Lines in Low Temperature Environments

    PubMed Central

    Jiang, Wenzhu; Jin, Yong-Mei; Lee, Joohyun; Lee, Kang-Ie; Piao, Rihua; Han, Longzhi; Shin, Jin-Chul; Jin, Rong-De; Cao, Tiehua; Pan, Hong-Yu; Du, Xinglin; Koh, Hee-Jong

    2011-01-01

    Low temperature is one of the major environmental stresses in rice cultivation in high-altitude and high-latitude regions. In this study, we cultivated a set of recombinant inbred lines (RIL) derived from Dasanbyeo (indica) / TR22183 (japonica) crosses in Yanji (high-latitude area), Kunming (high-altitude area), Chuncheon (cold water irrigation) and Suwon (normal) to evaluate the main effects of quantitative trait loci (QTL) and epistatic QTL (E-QTL) with regard to their interactions with environments for coldrelated traits. Six QTLs for spikelet fertility (SF) were identified in three cold treatment locations. Among them, four QTLs on chromosomes 2, 7, 8, and 10 were validated by several near isogenic lines (NILs) under cold treatment in Chuncheon. A total of 57 QTLs and 76 E-QTLs for nine cold-related traits were identified as distributing on all 12 chromosomes; among them, 19 QTLs and E-QTLs showed significant interactions of QTLs and environments (QEIs). The total phenotypic variation explained by each trait ranged from 13.2 to 29.1% in QTLs, 10.6 to 29.0% in EQTLs, 2.2 to 8.8% in QEIs and 1.0% to 7.7% in E-QTL × environment interactions (E-QEIs). These results demonstrate that epistatic effects and QEIs are important properties of QTL parameters for cold tolerance at the reproductive stage. In order to develop cold tolerant varieties adaptable to wide-ranges of cold stress, a strategy facilitating marker-assisted selection (MAS) is being adopted to accumulate QTLs identified from different environments. PMID:22080374

  11. A three-component system incorporating Ppd-D1, copy number variation at Ppd-B1, and numerous small-effect quantitative trait loci facilitates adaptation of heading time in winter wheat cultivars of worldwide origin.

    PubMed

    Würschum, Tobias; Langer, Simon M; Longin, C Friedrich H; Tucker, Matthew R; Leiser, Willmar L

    2018-06-01

    The broad adaptability of heading time has contributed to the global success of wheat in a diverse array of climatic conditions. Here, we investigated the genetic architecture underlying heading time in a large panel of 1,110 winter wheat cultivars of worldwide origin. Genome-wide association mapping, in combination with the analysis of major phenology loci, revealed a three-component system that facilitates the adaptation of heading time in winter wheat. The photoperiod sensitivity locus Ppd-D1 was found to account for almost half of the genotypic variance in this panel and can advance or delay heading by many days. In addition, copy number variation at Ppd-B1 was the second most important source of variation in heading, explaining 8.3% of the genotypic variance. Results from association mapping and genomic prediction indicated that the remaining variation is attributed to numerous small-effect quantitative trait loci that facilitate fine-tuning of heading to the local climatic conditions. Collectively, our results underpin the importance of the two Ppd-1 loci for the adaptation of heading time in winter wheat and illustrate how the three components have been exploited for wheat breeding globally. © 2018 John Wiley & Sons Ltd.

  12. BPS Jumping Loci are Automorphic

    NASA Astrophysics Data System (ADS)

    Kachru, Shamit; Tripathy, Arnav

    2018-06-01

    We show that BPS jumping loci-loci in the moduli space of string compactifications where the number of BPS states jumps in an upper semi-continuous manner—naturally appear as Fourier coefficients of (vector space-valued) automorphic forms. For the case of T 2 compactification, the jumping loci are governed by a modular form studied by Hirzebruch and Zagier, while the jumping loci in K3 compactification appear in a story developed by Oda and Kudla-Millson in arithmetic geometry. We also comment on some curious related automorphy in the physics of black hole attractors and flux vacua.

  13. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, W.B. III

    1997-05-27

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity are disclosed. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie`s Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. 7 figs.

  14. Genetic mapping of resistance to Fusarium oxysporum f. sp. tulipae in tulip.

    PubMed

    Tang, Nan; van der Lee, Theo; Shahin, Arwa; Holdinga, Maarten; Bijman, Paul; Caser, Matteo; Visser, Richard G F; van Tuyl, Jaap M; Arens, Paul

    Fusarium oxysporum is a major problem in the production of tulip bulbs. Breeding for resistant cultivars through a conventional approach is a slow process due to the long life cycle of tulip. Until now, marker-assisted selection (MAS) has been hampered by the large genome size and the absence of a genetic map. This study is aimed at construction of the first genetic map for tulip and at the identification of loci associated with resistance to F. oxysporum . A cross-pollinated population of 125 individuals segregating for Fusarium resistance was obtained from Tulipa gesneriana "Kees Nelis" and T. fosteriana "Cantata." Fusarium resistance of the mapping population was evaluated through a soil infection test in two consecutive years, and a spot inoculation test in which a green fluorescent protein tagged Fusarium strain was used for inoculation. The genetic maps have been constructed for the parents separately. The genetic map of "Kees Nelis" comprised 342 markers on 27 linkage groups covering 1707 cM, while the map of "Cantata" comprised 300 markers on 21 linkage groups covering 1201 cM. Median distance between markers was 3.9 cM for "Kees Nelis" and 3.1 cM for "Cantata." Six putative quantitative trait loci (QTLs) for Fusarium resistance were identified, derived from both parents. QTL2, QTL3, and QTL6 were significant in all disease tests. For the flanking markers of the QTLs, phenotypic means of the two allelic groups, segregating from a parent for such a marker, were significantly different. These markers will be useful for the development of MAS in tulip breeding.

  15. Small brown planthopper resistance loci in wild rice (Oryza officinalis).

    PubMed

    Zhang, Weilin; Dong, Yan; Yang, Ling; Ma, Bojun; Ma, Rongrong; Huang, Fudeng; Wang, Changchun; Hu, Haitao; Li, Chunshou; Yan, Chengqi; Chen, Jianping

    2014-06-01

    Host-plant resistance is the most practical and economical approach to control the rice planthoppers. However, up to date, few rice germplasm accessions that are resistant to the all three kinds of planthoppers (1) brown planthopper (BPH; Nilaparvata lugens Stål), (2) the small brown planthopper (SBPH; Laodelphax striatellus Fallen), and (3) the whitebacked planthopper (WBPH, Sogatella furcifera Horvath) have been identified; consequently, the genetic basis for host-plant broad spectrum resistance to rice planthoppers in a single variety has been seldom studied. Here, one wild species, Oryza officinalis (Acc. HY018, 2n = 24, CC), was detected showing resistance to the all three kinds of planthoppers. Because resistance to WBPH and BPH in O. officinalis has previously been reported, the study mainly focused on its SBPH resistance. The SBPH resistance gene(s) was (were) introduced into cultivated rice via asymmetric somatic hybridization. Three QTLs for SBPH resistance detected by the SSST method were mapped and confirmed on chromosomes 3, 7, and 12, respectively. The allelic/non-allelic relationship and relative map positions of the three kinds of planthopper resistance genes in O. officinalis show that the SBPH, WBPH, and BPH resistance genes in O. officinalis were governed by multiple genes, but not by any major gene. The data on the genetics of host-plant broad spectrum resistance to planthoppers in a single accession suggested that the most ideally practical and economical approach for rice breeders is to screen the sources of broad spectrum resistance to planthoppers, but not to employ broad spectrum resistance gene for the management of planthoppers. Pyramiding these genes in a variety can be an effective way for the management of planthoppers.

  16. Inheritance of Carboxin Resistance in a European Field Isolate of Ustilago nuda.

    PubMed

    Newcombe, G; Thomas, P L

    2000-02-01

    ABSTRACT Two carboxin-resistant field isolates of Ustilago nuda from Europe were crossed with a carboxin-sensitive field isolate from North America. Meiotic tetrads isolated from germinating F(1) teliospores of one of the hybrids were tested for carboxin resistance and mating type. Carboxin resistance was shown to be controlled by a single gene (CBX1R), because a 1:1 segregation of carboxin resistance was observed in all 27 tetrads. Tetrad analysis indicated that the loci for carboxin resistance (Cbx1) and mating type (MAT1) segregate independently but may be located on the same chromosome. Tetrad analysis was not possible with the F(1) hybrid of he other field isolate, and its resistance cannot yet be attributed to CBX1R. Carboxin resistance was qualitatively dominant to sensitivity in vitro, as demonstrated by triad analysis of germinating F(1) teliospores. Quantitative in planta infection percents supported the conclusion that CBX1R is dominant, although incompletely, in the F(1) hybrid of one of the field isolates. Also, fewer than expected carboxin-sensitive F(2) individuals were observed in planta. However, inoculations of host plants with U. nuda have resulted in similar, unexpected variation in the past.

  17. Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat.

    PubMed

    Oyiga, Benedict C; Sharma, Ram C; Baum, Michael; Ogbonnaya, Francis C; Léon, Jens; Ballvora, Agim

    2018-05-01

    The increasing salinization of agricultural lands is a threat to global wheat production. Understanding of the mechanistic basis of salt tolerance (ST) is essential for developing breeding and selection strategies that would allow for increased wheat production under saline conditions to meet the increasing global demand. We used a set that consists of 150 internationally derived winter and facultative wheat cultivars genotyped with a 90K SNP chip and phenotyped for ST across three growth stages and for ionic (leaf K + and Na +  contents) traits to dissect the genetic architecture regulating ST in wheat. Genome-wide association mapping revealed 187 Single Nucleotide Polymorphism (SNPs) (R 2  = 3.00-30.67%), representing 37 quantitative trait loci (QTL), significantly associated with the ST traits. Of these, four QTL on 1BS, 2AL, 2BS and 3AL were associated with ST across the three growth stages and with the ionic traits. Novel QTL were also detected on 1BS and 1DL. Candidate genes linked to these polymorphisms were uncovered, and expression analyses were performed and validated on them under saline and non-saline conditions using transcriptomics and qRT-PCR data. Expressed sequence comparisons in contrasting ST wheat genotypes identified several non-synonymous/missense mutation sites that are contributory to the ST trait variations, indicating the biological relevance of these polymorphisms that can be exploited in breeding for ST in wheat. © 2017 The Authors. Plant, Cell & Environment published by JohnWiley & Sons Ltd.

  18. Loci-STREAM Version 0.9

    NASA Technical Reports Server (NTRS)

    Wright, Jeffrey; Thakur, Siddharth

    2006-01-01

    Loci-STREAM is an evolving computational fluid dynamics (CFD) software tool for simulating possibly chemically reacting, possibly unsteady flows in diverse settings, including rocket engines, turbomachines, oil refineries, etc. Loci-STREAM implements a pressure- based flow-solving algorithm that utilizes unstructured grids. (The benefit of low memory usage by pressure-based algorithms is well recognized by experts in the field.) The algorithm is robust for flows at all speeds from zero to hypersonic. The flexibility of arbitrary polyhedral grids enables accurate, efficient simulation of flows in complex geometries, including those of plume-impingement problems. The present version - Loci-STREAM version 0.9 - includes an interface with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library for access to enhanced linear-equation-solving programs therein that accelerate convergence toward a solution. The name "Loci" reflects the creation of this software within the Loci computational framework, which was developed at Mississippi State University for the primary purpose of simplifying the writing of complex multidisciplinary application programs to run in distributed-memory computing environments including clusters of personal computers. Loci has been designed to relieve application programmers of the details of programming for distributed-memory computers.

  19. Quantitative trait locus mapping of human blood pressure to a genetic region at or near the lipoprotein lipase gene locus on chromosome 8p22.

    PubMed Central

    Wu, D A; Bu, X; Warden, C H; Shen, D D; Jeng, C Y; Sheu, W H; Fuh, M M; Katsuya, T; Dzau, V J; Reaven, G M; Lusis, A J; Rotter, J I; Chen, Y D

    1996-01-01

    Resistance to insulin-mediated glucose disposal is a common finding in patients with non-insulin-dependent diabetes mellitus (NIDDM), as well as in nondiabetic individuals with hypertension. In an effort to identify the generic loci responsible for variations in blood pressure in individuals at increased risk of insulin resistance, we studied the distribution of blood pressure in 48 Taiwanese families with NIDDM and conducted quantitative sib-pair linkage analysis with candidate loci for insulin resistance, lipid metabolism, and blood pressure control. We found no evidence for linkage of the angiotensin converting enzyme locus on chromosome 17, nor the angiotensinogen and renin loci on chromosome 1, with either systolic or diastolic blood pressures. In contrast, we obtained significant evidence for linkage or systolic blood pressure, but not diastolic blood pressure, to a genetic region at or near the lipoprotein lipase (LPL) locus on the short arm of chromosome 8 (P = 0.002, n = 125 sib-pairs, for the haplotype generated from two simple sequence repeat markers within the LPL gene). Further strengthening this linkage observation, two flanking marker loci for LPL locus, D8S261 (9 cM telomeric to LPL locus) and D8S282 (3 cM centromeric to LPL locus), also showed evidence for linkage with systolic blood pressure (P = 0.02 and 0.0002 for D8S261 and D8S282, respectively). Two additional centromeric markers (D8S133, 5 cM from LPL locus, and NEFL, 11 cM from LPL locus) yielded significant P values of 0.01 and 0.001, respectively. Allelic variation around the LPL gene locus accounted for as much as 52-73% of the total interindividual variation in systolic blood pressure levels in this data set. Thus, we have identified a genetic locus at or near the LPL gene locus which contributes to the variation of systolic blood pressure levels in nondiabetic family members at high risk for insulin resistance and NIDDM. PMID:8621801

  20. Population genetics structure of glyphosate-resistant Johnsongrass (Sorghum halepense L. Pers) does not support a single origin of the resistance

    PubMed Central

    Fernández, Luis; de Haro, Luis Alejandro; Distefano, Ana J; Carolina Martínez, Maria; Lía, Verónica; Papa, Juan C; Olea, Ignacio; Tosto, Daniela; Esteban Hopp, Horacio

    2013-01-01

    Single sequence repeats (SSR) developed for Sorghum bicolor were used to characterize the genetic distance of 46 different Sorghum halepense (Johnsongrass) accessions from Argentina some of which have evolved toward glyphosate resistance. Since Johnsongrass is an allotetraploid and only one subgenome is homologous to cultivated sorghum, some SSR loci amplified up to two alleles while others (presumably more conserved loci) amplified up to four alleles. Twelve SSR providing information of 24 loci representative of Johnsongrass genome were selected for genetic distance characterization. All of them were highly polymorphic, which was evidenced by the number of different alleles found in the samples studied, in some of them up to 20. UPGMA and Mantel analysis showed that Johnsongrass glyphosate-resistant accessions that belong to different geographic regions do not share similar genetic backgrounds. In contrast, they show closer similarity to their neighboring susceptible counterparts. Discriminant Analysis of Principal Components using the clusters identified by K-means support the lack of a clear pattern of association among samples and resistance status or province of origin. Consequently, these results do not support a single genetic origin of glyphosate resistance. Nucleotide sequencing of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from glyphosate-resistant and susceptible accessions collected from different geographic origins showed that none presented expected mutations in aminoacid positions 101 and 106 which are diagnostic of target-site resistance mechanism. PMID:24223277

  1. Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines.

    PubMed

    Divilov, Konstantin; Barba, Paola; Cadle-Davidson, Lance; Reisch, Bruce I

    2018-05-01

    Downy mildew resistance across days post-inoculation, experiments, and years in two interspecific grapevine F 1 families was investigated using linear mixed models and Bayesian networks, and five new QTL were identified. Breeding grapevines for downy mildew disease resistance has traditionally relied on qualitative gene resistance, which can be overcome by pathogen evolution. Analyzing two interspecific F 1 families, both having ancestry derived from Vitis vinifera and wild North American Vitis species, across 2 years and multiple experiments, we found multiple loci associated with downy mildew sporulation and hypersensitive response in both families using a single phenotype model. The loci explained between 7 and 17% of the variance for either phenotype, suggesting a complex genetic architecture for these traits in the two families studied. For two loci, we used RNA-Seq to detect differentially transcribed genes and found that the candidate genes at these loci were likely not NBS-LRR genes. Additionally, using a multiple phenotype Bayesian network analysis, we found effects between the leaf trichome density, hypersensitive response, and sporulation phenotypes. Moderate-high heritabilities were found for all three phenotypes, suggesting that selection for downy mildew resistance is an achievable goal by breeding for either physical- or non-physical-based resistance mechanisms, with the combination of the two possibly providing durable resistance.

  2. A novel eQTL-based analysis reveals the biology of breast cancer risk loci

    PubMed Central

    Li, Qiyuan; Seo, Ji-Heui; Stranger, Barbara; McKenna, Aaron; Pe'er, Itsik; LaFramboise, Thomas; Brown, Myles; Tyekucheva, Svitlana; Freedman, Matthew L.

    2014-01-01

    Summary Germline determinants of gene expression in tumors are less studied due to the complexity of transcript regulation caused by somatically acquired alterations. We performed expression quantitative trait locus (eQTL) based analyses using the multi-level information provided in The Cancer Genome Atlas (TCGA). Of the factors we measured, cis-acting eQTL saccounted for 1.2% of the total variation of tumor gene expression, while somatic copy number alteration and CpG methylation accounted for 7.3% and 3.3%, respectively. eQTL analyses of 15 previously reported breast cancer risk loci resulted in discovery of three variants that are significantly associated with transcript levels (FDR<0.1). In a novel trans- based analysis, an additional three risk loci were identified to act through ESR1, MYC, and KLF4. These findings provide a more comprehensive picture of gene expression determinants in breast cancer as well as insights into the underlying biology of breast cancer risk loci. PMID:23374354

  3. Identification of bioconversion quantitative trait loci in the interspecific cross Sorghum bicolor × Sorghum propinquum.

    PubMed

    Vandenbrink, Joshua P; Goff, Valorie; Jin, Huizhe; Kong, Wenqian; Paterson, Andrew H; Feltus, F Alex

    2013-09-01

    For lignocellulosic bioenergy to be economically viable, genetic improvements must be made in feedstock quality including both biomass total yield and conversion efficiency. Toward this goal, multiple studies have considered candidate genes and discovered quantitative trait loci (QTL) associated with total biomass accumulation and/or grain production in bioenergy grass species including maize and sorghum. However, very little research has been focused on genes associated with increased biomass conversion efficiency. In this study, Trichoderma viride fungal cellulase hydrolysis activity was measured for lignocellulosic biomass (leaf and stem tissue) obtained from individuals in a F5 recombinant inbred Sorghum bicolor × Sorghum propinquum mapping population. A total of 49 QTLs (20 leaf, 29 stem) were associated with enzymatic conversion efficiency. Interestingly, six high-density QTL regions were identified in which four or more QTLs overlapped. In addition to enzymatic conversion efficiency QTLs, two QTLs were identified for biomass crystallinity index, a trait which has been shown to be inversely correlated with conversion efficiency in bioenergy grasses. The identification of these QTLs provides an important step toward identifying specific genes relevant to increasing conversion efficiency of bioenergy feedstocks. DNA markers linked to these QTLs could be useful in marker-assisted breeding programs aimed at increasing overall bioenergy yields concomitant with selection of high total biomass genotypes.

  4. Adrenal cortex expression quantitative trait loci in a German Holstein × Charolais cross.

    PubMed

    Brand, Bodo; Scheinhardt, Markus O; Friedrich, Juliane; Zimmer, Daisy; Reinsch, Norbert; Ponsuksili, Siriluck; Schwerin, Manfred; Ziegler, Andreas

    2016-10-06

    The importance of the adrenal gland in regard to lactation and reproduction in cattle has been recognized early. Caused by interest in animal welfare and the impact of stress on economically important traits in farm animals the adrenal gland and its function within the stress response is of increasing interest. However, the molecular mechanisms and pathways involved in stress-related effects on economically important traits in farm animals are not fully understood. Gene expression is an important mechanism underlying complex traits, and genetic variants affecting the transcript abundance are thought to influence the manifestation of an expressed phenotype. We therefore investigated the genetic background of adrenocortical gene expression by applying an adaptive linear rank test to identify genome-wide expression quantitative trait loci (eQTL) for adrenal cortex transcripts in cattle. A total of 10,986 adrenal cortex transcripts and 37,204 single nucleotide polymorphisms (SNPs) were analysed in 145 F2 cows of a Charolais × German Holstein cross. We identified 505 SNPs that were associated with the abundance of 129 transcripts, comprising 482 cis effects and 17 trans effects. These SNPs were located on all chromosomes but X, 16, 24 and 28. Associated genes are mainly involved in molecular and cellular functions comprising free radical scavenging, cellular compromise, cell morphology and lipid metabolism, including genes such as CYP27A1 and LHCGR that have been shown to affect economically important traits in cattle. In this study we showed that adrenocortical eQTL affect the expression of genes known to contribute to the phenotypic manifestation in cattle. Furthermore, some of the identified genes and related molecular pathways were previously shown to contribute to the phenotypic variation of behaviour, temperament and growth at the onset of puberty in the same population investigated here. We conclude that eQTL analysis appears to be a useful approach providing

  5. A Strategy for Identifying Quantitative Trait Genes Using Gene Expression Analysis and Causal Analysis.

    PubMed

    Ishikawa, Akira

    2017-11-27

    Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.

  6. Variation in heading date conceals quantitative trait loci for other traits of importance in breeding selection of rice

    PubMed Central

    Hori, Kiyosumi; Kataoka, Tomomori; Miura, Kiyoyuki; Yamaguchi, Masayuki; Saka, Norikuni; Nakahara, Takahiro; Sunohara, Yoshihiro; Ebana, Kaworu; Yano, Masahiro

    2012-01-01

    To identify quantitative trait loci (QTLs) associated with the primary target traits for selection in practical rice breeding programs, backcross inbred lines (BILs) derived from crosses between temperate japonica rice cultivars Nipponbare and Koshihikari were evaluated for 50 agronomic traits at six experimental fields located throughout Japan. Thirty-three of the 50 traits were significantly correlated with heading date. Using a linkage map including 647 single-nucleotide polymorphisms (SNPs), a total of 122 QTLs for 38 traits were mapped on all rice chromosomes except chromosomes 5 and 9. Fifty-eight of the 122 QTLs were detected near the heading date QTLs Hd16 and Hd17 and the remaining 64 QTLs were found in other chromosome regions. QTL analysis of 51 BILs having homozygous for the Koshihikari chromosome segments around Hd16 and Hd17 allowed us to detect 40 QTLs associated with 27 traits; 23 of these QTLs had not been detected in the original analysis. Among the 97 QTLs for the 30 traits measured in multiple environments, the genotype-by-environment interaction was significant for 44 QTLs and not significant for 53 QTLs. These results led us to propose a new selection strategy to improve agronomic performance in temperate japonica rice cultivars. PMID:23226082

  7. Quantitative trait loci that control body weight in DDD/Sgn and C57BL/6J inbred mice.

    PubMed

    Suto, Jun-Ichi; Kojima, Misaki

    2017-02-01

    Inbred DDD/Sgn mice are heavier than inbred C57BL/6J mice. In the present study, we performed quantitative trait loci (QTL) mapping for body weight using R/qtl in reciprocal F 2 male populations between the two strains. We identified four significant QTL on Chrs 1, 2, 5, and 17 (proximal region). The DDD/Sgn allele was associated with increased body weight at QTL on Chrs 1 and 5, and the DDD/Sgn allele was associated with decreased body weight at QTL on Chrs 2 and 17. A multiple regression analysis indicated that the detected QTL explain 30.94 % of the body weight variation. Because DDD/Sgn male mice have extremely high levels of circulating testosterone relative to other inbred mouse strains, we performed QTL mapping for plasma testosterone level to examine the effect of testosterone levels on body weight. We identified one suggestive QTL on Chr 5, which overlapped with body weight QTL. The DDD/Sgn allele was associated with increased testosterone level. Thus, we confirmed that there was a genetic basis for the changes in body weight and testosterone levels in male mice. These findings provide insights into the genetic mechanism by which body weight is controlled in male mice.

  8. Functional Interactions between Major Rice Blast Resistance Genes, Pi-ta and Pi-b, and Minor Blast Resistance QTL.

    PubMed

    Chen, Xinglong; Jia, Yulin; Jia, Melissa H; Pinson, Shannon; Wang, Xueyan; Wu, Bo Ming

    2018-04-16

    Major blast resistance (R) genes confer resistance in a gene-for-gene manner. However, little information is available on interactions between R genes. In this study, interactions between two rice blast R genes, Pi-ta and Pi-b, and other minor blast resistance quantitative trait loci (QTL) were investigated in a recombinant inbred line (RIL) population comprising of 243 RILs from a 'Cybonnet' (CYBT)×'Saber' (SB) cross. CYBT has the R gene Pi-ta and SB has Pi-b. Ten differential isolates of four Magnaporthe oryzae races (IB-1, IB-17, IB-49, and IE-1K) were used to evaluate disease reactions of the 243 RILs under greenhouse conditions. Five resistance QTL were mapped on chromosomes 2, 3, 8, 9, and 12 with a linkage map of 179 single nucleotide polymorphism (SNP) markers. Among them, qBR12 (Q1), was mapped at the Pi-ta locus and accounted for 45.41% of phenotypic variation while qBR2 (Q2) was located at the Pi-b locus and accounted for24.81%of disease reactions. An additive-by-additive epistatic interaction between Q1 (Pi-ta) and Q2 (Pi-b) was detected; they can enhance the disease resistance by an additive 0.93 using the 0 to 9 standard phenotyping method. These results suggest that Pi-ta interacts synergistically with Pi-b.

  9. Construction of a genetic linkage map and analysis of quantitative trait loci associated with the agronomically important traits of Pleurotus eryngii.

    PubMed

    Im, Chak Han; Park, Young-Hoon; Hammel, Kenneth E; Park, Bokyung; Kwon, Soon Wook; Ryu, Hojin; Ryu, Jae-San

    2016-07-01

    Breeding new strains with improved traits is a long-standing goal of mushroom breeders that can be expedited by marker-assisted selection (MAS). We constructed a genetic linkage map of Pleurotus eryngii based on segregation analysis of markers in postmeiotic monokaryons from KNR2312. In total, 256 loci comprising 226 simple sequence-repeat (SSR) markers, 2 mating-type factors, and 28 insertion/deletion (InDel) markers were mapped. The map consisted of 12 linkage groups (LGs) spanning 1047.8cM, with an average interval length of 4.09cM. Four independent populations (Pd3, Pd8, Pd14, and Pd15) derived from crossing between four monokaryons from KNR2532 as a tester strain and 98 monokaryons from KNR2312 were used to characterize quantitative trait loci (QTL) for nine traits such as yield, quality, cap color, and earliness. Using composite interval mapping (CIM), 71 QTLs explaining between 5.82% and 33.17% of the phenotypic variations were identified. Clusters of more than five QTLs for various traits were identified in three genomic regions, on LGs 1, 7 and 9. Regardless of the population, 6 of the 9 traits studied and 18 of the 71 QTLs found in this study were identified in the largest cluster, LG1, in the range from 65.4 to 110.4cM. The candidate genes for yield encoding transcription factor, signal transduction, mycelial growth and hydrolase are suggested by using manual and computational analysis of genome sequence corresponding to QTL region with the highest likelihood odds (LOD) for yield. The genetic map and the QTLs established in this study will help breeders and geneticists to develop selection markers for agronomically important characteristics of mushrooms and to identify the corresponding genes. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. I. Resistance to fungal spread.

    PubMed

    Jiang, Guo-Liang; Shi, Jianrong; Ward, Richard W

    2007-12-01

    Fusarium head blight (FHB or scab) caused by Fusarium species is a destructive disease in wheat and barley worldwide. The objectives of our study were to identify quantitative trait loci (QTLs) for resistance to FHB spread (Type II resistance) and to quantify the magnitude of their effects in a novel highly resistant wheat germplasm, CJ 9306. A set of 152 F(7) recombinant inbred lines (RILs) derived from a cross Veery/CJ 9306 and two parents were evaluated for FHB resistance by single-floret inoculation in three greenhouse experiments in 2002 and 2004. Percentage (PSS) and number (NSS) of scabby spikelets at 25 days post-inoculation were analyzed. In total 682 simple sequence repeat (SSR) markers were screened for polymorphism between the two parents, and a genetic linkage map was constructed with 208 polymorphic markers. Ten QTLs associated with FHB resistance were detected, five from CJ 9306 and five from Veery. The major QTL on 3BS (QFhs.ndsu-3BS) was validated in CJ 9306, exhibiting greatest additive effects and explained 30.7% of phenotypic variation for PSS on the overall average of three experiments. Another major QTL on 2DL (QFhs.nau-2DL) from CJ 9306 explained 9.9-28.4% of phenotypic variation, with a significant QTL x environment interaction. QFhs.nau-1AS and QFhs.nau-7BS showed lower additive effects and explained lower variance (4.5-9.5%). A QTL on 5AS, decreasing PSS by 10.3% on average, was validated by simple marker analysis and joint trait/experiment IM/CIM analysis despite insignificance for single-experiment IM and CIM analyses. Likewise, QFhs.nau-2BL and QFhs.nau-1BC from Veery could reduce PSS by 13.2 and 11.4%, respectively. The effects of other three minor QTLs from Veery were significant for one experiment and combined analysis. Comparisons of two- and three-locus combinations suggested that the effects of FHB resistance QTLs/genes could be accumulated, and the resistance could be feasibly enhanced by selection of favorable alleles for

  11. Detection of quantitative trait loci controlling grain zinc concentration using Australian wild rice, Oryza meridionalis, a potential genetic resource for biofortification of rice.

    PubMed

    Ishikawa, Ryo; Iwata, Masahide; Taniko, Kenta; Monden, Gotaro; Miyazaki, Naoya; Orn, Chhourn; Tsujimura, Yuki; Yoshida, Shusaku; Ma, Jian Feng; Ishii, Takashige

    2017-01-01

    Zinc (Zn) is one of the essential mineral elements for both plants and humans. Zn deficiency in human is one of the major causes of hidden hunger, a serious health problem observed in many developing countries. Therefore, increasing Zn concentration in edible part is an important issue for improving human Zn nutrition. Here, we found that an Australian wild rice O. meridionalis showed higher grain Zn concentrations compared with cultivated and other wild rice species. The quantitative trait loci (QTL) analysis was then performed to identify the genomic regions controlling grain Zn levels using backcross recombinant inbred lines derived from O. sativa 'Nipponbare' and O. meridionalis W1627. Four QTLs responsible for high grain Zn were detected on chromosomes 2, 9, and 10. The QTL on the chromosome 9 (named qGZn9), which showed the largest effect on grain Zn concentration was confirmed with the introgression line, which had a W1627 chromosomal segment covering the qGZn9 region in the genetic background of O. sativa 'Nipponbare'. Fine mapping of this QTL resulted in identification of two tightly linked loci, qGZn9a and qGZn9b. The candidate regions of qGZn9a and qGZn9b were estimated to be 190 and 950 kb, respectively. Furthermore, we also found that plants having a wild chromosomal segment covering qGZn9a, but not qGZn9b, is associated with fertility reduction. qGZn9b, therefore, provides a valuable allele for breeding rice with high Zn in the grains.

  12. Identification of Aortic Arch-Specific Quantitative Trait Loci for Atherosclerosis by an Intercross of DBA/2J and 129S6 Apolipoprotein E-Deficient Mice

    PubMed Central

    Kayashima, Yukako; Makhanova, Natalia A.; Matsuki, Kota; Tomita, Hirofumi; Bennett, Brian J.; Maeda, Nobuyo

    2015-01-01

    The genetic background of apolipoprotein E (apoE) deficient mice influences atherosclerotic plaque development. We previously reported three quantitative trait loci (QTL), Aath1–Aath3, that affect aortic arch atherosclerosis independently of those in the aortic root in a cross between C57BL6 apoEKO mice (B6-apoE) and 129S6 apoEKO mice (129-apoE). To gain further insight into genetic factors that influence atherosclerosis at different vascular locations, we analyzed 335 F2 mice from an intercross between 129-apoE and apoEKO mice on a DBA/2J genetic background (DBA-apoE). The extent of atherosclerosis in the aortic arch was very similar in the two parental strains. Nevertheless, a genome-wide scan identified two significant QTL for plaque size in the aortic arch: Aath4 on Chromosome (Chr) 2 at 137 Mb and Aath5 on Chr 10 at 51 Mb. The DBA alleles of Aath4 and Aath5 respectively confer susceptibility and resistance to aortic arch atherosclerosis over 129 alleles. Both QTL are also independent of those affecting plaque size at the aortic root. Genome analysis suggests that athero-susceptibility of Aath4 in DBA may be contributed by multiple genes, including Mertk and Cd93, that play roles in phagocytosis of apoptotic cells and modulate inflammation. A candidate gene for Aath5 is Stab2, the DBA allele of which is associated with 10 times higher plasma hyaluronan than the 129 allele. Overall, our identification of two new QTL that affect atherosclerosis in an aortic arch-specific manner further supports the involvement of distinct pathological processes at different vascular locations. PMID:25689165

  13. Epistatic Interactions Among Herbicide Resistances in Arabidopsis thaliana: The Fitness Cost of Multiresistance

    PubMed Central

    Roux, Fabrice; Camilleri, Christine; Giancola, Sandra; Brunel, Dominique; Reboud, Xavier

    2005-01-01

    The type of interactions among deleterious mutations is considered to be crucial in numerous areas of evolutionary biology, including the evolution of sex and recombination, the evolution of ploidy, the evolution of selfing, and the conservation of small populations. Because the herbicide resistance genes could be viewed as slightly deleterious mutations in the absence of the pesticide selection pressure, the epistatic interactions among three herbicide resistance genes (acetolactate synthase CSR, cellulose synthase IXR1, and auxin-induced AXR1 target genes) were estimated in both the homozygous and the heterozygous states, giving 27 genotype combinations in the model plant Arabidopsis thaliana. By analyzing eight quantitative traits in a segregating population for the three herbicide resistances in the absence of herbicide, we found that most interactions in both the homozygous and the heterozygous states were best explained by multiplicative effects (each additional resistance gene causes a comparable reduction in fitness) rather than by synergistic effects (each additional resistance gene causes a disproportionate fitness reduction). Dominance coefficients of the herbicide resistance cost ranged from partial dominance to underdominance, with a mean dominance coefficient of 0.07. It was suggested that the csr1-1, ixr1-2, and axr1-3 resistance alleles are nearly fully recessive for the fitness cost. More interestingly, the dominance of a specific resistance gene in the absence of herbicide varied according to, first, the presence of the other resistance genes and, second, the quantitative trait analyzed. These results and their implications for multiresistance evolution are discussed in relation to the maintenance of polymorphism at resistance loci in a heterogeneous environment. PMID:16020787

  14. Detection of expression quantitative trait Loci in complex mouse crosses: impact and alleviation of data quality and complex population substructure.

    PubMed

    Iancu, Ovidiu D; Darakjian, Priscila; Kawane, Sunita; Bottomly, Daniel; Hitzemann, Robert; McWeeney, Shannon

    2012-01-01

    Complex Mus musculus crosses, e.g., heterogeneous stock (HS), provide increased resolution for quantitative trait loci detection. However, increased genetic complexity challenges detection methods, with discordant results due to low data quality or complex genetic architecture. We quantified the impact of theses factors across three mouse crosses and two different detection methods, identifying procedures that greatly improve detection quality. Importantly, HS populations have complex genetic architectures not fully captured by the whole genome kinship matrix, calling for incorporating chromosome specific relatedness information. We analyze three increasingly complex crosses, using gene expression levels as quantitative traits. The three crosses were an F(2) intercross, a HS formed by crossing four inbred strains (HS4), and a HS (HS-CC) derived from the eight lines found in the collaborative cross. Brain (striatum) gene expression and genotype data were obtained using the Illumina platform. We found large disparities between methods, with concordance varying as genetic complexity increased; this problem was more acute for probes with distant regulatory elements (trans). A suite of data filtering steps resulted in substantial increases in reproducibility. Genetic relatedness between samples generated overabundance of detected eQTLs; an adjustment procedure that includes the kinship matrix attenuates this problem. However, we find that relatedness between individuals is not evenly distributed across the genome; information from distinct chromosomes results in relatedness structure different from the whole genome kinship matrix. Shared polymorphisms from distinct chromosomes collectively affect expression levels, confounding eQTL detection. We suggest that considering chromosome specific relatedness can result in improved eQTL detection.

  15. Formation resistivity measurements from within a cased well used to quantitatively determine the amount of oil and gas present

    DOEpatents

    Vail, III, William Banning

    2000-01-01

    Methods to quantitatively determine the separate amounts of oil and gas in a geological formation adjacent to a cased well using measurements of formation resistivity. The steps include obtaining resistivity measurements from within a cased well of a given formation, obtaining the porosity, obtaining the resistivity of formation water present, computing the combined amounts of oil and gas present using Archie's Equations, determining the relative amounts of oil and gas present from measurements within a cased well, and then quantitatively determining the separate amounts of oil and gas present in the formation. Resistivity measurements are obtained from within the cased well by conducting A.C. current from within the cased well to a remote electrode at a frequency that is within the frequency range of 0.1 Hz to 20 Hz.

  16. Refining Susceptibility Loci of Chronic Obstructive Pulmonary Disease with Lung eqtls

    PubMed Central

    Lamontagne, Maxime; Couture, Christian; Postma, Dirkje S.; Timens, Wim; Sin, Don D.; Paré, Peter D.; Hogg, James C.; Nickle, David; Laviolette, Michel; Bossé, Yohan

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of mortality worldwide. Recent genome-wide association studies (GWAS) have identified robust susceptibility loci associated with COPD. However, the mechanisms mediating the risk conferred by these loci remain to be found. The goal of this study was to identify causal genes/variants within susceptibility loci associated with COPD. In the discovery cohort, genome-wide gene expression profiles of 500 non-tumor lung specimens were obtained from patients undergoing lung surgery. Blood-DNA from the same patients were genotyped for 1,2 million SNPs. Following genotyping and gene expression quality control filters, 409 samples were analyzed. Lung expression quantitative trait loci (eQTLs) were identified and overlaid onto three COPD susceptibility loci derived from GWAS; 4q31 (HHIP), 4q22 (FAM13A), and 19q13 (RAB4B, EGLN2, MIA, CYP2A6). Significant eQTLs were replicated in two independent datasets (n = 363 and 339). SNPs previously associated with COPD and lung function on 4q31 (rs1828591, rs13118928) were associated with the mRNA expression of HHIP. An association between mRNA expression level of FAM13A and SNP rs2045517 was detected at 4q22, but did not reach statistical significance. At 19q13, significant eQTLs were detected with EGLN2. In summary, this study supports HHIP, FAM13A, and EGLN2 as the most likely causal COPD genes on 4q31, 4q22, and 19q13, respectively. Strong lung eQTL SNPs identified in this study will need to be tested for association with COPD in case-control studies. Further functional studies will also be needed to understand the role of genes regulated by disease-related variants in COPD. PMID:23936167

  17. Two candidate genes for two quantitative trait loci epistatically attenuate hypertension in a novel pathway.

    PubMed

    Chauvet, Cristina; Ménard, Annie; Deng, Alan Y

    2015-09-01

    Multiple quantitative trait loci (QTLs) for blood pressure (BP) have been detected in rat models of human polygenic hypertension. They influence BP physiologically via epistatic modules. Little is known about the causal genes and virtually nothing is known on modularized mechanisms governing their regulatory connections. Two genes responsible for two individual BP QTLs on rat Chromosome 18 have been identified that belong to the same epistatic module. Treacher Collins-Franceschetti syndrome 1 (Tcof1) gene is the only function candidate for C18QTL3. Haloacid dehalogenase like hydrolase domain containing 2 (Hdhd2), although a gene of previously unknown function, is C18QTL4, and encodes a newly identified phosphatase. The current work has provided the premier evidence that Hdhd2/C18QTL4 and Tcof1/C18QTL3 may be involved in polygenic hypertension. Hdhd2/C18QTL4 can regulate the function of Tcof1/C18QTL3 via de-phosphorylation, and, for the first time, furbishes a molecular mechanism in support of a genetically epistatic hierarchy between two BP QTLs, and thus authenticates the epistasis-common pathway paradigm. The pathway initiated by Hdhd2/C18QTL4 upstream of Tcof1/C18QTL3 reveals novel mechanistic insights into BP modulations. Their discovery might yield innovative therapeutic targets and diagnostic tools predicated on a novel BP cause and mechanism that is determined by a regulatory hierarchy. Optimizing the de-phosphorylation capability and its downstream target could be antihypertensive. The conceptual paradigm of an order and regulatory hierarchy may help unravel genetic and molecular relationships among certain human BP QTLs.

  18. Quantitative trait loci for magnitude of the plasma cortisol response to confinement in rainbow trout.

    PubMed

    Quillet, E; Krieg, F; Dechamp, N; Hervet, C; Bérard, A; Le Roy, P; Guyomard, R; Prunet, P; Pottinger, T G

    2014-04-01

    Better understanding of the mechanisms underlying interindividual variation in stress responses and their links with production traits is a key issue for sustainable animal breeding. In this study, we searched for quantitative trait loci (QTL) controlling the magnitude of the plasma cortisol stress response and compared them to body size traits in five F2 full-sib families issued from two rainbow trout lines divergently selected for high or low post-confinement plasma cortisol level. Approximately 1000 F2 individuals were individually tagged and exposed to two successive acute confinement challenges (1 month interval). Post-stress plasma cortisol concentrations were determined for each fish. A medium density genome scan was carried out (268 markers, overall marker spacing less than 10 cM). QTL detection was performed using qtlmap software, based on an interval mapping method (http://www.inra.fr/qtlmap). Overall, QTL of medium individual effects on cortisol responsiveness (<10% of phenotypic variance) were detected on 18 chromosomes, strongly supporting the hypothesis that control of the trait is polygenic. Although a core array of QTL controlled cortisol concentrations at both challenges, several QTL seemed challenge specific, suggesting that responses to the first and to a subsequent exposure to the confinement stressor are distinct traits sharing only part of their genetic control. Chromosomal location of the steroidogenic acute regulatory protein (STAR) makes it a good potential candidate gene for one of the QTL. Finally, comparison of body size traits QTL (weight, length and body conformation) with cortisol-associated QTL did not support evidence for negative genetic relationships between the two types of traits. © 2014 Stichting International Foundation for Animal Genetics.

  19. Label free quantitative proteomics analysis on the cisplatin resistance in ovarian cancer cells.

    PubMed

    Wang, F; Zhu, Y; Fang, S; Li, S; Liu, S

    2017-05-20

    Quantitative proteomics has been made great progress in recent years. Label free quantitative proteomics analysis based on the mass spectrometry is widely used. Using this technique, we determined the differentially expressed proteins in the cisplatin-sensitive ovarian cancer cells COC1 and cisplatin-resistant cells COC1/DDP before and after the application of cisplatin. Using the GO analysis, we classified those proteins into different subgroups bases on their cellular component, biological process, and molecular function. We also used KEGG pathway analysis to determine the key signal pathways that those proteins were involved in. There are 710 differential proteins between COC1 and COC1/DDP cells, 783 between COC1 and COC1/DDP cells treated with cisplatin, 917 between the COC1/DDP cells and COC1/DDP cells treated with LaCl3, 775 between COC1/DDP cells treated with cisplatin and COC1/DDP cells treated with cisplatin and LaCl3. Among the same 411 differentially expressed proteins in cisplatin-sensitive COC1 cells and cisplain-resistant COC1/DDP cells before and after cisplatin treatment, 14% of them were localized on the cell membrane. According to the KEGG results, differentially expressed proteins were classified into 21 groups. The most abundant proteins were involved in spliceosome. This study lays a foundation for deciphering the mechanism for drug resistance in ovarian tumor.

  20. Statistical genetics and evolution of quantitative traits

    NASA Astrophysics Data System (ADS)

    Neher, Richard A.; Shraiman, Boris I.

    2011-10-01

    The distribution and heritability of many traits depends on numerous loci in the genome. In general, the astronomical number of possible genotypes makes the system with large numbers of loci difficult to describe. Multilocus evolution, however, greatly simplifies in the limit of weak selection and frequent recombination. In this limit, populations rapidly reach quasilinkage equilibrium (QLE) in which the dynamics of the full genotype distribution, including correlations between alleles at different loci, can be parametrized by the allele frequencies. This review provides a simplified exposition of the concept and mathematics of QLE which is central to the statistical description of genotypes in sexual populations. Key results of quantitative genetics such as the generalized Fisher’s “fundamental theorem,” along with Wright’s adaptive landscape, are shown to emerge within QLE from the dynamics of the genotype distribution. This is followed by a discussion under what circumstances QLE is applicable, and what the breakdown of QLE implies for the population structure and the dynamics of selection. Understanding the fundamental aspects of multilocus evolution obtained through simplified models may be helpful in providing conceptual and computational tools to address the challenges arising in the studies of complex quantitative phenotypes of practical interest.

  1. A phenotype-sensitizing Apoe-deficient genetic background reveals novel atherosclerosis predisposition loci in the mouse.

    PubMed Central

    Dansky, Hayes M; Shu, Pei; Donavan, M; Montagno, Jill; Nagle, Deborah L; Smutko, John S; Roy, Natalie; Whiteing, S; Barrios, Judith; McBride, T J; Smith, Jonathan D; Duyk, Geoffrey; Breslow, Jan L; Moore, Karen J

    2002-01-01

    Therapeutic intervention for atherosclerosis has predominantly concentrated on regulating cholesterol levels; however, these therapeutics are not efficacious for all patients, suggesting that other factors are involved. This study was initiated to identify mechanisms that regulate atherosclerosis predisposition in mice other than cholesterol level regulation. To do so we performed quantitative trait locus analysis using two inbred strains that each carry the atherosclerosis phenotype-sensitizing Apoe deficiency and that have been shown to have widely disparate predilection to atherosclerotic lesion formation. One highly significant locus on chromosome 10 (LOD = 7.8) accounted for 19% of the variance in lesion area independent of cholesterol. Two additional suggestive loci were identified on chromosomes 14 (LOD = 3.2) and 19 (LOD = 3.2), each accounting for 7-8% of the lesion variance. In all, five statistically significant and suggestive loci affecting lesion size but not lipoprotein levels were identified. Many of these were recapitulated in an independent confirmatory cross. In summary, two independently performed crosses between C57BL/6 and FVB/N Apoe-deficient mice have revealed several previously unreported atherosclerosis susceptibility loci that are distinct from loci linked to lipoprotein levels. PMID:11973313

  2. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants.

    PubMed

    Jin, Ying; Andersen, Genevieve; Yorgov, Daniel; Ferrara, Tracey M; Ben, Songtao; Brownson, Kelly M; Holland, Paulene J; Birlea, Stanca A; Siebert, Janet; Hartmann, Anke; Lienert, Anne; van Geel, Nanja; Lambert, Jo; Luiten, Rosalie M; Wolkerstorfer, Albert; Wietze van der Veen, J P; Bennett, Dorothy C; Taïeb, Alain; Ezzedine, Khaled; Kemp, E Helen; Gawkrodger, David J; Weetman, Anthony P; Kõks, Sulev; Prans, Ele; Kingo, Külli; Karelson, Maire; Wallace, Margaret R; McCormack, Wayne T; Overbeck, Andreas; Moretti, Silvia; Colucci, Roberta; Picardo, Mauro; Silverberg, Nanette B; Olsson, Mats; Valle, Yan; Korobko, Igor; Böhm, Markus; Lim, Henry W; Hamzavi, Iltefat; Zhou, Li; Mi, Qing-Sheng; Fain, Pamela R; Santorico, Stephanie A; Spritz, Richard A

    2016-11-01

    Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes, with epidemiological association with other autoimmune diseases. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in patients of European ancestry. We carried out a third GWAS (GWAS3) in European-ancestry subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new significantly associated loci and 7 suggestive loci. Most encode immune and apoptotic regulators, with some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some of which corresponds to expression quantitative trait loci (eQTLs) at these loci. Together, the identified genes provide a framework for the genetic architecture and pathobiology of vitiligo, highlight relationships with other autoimmune diseases and melanoma, and offer potential targets for treatment.

  3. The Loci Multidisciplinary Simulation System

    NASA Technical Reports Server (NTRS)

    Luke, Ed

    2002-01-01

    Contents include the following: 1. An overview of the Loci Multidisciplinary Simulation System. 2. Topologically adaptive mesh generation. 3. Multidisciplinary simulations using Loci with the CHEM chemically reacting flow solver.

  4. CpA/CpG methylation of CiMDA5 possesses tight association with the resistance against GCRV and negatively regulates mRNA expression in grass carp, Ctenopharyngodon idella.

    PubMed

    Shang, Xueying; Su, Jianguo; Wan, Quanyuan; Su, Juanjuan

    2015-01-01

    Melanoma differentiation-associated gene 5 (MDA5) plays a crucial role in recognizing intracellular viral infection, activating the interferon regulatory factor pathways as well as inducing antiviral response. While the antiviral regulatory mechanism of MDA5 remains unclear. In the present study, CiMDA5 (Ctenopharyngodon idella MDA5) against grass carp reovirus (GCRV) would be initially revealed from the perspective of DNA methylation, a pivotal epigenetic modification. Two CpG islands (CGIs) were predicted located in the first exon of CiMDA5, of which the first CpG island was 427 bp in length possessed 29 candidate CpG loci and 34 CpA loci, and the second one was 130 bp in length involving 7 CpG loci as well as 10 CpA loci. By bisulfite sequencing PCR (BSP), the methylation statuses were detected in spleen of 70 individuals divided into resistant/susceptible groups post challenge experiment, and the resistance-association analysis was performed with Chi-square test. Quantitative real-time RT-PCR (qRT-PCR) was carried out to explore the relationship between DNA methylation and gene expression in CiMDA5. Results indicated that the methylation levels of CpA/CpG sites at +200, +202, +204, +207 nt, which consisted of a putative densely methylated element (DME), were significantly higher in the susceptible group than those in the resistant group. Meanwhile, the average transcription of CiMDA5 was down-regulated in the susceptible individuals compared with the resistant individuals. Evidently, the DNA methylation may be the negative modulator of CiMDA5 antiviral expression. Collectively, the methylation levels of CiMDA5 demonstrated the tight association with the resistance against GCRV and the negative-regulated roles in mRNA expression. This study first discovered the resistance-associated gene modulated by DNA methylation in teleost, preliminary revealed the underlying regulatory mechanism of CiMDA5 transcription against GCRV as well as laid a theoretical foundation

  5. A Narrow Quantitative Trait Locus in C. elegans Coordinately Affects Longevity, Thermotolerance, and Resistance to Paraquat

    PubMed Central

    Vertino, Anthony; Ayyadevara, Srinivas; Thaden, John J.; Reis, Robert J. Shmookler

    2011-01-01

    By linkage mapping of quantitative trait loci, we previously identified at least 11 natural genetic variants that significantly modulate Caenorhabditis elegans life-span (LS), many of which would have eluded discovery by knock-down or mutation screens. A region on chromosome IV between markers stP13 and stP35 had striking effects on longevity in three inter-strain crosses (each P < 10−9). In order to define the limits of that interval, we have now constructed two independent lines by marker-based selection during 20 backcross generations, isolating the stP13–stP35 interval from strain Bergerac-BO in a CL2a background. These congenic lines differed significantly from CL2a in LS, assayed in two environments (each P < 0.001). We then screened for exchange of flanking markers to isolate recombinants that partition this region, because fine-mapping the boundaries for overlapping heteroallelic spans can greatly narrow the implicated interval. Recombinants carrying the CL2a allele at stP35 were consistently long-lived compared to those retaining the Bergerac-BO allele (P < 0.001), and more resistant to temperature elevation and paraquat (each ∼1.7-fold, P < 0.0001), but gained little protection from ultraviolet or peroxide stresses. Two rounds of recombinant screening, followed by fine-mapping of break-points and survival testing, narrowed the interval to 0.18 Mb (13.35–13.53 Mb) containing 26 putative genes and six small-nuclear RNAs – a manageable number of targets for functional assessment. PMID:22303358

  6. Transferability and Fine-Mapping of Genome-Wide Associated Loci for Adult Height across Human Populations

    PubMed Central

    Shriner, Daniel; Adeyemo, Adebowale; Gerry, Norman P.; Herbert, Alan; Chen, Guanjie; Doumatey, Ayo; Huang, Hanxia; Zhou, Jie; Christman, Michael F.; Rotimi, Charles N.

    2009-01-01

    Human height is the prototypical polygenic quantitative trait. Recently, several genetic variants influencing adult height were identified, primarily in individuals of East Asian (Chinese Han or Korean) or European ancestry. Here, we examined 152 genetic variants representing 107 independent loci previously associated with adult height for transferability in a well-powered sample of 1,016 unrelated African Americans. When we tested just the reported variants originally identified as associated with adult height in individuals of East Asian or European ancestry, only 8.3% of these loci transferred (p-values≤0.05 under an additive genetic model with directionally consistent effects) to our African American sample. However, when we comprehensively evaluated all HapMap variants in linkage disequilibrium (r 2≥0.3) with the reported variants, the transferability rate increased to 54.1%. The transferability rate was 70.8% for associations originally reported as genome-wide significant and 38.0% for associations originally reported as suggestive. An additional 23 loci were significantly associated but failed to transfer because of directionally inconsistent effects. Six loci were associated with adult height in all three groups. Using differences in linkage disequilibrium patterns between HapMap CEU or CHB reference data and our African American sample, we fine-mapped these six loci, improving both the localization and the annotation of these transferable associations. PMID:20027299

  7. Influence analysis in quantitative trait loci detection.

    PubMed

    Dou, Xiaoling; Kuriki, Satoshi; Maeno, Akiteru; Takada, Toyoyuki; Shiroishi, Toshihiko

    2014-07-01

    This paper presents systematic methods for the detection of influential individuals that affect the log odds (LOD) score curve. We derive general formulas of influence functions for profile likelihoods and introduce them into two standard quantitative trait locus detection methods-the interval mapping method and single marker analysis. Besides influence analysis on specific LOD scores, we also develop influence analysis methods on the shape of the LOD score curves. A simulation-based method is proposed to assess the significance of the influence of the individuals. These methods are shown useful in the influence analysis of a real dataset of an experimental population from an F2 mouse cross. By receiver operating characteristic analysis, we confirm that the proposed methods show better performance than existing diagnostics. © 2014 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis

    PubMed Central

    Pajerowska-Mukhtar, Karolina M.; Mukhtar, M. Shahid; Guex, Nicolas; Halim, Vincentius A.; Rosahl, Sabine; Somssich, Imre E.

    2008-01-01

    Natural variation of plant pathogen resistance is often quantitative. This type of resistance can be genetically dissected in quantitative resistance loci (QRL). To unravel the molecular basis of QRL in potato (Solanum tuberosum), we employed the model plant Arabidopsis thaliana for functional analysis of natural variants of potato allene oxide synthase 2 (StAOS2). StAOS2 is a candidate gene for QRL on potato chromosome XI against the oömycete Phytophthora infestans causing late blight, and the bacterium Erwinia carotovora ssp. atroseptica causing stem black leg and tuber soft rot, both devastating diseases in potato cultivation. StAOS2 encodes a cytochrome P450 enzyme that is essential for biosynthesis of the defense signaling molecule jasmonic acid. Allele non-specific dsRNAi-mediated silencing of StAOS2 in potato drastically reduced jasmonic acid production and compromised quantitative late blight resistance. Five natural StAOS2 alleles were expressed in the null Arabidopsis aos mutant under control of the Arabidopsis AOS promoter and tested for differential complementation phenotypes. The aos mutant phenotypes evaluated were lack of jasmonates, male sterility and susceptibility to Erwinia carotovora ssp. carotovora. StAOS2 alleles that were associated with increased disease resistance in potato complemented all aos mutant phenotypes better than StAOS2 alleles associated with increased susceptibility. First structure models of ‘quantitative resistant’ versus ‘quantitative susceptible’ StAOS2 alleles suggested potential mechanisms for their differential activity. Our results demonstrate how a candidate gene approach in combination with using the homologous Arabidopsis mutant as functional reporter can help to dissect the molecular basis of complex traits in non model crop plants. Electronic supplementary material The online version of this article (doi:10.1007/s00425-008-0737-x) contains supplementary material, which is available to authorized users

  9. Mapping of a novel QTL for resistance to cereal cyst nematode in wheat.

    PubMed

    Williams, K J; Willsmore, K L; Olson, S; Matic, M; Kuchel, H

    2006-05-01

    Cereal cyst nematode (CCN; Heterodera avenae Woll.) is a root pathogen of cereals that can cause severe yield losses in intolerant wheat cultivars. Loci for resistance to CCN, measured by a seedling bioassay, were identified by creating a genetic map based on a Trident/Molineux doubled haploid population of 182 lines. A novel locus accounting for up to 14% of the resistance to CCN was mapped to chromosome 1B of Molineux by association with microsatellite marker loci Xwmc719 and Xgwm140. This locus acts additively with the previously identified CCN resistance loci identified on chromosomes 6B (Cre8) and 2A (Cre5 on the VPM1 segment) in this population to explain 44% of the genetic variance for this major wheat pathogen.

  10. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots.

    PubMed

    Balyejusa Kizito, Elizabeth; Rönnberg-Wästljung, Ann-Christin; Egwang, Thomas; Gullberg, Urban; Fregene, Martin; Westerbergh, Anna

    2007-09-01

    Cassava (Manihot esculenta Crantz) is a starchy root crop grown in the tropics mainly by small-scale farmers even though agro-industrial processing is rapidly increasing. For this processing market improved varieties with high dry matter root content (DMC) is required. Potentially toxic cyanogenic glucosides are synthesized in the leaves and translocated to the roots. Selection for varieties with low cyanogenic glucoside potential (CNP) and high DMC is among the principal objectives in cassava breeding programs. However, these traits are highly influenced by the environmental conditions and the genetic control of these traits is not well understood. An S(1) population derived from a cross between two bred cassava varieties (MCOL 1684 and Rayong 1) that differ in CNP and DMC was used to study the heritability and genetic basis of these traits. A broad-sense heritability of 0.43 and 0.42 was found for CNP and DMC, respectively. The moderate heritabilities for DMC and CNP indicate that the phenotypic variation of these traits is explained by a genetic component. We found two quantitative trait loci (QTL) on two different linkage groups controlling CNP and six QTL on four different linkage groups controlling DMC. One QTL for CNP and one QTL for DMC mapped near each other, suggesting pleiotrophy and/or linkage of QTL. The two QTL for CNP showed additive effects while the six QTL for DMC showed additive effect, dominance or overdominance. This study is a first step towards developing molecular marker tools for efficient breeding of CNP and DMC in cassava.

  11. Multiple Quantitative Trait Loci Influence the Shape of a Male-Specific Genital Structure in Drosophila melanogaster

    PubMed Central

    McNeil, Casey L.; Bain, Clint L.; Macdonald, Stuart J.

    2011-01-01

    The observation that male genitalia diverge more rapidly than other morphological traits during evolution is taxonomically widespread and likely due to some form of sexual selection. One way to elucidate the evolutionary forces acting on these traits is to detail the genetic architecture of variation both within and between species, a program of research that is considerably more tractable in a model system. Drosophila melanogaster and its sibling species, D. simulans, D. mauritiana, and D. sechellia, are morphologically distinguishable only by the shape of the posterior lobe, a male-specific elaboration of the genital arch. We extend earlier studies identifying quantitative trait loci (QTL) responsible for lobe divergence across species and report the first genetic dissection of lobe shape variation within a species. Using an advanced intercross mapping design, we identify three autosomal QTL contributing to the difference in lobe shape between a pair of D. melanogaster inbred lines. The QTL each contribute 4.6–10.7% to shape variation, and two show a significant epistatic interaction. Interestingly, these intraspecific QTL map to the same locations as interspecific lobe QTL, implying some shared genetic control of the trait within and between species. As a first step toward a mechanistic understanding of natural lobe shape variation, we find an association between our QTL data and a set of genes that show sex-biased expression in the developing genital imaginal disc (the precursor of the adult genitalia). These genes are good candidates to harbor naturally segregating polymorphisms contributing to posterior lobe shape. PMID:22384345

  12. Identification of Major Quantitative Trait Loci for Seed Oil Content in Soybeans by Combining Linkage and Genome-Wide Association Mapping.

    PubMed

    Cao, Yongce; Li, Shuguang; Wang, Zili; Chang, Fangguo; Kong, Jiejie; Gai, Junyi; Zhao, Tuanjie

    2017-01-01

    Soybean oil is the most widely produced vegetable oil in the world and its content in soybean seed is an important quality trait in breeding programs. More than 100 quantitative trait loci (QTLs) for soybean oil content have been identified. However, most of them are genotype specific and/or environment sensitive. Here, we used both a linkage and association mapping methodology to dissect the genetic basis of seed oil content of Chinese soybean cultivars in various environments in the Jiang-Huai River Valley. One recombinant inbred line (RIL) population (NJMN-RIL), with 104 lines developed from a cross between M8108 and NN1138-2 , was planted in five environments to investigate phenotypic data, and a new genetic map with 2,062 specific-locus amplified fragment markers was constructed to map oil content QTLs. A derived F 2 population between MN-5 (a line of NJMN-RIL) and NN1138-2 was also developed to confirm one major QTL. A soybean breeding germplasm population (279 lines) was established to perform a genome-wide association study (GWAS) using 59,845 high-quality single nucleotide polymorphism markers. In the NJMN-RIL population, 8 QTLs were found that explained a range of phenotypic variance from 6.3 to 26.3% in certain planting environments. Among them, qOil-5-1, qOil-10-1 , and qOil-14-1 were detected in different environments, and qOil-5-1 was further confirmed using the secondary F 2 population. Three loci located on chromosomes 5 and 20 were detected in a 2-year long GWAS, and one locus that overlapped with qOil-5-1 was found repeatedly and treated as the same locus. qOil-5-1 was further localized to a linkage disequilibrium block region of approximately 440 kb. These results will not only increase our understanding of the genetic control of seed oil content in soybean, but will also be helpful in marker-assisted selection for breeding high seed oil content soybean and gene cloning to elucidate the mechanisms of seed oil content.

  13. Quantitative Trait Loci for BMD in an SM/J by NZB/BlNJ Intercross Population and Identification of Trps1 as a Probable Candidate Gene

    PubMed Central

    Ishimori, Naoki; Stylianou, Ioannis M; Korstanje, Ron; Marion, Michael A; Li, Renhua; Donahue, Leah Rae; Rosen, Clifford J; Beamer, Wesley G; Paigen, Beverly; Churchill, Gary A

    2008-01-01

    Identification of genes that regulate BMD will enhance our understanding of osteoporosis and could provide novel molecular targets for treatment or prevention. We generated a mouse intercross population and carried out a quantitative trait locus (QTL) analysis of 143 female and 124 male F2 progeny from progenitor strains SM/J and NZB/BlNJ using whole body and vertebral areal BMD (aBMD) as measured by DXA. We found that both whole body and vertebral aBMD was affected by two loci on chromosome 9: one with a significant epistatic interaction on distal chromosome 8 and the other with a sex-specific effect. Two additional significant QTLs were identified on chromosome 12, and several suggestive ones were identified on chromosomes 5, 8, 15, and 19. The chromosome 9, 12, and 15 loci have been previously identified in other crosses. SNP-based haplotype analysis of the progenitor strains identified blocks within the QTL region that distinguish the low allele strains from the high allele strains, significantly narrowing the QTL region and reducing the possible candidate genes to 98 for chromosome 9, 31 for chromosome 12, and only 2 for chromosome 15. Trps1 is the most probable candidate gene for the chromosome 15 QTL. The sex-specific effects may help to elucidate the BMD differences between males and females. This study shows the power of statistical modeling to resolve linked QTLs and the use of haplotype analysis in narrowing the list of candidates. PMID:18442308

  14. QTL analysis of late blight resistance in a diploid potato family of Solanum phureja x S. stenotomum.

    PubMed

    Costanzo, S; Simko, I; Christ, B J; Haynes, K G

    2005-08-01

    Field resistance to Phytophthora infestans (Mont.) de Bary, the causal agent of late blight in potatoes, has been characterized in a potato segregating family of 230 full-sib progenies derived from a cross between two hybrid Solanum phureja x S. stenotomum clones. The distribution of area under the disease progress curve values, measured in different years and locations, was consistent with the inheritance of multigenic resistance. Relatively high levels of resistance and transgressive segregations were also observed within this family. A genetic linkage map of this population was constructed with the intent of mapping quantitative trait loci (QTLs) associated with this late blight field resistance. A total of 132 clones from this family were genotyped based on 162 restriction fragment length polymorphism (RFLP) markers. The genome coverage by the map (855.2 cM) is estimated to be at least 70% and includes 112 segregating RFLP markers and two phenotypic markers, with an average distance of 7.7 cM between two markers. Two methods were employed to determine trait-marker association, the non-parametric Kruskal-Wallis test and interval mapping analysis. Three major QTLs were detected on linkage group III, V, and XI, explaining 23, 17, and 10%, respectively, of the total phenotypic variation. The present study revealed the presence of potentially new genetic loci in this diploid potato family contributing to general resistance against late blight. The identification of these QTLs represents the first step toward their introgression into cultivated tetraploid potato cultivars through marker-assisted selection.

  15. Genetic architecture of fusarium head blight resistance in four winter triticale populations.

    PubMed

    Kalih, R; Maurer, H P; Miedaner, T

    2015-03-01

    Fusarium head blight (FHB) is a devastating disease that causes significant reductions in yield and quality in wheat, rye, and triticale. In triticale, knowledge of the genetic architecture of FHB resistance is missing but essential due to modern breeding requirements. In our study, four doubled-haploid triticale populations (N=120 to 200) were evaluated for resistance to FHB caused by artificial inoculation with Fusarium culmorum in four environments. DArT markers were used to genotype triticale populations. Seventeen quantitative trait loci (QTL) for FHB resistance were detected across all populations; six of them were derived from rye genome and located on chromosomes 4R, 5R, and 7R, which are here reported for the first time. The total cross-validated ratio of the explained phenotypic variance for all detected QTL in each population was 41 to 68%. In all, 17 QTL for plant height and 18 QTL for heading stage were also detected across all populations; 3 and 5 of them, respectively, were overlapping with QTL for FHB. In conclusion, FHB resistance in triticale is caused by a multitude of QTL, and pyramiding them contributes to higher resistance.

  16. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis.

    PubMed

    Hobbs, Brian D; de Jong, Kim; Lamontagne, Maxime; Bossé, Yohan; Shrine, Nick; Artigas, María Soler; Wain, Louise V; Hall, Ian P; Jackson, Victoria E; Wyss, Annah B; London, Stephanie J; North, Kari E; Franceschini, Nora; Strachan, David P; Beaty, Terri H; Hokanson, John E; Crapo, James D; Castaldi, Peter J; Chase, Robert P; Bartz, Traci M; Heckbert, Susan R; Psaty, Bruce M; Gharib, Sina A; Zanen, Pieter; Lammers, Jan W; Oudkerk, Matthijs; Groen, H J; Locantore, Nicholas; Tal-Singer, Ruth; Rennard, Stephen I; Vestbo, Jørgen; Timens, Wim; Paré, Peter D; Latourelle, Jeanne C; Dupuis, Josée; O'Connor, George T; Wilk, Jemma B; Kim, Woo Jin; Lee, Mi Kyeong; Oh, Yeon-Mok; Vonk, Judith M; de Koning, Harry J; Leng, Shuguang; Belinsky, Steven A; Tesfaigzi, Yohannes; Manichaikul, Ani; Wang, Xin-Qun; Rich, Stephen S; Barr, R Graham; Sparrow, David; Litonjua, Augusto A; Bakke, Per; Gulsvik, Amund; Lahousse, Lies; Brusselle, Guy G; Stricker, Bruno H; Uitterlinden, André G; Ampleford, Elizabeth J; Bleecker, Eugene R; Woodruff, Prescott G; Meyers, Deborah A; Qiao, Dandi; Lomas, David A; Yim, Jae-Joon; Kim, Deog Kyeom; Hawrylkiewicz, Iwona; Sliwinski, Pawel; Hardin, Megan; Fingerlin, Tasha E; Schwartz, David A; Postma, Dirkje S; MacNee, William; Tobin, Martin D; Silverman, Edwin K; Boezen, H Marike; Cho, Michael H

    2017-03-01

    Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P < 5 × 10 -6 ) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we identified 22 loci associated at genome-wide significance, including 13 new associations with COPD. Nine of these 13 loci have been associated with lung function in general population samples, while 4 (EEFSEC, DSP, MTCL1, and SFTPD) are new. We noted two loci shared with pulmonary fibrosis (FAM13A and DSP) but that had opposite risk alleles for COPD. None of our loci overlapped with genome-wide associations for asthma, although one locus has been implicated in joint susceptibility to asthma and obesity. We also identified genetic correlation between COPD and asthma. Our findings highlight new loci associated with COPD, demonstrate the importance of specific loci associated with lung function to COPD, and identify potential regions of genetic overlap between COPD and other respiratory diseases.

  17. Allele Mining in Barley Genetic Resources Reveals Genes of Race-Non-Specific Powdery Mildew Resistance

    PubMed Central

    Spies, Annika; Korzun, Viktor; Bayles, Rosemary; Rajaraman, Jeyaraman; Himmelbach, Axel; Hedley, Pete E.; Schweizer, Patrick

    2012-01-01

    Race-non-specific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL) and therefore difficult to handle in practice. Knowing the genes that underlie race-non-specific resistance (NR) would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worldwide collection of spring barley accessions for candidate genes of race-NR to the powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) and combined data with results from QTL mapping as well as functional-genomics approaches. This led to the identification of 11 associated genes with converging evidence for an important role in race-NR in the presence of the Mlo gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches can accelerate the discovery of genes underlying race-NR in barley and other crop plants. PMID:22629270

  18. Comparative transcript profiling by SuperSAGE identifies novel candidate genes for controlling potato quantitative resistance to late blight not compromised by late maturity.

    PubMed

    Draffehn, Astrid M; Li, Li; Krezdorn, Nicolas; Ding, Jia; Lübeck, Jens; Strahwald, Josef; Muktar, Meki S; Walkemeier, Birgit; Rotter, Björn; Gebhardt, Christiane

    2013-01-01

    Resistance to pathogens is essential for survival of wild and cultivated plants. Pathogen susceptibility causes major losses of crop yield and quality. Durable field resistance combined with high yield and other superior agronomic characters are therefore, important objectives in every crop breeding program. Precision and efficacy of resistance breeding can be enhanced by molecular diagnostic tools, which result from knowledge of the molecular basis of resistance and susceptibility. Breeding uses resistance conferred by single R genes and polygenic quantitative resistance. The latter is partial but considered more durable. Molecular mechanisms of plant pathogen interactions are elucidated mainly in experimental systems involving single R genes, whereas most genes important for quantitative resistance in crops like potato are unknown. Quantitative resistance of potato to Phytophthora infestans causing late blight is often compromised by late plant maturity, a negative agronomic character. Our objective was to identify candidate genes for quantitative resistance to late blight not compromised by late plant maturity. We used diagnostic DNA-markers to select plants with different field levels of maturity corrected resistance (MCR) to late blight and compared their leaf transcriptomes before and after infection with P. infestans using SuperSAGE (serial analysis of gene expression) technology and next generation sequencing. We identified 2034 transcripts up or down regulated upon infection, including a homolog of the kiwi fruit allergen kiwellin. 806 transcripts showed differential expression between groups of genotypes with contrasting MCR levels. The observed expression patterns suggest that MCR is in part controlled by differential transcript levels in uninfected plants. Functional annotation suggests that, besides biotic and abiotic stress responses, general cellular processes such as photosynthesis, protein biosynthesis, and degradation play a role in MCR.

  19. Physical Interactions and Expression Quantitative Traits Loci Identify Regulatory Connections for Obesity and Type 2 Diabetes Associated SNPs

    PubMed Central

    Fadason, Tayaza; Ekblad, Cameron; Ingram, John R.; Schierding, William S.; O'Sullivan, Justin M.

    2017-01-01

    The mechanisms that underlie the association between obesity and type 2 diabetes are not fully understood. Here, we investigated the role of the 3D genome organization in the pathogeneses of obesity and type-2 diabetes. We interpreted the combined and differential impacts of 196 diabetes and 390 obesity associated single nucleotide polymorphisms (SNPs) by integrating data on the genes with which they physically interact (as captured by Hi-C) and the functional [i.e., expression quantitative trait loci (eQTL)] outcomes associated with these interactions. We identified 861 spatially regulated genes (e.g., AP3S2, ELP5, SVIP, IRS1, FADS2, WFS1, RBM6, HORMAD1, PYROXD2), which are enriched in tissues (e.g., adipose, skeletal muscle, pancreas) and biological processes and canonical pathways (e.g., lipid metabolism, leptin, and glucose-insulin signaling pathways) that are important for the pathogenesis of type 2 diabetes and obesity. Our discovery-based approach also identifies enrichment for eQTL SNP-gene interactions in tissues that are not classically associated with diabetes or obesity. We propose that the combinatorial action of active obesity and diabetes spatial eQTL SNPs on their gene pairs within different tissues reduces the ability of these tissues to contribute to the maintenance of a healthy energy metabolism. PMID:29081791

  20. Mapping and validation of major quantitative trait loci for kernel length in wild barley (Hordeum vulgare ssp. spontaneum).

    PubMed

    Zhou, Hong; Liu, Shihang; Liu, Yujiao; Liu, Yaxi; You, Jing; Deng, Mei; Ma, Jian; Chen, Guangdeng; Wei, Yuming; Liu, Chunji; Zheng, Youliang

    2016-09-13

    Kernel length is an important target trait in barley (Hordeum vulgare L.) breeding programs. However, the number of known quantitative trait loci (QTLs) controlling kernel length is limited. In the present study, we aimed to identify major QTLs for kernel length, as well as putative candidate genes that might influence kernel length in wild barley. A recombinant inbred line (RIL) population derived from the barley cultivar Baudin (H. vulgare ssp. vulgare) and the long-kernel wild barley genotype Awcs276 (H.vulgare ssp. spontaneum) was evaluated at one location over three years. A high-density genetic linkage map was constructed using 1,832 genome-wide diversity array technology (DArT) markers, spanning a total of 927.07 cM with an average interval of approximately 0.49 cM. Two major QTLs for kernel length, LEN-3H and LEN-4H, were detected across environments and further validated in a second RIL population derived from Fleet (H. vulgare ssp. vulgare) and Awcs276. In addition, a systematic search of public databases identified four candidate genes and four categories of proteins related to LEN-3H and LEN-4H. This study establishes a fundamental research platform for genomic studies and marker-assisted selection, since LEN-3H and LEN-4H could be used for accelerating progress in barley breeding programs that aim to improve kernel length.

  1. Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population

    PubMed Central

    Sepil, Irem; Lachish, Shelly; Hinks, Amy E.; Sheldon, Ben C.

    2013-01-01

    Major histocompatibility complex (Mhc) genes are believed to play a key role in the genetic basis of disease control. Although numerous studies have sought links between Mhc and disease prevalence, many have ignored the ecological and epidemiological aspects of the host–parasite interaction. Consequently, interpreting associations between prevalence and Mhc has been difficult, whereas discriminating alleles for qualitative resistance, quantitative resistance and susceptibility remains challenging. Moreover, most studies to date have quantified associations between genotypes and disease status, overlooking the complex relationship between genotype and the properties of the Mhc molecule that interacts with parasites. Here, we address these problems and demonstrate avian malaria (Plasmodium) parasite species-specific associations with functional properties of Mhc molecules (Mhc supertypes) in a wild great tit (Parus major) population. We further show that correctly interpreting these associations depends crucially on understanding the spatial variation in risk of infection and the fitness effects of infection. We report that a single Mhc supertype confers qualitative resistance to Plasmodium relictum, whereas a different Mhc supertype confers quantitative resistance to Plasmodium circumflexum infections. Furthermore, we demonstrate common functional properties of Plasmodium-resistance alleles in passerine birds, suggesting this is a model system for parasite–Mhc associations in the wild. PMID:23516242

  2. Identifying resistance gene analogs associated with resistances to different pathogens in common bean.

    PubMed

    López, Camilo E; Acosta, Iván F; Jara, Carlos; Pedraza, Fabio; Gaitán-Solís, Eliana; Gallego, Gerardo; Beebe, Steve; Tohme, Joe

    2003-01-01

    ABSTRACT A polymerase chain reaction approach using degenerate primers that targeted the conserved domains of cloned plant disease resistance genes (R genes) was used to isolate a set of 15 resistance gene analogs (RGAs) from common bean (Phaseolus vulgaris). Eight different classes of RGAs were obtained from nucleotide binding site (NBS)-based primers and seven from not previously described Toll/Interleukin-1 receptor-like (TIR)-based primers. Putative amino acid sequences of RGAs were significantly similar to R genes and contained additional conserved motifs. The NBS-type RGAs were classified in two subgroups according to the expected final residue in the kinase-2 motif. Eleven RGAs were mapped at 19 loci on eight linkage groups of the common bean genetic map constructed at Centro Internacional de Agricultura Tropical. Genetic linkage was shown for eight RGAs with partial resistance to anthracnose, angular leaf spot (ALS) and Bean golden yellow mosaic virus (BGYMV). RGA1 and RGA2 were associated with resistance loci to anthracnose and BGYMV and were part of two clusters of R genes previously described. A new major cluster was detected by RGA7 and explained up to 63.9% of resistance to ALS and has a putative contribution to anthracnose resistance. These results show the usefulness of RGAs as candidate genes to detect and eventually isolate numerous R genes in common bean.

  3. A pyramid breeding of eight grain-yield related quantitative trait loci based on marker-assistant and phenotype selection in rice (Oryza sativa L.).

    PubMed

    Zong, Guo; Wang, Ahong; Wang, Lu; Liang, Guohua; Gu, Minghong; Sang, Tao; Han, Bin

    2012-07-20

    1000-Grain weight and spikelet number per panicle are two important components for rice grain yield. In our previous study, eight quantitative trait loci (QTLs) conferring spikelet number per panicle and 1000-grain weight were mapped through sequencing-based genotyping of 150 rice recombinant inbred lines (RILs). In this study, we validated the effects of four QTLs from Nipponbare using chromosome segment substitution lines (CSSLs), and pyramided eight grain yield related QTLs. The new lines containing the eight QTLs with positive effects showed increased panicle and spikelet size as compared with the parent variety 93-11. We further proposed a novel pyramid breeding scheme based on marker-assistant and phenotype selection (MAPS). This scheme allowed pyramiding of as many as 24 QTLs at a single hybridization without massive cross work. This study provided insights into the molecular basis of rice grain yield for direct wealth for high-yielding rice breeding. Copyright © 2012. Published by Elsevier Ltd.

  4. Current Status of Early Blight Resistance in Tomato: An Update

    PubMed Central

    Adhikari, Pragya; Oh, Yeonyee; Panthee, Dilip R.

    2017-01-01

    Early blight (EB) is one of the dreadful diseases of tomato caused by several species of Alternaria including Alternaria linariae (which includes A. solani and A. tomatophila), as well as A. alternata. In some instances, annual economic yield losses due to EB have been estimated at 79%. Alternaria are known only to reproduce asexually, but a highly-virulent isolate has the potential to overcome existing resistance genes. Currently, cultural practices and fungicide applications are employed for the management of EB due to the lack of strong resistant cultivars. Resistance sources have been identified in wild species of tomato; some breeding lines and cultivars with moderate resistance have been developed through conventional breeding methods. Polygenic inheritance of EB resistance, insufficient resistance in cultivated species and the association of EB resistance with undesirable horticultural traits have thwarted the effective breeding of EB resistance in tomato. Several quantitative trait loci (QTL) conferring EB resistance have been detected in the populations derived from different wild species including Solanum habrochaites, Solanum arcanum and S. pimpinellifolium, but none of them could be used in EB resistance breeding due to low individual QTL effects. Pyramiding of those QTLs would provide strong resistance. More research is needed to identify additional sources of useful resistance, to incorporate resistant QTLs into breeding lines through marker-assisted selection (MAS) and to develop resistant cultivars with desirable horticultural traits including high yielding potential and early maturity. This paper will review the current understanding of causal agents of EB of tomato, resistance genetics and breeding, problems associated with breeding and future prospects. PMID:28934121

  5. The quantitative LOD score: test statistic and sample size for exclusion and linkage of quantitative traits in human sibships.

    PubMed

    Page, G P; Amos, C I; Boerwinkle, E

    1998-04-01

    We present a test statistic, the quantitative LOD (QLOD) score, for the testing of both linkage and exclusion of quantitative-trait loci in randomly selected human sibships. As with the traditional LOD score, the boundary values of 3, for linkage, and -2, for exclusion, can be used for the QLOD score. We investigated the sample sizes required for inferring exclusion and linkage, for various combinations of linked genetic variance, total heritability, recombination distance, and sibship size, using fixed-size sampling. The sample sizes required for both linkage and exclusion were not qualitatively different and depended on the percentage of variance being linked or excluded and on the total genetic variance. Information regarding linkage and exclusion in sibships larger than size 2 increased as approximately all possible pairs n(n-1)/2 up to sibships of size 6. Increasing the recombination (theta) distance between the marker and the trait loci reduced empirically the power for both linkage and exclusion, as a function of approximately (1-2theta)4.

  6. Quantitative trait loci controlling leaf appearance and curd initiation of cauliflower in relation to temperature.

    PubMed

    Hasan, Yaser; Briggs, William; Matschegewski, Claudia; Ordon, Frank; Stützel, Hartmut; Zetzsche, Holger; Groen, Simon; Uptmoor, Ralf

    2016-07-01

    QTL regions on chromosomes C06 and C09 are involved in temperature dependent time to curd induction in cauliflower. Temperature is the main environmental factor influencing curding time of cauliflower (Brassica oleracea var. botrytis). Temperatures above 20-22 °C inhibit development towards curding even in many summer cultivars. To identify quantitative trait loci (QTL) controlling curding time and its related traits in a wide range of different temperature regimes from 12 to 27 °C, a doubled haploid (DH) mapping population segregating for curding time was developed and days to curd initiation (DCI), leaf appearance rate (LAR), and final leaf number (FLN) were measured. The population was genotyped with 176 single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) revealed repeatedly detected QTL for DCI on C06 and C09. The estimated additive effect increased at high temperatures. Significant QTL × environment interactions (Q × E) for FLN and DCI on C06 and C09 suggest that these hotspot regions have major influences on temperature mediated curd induction. 25 % of the DH lines did not induce curds at temperatures higher than 22 °C. Applying a binary model revealed a QTL with LOD >15 on C06. Nearly all lines carrying the allele of the reliable early maturing parental line (PL) on that locus induced curds at high temperatures while only half of the DH lines carrying the allele of the unreliable PL reached the generative phase during the experiment. Large variation in LAR was observed. QTL for LAR were detected repeatedly in several environments on C01, C04 and C06. Negative correlations between LAR and DCI and QTL co-localizations on C04 and C06 suggest that LAR has also effects on development towards curd induction.

  7. Partial Resistance of Carrot to Alternaria dauci Correlates with In Vitro Cultured Carrot Cell Resistance to Fungal Exudates

    PubMed Central

    Voisine, Linda; Gatto, Julia; Hélesbeux, Jean-Jacques; Séraphin, Denis; Peña-Rodriguez, Luis M.; Richomme, Pascal; Boedo, Cora; Yovanopoulos, Claire; Gyomlai, Melvina; Briard, Mathilde; Simoneau, Philippe; Poupard, Pascal; Berruyer, Romain

    2014-01-01

    Although different mechanisms have been proposed in the recent years, plant pathogen partial resistance is still poorly understood. Components of the chemical warfare, including the production of plant defense compounds and plant resistance to pathogen-produced toxins, are likely to play a role. Toxins are indeed recognized as important determinants of pathogenicity in necrotrophic fungi. Partial resistance based on quantitative resistance loci and linked to a pathogen-produced toxin has never been fully described. We tested this hypothesis using the Alternaria dauci – carrot pathosystem. Alternaria dauci, causing carrot leaf blight, is a necrotrophic fungus known to produce zinniol, a compound described as a non-host selective toxin. Embryogenic cellular cultures from carrot genotypes varying in resistance against A. dauci were confronted with zinniol at different concentrations or to fungal exudates (raw, organic or aqueous extracts). The plant response was analyzed through the measurement of cytoplasmic esterase activity, as a marker of cell viability, and the differentiation of somatic embryos in cellular cultures. A differential response to toxicity was demonstrated between susceptible and partially resistant genotypes, with a good correlation noted between the resistance to the fungus at the whole plant level and resistance at the cellular level to fungal exudates from raw and organic extracts. No toxic reaction of embryogenic cultures was observed after treatment with the aqueous extract or zinniol used at physiological concentration. Moreover, we did not detect zinniol in toxic fungal extracts by UHPLC analysis. These results suggest that strong phytotoxic compounds are present in the organic extract and remain to be characterized. Our results clearly show that carrot tolerance to A. dauci toxins is one component of its partial resistance. PMID:24983469

  8. Phenotyping at hot spots and tagging of QTLs conferring spot blotch resistance in bread wheat.

    PubMed

    Singh, Virender; Singh, Gyanendra; Chaudhury, A; Ojha, Ashish; Tyagi, B S; Chowdhary, A K; Sheoran, Sonia

    2016-11-01

    Spot blotch is a major foliar disease of wheat caused by Bipolaris sorokiniana in warm and humid environments of the world including South Asian countries. In India, it has a larger impact in Indo-Gangetic plains of the country. Therefore, the present study was undertaken to phenotype a mapping population at different hot spots of India and to detect quantitative trait loci (QTL) for resistance to spot blotch in wheat. For this study, 209 single seed descent (SSD) derived F 8 , F 9 , F 10 recombinant inbred lines (RILs) of the cross 'Sonalika' (an Indian susceptible cultivar)/'BH 1146' (a Brazilian resistant cultivar) were assessed for spot blotch resistance at two hot spot locations (Coochbehar and Kalyani) for three years and for two years under controlled conditions in the polyhouse (Karnal). The population showed large variation in spot blotch reaction for disease severity in all the environments indicating polygenic nature of the disease. Microsatellite markers were used to create the linkage maps. Joint and/or individual year analysis by composite interval mapping (CIM) and likelihood of odds ratio (LOD) >2.1, detected two consistent QTLs mapped on chromosome 7BL and 7DL and these explained phenotypic variation of 11.4 percent and 9.5 percent over the years and locations, respectively. The resistance at these loci was contributed by the parent 'BH 1146' and shown to be independent of plant height and earliness. Besides, association of some agro-morphological traits has also been observed with percent disease severity. These identified genomic regions may be used in future wheat breeding programs through marker assisted selection for developing spot blotch resistant cultivars.

  9. A new QTL for resistance to Fusarium ear rot in maize.

    PubMed

    Li, Zhi-Min; Ding, Jun-Qiang; Wang, Rui-Xia; Chen, Jia-Fa; Sun, Xiao-Dong; Chen, Wei; Song, Wei-Bin; Dong, Hua-Fang; Dai, Xiao-Dong; Xia, Zong-Liang; Wu, Jian-Yu

    2011-11-01

    Understanding the inheritance of resistance to Fusarium ear rot is a basic prerequisite for an efficient resistance breeding in maize. In this study, 250 recombinant inbred lines (RILs) along with their resistant (BT-1) and susceptible (N6) parents were planted in Zhengzhou with three replications in 2007 and 2008. Each line was artificially inoculated using the nail-punch method. Significant genotypic variation in response to Fusarium ear rot was detected in both years. Based on a genetic map containing 207 polymorphic simple sequence repeat (SSR) markers with average genetic distances of 8.83 cM, the ear rot resistance quantitative trait loci (QTL) were analyzed by composite interval mapping with a mixed model (MCIM) across the environments. In total, four QTL were detected on chromosomes 3, 4, 5, and 6. The resistance allele at each of these four QTL was contributed by resistant parent BT-1, and accounted for 2.5-10.2% of the phenotypic variation. However, no significant epistasis interaction effect was detected after a two-dimensional genome scan. Among the four QTL, one QTL with the largest effect on chromosome 4 (bin 4.06) can be suggested to be a new locus for resistance to Fusarium ear rot, which broadens the genetic base for resistance to the disease and can be used for further genetic improvement in maize-breeding programs.

  10. Leadership and organizational change for implementation (LOCI): a randomized mixed method pilot study of a leadership and organization development intervention for evidence-based practice implementation.

    PubMed

    Aarons, Gregory A; Ehrhart, Mark G; Farahnak, Lauren R; Hurlburt, Michael S

    2015-01-16

    Leadership is important in the implementation of innovation in business, health, and allied health care settings. Yet there is a need for empirically validated organizational interventions for coordinated leadership and organizational development strategies to facilitate effective evidence-based practice (EBP) implementation. This paper describes the initial feasibility, acceptability, and perceived utility of the Leadership and Organizational Change for Implementation (LOCI) intervention. A transdisciplinary team of investigators and community stakeholders worked together to develop and test a leadership and organizational strategy to promote effective leadership for implementing EBPs. Participants were 12 mental health service team leaders and their staff (n = 100) from three different agencies that provide mental health services to children and families in California, USA. Supervisors were randomly assigned to the 6-month LOCI intervention or to a two-session leadership webinar control condition provided by a well-known leadership training organization. We utilized mixed methods with quantitative surveys and qualitative data collected via surveys and a focus group with LOCI trainees. Quantitative and qualitative analyses support the LOCI training and organizational strategy intervention in regard to feasibility, acceptability, and perceived utility, as well as impact on leader and supervisee-rated outcomes. The LOCI leadership and organizational change for implementation intervention is a feasible and acceptable strategy that has utility to improve staff-rated leadership for EBP implementation. Further studies are needed to conduct rigorous tests of the proximal and distal impacts of LOCI on leader behaviors, implementation leadership, organizational context, and implementation outcomes. The results of this study suggest that LOCI may be a viable strategy to support organizations in preparing for the implementation and sustainment of EBP.

  11. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana.

    PubMed

    Alonso-Blanco, Carlos; Bentsink, Leónie; Hanhart, Corrie J; Blankestijn-de Vries, Hetty; Koornneef, Maarten

    2003-06-01

    Arabidopsis accessions differ largely in their seed dormancy behavior. To understand the genetic basis of this intraspecific variation we analyzed two accessions: the laboratory strain Landsberg erecta (Ler) with low dormancy and the strong-dormancy accession Cape Verde Islands (Cvi). We used a quantitative trait loci (QTL) mapping approach to identify loci affecting the after-ripening requirement measured as the number of days of seed dry storage required to reach 50% germination. Thus, seven QTL were identified and named delay of germination (DOG) 1-7. To confirm and characterize these loci, we developed 12 near-isogenic lines carrying single and double Cvi introgression fragments in a Ler genetic background. The analysis of these lines for germination in water confirmed four QTL (DOG1, DOG2, DOG3, and DOG6) as showing large additive effects in Ler background. In addition, it was found that DOG1 and DOG3 genetically interact, the strong dormancy determined by DOG1-Cvi alleles depending on DOG3-Ler alleles. These genotypes were further characterized for seed dormancy/germination behavior in five other test conditions, including seed coat removal, gibberellins, and an abscisic acid biosynthesis inhibitor. The role of the Ler/Cvi allelic variation in affecting dormancy is discussed in the context of current knowledge of Arabidopsis germination.

  12. Mapping Quantitative Trait Loci Associated with Toot Traits Using Sequencing-Based Genotyping Chromosome Segment Substitution Lines Derived from 9311 and Nipponbare in Rice (Oryza sativa L.).

    PubMed

    Zhou, Yong; Dong, Guichun; Tao, Yajun; Chen, Chen; Yang, Bin; Wu, Yue; Yang, Zefeng; Liang, Guohua; Wang, Baohe; Wang, Yulong

    2016-01-01

    Identification of quantitative trait loci (QTLs) associated with rice root morphology provides useful information for avoiding drought stress and maintaining yield production under the irrigation condition. In this study, a set of chromosome segment substitution lines derived from 9311 as the recipient and Nipponbare as donor, were used to analysis root morphology. By combining the resequencing-based bin-map with a multiple linear regression analysis, QTL identification was conducted on root number (RN), total root length (TRL), root dry weight (RDW), maximum root length (MRL), root thickness (RTH), total absorption area (TAA) and root vitality (RV), using the CSSL population grown under hydroponic conditions. A total of thirty-eight QTLs were identified: six for TRL, six for RDW, eight for the MRL, four for RTH, seven for RN, two for TAA, and five for RV. Phenotypic effect variance explained by these QTLs ranged from 2.23% to 37.08%, and four single QTLs had more than 10% phenotypic explanations on three root traits. We also detected the correlations between grain yield (GY) and root traits, and found that TRL, RTH and MRL had significantly positive correlations with GY. However, TRL, RDW and MRL had significantly positive correlations with biomass yield (BY). Several QTLs identified in our population were co-localized with some loci for grain yield or biomass. This information may be immediately exploited for improving rice water and fertilizer use efficiency for molecular breeding of root system architectures.

  13. Bilaterally Asymmetric Effects of Quantitative Trait Loci (QTLs): QTLs That Affect Laxity in the Right Versus Left Coxofemoral (Hip) Joints of the Dog (Canis familiaris)

    PubMed Central

    Chase, Kevin; Lawler, Dennis F.; Adler, Fred R.; Ostrander, Elaine A.; Lark, Karl G.

    2009-01-01

    In dogs hip joint laxity that can lead to degenerative joint disease (DJD) is frequent and heritable, providing a genetic model for some aspects of the human disease. We have used Portuguese water dogs (PWDs) to identify Quantitative trait loci (QTLs) that regulate laxity in the hip joint.A population of 286 PWDs, each characterized by ca. 500 molecular genetic markers, was analyzed for subluxation of the hip joint as measured by the Norberg angle, a quantitative radiographic measure of laxity. A significant directed asymmetry was observed, such that greater laxity was observed in the left than the right hip. This asymmetry was not heritable. However, the average Norberg angle was highly heritable as were the Norberg angles of either the right or left hips. After correction for pedigree effects, two QTLs were identified using the metrics of the left and right hips as separate data sets. Both are on canine chromosome 1 (CFA1), separated by about 95 Mb. One QTL, associated with the SSR marker FH2524 was significant for the left, but not the right hip. The other, associated with FH2598, was significant for the right but not the left hip. For both QTLs, some extreme phenotypes were best explained by specific interactions between haplotypes. PMID:14708095

  14. Bilaterally asymmetric effects of quantitative trait loci (QTLs): QTLs that affect laxity in the right versus left coxofemoral (hip) joints of the dog (Canis familiaris).

    PubMed

    Chase, Kevin; Lawler, Dennis F; Adler, Fred R; Ostrander, Elaine A; Lark, Karl G

    2004-01-30

    In dogs hip joint laxity that can lead to degenerative joint disease (DJD) is frequent and heritable, providing a genetic model for some aspects of the human disease. We have used Portuguese water dogs (PWDs) to identify Quantitative trait loci (QTLs) that regulate laxity in the hip joint. A population of 286 PWDs, each characterized by ca. 500 molecular genetic markers, was analyzed for subluxation of the hip joint as measured by the Norberg angle, a quantitative radiographic measure of laxity. A significant directed asymmetry was observed, such that greater laxity was observed in the left than the right hip. This asymmetry was not heritable. However, the average Norberg angle was highly heritable as were the Norberg angles of either the right or left hips. After correction for pedigree effects, two QTLs were identified using the metrics of the left and right hips as separate data sets. Both are on canine chromosome 1 (CFA1), separated by about 95 Mb. One QTL, associated with the SSR marker FH2524 was significant for the left, but not the right hip. The other, associated with FH2598, was significant for the right but not the left hip. For both QTLs, some extreme phenotypes were best explained by specific interactions between haplotypes. Copyright 2003 Wiley-Liss, Inc.

  15. Mapping Fusarium solani and Aphanomyces euteiches root rot resistance and root architecture quantitative trait loci in common bean (Phaseolus vulgaris)

    USDA-ARS?s Scientific Manuscript database

    Root rot diseases of bean (Phaseolus vulgaris L.) are a constraint to dry and snap bean production. We developed the RR138 RIL mapping population from the cross of OSU5446, a susceptible line that meets current snap bean processing industry standards, and RR6950, a root rot resistant dry bean in th...

  16. Application of image analysis in studies of quantitative disease resistance, exemplified using common bacterial blight-common bean pathosystem.

    PubMed

    Xie, Weilong; Yu, Kangfu; Pauls, K Peter; Navabi, Alireza

    2012-04-01

    The effectiveness of image analysis (IA) compared with an ordinal visual scale, for quantitative measurement of disease severity, its application in quantitative genetic studies, and its effect on the estimates of genetic parameters were investigated. Studies were performed using eight backcross-derived families of common bean (Phaseolus vulgaris) (n = 172) segregating for the molecular marker SU91, known to be associated with a quantitative trait locus (QTL) for resistance to common bacterial blight (CBB), caused by Xanthomonas campestris pv. phaseoli and X. fuscans subsp. fuscans. Even though both IA and visual assessments were highly repeatable, IA was more sensitive in detecting quantitative differences between bean genotypes. The CBB phenotypic difference between the two SU91 genotypic groups was consistently more than fivefold for IA assessments but generally only two- to threefold for visual assessments. Results suggest that the visual assessment results in overestimation of the effect of QTL in genetic studies. This may have been caused by lack of additivity and uneven intervals of the visual scale. Although visual assessment of disease severity is a useful tool for general selection in breeding programs, assessments using IA may be more suitable for phenotypic evaluations in quantitative genetic studies involving CBB resistance as well as other foliar diseases.

  17. EM Algorithm for Mapping Quantitative Trait Loci in Multivalent Tetraploids

    USDA-ARS?s Scientific Manuscript database

    Multivalent tetraploids that include many plant species, such as potato, sugarcane and rose, are of paramount importance to agricultural production and biological research. Quantitative trait locus (QTL) mapping in multivalent tetraploids is challenged by their unique cytogenetic properties, such ...

  18. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance.

    PubMed

    Manning, Alisa K; Hivert, Marie-France; Scott, Robert A; Grimsby, Jonna L; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E; Navarro, Pau; Perry, John R B; Rasmussen-Torvik, Laura J; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J; Tanaka, Toshiko; van Duijn, Cornelia M; An, Ping; de Andrade, Mariza; Andrews, Jeanette S; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S; Beilby, John P; Bellis, Claire; Bergman, Richard N; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L; Boomsma, Dorret I; Borecki, Ingrid B; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S; Clarke, Robert; Collins, Francis S; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R; Eriksson, Johan G; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo-Riitta; Jhun, Min A; Johnson, Paul C D; Jukema, J Wouter; Jula, Antti; Kao, W H; Kaprio, Jaakko; Kardia, Sharon L R; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J F; Luan, Jian'an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K E; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L; Mooser, Vincent; Morken, Mario A; Miljkovic, Iva; Narisu, Narisu; O'Connell, Jeff; Ong, Ken K; Oostra, Ben A; Palmer, Lyle J; Palotie, Aarno; Pankow, James S; Peden, John F; Pedersen, Nancy L; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P; Province, Michael A; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R; Sijbrands, Eric J G; Siscovick, David S; Smit, Johannes H; Small, Kerrin S; Smith, Nicholas L; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V; Swift, Amy J; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H; Willems, Sara M; Willemsen, Gonneke; Wilson, James F; Witteman, Jacqueline C M; Wright, Alan F; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J; McCarthy, Mark I; Barroso, Ines; Watanabe, Richard M; Florez, Jose C; Dupuis, Josée; Meigs, James B; Langenberg, Claudia

    2012-05-13

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.

  19. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    PubMed Central

    Manning, Alisa K.; Hivert, Marie-France; Scott, Robert A.; Grimsby, Jonna L.; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F.; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U.; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E.; Navarro, Pau; Perry, John R. B.; Rasmussen-Torvik, Laura J.; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J.; Tanaka, Toshiko; van Duijn, Cornelia M.; An, Ping; de Andrade, Mariza; Andrews, Jeanette S.; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S.; Beilby, John P.; Bellis, Claire; Bergman, Richard N.; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Borecki, Ingrid B.; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S.; Clarke, Robert; Collins, Francis S.; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R.; Eriksson, Johan G.; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G.; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L.; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B.; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo Riitta; Jhun, Min A.; Johnson, Paul C.D.; Jukema, J Wouter; Jula, Antti; Kao, W.H.; Kaprio, Jaakko; Kardia, Sharon L. R.; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J.; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J. F.; Luan, Jian’an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K. E.; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Miljkovic, Iva; Narisu, Narisu; O’Connell, Jeff; Ong, Ken K.; Oostra, Ben A.; Palmer, Lyle J.; Palotie, Aarno; Pankow, James S.; Peden, John F.; Pedersen, Nancy L.; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P.; Province, Michael A.; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I.; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B.; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R.; Sijbrands, Eric J.G.; Siscovick, David S.; Smit, Johannes H.; Small, Kerrin S.; Smith, Nicholas L.; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V.; Swift, Amy J.; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G.; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F.; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H.; Willems, Sara M.; Willemsen, Gonneke; Wilson, James F.; Witteman, Jacqueline C.M.; Wright, Alan F.; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J.; McCarthy, Mark I.; Barroso, Ines; Watanabe, Richard M.; Florez, Jose C.; Dupuis, Josée; Meigs, James B.; Langenberg, Claudia

    2013-01-01

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways may be uncovered by accounting for differences in body mass index (BMI) and potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale. We present six previously unknown FI loci at P<5×10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these FI loci in insulin resistance pathways. The localization of these additional loci will aid further characterization of the role of insulin resistance in T2D pathophysiology. PMID:22581228

  20. Main and epistatic QTL analyses for Sclerotinia Head Rot resistance in sunflower.

    PubMed

    Zubrzycki, Jeremías Enrique; Maringolo, Carla Andrea; Filippi, Carla Valeria; Quiróz, Facundo José; Nishinakamasu, Verónica; Puebla, Andrea Fabiana; Di Rienzo, Julio A; Escande, Alberto; Lia, Verónica Viviana; Heinz, Ruth Amalia; Hopp, Horacio Esteban; Cervigni, Gerardo D L; Paniego, Norma Beatriz

    2017-01-01

    Sclerotinia Head Rot (SHR), a disease caused by Sclerotinia sclerotiorum, is one of the most limiting factors in sunflower production. In this study, we identified genomic loci associated with resistance to SHR to support the development of assisted breeding strategies. We genotyped 114 Recombinant Inbred Lines (RILs) along with their parental lines (PAC2 -partially resistant-and RHA266 -susceptible-) by using a 384 single nucleotide polymorphism (SNP) Illumina Oligo Pool Assay to saturate a sunflower genetic map. Subsequently, we tested these lines for SHR resistance using assisted inoculations with S. sclerotiorum ascospores. We also conducted a randomized complete-block assays with three replicates to visually score disease incidence (DI), disease severity (DS), disease intensity (DInt) and incubation period (IP) through four field trials (2010-2014). We finally assessed main effect quantitative trait loci (M-QTLs) and epistatic QTLs (E-QTLs) by composite interval mapping (CIM) and mixed-model-based composite interval mapping (MCIM), respectively. As a result of this study, the improved map incorporates 61 new SNPs over candidate genes. We detected a broad range of narrow sense heritability (h2) values (1.86-59.9%) as well as 36 M-QTLs and 13 E-QTLs along 14 linkage groups (LGs). On LG1, LG10, and LG15, we repeatedly detected QTLs across field trials; which emphasizes their putative effectiveness against SHR. In all selected variables, most of the identified QTLs showed high determination coefficients, associated with moderate to high heritability values. Using markers shared with previous Sclerotinia resistance studies, we compared the QTL locations in LG1, LG2, LG8, LG10, LG11, LG15 and LG16. This study constitutes the largest report of QTLs for SHR resistance in sunflower. Further studies focusing on the regions in LG1, LG10, and LG15 harboring the detected QTLs are necessary to identify causal alleles and contribute to unraveling the complex genetic basis

  1. Quantitative, high-resolution epigenetic profiling of CpG loci identifies associations with cord blood plasma homocysteine and birth weight in humans

    PubMed Central

    Ismail, Khaled MK; Haworth, Kim E; Mein, Charles; Carroll, William D

    2011-01-01

    Supplementation with folic acid during pregnancy is known to reduce the risk of neural tube defects and low birth weight. It is thought that folate and other one-carbon intermediates might secure these clinical effects via DNA methylation. We examined the effects of folate on the human methylome using quantitative interrogation of 27,578 CpG loci associated with 14,496 genes at single-nucleotide resolution across 12 fetal cord blood samples. Consistent with previous studies, the majority of CpG dinucleotides located within CpG islands exhibited hypomethylation while those outside CpG islands showed mid-high methylation. However, for the first time in human samples, unbiased analysis of methylation across samples revealed a significant correlation of methylation patterns with plasma homocysteine, LINE-1 methylation and birth weight centile. Additionally, CpG methylation significantly correlated with either birth weight or LINE-1 methylation were predominantly located in CpG islands. These data indicate that levels of folate-associated intermediates in cord blood reflect their influence and consequences for the fetal epigenome and potentially on pregnancy outcome. In these cases, their influence might be exerted during late gestation or reflect those present during the peri-conceptual period. PMID:20864804

  2. [Discriminatory power of variable number on tandem repeats loci for genotyping Mycobacterium tuberculosis strains in China].

    PubMed

    Chen, H X; Cai, C; Liu, J Y; Zhang, Z G; Yuan, M; Jia, J N; Sun, Z G; Huang, H R; Gao, J M; Li, W M

    2017-06-10

    Objective: Using the standard genotype method, variable number of tandem repeats (VNTR), we constructed a VNTR database to cover all provinces and proposed a set of optimized VNTR loci combinations for each province, in order to improve the preventive and control programs on tuberculosis, in China. Methods: A total of 15 loci VNTR was used to analyze 4 116 Mycobacterium tuberculosis strains, isolated from national survey of Drug Resistant Tuberculosis, in 2007. Hunter-Gaston Index (HGI) was also used to analyze the discriminatory power of each VNTR site. A set combination of 12-VNTR, 10-VNTR, 8-VNTR and 5-VNTR was respectively constructed for each province, based on 1) epidemic characteristics of M. tuberculosis lineages in China, with high discriminatory power and genetic stability. Results: Through the completed 15 loci VNTR patterns of 3 966 strains under 96.36 % (3 966/4 116) coverage, we found seven high HGI loci (including QUB11b and MIRU26) as well as low stable loci (including QUB26, MIRU16, Mtub21 and QUB11b) in several areas. In all the 31 provinces, we found an optimization VNTR combination as 10-VNTR loci in Inner Mongolia, Chongqing and Heilongjiang, but with 8-VNTR combination shared in other provinces. Conclusions: It is necessary to not only use the VNTR database for tracing the source of infection and cluster of M. tuberculosis in the nation but also using the set of optimized VNTR combinations in monitoring those local epidemics and M. tuberculosis (genetics in local) population.

  3. Remote Symbolic Computation of Loci

    ERIC Educational Resources Information Center

    Abanades, Miguel A.; Escribano, Jesus; Botana, Francisco

    2010-01-01

    This article presents a web-based tool designed to compute certified equations and graphs of geometric loci specified using standard Dynamic Geometry Systems (DGS). Complementing the graphing abilities of the considered DGS, the equations of the loci produced by the application are remotely computed using symbolic algebraic techniques from the…

  4. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir

    Treesearch

    Nicholas C. Wheeler; Kathleen D. Jermstad; Konstantin V. Krutovsky; Sally N. Aitken; Glenn T. Howe; Jodie Krakowski; David B. Neale

    2005-01-01

    Quantitative trait locus (QTL) analyses are used by geneticists to characterize the genetic architecture of quantitative traits, provide a foundation for marker-aided-selection (MAS), and provide a framework for positional selection of candidate genes. The most useful QTL for breeding applications are those that have been verified in time, space, and/or genetic...

  5. Quantitative trait loci segregating in crosses between New Hampshire and White Leghorn chicken lines: II. Muscle weight and carcass composition.

    PubMed

    Nassar, M K; Goraga, Z S; Brockmann, G A

    2012-12-01

    In order to identify genetic factors influencing muscle weight and carcass composition in chicken, a linkage analysis was performed with 278 F(2) males of reciprocal crosses between the extremely different inbred lines New Hampshire (NHI) and White Leghorn (WL77). The NHI line had been selected for high meat yield and the WL77 for low egg weight before inbreeding. Highly significant quantitative trait loci (QTL) controlling body weight and the weights of carcass, breast muscle, drumsticks-thighs and wings were identified on GGA4 between 151.5 and 160.5 cM and on GGA27 between 4 and 52 cM. These genomic regions explained 13.7-40.2% and 5.3-13.8% of the phenotypic F(2) variances of the corresponding traits respectively. Additional genome-wide highly significant QTL for the weight of drumsticks-thighs were mapped on GGA1, 5 and 7. Moreover, significant QTL controlling body weight were found on GGA2 and 11. The data obtained in this study can be used for increasing the mapping resolution and subsequent gene targeting on GGA4 and 27 by combining data with other crosses where the same QTL were found. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  6. In-silico QTL mapping of postpubertal mammary ductal development in the mouse uncovers potential human breast cancer risk loci

    USDA-ARS?s Scientific Manuscript database

    Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structura...

  7. Comparative mapping of quantitative trait loci for tassel-related traits of maize in F2:3 and RIL populations.

    PubMed

    Yi, Qiang; Liu, Yinghong; Zhang, Xiangge; Hou, Xianbin; Zhang, Junjie; Liu, Hanmei; Hu, Yufeng; Yu, Guowu; Huang, Yubi

    2018-03-01

    Tassel architecture is an important trait in maize breeding and hybrid seed production. In this study, we investigated total tassel length (TTL) and tassel branch number (TBN) in 266 F 2:3 families across six environments and in 301 recombinant inbred lines (RILs) across three environments, where all the plants were derived from a cross between 08-641 and Ye478. We compared the genetic architecture of the two traits across two generations through combined analysis. In total, 27 quantitative trait loci (QTLs) (15 in F 2:3 ; 16 in RIL), two QTL × environment interactions (both in F 2:3 ), 11 pairs of epistatic interactions (seven in F 2:3 ; four in RIL) and four stable QTLs in both the F 2:3 and RILs were detected. The RIL population had higher detection power than the F 2:3 population. Nevertheless, QTL × environment interactions and epistatic interactions could be more easily detected in the F 2:3 population than in the RILs. Overall, the QTL mapping results in the F 2:3 and RILs were greatly influenced by genetic generations and environments. Finally, fine mapping for a novel and major QTL, qTTL-2-3 (bin 2.07), which accounted for over 8.49% of the phenotypic variation across different environments and generations, could be useful in marker-assisted breeding.

  8. Quantitative Trait Loci for Light Sensitivity, Body Weight, Body Size, and Morphological Eye Parameters in the Bumblebee, Bombus terrestris.

    PubMed

    Maebe, Kevin; Meeus, Ivan; De Riek, Jan; Smagghe, Guy

    2015-01-01

    Bumblebees such as Bombus terrestris are essential pollinators in natural and managed ecosystems. In addition, this species is intensively used in agriculture for its pollination services, for instance in tomato and pepper greenhouses. Here we performed a quantitative trait loci (QTL) analysis on B. terrestris using 136 microsatellite DNA markers to identify genes linked with 20 traits including light sensitivity, body size and mass, and eye and hind leg measures. By composite interval mapping (IM), we found 83 and 34 suggestive QTLs for 19 of the 20 traits at the linkage group wide significance levels of p = 0.05 and 0.01, respectively. Furthermore, we also found five significant QTLs at the genome wide significant level of p = 0.05. Individual QTLs accounted for 7.5-53.3% of the phenotypic variation. For 15 traits, at least one QTL was confirmed with multiple QTL model mapping. Multivariate principal components analysis confirmed 11 univariate suggestive QTLs but revealed three suggestive QTLs not identified by the individual traits. We also identified several candidate genes linked with light sensitivity, in particular the Phosrestin-1-like gene is a primary candidate for its phototransduction function. In conclusion, we believe that the suggestive and significant QTLs, and markers identified here, can be of use in marker-assisted breeding to improve selection towards light sensitive bumblebees, and thus also the pollination service of bumblebees.

  9. Identification of Major Quantitative Trait Loci for Seed Oil Content in Soybeans by Combining Linkage and Genome-Wide Association Mapping

    PubMed Central

    Cao, Yongce; Li, Shuguang; Wang, Zili; Chang, Fangguo; Kong, Jiejie; Gai, Junyi; Zhao, Tuanjie

    2017-01-01

    Soybean oil is the most widely produced vegetable oil in the world and its content in soybean seed is an important quality trait in breeding programs. More than 100 quantitative trait loci (QTLs) for soybean oil content have been identified. However, most of them are genotype specific and/or environment sensitive. Here, we used both a linkage and association mapping methodology to dissect the genetic basis of seed oil content of Chinese soybean cultivars in various environments in the Jiang-Huai River Valley. One recombinant inbred line (RIL) population (NJMN-RIL), with 104 lines developed from a cross between M8108 and NN1138-2, was planted in five environments to investigate phenotypic data, and a new genetic map with 2,062 specific-locus amplified fragment markers was constructed to map oil content QTLs. A derived F2 population between MN-5 (a line of NJMN-RIL) and NN1138-2 was also developed to confirm one major QTL. A soybean breeding germplasm population (279 lines) was established to perform a genome-wide association study (GWAS) using 59,845 high-quality single nucleotide polymorphism markers. In the NJMN-RIL population, 8 QTLs were found that explained a range of phenotypic variance from 6.3 to 26.3% in certain planting environments. Among them, qOil-5-1, qOil-10-1, and qOil-14-1 were detected in different environments, and qOil-5-1 was further confirmed using the secondary F2 population. Three loci located on chromosomes 5 and 20 were detected in a 2-year long GWAS, and one locus that overlapped with qOil-5-1 was found repeatedly and treated as the same locus. qOil-5-1 was further localized to a linkage disequilibrium block region of approximately 440 kb. These results will not only increase our understanding of the genetic control of seed oil content in soybean, but will also be helpful in marker-assisted selection for breeding high seed oil content soybean and gene cloning to elucidate the mechanisms of seed oil content. PMID:28747922

  10. The genetic architecture of susceptibility to parasites.

    PubMed

    Wilfert, Lena; Schmid-Hempel, Paul

    2008-06-30

    The antagonistic co-evolution of hosts and their parasites is considered to be a potential driving force in maintaining host genetic variation including sexual reproduction and recombination. The examination of this hypothesis calls for information about the genetic basis of host-parasite interactions - such as how many genes are involved, how big an effect these genes have and whether there is epistasis between loci. We here examine the genetic architecture of quantitative resistance in animal and plant hosts by concatenating published studies that have identified quantitative trait loci (QTL) for host resistance in animals and plants. Collectively, these studies show that host resistance is affected by few loci. We particularly show that additional epistatic interactions, especially between loci on different chromosomes, explain a majority of the effects. Furthermore, we find that when experiments are repeated using different host or parasite genotypes under otherwise identical conditions, the underlying genetic architecture of host resistance can vary dramatically - that is, involves different QTLs and epistatic interactions. QTLs and epistatic loci vary much less when host and parasite types remain the same but experiments are repeated in different environments. This pattern of variability of the genetic architecture is predicted by strong interactions between genotypes and corroborates the prevalence of varying host-parasite combinations over varying environmental conditions. Moreover, epistasis is a major determinant of phenotypic variance for host resistance. Because epistasis seems to occur predominantly between, rather than within, chromosomes, segregation and chromosome number rather than recombination via cross-over should be the major elements affecting adaptive change in host resistance.

  11. A Novel and Major Quantitative Trait Locus for Fusarium Crown Rot Resistance in a Genotype of Wild Barley (Hordeum spontaneum L.)

    PubMed Central

    Chen, Guangdeng; Liu, Yaxi; Ma, Jun; Zheng, Zhi; Wei, Yuming; McIntyre, C. Lynne; Zheng, You-Liang; Liu, Chunji

    2013-01-01

    Fusarium crown rot (FCR), caused by various Fusarium species, is a destructive disease of cereal crops in semiarid regions worldwide. As part of our contribution to the development of Fusarium resistant cultivars, we identified several novel sources of resistance by systematically assessing barley genotypes representing different geographical origins and plant types. One of these sources of resistance was investigated in this study by generating and analysing two populations of recombinant inbred lines. A major locus conferring FCR resistance, designated as Qcrs.cpi-4H, was detected in one of the populations (mapping population) and the effects of the QTL was confirmed in the other population. The QTL was mapped to the distal end of chromosome arm 4HL and it is effective against both of the Fusarium isolates tested, one F. pseudograminearum and the other F. graminearum. The QTL explains up to 45.3% of the phenotypic variance. As distinct from an earlier report which demonstrated co-locations of loci conferring FCR resistance and plant height in barley, a correlation between these two traits was not detected in the mapping population. However, as observed in a screen of random genotypes, an association between FCR resistance and plant growth rate was detected and a QTL controlling the latter was detected near the Qcrs.cpi-4H locus in the mapping population. Existing data indicate that, although growth rate may affect FCR resistance, different genes at this locus are likely involved in controlling these two traits. PMID:23536780

  12. Genetic variation maintained in multilocus models of additive quantitative traits under stabilizing selection.

    PubMed Central

    Bürger, R; Gimelfarb, A

    1999-01-01

    Stabilizing selection for an intermediate optimum is generally considered to deplete genetic variation in quantitative traits. However, conflicting results from various types of models have been obtained. While classical analyses assuming a large number of independent additive loci with individually small effects indicated that no genetic variation is preserved under stabilizing selection, several analyses of two-locus models showed the contrary. We perform a complete analysis of a generalization of Wright's two-locus quadratic-optimum model and investigate numerically the ability of quadratic stabilizing selection to maintain genetic variation in additive quantitative traits controlled by up to five loci. A statistical approach is employed by choosing randomly 4000 parameter sets (allelic effects, recombination rates, and strength of selection) for a given number of loci. For each parameter set we iterate the recursion equations that describe the dynamics of gamete frequencies starting from 20 randomly chosen initial conditions until an equilibrium is reached, record the quantities of interest, and calculate their corresponding mean values. As the number of loci increases from two to five, the fraction of the genome expected to be polymorphic declines surprisingly rapidly, and the loci that are polymorphic increasingly are those with small effects on the trait. As a result, the genetic variance expected to be maintained under stabilizing selection decreases very rapidly with increased number of loci. The equilibrium structure expected under stabilizing selection on an additive trait differs markedly from that expected under selection with no constraints on genotypic fitness values. The expected genetic variance, the expected polymorphic fraction of the genome, as well as other quantities of interest, are only weakly dependent on the selection intensity and the level of recombination. PMID:10353920

  13. The impact of methylation quantitative trait loci (mQTLs) on active smoking-related DNA methylation changes.

    PubMed

    Gao, Xu; Thomsen, Hauke; Zhang, Yan; Breitling, Lutz Philipp; Brenner, Hermann

    2017-01-01

    Methylation quantitative trait loci (mQTLs) are the genetic variants that may affect the DNA methylation patterns of CpG sites. However, their roles in influencing the disturbances of smoking-related epigenetic changes have not been well established. This study was conducted to address whether mQTLs exist in the vicinity of smoking-related CpG sites (± 50 kb) and to examine their associations with smoking exposure and all-cause mortality in older adults. We obtained DNA methylation profiles in whole blood samples by Illumina Infinium Human Methylation 450 BeadChip array of two independent subsamples of the ESTHER study (discovery set, n  = 581; validation set, n  = 368) and their corresponding genotyping data using the Illumina Infinium OncoArray BeadChip. After correction for multiple testing (FDR), we successfully identified that 70 out of 151 previously reported smoking-related CpG sites were significantly associated with 192 SNPs within the 50 kb search window of each locus. The 192 mQTLs significantly influenced the active smoking-related DNA methylation changes, with percentage changes ranging from 0.01 to 18.96%, especially for the weakly/moderately smoking-related CpG sites. However, these identified mQTLs were not directly associated with active smoking exposure or all-cause mortality. Our findings clearly demonstrated that if not dealt with properly, the mQTLs might impair the power of epigenetic-based models of smoking exposure to a certain extent. In addition, such genetic variants could be the key factor to distinguish between the heritable and smoking-induced impact on epigenome disparities. These mQTLs are of special importance when DNA methylation markers measured by Illumina Infinium assay are used for any comparative population studies related to smoking-related cancers and chronic diseases.

  14. Panicle blast 1 (Pb1) resistance is dependent on at least four QTLs in the rice genome.

    PubMed

    Inoue, Haruhiko; Nakamura, Mitsuru; Mizubayashi, Tatsumi; Takahashi, Akira; Sugano, Shoji; Fukuoka, Shuuichi; Hayashi, Nagao

    2017-12-01

    Rice blast is the most serious disease afflicting rice and there is an urgent need for the use of disease resistance (R) genes in blast tolerance breeding programs. Pb1 is classified as a quantitative resistance gene and it does not have fungal specificity. Pb1-mediated resistance develops in the latter stages of growth. However, some cultivars, such as Kanto209 (K209), cultivar name Satojiman, despite possessing Pb1, do not exert resistance to rice blast during the reproductive stage. We found that the expression of WRKY45 gene downstream of Pb1 was weakly induced by rice blast inoculation at the full heading stage in K209. Genetic analysis using the SNP-based Golden Gate assay of K209 crossing with Koshihikari Aichi SBL (KASBL) found at least four regions related to the resistance in the rice genome (Chr8, Chr9, Chr7, Chr11). Mapping of QTL related to Chr7 confirmed the existence of factors that were required for the resistance of Pb1 in the 22 to 23 Mbp region of the rice genome. We clarified how the K209 cultivar is vulnerable to the blast disease despite possessing Pb1 and found the DNA marker responsible for the quantitative resistance of Pb1. We identified the QTL loci required for Pb1-mediated resistance to rice panicle blast. Pb1 was negatively dependent on at least three QTLs, 7, 9 and 11, and positively dependent on one, QTL 8, in the K209 genome. This finding paves the way for creating a line to select optimal QTLs in order to make use of Pb1-mediated resistance more effectively.

  15. Signatures of positive selection: from selective sweeps at individual loci to subtle allele frequency changes in polygenic adaptation.

    PubMed

    Stephan, Wolfgang

    2016-01-01

    In the past 15 years, numerous methods have been developed to detect selective sweeps underlying adaptations. These methods are based on relatively simple population genetic models, including one or two loci at which positive directional selection occurs, and one or two marker loci at which the impact of selection on linked neutral variation is quantified. Information about the phenotype under selection is not included in these models (except for fitness). In contrast, in the quantitative genetic models of adaptation, selection acts on one or more phenotypic traits, such that a genotype-phenotype map is required to bridge the gap to population genetics theory. Here I describe the range of population genetic models from selective sweeps in a panmictic population of constant size to evolutionary traffic when simultaneous sweeps at multiple loci interfere, and I also consider the case of polygenic selection characterized by subtle allele frequency shifts at many loci. Furthermore, I present an overview of the statistical tests that have been proposed based on these population genetics models to detect evidence for positive selection in the genome. © 2015 John Wiley & Sons Ltd.

  16. Biometric Analyses of the Inheritance of Resistance to Didymella rabiei in Chickpea.

    PubMed

    Lichtenzveig, J; Shtienberg, D; Zhang, H B; Bonfil, D J; Abbo, S

    2002-04-01

    ABSTRACT Historically, the response of chickpea (Cicer arietinum L.) to Didymella rabiei (causal agent of Ascochyta blight) has been mainly related to as complete resistance and it was commonly assayed with qualitative (nonparametric) scales. Two reciprocal populations, derived from intra-specific crosses between a moderately resistant late flowering Israeli cultivar and a highly susceptible early flowering Indian accession, were tested at F(3) and F(4) generations in 1998 and 1999, respectively. A quantitative (parametric) assessment (percent disease severity) was used to evaluate the chickpea field response to Ascochyta blight. The transformed relative area under the disease progress curve (tRAUDPC) was calculated for each experimental unit for further analyses. Heritability estimates of the tRAUDPC were relatively high (0.67 to 0.85) in both generations for both reciprocal populations. The frequency distributions of tRAUDPC of the populations were continuous and significantly departed from normality (Shapiro-Wilk W test; P of W < 0.0001), being all platykurtic and skewed toward either the resistant or the susceptible parental lines. The presence of major genes was examined by testing the relationship between the F(3) and F(4) family means and the within-family variances (Fain's test). Analyses of these relationships suggested that segregation of a single (or few) quantitative trait locus with major effect and possibly other minor loci was the predominant mode of inheritance. The correlation estimates between the resistance and days to flower (r = -0.19 to -0.44) were negative and significantly (P = 0.054 to 0.001) different from zero, which represents a breeding constraint in the development of early flowering cultivars with Ascochyta blight resistance.

  17. Mapping and pyramiding of two major genes for resistance to the brown planthopper (Nilaparvata lugens [Stål]) in the rice cultivar ADR52.

    PubMed

    Myint, Khin Khin Marlar; Fujita, Daisuke; Matsumura, Masaya; Sonoda, Tomohiro; Yoshimura, Atsushi; Yasui, Hideshi

    2012-02-01

    The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most serious and destructive pests of rice, and can be found throughout the rice-growing areas of Asia. To date, more than 24 major BPH-resistance genes have been reported in several Oryza sativa ssp. indica cultivars and wild relatives. Here, we report the genetic basis of the high level of BPH resistance derived from an Indian rice cultivar, ADR52, which was previously identified as resistant to the whitebacked planthopper (Sogatella furcifera [Horváth]). An F(2) population derived from a cross between ADR52 and a susceptible cultivar, Taichung 65 (T65), was used for quantitative trait locus (QTL) analysis. Antibiosis testing showed that multiple loci controlled the high level of BPH resistance in this F(2) population. Further linkage analysis using backcross populations resulted in the identification of BPH-resistance (antibiosis) gene loci from ADR52. BPH25 co-segregated with marker S00310 on the distal end of the short arm of chromosome 6, and BPH26 co-segregated with marker RM5479 on the long arm of chromosome 12. To characterize the virulence of the most recently migrated BPH strain in Japan, preliminary near-isogenic lines (pre-NILs) and a preliminary pyramided line (pre-PYL) carrying BPH25 and BPH26 were evaluated. Although both pre-NILs were susceptible to the virulent BPH strain, the pre-PYL exhibited a high level of resistance. The pyramiding of resistance genes is therefore likely to be effective for increasing the durability of resistance against the new virulent BPH strain in Japan.

  18. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana.

    PubMed Central

    Alonso-Blanco, Carlos; Bentsink, Leónie; Hanhart, Corrie J; Blankestijn-de Vries, Hetty; Koornneef, Maarten

    2003-01-01

    Arabidopsis accessions differ largely in their seed dormancy behavior. To understand the genetic basis of this intraspecific variation we analyzed two accessions: the laboratory strain Landsberg erecta (Ler) with low dormancy and the strong-dormancy accession Cape Verde Islands (Cvi). We used a quantitative trait loci (QTL) mapping approach to identify loci affecting the after-ripening requirement measured as the number of days of seed dry storage required to reach 50% germination. Thus, seven QTL were identified and named delay of germination (DOG) 1-7. To confirm and characterize these loci, we developed 12 near-isogenic lines carrying single and double Cvi introgression fragments in a Ler genetic background. The analysis of these lines for germination in water confirmed four QTL (DOG1, DOG2, DOG3, and DOG6) as showing large additive effects in Ler background. In addition, it was found that DOG1 and DOG3 genetically interact, the strong dormancy determined by DOG1-Cvi alleles depending on DOG3-Ler alleles. These genotypes were further characterized for seed dormancy/germination behavior in five other test conditions, including seed coat removal, gibberellins, and an abscisic acid biosynthesis inhibitor. The role of the Ler/Cvi allelic variation in affecting dormancy is discussed in the context of current knowledge of Arabidopsis germination. PMID:12807791

  19. High-Density Genotyping of Immune Loci in Koreans and Europeans Identifies Eight New Rheumatoid Arthritis Risk Loci

    PubMed Central

    Kim, Kwangwoo; Bang, So-Young; Lee, Hye-Soon; Cho, Soo-Kyung; Choi, Chan-Bum; Sung, Yoon-Kyoung; Kim, Tae-Hwan; Jun, Jae-Bum; Yoo, Dae Hyun; Kang, Young Mo; Kim, Seong-Kyu; Suh, Chang-Hee; Shim, Seung-Cheol; Lee, Shin-Seok; Lee, Jisoo; Chung, Won Tae; Choe, Jung-Yoon; Shin, Hyoung Doo; Lee, Jong-Young; Han, Bok-Ghee; Nath, Swapan K.; Eyre, Steve; Bowes, John; Pappas, Dimitrios A.; Kremer, Joel M.; Gonzalez-Gay, Miguel A; Rodriguez-Rodriguez, Luis; Ärlestig, Lisbeth; Okada, Yukinori; Diogo, Dorothée; Liao, Katherine P.; Karlson, Elizabeth W.; Raychaudhuri, Soumya; Rantapää-Dahlqvist, Solbritt; Martin, Javier; Klareskog, Lars; Padyukov, Leonid; Gregersen, Peter K.; Worthington, Jane; Greenberg, Jeffrey D.; Plenge, Robert M.; Bae, Sang-Cheol

    2015-01-01

    Objective A highly polygenic etiology and high degree of allele-sharing between ancestries have been well-elucidated in genetic studies of rheumatoid arthritis. Recently, the high-density genotyping array Immunochip for immune disease loci identified 14 new rheumatoid arthritis risk loci among individuals of European ancestry. Here, we aimed to identify new rheumatoid arthritis risk loci using Korean-specific Immunochip data. Methods We analyzed Korean rheumatoid arthritis case-control samples using the Immunochip and GWAS array to search for new risk alleles of rheumatoid arthritis with anti-citrullinated peptide antibodies. To increase power, we performed a meta-analysis of Korean data with previously published European Immunochip and GWAS data, for a total sample size of 9,299 Korean and 45,790 European case-control samples. Results We identified 8 new rheumatoid arthritis susceptibility loci (TNFSF4, LBH, EOMES, ETS1–FLI1, COG6, RAD51B, UBASH3A and SYNGR1) that passed a genome-wide significance threshold (p<5×10−8), with evidence for three independent risk alleles at 1q25/TNFSF4. The risk alleles from the 7 new loci except for the TNFSF4 locus (monomorphic in Koreans), together with risk alleles from previously established RA risk loci, exhibited a high correlation of effect sizes between ancestries. Further, we refined the number of SNPs that represent potentially causal variants through a trans-ethnic comparison of densely genotyped SNPs. Conclusion This study demonstrates the advantage of dense-mapping and trans-ancestral analysis for identification of potentially causal SNPs. In addition, our findings support the importance of T cells in the pathogenesis and the fact of frequent overlap of risk loci among diverse autoimmune diseases. PMID:24532676

  20. High-density genotyping of immune loci in Koreans and Europeans identifies eight new rheumatoid arthritis risk loci.

    PubMed

    Kim, Kwangwoo; Bang, So-Young; Lee, Hye-Soon; Cho, Soo-Kyung; Choi, Chan-Bum; Sung, Yoon-Kyoung; Kim, Tae-Hwan; Jun, Jae-Bum; Yoo, Dae Hyun; Kang, Young Mo; Kim, Seong-Kyu; Suh, Chang-Hee; Shim, Seung-Cheol; Lee, Shin-Seok; Lee, Jisoo; Chung, Won Tae; Choe, Jung-Yoon; Shin, Hyoung Doo; Lee, Jong-Young; Han, Bok-Ghee; Nath, Swapan K; Eyre, Steve; Bowes, John; Pappas, Dimitrios A; Kremer, Joel M; Gonzalez-Gay, Miguel A; Rodriguez-Rodriguez, Luis; Ärlestig, Lisbeth; Okada, Yukinori; Diogo, Dorothée; Liao, Katherine P; Karlson, Elizabeth W; Raychaudhuri, Soumya; Rantapää-Dahlqvist, Solbritt; Martin, Javier; Klareskog, Lars; Padyukov, Leonid; Gregersen, Peter K; Worthington, Jane; Greenberg, Jeffrey D; Plenge, Robert M; Bae, Sang-Cheol

    2015-03-01

    A highly polygenic aetiology and high degree of allele-sharing between ancestries have been well elucidated in genetic studies of rheumatoid arthritis. Recently, the high-density genotyping array Immunochip for immune disease loci identified 14 new rheumatoid arthritis risk loci among individuals of European ancestry. Here, we aimed to identify new rheumatoid arthritis risk loci using Korean-specific Immunochip data. We analysed Korean rheumatoid arthritis case-control samples using the Immunochip and genome-wide association studies (GWAS) array to search for new risk alleles of rheumatoid arthritis with anticitrullinated peptide antibodies. To increase power, we performed a meta-analysis of Korean data with previously published European Immunochip and GWAS data for a total sample size of 9299 Korean and 45,790 European case-control samples. We identified eight new rheumatoid arthritis susceptibility loci (TNFSF4, LBH, EOMES, ETS1-FLI1, COG6, RAD51B, UBASH3A and SYNGR1) that passed a genome-wide significance threshold (p<5×10(-8)), with evidence for three independent risk alleles at 1q25/TNFSF4. The risk alleles from the seven new loci except for the TNFSF4 locus (monomorphic in Koreans), together with risk alleles from previously established RA risk loci, exhibited a high correlation of effect sizes between ancestries. Further, we refined the number of single nucleotide polymorphisms (SNPs) that represent potentially causal variants through a trans-ethnic comparison of densely genotyped SNPs. This study demonstrates the advantage of dense-mapping and trans-ancestral analysis for identification of potentially causal SNPs. In addition, our findings support the importance of T cells in the pathogenesis and the fact of frequent overlap of risk loci among diverse autoimmune diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Quantitative Trait Loci for Resistance to Aspergillus Ear Rot: Analysis by Linkage Mapping, Characterization of Near-Isogenic Lines and Meta-Analysis

    USDA-ARS?s Scientific Manuscript database

    High levels of aflatoxin contamination of maize can be deadly for exposed human populations. Resistance to aflatoxin accumulation in maize has been reported in multiple studies and acts at multiple steps where there is fungal-plant interaction. In this study, we report the identification and mapping...

  2. A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population.

    PubMed

    Whankaew, Sukhuman; Poopear, Supannee; Kanjanawattanawong, Supanath; Tangphatsornruang, Sithichoke; Boonseng, Opas; Lightfoot, David A; Triwitayakorn, Kanokporn

    2011-05-25

    Cassava (Manihot esculenta Crantz) can produce cyanide, a toxic compound, without self-injury. That ability was called the cyanogenic potential (CN). This project aimed to identify quantitative trait loci (QTL) associated with the CN in an outbred population derived from 'Hanatee' × 'Huay Bong 60', two contrasting cultivars. CN was evaluated in 2008 and in 2009 at Rayong province, and in 2009 at Lop Buri province, Thailand. CN was measured using a picrate paper kit. QTL analysis affecting CN was performed with 303 SSR markers. The phenotypic values showed continuous variation with transgressive segregation events with more (115 ppm) and less CN (15 ppm) than either parent ('Hanatee' had 33 ppm and 'Huay Bong 60' had 95 ppm). The linkage map consisted of 303 SSR markers, on 27 linkage groups with a map that encompassed 1,328 cM. The average marker interval was 5.8 cM. Five QTL underlying CN were detected. CN08R1from 2008 at Rayong, CN09R1and CN09R2 from 2009 at Rayong, and CN09L1 and CN09L2 from 2009 at Lop Buri were mapped on linkage group 2, 5, 10 and 11, respectively. Among all the identified QTL, CN09R1 was the most significantly associated with the CN trait with LOD score 5.75 and explained the greatest percentage of phenotypic variation (%Expl.) of 26%. Five new QTL affecting CN were successfully identified from 4 linkage groups. Discovery of these QTL can provide useful markers to assist in cassava breeding and studying genes affecting the trait.

  3. A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population

    PubMed Central

    2011-01-01

    Background Cassava (Manihot esculenta Crantz) can produce cyanide, a toxic compound, without self-injury. That ability was called the cyanogenic potential (CN). This project aimed to identify quantitative trait loci (QTL) associated with the CN in an outbred population derived from 'Hanatee' × 'Huay Bong 60', two contrasting cultivars. CN was evaluated in 2008 and in 2009 at Rayong province, and in 2009 at Lop Buri province, Thailand. CN was measured using a picrate paper kit. QTL analysis affecting CN was performed with 303 SSR markers. Results The phenotypic values showed continuous variation with transgressive segregation events with more (115 ppm) and less CN (15 ppm) than either parent ('Hanatee' had 33 ppm and 'Huay Bong 60' had 95 ppm). The linkage map consisted of 303 SSR markers, on 27 linkage groups with a map that encompassed 1,328 cM. The average marker interval was 5.8 cM. Five QTL underlying CN were detected. CN08R1from 2008 at Rayong, CN09R1and CN09R2 from 2009 at Rayong, and CN09L1 and CN09L2 from 2009 at Lop Buri were mapped on linkage group 2, 5, 10 and 11, respectively. Among all the identified QTL, CN09R1 was the most significantly associated with the CN trait with LOD score 5.75 and explained the greatest percentage of phenotypic variation (%Expl.) of 26%. Conclusions Five new QTL affecting CN were successfully identified from 4 linkage groups. Discovery of these QTL can provide useful markers to assist in cassava breeding and studying genes affecting the trait. PMID:21609492

  4. Assembly of the mitochondrial membrane system. XVIII. Genetic loci on mitochondrial DNA involved in cytochrome b biosynthesis.

    PubMed

    Tzagoloff, A; Foury, F; Akai, A

    1976-11-24

    1. Fourteen cytoplasmic mutants of Saccharomyces cerevisiae with a specific deficiency of cytochrome b have been studied. The mutations have been shown to occur in two separate genetic loci, COB 1 and COB 2. These loci can be distinguished by mit- X mit- crosses. Pairwise crosses of cytochrome b mutants belonging to different loci yield 4-6% wild type recombinants corresponding to recombinational frequencies of 8-12%. In intra-locus crosses, the recombinational frequencies range from 1% to less than 0.01%. The two loci can also be distinguished by mit- X rho- crosses. Twenty rho- testers have been isolated of which ten preferentially restore mutations in COB 1 and ten others in COB 2. 2. The COB 1 and COB 2 loci have been localized on mitochondrial DNA between the two antibiotic resistance loci OLI 1 and OLI 2 in the order OLI 2-COB 2-COB 1-OLI 1. The results of mit- X mit- and mit- X rho- crosses have also been used to map the cytochrome b mutations relative to each other. The maps obtained by the two independent methods are in good agreement. 3. Mutations in COB 1 have been found to be linked to the OLI1 locus in some but not in other strains of S. cervisiae. This evidence suggests that there may be a spacer region between the two loci whose length varies from strain to strain. 4. Two mutations in COB 2 have been found to cause a loss of a mitochondrial translation product corresponding to the cytochrome b apoprotein. Instead of the wild type protein the mutants have a new low-molecular weight product which is probably a fragment of cytochrome b. The fact that the mutations revert suggests that they are nonsense mutations in the structural gene of cytochrome b.

  5. QTL mapping of fruit rot resistance to the plant pathogen Phytophthora capsici in a recombinant inbred line Capsicum annuum population.

    PubMed

    Naegele, R P; Ashrafi, H; Hill, T A; Chin-Wo, S Reyes; Van Deynze, A E; Hausbeck, M K

    2014-05-01

    Phytophthora capsici is an important pepper (Capsicum annuum) pathogen causing fruit and root rot, and foliar blight in field and greenhouse production. Previously, an F6 recombinant inbred line population was evaluated for fruit rot susceptibility. Continuous variation among lines and partial and isolate-specific resistance were found. In this study, Phytophthora fruit rot resistance was mapped in the same F6 population between Criollo del Morelos 334 (CM334), a landrace from Mexico, and 'Early Jalapeno' using a high-density genetic map. Isolate-specific resistance was mapped independently in 63 of the lines evaluated and the two parents. Heritability of the resistance for each isolate at 3 and 5 days postinoculation (dpi) was high (h(2) = 0.63 to 0.68 and 0.74 to 0.83, respectively). Significant additive and epistatic quantitative trait loci (QTL) were identified for resistance to isolates OP97 and 13709 (3 and 5 dpi) and 12889 (3 dpi only). Mapping of fruit traits showed potential linkage with few disease resistance QTL. The partial fruit rot resistance from CM334 suggests that this may not be an ideal source for fruit rot resistance in pepper.

  6. Power Analysis of Artificial Selection Experiments Using Efficient Whole Genome Simulation of Quantitative Traits

    PubMed Central

    Kessner, Darren; Novembre, John

    2015-01-01

    Evolve and resequence studies combine artificial selection experiments with massively parallel sequencing technology to study the genetic basis for complex traits. In these experiments, individuals are selected for extreme values of a trait, causing alleles at quantitative trait loci (QTL) to increase or decrease in frequency in the experimental population. We present a new analysis of the power of artificial selection experiments to detect and localize quantitative trait loci. This analysis uses a simulation framework that explicitly models whole genomes of individuals, quantitative traits, and selection based on individual trait values. We find that explicitly modeling QTL provides qualitatively different insights than considering independent loci with constant selection coefficients. Specifically, we observe how interference between QTL under selection affects the trajectories and lengthens the fixation times of selected alleles. We also show that a substantial portion of the genetic variance of the trait (50–100%) can be explained by detected QTL in as little as 20 generations of selection, depending on the trait architecture and experimental design. Furthermore, we show that power depends crucially on the opportunity for recombination during the experiment. Finally, we show that an increase in power is obtained by leveraging founder haplotype information to obtain allele frequency estimates. PMID:25672748

  7. Quantitative Proteomics Analysis Identifies Mitochondria as Therapeutic Targets of Multidrug-Resistance in Ovarian Cancer

    PubMed Central

    Chen, Xiulan; Wei, Shasha; Ma, Ying; Lu, Jie; Niu, Gang; Xue, Yanhong; Chen, Xiaoyuan; Yang, Fuquan

    2014-01-01

    Doxorubicin is a widely used chemotherapeutic agent for the treatment of a variety of solid tumors. However, resistance to this anticancer drug is a major obstacle to the effective treatment of tumors. As mitochondria play important roles in cell life and death, we anticipate that mitochondria may be related to drug resistance. Here, stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomic strategy was applied to compare mitochondrial protein expression in doxorubicin sensitive OVCAR8 cells and its doxorubicin-resistant variant NCI_ADR/RES cells. A total of 2085 proteins were quantified, of which 122 proteins displayed significant changes in the NCI_ADR/RES cells. These proteins participated in a variety of cell processes including cell apoptosis, substance metabolism, transport, detoxification and drug metabolism. Then qRT-PCR and western blot were applied to validate the differentially expressed proteins quantified by SILAC. Further functional studies with RNAi demonstrated TOP1MT, a mitochondrial protein participated in DNA repair, was involved in doxorubicin resistance in NCI_ADR/RES cells. Besides the proteomic study, electron microscopy and fluorescence analysis also observed that mitochondrial morphology and localization were greatly altered in NCI_ADR/RES cells. Mitochondrial membrane potential was also decreased in NCI_ADR/RES cells. All these results indicate that mitochondrial function is impaired in doxorubicin-resistant cells and mitochondria play an important role in doxorubicin resistance. This research provides some new information about doxorubicin resistance, indicating that mitochondria could be therapeutic targets of doxorubicin resistance in ovarian cancer cells. PMID:25285166

  8. Comparison of Marker-Based Genomic Estimated Breeding Values and Phenotypic Evaluation for Selection of Bacterial Spot Resistance in Tomato.

    PubMed

    Liabeuf, Debora; Sim, Sung-Chur; Francis, David M

    2018-03-01

    Bacterial spot affects tomato crops (Solanum lycopersicum) grown under humid conditions. Major genes and quantitative trait loci (QTL) for resistance have been described, and multiple loci from diverse sources need to be combined to improve disease control. We investigated genomic selection (GS) prediction models for resistance to Xanthomonas euvesicatoria and experimentally evaluated the accuracy of these models. The training population consisted of 109 families combining resistance from four sources and directionally selected from a population of 1,100 individuals. The families were evaluated on a plot basis in replicated inoculated trials and genotyped with single nucleotide polymorphisms (SNP). We compared the prediction ability of models developed with 14 to 387 SNP. Genomic estimated breeding values (GEBV) were derived using Bayesian least absolute shrinkage and selection operator regression (BL) and ridge regression (RR). Evaluations were based on leave-one-out cross validation and on empirical observations in replicated field trials using the next generation of inbred progeny and a hybrid population resulting from selections in the training population. Prediction ability was evaluated based on correlations between GEBV and phenotypes (r g ), percentage of coselection between genomic and phenotypic selection, and relative efficiency of selection (r g /r p ). Results were similar with BL and RR models. Models using only markers previously identified as significantly associated with resistance but weighted based on GEBV and mixed models with markers associated with resistance treated as fixed effects and markers distributed in the genome treated as random effects offered greater accuracy and a high percentage of coselection. The accuracy of these models to predict the performance of progeny and hybrids exceeded the accuracy of phenotypic selection.

  9. Multienvironment Quantitative Trait Loci Analysis for Photosynthate Acquisition, Accumulation, and Remobilization Traits in Common Bean Under Drought Stress

    PubMed Central

    Asfaw, Asrat; Blair, Matthew W.; Struik, Paul C.

    2012-01-01

    Many of the world’s common bean (Phaseolus vulgaris L.) growing regions are prone to either intermittent or terminal drought stress, making drought the primary cause of yield loss under farmers’ field conditions. Improved photosynthate acquisition, accumulation, and then remobilization have been observed as important mechanisms for adaptation to drought stress. The objective of this study was to tag quantitative trait loci (QTL) for photosynthate acquisition, accumulation, and remobilization to grain by using a recombinant inbred line population developed from the Mesoamerican intragenepool cross of drought-susceptible DOR364 and drought-tolerant BAT477 grown under eight environments differing in drought stress across two continents: Africa and South America. The recombinant inbred line population expressed quantitative variation and transgressive segregation for 11 traits associated with drought tolerance. QTL were detected by both a mixed multienvironment model and by composite interval mapping for each environment using a linkage map constructed with 165 genetic markers that covered 11 linkage groups of the common bean genome. In the multienvironment, mixed model, nine QTL were detected for 10 drought stress tolerance mechanism traits found on six of the 11 linkage groups. Significant QTL × environment interaction was observed for six of the nine QTL. QTL × environment interaction was of the cross-over type for three of the six significant QTL with contrasting effect of the parental alleles across different environments. In the composite interval mapping, we found 69 QTL in total. The majority of these were found for Palmira (47) or Awassa (18), with fewer in Malawi (4). Phenotypic variation explained by QTL in single environments ranged up to 37%, and the most consistent QTL were for Soil Plant Analysis Development (SPAD) leaf chlorophyll reading and pod partitioning traits. QTL alignment between the two detection methods showed that yield QTL on b08 and

  10. Multienvironment quantitative trait Loci analysis for photosynthate acquisition, accumulation, and remobilization traits in common bean under drought stress.

    PubMed

    Asfaw, Asrat; Blair, Matthew W; Struik, Paul C

    2012-05-01

    Many of the world's common bean (Phaseolus vulgaris L.) growing regions are prone to either intermittent or terminal drought stress, making drought the primary cause of yield loss under farmers' field conditions. Improved photosynthate acquisition, accumulation, and then remobilization have been observed as important mechanisms for adaptation to drought stress. The objective of this study was to tag quantitative trait loci (QTL) for photosynthate acquisition, accumulation, and remobilization to grain by using a recombinant inbred line population developed from the Mesoamerican intragenepool cross of drought-susceptible DOR364 and drought-tolerant BAT477 grown under eight environments differing in drought stress across two continents: Africa and South America. The recombinant inbred line population expressed quantitative variation and transgressive segregation for 11 traits associated with drought tolerance. QTL were detected by both a mixed multienvironment model and by composite interval mapping for each environment using a linkage map constructed with 165 genetic markers that covered 11 linkage groups of the common bean genome. In the multienvironment, mixed model, nine QTL were detected for 10 drought stress tolerance mechanism traits found on six of the 11 linkage groups. Significant QTL × environment interaction was observed for six of the nine QTL. QTL × environment interaction was of the cross-over type for three of the six significant QTL with contrasting effect of the parental alleles across different environments. In the composite interval mapping, we found 69 QTL in total. The majority of these were found for Palmira (47) or Awassa (18), with fewer in Malawi (4). Phenotypic variation explained by QTL in single environments ranged up to 37%, and the most consistent QTL were for Soil Plant Analysis Development (SPAD) leaf chlorophyll reading and pod partitioning traits. QTL alignment between the two detection methods showed that yield QTL on b08 and stem

  11. Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat.

    PubMed

    Juliana, Philomin; Singh, Ravi P; Singh, Pawan K; Crossa, Jose; Huerta-Espino, Julio; Lan, Caixia; Bhavani, Sridhar; Rutkoski, Jessica E; Poland, Jesse A; Bergstrom, Gary C; Sorrells, Mark E

    2017-07-01

    Genomic prediction for seedling and adult plant resistance to wheat rusts was compared to prediction using few markers as fixed effects in a least-squares approach and pedigree-based prediction. The unceasing plant-pathogen arms race and ephemeral nature of some rust resistance genes have been challenging for wheat (Triticum aestivum L.) breeding programs and farmers. Hence, it is important to devise strategies for effective evaluation and exploitation of quantitative rust resistance. One promising approach that could accelerate gain from selection for rust resistance is 'genomic selection' which utilizes dense genome-wide markers to estimate the breeding values (BVs) for quantitative traits. Our objective was to compare three genomic prediction models including genomic best linear unbiased prediction (GBLUP), GBLUP A that was GBLUP with selected loci as fixed effects and reproducing kernel Hilbert spaces-markers (RKHS-M) with least-squares (LS) approach, RKHS-pedigree (RKHS-P), and RKHS markers and pedigree (RKHS-MP) to determine the BVs for seedling and/or adult plant resistance (APR) to leaf rust (LR), stem rust (SR), and stripe rust (YR). The 333 lines in the 45th IBWSN and the 313 lines in the 46th IBWSN were genotyped using genotyping-by-sequencing and phenotyped in replicated trials. The mean prediction accuracies ranged from 0.31-0.74 for LR seedling, 0.12-0.56 for LR APR, 0.31-0.65 for SR APR, 0.70-0.78 for YR seedling, and 0.34-0.71 for YR APR. For most datasets, the RKHS-MP model gave the highest accuracies, while LS gave the lowest. GBLUP, GBLUP A, RKHS-M, and RKHS-P models gave similar accuracies. Using genome-wide marker-based models resulted in an average of 42% increase in accuracy over LS. We conclude that GS is a promising approach for improvement of quantitative rust resistance and can be implemented in the breeding pipeline.

  12. Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis.

    PubMed

    Upadhyaya, Hari D; Wang, Yi-Hong; Sharma, Rajan; Sharma, Shivali

    2013-06-01

    Anthracnose in sorghum caused by Colletotrichum sublineolum is one of the most destructive diseases affecting sorghum production under warm and humid conditions. Markers and genes linked to resistance to the disease are important for plant breeding. Using 14,739 SNP markers, we have mapped eight loci linked to resistance in sorghum through association analysis of a sorghum mini-core collection consisting of 242 diverse accessions evaluated for anthracnose resistance for 2 years in the field. The mini-core was representative of the International Crops Research Institute for the Semi-Arid Tropics' world-wide sorghum landrace collection. Eight marker loci were associated with anthracnose resistance in both years. Except locus 8, disease resistance-related genes were found in all loci based on their physical distance from linked SNP markers. These include two NB-ARC class of R genes on chromosome 10 that were partially homologous to the rice blast resistance gene Pib, two hypersensitive response-related genes: autophagy-related protein 3 on chromosome 1 and 4 harpin-induced 1 (Hin1) homologs on chromosome 8, a RAV transcription factor that is also part of R gene pathway, an oxysterol-binding protein that functions in the non-specific host resistance, and homologs of menthone:neomenthol reductase (MNR) that catalyzes a menthone reduction to produce the antimicrobial neomenthol. These genes and markers may be developed into molecular tools for genetic improvement of anthracnose resistance in sorghum.

  13. Temperature-responsive genetic loci in the plant pathogen Pseudomonas syringae pv. glycinea.

    PubMed

    Ullrich, M S; Schergaut, M; Boch, J; Ullrich, B

    2000-10-01

    Plant-pathogenic bacteria may sense variations in environmental factors, such as temperature, to adapt to plant-associated habitats during pathogenesis or epiphytic growth. The bacterial blight pathogen of soybean, Pseudomonas syringae pv. glycinea PG4180, preferentially produces the phytotoxin coronatine at 18 degrees C and infects the host plant under conditions of low temperature and high humidity. A miniTn5-based promoterless glucuronidase (uidA) reporter gene was used to identify genetic loci of PG4180 preferentially expressed at 18 or 28 degrees C. Out of 7500 transposon mutants, 61 showed thermoregulated uidA expression as determined by a three-step screening procedure. Two-thirds of these mutants showed an increased reporter gene expression at 18 degrees C whilst the remainder exhibited higher uidA expression at 28 degrees C. MiniTn5-uidA insertion loci from these mutants were subcloned and their nucleotide sequences were determined. Several of the mutants induced at 18 degrees C contained the miniTn5-uidA insertion within the 32.8 kb coronatine biosynthetic gene cluster. Among the other mutants with increased uidA expression at 18 degrees C, insertions were found in genes encoding formaldehyde dehydrogenase, short-chain dehydrogenase and mannuronan C-5-epimerase, in a plasmid-borne replication protein, and in the hrpT locus, involved in pathogenicity of P. syringae. Among the mutants induced at 28 degrees C, insertions disrupted loci with similarities to a repressor of conjugal plasmid transfer, UV resistance determinants, an isoflavanoid-degrading enzyme, a HU-like DNA-binding protein, two additional regulatory proteins, a homologue of bacterial adhesins, transport proteins, LPS synthesis enzymes and two proteases. Genetic loci from 13 mutants did not show significant similarities to any database entries. Results of plant inoculations showed that three of the mutants tested were inhibited in symptom development and in planta multiplication rates

  14. Expression quantitative trait loci and genetic regulatory network analysis reveals that Gabra2 is involved in stress responses in the mouse.

    PubMed

    Dai, Jiajuan; Wang, Xusheng; Chen, Ying; Wang, Xiaodong; Zhu, Jun; Lu, Lu

    2009-11-01

    Previous studies have revealed that the subunit alpha 2 (Gabra2) of the gamma-aminobutyric acid receptor plays a critical role in the stress response. However, little is known about the gentetic regulatory network for Gabra2 and the stress response. We combined gene expression microarray analysis and quantitative trait loci (QTL) mapping to characterize the genetic regulatory network for Gabra2 expression in the hippocampus of BXD recombinant inbred (RI) mice. Our analysis found that the expression level of Gabra2 exhibited much variation in the hippocampus across the BXD RI strains and between the parental strains, C57BL/6J, and DBA/2J. Expression QTL (eQTL) mapping showed three microarray probe sets of Gabra2 to have highly significant linkage likelihood ratio statistic (LRS) scores. Gene co-regulatory network analysis showed that 10 genes, including Gria3, Chka, Drd3, Homer1, Grik2, Odz4, Prkag2, Grm5, Gabrb1, and Nlgn1 are directly or indirectly associated with stress responses. Eleven genes were implicated as Gabra2 downstream genes through mapping joint modulation. The genetical genomics approach demonstrates the importance and the potential power of the eQTL studies in identifying genetic regulatory networks that contribute to complex traits, such as stress responses.

  15. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis.

    PubMed

    Bentsink, Leónie; Jowett, Jemma; Hanhart, Corrie J; Koornneef, Maarten

    2006-11-07

    Genetic variation for seed dormancy in nature is a typical quantitative trait controlled by multiple loci on which environmental factors have a strong effect. Finding the genes underlying dormancy quantitative trait loci is a major scientific challenge, which also has relevance for agriculture and ecology. In this study we describe the identification of the DELAY OF GERMINATION 1 (DOG1) gene previously identified as a quantitative trait locus involved in the control of seed dormancy. This gene was isolated by a combination of positional cloning and mutant analysis and is absolutely required for the induction of seed dormancy. DOG1 is a member of a small gene family of unknown molecular function, with five members in Arabidopsis. The functional natural allelic variation present in Arabidopsis is caused by polymorphisms in the cis-regulatory region of the DOG1 gene and results in considerable expression differences between the DOG1 alleles of the accessions analyzed.

  16. Genetic interactions contribute less than additive effects to quantitative trait variation in yeast

    PubMed Central

    Bloom, Joshua S.; Kotenko, Iulia; Sadhu, Meru J.; Treusch, Sebastian; Albert, Frank W.; Kruglyak, Leonid

    2015-01-01

    Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies. PMID:26537231

  17. Genetic dissection of hybrid incompatibilities between Drosophila simulans and D. mauritiana. II. Mapping hybrid male sterility loci on the third chromosome.

    PubMed

    Tao, Yun; Zeng, Zhao-Bang; Li, Jian; Hartl, Daniel L; Laurie, Cathy C

    2003-08-01

    Hybrid male sterility (HMS) is a rapidly evolving mechanism of reproductive isolation in Drosophila. Here we report a genetic analysis of HMS in third-chromosome segments of Drosophila mauritiana that were introgressed into a D. simulans background. Qualitative genetic mapping was used to localize 10 loci on 3R and a quantitative trait locus (QTL) procedure (multiple-interval mapping) was used to identify 19 loci on the entire chromosome. These genetic incompatibilities often show dominance and complex patterns of epistasis. Most of the HMS loci have relatively small effects and generally at least two or three of them are required to produce complete sterility. Only one small region of the third chromosome of D. mauritiana by itself causes a high level of infertility when introgressed into D. simulans. By comparison with previous studies of the X chromosome, we infer that HMS loci are only approximately 40% as dense on this autosome as they are on the X chromosome. These results are consistent with the gradual evolution of hybrid incompatibilities as a by-product of genetic divergence in allopatric populations.

  18. Genetic dissection of hybrid incompatibilities between Drosophila simulans and D. mauritiana. II. Mapping hybrid male sterility loci on the third chromosome.

    PubMed Central

    Tao, Yun; Zeng, Zhao-Bang; Li, Jian; Hartl, Daniel L; Laurie, Cathy C

    2003-01-01

    Hybrid male sterility (HMS) is a rapidly evolving mechanism of reproductive isolation in Drosophila. Here we report a genetic analysis of HMS in third-chromosome segments of Drosophila mauritiana that were introgressed into a D. simulans background. Qualitative genetic mapping was used to localize 10 loci on 3R and a quantitative trait locus (QTL) procedure (multiple-interval mapping) was used to identify 19 loci on the entire chromosome. These genetic incompatibilities often show dominance and complex patterns of epistasis. Most of the HMS loci have relatively small effects and generally at least two or three of them are required to produce complete sterility. Only one small region of the third chromosome of D. mauritiana by itself causes a high level of infertility when introgressed into D. simulans. By comparison with previous studies of the X chromosome, we infer that HMS loci are only approximately 40% as dense on this autosome as they are on the X chromosome. These results are consistent with the gradual evolution of hybrid incompatibilities as a by-product of genetic divergence in allopatric populations. PMID:12930748

  19. Genetic mechanisms of Maize dwarf mosaic virus resistance in maize

    USDA-ARS?s Scientific Manuscript database

    Maize resistance to viruses has been well-characterized at the genetic level, and loci responsible for resistance to potyviruses including Maize dwarf mosaic virus (MDMV), Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and Johnsongrass mosaic virus (JGMV), have been mapped in several ge...

  20. A public platform for the verification of the phenotypic effect of candidate genes for resistance to aflatoxin accumulation and Aspergillus flavus infection in maize.

    PubMed

    Warburton, Marilyn L; Williams, William Paul; Hawkins, Leigh; Bridges, Susan; Gresham, Cathy; Harper, Jonathan; Ozkan, Seval; Mylroie, J Erik; Shan, Xueyan

    2011-07-01

    A public candidate gene testing pipeline for resistance to aflatoxin accumulation or Aspergillus flavus infection in maize is presented here. The pipeline consists of steps for identifying, testing, and verifying the association of selected maize gene sequences with resistance under field conditions. Resources include a database of genetic and protein sequences associated with the reduction in aflatoxin contamination from previous studies; eight diverse inbred maize lines for polymorphism identification within any maize gene sequence; four Quantitative Trait Loci (QTL) mapping populations and one association mapping panel, all phenotyped for aflatoxin accumulation resistance and associated phenotypes; and capacity for Insertion/Deletion (InDel) and SNP genotyping in the population(s) for mapping. To date, ten genes have been identified as possible candidate genes and put through the candidate gene testing pipeline, and results are presented here to demonstrate the utility of the pipeline.

  1. Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon.

    PubMed

    Septiningsih, E M; Trijatmiko, K R; Moeljopawiro, S; McCouch, S R

    2003-11-01

    The objective of this study was to identify quantitative trait loci (QTLs) associated with grain quality in rice. Two hundred eighty-five BC(2)F(2 )families developed from an interspecific cross between cv IR64 and Oryza rufipogon (IRGC 105491) were evaluated for 14 seed quality traits. A total of 165 markers consisting of 131 single sequence repeats and 34 restriction fragment length polymorphism markers were used to create a genetic linkage map spanning the 12 rice chromosomes. Twenty-three independent QTLs were identified using single point analysis, interval mapping, and composite interval mapping. These loci consisted of one QTL for filled rough/total rough rice ratio, two for grain density, one for percentage of de-husked rice grains, two for percentage of green rice grains, three for percentage of damaged-yellow rice grains, two for percentage of red rice grains, one for milled rice recovery, three for head rice recovery, four for broken rice grains, two for crushed rice grains, one for amylose content, and one for gel consistency. For most of the QTLs identified in this study, the O. rufipogon-derived allele contributed an undesirable effect. For amylose content and gel consistency, the O. rufipogon allele may be useful in an IR64 background, depending on the cultural preferences of the consumer. Careful selection against the regions associated with negative effects will be required to avoid unwanted grain quality characteristics during the development of improved varieties for yield and yield components using introgressions from O. rufipogon.

  2. QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot.

    PubMed

    Mizobuchi, Ritsuko; Fukuoka, Shuichi; Tsushima, Seiya; Yano, Masahiro; Sato, Hiroyuki

    2016-12-01

    In rice (Oryza sativa L.), damage from diseases such as brown spot, caused by Bipolaris oryzae, and bacterial seedling rot and bacterial grain rot, caused by Burkholderia glumae, has increased under global warming because the optimal temperature ranges for growth of these pathogens are relatively high (around 30 °C). Therefore, the need for cultivars carrying genes for resistance to these diseases is increasing to ensure sustainable rice production. In contrast to the situation for other important rice diseases such as blast and bacterial blight, no genes for complete resistance to brown spot, bacterial seedling rot or bacterial grain rot have yet been discovered. Thus, rice breeders have to use partial resistance, which is largely influenced by environmental conditions. Recent progress in molecular genetics and improvement of evaluation methods for disease resistance have facilitated detection of quantitative trait loci (QTLs) associated with resistance. In this review, we summarize the results of worldwide screening for cultivars with resistance to brown spot, bacterial seedling rot and bacterial grain rot and we discuss the identification of QTLs conferring resistance to these diseases in order to provide useful information for rice breeding programs.

  3. Genetic loci associated with coronary artery disease harbor evidence of selection and antagonistic pleiotropy.

    PubMed

    Byars, Sean G; Huang, Qin Qin; Gray, Lesley-Ann; Bakshi, Andrew; Ripatti, Samuli; Abraham, Gad; Stearns, Stephen C; Inouye, Michael

    2017-06-01

    Traditional genome-wide scans for positive selection have mainly uncovered selective sweeps associated with monogenic traits. While selection on quantitative traits is much more common, very few signals have been detected because of their polygenic nature. We searched for positive selection signals underlying coronary artery disease (CAD) in worldwide populations, using novel approaches to quantify relationships between polygenic selection signals and CAD genetic risk. We identified new candidate adaptive loci that appear to have been directly modified by disease pressures given their significant associations with CAD genetic risk. These candidates were all uniquely and consistently associated with many different male and female reproductive traits suggesting selection may have also targeted these because of their direct effects on fitness. We found that CAD loci are significantly enriched for lifetime reproductive success relative to the rest of the human genome, with evidence that the relationship between CAD and lifetime reproductive success is antagonistic. This supports the presence of antagonistic-pleiotropic tradeoffs on CAD loci and provides a novel explanation for the maintenance and high prevalence of CAD in modern humans. Lastly, we found that positive selection more often targeted CAD gene regulatory variants using HapMap3 lymphoblastoid cell lines, which further highlights the unique biological significance of candidate adaptive loci underlying CAD. Our study provides a novel approach for detecting selection on polygenic traits and evidence that modern human genomes have evolved in response to CAD-induced selection pressures and other early-life traits sharing pleiotropic links with CAD.

  4. Genetic loci associated with coronary artery disease harbor evidence of selection and antagonistic pleiotropy

    PubMed Central

    Byars, Sean G.; Gray, Lesley-Ann; Ripatti, Samuli; Stearns, Stephen C.; Inouye, Michael

    2017-01-01

    Traditional genome-wide scans for positive selection have mainly uncovered selective sweeps associated with monogenic traits. While selection on quantitative traits is much more common, very few signals have been detected because of their polygenic nature. We searched for positive selection signals underlying coronary artery disease (CAD) in worldwide populations, using novel approaches to quantify relationships between polygenic selection signals and CAD genetic risk. We identified new candidate adaptive loci that appear to have been directly modified by disease pressures given their significant associations with CAD genetic risk. These candidates were all uniquely and consistently associated with many different male and female reproductive traits suggesting selection may have also targeted these because of their direct effects on fitness. We found that CAD loci are significantly enriched for lifetime reproductive success relative to the rest of the human genome, with evidence that the relationship between CAD and lifetime reproductive success is antagonistic. This supports the presence of antagonistic-pleiotropic tradeoffs on CAD loci and provides a novel explanation for the maintenance and high prevalence of CAD in modern humans. Lastly, we found that positive selection more often targeted CAD gene regulatory variants using HapMap3 lymphoblastoid cell lines, which further highlights the unique biological significance of candidate adaptive loci underlying CAD. Our study provides a novel approach for detecting selection on polygenic traits and evidence that modern human genomes have evolved in response to CAD-induced selection pressures and other early-life traits sharing pleiotropic links with CAD. PMID:28640878

  5. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance.

    PubMed

    Zhou, Xiaogang; Liao, Haicheng; Chern, Mawsheng; Yin, Junjie; Chen, Yufei; Wang, Jianping; Zhu, Xiaobo; Chen, Zhixiong; Yuan, Can; Zhao, Wen; Wang, Jing; Li, Weitao; He, Min; Ma, Bingtian; Wang, Jichun; Qin, Peng; Chen, Weilan; Wang, Yuping; Liu, Jiali; Qian, Yangwen; Wang, Wenming; Wu, Xianjun; Li, Ping; Zhu, Lihuang; Li, Shigui; Ronald, Pamela C; Chen, Xuewei

    2018-03-20

    Crops carrying broad-spectrum resistance loci provide an effective strategy for controlling infectious disease because these loci typically confer resistance to diverse races of a pathogen or even multiple species of pathogens. Despite their importance, only a few crop broad-spectrum resistance loci have been reported. Here, we report the identification and characterization of the rice bsr-k1 (broad-spectrum resistance Kitaake-1) mutant, which confers broad-spectrum resistance against Magnaporthe oryzae and Xanthomonas oryzae pv oryzae with no major penalty on key agronomic traits. Map-based cloning reveals that Bsr-k1 encodes a tetratricopeptide repeats (TPRs)-containing protein, which binds to mRNAs of multiple OsPAL ( OsPAL1-7 ) genes and promotes their turnover. Loss of function of the Bsr-k1 gene leads to accumulation of OsPAL1-7 mRNAs in the bsr-k1 mutant. Furthermore, overexpression of OsPAL1 in wild-type rice TP309 confers resistance to M. oryzae , supporting the role of OsPAL1 Our discovery of the bsr-k1 allele constitutes a significant conceptual advancement and provides a valuable tool for breeding broad-spectrum resistant rice. Copyright © 2018 the Author(s). Published by PNAS.

  6. The genetic basis of flecking and its relationship to disease resistance in the IBM maize mapping population.

    PubMed

    Vontimitta, Vijay; Olukolu, Bode A; Penning, Bryan W; Johal, Gurmukh; Balint-Kurti, P J

    2015-11-01

    In this paper, we determine the genetic architecture controlling leaf flecking in maize and investigate its relationship to disease resistance and the defense response. Flecking is defined as a mild, often environmentally dependent lesion phenotype observed on the leaves of several commonly used maize inbred lines. Anecdotal evidence suggests a link between flecking and enhanced broad-spectrum disease resistance. Neither the genetic basis underlying flecking nor its possible relationship to disease resistance has been systematically evaluated. The commonly used maize inbred Mo17 has a mild flecking phenotype. The IBM-advanced intercross mapping population, derived from a cross between Mo17 and another commonly used inbred B73, has been used for mapping a number of traits in maize including several related to disease resistance. In this study, flecking was assessed in the IBM population over 6 environments. Several quantitative trait loci for flecking were identified, with the strongest one located on chromosome 6. Low but moderately significant correlations were observed between stronger flecking and higher disease resistance with respect to two diseases, southern leaf blight and northern leaf blight and between stronger flecking and a stronger defense response.

  7. Isolate Specificity and Polygenic Inheritance of Resistance in Barley to Diverse Heterologous Puccinia striiformis Isolates.

    PubMed

    Haghdoust, R; Singh, D; Garnica, D P; Park, R F; Dracatos, P M

    2018-05-01

    Barley is a host to Puccinia striiformis f. sp. hordei, and is an intermediate or near nonhost to the formae speciales adapted to wheat (P. striiformis f. sp. tritici) and to barley grass (P. striiformis f. sp. pseudo-hordei). The genetic basis of resistance to these forms of P. striiformis is not well understood. Accordingly, a recombinant inbred line (RIL) population was developed using a P. striiformis-susceptible accession (Biosaline-19) and the immune cultivar Pompadour. We investigated the genetic basis of resistance to four diverse P. striiformis isolates (P. striiformis f. sp. pseudo-hordei, and P. striiformis f. sp. tritici pathotypes 104 E137 A-, 134 E16 A+, and 64 E0 A-). and determined that the immunity in Pompadour at the seedling stage to the different P. striiformis isolates was due to quantitative trait loci (QTL) on chromosomes 1H, 3H, 5H, and 7H with both overlapping and distinct specificities. Further histological analysis confirmed the presence of isolate specificity. The RILs were also assessed in the field for resistance to P. striiformis f. sp. pseudo-hordei, P. striiformis f. sp. hordei, and the leaf rust pathogen (P. hordei) to identify pleiotropic QTL loci effective at the adult plant stage and determine whether the leaf rust resistance in Pompadour (Rph20) was also effective to P. striiformis. RILs that were seedling susceptible to P. striiformis f. sp. pseudo-hordei were resistant in the field, implicating the involvement of adult plant resistance (APR). Additional QTLs were identified on chromosome 7H at the same genetic position as Rph23 (APR to leaf rust), suggesting either pleiotropic resistance or the presence of a stripe rust resistance gene closely linked to or allelic with Rph23. Unlike many pleiotropic APR genes identified and isolated in wheat, our data suggest that the Rph20 locus does not confer resistance to the P. striiformis isolates used in this study (P. striiformis f. sp. hordei [χ 2 (independence) = 2.47 P > 0.12] and

  8. Genome-Wide Meta-Analysis of Myopia and Hyperopia Provides Evidence for Replication of 11 Loci

    PubMed Central

    Simpson, Claire L.; Wojciechowski, Robert; Oexle, Konrad; Murgia, Federico; Portas, Laura; Li, Xiaohui; Verhoeven, Virginie J. M.; Vitart, Veronique; Schache, Maria; Hosseini, S. Mohsen; Hysi, Pirro G.; Raffel, Leslie J.; Cotch, Mary Frances; Chew, Emily; Klein, Barbara E. K.; Klein, Ronald; Wong, Tien Yin; van Duijn, Cornelia M.; Mitchell, Paul; Saw, Seang Mei; Fossarello, Maurizio; Wang, Jie Jin; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Oostra, Ben A.; Uitterlinden, André G.; Hofman, Albert; Rivadeneira, Fernando; Amin, Najaf; Karssen, Lennart C.; Vingerling, Johannes R.; Döring, Angela; Bettecken, Thomas; Bencic, Goran; Gieger, Christian; Wichmann, H.-Erich; Wilson, James F.; Venturini, Cristina; Fleck, Brian; Cumberland, Phillippa M.; Rahi, Jugnoo S.; Hammond, Chris J.; Hayward, Caroline; Wright, Alan F.; Paterson, Andrew D.; Baird, Paul N.; Klaver, Caroline C. W.; Rotter, Jerome I.; Pirastu, Mario; Meitinger, Thomas; Bailey-Wilson, Joan E.; Stambolian, Dwight

    2014-01-01

    Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10−8), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10−11) and 8q12 (minimum p value 1.82×10−11) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. “Replication-level” association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of

  9. Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci.

    PubMed

    Simpson, Claire L; Wojciechowski, Robert; Oexle, Konrad; Murgia, Federico; Portas, Laura; Li, Xiaohui; Verhoeven, Virginie J M; Vitart, Veronique; Schache, Maria; Hosseini, S Mohsen; Hysi, Pirro G; Raffel, Leslie J; Cotch, Mary Frances; Chew, Emily; Klein, Barbara E K; Klein, Ronald; Wong, Tien Yin; van Duijn, Cornelia M; Mitchell, Paul; Saw, Seang Mei; Fossarello, Maurizio; Wang, Jie Jin; Polašek, Ozren; Campbell, Harry; Rudan, Igor; Oostra, Ben A; Uitterlinden, André G; Hofman, Albert; Rivadeneira, Fernando; Amin, Najaf; Karssen, Lennart C; Vingerling, Johannes R; Döring, Angela; Bettecken, Thomas; Bencic, Goran; Gieger, Christian; Wichmann, H-Erich; Wilson, James F; Venturini, Cristina; Fleck, Brian; Cumberland, Phillippa M; Rahi, Jugnoo S; Hammond, Chris J; Hayward, Caroline; Wright, Alan F; Paterson, Andrew D; Baird, Paul N; Klaver, Caroline C W; Rotter, Jerome I; Pirastu, Mario; Meitinger, Thomas; Bailey-Wilson, Joan E; Stambolian, Dwight

    2014-01-01

    Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10(-8)), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10(-11)) and 8q12 (minimum p value 1.82×10(-11)) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. "Replication-level" association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of refractive

  10. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population.

    PubMed

    Yu, Jiwen; Zhang, Ke; Li, Shuaiyang; Yu, Shuxun; Zhai, Honghong; Wu, Man; Li, Xingli; Fan, Shuli; Song, Meizhen; Yang, Daigang; Li, Yunhai; Zhang, Jinfa

    2013-01-01

    Identification of stable quantitative trait loci (QTLs) across different environments and mapping populations is a prerequisite for marker-assisted selection (MAS) for cotton yield and fiber quality. To construct a genetic linkage map and to identify QTLs for fiber quality and yield traits, a backcross inbred line (BIL) population of 146 lines was developed from a cross between Upland cotton (Gossypium hirsutum) and Egyptian cotton (Gossypium barbadense) through two generations of backcrossing using Upland cotton as the recurrent parent followed by four generations of self pollination. The BIL population together with its two parents was tested in five environments representing three major cotton production regions in China. The genetic map spanned a total genetic distance of 2,895 cM and contained 392 polymorphic SSR loci with an average genetic distance of 7.4 cM per marker. A total of 67 QTLs including 28 for fiber quality and 39 for yield and its components were detected on 23 chromosomes, each of which explained 6.65-25.27% of the phenotypic variation. Twenty-nine QTLs were located on the At subgenome originated from a cultivated diploid cotton, while 38 were on the Dt subgenome from an ancestor that does not produce spinnable fibers. Of the eight common QTLs (12%) detected in more than two environments, two were for fiber quality traits including one for fiber strength and one for uniformity, and six for yield and its components including three for lint yield, one for seedcotton yield, one for lint percentage and one for boll weight. QTL clusters for the same traits or different traits were also identified. This research represents one of the first reports using a permanent advanced backcross inbred population of an interspecific hybrid population to identify QTLs for fiber quality and yield traits in cotton across diverse environments. It provides useful information for transferring desirable genes from G. barbadense to G. hirsutum using MAS.

  11. Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis in common bean

    PubMed Central

    González, Ana M.; Yuste-Lisbona, Fernando J.; Rodiño, A. Paula; De Ron, Antonio M.; Capel, Carmen; García-Alcázar, Manuel; Lozano, Rafael; Santalla, Marta

    2015-01-01

    Colletotrichum lindemuthianum is a hemibiotrophic fungal pathogen that causes anthracnose disease in common bean. Despite the genetics of anthracnose resistance has been studied for a long time, few quantitative trait loci (QTLs) studies have been conducted on this species. The present work examines the genetic basis of quantitative resistance to races 23 and 1545 of C. lindemuthianum in different organs (stem, leaf and petiole). A population of 185 recombinant inbred lines (RIL) derived from the cross PMB0225 × PHA1037 was evaluated for anthracnose resistance under natural and artificial photoperiod growth conditions. Using multi-environment QTL mapping approach, 10 and 16 main effect QTLs were identified for resistance to anthracnose races 23 and 1545, respectively. The homologous genomic regions corresponding to 17 of the 26 main effect QTLs detected were positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL) proteins. Among them, it is worth noting that the main effect QTLs detected on linkage group 05 for resistance to race 1545 in stem, petiole and leaf were located within a 1.2 Mb region. The NL gene Phvul.005G117900 is located in this region, which can be considered an important candidate gene for the non-organ-specific QTL identified here. Furthermore, a total of 39 epistatic QTL (E-QTLs) (21 for resistance to race 23 and 18 for resistance to race 1545) involved in 20 epistatic interactions (eleven and nine interactions for resistance to races 23 and 1545, respectively) were identified. None of the main and epistatic QTLs detected displayed significant environment interaction effects. The present research provides essential information not only for the better understanding of the plant-pathogen interaction but also for the application of genomic assisted breeding for anthracnose resistance improvement in common bean through application of marker-assisted selection (MAS). PMID:25852706

  12. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson.

    PubMed

    Thomson, M J; Tai, T H; McClung, A M; Lai, X-H; Hinga, M E; Lobos, K B; Xu, Y; Martinez, C P; McCouch, S R

    2003-08-01

    An advanced backcross population between an accession of Oryza rufipogon (IRGC 105491) and the U.S. cultivar Jefferson (Oryza sativa ssp. japonica) was developed to identify quantitative trait loci (QTLs) for yield, yield components and morphological traits. The genetic linkage map generated for this population consisted of 153 SSR and RFLP markers with an average interval size of 10.3 cM. Thirteen traits were examined, nine of which were measured in multiple environments. Seventy-six QTLs above an experiment-wise significance threshold of P<0.01 (corresponding to an interval mapping LOD>3.6 or a composite interval mapping LOD>3.9) were identified. For the traits measured in multiple environments, 47% of the QTLs were detected in at least two environments. The O. rufipogon allele was favorable for 53% of the yield and yield component QTLs, including loci for yield, grains per panicle, panicle length, and grain weight. Morphological traits related to the domestication process and/or weedy characteristics, including plant height, shattering, tiller type and awns, were found clustered on chromosomes 1 and 4. Comparisons to previous studies involving wild x cultivated crosses revealed O. rufipogon alleles with stable effects in multiple genetic backgrounds and environments, several of which have not been detected in studies between Oryza sativa cultivars, indicating potentially novel alleles from O. rufipogon. Some O. rufipogon-derived QTLs, however, were in similar regions as previously reported QTLs from Oryza sativa cultivars, providing evidence for conservation of these QTLs across the Oryza genus. In addition, several QTLs for grain weight, plant height, and flowering time were localized to putative homeologous regions in maize where QTLs for these traits have been previously reported, supporting the hypothesis of functional conservation of QTLs across the grasses.

  13. Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment

    DOE PAGES

    Zhang, Pengju; Lo, Alvin; Huang, Yurong; ...

    2015-03-09

    The interplay between host genetics, tumor microenvironment and environmental exposure in cancer susceptibility remains poorly understood. Here we assessed the genetic control of stromal mediation of mammary tumor susceptibility to low dose ionizing radiation (LDIR) using backcrossed F1 into BALB/c (F1Bx) between cancer susceptible (BALB/c) and resistant (SPRET/EiJ) mouse strains. Tumor formation was evaluated after transplantation of non-irradiated Trp53-/- BALB/c mammary gland fragments into cleared fat pads of F1Bx hosts. Genome-wide linkage analysis revealed 2 genetic loci that constitute the baseline susceptibility via host microenvironment. However, once challenged with LDIR, we discovered 13 additional loci that were enriched for genesmore » involved in cytokines, including TGFβ1 signaling. Surprisingly, LDIR-treated F1Bx cohort significantly reduced incidence of mammary tumors from Trp53-/- fragments as well as prolonged tumor latency, compared to sham-treated controls. We demonstrated further that plasma levels of specific cytokines were significantly correlated with tumor latency. Using an ex vivo 3-D assay, we confirmed TGFβ1 as a strong candidate for reduced mammary invasion in SPRET/EiJ, which could explain resistance of this strain to mammary cancer risk following LDIR. Our results open possible new avenues to understand mechanisms of genes operating via the stroma that affect cancer risk from external environmental exposures.« less

  14. Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengju; Lo, Alvin; Huang, Yurong

    The interplay between host genetics, tumor microenvironment and environmental exposure in cancer susceptibility remains poorly understood. Here we assessed the genetic control of stromal mediation of mammary tumor susceptibility to low dose ionizing radiation (LDIR) using backcrossed F1 into BALB/c (F1Bx) between cancer susceptible (BALB/c) and resistant (SPRET/EiJ) mouse strains. Tumor formation was evaluated after transplantation of non-irradiated Trp53-/- BALB/c mammary gland fragments into cleared fat pads of F1Bx hosts. Genome-wide linkage analysis revealed 2 genetic loci that constitute the baseline susceptibility via host microenvironment. However, once challenged with LDIR, we discovered 13 additional loci that were enriched for genesmore » involved in cytokines, including TGFβ1 signaling. Surprisingly, LDIR-treated F1Bx cohort significantly reduced incidence of mammary tumors from Trp53-/- fragments as well as prolonged tumor latency, compared to sham-treated controls. We demonstrated further that plasma levels of specific cytokines were significantly correlated with tumor latency. Using an ex vivo 3-D assay, we confirmed TGFβ1 as a strong candidate for reduced mammary invasion in SPRET/EiJ, which could explain resistance of this strain to mammary cancer risk following LDIR. Our results open possible new avenues to understand mechanisms of genes operating via the stroma that affect cancer risk from external environmental exposures.« less

  15. The Loci Multidisciplinary Simulation System Overview and Status

    NASA Technical Reports Server (NTRS)

    Luke, Edward A.; Tong, Xiao-Ling; Tang, Lin

    2002-01-01

    This paper will discuss the Loci system, an innovative tool for developing tightly coupled multidisciplinary three dimensional simulations. This presentation will overview some of the unique capabilities of the Loci system to automate the assembly of numerical simulations from libraries of fundamental computational components. We will discuss the demonstration of the Loci system on coupled fluid-structure problems related to RBCC propulsion systems.

  16. Quantitative image analysis for evaluating the abrasion resistance of nanoporous silica films on glass

    PubMed Central

    Nielsen, Karsten H.; Karlsson, Stefan; Limbach, Rene; Wondraczek, Lothar

    2015-01-01

    The abrasion resistance of coated glass surfaces is an important parameter for judging lifetime performance, but practical testing procedures remain overly simplistic and do often not allow for direct conclusions on real-world degradation. Here, we combine quantitative two-dimensional image analysis and mechanical abrasion into a facile tool for probing the abrasion resistance of anti-reflective (AR) coatings. We determine variations in the average coated area, during and after controlled abrasion. Through comparison with other experimental techniques, we show that this method provides a practical, rapid and versatile tool for the evaluation of the abrasion resistance of sol-gel-derived thin films on glass. The method yields informative data, which correlates with measurements of diffuse reflectance and is further supported by qualitative investigations through scanning electron microscopy. In particular, the method directly addresses degradation of coating performance, i.e., the gradual areal loss of antireflective functionality. As an exemplary subject, we studied the abrasion resistance of state-of-the-art nanoporous SiO2 thin films which were derived from 5–6 wt% aqueous solutions of potassium silicates, or from colloidal suspensions of SiO2 nanoparticles. It is shown how abrasion resistance is governed by coating density and film adhesion, defining the trade-off between optimal AR performance and acceptable mechanical performance. PMID:26656260

  17. Characterization and Exploitation of CRISPR Loci in Bifidobacterium longum

    PubMed Central

    Hidalgo-Cantabrana, Claudio; Crawley, Alexandra B.; Sanchez, Borja; Barrangou, Rodolphe

    2017-01-01

    Diverse CRISPR-Cas systems provide adaptive immunity in many bacteria and most archaea, via a DNA-encoded, RNA-mediated, nucleic-acid targeting mechanism. Over time, CRISPR loci expand via iterative uptake of invasive DNA sequences into the CRISPR array during the adaptation process. These genetic vaccination cards thus provide insights into the exposure of strains to phages and plasmids in space and time, revealing the historical predatory exposure of a strain. These genetic loci thus constitute a unique basis for genotyping of strains, with potential of resolution at the strain-level. Here, we investigate the occurrence and diversity of CRISPR-Cas systems in the genomes of various Bifidobacterium longum strains across three sub-species. Specifically, we analyzed the genomic content of 66 genomes belonging to B. longum subsp. longum, B. longum subsp. infantis and B. longum subsp. suis, and identified 25 strains that carry 29 total CRISPR-Cas systems. We identify various Type I and Type II CRISPR-Cas systems that are widespread in this species, notably I-C, I-E, and II-C. Noteworthy, Type I-C systems showed extended CRISPR arrays, with extensive spacer diversity. We show how these hypervariable loci can be used to gain insights into strain origin, evolution and phylogeny, and can provide discriminatory sequences to distinguish even clonal isolates. By investigating CRISPR spacer sequences, we reveal their origin and implicate phages and prophages as drivers of CRISPR immunity expansion in this species, with redundant targeting of select prophages. Analysis of CRISPR spacer origin also revealed novel PAM sequences. Our results suggest that CRISPR-Cas immune systems are instrumental in mounting diversified viral resistance in B. longum, and show that these sequences are useful for typing across three subspecies. PMID:29033911

  18. Characterization and Exploitation of CRISPR Loci in Bifidobacterium longum.

    PubMed

    Hidalgo-Cantabrana, Claudio; Crawley, Alexandra B; Sanchez, Borja; Barrangou, Rodolphe

    2017-01-01

    Diverse CRISPR-Cas systems provide adaptive immunity in many bacteria and most archaea, via a DNA-encoded, RNA-mediated, nucleic-acid targeting mechanism. Over time, CRISPR loci expand via iterative uptake of invasive DNA sequences into the CRISPR array during the adaptation process. These genetic vaccination cards thus provide insights into the exposure of strains to phages and plasmids in space and time, revealing the historical predatory exposure of a strain. These genetic loci thus constitute a unique basis for genotyping of strains, with potential of resolution at the strain-level. Here, we investigate the occurrence and diversity of CRISPR-Cas systems in the genomes of various Bifidobacterium longum strains across three sub-species. Specifically, we analyzed the genomic content of 66 genomes belonging to B. longum subsp. longum, B. longum subsp. infantis and B. longum subsp. suis , and identified 25 strains that carry 29 total CRISPR-Cas systems. We identify various Type I and Type II CRISPR-Cas systems that are widespread in this species, notably I-C, I-E, and II-C. Noteworthy, Type I-C systems showed extended CRISPR arrays, with extensive spacer diversity. We show how these hypervariable loci can be used to gain insights into strain origin, evolution and phylogeny, and can provide discriminatory sequences to distinguish even clonal isolates. By investigating CRISPR spacer sequences, we reveal their origin and implicate phages and prophages as drivers of CRISPR immunity expansion in this species, with redundant targeting of select prophages. Analysis of CRISPR spacer origin also revealed novel PAM sequences. Our results suggest that CRISPR-Cas immune systems are instrumental in mounting diversified viral resistance in B. longum , and show that these sequences are useful for typing across three subspecies.

  19. Identification of novel mazEF/pemIK family toxin-antitoxin loci and their distribution in the Staphylococcus genus.

    PubMed

    Bukowski, Michal; Hyz, Karolina; Janczak, Monika; Hydzik, Marcin; Dubin, Grzegorz; Wladyka, Benedykt

    2017-10-18

    The versatile roles of toxin-antitoxin (TA) systems in bacterial physiology and pathogenesis have been investigated for more than three decades. Diverse TA loci in Bacteria and Archaea have been identified in genome-wide studies. The advent of massive parallel sequencing has substantially expanded the number of known bacterial genomic sequences over the last 5 years. In staphylococci, this has translated into an impressive increase from a few tens to a several thousands of available genomes, which has allowed us for the re-evalution of prior conclusions. In this study, we analysed the distribution of mazEF/pemIK family TA system operons in available staphylococcal genomes and their prevalence in mobile genetic elements. 10 novel m azEF/pemIK homologues were identified, each with a corresponding toxin that plays a potentially different and undetermined physiological role. A detailed characterisation of these TA systems would be exceptionally useful. Of particular interest are those associated with an SCCmec mobile genetic element (responsible for multidrug resistance transmission) or representing the joint horizontal transfer of TA systems and determinants of vancomycin resistance from enterococci. The involvement of TA systems in maintaining mobile genetic elements and the associations between novel mazEF/pemIK loci and those which carry drug resistance genes highlight their potential medical importance.

  20. ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of Arabidopsis thaliana to Verticillium longisporum.

    PubMed

    Häffner, Eva; Karlovsky, Petr; Splivallo, Richard; Traczewska, Anna; Diederichsen, Elke

    2014-04-01

    Verticillium longisporum is a soil-borne vascular pathogen infecting cruciferous hosts such as oilseed rape. Quantitative disease resistance (QDR) is the major control means, but its molecular basis is poorly understood so far. Quantitative trait locus (QTL) mapping was performed using a new (Bur×Ler) recombinant inbred line (RIL) population of Arabidopsis thaliana. Phytohormone measurements and analyses in defined mutants and near-isogenic lines (NILs) were used to identify genes and signalling pathways that underlie different resistance QTL. QTL for resistance to V. longisporum-induced stunting, systemic colonization by the fungus and for V. longisporum-induced chlorosis were identified. Stunting resistance QTL were contributed by both parents. The strongest stunting resistance QTL was shown to be identical with Erecta. A functional Erecta pathway, which was present in Bur, conferred partial resistance to V. longisporum-induced stunting. Bur showed severe stunting susceptibility in winter. Three stunting resistance QTL of Ler origin, two co-localising with wall-associated kinase-like (Wakl)-genes, were detected in winter. Furthermore, Bur showed a much stronger induction of salicylic acid (SA) by V. longisporum than Ler. Systemic colonization was controlled independently of stunting. The vec1 QTL on chromosome 2 had the strongest effect on systemic colonization. The same chromosomal region controlled the level of abscisic acid (ABA) and jasmonic acid (JA) in response to V. longisporum: The level of ABA was higher in colonization-susceptible Ler than in colonization-resistant Bur after V. longisporum infection. JA was down-regulated in Bur after infection, but not in Ler. These differences were also demonstrated in NILs, varying only in the region containing vec1. All phytohormone responses were shown to be independent of Erecta. Signalling systems with a hitherto unknown role in the QDR of A. thaliana against V. longisporum were identified: Erecta mediated