Science.gov

Sample records for quantitative rnai screen

  1. RNAi Screening in Spodoptera frugiperda.

    PubMed

    Ghosh, Subhanita; Singh, Gatikrushna; Sachdev, Bindiya; Kumar, Ajit; Malhotra, Pawan; Mukherjee, Sunil K; Bhatnagar, Raj K

    2016-01-01

    RNA interference is a potent and precise reverse genetic approach to carryout large-scale functional genomic studies in a given organism. During the past decade, RNAi has also emerged as an important investigative tool to understand the process of viral pathogenesis. Our laboratory has successfully generated transgenic reporter and RNAi sensor line of Spodoptera frugiperda (Sf21) cells and developed a reversal of silencing assay via siRNA or shRNA guided screening to investigate RNAi factors or viral pathogenic factors with extraordinary fidelity. Here we describe empirical approaches and conceptual understanding to execute successful RNAi screening in Spodoptera frugiperda 21-cell line.

  2. Automated microscopy for high-content RNAi screening

    PubMed Central

    2010-01-01

    Fluorescence microscopy is one of the most powerful tools to investigate complex cellular processes such as cell division, cell motility, or intracellular trafficking. The availability of RNA interference (RNAi) technology and automated microscopy has opened the possibility to perform cellular imaging in functional genomics and other large-scale applications. Although imaging often dramatically increases the content of a screening assay, it poses new challenges to achieve accurate quantitative annotation and therefore needs to be carefully adjusted to the specific needs of individual screening applications. In this review, we discuss principles of assay design, large-scale RNAi, microscope automation, and computational data analysis. We highlight strategies for imaging-based RNAi screening adapted to different library and assay designs. PMID:20176920

  3. FlyRNAi.org—the database of the Drosophila RNAi screening center: 2012 update

    PubMed Central

    Flockhart, Ian T.; Booker, Matthew; Hu, Yanhui; McElvany, Benjamin; Gilly, Quentin; Mathey-Prevot, Bernard; Perrimon, Norbert; Mohr, Stephanie E.

    2012-01-01

    FlyRNAi (http://www.flyrnai.org), the database and website of the Drosophila RNAi Screening Center (DRSC) at Harvard Medical School, serves a dual role, tracking both production of reagents for RNA interference (RNAi) screening in Drosophila cells and RNAi screen results. The database and website is used as a platform for community availability of protocols, tools, and other resources useful to researchers planning, conducting, analyzing or interpreting the results of Drosophila RNAi screens. Based on our own experience and user feedback, we have made several changes. Specifically, we have restructured the database to accommodate new types of reagents; added information about new RNAi libraries and other reagents; updated the user interface and website; and added new tools of use to the Drosophila community and others. Overall, the result is a more useful, flexible and comprehensive website and database. PMID:22067456

  4. Institutional Profile: The Sheffield RNAi screening facility: a service for high-throughput, genome-wide Drosophila RNAi screens.

    PubMed

    Brown, Stephen

    2010-12-01

    The Sheffield RNAi Screening Facility (SRSF) was established in November 2008, as Britain's first Drosophila RNAi screening centre, funded by the University of Sheffield, Biomedical Sciences Department and the Wellcome Trust. The SRSF was formed to service the needs of research groups wanting to carry out high-throughput RNAi screens with Drosophila cells. The rationale for the SRSF is to provide RNAi libraries and the specialist equipment and expertise to do such screens. The facility supports both plate reader assays, high-content microscopy as well as the equipment needed to process these samples in a high-throughput fashion. The SRSF can either be used to identify genes involved in disease representing future drug targets, or to identify genes involved in drug resistance and efficacy.

  5. Size Unbiased Representative Enzymatically Generated RNAi (SURER) Library and Application for RNAi Therapeutic Screens

    PubMed Central

    Li, Tiejun; Chen, Li; Sun, Yuncheng; Yuan, Jian; Graham, Michael; French, Peter

    2015-01-01

    RNA interference (RNAi) libraries screens have become widely used for small RNA (sRNA) therapeutic targets development. However, conventional enzymatically libraries, typically prepared using the type 2 restriction enzyme MmeI, produce sRNAs between 18 and 20 bp, much shorter than the usual lengths of 19–23 bp. Here we develop a size unbiased representative enzymatically generated RNAi (SURER) library, which employs type 3 restriction modification enzyme EcoP15I to produce sRNAs ranging from 19 to 23 bp using a group of rationally designed linkers, which can completely mimic the length of sRNAs naturally generated by Dicer enzyme in living cells, and the screening results of SURER libraries showed high recombination rate and knockdown efficiency. SURER library provides a useful tool for RNAi therapeutics screening in a fast and simple way. PMID:25493330

  6. RNAi screening comes of age: improved techniques and complementary approaches

    PubMed Central

    Mohr, Stephanie E.; Smith, Jennifer A.; Shamu, Caroline E.; Neumüller, Ralph A.; Perrimon, Norbert

    2014-01-01

    Gene silencing through sequence-specific targeting of mRNAs by RNAi has enabled genome-wide functional screens in cultured cells and in vivo in model organisms. These screens have resulted in the identification of new cellular pathways and potential drug targets. Considerable progress has been made to improve the quality of RNAi screen data through the development of new experimental and bioinformatics approaches. The recent availability of genome-editing strategies, such as the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system, when combined with RNAi, could lead to further improvements in screen data quality and follow-up experiments, thus promoting our understanding of gene function and gene regulatory networks. PMID:25145850

  7. Determination of sample size in genome-scale RNAi screens.

    PubMed

    Zhang, Xiaohua Douglas; Heyse, Joseph F

    2009-04-01

    For genome-scale RNAi research, it is critical to investigate sample size required for the achievement of reasonably low false negative rate (FNR) and false positive rate. The analysis in this article reveals that current design of sample size contributes to the occurrence of low signal-to-noise ratio in genome-scale RNAi projects. The analysis suggests that (i) an arrangement of 16 wells per plate is acceptable and an arrangement of 20-24 wells per plate is preferable for a negative control to be used for hit selection in a primary screen without replicates; (ii) in a confirmatory screen or a primary screen with replicates, a sample size of 3 is not large enough, and there is a large reduction in FNRs when sample size increases from 3 to 4. To search a tradeoff between benefit and cost, any sample size between 4 and 11 is a reasonable choice. If the main focus is the selection of siRNAs with strong effects, a sample size of 4 or 5 is a good choice. If we want to have enough power to detect siRNAs with moderate effects, sample size needs to be 8, 9, 10 or 11. These discoveries about sample size bring insight to the design of a genome-scale RNAi screen experiment.

  8. A Computational model for compressed sensing RNAi cellular screening

    PubMed Central

    2012-01-01

    Background RNA interference (RNAi) becomes an increasingly important and effective genetic tool to study the function of target genes by suppressing specific genes of interest. This system approach helps identify signaling pathways and cellular phase types by tracking intensity and/or morphological changes of cells. The traditional RNAi screening scheme, in which one siRNA is designed to knockdown one specific mRNA target, needs a large library of siRNAs and turns out to be time-consuming and expensive. Results In this paper, we propose a conceptual model, called compressed sensing RNAi (csRNAi), which employs a unique combination of group of small interfering RNAs (siRNAs) to knockdown a much larger size of genes. This strategy is based on the fact that one gene can be partially bound with several small interfering RNAs (siRNAs) and conversely, one siRNA can bind to a few genes with distinct binding affinity. This model constructs a multi-to-multi correspondence between siRNAs and their targets, with siRNAs much fewer than mRNA targets, compared with the conventional scheme. Mathematically this problem involves an underdetermined system of equations (linear or nonlinear), which is ill-posed in general. However, the recently developed compressed sensing (CS) theory can solve this problem. We present a mathematical model to describe the csRNAi system based on both CS theory and biological concerns. To build this model, we first search nucleotide motifs in a target gene set. Then we propose a machine learning based method to find the effective siRNAs with novel features, such as image features and speech features to describe an siRNA sequence. Numerical simulations show that we can reduce the siRNA library to one third of that in the conventional scheme. In addition, the features to describe siRNAs outperform the existing ones substantially. Conclusions This csRNAi system is very promising in saving both time and cost for large-scale RNAi screening experiments which

  9. A computational model for compressed sensing RNAi cellular screening.

    PubMed

    Tan, Hua; Fan, Jing; Bao, Jiguang; Dy, Jennifer G; Zhou, Xiaobo

    2012-12-27

    RNA interference (RNAi) becomes an increasingly important and effective genetic tool to study the function of target genes by suppressing specific genes of interest. This system approach helps identify signaling pathways and cellular phase types by tracking intensity and/or morphological changes of cells. The traditional RNAi screening scheme, in which one siRNA is designed to knockdown one specific mRNA target, needs a large library of siRNAs and turns out to be time-consuming and expensive. In this paper, we propose a conceptual model, called compressed sensing RNAi (csRNAi), which employs a unique combination of group of small interfering RNAs (siRNAs) to knockdown a much larger size of genes. This strategy is based on the fact that one gene can be partially bound with several small interfering RNAs (siRNAs) and conversely, one siRNA can bind to a few genes with distinct binding affinity. This model constructs a multi-to-multi correspondence between siRNAs and their targets, with siRNAs much fewer than mRNA targets, compared with the conventional scheme. Mathematically this problem involves an underdetermined system of equations (linear or nonlinear), which is ill-posed in general. However, the recently developed compressed sensing (CS) theory can solve this problem. We present a mathematical model to describe the csRNAi system based on both CS theory and biological concerns. To build this model, we first search nucleotide motifs in a target gene set. Then we propose a machine learning based method to find the effective siRNAs with novel features, such as image features and speech features to describe an siRNA sequence. Numerical simulations show that we can reduce the siRNA library to one third of that in the conventional scheme. In addition, the features to describe siRNAs outperform the existing ones substantially. This csRNAi system is very promising in saving both time and cost for large-scale RNAi screening experiments which may benefit the biological

  10. Terminal Cytokinesis Events Uncovered after an RNAi Screen

    PubMed Central

    Echard, Arnaud; Hickson, Gilles R. X.; Foley, Edan; O’Farrell, Patrick H.

    2009-01-01

    Summary Much of our understanding of animal cell cytokinesis centers on the regulation of the equatorial acto-myosin contractile ring that drives the rapid ingression of a deep cleavage furrow [1–5]. However, the central part of the mitotic spindle collapses to a dense structure that impedes the furrow and keeps the daughter cells connected via an intercellular bridge. Factors involved in the formation, maintenance, and resolution of this bridge are largely unknown [6]. Using a library of 7,216 double-stranded RNAs (dsRNAs) representing the conserved genes of Drosophila, we performed an RNA interference (RNAi) screen for cytokinesis genes in Schneider’s S2 cells. We identified both familiar and novel genes whose inactivation induced a multi-nucleate phenotype. Using live video microscopy, we show that three genes: anillin, citron-kinase (CG10522), and soluble N-ethylmaleimide sensitive factor (NSF) attachment protein (α-SNAP), are essential for the terminal (post-furrowing) events of cytokinesis. anillin RNAi caused gradual disruption of the intercellular bridge after furrowing; citron-kinase RNAi destabilized the bridge at a later stage; α-SNAP RNAi caused sister cells to fuse many hours later and by a different mechanism. We have shown that the stability of the intercellular bridge is essential for successful cytokinesis and have defined genes contributing to this stability. PMID:15380073

  11. iScreen: Image-Based High-Content RNAi Screening Analysis Tools.

    PubMed

    Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua

    2015-09-01

    High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document.

  12. RNAi screens in mice identify physiological regulators of oncogenic growth

    PubMed Central

    Beronja, Slobodan; Janki, Peter; Heller, Evan; Lien, Wen-Hui; Keyes, Brice; Oshimori, Naoki; Fuchs, Elaine

    2013-01-01

    Summary Tissue growth is the multifaceted outcome of a cell’s intrinsic capabilities and its interactions with the surrounding environment. Decoding these complexities is essential for understanding human development and tumorigenesis. Here, we tackle this problem by carrying out the first genome-wide RNAi-mediated screens in mice. Focusing on skin development and oncogenic (HrasG12V-induced) hyperplasia, our screens uncover novel as well as anticipated regulators of embryonic epidermal growth. Among top oncogenic screen hits are Mllt6 and the Wnt effector β-catenin; they maintain HrasG12V-dependent hyperproliferation. We also expose β-catenin as an unanticipated antagonist of normal epidermal growth, functioning through Wnt-independent intercellular adhesion. Finally, we document physiological relevance to mouse and human cancers, thereby establishing the feasibility of in vivo mammalian genome-wide investigations to dissect tissue development and tumorigenesis. By documenting some oncogenic growth regulators, we pave the way for future investigations of other hits and raise promise for unearthing new targets for cancer therapies. PMID:23945586

  13. Axon Regeneration Genes Identified by RNAi Screening in C. elegans

    PubMed Central

    Nix, Paola; Hammarlund, Marc; Hauth, Linda; Lachnit, Martina; Jorgensen, Erik M.

    2014-01-01

    Axons of the mammalian CNS lose the ability to regenerate soon after development due to both an inhibitory CNS environment and the loss of cell-intrinsic factors necessary for regeneration. The complex molecular events required for robust regeneration of mature neurons are not fully understood, particularly in vivo. To identify genes affecting axon regeneration in Caenorhabditis elegans, we performed both an RNAi-based screen for defective motor axon regeneration in unc-70/β-spectrin mutants and a candidate gene screen. From these screens, we identified at least 50 conserved genes with growth-promoting or growth-inhibiting functions. Through our analysis of mutants, we shed new light on certain aspects of regeneration, including the role of β-spectrin and membrane dynamics, the antagonistic activity of MAP kinase signaling pathways, and the role of stress in promoting axon regeneration. Many gene candidates had not previously been associated with axon regeneration and implicate new pathways of interest for therapeutic intervention. PMID:24403161

  14. RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells.

    PubMed

    Chia, Joanne; Goh, Germaine; Racine, Victor; Ng, Susanne; Kumar, Pankaj; Bard, Frederic

    2012-01-01

    The Golgi apparatus has many important physiological functions, including sorting of secretory cargo and biosynthesis of complex glycans. These functions depend on the intricate and compartmentalized organization of the Golgi apparatus. To investigate the mechanisms that regulate Golgi architecture, we developed a quantitative morphological assay using three different Golgi compartment markers and quantitative image analysis, and performed a kinome- and phosphatome-wide RNAi screen in HeLa cells. Depletion of 159 signaling genes, nearly 20% of genes assayed, induced strong and varied perturbations in Golgi morphology. Using bioinformatics data, a large regulatory network could be constructed. Specific subnetworks are involved in phosphoinositides regulation, acto-myosin dynamics and mitogen activated protein kinase signaling. Most gene depletion also affected Golgi functions, in particular glycan biosynthesis, suggesting that signaling cascades can control glycosylation directly at the Golgi level. Our results provide a genetic overview of the signaling pathways that control the Golgi apparatus in human cells.

  15. RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells

    PubMed Central

    Chia, Joanne; Goh, Germaine; Racine, Victor; Ng, Susanne; Kumar, Pankaj; Bard, Frederic

    2012-01-01

    The Golgi apparatus has many important physiological functions, including sorting of secretory cargo and biosynthesis of complex glycans. These functions depend on the intricate and compartmentalized organization of the Golgi apparatus. To investigate the mechanisms that regulate Golgi architecture, we developed a quantitative morphological assay using three different Golgi compartment markers and quantitative image analysis, and performed a kinome- and phosphatome-wide RNAi screen in HeLa cells. Depletion of 159 signaling genes, nearly 20% of genes assayed, induced strong and varied perturbations in Golgi morphology. Using bioinformatics data, a large regulatory network could be constructed. Specific subnetworks are involved in phosphoinositides regulation, acto-myosin dynamics and mitogen activated protein kinase signaling. Most gene depletion also affected Golgi functions, in particular glycan biosynthesis, suggesting that signaling cascades can control glycosylation directly at the Golgi level. Our results provide a genetic overview of the signaling pathways that control the Golgi apparatus in human cells. PMID:23212246

  16. Computational detection and suppression of sequence-specific off-target phenotypes from whole genome RNAi screens

    PubMed Central

    Zhong, Rui; Kim, Jimi; Kim, Hyun Seok; Kim, Minsoo; Lum, Lawrence; Levine, Beth; Xiao, Guanghua; White, Michael A.; Xie, Yang

    2014-01-01

    A challenge for large-scale siRNA loss-of-function studies is the biological pleiotropy resulting from multiple modes of action of siRNA reagents. A major confounding feature of these reagents is the microRNA-like translational quelling resulting from short regions of oligonucleotide complementarity to many different messenger RNAs. We developed a computational approach, deconvolution analysis of RNAi screening data, for automated quantitation of off-target effects in RNAi screening data sets. Substantial reduction of off-target rates was experimentally validated in five distinct biological screens across different genome-wide siRNA libraries. A public-access graphical-user-interface has been constructed to facilitate application of this algorithm. PMID:24972830

  17. Phenotypic screen for RNAi effects in the codling moth Cydia pomonella.

    PubMed

    Wang, Jinda; Gu, Liuqi; Ireland, Stephen; Garczynski, Stephen F; Knipple, Douglas C

    2015-11-10

    RNAi-based technologies have the potential to augment, or replace existing pest management strategies. However, some insect taxa are less susceptible to the induction of the post-transcriptional gene silencing effect than others, such as the Lepidoptera. Here we describe experiments to investigate the induction of RNAi in the codling moth, Cydia pomonella, a major lepidopteran pest of apple, pear, and walnut. Prior to a knockdown screen, fluorescently labeled small interfering RNA (siRNA) and double-stranded RNA (dsRNA) derived from green fluorescent protein (GFP) coding sequence were delivered to the surface of artificial diet to which neonate larvae were introduced and subsequently examined for the distribution of fluorescence in their tissues. Fluorescence was highly concentrated in the midgut but its presence in other tissues was equivocal. Next, dsRNAs were made for C. pomonella genes orthologous to those that have well defined deleterious phenotypes in Drosophila melanogaster. A screen was conducted using dsRNAs encoding cullin-1 (Cpcul1), maleless (Cpmle), musashi (Cpmsi), a homeobox gene (CpHbx), and pumilio (Cppum). The dsRNAs designed from these target genes were administered to neonate larvae by delivery to the surface of the growth medium. None of the dsRNA treatments affected larval viability, however Cpcul1-dsRNA had a significant effect on larval growth, with the average length of larvae about 3mm, compared to about 4mm in the control groups. Measurement of Cpcul1 transcript levels by quantitative real-time PCR (qRT-PCR) revealed a dose-dependent RNAi effect in response to increasing amount of Cpcul1-dsRNA. Despite their reduced size, Cpcul1-dsRNA-treated larvae molted normally and matured to adulthood in a manner similar to controls. In an additional experiment, Cpcul1-siRNA was found to induce similar stunting effect as that induced by Cpcul1-dsRNA.

  18. Single-cell analysis of population context advances RNAi screening at multiple levels

    PubMed Central

    Snijder, Berend; Sacher, Raphael; Rämö, Pauli; Liberali, Prisca; Mench, Karin; Wolfrum, Nina; Burleigh, Laura; Scott, Cameron C; Verheije, Monique H; Mercer, Jason; Moese, Stefan; Heger, Thomas; Theusner, Kristina; Jurgeit, Andreas; Lamparter, David; Balistreri, Giuseppe; Schelhaas, Mario; De Haan, Cornelis A M; Marjomäki, Varpu; Hyypiä, Timo; Rottier, Peter J M; Sodeik, Beate; Marsh, Mark; Gruenberg, Jean; Amara, Ali; Greber, Urs; Helenius, Ari; Pelkmans, Lucas

    2012-01-01

    Isogenic cells in culture show strong variability, which arises from dynamic adaptations to the microenvironment of individual cells. Here we study the influence of the cell population context, which determines a single cell's microenvironment, in image-based RNAi screens. We developed a comprehensive computational approach that employs Bayesian and multivariate methods at the single-cell level. We applied these methods to 45 RNA interference screens of various sizes, including 7 druggable genome and 2 genome-wide screens, analysing 17 different mammalian virus infections and four related cell physiological processes. Analysing cell-based screens at this depth reveals widespread RNAi-induced changes in the population context of individual cells leading to indirect RNAi effects, as well as perturbations of cell-to-cell variability regulators. We find that accounting for indirect effects improves the consistency between siRNAs targeted against the same gene, and between replicate RNAi screens performed in different cell lines, in different labs, and with different siRNA libraries. In an era where large-scale RNAi screens are increasingly performed to reach a systems-level understanding of cellular processes, we show that this is often improved by analyses that account for and incorporate the single-cell microenvironment. PMID:22531119

  19. Genome-Wide RNAi Screens in C. elegans to Identify Genes Influencing Lifespan and Innate Immunity.

    PubMed

    Sinha, Amit; Rae, Robbie

    2016-01-01

    RNA interference is a rapid, inexpensive, and highly effective tool used to inhibit gene function. In C. elegans, whole genome screens have been used to identify genes involved with numerous traits including aging and innate immunity. RNAi in C. elegans can be carried out via feeding, soaking, or injection. Here we outline protocols used to maintain, grow, and carry out RNAi via feeding in C. elegans and determine whether the inhibited genes are essential for lifespan or innate immunity.

  20. The Sheffield RNAi Screening Facility (SRSF): portfolio growth and technology development.

    PubMed

    Brown, Stephen

    2014-05-01

    The Sheffield RNAi Screening Facility (SRSF) (www.rnai.group.shef.ac.uk) was established in 2008 with Wellcome Trust and University of Sheffield funding, with the task to provide the first UK RNAi screening resource for academic groups interested in identifying genes required in a diverse range of biological processes using Drosophila cell culture. The SRSF has carried out a wide range of screens varying in sizes from bespoke small-scale libraries, targeting a few hundred genes, to high-throughput, genome-wide studies. The SRSF has grown and improved with a dedicated partnership of its academic customers based mainly in the UK. We are part of the UK Academics Functional Genomics Network, participating in organizing an annual meeting in London and are part of the University of Sheffield's D3N (www.d3n.org.uk), connecting academics, biotech and pharmaceutical companies with a multidisciplinary network in Drug Discovery and Development. Recently, the SRSF has been funded by the Yorkshire Cancer Research Fund to perform genome-wide RNAi screens using human cells as part of a core facility for regional Yorkshire Universities and screens are now underway. Overall the SRSF has carried out more than 40 screens from Drosophila and human cell culture experiments.

  1. Design and implementation of high-throughput RNAi screens in cultured Drosophila cells.

    PubMed

    Ramadan, Nadire; Flockhart, Ian; Booker, Matthew; Perrimon, Norbert; Mathey-Prevot, Bernard

    2007-01-01

    This protocol describes the various steps and considerations involved in planning and carrying out RNA interference (RNAi) genome-wide screens in cultured Drosophila cells. We focus largely on the procedures that have been modified as a result of our experience over the past 3 years and of our better understanding of the underlying technology. Specifically, our protocol offers a set of suggestions and considerations for screen optimization and a step-by-step description of the procedures successfully used at the Drosophila RNAi Screening Center for screen implementation, data collection and analysis to identify potential hits. In addition, this protocol briefly covers postscreen analysis approaches that are often needed to finalize the hit list. Depending on the scope of the screen and subsequent analysis and validation involved, the full protocol can take anywhere from 3 months to 2 years to complete.

  2. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia

    PubMed Central

    Marker, Simone; Carradec, Quentin; Tanty, Véronique; Arnaiz, Olivier; Meyer, Eric

    2014-01-01

    In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia. PMID:24860163

  3. Tribolium castaneum as a model for high-throughput RNAi screening.

    PubMed

    Knorr, Eileen; Bingsohn, Linda; Kanost, Michael R; Vilcinskas, Andreas

    2013-01-01

    Coleopteran insects are a highly diverse and successful order, and many beetle species are significant agricultural pests. New biorational strategies for managing populations of beetles and other insect species are needed as pests develop resistance to chemical insecticides and Bt toxins. There is now an opportunity to use genome sequence data to identify genes that are essential for insect growth, development, or survival as new targets for designing control technology. This goal requires a method for high-throughput in vivo screening of thousands of genes to identify candidate genes that, when their expression is disrupted, have a phenotype that may be useful in insect pest control. Tribolium castaneum, the red flour beetle, is a model organism that offers considerable advantages for such screening, including ease of rearing in large numbers, a sequenced genome, and a strong, systemic RNAi response for specific depletion of gene transcripts. The RNAi effect in T. castaneum can be elicited in any tissue and any stage by the injection of dsRNA into the hemocoel, and injection of dsRNA into adult females can even be used to identify phenotypes in offspring. A pilot RNAi screen (iBeetle) is underway. Several T. castaneum genes with promising RNAi phenotypes for further development as mechanisms for plant protection have been identified. These include heat shock protein 90, chitin synthase, the segmentation gene hairy, and a matrix metalloprotease. Candidate genes identified in T. castaneum screens can then be tested in agricultural pest species (in which screening is not feasible), to evaluate their effectiveness for use in potential plant-based RNAi control strategies. Delivery of dsRNA expressed by genetically modified crops to the midgut of phytophagous insects is under investigation as a new tool for very specific protection of plants from insect pest species. The T. castaneum screening platform offers a system for discovery of candidate genes with high potential

  4. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?

    PubMed

    Taylor, Jessica; Woodcock, Simon

    2015-09-01

    For more than a decade, RNA interference (RNAi) has brought about an entirely new approach to functional genomics screening. Enabling high-throughput loss-of-function (LOF) screens against the human genome, identifying new drug targets, and significantly advancing experimental biology, RNAi is a fast, flexible technology that is compatible with existing high-throughput systems and processes; however, the recent advent of clustered regularly interspaced palindromic repeats (CRISPR)-Cas, a powerful new precise genome-editing (PGE) technology, has opened up vast possibilities for functional genomics. CRISPR-Cas is novel in its simplicity: one piece of easily engineered guide RNA (gRNA) is used to target a gene sequence, and Cas9 expression is required in the cells. The targeted double-strand break introduced by the gRNA-Cas9 complex is highly effective at removing gene expression compared to RNAi. Together with the reduced cost and complexity of CRISPR-Cas, there is the realistic opportunity to use PGE to screen for phenotypic effects in a total gene knockout background. This review summarizes the exciting development of CRISPR-Cas as a high-throughput screening tool, comparing its future potential to that of well-established RNAi screening techniques, and highlighting future challenges and opportunities within these disciplines. We conclude that the two technologies actually complement rather than compete with each other, enabling greater understanding of the genome in relation to drug discovery. © 2015 Society for Laboratory Automation and Screening.

  5. Quantitative evaluation of first, second, and third generation hairpin systems reveals the limit of mammalian vector-based RNAi

    PubMed Central

    Watanabe, Colin; Cuellar, Trinna L.; Haley, Benjamin

    2016-01-01

    ABSTRACT Incorporating miRNA-like features into vector-based hairpin scaffolds has been shown to augment small RNA processing and RNAi efficiency. Therefore, defining an optimal, native hairpin context may obviate a need for hairpin-specific targeting design schemes, which confound the movement of functional siRNAs into shRNA/artificial miRNA backbones, or large-scale screens to identify efficacious sequences. Thus, we used quantitative cell-based assays to compare separate third generation artificial miRNA systems, miR-E (based on miR-30a) and miR-3G (based on miR-16-2 and first described in this study) to widely-adopted, first and second generation formats in both Pol-II and Pol-III expression vector contexts. Despite their unique structures and strandedness, and in contrast to first and second-generation RNAi triggers, the third generation formats operated with remarkable similarity to one another, and strong silencing was observed with a significant fraction of the evaluated target sequences within either promoter context. By pairing an established siRNA design algorithm with the third generation vectors we could readily identify targeting sequences that matched or exceeded the potency of those discovered through large-scale sensor-based assays. We find that third generation hairpin systems enable the maximal level of siRNA function, likely through enhanced processing and accumulation of precisely-defined guide RNAs. Therefore, we predict future gains in RNAi potency will come from improved hairpin expression and identification of optimal siRNA-intrinsic silencing properties rather than further modification of these scaffolds. Consequently, third generation systems should be the primary format for vector-based RNAi studies; miR-3G is advantageous due to its small expression cassette and simplified, cost-efficient cloning scheme. PMID:26786363

  6. Quantitative evaluation of first, second, and third generation hairpin systems reveals the limit of mammalian vector-based RNAi.

    PubMed

    Watanabe, Colin; Cuellar, Trinna L; Haley, Benjamin

    2016-01-01

    Incorporating miRNA-like features into vector-based hairpin scaffolds has been shown to augment small RNA processing and RNAi efficiency. Therefore, defining an optimal, native hairpin context may obviate a need for hairpin-specific targeting design schemes, which confound the movement of functional siRNAs into shRNA/artificial miRNA backbones, or large-scale screens to identify efficacious sequences. Thus, we used quantitative cell-based assays to compare separate third generation artificial miRNA systems, miR-E (based on miR-30a) and miR-3G (based on miR-16-2 and first described in this study) to widely-adopted, first and second generation formats in both Pol-II and Pol-III expression vector contexts. Despite their unique structures and strandedness, and in contrast to first and second-generation RNAi triggers, the third generation formats operated with remarkable similarity to one another, and strong silencing was observed with a significant fraction of the evaluated target sequences within either promoter context. By pairing an established siRNA design algorithm with the third generation vectors we could readily identify targeting sequences that matched or exceeded the potency of those discovered through large-scale sensor-based assays. We find that third generation hairpin systems enable the maximal level of siRNA function, likely through enhanced processing and accumulation of precisely-defined guide RNAs. Therefore, we predict future gains in RNAi potency will come from improved hairpin expression and identification of optimal siRNA-intrinsic silencing properties rather than further modification of these scaffolds. Consequently, third generation systems should be the primary format for vector-based RNAi studies; miR-3G is advantageous due to its small expression cassette and simplified, cost-efficient cloning scheme.

  7. An interactive web-based application for Comprehensive Analysis of RNAi-screen Data.

    PubMed

    Dutta, Bhaskar; Azhir, Alaleh; Merino, Louis-Henri; Guo, Yongjian; Revanur, Swetha; Madhamshettiwar, Piyush B; Germain, Ronald N; Smith, Jennifer A; Simpson, Kaylene J; Martin, Scott E; Buehler, Eugen; Beuhler, Eugen; Fraser, Iain D C

    2016-02-23

    RNAi screens are widely used in functional genomics. Although the screen data can be susceptible to a number of experimental biases, many of these can be corrected by computational analysis. For this purpose, here we have developed a web-based platform for integrated analysis and visualization of RNAi screen data named CARD (for Comprehensive Analysis of RNAi Data; available at https://card.niaid.nih.gov). CARD allows the user to seamlessly carry out sequential steps in a rigorous data analysis workflow, including normalization, off-target analysis, integration of gene expression data, optimal thresholds for hit selection and network/pathway analysis. To evaluate the utility of CARD, we describe analysis of three genome-scale siRNA screens and demonstrate: (i) a significant increase both in selection of subsequently validated hits and in rejection of false positives, (ii) an increased overlap of hits from independent screens of the same biology and (iii) insight to microRNA (miRNA) activity based on siRNA seed enrichment.

  8. Analysis of high-throughput RNAi screening data in identifying genes mediating sensitivity to chemotherapeutic drugs: statistical approaches and perspectives.

    PubMed

    Ye, Fei; Bauer, Joshua A; Pietenpol, Jennifer A; Shyr, Yu

    2012-01-01

    High-throughput RNA interference (RNAi) screens have been used to find genes that, when silenced, result in sensitivity to certain chemotherapy drugs. Researchers therefore can further identify drug-sensitive targets and novel drug combinations that sensitize cancer cells to chemotherapeutic drugs. Considerable uncertainty exists about the efficiency and accuracy of statistical approaches used for RNAi hit selection in drug sensitivity studies. Researchers require statistical methods suitable for analyzing high-throughput RNAi screening data that will reduce false-positive and false-negative rates. In this study, we carried out a simulation study to evaluate four types of statistical approaches (fold-change/ratio, parametric tests/statistics, sensitivity index, and linear models) with different scenarios of RNAi screenings for drug sensitivity studies. With the simulated datasets, the linear model resulted in significantly lower false-negative and false-positive rates. Based on the results of the simulation study, we then make recommendations of statistical analysis methods for high-throughput RNAi screening data in different scenarios. We assessed promising methods using real data from a loss-of-function RNAi screen to identify hits that modulate paclitaxel sensitivity in breast cancer cells. High-confidence hits with specific inhibitors were further analyzed for their ability to inhibit breast cancer cell growth. Our analysis identified a number of gene targets with inhibitors known to enhance paclitaxel sensitivity, suggesting other genes identified may merit further investigation. RNAi screening can identify druggable targets and novel drug combinations that can sensitize cancer cells to chemotherapeutic drugs. However, applying an inappropriate statistical method or model to the RNAi screening data will result in decreased power to detect the true hits and increase false positive and false negative rates, leading researchers to draw incorrect conclusions. In

  9. A Multivariate Computational Method to Analyze High-Content RNAi Screening Data.

    PubMed

    Rameseder, Jonathan; Krismer, Konstantin; Dayma, Yogesh; Ehrenberger, Tobias; Hwang, Mun Kyung; Airoldi, Edoardo M; Floyd, Scott R; Yaffe, Michael B

    2015-09-01

    High-content screening (HCS) using RNA interference (RNAi) in combination with automated microscopy is a powerful investigative tool to explore complex biological processes. However, despite the plethora of data generated from these screens, little progress has been made in analyzing HC data using multivariate methods that exploit the full richness of multidimensional data. We developed a novel multivariate method for HCS, multivariate robust analysis method (M-RAM), integrating image feature selection with ranking of perturbations for hit identification, and applied this method to an HC RNAi screen to discover novel components of the DNA damage response in an osteosarcoma cell line. M-RAM automatically selects the most informative phenotypic readouts and time points to facilitate the more efficient design of follow-up experiments and enhance biological understanding. Our method outperforms univariate hit identification and identifies relevant genes that these approaches would have missed. We found that statistical cell-to-cell variation in phenotypic responses is an important predictor of hits in RNAi-directed image-based screens. Genes that we identified as modulators of DNA damage signaling in U2OS cells include B-Raf, a cancer driver gene in multiple tumor types, whose role in DNA damage signaling we confirm experimentally, and multiple subunits of protein kinase A.

  10. A novel multiplex cell viability assay for high-throughput RNAi screening.

    PubMed

    Gilbert, Daniel F; Erdmann, Gerrit; Zhang, Xian; Fritzsche, Anja; Demir, Kubilay; Jaedicke, Andreas; Muehlenberg, Katja; Wanker, Erich E; Boutros, Michael

    2011-01-01

    Cell-based high-throughput RNAi screening has become a powerful research tool in addressing a variety of biological questions. In RNAi screening, one of the most commonly applied assay system is measuring the fitness of cells that is usually quantified using fluorescence, luminescence and absorption-based readouts. These methods, typically implemented and scaled to large-scale screening format, however often only yield limited information on the cell fitness phenotype due to evaluation of a single and indirect physiological indicator. To address this problem, we have established a cell fitness multiplexing assay which combines a biochemical approach and two fluorescence-based assaying methods. We applied this assay in a large-scale RNAi screening experiment with siRNA pools targeting the human kinome in different modified HEK293 cell lines. Subsequent analysis of ranked fitness phenotypes assessed by the different assaying methods revealed average phenotype intersections of 50.7±2.3%-58.7±14.4% when two indicators were combined and 40-48% when a third indicator was taken into account. From these observations we conclude that combination of multiple fitness measures may decrease false-positive rates and increases confidence for hit selection. Our robust experimental and analytical method improves the classical approach in terms of time, data comprehensiveness and cost.

  11. A multivariate computational method to analyze high-content RNAi screening data

    PubMed Central

    Rameseder, Jonathan; Krismer, Konstantin; Dayma, Yogesh; Ehrenberger, Tobias; Hwang, Mun Kyung; Airoldi, Edoardo M.; Floyd, Scott R.; Yaffe, Michael B.

    2017-01-01

    High-content screening (HCS) using RNA interference (RNAi) in combination with automated microscopy is a powerful investigative tool to explore complex biological processes. However, despite the plethora of data generated from these screens, little progress has been made in analyzing HC data using multivariate methods that exploit the full richness of multidimensional data. We developed a novel multivariate method for HCS, Multivariate Robust Analysis Method (M-RAM), integrating image feature selection with ranking of perturbations for hit identification, and applied this method to a HC RNAi screen to discover novel components of the DNA damage response in an osteosarcoma cell line. M-RAM automatically selects the most informative phenotypic readouts and time points to facilitate the more efficient design of follow-up experiments and enhance biological understanding. Our method outperforms univariate hit identification and identifies relevant genes that these approaches would have missed. We found that statistical cell-to-cell variation in phenotypic responses is an important predictor of ‘hits’ in RNAi-directed image-based screens. Genes that we identified as modulators of DNA damage signaling in U2OS cells include B-Raf, a cancer driver gene in multiple tumor types, whose role in DNA damage signaling we confirm experimentally, and multiple subunits of protein kinase A. PMID:25918037

  12. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia.

    PubMed

    Marker, Simone; Carradec, Quentin; Tanty, Véronique; Arnaiz, Olivier; Meyer, Eric

    2014-06-01

    In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Genome-Wide RNAi Screening to Dissect the TGF-β Signal Transduction Pathway.

    PubMed

    Chen, Xiaochu; Xu, Lan

    2016-01-01

    The transforming growth factor-β (TGF-β) family of cytokines figures prominently in regulation of embryonic development and adult tissue homeostasis from Drosophila to mammals. Genetic defects affecting TGF-β signaling underlie developmental disorders and diseases such as cancer in human. Therefore, delineating the molecular mechanism by which TGF-β regulates cell biology is critical for understanding normal biology and disease mechanisms. Forward genetic screens in model organisms and biochemical approaches in mammalian tissue culture were instrumental in initial characterization of the TGF-β signal transduction pathway. With complete sequence information of the genomes and the advent of RNA interference (RNAi) technology, genome-wide RNAi screening emerged as a powerful functional genomics approach to systematically delineate molecular components of signal transduction pathways. Here, we describe a protocol for image-based whole-genome RNAi screening aimed at identifying molecules required for TGF-β signaling into the nucleus. Using this protocol we examined >90 % of annotated Drosophila open reading frames (ORF) individually and successfully uncovered several novel factors serving critical roles in the TGF-β pathway. Thus cell-based high-throughput functional genomics can uncover new mechanistic insights on signaling pathways beyond what the classical genetics had revealed.

  14. Phenotype Recognition for RNAi Screening by Random Projection Forest

    NASA Astrophysics Data System (ADS)

    Zhang, Bailing

    2011-06-01

    High-content screening is important in drug discovery. The use of images of living cells as the basic unit for molecule discovery can aid the identification of small compounds altering cellular phenotypes. As such, efficient computational methods are required for the rate limiting task of cellular phenotype identification. In this paper we first investigate the effectiveness of a feature description approach by combining Haralick texture analysis with Curvelet transform and then propose a new ensemble approach for classification. The ensemble contains a set of base classifiers which are trained using random projection (RP) of original features onto higher-dimensional spaces. With Classification and Regression Tree (CART) as the base classifier, it has been empirically demonstrated that the proposed Random Projection Forest ensemble gives better classification results than those achieved by the Boosting, Bagging and Rotation Forest algorithms, offering a classification rate ˜88% with smallest standard deviation, which compares sharply with the published result of 82%.

  15. Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target.

    PubMed

    Ulrich, Julia; Dao, Van Anh; Majumdar, Upalparna; Schmitt-Engel, Christian; Schwirz, Jonas; Schultheis, Dorothea; Ströhlein, Nadi; Troelenberg, Nicole; Grossmann, Daniela; Richter, Tobias; Dönitz, Jürgen; Gerischer, Lizzy; Leboulle, Gérard; Vilcinskas, Andreas; Stanke, Mario; Bucher, Gregor

    2015-09-03

    Insect pest control is challenged by insecticide resistance and negative impact on ecology and health. One promising pest specific alternative is the generation of transgenic plants, which express double stranded RNAs targeting essential genes of a pest species. Upon feeding, the dsRNA induces gene silencing in the pest resulting in its death. However, the identification of efficient RNAi target genes remains a major challenge as genomic tools and breeding capacity is limited in most pest insects impeding whole-animal-high-throughput-screening. We use the red flour beetle Tribolium castaneum as a screening platform in order to identify the most efficient RNAi target genes. From about 5,000 randomly screened genes of the iBeetle RNAi screen we identify 11 novel and highly efficient RNAi targets. Our data allowed us to determine GO term combinations that are predictive for efficient RNAi target genes with proteasomal genes being most predictive. Finally, we show that RNAi target genes do not appear to act synergistically and that protein sequence conservation does not correlate with the number of potential off target sites. Our results will aid the identification of RNAi target genes in many pest species by providing a manageable number of excellent candidate genes to be tested and the proteasome as prime target. Further, the identified GO term combinations will help to identify efficient target genes from organ specific transcriptomes. Our off target analysis is relevant for the sequence selection used in transgenic plants.

  16. Chemical & RNAi screening at MSKCC: a collaborative platform to discover & repurpose drugs to fight disease.

    PubMed

    Bhinder, Bhavneet; Antczak, Christophe; Shum, David; Radu, Constantin; Mahida, Jeni P; Liu-Sullivan, Nancy; Ibanez, Glorymar; Raja, Balajee Somalinga; Calder, Paul A; Djaballah, Hakim

    2014-05-01

    Memorial Sloan Kettering Cancer Center (MSKCC) has implemented the creation of a full service state-of-the-art High-throughput Screening Core Facility (HTSCF) equipped with modern robotics and custom-built screening data management resources to rapidly store and query chemical and RNAi screening data outputs. The mission of the facility is to provide oncology clinicians and researchers alike with access to cost-effective HTS solutions for both chemical and RNAi screening, with an ultimate goal of novel target identification and drug discovery. HTSCF was established in 2003 to support the institution's commitment to growth in molecular pharmacology and in the realm of therapeutic agents to fight chronic diseases such as cancer. This endeavor required broad range of expertise in technology development to establish robust and innovative assays, large collections of diverse chemical and RNAi duplexes to probe specific cellular events, sophisticated compound and data handling capabilities, and a profound knowledge in assay development, hit validation, and characterization. Our goal has been to strive for constant innovation, and we strongly believe in shifting the paradigm from traditional drug discovery towards translational research now, making allowance for unmet clinical needs in patients. Our efforts towards repurposing FDA-approved drugs fructified when digoxin, identified through primary HTS, was administered in the clinic for treatment of stage Vb retinoblastoma. In summary, the overall aim of our facility is to identify novel chemical probes, to study cellular processes relevant to investigator's research interest in chemical biology and functional genomics, and to be instrumental in accelerating the process of drug discovery in academia.

  17. Chemical & RNAi screening at MSKCC: a collaborative platform to discover & repurpose drugs to fight disease

    PubMed Central

    Bhinder, Bhavneet; Antczak, Christophe; Shum, David; Radu, Constantin; Mahida, Jeni P.; Liu-Sullivan, Nancy; Ibáñez, Glorymar; Raja, Balajee Somalinga; Calder, Paul A.; Djaballah, Hakim

    2014-01-01

    Memorial Sloan-Kettering Cancer Center (MSKCC) has implemented the creation of a full service state-of-the-art High-throughput Screening Core Facility (HTSCF) equipped with modern robotics and custom-built screening data management resources to rapidly store and query chemical and RNAi screening data outputs. The mission of the facility is to provide oncology clinicians and researchers alike with access to cost-effective HTS solutions for both chemical and RNAi screening, with an ultimate goal of novel target identification and drug discovery. HTSCF was established in 2003 to support the institution’s commitment to growth in molecular pharmacology and in the realm of therapeutic agents to fight chronic diseases such as cancer. This endeavor required broad range of expertise in technology development to establish robust and innovative assays, large collections of diverse chemical and RNAi duplexes to probe specific cellular events, sophisticated compound and data handling capabilities, and a profound knowledge in assay development, hit validation, and characterization. Our goal has been to strive for constant innovation, and we strongly believe in shifting the paradigm from traditional drug discovery towards translational research now, making allowance for unmet clinical needs in patients. Our efforts towards repurposing FDA-approved drugs fructified when digoxin, identified through primary HTS, was administered in the clinic for treatment of stage Vb retinoblastoma. In summary, the overall aim of our facility is to identify novel chemical probes, to study cellular processes relevant to investigator’s research interest in chemical biology and functional genomics, and to be instrumental in accelerating the process of drug discovery in academia. PMID:24661215

  18. A Tendon Cell Specific RNAi Screen Reveals Novel Candidates Essential for Muscle Tendon Interaction

    PubMed Central

    Tiwari, Prabhat; Malhotra, Vivek; VijayRaghavan, K.

    2015-01-01

    Tendons are fibrous connective tissue which connect muscles to the skeletal elements thus acting as passive transmitters of force during locomotion and provide appropriate body posture. Tendon-derived cues, albeit poorly understood, are necessary for proper muscle guidance and attachment during development. In the present study, we used dorsal longitudinal muscles of Drosophila and their tendon attachment sites to unravel the molecular nature of interactions between muscles and tendons. We performed a genetic screen using RNAi-mediated knockdown in tendon cells to find out molecular players involved in the formation and maintenance of myotendinous junction and found 21 candidates out of 2507 RNAi lines screened. Of these, 19 were novel molecules in context of myotendinous system. Integrin-βPS and Talin, picked as candidates in this screen, are known to play important role in the cell-cell interaction and myotendinous junction formation validating our screen. We have found candidates with enzymatic function, transcription activity, cell adhesion, protein folding and intracellular transport function. Tango1, an ER exit protein involved in collagen secretion was identified as a candidate molecule involved in the formation of myotendinous junction. Tango1 knockdown was found to affect development of muscle attachment sites and formation of myotendinous junction. Tango1 was also found to be involved in secretion of Viking (Collagen type IV) and BM-40 from hemocytes and fat cells. PMID:26488612

  19. Kinome-Wide RNAi Screen Implicates at Least 5 Host Hepatocyte Kinases in Plasmodium Sporozoite Infection

    PubMed Central

    Hannus, Michael; Martin, Cécilie; Real, Eliana; Gonçalves, Lígia A.; Carret, Céline; Dorkin, Robert; Röhl, Ingo; Jahn-Hoffmann, Kerstin; Luty, Adrian J. F.; Sauerwein, Robert; Echeverri, Christophe J.; Mota, Maria M.

    2008-01-01

    Plasmodium sporozoites, the causative agent of malaria, are injected into their vertebrate host through the bite of an infected Anopheles mosquito, homing to the liver where they invade hepatocytes to proliferate and develop into merozoites that, upon reaching the bloodstream, give rise to the clinical phase of infection. To investigate how host cell signal transduction pathways affect hepatocyte infection, we used RNAi to systematically test the entire kinome and associated genes in human Huh7 hepatoma cells for their potential roles during infection by P. berghei sporozoites. The three-phase screen covered 727 genes, which were tested with a total of 2,307 individual siRNAs using an automated microscopy assay to quantify infection rates and qRT-PCR to assess silencing levels. Five protein kinases thereby emerged as top hits, all of which caused significant reductions in infection when silenced by RNAi. Follow-up validation experiments on one of these hits, PKCς (PKCzeta), confirmed the physiological relevance of our findings by reproducing the inhibitory effect on P. berghei infection in adult mice treated systemically with liposome-formulated PKCς-targeting siRNAs. Additional cell-based analyses using a pseudo-substrate inhibitor of PKCς added further RNAi-independent support, indicating a role for host PKCς on the invasion of hepatocytes by sporozoites. This study represents the first comprehensive, functional genomics-driven identification of novel host factors involved in Plasmodium sporozoite infection. PMID:18989463

  20. Advances in genome-wide RNAi cellular screens: a case study using the Drosophila JAK/STAT pathway

    PubMed Central

    2012-01-01

    Background Genome-scale RNA-interference (RNAi) screens are becoming ever more common gene discovery tools. However, whilst every screen identifies interacting genes, less attention has been given to how factors such as library design and post-screening bioinformatics may be effecting the data generated. Results Here we present a new genome-wide RNAi screen of the Drosophila JAK/STAT signalling pathway undertaken in the Sheffield RNAi Screening Facility (SRSF). This screen was carried out using a second-generation, computationally optimised dsRNA library and analysed using current methods and bioinformatic tools. To examine advances in RNAi screening technology, we compare this screen to a biologically very similar screen undertaken in 2005 with a first-generation library. Both screens used the same cell line, reporters and experimental design, with the SRSF screen identifying 42 putative regulators of JAK/STAT signalling, 22 of which verified in a secondary screen and 16 verified with an independent probe design. Following reanalysis of the original screen data, comparisons of the two gene lists allows us to make estimates of false discovery rates in the SRSF data and to conduct an assessment of off-target effects (OTEs) associated with both libraries. We discuss the differences and similarities between the resulting data sets and examine the relative improvements in gene discovery protocols. Conclusions Our work represents one of the first direct comparisons between first- and second-generation libraries and shows that modern library designs together with methodological advances have had a significant influence on genome-scale RNAi screens. PMID:23006893

  1. An RNAi Screen To Identify Protein Phosphatases That Function Within the Drosophila Circadian Clock.

    PubMed

    Agrawal, Parul; Hardin, Paul E

    2016-12-07

    Circadian clocks in eukaryotes keep time via cell-autonomous transcriptional feedback loops. A well-characterized example of such a transcriptional feedback loop is in Drosophila, where CLOCK-CYCLE (CLK-CYC) complexes activate transcription of period (per) and timeless (tim) genes, rising levels of PER-TIM complexes feed-back to repress CLK-CYC activity, and degradation of PER and TIM permits the next cycle of CLK-CYC transcription. The timing of CLK-CYC activation and PER-TIM repression is regulated posttranslationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Previous behavioral screens identified several kinases that control CLK, PER, and TIM levels, subcellular localization, and/or activity, but two phosphatases that function within the clock were identified through the analysis of candidate genes from other pathways or model systems. To identify phosphatases that play a role in the clock, we screened clock cell-specific RNA interference (RNAi) knockdowns of all annotated protein phosphatases and protein phosphatase regulators in Drosophila for altered activity rhythms. This screen identified 19 protein phosphatases that lengthened or shortened the circadian period by ≥1 hr (p ≤ 0.05 compared to controls) or were arrhythmic. Additional RNAi lines, transposon inserts, overexpression, and loss-of-function mutants were tested to independently confirm these RNAi phenotypes. Based on genetic validation and molecular analysis, 15 viable protein phosphatases remain for future studies. These candidates are expected to reveal novel features of the circadian timekeeping mechanism in Drosophila that are likely to be conserved in all animals including humans.

  2. An RNAi Screen To Identify Protein Phosphatases That Function Within the Drosophila Circadian Clock

    PubMed Central

    Agrawal, Parul; Hardin, Paul E.

    2016-01-01

    Circadian clocks in eukaryotes keep time via cell-autonomous transcriptional feedback loops. A well-characterized example of such a transcriptional feedback loop is in Drosophila, where CLOCK-CYCLE (CLK-CYC) complexes activate transcription of period (per) and timeless (tim) genes, rising levels of PER-TIM complexes feed-back to repress CLK-CYC activity, and degradation of PER and TIM permits the next cycle of CLK-CYC transcription. The timing of CLK-CYC activation and PER-TIM repression is regulated posttranslationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Previous behavioral screens identified several kinases that control CLK, PER, and TIM levels, subcellular localization, and/or activity, but two phosphatases that function within the clock were identified through the analysis of candidate genes from other pathways or model systems. To identify phosphatases that play a role in the clock, we screened clock cell-specific RNA interference (RNAi) knockdowns of all annotated protein phosphatases and protein phosphatase regulators in Drosophila for altered activity rhythms. This screen identified 19 protein phosphatases that lengthened or shortened the circadian period by ≥1 hr (p ≤ 0.05 compared to controls) or were arrhythmic. Additional RNAi lines, transposon inserts, overexpression, and loss-of-function mutants were tested to independently confirm these RNAi phenotypes. Based on genetic validation and molecular analysis, 15 viable protein phosphatases remain for future studies. These candidates are expected to reveal novel features of the circadian timekeeping mechanism in Drosophila that are likely to be conserved in all animals including humans. PMID:27784754

  3. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

    PubMed

    Zanotto-Filho, Alfeu; Dashnamoorthy, Ravi; Loranc, Eva; de Souza, Luis H T; Moreira, José C F; Suresh, Uthra; Chen, Yidong; Bishop, Alexander J R

    2016-01-01

    Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.

  4. RNA interference (RNAi) screening approach identifies agents that enhance paclitaxel activity in breast cancer cells

    PubMed Central

    2010-01-01

    Introduction Paclitaxel is a widely used drug in the treatment of patients with locally advanced and metastatic breast cancer. However, only a small portion of patients have a complete response to paclitaxel-based chemotherapy, and many patients are resistant. Strategies that increase sensitivity and limit resistance to paclitaxel would be of clinical use, especially for patients with triple-negative breast cancer (TNBC). Methods We generated a gene set from overlay of the druggable genome and a collection of genomically deregulated gene transcripts in breast cancer. We used loss-of-function RNA interference (RNAi) to identify gene products in this set that, when targeted, increase paclitaxel sensitivity. Pharmacological agents that targeted the top scoring hits/genes from our RNAi screens were used in combination with paclitaxel, and the effects on the growth of various breast cancer cell lines were determined. Results RNAi screens performed herein were validated by identification of genes in pathways that, when previously targeted, enhanced paclitaxel sensitivity in the pre-clinical and clinical settings. When chemical inhibitors, CCT007093 and mithramycin, against two top hits in our screen, PPMID and SP1, respectively, were used in combination with paclitaxel, we observed synergistic growth inhibition in both 2D and 3D breast cancer cell cultures. The transforming growth factor beta (TGFβ) receptor inhibitor, LY2109761, that targets the signaling pathway of another top scoring hit, TGFβ1, was synergistic with paclitaxel when used in combination on select breast cancer cell lines grown in 3D culture. We also determined the relative paclitaxel sensitivity of 22 TNBC cell lines and identified 18 drug-sensitive and four drug-resistant cell lines. Of significance, we found that both CCT007093 and mithramycin, when used in combination with paclitaxel, resulted in synergistic inhibition of the four paclitaxel-resistant TNBC cell lines. Conclusions RNAi screening can

  5. Construction of simple and efficient siRNA validation systems for screening and identification of effective RNAi-targeted sequences from mammalian genes.

    PubMed

    Tsai, Wen-Hui; Chang, Wen-Tsan

    2014-01-01

    RNA interference (RNAi) is an evolutionarily conserved mechanism of gene silencing induced by double-stranded RNAs (dsRNAs). Among the widely used dsRNAs, small interfering RNAs (siRNAs) and short hairpin RNAs have evolved as extremely powerful and the most popular gene silencing reagents. The key challenge to achieving efficient gene silencing especially for the purpose of therapeutics is mainly dependent on the effectiveness and specificity of the selected RNAi-targeted sequences. Practically, only a small number of dsRNAs are capable of inducing highly effective and sequence-specific gene silencing via RNAi mechanism. In addition, the efficiency of gene silencing induced by dsRNAs can only be experimentally examined based on inhibition of the target gene expression. Therefore, it is essential to develop a fully robust and comparative validation system for measuring the efficacy of designed dsRNAs. In this chapter, we focus our discussion on a reliable and quantitative reporter-based siRNA validation system that has been previously established in our laboratory. The system consists of a short synthetic DNA fragment containing an RNAi-targeted sequence of interest and two expression vectors for targeting reporter and triggering siRNA expressions. The efficiency of siRNAs is determined by their abilities to inhibit expression of the targeting reporters with easily quantified readouts including enhanced green fluorescence protein and firefly luciferase. Since only a readily available short synthetic DNA fragment is needed for constructing this reliable and efficient reporter-based siRNA validation system, this system not only provides a powerful strategy for screening highly effective RNAi-targeted sequences from mammalian genes but also implicates the use of RNAi-based dsRNA reagents for reverse functional genomics and molecular therapeutics.

  6. An effective method for controlling false discovery and false nondiscovery rates in genome-scale RNAi screens.

    PubMed

    Zhang, Xiaohua Douglas

    2010-10-01

    In most genome-scale RNA interference (RNAi) screens, the ultimate goal is to select siRNAs with a large inhibition or activation effect. The selection of hits typically requires statistical control of 2 errors: false positives and false negatives. Traditional methods of controlling false positives and false negatives do not take into account the important feature in RNAi screens: many small-interfering RNAs (siRNAs) may have very small but real nonzero average effects on the measured response and thus cannot allow us to effectively control false positives and false negatives. To address for deficiencies in the application of traditional approaches in RNAi screening, the author proposes a new method for controlling false positives and false negatives in RNAi high-throughput screens. The false negatives are statistically controlled through a false-negative rate (FNR) or false nondiscovery rate (FNDR). FNR is the proportion of false negatives among all siRNAs examined, whereas FNDR is the proportion of false negatives among declared nonhits. The author also proposes new concepts, q*-value and p*-value, to control FNR and FNDR, respectively. The proposed method should have broad utility for hit selection in which one needs to control both false discovery and false nondiscovery rates in genome-scale RNAi screens in a robust manner.

  7. Towards Functional Annotation of the Preimplantation Transcriptome: An RNAi Screen in Mammalian Embryos

    PubMed Central

    Cui, Wei; Dai, Xiangpeng; Marcho, Chelsea; Han, Zhengbin; Zhang, Kun; Tremblay, Kimberly D.; Mager, Jesse

    2016-01-01

    With readily available transcriptome-wide data, understanding the role of each expressed gene is an essential next step. Although RNAi technologies allow for genome-wide screens in cell culture, these approaches cannot replace strategies for discovery in the embryo. Here we present, for the first time, a knockdown screen in mouse preimplantation embryos. Early mammalian development encompasses dynamic cellular, molecular and epigenetic events that are largely conserved from mouse to man. We assayed 712 genes for requirements during preimplantation. We identified 59 genes required for successful development or outgrowth and implantation. We have characterized each phenotype and revealed cellular, molecular, and lineage specific defects following knockdown of transcript. Induced network analyses demonstrate this as a valid approach to identify networks of genes that play important roles during preimplantation. Our approach provides a robust and efficient strategy towards identification of novel phenotypes during mouse preimplantation and facilitates functional annotation of the mammalian transcriptome. PMID:27869233

  8. Overcoming Redundancy: An RNAi Enhancer Screen for Morphogenesis Genes in Caenorhabditis elegans

    PubMed Central

    Sawyer, Jacob M.; Glass, Stephanie; Li, Trudy; Shemer, Gidi; White, Noor D.; Starostina, Natalia G.; Kipreos, Edward T.; Jones, Corbin D.; Goldstein, Bob

    2011-01-01

    Morphogenesis is an important component of animal development. Genetic redundancy has been proposed to be common among morphogenesis genes, posing a challenge to the genetic dissection of morphogenesis mechanisms. Genetic redundancy is more generally a challenge in biology, as large proportions of the genes in diverse organisms have no apparent loss of function phenotypes. Here, we present a screen designed to uncover redundant and partially redundant genes that function in an example of morphogenesis, gastrulation in Caenorhabditis elegans. We performed an RNA interference (RNAi) enhancer screen in a gastrulation-sensitized double-mutant background, targeting genes likely to be expressed in gastrulating cells or their neighbors. Secondary screening identified 16 new genes whose functions contribute to normal gastrulation in a nonsensitized background. We observed that for most new genes found, the closest known homologs were multiple other C. elegans genes, suggesting that some may have derived from rounds of recent gene duplication events. We predict that such genes are more likely than single copy genes to comprise redundant or partially redundant gene families. We explored this prediction for one gene that we identified and confirmed that this gene and five close relatives, which encode predicted substrate recognition subunits (SRSs) for a CUL-2 ubiquitin ligase, do indeed function partially redundantly with each other in gastrulation. Our results implicate new genes in C. elegans gastrulation, and they show that an RNAi-based enhancer screen in C. elegans can be used as an efficient means to identify important but redundant or partially redundant developmental genes. PMID:21527776

  9. The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology

    PubMed Central

    Schmitt-Engel, Christian; Schultheis, Dorothea; Schwirz, Jonas; Ströhlein, Nadi; Troelenberg, Nicole; Majumdar, Upalparna; Dao, Van Anh; Grossmann, Daniela; Richter, Tobias; Tech, Maike; Dönitz, Jürgen; Gerischer, Lizzy; Theis, Mirko; Schild, Inga; Trauner, Jochen; Koniszewski, Nikolaus D. B.; Küster, Elke; Kittelmann, Sebastian; Hu, Yonggang; Lehmann, Sabrina; Siemanowski, Janna; Ulrich, Julia; Panfilio, Kristen A.; Schröder, Reinhard; Morgenstern, Burkhard; Stanke, Mario; Buchhholz, Frank; Frasch, Manfred; Roth, Siegfried; Wimmer, Ernst A.; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-01-01

    Genetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate genes previously identified in Drosophila, which is biasing research towards conserved gene functions. RNAi screens in other organisms promise to reduce this bias. Here we present the results of the iBeetle screen, a large-scale, unbiased RNAi screen in the red flour beetle, Tribolium castaneum, which identifies gene functions in embryonic and postembryonic development, physiology and cell biology. The utility of Tribolium as a screening platform is demonstrated by the identification of genes involved in insect epithelial adhesion. This work transcends the restrictions of the candidate gene approach and opens fields of research not accessible in Drosophila. PMID:26215380

  10. The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology.

    PubMed

    Schmitt-Engel, Christian; Schultheis, Dorothea; Schwirz, Jonas; Ströhlein, Nadi; Troelenberg, Nicole; Majumdar, Upalparna; Dao, Van Anh; Grossmann, Daniela; Richter, Tobias; Tech, Maike; Dönitz, Jürgen; Gerischer, Lizzy; Theis, Mirko; Schild, Inga; Trauner, Jochen; Koniszewski, Nikolaus D B; Küster, Elke; Kittelmann, Sebastian; Hu, Yonggang; Lehmann, Sabrina; Siemanowski, Janna; Ulrich, Julia; Panfilio, Kristen A; Schröder, Reinhard; Morgenstern, Burkhard; Stanke, Mario; Buchhholz, Frank; Frasch, Manfred; Roth, Siegfried; Wimmer, Ernst A; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-07-28

    Genetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate genes previously identified in Drosophila, which is biasing research towards conserved gene functions. RNAi screens in other organisms promise to reduce this bias. Here we present the results of the iBeetle screen, a large-scale, unbiased RNAi screen in the red flour beetle, Tribolium castaneum, which identifies gene functions in embryonic and postembryonic development, physiology and cell biology. The utility of Tribolium as a screening platform is demonstrated by the identification of genes involved in insect epithelial adhesion. This work transcends the restrictions of the candidate gene approach and opens fields of research not accessible in Drosophila.

  11. Development of RNAi method for screening candidate genes to control emerald ash borer, Agrilus planipennis.

    PubMed

    Rodrigues, Thais B; Rieske, Lynne K; J Duan, Jian; Mogilicherla, Kanakachari; Palli, Subba R

    2017-08-07

    The ingestion of double-strand RNAs (dsRNA) targeting essential genes in an insect could cause mortality. Based on this principle, a new generation of insect control methods using RNA interference (RNAi) are being developed. In this work, we developed a bioassay for oral delivery of dsRNA to an invasive forest and urban tree pest, the emerald ash borer (EAB, Agrilus planipennis). EAB feeds and develops beneath the bark, killing trees rapidly. This behavior, coupled with the lack of a reliable artificial diet for rearing larvae and adults, make them difficult to study. We found that dsRNA is transported and processed to siRNAs by EAB larvae within 72 h after ingestion. Also, feeding neonate larvae with IAP (inhibitor of apoptosis) or COP (COPI coatomer, β subunit) dsRNA silenced their target genes and caused mortality. Both an increase in the concentration of dsRNA fed and sequential feeding of two different dsRNAs increased mortality. Here we provide evidence for successful RNAi in EAB, and demonstrate the development of a rapid and effective bioassay for oral delivery of dsRNA to screen additional genes.

  12. Identification of novel genes involved in light-dependent CRY degradation through a genome-wide RNAi screen.

    PubMed

    Sathyanarayanan, Sriram; Zheng, Xiangzhong; Kumar, Shailesh; Chen, Chun-Hong; Chen, Dechun; Hay, Bruce; Sehgal, Amita

    2008-06-01

    Circadian clocks regulate many different physiological processes and synchronize these to environmental light:dark cycles. In Drosophila, light is transmitted to the clock by a circadian blue light photoreceptor CRYPTOCHROME (CRY). In response to light, CRY promotes the degradation of the circadian clock protein TIMELESS (TIM) and then is itself degraded. To identify novel genes involved in circadian entrainment, we performed an unbiased genome-wide screen in Drosophila cells using a sensitive and quantitative assay that measures light-induced degradation of CRY. We systematically knocked down the expression of approximately 21,000 genes and identified those that regulate CRY stability. These genes include ubiquitin ligases, signal transduction molecules, and redox molecules. Many of the genes identified in the screen are specific for CRY degradation and do not affect degradation of the TIM protein in response to light, suggesting that, for the most part, these two pathways are distinct. We further validated the effect of three candidate genes on CRY stability in vivo by assaying flies mutant for each of these genes. This work identifies a novel regulatory network involved in light-dependent CRY degradation and demonstrates the power of a genome-wide RNAi approach for understanding circadian biology.

  13. A genome-wide RNAi screen identifies multiple RSK-dependent regulators of cell migration

    PubMed Central

    Smolen, Gromoslaw A.; Zhang, Jianmin; Zubrowski, Matthew J.; Edelman, Elena J.; Luo, Biao; Yu, Min; Ng, Lydia W.; Scherber, Cally M.; Schott, Benjamin J.; Ramaswamy, Sridhar; Irimia, Daniel; Root, David E.; Haber, Daniel A.

    2010-01-01

    To define the functional pathways regulating epithelial cell migration, we performed a genome-wide RNAi screen using 55,000 pooled lentiviral shRNAs targeting ∼11,000 genes, selecting for transduced cells with increased motility. A stringent validation protocol generated a set of 31 genes representing diverse pathways whose knockdown dramatically enhances cellular migration. Some of these pathways share features of epithelial-to-mesenchymal transition (EMT), and together they implicate key regulators of transcription, cellular signaling, and metabolism, as well as novel modulators of cellular trafficking, such as DLG5. In delineating downstream pathways mediating these migration phenotypes, we observed universal activation of ERKs and a profound dependence on their RSK effectors. Pharmacological inhibition of RSK dramatically suppresses epithelial cell migration induced by knockdown of all 31 genes, suggesting that convergence of diverse migratory pathways on this kinase may provide a therapeutic opportunity in disorders of cell migration, including cancer metastasis. PMID:21062900

  14. Functional genomics down under: RNAi screening in the Victorian Centre for Functional Genomics.

    PubMed

    Thomas, Daniel W; Gould, Cathryn M; Handoko, Yanny; Simpson, Kaylene J

    2014-05-01

    The Victorian Centre for Functional Genomics (VCFG) is an RNAi screening facility housed at the Peter MacCallum Cancer Centre in Melbourne, Australia. The Peter Mac is Australia's largest dedicated Cancer Research Institute, home to a team of over 520 scientists that focus on understanding the genetic risk of cancer, the molecular events regulating cancer growth and dissemination and improving detection through new diagnostic tools (www.petermac.org). Peter Mac is a well recognised technology leader and established the VCFG with a view to enabling researchers Australia and New Zealand-wide access to cutting edge functional genomics technology, infrastructure and expertise. This review documents the technology platforms operated within the VCFG and provides insight into the workflows and analysis pipelines currently in operation.

  15. Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets.

    PubMed

    Eggert, Ulrike S; Kiger, Amy A; Richter, Constance; Perlman, Zachary E; Perrimon, Norbert; Mitchison, Timothy J; Field, Christine M

    2004-12-01

    Cytokinesis involves temporally and spatially coordinated action of the cell cycle and cytoskeletal and membrane systems to achieve separation of daughter cells. To dissect cytokinesis mechanisms it would be useful to have a complete catalog of the proteins involved, and small molecule tools for specifically inhibiting them with tight temporal control. Finding active small molecules by cell-based screening entails the difficult step of identifying their targets. We performed parallel chemical genetic and genome-wide RNA interference screens in Drosophila cells, identifying 50 small molecule inhibitors of cytokinesis and 214 genes important for cytokinesis, including a new protein in the Aurora B pathway (Borr). By comparing small molecule and RNAi phenotypes, we identified a small molecule that inhibits the Aurora B kinase pathway. Our protein list provides a starting point for systematic dissection of cytokinesis, a direction that will be greatly facilitated by also having diverse small molecule inhibitors, which we have identified. Dissection of the Aurora B pathway, where we found a new gene and a specific small molecule inhibitor, should benefit particularly. Our study shows that parallel RNA interference and small molecule screening is a generally useful approach to identifying active small molecules and their target pathways.

  16. Parallel Chemical Genetic and Genome-Wide RNAi Screens Identify Cytokinesis Inhibitors and Targets

    PubMed Central

    Kiger, Amy A; Richter, Constance; Perlman, Zachary E; Perrimon, Norbert; Mitchison, Timothy J; Field, Christine M

    2004-01-01

    Cytokinesis involves temporally and spatially coordinated action of the cell cycle and cytoskeletal and membrane systems to achieve separation of daughter cells. To dissect cytokinesis mechanisms it would be useful to have a complete catalog of the proteins involved, and small molecule tools for specifically inhibiting them with tight temporal control. Finding active small molecules by cell-based screening entails the difficult step of identifying their targets. We performed parallel chemical genetic and genome-wide RNA interference screens in Drosophila cells, identifying 50 small molecule inhibitors of cytokinesis and 214 genes important for cytokinesis, including a new protein in the Aurora B pathway (Borr). By comparing small molecule and RNAi phenotypes, we identified a small molecule that inhibits the Aurora B kinase pathway. Our protein list provides a starting point for systematic dissection of cytokinesis, a direction that will be greatly facilitated by also having diverse small molecule inhibitors, which we have identified. Dissection of the Aurora B pathway, where we found a new gene and a specific small molecule inhibitor, should benefit particularly. Our study shows that parallel RNA interference and small molecule screening is a generally useful approach to identifying active small molecules and their target pathways. PMID:15547975

  17. Visual Genome-Wide RNAi Screening to Identify Human Host Factors Required for Trypanosoma cruzi Infection

    PubMed Central

    de Macedo Dossin, Fernando; Choi, Seo Yeon; Kim, Nam Youl; Kim, Hi Chul; Jung, Sung Yong; Schenkman, Sergio; Almeida, Igor C.; Emans, Neil; Freitas-Junior, Lucio H.

    2011-01-01

    The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical infection that affects millions of people in the Americas. Current chemotherapy relies on only two drugs that have limited efficacy and considerable side effects. Therefore, the development of new and more effective drugs is of paramount importance. Although some host cellular factors that play a role in T. cruzi infection have been uncovered, the molecular requirements for intracellular parasite growth and persistence are still not well understood. To further study these host-parasite interactions and identify human host factors required for T. cruzi infection, we performed a genome-wide RNAi screen using cellular microarrays of a printed siRNA library that spanned the whole human genome. The screening was reproduced 6 times and a customized algorithm was used to select as hits those genes whose silencing visually impaired parasite infection. The 162 strongest hits were subjected to a secondary screening and subsequently validated in two different cell lines. Among the fourteen hits confirmed, we recognized some cellular membrane proteins that might function as cell receptors for parasite entry and others that may be related to calcium release triggered by parasites during cell invasion. In addition, two of the hits are related to the TGF-beta signaling pathway, whose inhibition is already known to diminish levels of T. cruzi infection. This study represents a significant step toward unveiling the key molecular requirements for host cell invasion and revealing new potential targets for antiparasitic therapy. PMID:21625474

  18. Automated cell analysis tool for a genome-wide RNAi screen with support vector machine based supervised learning

    NASA Astrophysics Data System (ADS)

    Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen

    2011-03-01

    RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.

  19. Genomic RNAi screening in Drosophila S2 cells: What have we learned about host-pathogen interactions?

    PubMed Central

    Cherry, Sara

    2008-01-01

    The détente between pathogen and host has been of keen interest to researchers in spite of being exceedingly difficult to probe. Recently, new RNA interference (RNAi) technologies, in particular in Drosophila tissue culture cells, have made it possible to interrogate the genetics of host organisms rapidly, with nearly complete genomic coverage and high fidelity. Therefore, it is not surprising that the applications of RNAi to the study of host-pathogen interactions were amongst the first to be published, and have already revealed many new insights into the hosts’ role in infection. This review will highlight the application of RNAi screening to pathogen-host interactions in Drosophila cells and will reveal some of the lessons learned from this approach. PMID:18539520

  20. RNAi screening identifies mediators of NOD2 signaling: Implications for spatial specificity of MDP recognition

    PubMed Central

    Lipinski, Simone; Grabe, Nils; Jacobs, Gunnar; Billmann-Born, Susanne; Till, Andreas; Häsler, Robert; Aden, Konrad; Paulsen, Maren; Arlt, Alexander; Kraemer, Lars; Hagemann, Nina; Erdmann, Kai Sven; Schreiber, Stefan; Rosenstiel, Philip

    2012-01-01

    The intracellular nucleotide-binding oligomerization domain-2 (NOD2) receptor detects bacteria-derived muramyl dipeptide (MDP) and activates the transcription factor NF-κB. Here we describe the regulatome of NOD2 signaling using a systematic RNAi screen. Using three consecutive screens, we identified a set of 20 positive NF-κB regulators including the known pathway members RIPK2, RELA, and BIRC4 (XIAP) as well as FRMPD2 (FERM and PDZ domain-containing 2). FRMPD2 interacts with NOD2 via leucine-rich repeats and forms a complex with the membrane-associated protein ERBB2IP. We demonstrate that FRMPD2 spatially assembles the NOD2-signaling complex, hereby restricting NOD2-mediated immune responses to the basolateral compartment of polarized intestinal epithelial cells. We show that genetic truncation of the NOD2 leucine-rich repeat domain, which is associated with Crohn disease, impairs the interaction with FRMPD2, and that intestinal inflammation leads to down-regulation of FRMPD2. These results suggest a structural mechanism for how polarity of epithelial cells acts on intestinal NOD-like receptor signaling to mediate spatial specificity of bacterial recognition and control of immune responses. PMID:23213202

  1. RNAi screening identifies mediators of NOD2 signaling: implications for spatial specificity of MDP recognition.

    PubMed

    Lipinski, Simone; Grabe, Nils; Jacobs, Gunnar; Billmann-Born, Susanne; Till, Andreas; Häsler, Robert; Aden, Konrad; Paulsen, Maren; Arlt, Alexander; Kraemer, Lars; Hagemann, Nina; Erdmann, Kai Sven; Schreiber, Stefan; Rosenstiel, Philip

    2012-12-26

    The intracellular nucleotide-binding oligomerization domain-2 (NOD2) receptor detects bacteria-derived muramyl dipeptide (MDP) and activates the transcription factor NF-κB. Here we describe the regulatome of NOD2 signaling using a systematic RNAi screen. Using three consecutive screens, we identified a set of 20 positive NF-κB regulators including the known pathway members RIPK2, RELA, and BIRC4 (XIAP) as well as FRMPD2 (FERM and PDZ domain-containing 2). FRMPD2 interacts with NOD2 via leucine-rich repeats and forms a complex with the membrane-associated protein ERBB2IP. We demonstrate that FRMPD2 spatially assembles the NOD2-signaling complex, hereby restricting NOD2-mediated immune responses to the basolateral compartment of polarized intestinal epithelial cells. We show that genetic truncation of the NOD2 leucine-rich repeat domain, which is associated with Crohn disease, impairs the interaction with FRMPD2, and that intestinal inflammation leads to down-regulation of FRMPD2. These results suggest a structural mechanism for how polarity of epithelial cells acts on intestinal NOD-like receptor signaling to mediate spatial specificity of bacterial recognition and control of immune responses.

  2. Time-Resolved Human Kinome RNAi Screen Identifies a Network Regulating Mitotic-Events as Early Regulators of Cell Proliferation

    PubMed Central

    Bechtel, Stephanie; Bender, Christian; Keklikoglou, Ioanna; Schmidt, Christian; Irsigler, Anja; Ernst, Ute; Sahin, Özgür; Wiemann, Stefan; Tschulena, Ulrich

    2011-01-01

    Analysis of biological processes is frequently performed with the help of phenotypic assays where data is mostly acquired in single end-point analysis. Alternative phenotypic profiling techniques are desired where time-series information is essential to the biological question, for instance to differentiate early and late regulators of cell proliferation in loss-of-function studies. So far there is no study addressing this question despite of high unmet interests, mostly due to the limitation of conventional end-point assaying technologies. We present the first human kinome screen with a real-time cell analysis system (RTCA) to capture dynamic RNAi phenotypes, employing time-resolved monitoring of cell proliferation via electrical impedance. RTCA allowed us to investigate the dynamics of phenotypes of cell proliferation instead of using conventional end-point analysis. By introducing data transformation with first-order derivative, i.e. the cell-index growth rate, we demonstrate this system suitable for high-throughput screenings (HTS). The screen validated previously identified inhibitor genes and, additionally, identified activators of cell proliferation. With the information of time kinetics available, we could establish a network of mitotic-event related genes to be among the first displaying inhibiting effects after RNAi knockdown. The time-resolved screen captured kinetics of cell proliferation caused by RNAi targeting human kinome, serving as a resource for researchers. Our work establishes RTCA technology as a novel robust tool with biological and pharmacological relevance amenable for high-throughput screening. PMID:21765947

  3. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells

    PubMed Central

    Kraehling, Jan R.; Chidlow, John H.; Rajagopal, Chitra; Sugiyama, Michael G.; Fowler, Joseph W.; Lee, Monica Y.; Zhang, Xinbo; Ramírez, Cristina M.; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W.; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L.; Fernández-Hernando, Carlos; Sessa, William C.

    2016-01-01

    In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. PMID:27869117

  4. Genome-wide RNAi screen identifies networks involved in intestinal stem cell regulation in Drosophila.

    PubMed

    Zeng, Xiankun; Han, Lili; Singh, Shree Ram; Liu, Hanhan; Neumüller, Ralph A; Yan, Dong; Hu, Yanhui; Liu, Ying; Liu, Wei; Lin, Xinhua; Hou, Steven X

    2015-02-24

    The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs) in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. By integrating these genes into publicly available interaction databases, we further developed functional networks that regulate ISC self-renewal, ISC proliferation, ISC maintenance of diploid status, ISC survival, ISC-to-enterocyte (EC) lineage differentiation, and ISC-to-enteroendocrine (EE) lineage differentiation. By comparing regulators among ISCs, female germline stem cells, and neural stem cells, we found that factors related to basic stem cell cellular processes are commonly required in all stem cells, and stem-cell-specific, niche-related signals are required only in the unique stem cell type. Our findings provide valuable insights into stem cell maintenance and lineage-specific differentiation.

  5. Human genome-wide RNAi screen reveals host factors required for enterovirus 71 replication

    PubMed Central

    Wu, Kan Xing; Phuektes, Patchara; Kumar, Pankaj; Goh, Germaine Yen Lin; Moreau, Dimitri; Chow, Vincent Tak Kwong; Bard, Frederic; Chu, Justin Jang Hann

    2016-01-01

    Enterovirus 71 (EV71) is a neurotropic enterovirus without antivirals or vaccine, and its host-pathogen interactions remain poorly understood. Here we use a human genome-wide RNAi screen to identify 256 host factors involved in EV71 replication in human rhabdomyosarcoma cells. Enrichment analyses reveal overrepresentation in processes like mitotic cell cycle and transcriptional regulation. We have carried out orthogonal experiments to characterize the roles of selected factors involved in cell cycle regulation and endoplasmatic reticulum-associated degradation. We demonstrate nuclear egress of CDK6 in EV71 infected cells, and identify CDK6 and AURKB as resistance factors. NGLY1, which co-localizes with EV71 replication complexes at the endoplasmatic reticulum, supports EV71 replication. We confirm importance of these factors for EV71 replication in a human neuronal cell line and for coxsackievirus A16 infection. A small molecule inhibitor of NGLY1 reduces EV71 replication. This study provides a comprehensive map of EV71 host factors and reveals potential antiviral targets. PMID:27748395

  6. A Genome-Wide RNAi Screen Identifies Regulators of Cholesterol-Modified Hedgehog Secretion in Drosophila

    PubMed Central

    Ruel, Laurent; Lacas-Gervais, Sandra; Schaub, Sébastien; Thérond, Pascal

    2012-01-01

    Hedgehog (Hh) proteins are secreted molecules that function as organizers in animal development. In addition to being palmitoylated, Hh is the only metazoan protein known to possess a covalently-linked cholesterol moiety. The absence of either modification severely disrupts the organization of numerous tissues during development. It is currently not known how lipid-modified Hh is secreted and released from producing cells. We have performed a genome-wide RNAi screen in Drosophila melanogaster cells to identify regulators of Hh secretion. We found that cholesterol-modified Hh secretion is strongly dependent on coat protein complex I (COPI) but not COPII vesicles, suggesting that cholesterol modification alters the movement of Hh through the early secretory pathway. We provide evidence that both proteolysis and cholesterol modification are necessary for the efficient trafficking of Hh through the ER and Golgi. Finally, we identified several putative regulators of protein secretion and demonstrate a role for some of these genes in Hh and Wingless (Wg) morphogen secretion in vivo. These data open new perspectives for studying how morphogen secretion is regulated, as well as provide insight into regulation of lipid-modified protein secretion. PMID:22432040

  7. Drosophila Genome-Wide RNAi Screen Identifies Multiple Regulators of HIF–Dependent Transcription in Hypoxia

    PubMed Central

    Dekanty, Andrés; Romero, Nuria M.; Bertolin, Agustina P.; Thomas, María G.; Leishman, Claudia C.; Perez-Perri, Joel I.; Boccaccio, Graciela L.; Wappner, Pablo

    2010-01-01

    Hypoxia-inducible factors (HIFs) are a family of evolutionary conserved alpha-beta heterodimeric transcription factors that induce a wide range of genes in response to low oxygen tension. Molecular mechanisms that mediate oxygen-dependent HIF regulation operate at the level of the alpha subunit, controlling protein stability, subcellular localization, and transcriptional coactivator recruitment. We have conducted an unbiased genome-wide RNA interference (RNAi) screen in Drosophila cells aimed to the identification of genes required for HIF activity. After 3 rounds of selection, 30 genes emerged as critical HIF regulators in hypoxia, most of which had not been previously associated with HIF biology. The list of genes includes components of chromatin remodeling complexes, transcription elongation factors, and translational regulators. One remarkable hit was the argonaute 1 (ago1) gene, a central element of the microRNA (miRNA) translational silencing machinery. Further studies confirmed the physiological role of the miRNA machinery in HIF–dependent transcription. This study reveals the occurrence of novel mechanisms of HIF regulation, which might contribute to developing novel strategies for therapeutic intervention of HIF–related pathologies, including heart attack, cancer, and stroke. PMID:20585616

  8. A Network of Conserved Damage Survival Pathways Revealed by a Genomic RNAi Screen

    PubMed Central

    Ravi, Dashnamoorthy; Wiles, Amy M.; Bhavani, Selvaraj; Ruan, Jianhua; Leder, Philip; Bishop, Alexander J. R.

    2009-01-01

    Damage initiates a pleiotropic cellular response aimed at cellular survival when appropriate. To identify genes required for damage survival, we used a cell-based RNAi screen against the Drosophila genome and the alkylating agent methyl methanesulphonate (MMS). Similar studies performed in other model organisms report that damage response may involve pleiotropic cellular processes other than the central DNA repair components, yet an intuitive systems level view of the cellular components required for damage survival, their interrelationship, and contextual importance has been lacking. Further, by comparing data from different model organisms, identification of conserved and presumably core survival components should be forthcoming. We identified 307 genes, representing 13 signaling, metabolic, or enzymatic pathways, affecting cellular survival of MMS–induced damage. As expected, the majority of these pathways are involved in DNA repair; however, several pathways with more diverse biological functions were also identified, including the TOR pathway, transcription, translation, proteasome, glutathione synthesis, ATP synthesis, and Notch signaling, and these were equally important in damage survival. Comparison with genomic screen data from Saccharomyces cerevisiae revealed no overlap enrichment of individual genes between the species, but a conservation of the pathways. To demonstrate the functional conservation of pathways, five were tested in Drosophila and mouse cells, with each pathway responding to alkylation damage in both species. Using the protein interactome, a significant level of connectivity was observed between Drosophila MMS survival proteins, suggesting a higher order relationship. This connectivity was dramatically improved by incorporating the components of the 13 identified pathways within the network. Grouping proteins into “pathway nodes” qualitatively improved the interactome organization, revealing a highly organized “MMS survival

  9. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia.

    PubMed

    Zuber, Johannes; Shi, Junwei; Wang, Eric; Rappaport, Amy R; Herrmann, Harald; Sison, Edward A; Magoon, Daniel; Qi, Jun; Blatt, Katharina; Wunderlich, Mark; Taylor, Meredith J; Johns, Christopher; Chicas, Agustin; Mulloy, James C; Kogan, Scott C; Brown, Patrick; Valent, Peter; Bradner, James E; Lowe, Scott W; Vakoc, Christopher R

    2011-08-03

    Epigenetic pathways can regulate gene expression by controlling and interpreting chromatin modifications. Cancer cells are characterized by altered epigenetic landscapes, and commonly exploit the chromatin regulatory machinery to enforce oncogenic gene expression programs. Although chromatin alterations are, in principle, reversible and often amenable to drug intervention, the promise of targeting such pathways therapeutically has been limited by an incomplete understanding of cancer-specific dependencies on epigenetic regulators. Here we describe a non-biased approach to probe epigenetic vulnerabilities in acute myeloid leukaemia (AML), an aggressive haematopoietic malignancy that is often associated with aberrant chromatin states. By screening a custom library of small hairpin RNAs (shRNAs) targeting known chromatin regulators in a genetically defined AML mouse model, we identify the protein bromodomain-containing 4 (Brd4) as being critically required for disease maintenance. Suppression of Brd4 using shRNAs or the small-molecule inhibitor JQ1 led to robust antileukaemic effects in vitro and in vivo, accompanied by terminal myeloid differentiation and elimination of leukaemia stem cells. Similar sensitivities were observed in a variety of human AML cell lines and primary patient samples, revealing that JQ1 has broad activity in diverse AML subtypes. The effects of Brd4 suppression are, at least in part, due to its role in sustaining Myc expression to promote aberrant self-renewal, which implicates JQ1 as a pharmacological means to suppress MYC in cancer. Our results establish small-molecule inhibition of Brd4 as a promising therapeutic strategy in AML and, potentially, other cancers, and highlight the utility of RNA interference (RNAi) screening for revealing epigenetic vulnerabilities that can be exploited for direct pharmacological intervention.

  10. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia

    PubMed Central

    Zuber, Johannes; Shi, Junwei; Wang, Eric; Rappaport, Amy R.; Herrmann, Harald; Sison, Edward A.; Magoon, Daniel; Qi, Jun; Blatt, Katharina; Wunderlich, Mark; Taylor, Meredith J.; Johns, Christopher; Chicas, Agustin; Mulloy, James C.; Kogan, Scott C.; Brown, Patrick; Valent, Peter; Bradner, James E.; Lowe, Scott W.; Vakoc, Christopher R.

    2012-01-01

    Epigenetic pathways can regulate gene expression by controlling and interpreting chromatin modifications. Cancer cells are characterized by altered epigenetic landscapes, and commonly exploit the chromatin regulatory machinery to enforce oncogenic gene expression programs1. Although chromatin alterations are, in principle, reversible and often amenable to drug intervention, the promise of targeting such pathways therapeutically has been limited by an incomplete understanding of cancer-specific dependencies on epigenetic regulators. Here we describe a non-biased approach to probe epigenetic vulnerabilities in acute myeloid leukaemia (AML), an aggressive haematopoietic malignancy that is often associated with aberrant chromatin states2. By screening a custom library of small hairpin RNAs (shRNAs) targeting known chromatin regulators in a genetically defined AML mouse model, we identify the protein bromodomain-containing 4 (Brd4) as being critically required for disease maintenance. Suppression of Brd4 using shRNAs or the small-molecule inhibitor JQ1 led to robust antileukaemic effects in vitro and in vivo, accompanied by terminal myeloid differentiation and elimination of leukaemia stem cells. Similar sensitivities were observed in a variety of human AML cell lines and primary patient samples, revealing that JQ1 has broad activity in diverse AML subtypes. The effects of Brd4 suppression are, at least in part, due to its role in sustaining Myc expression to promote aberrant self-renewal, which implicates JQ1 as a pharmacological means to suppress MYC in cancer. Our results establish small-molecule inhibition of Brd4 as a promising therapeutic strategy in AML and, potentially, other cancers, and highlight the utility of RNA interference (RNAi) screening for revealing epigenetic vulnerabilities that can be exploited for direct pharmacological intervention. PMID:21814200

  11. Identification of WEE1 as a potential molecular target in cancer cells by RNAi screening of the human tyrosine kinome

    PubMed Central

    Murrow, Lyndsay M.; Garimella, Sireesha V.; Jones, Tamara L.; Caplen, Natasha J.; Lipkowitz, Stanley

    2012-01-01

    Breast cancers can be classified into those that express the estrogen (ER) and progesterone (PR) receptors, those with ERBB2 (HER-2/Neu) amplification, and those without expression of ER, PR, or amplification of ERBB2 (referred to as triple-negative or basal-like breast cancer). In order to identify potential molecular targets in breast cancer, we performed a synthetic siRNA-mediated RNAi screen of the human tyrosine kinome. A primary RNAi screen conducted in the triple-negative/basal-like breast cancer cell line MDA-MB231 followed by secondary RNAi screens and further studies in this cell line and two additional triple-negative/basal-like breast cancer cell lines, BT20 and HCC1937, identified the G2/M checkpoint protein, WEE1, as a potential therapeutic target. Similar sensitivity to WEE1 inhibition was observed in cell lines from all subtypes of breast cancer. RNAi-mediated silencing or small compound inhibition of WEE1 in breast cancer cell lines resulted in an increase in γH2AX levels, arrest in the S-phase of the cell cycle, and a significant decrease in cell proliferation. WEE1-inhibited cells underwent apoptosis as demonstrated by positive Annexin V staining, increased sub-G1 DNA content, apoptotic morphology, caspase activation, and rescue by the pan-caspase inhibitor, Z-VAD-FMK. In contrast, the non-transformed mammary epithelial cell line, MCF10A, did not exhibit any of these downstream effects following WEE1 silencing or inhibition. These results identify WEE1 as a potential molecular target in breast cancer. PMID:19821025

  12. RNAi Screen Identifies Novel Regulators of RNP Granules in the Caenorhabditis elegans Germ Line

    PubMed Central

    Wood, Megan P.; Hollis, Angela; Severance, Ashley L.; Karrick, Megan L.; Schisa, Jennifer A.

    2016-01-01

    Complexes of RNA and RNA binding proteins form large-scale supramolecular structures under many cellular contexts. In Caenorhabditis elegans, small germ granules are present in the germ line that share characteristics with liquid droplets that undergo phase transitions. In meiotically-arrested oocytes of middle-aged hermaphrodites, the germ granules appear to aggregate or condense into large assemblies of RNA-binding proteins and maternal mRNAs. Prior characterization of the assembly of large-scale RNP structures via candidate approaches has identified a small number of regulators of phase transitions in the C. elegans germ line; however, the assembly, function, and regulation of these large RNP assemblies remain incompletely understood. To identify genes that promote remodeling and assembly of large RNP granules in meiotically-arrested oocytes, we performed a targeted, functional RNAi screen and identified over 300 genes that regulate the assembly of the RNA-binding protein MEX-3 into large granules. Among the most common GO classes are several categories related to RNA biology, as well as novel categories such as cell cortex, ER, and chromosome segregation. We found that arrested oocytes that fail to localize MEX-3 into cortical granules display reduced oocyte quality, consistent with the idea that the larger RNP assemblies promote oocyte quality when fertilization is delayed. Interestingly, a relatively small number of genes overlap with the regulators of germ granule assembly during normal development, or with the regulators of solid RNP granules in cgh-1 oocytes, suggesting fundamental differences in the regulation of RNP granule phase transitions during meiotic arrest. PMID:27317775

  13. RNAi Screen Identifies Novel Regulators of RNP Granules in the Caenorhabditis elegans Germ Line.

    PubMed

    Wood, Megan P; Hollis, Angela; Severance, Ashley L; Karrick, Megan L; Schisa, Jennifer A

    2016-08-09

    Complexes of RNA and RNA binding proteins form large-scale supramolecular structures under many cellular contexts. In Caenorhabditis elegans, small germ granules are present in the germ line that share characteristics with liquid droplets that undergo phase transitions. In meiotically-arrested oocytes of middle-aged hermaphrodites, the germ granules appear to aggregate or condense into large assemblies of RNA-binding proteins and maternal mRNAs. Prior characterization of the assembly of large-scale RNP structures via candidate approaches has identified a small number of regulators of phase transitions in the C. elegans germ line; however, the assembly, function, and regulation of these large RNP assemblies remain incompletely understood. To identify genes that promote remodeling and assembly of large RNP granules in meiotically-arrested oocytes, we performed a targeted, functional RNAi screen and identified over 300 genes that regulate the assembly of the RNA-binding protein MEX-3 into large granules. Among the most common GO classes are several categories related to RNA biology, as well as novel categories such as cell cortex, ER, and chromosome segregation. We found that arrested oocytes that fail to localize MEX-3 into cortical granules display reduced oocyte quality, consistent with the idea that the larger RNP assemblies promote oocyte quality when fertilization is delayed. Interestingly, a relatively small number of genes overlap with the regulators of germ granule assembly during normal development, or with the regulators of solid RNP granules in cgh-1 oocytes, suggesting fundamental differences in the regulation of RNP granule phase transitions during meiotic arrest.

  14. Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression

    PubMed Central

    Lamitina, Todd; Huang, Chunyi George; Strange, Kevin

    2006-01-01

    The detection, stabilization, and repair of stress-induced damage are essential requirements for cellular life. All cells respond to osmotic stress-induced water loss with increased expression of genes that mediate accumulation of organic osmolytes, solutes that function as chemical chaperones and restore osmotic homeostasis. The signals and signaling mechanisms that regulate osmoprotective gene expression in animal cells are poorly understood. Here, we show that gpdh-1 and gpdh-2, genes that mediate the accumulation of the organic osmolyte glycerol, are essential for survival of the nematode Caenorhabditis elegans during osmotic stress. Expression of GFP driven by the gpdh-1 promoter (Pgpdh-1::GFP) is detected only during hypertonic stress but is not induced by other stressors. Using Pgpdh-1::GFP expression as a phenotype, we screened ≈16,000 genes by RNAi feeding and identified 122 that cause constitutive activation of gpdh-1 expression and glycerol accumulation. Many of these genes function to regulate protein translation and cotranslational protein folding and to target and degrade denatured proteins, suggesting that the accumulation of misfolded proteins functions as a signal to activate osmoprotective gene expression and organic osmolyte accumulation in animal cells. Consistent with this hypothesis, 73% of these protein-homeostasis genes have been shown to slow age-dependent protein aggregation in C. elegans. Because diverse environmental stressors and numerous disease states result in protein misfolding, mechanisms must exist that discriminate between osmotically induced and other forms of stress-induced protein damage. Our findings provide a foundation for understanding how these damage-selectivity mechanisms function. PMID:16880390

  15. An RNAi Screen for Genes Involved in Nanoscale Protrusion Formation on Corneal Lens in Drosophila melanogaster.

    PubMed

    Minami, Ryunosuke; Sato, Chiaki; Yamahama, Yumi; Kubo, Hideo; Hariyama, Takahiko; Kimura, Ken-Ichi

    2016-12-01

    The "moth-eye" structure, which is observed on the surface of corneal lens in several insects, supports anti-reflective and self-cleaning functions due to nanoscale protrusions known as corneal nipples. Although the morphology and function of the "moth-eye" structure, are relatively well studied, the mechanism of protrusion formation from cell-secreted substances is unknown. In Drosophila melanogaster, a compound eye consists of approximately 800 facets, the surface of which is formed by the corneal lens with nanoscale protrusions. In the present study, we sought to identify genes involved in "moth-eye" structure, formation in order to elucidate the developmental mechanism of the protrusions in Drosophila. We re-examined the aberrant patterns in classical glossy-eye mutants by scanning electron microscope and classified the aberrant patterns into groups. Next, we screened genes encoding putative structural cuticular proteins and genes involved in cuticular formation using eye specific RNAi silencing methods combined with the Gal4/UAS expression system. We identified 12 of 100 candidate genes, such as cuticular proteins family genes (Cuticular protein 23B and Cuticular protein 49Ah), cuticle secretion-related genes (Syntaxin 1A and Sec61 ββ subunit), ecdysone signaling and biosynthesis-related genes (Ecdysone receptor, Blimp-1, and shroud), and genes involved in cell polarity/cell architecture (Actin 5C, shotgun, armadillo, discs large1, and coracle). Although some of the genes we identified may affect corneal protrusion formation indirectly through general patterning defects in eye formation, these initial findings have encouraged us to more systematically explore the precise mechanisms underlying the formation of nanoscale protrusions in Drosophila.

  16. Synthetic Lethality Screens Using RNAi in Combination with CRISPR-based Knockout in Drosophila Cells.

    PubMed

    Housden, Benjamin E; Nicholson, Hilary E; Perrimon, Norbert

    2017-02-05

    A synthetic lethal interaction is a type of genetic interaction where the disruption of either of two genes individually has little effect but their combined disruption is lethal. Knowledge of synthetic lethal interactions can allow for elucidation of network structure and identification of candidate drug targets for human diseases such as cancer. In Drosophila, combinatorial gene disruption has been achieved previously by combining multiple RNAi reagents. Here we describe a protocol for high-throughput combinatorial gene disruption by combining CRISPR and RNAi. This approach previously resulted in the identification of highly reproducible and conserved synthetic lethal interactions (Housden et al., 2015).

  17. Regulators of Trypanosoma brucei Cell Cycle Progression and Differentiation Identified Using a Kinome-Wide RNAi Screen

    PubMed Central

    Jones, Nathaniel G.; Thomas, Elizabeth B.; Brown, Elaine; Dickens, Nicholas J.; Hammarton, Tansy C.; Mottram, Jeremy C.

    2014-01-01

    The African trypanosome, Trypanosoma brucei, maintains an integral link between cell cycle regulation and differentiation during its intricate life cycle. Whilst extensive changes in phosphorylation have been documented between the mammalian bloodstream form and the insect procyclic form, relatively little is known about the parasite's protein kinases (PKs) involved in the control of cellular proliferation and differentiation. To address this, a T. brucei kinome-wide RNAi cell line library was generated, allowing independent inducible knockdown of each of the parasite's 190 predicted protein kinases. Screening of this library using a cell viability assay identified ≥42 PKs that are required for normal bloodstream form proliferation in culture. A secondary screen identified 24 PKs whose RNAi-mediated depletion resulted in a variety of cell cycle defects including in G1/S, kinetoplast replication/segregation, mitosis and cytokinesis, 15 of which are novel cell cycle regulators. A further screen identified for the first time two PKs, named repressor of differentiation kinase (RDK1 and RDK2), depletion of which promoted bloodstream to procyclic form differentiation. RDK1 is a membrane-associated STE11-like PK, whilst RDK2 is a NEK PK that is essential for parasite proliferation. RDK1 acts in conjunction with the PTP1/PIP39 phosphatase cascade to block uncontrolled bloodstream to procyclic form differentiation, whilst RDK2 is a PK whose depletion efficiently induces differentiation in the absence of known triggers. Thus, the RNAi kinome library provides a valuable asset for functional analysis of cell signalling pathways in African trypanosomes as well as drug target identification and validation. PMID:24453978

  18. Phenotypic screen for RNAi effects in the codling moth Cydia pomonella

    USDA-ARS?s Scientific Manuscript database

    RNAi-based technologies have the potential to augment, or replace existing pest management strategies. However, some insect taxa are less susceptible to the induction of the post-transcriptional gene silencing effect than others, such as the Lepidoptera. Here we describe experiments to investigate t...

  19. Identification of novel modulators of mitochondrial function by a genome-wide RNAi screen in Drosophila melanogaster

    PubMed Central

    Chen, Jian; Shi, Xiaoying; Padmanabhan, Ranjani; Wang, Qiong; Wu, Zhidan; Stevenson, Susan C.; Hild, Marc; Garza, Dan; Li, Hao

    2008-01-01

    Mitochondrial dysfunction is associated with many human diseases. There has not been a systematic genetic approach for identifying regulators of basal mitochondrial biogenesis and function in higher eukaryotes. We performed a genome-wide RNA interference (RNAi) screen in Drosophila cells using mitochondrial Citrate synthase (CS) activity as the primary readout. We screened 13,071 dsRNAs and identified 152 genes that modulate CS activity. These modulators are involved in a wide range of biological processes and pathways including mitochondrial-related functions, transcriptional and translational regulation, and signaling pathways. Selected hits among the 152 genes were further analyzed for their effect on mitochondrial CS activity in transgenic flies or fly mutants. We confirmed a number of gene hits including HDAC6, Rpd3(HDAC1), CG3249, vimar, Src42A, klumpfuss, barren, and smt3 which exert effects on mitochondrial CS activities in vivo, demonstrating the value of Drosophila genome-wide RNAi screens for identifying genes and pathways that modulate mitochondrial function. PMID:18042644

  20. A high-throughput, multiplex cell death assay using an RNAi screening approach.

    PubMed

    Falkenberg, Katrina J; Saunders, Darren N; Simpson, Kaylene J

    2014-06-02

    This protocol outlines a high-throughput, multiplex cell death assay and its use in conjunction with a genome-scale siRNA screen to identify genes that cooperate with a drug to induce apoptosis. The assay, ApoLive-Glo (Promega), measures viability of drug-treated, reverse-transfected cells via the fluorescent CellTiter-Fluor reagent, which includes a substrate that is cleaved by a live cell protease. ApoLive-Glo also quantitates cell death by the amount of cleaved caspases 3 and 7 using a luminescent Caspase-Glo 3/7 caspase activation assay. The advantage of the multiplex assay is that it distinguishes rapid cell death from the slower activation of caspase activity, permitting measurement of different stages of cell death in the same sample at a single time point. In parallel, a high-content imaging protocol involving 4',6-diamidino-2-phenylindole-stained nuclei is used as a cost-effective way to quantitate viability of vehicle-treated control cells. Automation and robotic liquid handling are built into the protocol to increase speed of workflow and improve reproducibility. A screen using these assays will identify gene targets that are essential for viability irrespective of drug treatment and gene targets that cause a synergistic enhancement of cell death in the presence of drug. Candidate target activity can then be validated by conventional flow cytometry-based assays. © 2014 Cold Spring Harbor Laboratory Press.

  1. Live imaging RNAi screen reveals genes essential for meiosis in mammalian oocytes.

    PubMed

    Pfender, Sybille; Kuznetsov, Vitaliy; Pasternak, Michał; Tischer, Thomas; Santhanam, Balaji; Schuh, Melina

    2015-08-13

    During fertilization, an egg and a sperm fuse to form a new embryo. Eggs develop from oocytes in a process called meiosis. Meiosis in human oocytes is highly error-prone, and defective eggs are the leading cause of pregnancy loss and several genetic disorders such as Down's syndrome. Which genes safeguard accurate progression through meiosis is largely unclear. Here we develop high-content phenotypic screening methods for the systematic identification of mammalian meiotic genes. We targeted 774 genes by RNA interference within follicle-enclosed mouse oocytes to block protein expression from an early stage of oocyte development onwards. We then analysed the function of several genes simultaneously by high-resolution imaging of chromosomes and microtubules in live oocytes and scored each oocyte quantitatively for 50 phenotypes, generating a comprehensive resource of meiotic gene function. The screen generated an unprecedented annotated data set of meiotic progression in 2,241 mammalian oocytes, which allowed us to analyse systematically which defects are linked to abnormal chromosome segregation during meiosis, identifying progression into anaphase with misaligned chromosomes as well as defects in spindle organization as risk factors. This study demonstrates how high-content screens can be performed in oocytes, and allows systematic studies of meiosis in mammals.

  2. Systems biology "on-the-fly": SILAC-based quantitative proteomics and RNAi approach in Drosophila melanogaster.

    PubMed

    Cuomo, Alessandro; Bonaldi, Tiziana

    2010-01-01

    Stable isotope labeling with amino acids in cell culture (SILAC) has become increasingly popular as a quantitative proteomics (qProteomics) method. In combination with high-resolution mass spectrometry (MS) and new efficient algorithms for the analysis of quantitative MS data, SILAC has proven to be a potent tool for the in-depth characterization of functional states. QProteomics extends transcriptomics analysis in providing comprehensive and unbiased protein expression profiles. In this chapter, we describe the use of SILAC procedure in combination with RNA interference (RNAi) to characterize loss-of-function phenotypes, an example to illustrate how qProteomics can address many of the systems-wide approaches previously restricted to the mRNA level. Furthermore, by explaining the adaptation of SILAC to a novel cellular model, the Drosophila melanogaster Schneider cells SL2, we aim to offer an example enabling the readers to apply the same strategy to any other cell culture, specific for their need.

  3. A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly.

    PubMed

    Krastev, Dragomir B; Slabicki, Mikolaj; Paszkowski-Rogacz, Maciej; Hubner, Nina C; Junqueira, Magno; Shevchenko, Andrej; Mann, Matthias; Neugebauer, Karla M; Buchholz, Frank

    2011-06-05

    TP53 (tumour protein 53) is one of the most frequently mutated genes in human cancer and its role during cellular transformation has been studied extensively. However, the homeostatic functions of p53 are less well understood. Here, we explore the molecular dependency network of TP53 through an RNAi-mediated synthetic interaction screen employing two HCT116 isogenic cell lines and a genome-scale endoribonuclease-prepared short interfering RNA library. We identify a variety of TP53 synthetic interactions unmasking the complex connections of p53 to cellular physiology and growth control. Molecular dissection of the TP53 synthetic interaction with UNRIP indicates an enhanced dependency of TP53-negative cells on small nucleolar ribonucleoprotein (snoRNP) assembly. This dependency is mediated by the snoRNP chaperone gene NOLC1 (also known as NOPP140), which we identify as a physiological p53 target gene. This unanticipated function of TP53 in snoRNP assembly highlights the potential of RNAi-mediated synthetic interaction screens to dissect molecular pathways of tumour suppressor genes.

  4. Potential Direct Regulators of the Drosophila yellow Gene Identified by Yeast One-Hybrid and RNAi Screens

    PubMed Central

    Kalay, Gizem; Lusk, Richard; Dome, Mackenzie; Hens, Korneel; Deplancke, Bart; Wittkopp, Patricia J.

    2016-01-01

    The regulation of gene expression controls development, and changes in this regulation often contribute to phenotypic evolution. Drosophila pigmentation is a model system for studying evolutionary changes in gene regulation, with differences in expression of pigmentation genes such as yellow that correlate with divergent pigment patterns among species shown to be caused by changes in cis- and trans-regulation. Currently, much more is known about the cis-regulatory component of divergent yellow expression than the trans-regulatory component, in part because very few trans-acting regulators of yellow expression have been identified. This study aims to improve our understanding of the trans-acting control of yellow expression by combining yeast-one-hybrid and RNAi screens for transcription factors binding to yellow cis-regulatory sequences and affecting abdominal pigmentation in adults, respectively. Of the 670 transcription factors included in the yeast-one-hybrid screen, 45 showed evidence of binding to one or more sequence fragments tested from the 5′ intergenic and intronic yellow sequences from D. melanogaster, D. pseudoobscura, and D. willistoni, suggesting that they might be direct regulators of yellow expression. Of the 670 transcription factors included in the yeast-one-hybrid screen, plus another TF previously shown to be genetically upstream of yellow, 125 were also tested using RNAi, and 32 showed altered abdominal pigmentation. Nine transcription factors were identified in both screens, including four nuclear receptors related to ecdysone signaling (Hr78, Hr38, Hr46, and Eip78C). This finding suggests that yellow expression might be directly controlled by nuclear receptors influenced by ecdysone during early pupal development when adult pigmentation is forming. PMID:27527791

  5. Potential Direct Regulators of the Drosophila yellow Gene Identified by Yeast One-Hybrid and RNAi Screens.

    PubMed

    Kalay, Gizem; Lusk, Richard; Dome, Mackenzie; Hens, Korneel; Deplancke, Bart; Wittkopp, Patricia J

    2016-10-13

    The regulation of gene expression controls development, and changes in this regulation often contribute to phenotypic evolution. Drosophila pigmentation is a model system for studying evolutionary changes in gene regulation, with differences in expression of pigmentation genes such as yellow that correlate with divergent pigment patterns among species shown to be caused by changes in cis- and trans-regulation. Currently, much more is known about the cis-regulatory component of divergent yellow expression than the trans-regulatory component, in part because very few trans-acting regulators of yellow expression have been identified. This study aims to improve our understanding of the trans-acting control of yellow expression by combining yeast-one-hybrid and RNAi screens for transcription factors binding to yellow cis-regulatory sequences and affecting abdominal pigmentation in adults, respectively. Of the 670 transcription factors included in the yeast-one-hybrid screen, 45 showed evidence of binding to one or more sequence fragments tested from the 5' intergenic and intronic yellow sequences from D. melanogaster, D. pseudoobscura, and D. willistoni, suggesting that they might be direct regulators of yellow expression. Of the 670 transcription factors included in the yeast-one-hybrid screen, plus another TF previously shown to be genetically upstream of yellow, 125 were also tested using RNAi, and 32 showed altered abdominal pigmentation. Nine transcription factors were identified in both screens, including four nuclear receptors related to ecdysone signaling (Hr78, Hr38, Hr46, and Eip78C). This finding suggests that yellow expression might be directly controlled by nuclear receptors influenced by ecdysone during early pupal development when adult pigmentation is forming. Copyright © 2016 Kalay et al.

  6. Identification of Drosophila Zfh2 as a mediator of hypercapnic immune regulation by a genome-wide RNAi screen

    PubMed Central

    Kwon, Yong-Jae; Hu, Jennifer A.; Krupinski, Thomas; Casalino-Matsuda, S. Marina; Sporn, Peter H. S.; Sznajder, Jacob I.; Beitel, Greg J.

    2015-01-01

    Hypercapnia, elevated partial pressure of carbon dioxide (PCO2) in blood and tissue, develops in many patients with chronic severe obstructive pulmonary disease and other advanced lung disorders. Patients with advanced disease frequently develop bacterial lung infections, and hypercapnia is a risk factor for mortality in such individuals. We previously demonstrated that hypercapnia suppresses induction of NF-κB-regulated innate immune response genes required for host defense in human, mouse and Drosophila cells, and increases mortality from bacterial infections in both mice and Drosophila. However, the molecular mediator(s) of hypercapnic immune suppression are undefined. Here, we report a genome-wide RNAi screen in Drosophila S2* cells stimulated with bacterial peptidoglycan (PGN). The screen identified 16 genes with human orthologs whose knockdown reduced hypercapnic suppression of the gene encoding the antimicrobial peptide (AMPs) Diptericin (Dipt), but did not increase Dipt mRNA levels in air. In vivo tests of one of the strongest screen hits, Zfh2 (mammalian orthologs ZFHX3/ATBF1 and ZFHX4), demonstrate that reducing zfh2 function using a mutation or RNAi improves survival of flies exposed to elevated CO2 and infected with S. aureus. Tissue-specific knockdown of zfh2 in the fat body, the major immune and metabolic organ of the fly, mitigates hypercapnia-induced reductions in Dipt and other AMPs and improves resistance of CO2-exposed flies to infection. Zfh2 mutations also partially rescue hypercapnia-induced delays in egg hatching, suggesting that Zfh2's role in mediating responses to hypercapnia extends beyond the immune system. Together, these results identify Zfh2 as the first in vivo mediator of hypercapnic immune suppression. PMID:26643480

  7. TRAP-seq Profiling and RNAi-Based Genetic Screens Identify Conserved Glial Genes Required for Adult Drosophila Behavior

    PubMed Central

    Ng, Fanny S.; Sengupta, Sukanya; Huang, Yanmei; Yu, Amy M.; You, Samantha; Roberts, Mary A.; Iyer, Lakshmanan K.; Yang, Yongjie; Jackson, F. Rob

    2016-01-01

    Although, glial cells have well characterized functions in the developing and mature brain, it is only in the past decade that roles for these cells in behavior and plasticity have been delineated. Glial astrocytes and glia-neuron signaling, for example, are now known to have important modulatory functions in sleep, circadian behavior, memory and plasticity. To better understand mechanisms of glia-neuron signaling in the context of behavior, we have conducted cell-specific, genome-wide expression profiling of adult Drosophila astrocyte-like brain cells and performed RNA interference (RNAi)-based genetic screens to identify glial factors that regulate behavior. Importantly, our studies demonstrate that adult fly astrocyte-like cells and mouse astrocytes have similar molecular signatures; in contrast, fly astrocytes and surface glia—different classes of glial cells—have distinct expression profiles. Glial-specific expression of 653 RNAi constructs targeting 318 genes identified multiple factors associated with altered locomotor activity, circadian rhythmicity and/or responses to mechanical stress (bang sensitivity). Of interest, 1 of the relevant genes encodes a vesicle recycling factor, 4 encode secreted proteins and 3 encode membrane transporters. These results strongly support the idea that glia-neuron communication is vital for adult behavior. PMID:28066175

  8. A systematic phenotypic screen of F-box genes through a tissue-specific RNAi-based approach in Drosophila.

    PubMed

    Dui, Wen; Lu, Wei; Ma, Jun; Jiao, Renjie

    2012-08-20

    F-box proteins are components of the SCF (SkpA-Cullin 1-F-box) E3 ligase complexes, acting as the specificity-determinants in targeting substrate proteins for ubiquitination and degradation. In humans, at least 22 out of 75 F-box proteins have experimentally documented substrates, whereas in Drosophila 12 F-box proteins have been characterized with known substrates. To systematically investigate the genetic and molecular functions of F-box proteins in Drosophila, we performed a survey of the literature and databases. We identified 45 Drosophila genes that encode proteins containing at least one F-box domain. We collected publically available RNAi lines against these genes and used them in a tissue-specific RNAi-based phenotypic screen. Here, we present our systematic phenotypic dataset from the eye, the wing and the notum. This dataset is the first of its kind and represents a useful resource for future studies of the molecular and genetic functions of F-box genes in Drosophila. Our results show that, as expected, F-box genes in Drosophila have regulatory roles in a diverse array of processes including cell proliferation, cell growth, signal transduction, and cellular and animal survival.

  9. Whole-animal genome-wide RNAi screen identifies networks regulating male germline stem cells in Drosophila

    PubMed Central

    Liu, Ying; Ge, Qinglan; Chan, Brian; Liu, Hanhan; Singh, Shree Ram; Manley, Jacob; Lee, Jae; Weideman, Ann Marie; Hou, Gerald; Hou, Steven X.

    2016-01-01

    Stem cells are regulated both intrinsically and externally, including by signals from the local environment and distant organs. To identify genes and pathways that regulate stem-cell fates in the whole organism, we perform a genome-wide transgenic RNAi screen through ubiquitous gene knockdowns, focusing on regulators of adult Drosophila testis germline stem cells (GSCs). Here we identify 530 genes that regulate GSC maintenance and differentiation. Of these, we further knock down 113 selected genes using cell-type-specific Gal4s and find that more than half were external regulators, that is, from the local microenvironment or more distal sources. Some genes, for example, versatile (vers), encoding a heterochromatin protein, regulates GSC fates differentially in different cell types and through multiple pathways. We also find that mitosis/cytokinesis proteins are especially important for male GSC maintenance. Our findings provide valuable insights and resources for studying stem cell regulation at the organismal level. PMID:27484291

  10. Genome-wide RNAi screen identifies SEC61A and VCP as conserved regulators of Sindbis virus entry

    PubMed Central

    Panda, Debasis; Rose, Patrick P.; Hanna, Sheri L.; Gold, Beth; Hopkins, Kaycie C.; Lyde, Randolph B.; Marks, Michael S.; Cherry, Sara

    2014-01-01

    SUMMARY Alphaviruses are a large class of insect-borne human pathogens and little is known about the host factor requirements for infection. To identify such factors we performed a genome-wide RNAi screen using model Drosophila cells and validated 94 genes that impacted infection of Sindbis virus (SINV), the prototypical alphavirus. We identified a conserved role for SEC61A and VCP in facilitating SINV entry in insects and mammals. SEC61A and VCP selectively regulate trafficking of the entry receptor NRAMP2, and loss of these proteins, or pharmacological inhibition, leads to altered NRAMP2 trafficking to lysosomal compartments, and proteolytic digestion within lysosomes. NRAMP2 is the major iron transporter in cells, and loss of NRAMP2 attenuates intracellular iron transport. Thus, this study reveals new genes and pathways involved in both infection and iron homeostasis that may serve as targets for antiviral therapeutics or for iron imbalance disorders. PMID:24332855

  11. Second-Generation Sequencing Supply an Effective Way to Screen RNAi Targets in Large Scale for Potential Application in Pest Insect Control

    PubMed Central

    Li, Haichao; Miao, Xuexia

    2011-01-01

    The key of RNAi approach success for potential insect pest control is mainly dependent on careful target selection and a convenient delivery system. We adopted second-generation sequencing technology to screen RNAi targets. Illumina's RNA-seq and digital gene expression tag profile (DGE-tag) technologies were used to screen optimal RNAi targets from Ostrinia furnalalis. Total 14690 stage specific genes were obtained which can be considered as potential targets, and 47 were confirmed by qRT-PCR. Ten larval stage specific expression genes were selected for RNAi test. When 50 ng/µl dsRNAs of the genes DS10 and DS28 were directly sprayed on the newly hatched larvae which placed on the filter paper, the larval mortalities were around 40∼50%, while the dsRNAs of ten genes were sprayed on the larvae along with artificial diet, the mortalities reached 73% to 100% at 5 d after treatment. The qRT-PCR analysis verified the correlation between larval mortality and the down-regulation of the target gene expression. Topically applied fluorescent dsRNA confirmed that dsRNA did penetrate the body wall and circulate in the body cavity. It seems likely that the combination of DGE-tag with RNA-seq is a rapid, high-throughput, cost less and an easy way to select the candidate target genes for RNAi. More importantly, it demonstrated that dsRNAs are able to penetrate the integument and cause larval developmental stunt and/or death in a lepidopteron insect. This finding largely broadens the target selection for RNAi from just gut-specific genes to the targets in whole insects and may lead to new strategies for designing RNAi-based technology against insect damage. PMID:21494551

  12. Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control.

    PubMed

    Wang, Yubing; Zhang, Hao; Li, Haichao; Miao, Xuexia

    2011-04-11

    The key of RNAi approach success for potential insect pest control is mainly dependent on careful target selection and a convenient delivery system. We adopted second-generation sequencing technology to screen RNAi targets. Illumina's RNA-seq and digital gene expression tag profile (DGE-tag) technologies were used to screen optimal RNAi targets from Ostrinia furnalalis. Total 14690 stage specific genes were obtained which can be considered as potential targets, and 47 were confirmed by qRT-PCR. Ten larval stage specific expression genes were selected for RNAi test. When 50 ng/µl dsRNAs of the genes DS10 and DS28 were directly sprayed on the newly hatched larvae which placed on the filter paper, the larval mortalities were around 40∼50%, while the dsRNAs of ten genes were sprayed on the larvae along with artificial diet, the mortalities reached 73% to 100% at 5 d after treatment. The qRT-PCR analysis verified the correlation between larval mortality and the down-regulation of the target gene expression. Topically applied fluorescent dsRNA confirmed that dsRNA did penetrate the body wall and circulate in the body cavity. It seems likely that the combination of DGE-tag with RNA-seq is a rapid, high-throughput, cost less and an easy way to select the candidate target genes for RNAi. More importantly, it demonstrated that dsRNAs are able to penetrate the integument and cause larval developmental stunt and/or death in a lepidopteron insect. This finding largely broadens the target selection for RNAi from just gut-specific genes to the targets in whole insects and may lead to new strategies for designing RNAi-based technology against insect damage.

  13. Reliance of Wolbachia on High Rates of Host Proteolysis Revealed by a Genome-Wide RNAi Screen of Drosophila Cells.

    PubMed

    White, Pamela M; Serbus, Laura R; Debec, Alain; Codina, Adan; Bray, Walter; Guichet, Antoine; Lokey, R Scott; Sullivan, William

    2017-04-01

    Wolbachia are gram-negative, obligate, intracellular bacteria carried by a majority of insect species worldwide. Here we use a Wolbachia-infected Drosophila cell line and genome-wide RNA interference (RNAi) screening to identify host factors that influence Wolbachia titer. By screening an RNAi library targeting 15,699 transcribed host genes, we identified 36 candidate genes that dramatically reduced Wolbachia titer and 41 that increased Wolbachia titer. Host gene knockdowns that reduced Wolbachia titer spanned a broad array of biological pathways including genes that influenced mitochondrial function and lipid metabolism. In addition, knockdown of seven genes in the host ubiquitin and proteolysis pathways significantly reduced Wolbachia titer. To test the in vivo relevance of these results, we found that drug and mutant inhibition of proteolysis reduced levels of Wolbachia in the Drosophila oocyte. The presence of Wolbachia in either cell lines or oocytes dramatically alters the distribution and abundance of ubiquitinated proteins. Functional studies revealed that maintenance of Wolbachia titer relies on an intact host Endoplasmic Reticulum (ER)-associated protein degradation pathway (ERAD). Accordingly, electron microscopy studies demonstrated that Wolbachia is intimately associated with the host ER and dramatically alters the morphology of this organelle. Given Wolbachia lack essential amino acid biosynthetic pathways, the reliance of Wolbachia on high rates of host proteolysis via ubiquitination and the ERAD pathways may be a key mechanism for provisioning Wolbachia with amino acids. In addition, the reliance of Wolbachia on the ERAD pathway and disruption of ER morphology suggests a previously unsuspected mechanism for Wolbachia's potent ability to prevent RNA virus replication. Copyright © 2017 by the Genetics Society of America.

  14. Identification of gene knockdown targets conferring enhanced isobutanol and 1-butanol tolerance to Saccharomyces cerevisiae using a tunable RNAi screening approach.

    PubMed

    Crook, Nathan; Sun, Jie; Morse, Nicholas; Schmitz, Alexander; Alper, Hal S

    2016-12-01

    Improving yeast tolerance to 1-butanol and isobutanol is a step toward enabling high-titer production. To identify previously unknown genetic targets leading to increased tolerance, we establish a tunable RNA interference (RNAi) screening approach. Specifically, we optimized the efficiency and tunability of RNA interference library screening in yeast, ultimately enabling downregulation efficiencies from 0 to 94 %. Using this system, we identified the Hsp70 family as a key regulator of isobutanol tolerance in a single round of screening, with downregulation of these genes conferring up to 64 % increased growth in 12 g/L isobutanol. For 1-butanol, we find through two rounds of iterative screening that the combined downregulation of alcohol dehydrogenase and enolase improves growth up to 3100 % in 10 g/L 1-butanol. Collectively, this work improves the tunability of RNAi in yeast as demonstrated by the discovery of novel effectors for these complex phenotypes.

  15. Systematic comparison of CRISPR-Cas9 and RNAi screens for essential genes

    PubMed Central

    Morgens, David W; Deans, Richard M; Li, Amy; Bassik, Michael C

    2016-01-01

    We compare the ability of shRNA and CRISPR/Cas9 screens to identify essential genes in the human chronic myelogenous leukemia cell line K562. We find that the precision of the two libraries in detecting essential genes is similar and that combining data from both screens improves performance. Notably, results from the two screens show little correlation, which can be partially explained by identification of distinct essential biological processes with each technology. PMID:27159373

  16. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes.

    PubMed

    Morgens, David W; Deans, Richard M; Li, Amy; Bassik, Michael C

    2016-06-01

    We compared the ability of short hairpin RNA (shRNA) and CRISPR/Cas9 screens to identify essential genes in the human chronic myelogenous leukemia cell line K562. We found that the precision of the two libraries in detecting essential genes was similar and that combining data from both screens improved performance. Notably, results from the two screens showed little correlation, which can be partially explained by the identification of distinct essential biological processes with each technology.

  17. A Paired RNAi and RabGAP Overexpression Screen Identifies Rab11 as a Regulator of β-Amyloid Production

    PubMed Central

    Udayar, Vinod; Buggia-Prévot, Virginie; Guerreiro, Rita L.; Siegel, Gabriele; Rambabu, Naresh; Soohoo, Amanda L.; Ponnusamy, Moorthi; Siegenthaler, Barbara; Bali, Jitin; Guerreiro, Rita; Brás, José; Sassi, Celeste; Gibbs, J. Raphael; Hernandez, Dena; Lupton, Michelle K.; Brown, Kristelle; Morgan, Kevin; Powell, John; Singleton, Andrew; Hardy, John; Simons, Mikael; Ries, Jonas; Puthenveedu, Manojkumar A.; Hardy, John; Thinakaran, Gopal; Rajendran, Lawrence

    2014-01-01

    Summary Alzheimer’s disease (AD) is characterized by cerebral deposition of β-amyloid (Aβ) peptides, which are generated from amyloid precursor protein (APP) by β- and γ-secretases. APP and the secretases are membrane associated, but whether membrane trafficking controls Aβ levels is unclear. Here, we performed an RNAi screen of all human Rab-GTPases, which regulate membrane trafficking, complemented with a Rab-GTPase-activating protein screen, and present a road map of the membrane-trafficking events regulating Aβ production. We identify Rab11 and Rab3 as key players. Although retromers and retromer-associated proteins control APP recycling, we show that Rab11 controlled β-secretase endosomal recycling to the plasma membrane and thus affected Aβ production. Exome sequencing revealed a significant genetic association of Rab11A with late-onset AD, and network analysis identified Rab11A and Rab11B as components of the late-onset AD risk network, suggesting a causal link between Rab11 and AD. Our results reveal trafficking pathways that regulate Aβ levels and show how systems biology approaches can unravel the molecular complexity underlying AD. PMID:24373285

  18. Identifying Breast Tumor Suppressors Using in Vitro and in Vivo RNAi Screens

    DTIC Science & Technology

    2011-10-01

    identification of novel genes involved in the initiation and development of tumors are critical. During this research period we conducted the first whole human ... genome in vivo RNA interference screen to identify functionally important tumor suppressor genes. Using our novel approach, we identified previously

  19. A Genome-wide RNAi screening method to discover novel genes involved in virus infection

    PubMed Central

    Panda, Debasis; Cherry, Sara

    2015-01-01

    Systematic and comprehensive analysis of host cell proteins involved in virus infection has been difficult in large part due to the lack of robust unbiased methods for their identification. Recent technological breakthroughs allowing development of cell-based genetic screens have greatly facilitated our understanding of virus-host interactions. These include instrumentation for processing in microtiter plates (e.g. 384 well), coupled with sensitive readers and off-the-shelf analysis and informatics pipelines. Because viruses are a significant threat to human health, a better understanding of the cellular factors that impact infection would pave the way for the development of new therapeutics. Here we describe the development and implementation of a genome-wide siRNA screen against a virus using human cells. PMID:26164699

  20. RNAi screens identify CHD4 as an essential gene in breast cancer growth

    PubMed Central

    Cicalese, Angelo; Fornasari, Lorenzo; Furia, Laura; Riva, Laura; Carugo, Alessandro; Curigliano, Giuseppe; Criscitiello, Carmen; Pruneri, Giancarlo; Pelicci, Pier Giuseppe; Faretta, Mario; Bossi, Daniela; Lanfrancone, Luisa

    2016-01-01

    Epigenetic regulation plays an essential role in tumor development and epigenetic modifiers are considered optimal potential druggable candidates. In order to identify new breast cancer vulnerabilities and improve therapeutic chances for patients, we performed in vivo and in vitro shRNA screens in a human breast cancer cell model (MCF10DCIS.com cell line) using epigenetic libraries. Among the genes identified in our screening, we deeply investigated the role of Chromodomain Helicase DNA binding Protein 4 (CHD4) in breast cancer tumorigenesis. CHD4 silencing significantly reduced tumor growth in vivo and proliferation in vitro of MCF10DCIS.com cells. Similarly, in vivo breast cancer growth was decreased in a spontaneous mouse model of breast carcinoma (MMTV-NeuT system) and in metastatic patient-derived xenograft models. Conversely, no reduction in proliferative ability of non-transformed mammary epithelial cells (MCF10A) was detected. Moreover, we showed that CHD4 depletion arrests proliferation by inducing a G0/G1 block of cell cycle associated with up-regulation of CDKN1A (p21). These results highlight the relevance of genetic screens in the identification of tumor frailties and the role of CHD4 as a potential pharmacological target to inhibit breast cancer growth. PMID:27779108

  1. A Bow-Tie Genetic Architecture for Morphogenesis Suggested by a Genome-Wide RNAi Screen in Caenorhabditis elegans

    PubMed Central

    Nelson, Matthew D.; Zhou, Elinor; Kiontke, Karin; Fradin, Hélène; Maldonado, Grayson; Martin, Daniel; Shah, Khushbu; Fitch, David H. A.

    2011-01-01

    During animal development, cellular morphogenesis plays a fundamental role in determining the shape and function of tissues and organs. Identifying the components that regulate and drive morphogenesis is thus a major goal of developmental biology. The four-celled tip of the Caenorhabditis elegans male tail is a simple but powerful model for studying the mechanism of morphogenesis and its spatiotemporal regulation. Here, through a genome-wide post-embryonic RNAi-feeding screen, we identified 212 components that regulate or participate in male tail tip morphogenesis. We constructed a working hypothesis for a gene regulatory network of tail tip morphogenesis. We found regulatory roles for the posterior Hox genes nob-1 and php-3, the TGF-β pathway, nuclear hormone receptors (e.g. nhr-25), the heterochronic gene blmp-1, and the GATA transcription factors egl-18 and elt-6. The majority of the pathways converge at dmd-3 and mab-3. In addition, nhr-25 and dmd-3/mab-3 regulate each others' expression, thus placing these three genes at the center of a complex regulatory network. We also show that dmd-3 and mab-3 negatively regulate other signaling pathways and affect downstream cellular processes such as vesicular trafficking (e.g. arl-1, rme-8) and rearrangement of the cytoskeleton (e.g. cdc-42, nmy-1, and nmy-2). Based on these data, we suggest that male tail tip morphogenesis is governed by a gene regulatory network with a bow-tie architecture. PMID:21408209

  2. Exploring Potential Germline-Associated Roles of the TRIM-NHL Protein NHL-2 Through RNAi Screening.

    PubMed

    Davis, Gregory M; Low, Wai Y; Anderson, Joshua W T; Boag, Peter R

    2017-10-05

    TRIM-NHL proteins are highly conserved regulators of developmental pathways in vertebrates and invertebrates. The TRIM-NHL family member NHL-2 in Caenorhabditis elegans functions as a miRNA cofactor to regulate developmental timing. Similar regulatory roles have been reported in other model systems, with the mammalian ortholog in mice, TRIM32, contributing to muscle and neuronal cell proliferation via miRNA activity. Given the interest associated with TRIM-NHL family proteins, we aimed to further investigate the role of NHL-2 in C. elegans development by using a synthetic RNAi screening approach. Using the ORFeome library, we knocked down 11,942 genes in wild-type animals and nhl-2 null mutants. In total, we identified 42 genes that produced strong reproductive synthetic phenotypes when knocked down in nhl-2 null mutants, with little or no change when knocked down in wild-type animals. These included genes associated with transcriptional processes, chromosomal integrity, and key cofactors of the germline small 22G RNA pathway. Copyright © 2017 Davis et al.

  3. RNAi screen of Salmonella invasion shows role of COPI in membrane targeting of cholesterol and Cdc42

    PubMed Central

    Misselwitz, Benjamin; Dilling, Sabrina; Vonaesch, Pascale; Sacher, Raphael; Snijder, Berend; Schlumberger, Markus; Rout, Samuel; Stark, Manuel; Mering, Christian von; Pelkmans, Lucas; Hardt, Wolf-Dietrich

    2011-01-01

    The pathogen Salmonella Typhimurium is a common cause of diarrhea and invades the gut tissue by injecting a cocktail of virulence factors into epithelial cells, triggering actin rearrangements, membrane ruffling and pathogen entry. One of these factors is SopE, a G-nucleotide exchange factor for the host cellular Rho GTPases Rac1 and Cdc42. How SopE mediates cellular invasion is incompletely understood. Using genome-scale RNAi screening we identified 72 known and novel host cell proteins affecting SopE-mediated entry. Follow-up assays assigned these ‘hits' to particular steps of the invasion process; i.e., binding, effector injection, membrane ruffling, membrane closure and maturation of the Salmonella-containing vacuole. Depletion of the COPI complex revealed a unique effect on virulence factor injection and membrane ruffling. Both effects are attributable to mislocalization of cholesterol, sphingolipids, Rac1 and Cdc42 away from the plasma membrane into a large intracellular compartment. Equivalent results were obtained with the vesicular stomatitis virus. Therefore, COPI-facilitated maintenance of lipids may represent a novel, unifying mechanism essential for a wide range of pathogens, offering opportunities for designing new drugs. PMID:21407211

  4. RNAi screens for Rho GTPase regulators of cell shape and YAP/TAZ localisation in triple negative breast cancer.

    PubMed

    Pascual-Vargas, Patricia; Cooper, Samuel; Sero, Julia; Bousgouni, Vicky; Arias-Garcia, Mar; Bakal, Chris

    2017-03-01

    In order to metastasise, triple negative breast cancer (TNBC) must make dynamic changes in cell shape. The shape of all eukaryotic cells is regulated by Rho Guanine Nucleotide Exchange Factors (RhoGEFs), which activate Rho-family GTPases in response to mechanical and informational cues. In contrast, Rho GTPase-activating proteins (RhoGAPs) inhibit Rho GTPases. However, which RhoGEFs and RhoGAPS couple TNBC cell shape to changes in their environment is very poorly understood. Moreover, whether the activity of particular RhoGEFs and RhoGAPs become dysregulated as cells evolve the ability to metastasise is not clear. Towards the ultimate goal of identifying RhoGEFs and RhoGAPs that are essential for TNBC metastasis, we performed an RNAi screen to isolate RhoGEFs and RhoGAPs that contribute to the morphogenesis of the highly metastatic TNBC cell line LM2, and its less-metastatic parental cell line MDA-MB-231. For ~6 million cells from each cell line, we measured 127 different features following the depletion of 142 genes. Using a linear classifier scheme we also describe the morphological heterogeneity of each gene-depleted population.

  5. New Genes Tied to Endocrine, Metabolic, and Dietary Regulation of Lifespan from a Caenorhabditis elegans Genomic RNAi Screen

    PubMed Central

    Dillin, Andrew; Kenyon, Cynthia

    2005-01-01

    Most of our knowledge about the regulation of aging comes from mutants originally isolated for other phenotypes. To ask whether our current view of aging has been affected by selection bias, and to deepen our understanding of known longevity pathways, we screened a genomic Caenorhabditis elegans RNAi library for clones that extend lifespan. We identified 23 new longevity genes affecting signal transduction, the stress response, gene expression, and metabolism and assigned these genes to specific longevity pathways. Our most important findings are (i) that dietary restriction extends C. elegans' lifespan by down-regulating expression of key genes, including a gene required for methylation of many macromolecules, (ii) that integrin signaling is likely to play a general, evolutionarily conserved role in lifespan regulation, and (iii) that specific lipophilic hormones may influence lifespan in a DAF-16/FOXO-dependent fashion. Surprisingly, of the new genes that have conserved sequence domains, only one could not be associated with a known longevity pathway. Thus, our current view of the genetics of aging has probably not been distorted substantially by selection bias. PMID:16103914

  6. A Genomewide RNAi Screen for Genes That Affect the Stability, Distribution and Function of P Granules in Caenorhabditis elegans

    PubMed Central

    Updike, Dustin L.; Strome, Susan

    2009-01-01

    P granules are non-membrane-bound organelles found in the germ-line cytoplasm throughout Caenorhabditis elegans development. Like their “germ granule” counterparts in other animals, P granules are thought to act as determinants of the identity and special properties of germ cells, properties that include the unique ability to give rise to all tissues of future generations of an organism. Therefore, understanding how P granules work is critical to understanding how cellular immortality and totipotency are retained, gained, and lost. Here we report on a genomewide RNAi screen in C. elegans, which identified 173 genes that affect the stability, localization, and function of P granules. Many of these genes fall into specific classes with shared P-granule phenotypes, allowing us to better understand how cellular processes such as protein degradation, translation, splicing, nuclear transport, and mRNA homeostasis converge on P-granule assembly and function. One of the more striking phenotypes is caused by the depletion of CSR-1, an Argonaute associated with an endogenous siRNA pathway that functions in the germ line. We show that CSR-1 and two other endo-siRNA pathway members, the RNA-dependent RNA polymerase EGO-1 and the helicase DRH-3, act to antagonize RNA and P-granule accumulation in the germ line. Our findings strengthen the emerging view that germ granules are involved in numerous aspects of RNA metabolism, including an endo-siRNA pathway in germ cells. PMID:19805813

  7. Genome-wide RNAi screen for synthetic lethal interactions with the C. elegans kinesin-5 homolog BMK-1

    PubMed Central

    Maia, André F.; Tanenbaum, Marvin E.; Galli, Matilde; Lelieveld, Daphne; Egan, David A.; Gassmann, Reto; Sunkel, Claudio E.; van den Heuvel, Sander; Medema, René H.

    2015-01-01

    Kinesins are a superfamily of microtubule-based molecular motors that perform various transport needs and have essential roles in cell division. Among these, the kinesin-5 family has been shown to play a major role in the formation and maintenance of the bipolar mitotic spindle. Moreover, recent work suggests that kinesin-5 motors may have additional roles. In contrast to most model organisms, the sole kinesin-5 gene in Caenorhabditis elegans, bmk-1, is not required for successful mitosis and animals lacking bmk-1 are viable and fertile. To gain insight into factors that may act redundantly with BMK-1 in spindle assembly and to identify possible additional cellular pathways involving BMK-1, we performed a synthetic lethal screen using the bmk-1 deletion allele ok391. We successfully knocked down 82% of the C. elegans genome using RNAi and assayed viability in bmk-1(ok391) and wild type strains using an automated high-throughput approach based on fluorescence microscopy. The dataset includes a final list of 37 synthetic lethal interactions whose further study is likely to provide insight into kinesin-5 function. PMID:25984351

  8. RNAi screens for Rho GTPase regulators of cell shape and YAP/TAZ localisation in triple negative breast cancer

    PubMed Central

    Pascual-Vargas, Patricia; Cooper, Samuel; Sero, Julia; Bousgouni, Vicky; Arias-Garcia, Mar; Bakal, Chris

    2017-01-01

    In order to metastasise, triple negative breast cancer (TNBC) must make dynamic changes in cell shape. The shape of all eukaryotic cells is regulated by Rho Guanine Nucleotide Exchange Factors (RhoGEFs), which activate Rho-family GTPases in response to mechanical and informational cues. In contrast, Rho GTPase-activating proteins (RhoGAPs) inhibit Rho GTPases. However, which RhoGEFs and RhoGAPS couple TNBC cell shape to changes in their environment is very poorly understood. Moreover, whether the activity of particular RhoGEFs and RhoGAPs become dysregulated as cells evolve the ability to metastasise is not clear. Towards the ultimate goal of identifying RhoGEFs and RhoGAPs that are essential for TNBC metastasis, we performed an RNAi screen to isolate RhoGEFs and RhoGAPs that contribute to the morphogenesis of the highly metastatic TNBC cell line LM2, and its less-metastatic parental cell line MDA-MB-231. For ~6 million cells from each cell line, we measured 127 different features following the depletion of 142 genes. Using a linear classifier scheme we also describe the morphological heterogeneity of each gene-depleted population. PMID:28248929

  9. A genomewide RNAi screen for genes that affect the stability, distribution and function of P granules in Caenorhabditis elegans.

    PubMed

    Updike, Dustin L; Strome, Susan

    2009-12-01

    P granules are non-membrane-bound organelles found in the germ-line cytoplasm throughout Caenorhabditis elegans development. Like their "germ granule" counterparts in other animals, P granules are thought to act as determinants of the identity and special properties of germ cells, properties that include the unique ability to give rise to all tissues of future generations of an organism. Therefore, understanding how P granules work is critical to understanding how cellular immortality and totipotency are retained, gained, and lost. Here we report on a genomewide RNAi screen in C. elegans, which identified 173 genes that affect the stability, localization, and function of P granules. Many of these genes fall into specific classes with shared P-granule phenotypes, allowing us to better understand how cellular processes such as protein degradation, translation, splicing, nuclear transport, and mRNA homeostasis converge on P-granule assembly and function. One of the more striking phenotypes is caused by the depletion of CSR-1, an Argonaute associated with an endogenous siRNA pathway that functions in the germ line. We show that CSR-1 and two other endo-siRNA pathway members, the RNA-dependent RNA polymerase EGO-1 and the helicase DRH-3, act to antagonize RNA and P-granule accumulation in the germ line. Our findings strengthen the emerging view that germ granules are involved in numerous aspects of RNA metabolism, including an endo-siRNA pathway in germ cells.

  10. Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator

    PubMed Central

    Jung, Jennifer; Nayak, Arnab; Schaeffer, Véronique; Starzetz, Tatjana; Kirsch, Achim K; Müller, Stefan; Dikic, Ivan; Mittelbronn, Michel; Behrends, Christian

    2017-01-01

    Autophagy is an intracellular recycling and degradation pathway that depends on membrane trafficking. Rab GTPases are central for autophagy but their regulation especially through the activity of Rab GEFs remains largely elusive. We employed a RNAi screen simultaneously monitoring different populations of autophagosomes and identified 34 out of 186 Rab GTPase, GAP and GEF family members as potential autophagy regulators, amongst them SMCR8. SMCR8 uses overlapping binding regions to associate with C9ORF72 or with a C9ORF72-ULK1 kinase complex holo-assembly, which function in maturation and formation of autophagosomes, respectively. While focusing on the role of SMCR8 during autophagy initiation, we found that kinase activity and gene expression of ULK1 are increased upon SMCR8 depletion. The latter phenotype involved association of SMCR8 with the ULK1 gene locus. Global mRNA expression analysis revealed that SMCR8 regulates transcription of several other autophagy genes including WIPI2. Collectively, we established SMCR8 as multifaceted negative autophagy regulator. DOI: http://dx.doi.org/10.7554/eLife.23063.001 PMID:28195531

  11. A simple method for analyzing actives in random RNAi screens: introducing the “H Score” for hit nomination & gene prioritization

    PubMed Central

    Bhinder, Bhavneet; Djaballah, Hakim

    2013-01-01

    Due to the numerous challenges in hit identification from random RNAi screening, we have examined current practices with a discovery of a variety of methodologies employed and published in many reports; majority of them, unfortunately, do not address the minimum associated criteria for hit nomination, as this could potentially have been the cause or may well be the explanation as to the lack of confirmation and follow up studies, currently facing the RNAi field. Overall, we find that these criteria or parameters are not well defined, in most cases arbitrary in nature, and hence rendering it extremely difficult to judge the quality of and confidence in nominated hits across published studies. For this purpose, we have developed a simple method to score actives independent of assay readout; and provide, for the first time, a homogenous platform enabling cross-comparison of active gene lists resulting from different RNAi screening technologies. Here, we report on our recently developed method dedicated to RNAi data output analysis referred to as the BDA method applicable to both arrayed and pooled RNAi technologies; wherein the concerns pertaining to inconsistent hit nomination and off-target silencing in conjugation with minimal activity criteria to identify a high value target are addressed. In this report, a combined hit rate per gene, called “H score”, is introduced and defined. The H score provides a very useful tool for stringent active gene nomination, gene list comparison across multiple studies, prioritization of hits, and evaluation of the quality of the nominated gene hits. PMID:22934950

  12. Nodes-and-connections RNAi knockdown screening: identification of a signaling molecule network involved in fulvestrant action and breast cancer prognosis

    PubMed Central

    Miyoshi, N; Wittner, B S; Shioda, K; Hitora, T; Ito, T; Ramaswamy, S; Isselbacher, K J; Sgroi, D C; Shioda, T

    2015-01-01

    Although RNA interference (RNAi) knockdown screening of cancer cell cultures is an effective approach to predict drug targets or therapeutic/prognostic biomarkers, interactions among identified targets often remain obscure. Here, we introduce the nodes-and-connections RNAi knockdown screening that generates a map of target interactions through systematic iterations of in silico prediction of targets and their experimental validation. An initial RNAi knockdown screening of MCF-7 human breast cancer cells targeting 6560 proteins identified four signaling molecules required for their fulvestrant-induced apoptosis. Signaling molecules physically or functionally interacting with these four primary node targets were computationally predicted and experimentally validated, resulting in identification of four second-generation nodes. Three rounds of further iterations of the prediction–validation cycle generated third, fourth and fifth generation of nodes, completing a 19-node interaction map that contained three predicted nodes but without experimental validation because of technical limitations. The interaction map involved all three members of the death-associated protein kinases (DAPKs) as well as their upstream and downstream signaling molecules (calmodulins and myosin light chain kinases), suggesting that DAPKs play critical roles in the cytocidal action of fulvestrant. The in silico Kaplan–Meier analysis of previously reported human breast cancer cohorts demonstrated significant prognostic predictive power for five of the experimentally validated nodes and for three of the prediction-only nodes. Immunohistochemical studies on the expression of 10 nodal proteins in human breast cancer tissues not only supported their prognostic prediction power but also provided statistically significant evidence of their synchronized expression, implying functional interactions among these nodal proteins. Thus, the Nodes-and-Connections approach to RNAi knockdown screening yields

  13. Genome-wide RNAi screening identifies host restriction factors critical for in vivo AAV transduction.

    PubMed

    Mano, Miguel; Ippodrino, Rudy; Zentilin, Lorena; Zacchigna, Serena; Giacca, Mauro

    2015-09-08

    Viral vectors based on the adeno-associated virus (AAV) hold great promise for in vivo gene transfer; several unknowns, however, still limit the vectors' broader and more efficient application. Here, we report the results of a high-throughput, whole-genome siRNA screening aimed at identifying cellular factors regulating AAV transduction. We identified 1,483 genes affecting vector efficiency more than 4-fold and up to 50-fold, either negatively or positively. Most of these factors have not previously been associated to AAV infection. The most effective siRNAs were independent from the virus serotype or analyzed cell type and were equally evident for single-stranded and self-complementary AAV vectors. A common characteristic of the most effective siRNAs was the induction of cellular DNA damage and activation of a cell cycle checkpoint. This information can be exploited for the development of more efficient AAV-based gene delivery procedures. Administration of the most effective siRNAs identified by the screening to the liver significantly improved in vivo AAV transduction efficiency.

  14. Genome-wide RNAi screening identifies host restriction factors critical for in vivo AAV transduction

    PubMed Central

    Mano, Miguel; Ippodrino, Rudy; Zentilin, Lorena; Zacchigna, Serena; Giacca, Mauro

    2015-01-01

    Viral vectors based on the adeno-associated virus (AAV) hold great promise for in vivo gene transfer; several unknowns, however, still limit the vectors’ broader and more efficient application. Here, we report the results of a high-throughput, whole-genome siRNA screening aimed at identifying cellular factors regulating AAV transduction. We identified 1,483 genes affecting vector efficiency more than 4-fold and up to 50-fold, either negatively or positively. Most of these factors have not previously been associated to AAV infection. The most effective siRNAs were independent from the virus serotype or analyzed cell type and were equally evident for single-stranded and self-complementary AAV vectors. A common characteristic of the most effective siRNAs was the induction of cellular DNA damage and activation of a cell cycle checkpoint. This information can be exploited for the development of more efficient AAV-based gene delivery procedures. Administration of the most effective siRNAs identified by the screening to the liver significantly improved in vivo AAV transduction efficiency. PMID:26305933

  15. Functional screening of mammalian mechanosensitive genes using Drosophila RNAi library– Smarcd3/Bap60 is a mechanosensitive pro-inflammatory gene

    PubMed Central

    Kumar, Sandeep; Jang, In-hwan; Kim, Chan Woo; Kang, Dong-Won; Lee, Won Jae; Jo, Hanjoong

    2016-01-01

    Disturbed blood flow (d-flow) induces atherosclerosis by altering the expression of mechanosensitive genes in the arterial endothelium. Previously, we identified >580 mechanosensitive genes in the mouse arterial endothelium, but their role in endothelial inflammation is incompletely understood. From this set, we obtained 84 Drosophila RNAi lines that silences the target gene under the control of upstream activation sequence (UAS) promoter. These lines were crossed with C564-GAL4 flies expressing GFP under the control of drosomycin promoter, an NF-κB target gene and a marker of pathogen-induced inflammation. Silencing of psmd12 or ERN1 decreased infection-induced drosomycin expression, while Bap60 silencing significantly increased the drosomycin expression. Interestingly, knockdown of Bap60 in adult flies using temperature-inducible Bap60 RNAi (C564ts-GAL4-Bap60-RNAi) enhanced drosomycin expression upon Gram-positive bacterial challenge but the basal drosomycin expression remained unchanged compared to the control. In the mammalian system, smarcd3 (mammalian ortholog of Bap60) expression was reduced in the human- and mouse aortic endothelial cells exposed to oscillatory shear in vitro as well as in the d-flow regions of mouse arterial endothelium in vivo. Moreover, siRNA-mediated knockdown of smarcd3 induced endothelial inflammation. In summary, we developed an in vivo Drosophila RNAi screening method to identify flow-sensitive genes that regulate endothelial inflammation. PMID:27819340

  16. Comparative RNAi screening identifies a conserved core metazoan actinome by phenotype

    PubMed Central

    Sims, David; Liu, Tao; Fedorova, Marina; Schöck, Frieder; Dopie, Joseph; Vartiainen, Maria K.; Kiger, Amy A.; Perrimon, Norbert

    2011-01-01

    Although a large number of actin-binding proteins and their regulators have been identified through classical approaches, gaps in our knowledge remain. Here, we used genome-wide RNA interference as a systematic method to define metazoan actin regulators based on visual phenotype. Using comparative screens in cultured Drosophila and human cells, we generated phenotypic profiles for annotated actin regulators together with proteins bearing predicted actin-binding domains. These phenotypic clusters for the known metazoan “actinome” were used to identify putative new core actin regulators, together with a number of genes with conserved but poorly studied roles in the regulation of the actin cytoskeleton, several of which we studied in detail. This work suggests that although our search for new components of the core actin machinery is nearing saturation, regulation at the level of nuclear actin export, RNA splicing, ubiquitination, and other upstream processes remains an important but unexplored frontier of actin biology. PMID:21893601

  17. High-throughput RNAi screening in vitro: From cell lines to primary cells

    PubMed Central

    OVCHARENKO, DMITRIY; JARVIS, RICHARD; HUNICKE-SMITH, SCOTT; KELNAR, KEVIN; BROWN, DAVID

    2005-01-01

    Small interfering RNAs (siRNAs) are being used to induce sequence-specific gene silencing in cultured cells to study mammalian gene function. Libraries of siRNAs targeting entire human gene classes can be used to identify genes with specific cellular functions. Here we describe high-throughput siRNA delivery methods to facilitate siRNA library screening experiments with both immortalized and primary cells. We adapted chemical reverse transfection for immortalized adherent cell lines in a 96-well format. The method is fast, robust, and exceptionally effective for many cell types. For primary cells and immortalized cells that are recalcitrant to lipofection-based methods, we developed electropermeabilization (electroporation) conditions that facilitate siRNA delivery to a broad range of cell types, including primary human T-cells, hMSC, NHA, NDHF-Neo, HUVEC, DI TNC1, RPTEC, PC12, and K562 cells. To enable high-throughput electropermeabilization of primary cells, we developed a novel 96-well electroporation device that provides highly efficient and reproducible delivery of siRNAs. The combination of high-throughput chemical reverse transfection and electroporation makes it possible to deliver libraries of siRNAs to virtually any cell type, enabling gene function analysis and discovery on a genome scale. PMID:15923380

  18. High-throughput RNAi screening in vitro: from cell lines to primary cells.

    PubMed

    Ovcharenko, Dmitriy; Jarvis, Richard; Hunicke-Smith, Scott; Kelnar, Kevin; Brown, David

    2005-06-01

    Small interfering RNAs (siRNAs) are being used to induce sequence-specific gene silencing in cultured cells to study mammalian gene function. Libraries of siRNAs targeting entire human gene classes can be used to identify genes with specific cellular functions. Here we describe high-throughput siRNA delivery methods to facilitate siRNA library screening experiments with both immortalized and primary cells. We adapted chemical reverse transfection for immortalized adherent cell lines in a 96-well format. The method is fast, robust, and exceptionally effective for many cell types. For primary cells and immortalized cells that are recalcitrant to lipofection-based methods, we developed electropermeabilization (electroporation) conditions that facilitate siRNA delivery to a broad range of cell types, including primary human T-cells, hMSC, NHA, NDHF-Neo, HUVEC, DI TNC1, RPTEC, PC12, and K562 cells. To enable high-throughput electropermeabilization of primary cells, we developed a novel 96-well electroporation device that provides highly efficient and reproducible delivery of siRNAs. The combination of high-throughput chemical reverse transfection and electroporation makes it possible to deliver libraries of siRNAs to virtually any cell type, enabling gene function analysis and discovery on a genome scale.

  19. Genome-Wide RNAi Screen Identifies Novel Host Proteins Required for Alphavirus Entry

    PubMed Central

    Taylor, Gwen M.; Kielian, Margaret

    2013-01-01

    The enveloped alphaviruses include important and emerging human pathogens such as Chikungunya virus and Eastern equine encephalitis virus. Alphaviruses enter cells by clathrin-mediated endocytosis, and exit by budding from the plasma membrane. While there has been considerable progress in defining the structure and function of the viral proteins, relatively little is known about the host factors involved in alphavirus infection. We used a genome-wide siRNA screen to identify host factors that promote or inhibit alphavirus infection in human cells. Fuzzy homologue (FUZ), a protein with reported roles in planar cell polarity and cilia biogenesis, was required for the clathrin-dependent internalization of both alphaviruses and the classical endocytic ligand transferrin. The tetraspanin membrane protein TSPAN9 was critical for the efficient fusion of low pH-triggered virus with the endosome membrane. FUZ and TSPAN9 were broadly required for infection by the alphaviruses Sindbis virus, Semliki Forest virus, and Chikungunya virus, but were not required by the structurally-related flavivirus Dengue virus. Our results highlight the unanticipated functions of FUZ and TSPAN9 in distinct steps of alphavirus entry and suggest novel host proteins that may serve as targets for antiviral therapy. PMID:24367265

  20. Systematic high-content genome-wide RNAi screens of endothelial cell migration and morphology

    PubMed Central

    Williams, Steven P.; Gould, Cathryn M.; Nowell, Cameron J.; Karnezis, Tara; Achen, Marc G.; Simpson, Kaylene J.; Stacker, Steven A.

    2017-01-01

    Many cell types undergo migration during embryogenesis and disease. Endothelial cells line blood vessels and lymphatics, which migrate during development as part of angiogenesis, lymphangiogenesis and other types of vessel remodelling. These processes are also important in wound healing, cancer metastasis and cardiovascular conditions. However, the molecular control of endothelial cell migration is poorly understood. Here, we present a dataset containing siRNA screens that identify known and novel components of signalling pathways regulating migration of lymphatic endothelial cells. These components are compared to signalling in blood vascular endothelial cells. Further, using high-content microscopy, we captured a dataset of images of migrating cells following transfection with a genome-wide siRNA library. These datasets are suitable for the identification and analysis of genes involved in endothelial cell migration and morphology, and for computational approaches to identify signalling networks controlling the migratory response and integration of cell morphology, gene function and cell signaling. This may facilitate identification of protein targets for therapeutically modulating angiogenesis and lymphangiogenesis in the context of human disease. PMID:28248931

  1. Identification of Novel Genes Involved in Sarcopenia Through RNAi Screening in Caenorhabditis elegans

    PubMed Central

    Kashyap, Luv; Perera, Subashan

    2012-01-01

    Background. Aging in humans is characterized by a progressive loss of muscle mass and strength known as sarcopenia. Although considered to be a normal aspect of aging, the loss of strength can have significant effects on the health, functioning, and independence of elderly individuals. Although these aspects of sarcopenia have been well studied, the molecular mechanisms leading to its development are still unclear. The nematode Caenorhabditis elegans might be a novel animal model for sarcopenia as worms experience sarcopenia during aging and mutations affecting the daf-2/insulin-like signaling pathway are able to delay this process. Methods. Via the use of RNA interference, we screened a total of 43 genes, most of which have been shown to be required for the enhanced longevity of daf-2 mutants, to assess for the effects of these genes on muscle function and worm mobility during aging. Results. We identified 17 novel genes that are essential for the delay in the onset of sarcopenia in daf-2 mutants. The identified genes include splicing factors, vacuolar sorting proteins, transcription factors, and metabolic enzymes. Using a transgenic strain that only responds to RNA interference in the body wall muscle, we also found that most of the identified genes act in muscle to prevent the onset of sarcopenia. Conclusions. Our results demonstrate that at least in worms, specific genetic pathways that modify the development of sarcopenia can be identified. Interestingly, almost all the identified genes also have a known human homolog, and hence, our findings may offer significant leads toward the identification of genes involved in sarcopenia in people. PMID:21593014

  2. Signalome-wide RNAi screen identifies GBA1 as a positive mediator of autophagic cell death

    PubMed Central

    Dasari, Santosh K; Bialik, Shani; Levin-Zaidman, Smadar; Levin-Salomon, Vered; Merrill, Alfred H; Futerman, Anthony H; Kimchi, Adi

    2017-01-01

    Activating alternative cell death pathways, including autophagic cell death, is a promising direction to overcome the apoptosis resistance observed in various cancers. Yet, whether autophagy acts as a death mechanism by over consumption of intracellular components is still controversial and remains undefined at the ultrastructural and the mechanistic levels. Here we identified conditions under which resveratrol-treated A549 lung cancer cells die by a mechanism that fulfills the previous definition of autophagic cell death. The cells displayed a strong and sustained induction of autophagic flux, cell death was prevented by knocking down autophagic genes and death occurred in the absence of apoptotic or necroptotic pathway activation. Detailed ultrastructural characterization revealed additional critical events, including a continuous increase over time in the number of autophagic vacuoles, in particular autolysosomes, occupying most of the cytoplasm at terminal stages. This was followed by loss of organelles, disruption of intracellular membranes including the swelling of perinuclear space and, occasionally, a unique type of nuclear shedding. A signalome-wide shRNA-based viability screen was applied to identify positive mediators of this type of autophagic cell death. One top hit was GBA1, the Gaucher disease-associated gene, which encodes glucocerebrosidase, an enzyme that metabolizes glucosylceramide to ceramide and glucose. Interestingly, glucocerebrosidase expression levels and activity were elevated, concomitantly with increased intracellular ceramide levels, both of which correlated in time with the appearance of the unique death characteristics. Transfection with siGBA1 attenuated the increase in glucocerebrosidase activity and the intracellular ceramide levels. Most importantly, GBA1 knockdown prevented the strong increase in LC3 lipidation, and many of the ultrastructural changes characteristic of this type of autophagic cell death, including a significant

  3. Fast-suppressor screening for new components in protein trafficking, organelle biogenesis and silencing pathway in Arabidopsis thaliana using DEX-inducible FREE1-RNAi plants.

    PubMed

    Zhao, Qiong; Gao, Caiji; Lee, PoShing; Liu, Lin; Li, Shaofang; Hu, Tangjin; Shen, Jinbo; Pan, Shuying; Ye, Hao; Chen, Yunru; Cao, Wenhan; Cui, Yong; Zeng, Peng; Yu, Sheng; Gao, Yangbin; Chen, Liang; Mo, Beixin; Liu, Xin; Xiao, Shi; Zhao, Yunde; Zhong, Silin; Chen, Xuemei; Jiang, Liwen

    2015-06-20

    Membrane trafficking is essential for plant growth and responses to external signals. The plant unique FYVE domain-containing protein FREE1 is a component of the ESCRT complex (endosomal sorting complex required for transport). FREE1 plays multiple roles in regulating protein trafficking and organelle biogenesis including the formation of intraluminal vesicles of multivesicular body (MVB), vacuolar protein transport and vacuole biogenesis, and autophagic degradation. FREE1 knockout plants show defective MVB formation, abnormal vacuolar transport, fragmented vacuoles, accumulated autophagosomes, and seedling lethality. To further uncover the underlying mechanisms of FREE1 function in plants, we performed a forward genetic screen for mutants that suppressed the seedling lethal phenotype of FREE1-RNAi transgenic plants. The obtained mutants are termed as suppressors of free1 (sof). To date, 229 putative sof mutants have been identified. Barely detecting of FREE1 protein with M3 plants further identified 84 FREE1-related suppressors. Also 145 mutants showing no reduction of FREE1 protein were termed as RNAi-related mutants. Through next-generation sequencing (NGS) of bulked DNA from F2 mapping population of two RNAi-related sof mutants, FREE1-RNAi T-DNA inserted on chromosome 1 was identified and the causal mutation of putative sof mutant is being identified similarly. These FREE1- and RNAi-related sof mutants will be useful tools and resources for illustrating the underlying mechanisms of FREE1 function in intracellular trafficking and organelle biogenesis, as well as for uncovering the new components involved in the regulation of silencing pathways in plants.

  4. A large-scale in vivo RNAi screen to identify genes involved in Notch-mediated follicle cell differentiation and cell cycle switches

    PubMed Central

    Jia, Dongyu; Soylemez, Muhammed; Calvin, Gabriel; Bornmann, Randy; Bryant, Jamal; Hanna, Cameron; Huang, Yi-Chun; Deng, Wu-Min

    2015-01-01

    During Drosophila oogenesis, follicle cells sequentially undergo three distinct cell-cycle programs: the mitotic cycle, endocycle, and gene amplification. Notch signaling plays a central role in regulating follicle-cell differentiation and cell-cycle switches; its activation is essential for the mitotic cycle/endocycle (M/E) switch. Cut, a linker between Notch signaling and cell-cycle regulators, is specifically downregulated by Notch during the endocycle stage. To determine how signaling pathways coordinate during the M/E switch and to identify novel genes involved in follicle cell differentiation, we performed an in vivo RNAi screen through induced knockdown of gene expression and examination of Cut expression in follicle cells. We screened 2205 RNAi lines and found 33 genes regulating Cut expression during the M/E switch. These genes were confirmed with the staining of two other Notch signaling downstream factors, Hindsight and Broad, and validated with multiple independent RNAi lines. We applied gene ontology software to find enriched biological meaning and compared our results with other publications to find conserved genes across tissues. Specifically, we found earlier endocycle entry in anterior follicle cells than those in the posterior, identified that the insulin-PI3K pathway participates in the precise M/E switch, and suggested Nejire as a cofactor of Notch signaling during oogenesis. PMID:26205122

  5. A large-scale in vivo RNAi screen to identify genes involved in Notch-mediated follicle cell differentiation and cell cycle switches.

    PubMed

    Jia, Dongyu; Soylemez, Muhammed; Calvin, Gabriel; Bornmann, Randy; Bryant, Jamal; Hanna, Cameron; Huang, Yi-Chun; Deng, Wu-Min

    2015-07-24

    During Drosophila oogenesis, follicle cells sequentially undergo three distinct cell-cycle programs: the mitotic cycle, endocycle, and gene amplification. Notch signaling plays a central role in regulating follicle-cell differentiation and cell-cycle switches; its activation is essential for the mitotic cycle/endocycle (M/E) switch. Cut, a linker between Notch signaling and cell-cycle regulators, is specifically downregulated by Notch during the endocycle stage. To determine how signaling pathways coordinate during the M/E switch and to identify novel genes involved in follicle cell differentiation, we performed an in vivo RNAi screen through induced knockdown of gene expression and examination of Cut expression in follicle cells. We screened 2205 RNAi lines and found 33 genes regulating Cut expression during the M/E switch. These genes were confirmed with the staining of two other Notch signaling downstream factors, Hindsight and Broad, and validated with multiple independent RNAi lines. We applied gene ontology software to find enriched biological meaning and compared our results with other publications to find conserved genes across tissues. Specifically, we found earlier endocycle entry in anterior follicle cells than those in the posterior, identified that the insulin-PI3K pathway participates in the precise M/E switch, and suggested Nejire as a cofactor of Notch signaling during oogenesis.

  6. Systems level-based RNAi screening by high content analysis identifies UBR5 as a regulator of estrogen receptor-α protein levels and activity.

    PubMed

    Bolt, M J; Stossi, F; Callison, A M; Mancini, M G; Dandekar, R; Mancini, M A

    2015-01-08

    Estrogen receptor-α (ERα) is a central transcription factor that regulates mammary gland physiology and a key driver in breast cancer. In the present study, we aimed to identify novel modulators of ERα-mediated transcriptional regulation via a custom-built siRNA library screen. This screen was directed against a variety of coregulators, transcription modifiers, signaling molecules and DNA damage response proteins. By utilizing a microscopy-based, multi-end point, estrogen responsive biosensor cell line platform, the primary screen identified a wide range of factors that altered ERα protein levels, chromatin remodeling and mRNA output. We then focused on UBR5, a ubiquitin ligase and known oncogene that modulates ERα protein levels and transcriptional output. Finally, we demonstrated that UBR5 also affects endogenous ERα target genes and E2-mediated cell proliferation in breast cancer cells. In conclusion, our multi-end point RNAi screen identified novel modulators of ERα levels and activity, and provided a robust systems level view of factors involved in mechanisms of nuclear receptor action and pathophysiology. Utilizing a high throughput RNAi screening approach we identified UBR5, a protein commonly amplified in breast cancer, as a novel regulator of ERα protein levels and transcriptional activity.

  7. RNAi-based biosynthetic pathway screens to identify in vivo functions of non-nucleic acid-based metabolites such as lipids.

    PubMed

    Zhang, Hongjie; Abraham, Nessy; Khan, Liakot A; Gobel, Verena

    2015-05-01

    The field of metabolomics continues to catalog new compounds, but their functional analysis remains technically challenging, and roles beyond metabolism are largely unknown. Unbiased genetic/RNAi screens are powerful tools to identify the in vivo functions of protein-encoding genes, but not of nonproteinaceous compounds such as lipids. They can, however, identify the biosynthetic enzymes of these compounds-findings that are usually dismissed, as these typically synthesize multiple products. Here, we provide a method using follow-on biosynthetic pathway screens to identify the endpoint biosynthetic enzyme and thus the compound through which they act. The approach is based on the principle that all subsequently identified downstream biosynthetic enzymes contribute to the synthesis of at least this one end product. We describe how to systematically target lipid biosynthetic pathways; optimize targeting conditions; take advantage of pathway branchpoints; and validate results by genetic assays and biochemical analyses. This approach extends the power of unbiased genetic/RNAi screens to identify in vivo functions of non-nucleic acid-based metabolites beyond their metabolic roles. It will typically require several months to identify a metabolic end product by biosynthetic pathway screens, but this time will vary widely depending, among other factors, on the end product's location in the pathway, which determines the number of screens required for its identification.

  8. Targeting mitosis-regulating genes in cisplatin-sensitive and -resistant melanoma cells: A live-cell RNAi screen displays differential nucleus-derived phenotypes.

    PubMed

    Erfle, Holger; Pashayeva, K; Harder, N; Zhang, L; Rohr, K; Schadendorf, D; Ugurel, S; Keese, M

    2015-09-01

    Chemoresistance in malignant melanoma remains an unresolved clinical issue. In the search for novel molecular targets, a live-cell high-content RNAi screen based on gene expression data was performed in cisplatin-sensitive and cisplatin-resistant MeWo melanoma cells, Mel-28 cells and a melanocyte cell line. Cells were exposed to 91 siRNAs and distinct nucleus-derived phenotypes such as cell division, cell death and migration phenotypes were detected by time-lapse microscopy over 60 h. Using this approach, cisplatin-sensitive and cisplatin-resistant melanoma cells were compared by automated image analysis and visual inspection. In cisplatin-sensitive MeWo melanoma cells, 14 genes were identified that showed distinct phenotype abnormalities after exposure to gene-specific siRNAs. In cisplatin-resistant MeWo cells, five genes were detected. Nine genes were detected whose knock-down led to differential nuclear phenotypes in cisplatin-sensitive and -resistant cells. In Mel-28 cells, nine genes were identified which induced nuclear phenotypes including all eight genes which were identified in cisplatin-resistant MeWo cells. An analogous RNAi screen on melanocytes revealed no detectable phenotype abnormalities after RNAi. Pathway analysis showed in cisplatin-sensitive MeWo cells and Mel-28 cells an enrichment of at least three genes in major mitotic pathways. We hereby show that siRNA screening may help to identify tumor-specific genes leading to phenotype abnormalities. These genes may serve as potential therapeutic targets in the treatment of melanoma. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. RNAi-based biosynthetic pathway screens to identify in vivo functions of non-nucleic-acid-based metabolites such as lipids

    PubMed Central

    Zhang, Hongjie; Abraham, Nessy; Khan, Liakot A.; Gobel, Verena

    2017-01-01

    The field of metabolomics continues to catalog new compounds, but their functional analysis remains technically challenging, and roles beyond metabolism are largely unknown. Unbiased genetic/RNAi screens are powerful tools to identify the in vivo functions of protein-encoding genes, but not of non-proteinaceous compounds such as lipids. They can, however, identify the biosynthetic enzymes – of these compounds- findings that are usually dismissed, as these typically synthesize multiple products. Here, we provide a method using follow-on biosynthetic-pathway screens to identify the endpoint biosynthetic enzyme and thus the compound through which they act. The approach is based on the principle that all subsequently identified downstream biosynthetic enzymes contribute to the synthesis of at least this one end product. We describe how to: systematically target lipid biosynthetic pathways; optimize targeting conditions; take advantage of pathway branchpoints; and validate results by genetic assays and biochemical analyses. This approach extends the power of unbiased genetic/RNAi screens to identify in vivo functions of non-nucleic-acid-based metabolites beyond their metabolic roles. PMID:25837419

  10. Unbiased RNAi screen for hepcidin regulators links hepcidin suppression to proliferative Ras/RAF and nutrient-dependent mTOR signaling.

    PubMed

    Mleczko-Sanecka, Katarzyna; Roche, Franziska; da Silva, Ana Rita; Call, Debora; D'Alessio, Flavia; Ragab, Anan; Lapinski, Philip E; Ummanni, Ramesh; Korf, Ulrike; Oakes, Christopher; Damm, Georg; D'Alessandro, Lorenza A; Klingmüller, Ursula; King, Philip D; Boutros, Michael; Hentze, Matthias W; Muckenthaler, Martina U

    2014-03-06

    The hepatic hormone hepcidin is a key regulator of systemic iron metabolism. Its expression is largely regulated by 2 signaling pathways: the "iron-regulated" bone morphogenetic protein (BMP) and the inflammatory JAK-STAT pathways. To obtain broader insights into cellular processes that modulate hepcidin transcription and to provide a resource to identify novel genetic modifiers of systemic iron homeostasis, we designed an RNA interference (RNAi) screen that monitors hepcidin promoter activity after the knockdown of 19 599 genes in hepatocarcinoma cells. Interestingly, many of the putative hepcidin activators play roles in signal transduction, inflammation, or transcription, and affect hepcidin transcription through BMP-responsive elements. Furthermore, our work sheds light on new components of the transcriptional machinery that maintain steady-state levels of hepcidin expression and its responses to the BMP- and interleukin-6-triggered signals. Notably, we discover hepcidin suppression mediated via components of Ras/RAF MAPK and mTOR signaling, linking hepcidin transcriptional control to the pathways that respond to mitogen stimulation and nutrient status. Thus using a combination of RNAi screening, reverse phase protein arrays, and small molecules testing, we identify links between the control of systemic iron homeostasis and critical liver processes such as regeneration, response to injury, carcinogenesis, and nutrient metabolism.

  11. Ex vivo genome-wide RNAi screening of the Drosophila Toll signaling pathway elicited by a larva-derived tissue extract.

    PubMed

    Kanoh, Hirotaka; Kuraishi, Takayuki; Tong, Li-Li; Watanabe, Ryo; Nagata, Shinji; Kurata, Shoichiro

    2015-11-13

    Damage-associated molecular patterns (DAMPs), so-called "danger signals," play important roles in host defense and pathophysiology in mammals and insects. In Drosophila, the Toll pathway confers damage responses during bacterial infection and improper cell-fate control. However, the intrinsic ligands and signaling mechanisms that potentiate innate immune responses remain unknown. Here, we demonstrate that a Drosophila larva-derived tissue extract strongly elicits Toll pathway activation via the Toll receptor. Using this extract, we performed ex vivo genome-wide RNAi screening in Drosophila cultured cells, and identified several signaling factors that are required for host defense and antimicrobial-peptide expression in Drosophila adults. These results suggest that our larva-derived tissue extract contains active ingredients that mediate Toll pathway activation, and the screening data will shed light on the mechanisms of damage-related Toll pathway signaling in Drosophila.

  12. Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens

    PubMed Central

    Yin, Zheng; Zhou, Xiaobo; Bakal, Chris; Li, Fuhai; Sun, Youxian; Perrimon, Norbert; Wong, Stephen TC

    2008-01-01

    Background The recent emergence of high-throughput automated image acquisition technologies has forever changed how cell biologists collect and analyze data. Historically, the interpretation of cellular phenotypes in different experimental conditions has been dependent upon the expert opinions of well-trained biologists. Such qualitative analysis is particularly effective in detecting subtle, but important, deviations in phenotypes. However, while the rapid and continuing development of automated microscope-based technologies now facilitates the acquisition of trillions of cells in thousands of diverse experimental conditions, such as in the context of RNA interference (RNAi) or small-molecule screens, the massive size of these datasets precludes human analysis. Thus, the development of automated methods which aim to identify novel and biological relevant phenotypes online is one of the major challenges in high-throughput image-based screening. Ideally, phenotype discovery methods should be designed to utilize prior/existing information and tackle three challenging tasks, i.e. restoring pre-defined biological meaningful phenotypes, differentiating novel phenotypes from known ones and clarifying novel phenotypes from each other. Arbitrarily extracted information causes biased analysis, while combining the complete existing datasets with each new image is intractable in high-throughput screens. Results Here we present the design and implementation of a novel and robust online phenotype discovery method with broad applicability that can be used in diverse experimental contexts, especially high-throughput RNAi screens. This method features phenotype modelling and iterative cluster merging using improved gap statistics. A Gaussian Mixture Model (GMM) is employed to estimate the distribution of each existing phenotype, and then used as reference distribution in gap statistics. This method is broadly applicable to a number of different types of image-based datasets

  13. A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues

    PubMed Central

    Parsons, Linda M.; Grzeschik, Nicola A.; Amaratunga, Kasun; Burke, Peter; Quinn, Leonie M.; Richardson, Helena E.

    2017-01-01

    In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila “cell polarity” eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the “nutrient sensing” kinases Salt Inducible Kinase 2 and 3 (SIK2 and 3) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development. PMID:28611255

  14. A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues.

    PubMed

    Parsons, Linda M; Grzeschik, Nicola A; Amaratunga, Kasun; Burke, Peter; Quinn, Leonie M; Richardson, Helena E

    2017-08-07

    In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila "cell polarity" eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the "nutrient sensing" kinases Salt Inducible Kinase 2 and 3 (SIK2 and 3) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development. Copyright © 2017 Parsons et al.

  15. A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity.

    PubMed

    Ding, Li; Paszkowski-Rogacz, Maciej; Nitzsche, Anja; Slabicki, Mikolaj Michal; Heninger, Anne-Kristin; de Vries, Ingrid; Kittler, Ralf; Junqueira, Magno; Shevchenko, Andrej; Schulz, Herbert; Hubner, Norbert; Doss, Michael Xavier; Sachinidis, Agapios; Hescheler, Juergen; Iacone, Roberto; Anastassiadis, Konstantinos; Stewart, A Francis; Pisabarro, M Teresa; Caldarelli, Antonio; Poser, Ina; Theis, Mirko; Buchholz, Frank

    2009-05-08

    Pluripotent embryonic stem cells (ESCs) maintain self-renewal while ensuring a rapid response to differentiation cues. The identification of genes maintaining ESC identity is important to develop these cells for their potential therapeutic use. Here we report a genome-scale RNAi screen for a global survey of genes affecting ESC identity via alteration of Oct4 expression. Factors with the strongest effect on Oct4 expression included components of the Paf1 complex, a protein complex associated with RNA polymerase II. Using a combination of proteomics, expression profiling, and chromatin immunoprecipitation, we demonstrate that the Paf1C binds to promoters of key pluripotency genes, where it is required to maintain a transcriptionally active chromatin structure. The Paf1C is developmentally regulated and blocks ESC differentiation upon overexpression, and the knockdown in ESCs causes expression changes similar to Oct4 or Nanog depletions. We propose that the Paf1C plays an important role in maintaining ESC identity.

  16. Functional RNAi screen targeting cytokine and growth factor receptors reveals oncorequisite role for interleukin-2 gamma receptor in JAK3-mutation-positive leukemia.

    PubMed

    Agarwal, A; MacKenzie, R J; Eide, C A; Davare, M A; Watanabe-Smith, K; Tognon, C E; Mongoue-Tchokote, S; Park, B; Braziel, R M; Tyner, J W; Druker, B J

    2015-06-04

    To understand the role of cytokine and growth factor receptor-mediated signaling in leukemia pathogenesis, we designed a functional RNA interference (RNAi) screen targeting 188 cytokine and growth factor receptors that we found highly expressed in primary leukemia specimens. Using this screen, we identified interleukin-2 gamma receptor (IL2Rγ) as a critical growth determinant for a JAK3(A572V) mutation-positive acute myeloid leukemia cell line. We observed that knockdown of IL2Rγ abrogates phosphorylation of JAK3 and downstream signaling molecules, JAK1, STAT5, MAPK and pS6 ribosomal protein. Overexpression of IL2Rγ in murine cells increased the transforming potential of activating JAK3 mutations, whereas absence of IL2Rγ completely abrogated the clonogenic potential of JAK3(A572V), as well as the transforming potential of additional JAK3-activating mutations such as JAK3(M511I). In addition, mutation at the IL2Rγ interaction site in the FERM domain of JAK3 (Y100C) completely abrogated JAK3-mediated leukemic transformation. Mechanistically, we found IL2Rγ contributes to constitutive JAK3 mutant signaling by increasing JAK3 expression and phosphorylation. Conversely, we found that mutant, but not wild-type JAK3, increased the expression of IL2Rγ, indicating IL2Rγ and JAK3 contribute to constitutive JAK/STAT signaling through their reciprocal regulation. Overall, we demonstrate a novel role for IL2Rγ in potentiating oncogenesis in the setting of JAK3-mutation-positive leukemia. In addition, our study highlights an RNAi-based functional assay that can be used to facilitate the identification of non-kinase cytokine and growth factor receptor targets for inhibiting leukemic cell growth.

  17. RNAi screen in Drosophila larvae identifies histone deacetylase 3 as a positive regulator of the hsp70 heat shock gene expression during heat shock.

    PubMed

    Achary, Bhavana G; Campbell, Katie M; Co, Ivy S; Gilmour, David S

    2014-05-01

    The transcription regulation of the Drosophila hsp70 gene is a complex process that involves the regulation of multiple steps, including the establishment of paused Pol II and release of Pol II into elongation upon heat shock activation. While the major players involved in the regulation of gene expression have been studied in detail, additional factors involved in this process continue to be discovered. To identify factors involved in hsp70 expression, we developed a screen that capitalizes on a visual assessment of heat shock activation using a hsp70-beta galactosidase reporter and publicly available RNAi fly lines to deplete candidate proteins. We validated the screen by showing that the depletion of HSF, CycT, Cdk9, Nurf 301, or ELL prevented the full induction of hsp70 by heat shock. Our screen also identified the histone deacetylase HDAC3 and its associated protein SMRTER as positive regulators of hsp70 activation. Additionally, we show that HDAC3 and SMRTER contribute to hsp70 gene expression at a step subsequent to HSF-mediated activation and release of the paused Pol II that resides at the promoter prior to heat shock induction. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Large-Scale Functional RNAi Screen in C. elegans Identifies TGF-β and Notch Signaling Pathways as Modifiers of CACNA1A

    PubMed Central

    Pereira, Maria da Conceição; Morais, Sara; Sequeiros, Jorge

    2016-01-01

    Variants in CACNA1A that encodes the pore-forming α1-subunit of human voltage-gated Cav2.1 (P/Q-type) Ca2+ channels cause several autosomal-dominant neurologic disorders, including familial hemiplegic migraine type 1, episodic ataxia type 2, and spinocerebellar ataxia type 6. To identify modifiers of incoordination in movement disorders, we performed a large-scale functional RNAi screen, using the Caenorhabditis elegans strain CB55, which carries a truncating mutation in the unc-2 gene, the worm ortholog for the human CACNA1A. The screen was carried out by the feeding method in 96-well liquid culture format, using the ORFeome v1.1 feeding library, and time-lapse imaging of worms in liquid culture was used to assess changes in thrashing behavior. We looked for genes that, when silenced, either ameliorated the slow and uncoordinated phenotype of unc-2, or interacted to produce a more severe phenotype. Of the 350 putative hits from the primary screen, 37 genes consistently showed reproducible results. At least 75% of these are specifically expressed in the C. elegans neurons. Functional network analysis and gene ontology revealed overrepresentation of genes involved in development, growth, locomotion, signal transduction, and vesicle-mediated transport. We have expanded the functional network of genes involved in neurodegeneration leading to cerebellar ataxia related to unc-2/CACNA1A, further confirming the involvement of the transforming growth factor β pathway and adding a novel signaling cascade, the Notch pathway. PMID:27005779

  19. RNAi screen in Drosophila larvae identifies histone deacetylase 3 as a positive regulator of the hsp70 heat shock gene expression during heat shock

    PubMed Central

    Achary, Bhavana G.; Campbell, Katie M.; Co, Ivy S.; Gilmour, David S.

    2014-01-01

    Transcription regulation of the Drosophila hsp70 gene is a complex process that involves regulation of multiple steps including establishment of paused Pol II and release of Pol II into elongation upon heat shock activation. While the major players involved in regulation of gene expression have been studied in detail, additional factors involved in this process continue to be discovered. To identify factors involved in hsp70 expression, we developed a screen that capitalizes on a visual assessment of heat shock activation using a hsp70-beta galactosidase reporter and publicly available RNAi fly lines to deplete candidate proteins. We validated the screen by showing that depletion of HSF, CycT, Cdk9, Nurf 301, or ELL prevented full induction of hsp70 by heat shock. Our screen also identified the histone deacetylase HDAC3 and its associated protein SMRTER as positive regulators of hsp70 activation. Additionally we show that HDAC3 and SMRTER contribute to hsp70 gene expression at a step subsequent to HSF-mediated activation and release of the paused Pol II that resides at the promoter prior to heat shock induction. PMID:24607507

  20. Human Genome-Wide RNAi Screen for Host Factors That Facilitate Salmonella Invasion Reveals a Role for Potassium Secretion in Promoting Internalization

    PubMed Central

    Thornbrough, Joshua M.; Gopinath, Adarsh; Hundley, Tom; Worley, Micah J.

    2016-01-01

    Salmonella enterica can actively invade the gastro-intestinal epithelium. This frequently leads to diarrheal disease, and also gives the pathogen access to phagocytes that can serve as vehicles for dissemination into deeper tissue. The ability to invade host cells is also important in maintaining the carrier state. While much is known about the bacterial factors that promote invasion, relatively little is known about the host factors involved. To gain insight into how Salmonella enterica serovar Typhimurium is able to invade normally non-phagocytic cells, we undertook a global RNAi screen with S. Typhimurium-infected human epithelial cells. In all, we identified 633 genes as contributing to bacterial internalization. These genes fall into a diverse group of functional categories revealing that cytoskeletal regulators are not the only factors that modulate invasion. In fact, potassium ion transport was the most enriched molecular function category in our screen, reinforcing a link between potassium and internalization. In addition to providing new insights into the molecular mechanisms underlying the ability of pathogens to invade host cells, all 633 host factors identified are candidates for new anti-microbial targets for treating Salmonella infections, and may be useful in curtailing infections with other pathogens as well. PMID:27880807

  1. A Genetic RNAi Screen for IP3/Ca2+ Coupled GPCRs in Drosophila Identifies the PdfR as a Regulator of Insect Flight

    PubMed Central

    Agrawal, Tarjani; Sadaf, Sufia; Hasan, Gaiti

    2013-01-01

    Insect flight is regulated by various sensory inputs and neuromodulatory circuits which function in synchrony to control and fine-tune the final behavioral outcome. The cellular and molecular bases of flight neuromodulatory circuits are not well defined. In Drosophila melanogaster, it is known that neuronal IP3 receptor mediated Ca2+ signaling and store-operated Ca2+ entry (SOCE) are required for air-puff stimulated adult flight. However, G-protein coupled receptors (GPCRs) that activate intracellular Ca2+ signaling in the context of flight are unknown in Drosophila. We performed a genetic RNAi screen to identify GPCRs that regulate flight by activating the IP3 receptor. Among the 108 GPCRs screened, we discovered 5 IP3/Ca2+ linked GPCRs that are necessary for maintenance of air-puff stimulated flight. Analysis of their temporal requirement established that while some GPCRs are required only during flight circuit development, others are required both in pupal development as well as during adult flight. Interestingly, our study identified the Pigment Dispersing Factor Receptor (PdfR) as a regulator of flight circuit development and as a modulator of acute flight. From the analysis of PdfR expressing neurons relevant for flight and its well-defined roles in other behavioral paradigms, we propose that PdfR signaling functions systemically to integrate multiple sensory inputs and modulate downstream motor behavior. PMID:24098151

  2. An RNAi-Based Dimorphic Genetic Screen Identified the Double Bromodomain Protein BET-1 as a Sumo-Dependent Attenuator of RAS-Mediated Signalling

    PubMed Central

    Gee, Fiona; Fisher, Kate; Klemstein, Ulrike; Poulin, Gino B.

    2013-01-01

    Attenuation of RAS/RAF/MAPK signalling is essential to prevent hyperactivation of this oncogenic pathway. In C. elegans, the sumoylation pathway and a combination of histone tail modifications regulate gene expression to attenuate the LET-60 (RAS) signalling pathway. We hypothesised that a number of chromatin regulators are likely to depend on sumoylation to attenuate the pathway. To reveal these, we designed an RNAi-based dimorphic genetic screen that selects candidates based on their ability to act as enhancers of a sumo mutant phenotype, such interactions would suggest that the candidates may be physically associated with sumoylation. We found 16 enhancers, one of which BET-1, is a conserved double bromodomain containing protein. We further characterised BET-1 and showed that it can physically associate with SMO-1 and UBC-9, and that it can be sumoylated in vitro within the second bromodomain at lysine 252. Previous work has shown that BET-1 can bind acetyl-lysines on histone tails to influence gene expression. In conclusion, our screening approach has identified BET-1 as a Sumo-dependent attenuator of LET-60-mediated signalling and our characterisation suggests that BET-1 can be sumoylated. PMID:24349540

  3. An RNAi-based dimorphic genetic screen identified the double bromodomain protein BET-1 as a sumo-dependent attenuator of RAS-mediated signalling.

    PubMed

    Gee, Fiona; Fisher, Kate; Klemstein, Ulrike; Poulin, Gino B

    2013-01-01

    Attenuation of RAS/RAF/MAPK signalling is essential to prevent hyperactivation of this oncogenic pathway. In C. elegans, the sumoylation pathway and a combination of histone tail modifications regulate gene expression to attenuate the LET-60 (RAS) signalling pathway. We hypothesised that a number of chromatin regulators are likely to depend on sumoylation to attenuate the pathway. To reveal these, we designed an RNAi-based dimorphic genetic screen that selects candidates based on their ability to act as enhancers of a sumo mutant phenotype, such interactions would suggest that the candidates may be physically associated with sumoylation. We found 16 enhancers, one of which BET-1, is a conserved double bromodomain containing protein. We further characterised BET-1 and showed that it can physically associate with SMO-1 and UBC-9, and that it can be sumoylated in vitro within the second bromodomain at lysine 252. Previous work has shown that BET-1 can bind acetyl-lysines on histone tails to influence gene expression. In conclusion, our screening approach has identified BET-1 as a Sumo-dependent attenuator of LET-60-mediated signalling and our characterisation suggests that BET-1 can be sumoylated.

  4. Identification of common and cell type specific LXXLL motif EcR cofactors using a bioinformatics refined candidate RNAi screen in Drosophila melanogaster cell lines

    PubMed Central

    2011-01-01

    Background During Drosophila development, titers of the steroid ecdysone trigger and maintain temporal and tissue specific biological transitions. Decades of evidence reveal that the ecdysone response is both unique to specific tissues and distinct among developmental timepoints. To achieve this diversity in response, the several isoforms of the Ecdysone Receptor, which transduce the hormone signal to the genome level, are believed to interact with tissue specific cofactors. To date, little is known about the identity of these cofactor interactions; therefore, we conducted a bioinformatics informed, RNAi luciferase reporter screen against a subset of putative candidate cofactors identified through an in silico proteome screen. Candidates were chosen based on criteria obtained from bioinformatic consensus of known nuclear receptor cofactors and homologs, including amino acid sequence motif content and context. Results The bioinformatics pre-screen of the Drosophila melanogaster proteome was successful in identifying an enriched putative candidate gene cohort. Over 80% of the genes tested yielded a positive hit in our reporter screen. We have identified both cell type specific and common cofactors which appear to be necessary for proper ecdysone induced gene regulation. We have determined that certain cofactors act as co-repressors to reduce target gene expression, while others act as co-activators to increase target gene expression. Interestingly, we find that a few of the cofactors shared among cell types have a reversible roles to function as co-repressors in certain cell types while in other cell types they serve as co-activators. Lastly, these proteins are highly conserved, with higher order organism homologs also harboring the LXXLL steroid receptor interaction domains, suggesting a highly conserved mode of steroid cell target specificity. Conclusions In conclusion, we submit these cofactors as novel components of the ecdysone signaling pathway in order to

  5. Umbilical cord blood screening for cytomegalovirus DNA by quantitative PCR.

    PubMed

    Theiler, Regan N; Caliendo, Angela M; Pargman, Sabine; Raynor, B Denise; Berga, Sarah; McPheeters, Melissa; Jamieson, Denise J

    2006-12-01

    Cytomegalovirus (CMV) infection, which is the most common congenitally transmitted infection, affects approximately 1% of neonates worldwide. Despite its prevalence, no convenient screening test for neonatal CMV infection has been implemented. The purpose of this pilot study was to evaluate the feasibility and yield of screening umbilical cord blood for CMV DNA emiaby quantitative PCR. Umbilical cord blood was tested for CMV DNAemia using a commercial quantitative PCR assay. Maternal CMV serostatus at the time of delivery was assessed by testing for CMV IgG and IgM antibodies in serum. Screening for congenital CMV infection with PCR is easily incorporated into routine labor and delivery care using discarded cord blood specimens to identify neonates whose infection is otherwise undiagnosed. Among 433 infants tested, two (0.5%) had DNAemia detected in cord blood, one of whom was symptomatic, and both of whose mothers were CMV IgG positive and IgM negative. Viremic neonates identified by screening with PCR may be at high risk of developing long-term neurological complications of CMV infection and cannot reliably be identified using clinical presentation or maternal serology. Because of its convenience, cord blood CMV screening with PCR should be further investigated for incorporation into neonatal screening protocols.

  6. Parallel in vivo and in vitro melanoma RNAi dropout screens reveal synthetic lethality between hypoxia and DNA damage response inhibition.

    PubMed

    Possik, Patricia A; Müller, Judith; Gerlach, Carmen; Kenski, Juliana C N; Huang, Xinyao; Shahrabi, Aida; Krijgsman, Oscar; Song, Ji-Ying; Smit, Marjon A; Gerritsen, Bram; Lieftink, Cor; Kemper, Kristel; Michaut, Magali; Beijersbergen, Roderick L; Wessels, Lodewyk; Schumacher, Ton N; Peeper, Daniel S

    2014-11-20

    To identify factors preferentially necessary for driving tumor expansion, we performed parallel in vitro and in vivo negative-selection short hairpin RNA (shRNA) screens. Melanoma cells harboring shRNAs targeting several DNA damage response (DDR) kinases had a greater selective disadvantage in vivo than in vitro, indicating an essential contribution of these factors during tumor expansion. In growing tumors, DDR kinases were activated following hypoxia. Correspondingly, depletion or pharmacologic inhibition of DDR kinases was toxic to melanoma cells, including those that were resistant to BRAF inhibitor, and this could be enhanced by angiogenesis blockade. These results reveal that hypoxia sensitizes melanomas to targeted inhibition of the DDR and illustrate the utility of in vivo shRNA dropout screens for the identification of pharmacologically tractable targets. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. A genome-wide RNAi screen reveals a Trio-regulated Rho GTPase circuitry transducing mitogenic signals initiated by G protein-coupled receptors.

    PubMed

    Vaqué, Jose P; Dorsam, Robert T; Feng, Xiaodong; Iglesias-Bartolome, Ramiro; Forsthoefel, David J; Chen, Qianming; Debant, Anne; Seeger, Mark A; Ksander, Bruce R; Teramoto, Hidemi; Gutkind, J Silvio

    2013-01-10

    Activating mutations in GNAQ and GNA11, encoding members of the Gα(q) family of G protein α subunits, are the driver oncogenes in uveal melanoma, and mutations in Gq-linked G protein-coupled receptors have been identified recently in numerous human malignancies. How Gα(q) and its coupled receptors transduce mitogenic signals is still unclear because of the complexity of signaling events perturbed upon Gq activation. Using a synthetic-biology approach and a genome-wide RNAi screen, we found that a highly conserved guanine nucleotide exchange factor, Trio, is essential for activating Rho- and Rac-regulated signaling pathways acting on JNK and p38, and thereby transducing proliferative signals from Gα(q) to the nucleus independently of phospholipase C-β. Indeed, whereas many biological responses elicited by Gq depend on the transient activation of second-messenger systems, Gq utilizes a hard-wired protein-protein-interaction-based signaling circuitry to achieve the sustained stimulation of proliferative pathways, thereby controlling normal and aberrant cell growth.

  8. A genome-wide RNAi screen reveals that mRNA decapping restricts bunyaviral replication by limiting the pools of Dcp2-accessible targets for cap-snatching

    PubMed Central

    Hopkins, Kaycie C.; McLane, Laura M.; Maqbool, Tariq; Panda, Debasis; Gordesky-Gold, Beth; Cherry, Sara

    2013-01-01

    Bunyaviruses are an emerging group of medically important viruses, many of which are transmitted from insects to mammals. To identify host factors that impact infection, we performed a genome-wide RNAi screen in Drosophila and identified 131 genes that impacted infection of the mosquito-transmitted bunyavirus Rift Valley fever virus (RVFV). Dcp2, the catalytic component of the mRNA decapping machinery, and two decapping activators, DDX6 and LSM7, were antiviral against disparate bunyaviruses in both insect cells and adult flies. Bunyaviruses 5′ cap their mRNAs by “cap-snatching” the 5′ ends of poorly defined host mRNAs. We found that RVFV cap-snatches the 5′ ends of Dcp2 targeted mRNAs, including cell cycle-related genes. Loss of Dcp2 allows increased viral transcription without impacting viral mRNA stability, while ectopic expression of Dcp2 impedes viral transcription. Furthermore, arresting cells in late S/early G2 led to increased Dcp2 mRNA targets and increased RVFV replication. Therefore, RVFV competes for the Dcp2-accessible mRNA pool, which is dynamically regulated and can present a bottleneck for viral replication. PMID:23824541

  9. RNAi screening with shRNAs against histone methylation-related genes reveals determinants of sorafenib sensitivity in hepatocellular carcinoma cells

    PubMed Central

    Li, Guang-Ming; Wang, Yu-Gang; Pan, Qin; Wang, Jun; Fan, Jian-Gao; Sun, Chao

    2014-01-01

    Sorafenib is the first drug currently approved to treat advanced hepatocellular carcinoma (HCC). However, very low response rate and acquired drug resistance makes rare patients benefit from sorafenib therapy, therefore it is urgent to find biomarkers for sorafenib sensitivity. Histone modifications, including histone methylation, have been demonstrated to influence the initiation and progression of HCC. It is of great interest to elicit the possibility whether histone methylation plays a role in regulation of sorafenib sensitivity. In present work, a high throughput RNAi screening with 176 shRNA pools against 88 histone methyltransferases (HMTs) and histone demethyltransferases genes was applied to HepG2 cells. Silencing of 3 genes (ASH1L, C17ORF49 and SETD4) was validated to specifically promote HepG2 cells sensitivity to sorafenib. Western blotting results showed that those 3 HMT genes knockdown alone or sorafenib treatments alone both induce AKT/ERK activation. However, combination treatment with sorafenib and silencing of C17ORF49 or SETD4 downregulated AKT phosphorylation and hence induced HCC cells death. Our work may provide potential biomarkers for sorafenib sensitivity and therapeutic combination for sorafenib treatment in HCC patients. PMID:24696725

  10. RNAi-Based Suppressor Screens Reveal Genetic Interactions Between the CRL2LRR-1 E3-Ligase and the DNA Replication Machinery in Caenorhabditis elegans

    PubMed Central

    Ossareh-Nazari, Batool; Katsiarimpa, Anthi; Merlet, Jorge; Pintard, Lionel

    2016-01-01

    Cullin-RING E3-Ligases (CRLs), the largest family of E3 ubiquitin-Ligases, regulate diverse cellular processes by promoting ubiquitination of target proteins. The evolutionarily conserved Leucine Rich Repeat protein 1 (LRR-1) is a substrate-recognition subunit of a CRL2LRR-1 E3-ligase. Here we provide genetic evidence supporting a role of this E3-enzyme in the maintenance of DNA replication integrity in Caenorhabditis elegans. Through RNAi-based suppressor screens of lrr-1(0) and cul-2(or209ts) mutants, we identified two genes encoding components of the GINS complex, which is part of the Cdc45-MCM-GINS (CMG) replicative helicase, as well as CDC-7 and MUS-101, which drives the assembly of the CMG helicase during DNA replication. In addition, we identified the core components of the ATR/ATL-1 DNA replication checkpoint pathway (MUS-101, ATL-1, CLSP-1, CHK-1). These results suggest that the CRL2LRR-1 E3-ligase acts to modify or degrade factor(s) that would otherwise misregulate the replisome, eventually leading to the activation of the DNA replication checkpoint. PMID:27543292

  11. A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila

    PubMed Central

    Muerdter, Felix; Guzzardo, Paloma M.; Gillis, Jesse; Luo, Yicheng; Yu, Yang; Chen, Caifu; Fekete, Richard; Hannon, Gregory J.

    2013-01-01

    Summary A large fraction of our genome consists of mobile genetic elements. Governing transposons in germ cells is critically important, and failure to do so compromises genome integrity, leading to sterility. In animals, the piRNA pathway is the key to transposon constraint, yet the precise molecular details of how piRNAs are formed and how the pathway represses mobile elements remain poorly understood. In an effort to identify general requirements for transposon control and novel components of the piRNA pathway, we carried out a genome-wide RNAi screen in Drosophila ovarian somatic sheet cells. We identified and validated 87 genes necessary for transposon silencing. Among these were several novel piRNA biogenesis factors. We also found CG3893 (asterix) to be essential for transposon silencing, most likely by contributing to the effector step of transcriptional repression. Asterix loss leads to decreases in H3K9me3 marks on certain transposons but has no effect on piRNA levels. PMID:23665228

  12. Illustration of SSMD, z score, SSMD*, z* score, and t statistic for hit selection in RNAi high-throughput screens.

    PubMed

    Zhang, Xiaohua Douglas

    2011-08-01

    Hit selection is the ultimate goal in many high-throughput screens. Various analytic methods are available for this purpose. Some commonly used ones are z score, z* score, strictly standardized mean difference (SSMD), SSMD*, and t statistic. It is critical to know how to use them correctly because the misusage of them can readily produce misleading results. Here, the author presents basic concepts, elaborates their commonality and difference, describes some common misusage that people should avoid, and uses simulated simple examples to illustrate how to use them correctly.

  13. Analyzing the Response of RNAi-Treated Drosophila Cells to Death Stimuli by Quantitative Real-Time Polymerase Chain Reaction.

    PubMed

    Denton, Donna; Kumar, Sharad

    2015-07-01

    A useful complement to animal studies is the use of Drosophila cell lines to analyze cell-death responses. There are numerous Drosophila cell lines available, such as S2 cells, which possess the advantages of being semi-adherent, fast growing, relatively robust, and useful for transfection and knockdown studies, whereas other lines, such as mbn2, are more suitable for analyzing hormone-induced cell death and gene expression. Drosophila cell lines are very amenable to knockdown studies as the cells take up double-stranded RNA (dsRNA) from the medium, initiating gene silencing and resulting in a high level of gene knockdown. This means that the cell lines are useful for investigating the response to death stimuli, following gene knockdown, by examining the expression of cell-death genes. This protocol describes the synthesis of dsRNA for treatment of Drosophila cells and the subsequent analysis of cell-death gene expression by quantitative real-time polymerase chain reaction (qPCR). © 2015 Cold Spring Harbor Laboratory Press.

  14. Large-scale functional RNAi screen in C. elegans identifies genes that regulate the dysfunction of mutant polyglutamine neurons

    PubMed Central

    2012-01-01

    Background A central goal in Huntington's disease (HD) research is to identify and prioritize candidate targets for neuroprotective intervention, which requires genome-scale information on the modifiers of early-stage neuron injury in HD. Results Here, we performed a large-scale RNA interference screen in C. elegans strains that express N-terminal huntingtin (htt) in touch receptor neurons. These neurons control the response to light touch. Their function is strongly impaired by expanded polyglutamines (128Q) as shown by the nearly complete loss of touch response in adult animals, providing an in vivo model in which to manipulate the early phases of expanded-polyQ neurotoxicity. In total, 6034 genes were examined, revealing 662 gene inactivations that either reduce or aggravate defective touch response in 128Q animals. Several genes were previously implicated in HD or neurodegenerative disease, suggesting that this screen has effectively identified candidate targets for HD. Network-based analysis emphasized a subset of high-confidence modifier genes in pathways of interest in HD including metabolic, neurodevelopmental and pro-survival pathways. Finally, 49 modifiers of 128Q-neuron dysfunction that are dysregulated in the striatum of either R/2 or CHL2 HD mice, or both, were identified. Conclusions Collectively, these results highlight the relevance to HD pathogenesis, providing novel information on the potential therapeutic targets for neuroprotection in HD. PMID:22413862

  15. A transcriptome-wide RNAi screen in the Drosophila ovary reveals novel factors of the germline piRNA pathway

    PubMed Central

    Czech, Benjamin; Preall, Jonathan B.; McGinn, Jon; Hannon, Gregory J.

    2013-01-01

    Summary The Drosophila piRNA pathway provides an RNA-based immune system that defends the germline genome against selfish genetic elements. Two inter-related branches of the piRNA system exist: somatic cells that support oogenesis only employ Piwi, whereas germ cells utilize a more elaborated pathway centered on the three gonad-specific Argonaute proteins Piwi, Aubergine, and Argonaute3. While several key factors of each branch have been identified, our current knowledge is insufficient to explain the complex workings of the piRNA machinery. Here, we report a reverse genetic screen spanning the ovarian transcriptome in an attempt to uncover the full repertoire of genes required for piRNA-mediated transposon silencing in the female germline. Our screen reveals new key factors of piRNA-mediated transposon silencing, including the novel piRNA biogenesis factors, CG2183 (GASZ) and Deadlock. Last, our data uncovers a previously unanticipated set of factors preferentially required for repression of different transposons types. PMID:23665227

  16. A whole-genome RNAi screen identifies an 8q22 gene cluster that inhibits death receptor-mediated apoptosis.

    PubMed

    Dompe, Nicholas; Rivers, Celina Sanchez; Li, Li; Cordes, Shaun; Schwickart, Martin; Punnoose, Elizabeth A; Amler, Lukas; Seshagiri, Somasekar; Tang, Jerry; Modrusan, Zora; Davis, David P

    2011-10-25

    Deregulation of apoptosis is a common occurrence in cancer, for which emerging oncology therapeutic agents designed to engage this pathway are undergoing clinical trials. With the aim of uncovering strategies to activate apoptosis in cancer cells, we used a pooled shRNA screen to interrogate death receptor signaling. This screening approach identified 16 genes that modulate the sensitivity to ligand induced apoptosis, with several genes exhibiting frequent overexpression and/or copy number gain in cancer. Interestingly, two of the top hits, EDD1 and GRHL2, are found 50 kb apart on chromosome 8q22, a region that is frequently amplified in many cancers. By using a series of silencing and overexpression studies, we show that EDD1 and GRHL2 suppress death-receptor expression, and that EDD1 expression is elevated in breast, pancreas, and lung cancer cell lines resistant to death receptor-mediated apoptosis. Supporting the relevance of EDD1 and GRHL2 as therapeutic candidates to engage apoptosis in cancer cells, silencing the expression of either gene sensitizes 8q22-amplified breast cancer cell lines to death receptor induced apoptosis. Our findings highlight a mechanism by which cancer cells may evade apoptosis, and therefore provide insight in the search for new targets and functional biomarkers for this pathway.

  17. RNAi Screen for NRF2 Inducers Identifies Targets That Rescue Primary Lung Epithelial Cells from Cigarette Smoke Induced Radical Stress

    PubMed Central

    Schumacher, Frances-Rose; Schubert, Steffen; Hannus, Michael; Sönnichsen, Birte; Ittrich, Carina; Kreideweiss, Stefan; Rippmann, Jörg F.

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is a highly prevalent condition characterized by inflammation and progressive obstruction of the airways. At present, there is no treatment that suppresses the chronic inflammation of the disease, and COPD patients often succumb to the condition. Excessive oxidative stress caused by smoke inhalation is a major driving force of the disease. The transcription factor NRF2 is a critical player in the battle against oxidative stress and its function is impaired in COPD. Increasing NRF2 activity may therefore be a viable therapeutic option for COPD treatment. We show that down regulation of KEAP1, a NRF2 inhibitor, protects primary human lung epithelial cells from cigarette-smoke-extract (CSE) induced cell death in an established in vitro model of radical stress. To identify new potential drug targets with a similar effect, we performed a siRNA screen of the ‘druggable’ genome using a NRF2 transcriptional reporter cell line. This screen identified multiple genes that when down regulated increased NRF2 transcriptional activity and provided a survival benefit in the in vitro model. Our results suggest that inhibiting components of the ubiquitin-proteasome system will have the strongest effects on NRF2 transcriptional activity by increasing NRF2 levels. We also find that down regulation of the small GTPase Rab28 or the Estrogen Receptor ESRRA provide a survival benefit. Rab28 knockdown increased NRF2 protein levels, indicating that Rab28 may regulate NRF2 proteolysis. Conversely ESRRA down regulation increased NRF2 transcriptional activity without affecting NRF2 levels, suggesting a proteasome-independent mechanism. PMID:27832175

  18. Asian Citrus Psyllid RNAi Pathway - RNAi evidence.

    PubMed

    Taning, Clauvis N T; Andrade, Eduardo C; Hunter, Wayne B; Christiaens, Olivier; Smagghe, Guy

    2016-11-30

    Diaphorina citri, known as the Asian citrus psyllid, is an important pest of citrus because it transmits a phloem-limited bacteria strongly implicated in huanglongbing (citrus greening disease). Emerging biotechnologies, such as RNA interference, could provide a new sustainable and environmentally friendly strategy for the management of this pest. In this study, genome and functional analysis were performed to verify whether the RNAi core genes are present in the Asian psyllid genome and if the RNAi machinery could be exploited to develop a management strategy for this pest. Analyses of RNAi-related genes in the Asian citrus psyllid genome showed an absence of sequences encoding R2D2, a dsRNA-binding protein that functions as a cofactor of Dicer-2 in Drosophila. Nevertheless, bioassays using an in Planta System showed that the Asian citrus psyllid was very sensitive to ingested dsRNA, demonstrating a strong RNAi response. A small dose of dsRNA administered through a citrus flush was enough to trigger the RNAi mechanism, causing significant suppression of the targeted transcript, and increased psyllid mortality. This study provides evidence of a functional RNAi machinery, which could be further exploited to develop RNAi based management strategies for the control of the Asian citrus psyllid.

  19. A Robotic Platform for Quantitative High-Throughput Screening

    PubMed Central

    Michael, Sam; Auld, Douglas; Klumpp, Carleen; Jadhav, Ajit; Zheng, Wei; Thorne, Natasha; Austin, Christopher P.; Inglese, James

    2008-01-01

    Abstract High-throughput screening (HTS) is increasingly being adopted in academic institutions, where the decoupling of screening and drug development has led to unique challenges, as well as novel uses of instrumentation, assay formulations, and software tools. Advances in technology have made automated unattended screening in the 1,536-well plate format broadly accessible and have further facilitated the exploration of new technologies and approaches to screening. A case in point is our recently developed quantitative HTS (qHTS) paradigm, which tests each library compound at multiple concentrations to construct concentration-response curves (CRCs) generating a comprehensive data set for each assay. The practical implementation of qHTS for cell-based and biochemical assays across libraries of > 100,000 compounds (e.g., between 700,000 and 2,000,000 sample wells tested) requires maximal efficiency and miniaturization and the ability to easily accommodate many different assay formats and screening protocols. Here, we describe the design and utilization of a fully integrated and automated screening system for qHTS at the National Institutes of Health's Chemical Genomics Center. We report system productivity, reliability, and flexibility, as well as modifications made to increase throughput, add additional capabilities, and address limitations. The combination of this system and qHTS has led to the generation of over 6 million CRCs from > 120 assays in the last 3 years and is a technology that can be widely implemented to increase efficiency of screening and lead generation. PMID:19035846

  20. A Genome-Wide RNAi Screen Reveals MAP Kinase Phosphatases as Key ERK Pathway Regulators during Embryonic Stem Cell Differentiation

    PubMed Central

    Yang, Shen-Hsi; Kalkan, Tuzer; Morrisroe, Claire; Smith, Austin; Sharrocks, Andrew D.

    2012-01-01

    Embryonic stem cells and induced pluripotent stem cells represent potentially important therapeutic agents in regenerative medicine. Complex interlinked transcriptional and signaling networks control the fate of these cells towards maintenance of pluripotency or differentiation. In this study we have focused on how mouse embryonic stem cells begin to differentiate and lose pluripotency and, in particular, the role that the ERK MAP kinase and GSK3 signaling pathways play in this process. Through a genome-wide siRNA screen we have identified more than 400 genes involved in loss of pluripotency and promoting the onset of differentiation. These genes were functionally associated with the ERK and/or GSK3 pathways, providing an important resource for studying the roles of these pathways in controlling escape from the pluripotent ground state. More detailed analysis identified MAP kinase phosphatases as a focal point of regulation and demonstrated an important role for these enzymes in controlling ERK activation kinetics and subsequently determining early embryonic stem cell fate decisions. PMID:23271975

  1. High-Content Genome-Wide RNAi Screen Reveals CCR3 as a Key Mediator of Neuronal Cell Death.

    PubMed

    Zhang, Jianmin; Wang, Huaishan; Sherbini, Omar; Ling-Lin Pai, Emily; Kang, Sung-Ung; Kwon, Ji-Sun; Yang, Jia; He, Wei; Wang, Hong; Eacker, Stephen M; Chi, Zhikai; Mao, Xiaobo; Xu, Jinchong; Jiang, Haisong; Andrabi, Shaida A; Dawson, Ted M; Dawson, Valina L

    2016-01-01

    Neuronal loss caused by ischemic injury, trauma, or disease can lead to devastating consequences for the individual. With the goal of limiting neuronal loss, a number of cell death pathways have been studied, but there may be additional contributors to neuronal death that are yet unknown. To identify previously unknown cell death mediators, we performed a high-content genome-wide screening of short, interfering RNA (siRNA) with an siRNA library in murine neural stem cells after exposure to N-methyl-N-nitroso-N'-nitroguanidine (MNNG), which leads to DNA damage and cell death. Eighty genes were identified as key mediators for cell death. Among them, 14 are known cell death mediators and 66 have not previously been linked to cell death pathways. Using an integrated approach with functional and bioinformatics analysis, we provide possible molecular networks, interconnected pathways, and/or protein complexes that may participate in cell death. Of the 66 genes, we selected CCR3 for further evaluation and found that CCR3 is a mediator of neuronal injury. CCR3 inhibition or deletion protects murine cortical cultures from oxygen-glucose deprivation-induced cell death, and CCR3 deletion in mice provides protection from ischemia in vivo. Taken together, our findings suggest that CCR3 is a previously unknown mediator of cell death. Future identification of the neural cell death network in which CCR3 participates will enhance our understanding of the molecular mechanisms of neural cell death.

  2. RNAi screening reveals requirement for host cell secretory pathway in infection by diverse families of negative-strand RNA viruses

    PubMed Central

    Panda, Debasis; Das, Anshuman; Dinh, Phat X.; Subramaniam, Sakthivel; Nayak, Debasis; Barrows, Nicholas J.; Pearson, James L.; Thompson, Jesse; Kelly, David L.; Ladunga, Istvan; Pattnaik, Asit K.

    2011-01-01

    Negative-strand (NS) RNA viruses comprise many pathogens that cause serious diseases in humans and animals. Despite their clinical importance, little is known about the host factors required for their infection. Using vesicular stomatitis virus (VSV), a prototypic NS RNA virus in the family Rhabdoviridae, we conducted a human genome-wide siRNA screen and identified 72 host genes required for viral infection. Many of these identified genes were also required for infection by two other NS RNA viruses, the lymphocytic choriomeningitis virus of the Arenaviridae family and human parainfluenza virus type 3 of the Paramyxoviridae family. Genes affecting different stages of VSV infection, such as entry/uncoating, gene expression, and assembly/release, were identified. Depletion of the proteins of the coatomer complex I or its upstream effectors ARF1 or GBF1 led to detection of reduced levels of VSV RNA. Coatomer complex I was also required for infection of lymphocytic choriomeningitis virus and human parainfluenza virus type 3. These results highlight the evolutionarily conserved requirements for gene expression of diverse families of NS RNA viruses and demonstrate the involvement of host cell secretory pathway in the process. PMID:22065774

  3. A genome-wide RNAi screen in mouse embryonic stem cells identifies Mp1 as a key mediator of differentiation

    PubMed Central

    Westerman, Bart A.; Braat, A. Koen; Taub, Nicole; Potman, Marko; Vissers, Joseph H.A.; Blom, Marleen; Verhoeven, Els; Stoop, Hans; Gillis, Ad; Velds, Arno; Nijkamp, Wouter; Beijersbergen, Roderick; Huber, Lukas A.; Looijenga, Leendert H.J.

    2011-01-01

    Despite intense investigation of intrinsic and extrinsic factors that regulate pluripotency, the process of initial fate commitment of embryonic stem (ES) cells is still poorly understood. We used a genome-wide short hairpin RNA screen in mouse ES cells to identify genes that are essential for initiation of differentiation. Knockdown of the scaffolding protein Mek binding protein 1 (Mp1, also known as Lamtor3 or Map2k1ip1) stimulated self-renewal of ES cells, blocked differentiation, and promoted proliferation. Fibroblast growth factor 4 (FGF4) signaling is required for initial fate commitment of ES cells. Knockdown of Mp1 inhibited FGF4-induced differentiation but did not alter FGF4-driven proliferation. This uncoupling of differentiation and proliferation was also observed when oncogenic Ras isoforms were overexpressed in ES cells. Knockdown of Mp1 redirected FGF4 signaling from differentiation toward pluripotency and up-regulated the pluripotency-related genes Esrrb, Rex1, Tcl1, and Sox2. We also found that human germ cell tumors (GCTs) express low amounts of Mp1 in the invasive embryonic carcinoma and seminoma histologies and higher amounts of Mp1 in the noninvasive carcinoma in situ precursor and differentiated components. Knockdown of Mp1 in invasive GCT cells resulted in resistance to differentiation, thereby showing a functional role for Mp1 both in normal differentiation of ES cells and in germ cell cancer. PMID:22143885

  4. High-Content Genome-Wide RNAi Screen Reveals CCR3 as a Key Mediator of Neuronal Cell Death

    PubMed Central

    Wang, Huaishan; Sherbini, Omar; Ling-lin Pai, Emily; Kwon, Ji-Sun; He, Wei; Wang, Hong; Chi, Zhikai; Xu, Jinchong; Jiang, Haisong; Andrabi, Shaida A.

    2016-01-01

    Neuronal loss caused by ischemic injury, trauma, or disease can lead to devastating consequences for the individual. With the goal of limiting neuronal loss, a number of cell death pathways have been studied, but there may be additional contributors to neuronal death that are yet unknown. To identify previously unknown cell death mediators, we performed a high-content genome-wide screening of short, interfering RNA (siRNA) with an siRNA library in murine neural stem cells after exposure to N-methyl-N-nitroso-N′-nitroguanidine (MNNG), which leads to DNA damage and cell death. Eighty genes were identified as key mediators for cell death. Among them, 14 are known cell death mediators and 66 have not previously been linked to cell death pathways. Using an integrated approach with functional and bioinformatics analysis, we provide possible molecular networks, interconnected pathways, and/or protein complexes that may participate in cell death. Of the 66 genes, we selected CCR3 for further evaluation and found that CCR3 is a mediator of neuronal injury. CCR3 inhibition or deletion protects murine cortical cultures from oxygen-glucose deprivation–induced cell death, and CCR3 deletion in mice provides protection from ischemia in vivo. Taken together, our findings suggest that CCR3 is a previously unknown mediator of cell death. Future identification of the neural cell death network in which CCR3 participates will enhance our understanding of the molecular mechanisms of neural cell death. PMID:27822494

  5. A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly

    PubMed Central

    Ohn, Takbum; Kedersha, Nancy; Hickman, Tyler; Tisdale, Sarah; Anderson, Paul

    2015-01-01

    Stress granules (SGs) and processing bodies (PBs) are microscopically visible ribonucleoprotein granules that cooperatively regulate the translation and decay of messenger RNA1–3. Using an RNA-mediated interference-based screen, we identify 101 human genes required for SG assembly, 39 genes required for PB assembly, and 31 genes required for coordinate SG and PB assembly. Although 51 genes encode proteins involved in mRNA translation, splicing and transcription, most are not obviously associated with RNA metabolism. We find that several components of the hexosamine biosynthetic pathway, which reversibly modifies proteins with O-linked N-acetylglucosamine (O-GlcNAc) in response to stress, are required for SG and PB assembly. O-GlcNAc-modified proteins are prominent components of SGs but not PBs, and include RACK1 (receptor for activated C kinase 1), prohibitin-2, glyceraldehyde-3-phosphate dehydrogenase and numerous ribosomal proteins. Our results suggest that O-GlcNAc modification of the translational machinery is required for aggregation of untranslated messenger ribonucleoproteins into SGs. The lack of enzymes of the hexosamine biosynthetic pathway in budding yeast may contribute to differences between mammalian SGs and related yeast EGP (eIF4E, 4G and Pab1 containing) bodies. PMID:18794846

  6. An RNAi screen for Aire cofactors reveals a role for Hnrnpl in polymerase release and Aire-activated ectopic transcription.

    PubMed

    Giraud, Matthieu; Jmari, Nada; Du, Lina; Carallis, Floriane; Nieland, Thomas J F; Perez-Campo, Flor M; Bensaude, Olivier; Root, David E; Hacohen, Nir; Mathis, Diane; Benoist, Christophe

    2014-01-28

    Aire induces the expression of a large set of autoantigen genes in the thymus, driving immunological tolerance in maturing T cells. To determine the full spectrum of molecular mechanisms underlying the Aire transactivation function, we screened an AIRE-dependent gene-expression system with a genome-scale lentiviral shRNA library, targeting factors associated with chromatin architecture/function, transcription, and mRNA processing. Fifty-one functional allies were identified, with a preponderance of factors that impact transcriptional elongation compared with initiation, in particular members of the positive transcription elongation factor b (P-TEFb) involved in the release of "paused" RNA polymerases (CCNT2 and HEXIM1); mRNA processing and polyadenylation factors were also highlighted (HNRNPL/F, SFRS1, SFRS3, and CLP1). Aire's functional allies were validated on transfected and endogenous target genes, including the generation of lentigenic knockdown (KD) mice. We uncovered the effect of the splicing factor Hnrnpl on Aire-induced transcription. Transcripts sensitive to the P-TEFb inhibitor flavopiridol were reduced by Hnrnpl knockdown in thymic epithelial cells, independently of their dependence on Aire, therefore indicating a general effect of Hnrnpl on RNA elongation. This conclusion was substantiated by demonstration of HNRNPL interactions with P-TEFb components (CDK9, CCNT2, HEXIM1, and the small 7SK RNA). Aire-containing complexes include 7SK RNA, the latter interaction disrupted by HNRNPL knockdown, suggesting that HNRNPL may partake in delivering inactive P-TEFb to Aire. Thus, these results indicate that mRNA processing factors cooperate with Aire to release stalled polymerases and to activate ectopic expression of autoantigen genes in the thymus.

  7. A Genome-Scale DNA Repair RNAi Screen Identifies SPG48 as a Novel Gene Associated with Hereditary Spastic Paraplegia

    PubMed Central

    Słabicki, Mikołaj; Theis, Mirko; Krastev, Dragomir B.; Samsonov, Sergey; Mundwiller, Emeline; Junqueira, Magno; Paszkowski-Rogacz, Maciej; Teyra, Joan; Heninger, Anne-Kristin; Poser, Ina; Prieur, Fabienne; Truchetto, Jérémy; Confavreux, Christian; Marelli, Cécilia; Durr, Alexandra; Camdessanche, Jean Philippe; Brice, Alexis; Shevchenko, Andrej; Pisabarro, M. Teresa; Stevanin, Giovanni; Buchholz, Frank

    2010-01-01

    DNA repair is essential to maintain genome integrity, and genes with roles in DNA repair are frequently mutated in a variety of human diseases. Repair via homologous recombination typically restores the original DNA sequence without introducing mutations, and a number of genes that are required for homologous recombination DNA double-strand break repair (HR-DSBR) have been identified. However, a systematic analysis of this important DNA repair pathway in mammalian cells has not been reported. Here, we describe a genome-scale endoribonuclease-prepared short interfering RNA (esiRNA) screen for genes involved in DNA double strand break repair. We report 61 genes that influenced the frequency of HR-DSBR and characterize in detail one of the genes that decreased the frequency of HR-DSBR. We show that the gene KIAA0415 encodes a putative helicase that interacts with SPG11 and SPG15, two proteins mutated in hereditary spastic paraplegia (HSP). We identify mutations in HSP patients, discovering KIAA0415/SPG48 as a novel HSP-associated gene, and show that a KIAA0415/SPG48 mutant cell line is more sensitive to DNA damaging drugs. We present the first genome-scale survey of HR-DSBR in mammalian cells providing a dataset that should accelerate the discovery of novel genes with roles in DNA repair and associated medical conditions. The discovery that proteins forming a novel protein complex are required for efficient HR-DSBR and are mutated in patients suffering from HSP suggests a link between HSP and DNA repair. PMID:20613862

  8. RNAi screening of developmental toolkit genes: a search for novel wing genes in the red flour beetle, Tribolium castaneum.

    PubMed

    Linz, David M; Tomoyasu, Yoshinori

    2015-01-01

    The amazing array of diversity among insect wings offers a powerful opportunity to study the mechanisms guiding morphological evolution. Studies in Drosophila (the fruit fly) have identified dozens of genes important for wing development. These genes are often called candidate genes, serving as an ideal starting point to study wing development in other insects. However, we also need to explore beyond the candidate genes to gain a more comprehensive view of insect wing evolution. As a first step away from the traditional candidate genes, we utilized Tribolium (the red flour beetle) as a model and assessed the potential involvement of a group of developmental toolkit genes (embryonic patterning genes) in beetle wing development. We hypothesized that the highly pleiotropic nature of these developmental genes would increase the likelihood of finding novel wing genes in Tribolium. Through the RNA interference screening, we found that Tc-cactus has a less characterized (but potentially evolutionarily conserved) role in wing development. We also found that the odd-skipped family genes are essential for the formation of the thoracic pleural plates, including the recently discovered wing serial homologs in Tribolium. In addition, we obtained several novel insights into the function of these developmental genes, such as the involvement of mille-pattes and Tc-odd-paired in metamorphosis. Despite these findings, no gene we examined was found to have novel wing-related roles unique in Tribolium. These results suggest a relatively conserved nature of developmental toolkit genes and highlight the limited degree to which these genes are co-opted during insect wing evolution.

  9. A cellular high-throughput screening approach for therapeutic trans-cleaving ribozymes and RNAi against arbitrary mRNA disease targets.

    PubMed

    Yau, Edwin H; Butler, Mark C; Sullivan, Jack M

    2016-10-01

    Major bottlenecks in development of therapeutic post transcriptional gene silencing (PTGS) agents (e.g. ribozymes, RNA interference, antisense) include the challenge of mapping rare accessible regions of the mRNA target that are open for annealing and cleavage, testing and optimization of agents in human cells to identify lead agents, testing for cellular toxicity, and preclinical evaluation in appropriate animal models of disease. Methods for rapid and reliable cellular testing of PTGS agents are needed to identify potent lead candidates for optimization. Our goal was to develop a means of rapid assessment of many RNA agents to identify a lead candidate for a given mRNA associated with a disease state. We developed a rapid human cell-based screening platform to test efficacy of hammerhead ribozyme (hhRz) or RNA interference (RNAi) constructs, using a model retinal degeneration target, human rod opsin (RHO) mRNA. The focus is on RNA Drug Discovery for diverse retinal degeneration targets. To validate the approach, candidate hhRzs were tested against NUH↓ cleavage sites (N = G,C,A,U; H = C,A,U) within the target mRNA of secreted alkaline phosphatase (SEAP), a model gene expression reporter, based upon in silico predictions of mRNA accessibility. HhRzs were embedded in a larger stable adenoviral VAI RNA scaffold for high cellular expression, cytoplasmic trafficking, and stability. Most hhRz expression plasmids exerted statistically significant knockdown of extracellular SEAP enzyme activity when readily assayed by a fluorescence enzyme assay intended for high throughput screening (HTS). Kinetics of PTGS knockdown of cellular targets is measureable in live cells with the SEAP reporter. The validated SEAP HTS platform was transposed to identify lead PTGS agents against a model hereditary retinal degeneration target, RHO mRNA. Two approaches were used to physically fuse the model retinal gene target mRNA to the SEAP reporter mRNA. The most expedient way to

  10. A Cellular High-Throughput Screening Approach for Therapeutic trans-Cleaving Ribozymes and RNAi against Arbitrary mRNA Disease Targets

    PubMed Central

    Yau, Edwin H.; Butler, Mark C.; Sullivan, Jack M.

    2016-01-01

    Major bottlenecks in development of therapeutic post transcriptional gene silencing (PTGS) agents (e.g. ribozymes, RNA interference, antisense) include the challenge of mapping rare accessible regions of the mRNA target that are open for annealing and cleavage, testing and optimization of agents in human cells to identify lead agents, testing for cellular toxicity, and preclinical evaluation in appropriate animal models of disease. Methods for rapid and reliable cellular testing of PTGS agents are needed to identify potent lead candidates for optimization. Our goal was to develop a means of rapid assessment of many RNA agents to identify a lead candidate for a given mRNA associated with a disease state. We developed a rapid human cell-based screening platform to test efficacy of hammerhead ribozyme (hhRz) or RNA interference (RNAi) constructs, using a model retinal degeneration target, human rod opsin (RHO) mRNA. The focus is on RNA Drug Discovery for diverse retinal degeneration targets. To validate the approach, candidate hhRzs were tested against NUH↓ cleavage sites (N=G,C,A,U; H=C,A,U) within the target mRNA of secreted alkaline phosphatase (SEAP), a model gene expression reporter, based upon in silico predictions of mRNA accessibility. HhRzs were embedded in a larger stable adenoviral VAI RNA scaffold for high cellular expression, cytoplasmic trafficking, and stability. Most hhRz expression plasmids exerted statistically significant knockdown of extracellular SEAP enzyme activity when readily assayed by a fluorescence enzyme assay intended for high throughput screening (HTS). Kinetics of PTGS knockdown of cellular targets is measureable in live cells with the SEAP reporter. The validated SEAP HTS platform was transposed to identify lead PTGS agents against a model hereditary retinal degeneration target, RHO mRNA. Two approaches were used to physically fuse the model retinal gene target mRNA to the SEAP reporter mRNA. The most expedient way to evaluate a

  11. From screening to quantitative sensitivity analysis. A unified approach

    NASA Astrophysics Data System (ADS)

    Campolongo, Francesca; Saltelli, Andrea; Cariboni, Jessica

    2011-04-01

    The present work is a sequel to a recent one published on this journal where the superiority of 'radial design' to compute the 'total sensitivity index' was ascertained. Both concepts belong to sensitivity analysis of model output. A radial design is the one whereby starting from a random point in the hyperspace of the input factors one step in turn is taken for each factor. The procedure is iterated a number of times with a different starting random point as to collect a sample of elementary shifts for each factor. The total sensitivity index is a powerful sensitivity measure which can be estimated based on such a sample. Given the similarity between the total sensitivity index and a screening test known as method of the elementary effects (or method of Morris), we test the radial design on this method. Both methods are best practices: the total sensitivity index in the class of the quantitative measures and the elementary effects in that of the screening methods. We find that the radial design is indeed superior even for the computation of the elementary effects method. This opens the door to a sensitivity analysis strategy whereby the analyst can start with a small number of points (screening-wise) and then - depending on the results - possibly increase the numeral of points up to compute a fully quantitative measure. Also of interest to practitioners is that a radial design is nothing else than an iterated 'One factor At a Time' (OAT) approach. OAT is a radial design of size one. While OAT is not a good practice, modelers in all domains keep using it for sensitivity analysis for reasons discussed elsewhere (Saltelli and Annoni, 2010) [23]. With the present approach modelers are offered a straightforward and economic upgrade of their OAT which maintain OAT's appeal of having just one factor moved at each step.

  12. Quantitative High-throughput Luciferase Screening in Identifying CAR Modulators

    PubMed Central

    Lynch, Caitlin; Zhao, Jinghua; Wang, Hongbing; Xia, Menghang

    2017-01-01

    Summary The constitutive androstane receptor (CAR, NR1I3) is responsible for the transcription of multiple drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both of these mechanisms require translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active in immortalized cell lines due to the basal nuclear location of this receptor. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify hCAR1 modulators through the employment of a double stable cell line. Using this line, we are able to identify activators, as well as deactivators, of the challenging nuclear receptor, CAR. PMID:27518621

  13. Asian citrus psyllid RNAi pathway - RNAi evidence

    USDA-ARS?s Scientific Manuscript database

    In silico analyses of the draft genome of Diaphorina citri, the Asian citrus psyllid, for genes within the Ribonucleic acid interference(RNAi), pathway was successful. The psyllid is the vector of the plant-infecting bacterium, Candidatus Liberibacter asiaticus (CLas), which is linked to citrus gree...

  14. Melanoma screening: Informing public health policy with quantitative modelling.

    PubMed

    Gilmore, Stephen

    2017-01-01

    Australia and New Zealand share the highest incidence rates of melanoma worldwide. Despite the substantial increase in public and physician awareness of melanoma in Australia over the last 30 years-as a result of the introduction of publicly funded mass media campaigns that began in the early 1980s -mortality has steadily increased during this period. This increased mortality has led investigators to question the relative merits of primary versus secondary prevention; that is, sensible sun exposure practices versus early detection. Increased melanoma vigilance on the part of the public and among physicians has resulted in large increases in public health expenditure, primarily from screening costs and increased rates of office surgery. Has this attempt at secondary prevention been effective? Unfortunately epidemiologic studies addressing the causal relationship between the level of secondary prevention and mortality are prohibitively difficult to implement-it is currently unknown whether increased melanoma surveillance reduces mortality, and if so, whether such an approach is cost-effective. Here I address the issue of secondary prevention of melanoma with respect to incidence and mortality (and cost per life saved) by developing a Markov model of melanoma epidemiology based on Australian incidence and mortality data. The advantages of developing a methodology that can determine constraint-based surveillance outcomes are twofold: first, it can address the issue of effectiveness; and second, it can quantify the trade-off between cost and utilisation of medical resources on one hand, and reduced morbidity and lives saved on the other. With respect to melanoma, implementing the model facilitates the quantitative determination of the relative effectiveness and trade-offs associated with different levels of secondary and tertiary prevention, both retrospectively and prospectively. For example, I show that the surveillance enhancement that began in 1982 has resulted in

  15. Commercial potential of RNAi.

    PubMed

    Jain, K K

    2006-11-01

    The commercial potential of RNAi is assessed on the basis of successful translation of technology into applications in three areas: (1) drug discovery and research-currently the biggest segment; (2) potential therapeutic applications; and (3) the role of microRNA in molecular diagnostics. RNAi is an important method for analyzing gene function and identifying new drug targets that use dsRNA to knock down or silence specific genes. Sets of siRNAs focused on a specific gene class (siRNA libraries) have the capacity to greatly increase the pace of pathway analysis and functional genomics. RNAi plays an important role in drug discovery by facilitating target validation. The discovery of the role of microRNA (miRNAs) in various pathological processes opens up possible applications in molecular diagnostics, particularly that of cancer. The advantages of RNAi-based therapeutics over traditional pharmaceuticals include the capability for more specific therapies with small molecule siRNA. Drawbacks include the development of resistance in cancer and viral infections as well as the interferon effect. RNAi is closely related to gene therapy and the vectors developed for gene therapy are also being used for delivery of siRNAs. RNAi, along with other related technologies, will contribute to the development of personalised medicine. Although none of the RNAi-based drugs is in the market yet, some are in clinical trials. By the year 2010 the market for RNAi-based drugs is expected to be worth 3.5 billion dollars and is expected to expand to 10.5 billion dollars by the year 2015.

  16. Limited Agreement of Independent RNAi Screens for Virus-Required Host Genes Owes More to False-Negative than False-Positive Factors

    PubMed Central

    Wang, Zhishi; Craven, Mark; Newton, Michael A.; Ahlquist, Paul

    2013-01-01

    Systematic, genome-wide RNA interference (RNAi) analysis is a powerful approach to identify gene functions that support or modulate selected biological processes. An emerging challenge shared with some other genome-wide approaches is that independent RNAi studies often show limited agreement in their lists of implicated genes. To better understand this, we analyzed four genome-wide RNAi studies that identified host genes involved in influenza virus replication. These studies collectively identified and validated the roles of 614 cell genes, but pair-wise overlap among the four gene lists was only 3% to 15% (average 6.7%). However, a number of functional categories were overrepresented in multiple studies. The pair-wise overlap of these enriched-category lists was high, ∼19%, implying more agreement among studies than apparent at the gene level. Probing this further, we found that the gene lists implicated by independent studies were highly connected in interacting networks by independent functional measures such as protein-protein interactions, at rates significantly higher than predicted by chance. We also developed a general, model-based approach to gauge the effects of false-positive and false-negative factors and to estimate, from a limited number of studies, the total number of genes involved in a process. For influenza virus replication, this novel statistical approach estimates the total number of cell genes involved to be ∼2,800. This and multiple other aspects of our experimental and computational results imply that, when following good quality control practices, the low overlap between studies is primarily due to false negatives rather than false-positive gene identifications. These results and methods have implications for and applications to multiple forms of genome-wide analysis. PMID:24068911

  17. Insights to transcriptional networks by using high throughput RNAi strategies.

    PubMed

    Mattila, Jaakko; Puig, Oscar

    2010-01-01

    RNA interference (RNAi) is a powerful method to unravel the role of a given gene in eukaryotic cells. The development of high throughput assay platforms such as fluorescence plate readers and high throughput microscopy has allowed the design of genome wide RNAi screens to systemically discern members of regulatory networks around various cellular processes. Here we summarize the different strategies employed in RNAi screens to reveal regulators of transcriptional networks. We focus our discussion in experimental approaches designed to uncover regulatory interactions modulating transcription factor activity.

  18. Caveat of RNAi in plants: the off-target effect.

    PubMed

    Senthil-Kumar, Muthappa; Mysore, Kirankumar S

    2011-01-01

    RNA interference (RNAi), mediated by short interfering RNAs (siRNAs), is one of the widely used functional genomics method for suppressing the gene expression in plants. Initially, gene silencing by RNAi mechanism was believed to be specific requiring sequence homology between siRNA and target mRNA. However, several recent reports have showed that non-specific effects often referred as off-target gene silencing can occur during RNAi. This unintended gene silencing can lead to false conclusions in RNAi experiments that are aimed to study the functional role of a particular target gene in plants. This especially is a major problem in large-scale RNAi-based screens aiming for gene discovery. Hence, understanding the off-target effects is crucial for minimizing such effects to better conclude gene function analyzed by RNAi. We discuss here potential problems of off-target gene silencing and focus on possibilities that favor this effect during post-transcriptional gene silencing. Suggestions to overcome the off-target effects during RNAi studies are also presented. We believe that information available in present-day plant science literature about specificity of siRNA actions is inadequate. In-depth systematic studies to understand their molecular basis are necessary to enable improved design of more specific RNAi vectors. In the meantime, gene function and phenotype results from present-day RNAi studies need to be interpreted with caution.

  19. RNAi therapeutics for CNS disorders.

    PubMed

    Boudreau, Ryan L; Davidson, Beverly L

    2010-06-18

    RNA interference (RNAi) is a process of sequence-specific gene silencing and serves as a powerful molecular tool to manipulate gene expression in vitro and in vivo. RNAi technologies have been applied to study gene function and validate drug targets. Researchers are investigating RNAi-based compounds as novel therapeutics to treat a variety of human diseases that are currently lacking sufficient treatment. To date, numerous studies support that RNAi therapeutics can improve disease phenotypes in various rodent models of human disease. Here, we focus on the development of RNAi-based therapies aimed at treating neurological disorders for which reduction of mutant or toxic gene expression may provide clinical benefit. We review RNAi-based gene-silencing strategies, proof-of-concept studies testing therapeutic RNAi for CNS disorders, and highlight the most recent research aimed at transitioning RNAi-based therapeutics toward clinical trials.

  20. A whole-genome RNAi screen uncovers a novel role for human potassium channels in cell killing by the parasite Entamoeba histolytica.

    PubMed

    Marie, Chelsea; Verkerke, Hans P; Theodorescu, Dan; Petri, William A

    2015-09-08

    The parasite Entamoeba histolytica kills human cells resulting in ulceration, inflammation and invasion of the colonic epithelium. We used the cytotoxic properties of ameba to select a genome-wide RNAi library to reveal novel host factors that control susceptibility to amebic killing. We identified 281 candidate susceptibility genes and bioinformatics analyses revealed that ion transporters were significantly enriched among susceptibility genes. Potassium (K(+)) channels were the most common transporter identified. Their importance was further supported by colon biopsy of humans with amebiasis that demonstrated suppressed K(+) channel expression. Inhibition of human K(+) channels by genetic silencing, pharmacologic inhibitors and with excess K(+) protected diverse cell types from E. histolytica-induced death. Contact with E. histolytica parasites triggered K(+) channel activation and K(+) efflux by intestinal epithelial cells, which preceded cell killing. Specific inhibition of Ca(2+)-dependent K(+) channels was highly effective in preventing amebic cytotoxicity in intestinal epithelial cells and macrophages. Blockade of K(+) efflux also inhibited caspase-1 activation, IL-1β secretion and pyroptotic death in THP-1 macrophages. We concluded that K(+) channels are host mediators of amebic cytotoxicity in multiple cells types and of inflammasome activation in macrophages.

  1. A whole-genome RNAi screen uncovers a novel role for human potassium channels in cell killing by the parasite Entamoeba histolytica

    PubMed Central

    Marie, Chelsea; Verkerke, Hans P.; Theodorescu, Dan; Petri, William A.

    2015-01-01

    The parasite Entamoeba histolytica kills human cells resulting in ulceration, inflammation and invasion of the colonic epithelium. We used the cytotoxic properties of ameba to select a genome-wide RNAi library to reveal novel host factors that control susceptibility to amebic killing. We identified 281 candidate susceptibility genes and bioinformatics analyses revealed that ion transporters were significantly enriched among susceptibility genes. Potassium (K+) channels were the most common transporter identified. Their importance was further supported by colon biopsy of humans with amebiasis that demonstrated suppressed K+ channel expression. Inhibition of human K+ channels by genetic silencing, pharmacologic inhibitors and with excess K+ protected diverse cell types from E. histolytica-induced death. Contact with E. histolytica parasites triggered K+ channel activation and K+ efflux by intestinal epithelial cells, which preceded cell killing. Specific inhibition of Ca2+-dependent K+ channels was highly effective in preventing amebic cytotoxicity in intestinal epithelial cells and macrophages. Blockade of K+ efflux also inhibited caspase-1 activation, IL-1β secretion and pyroptotic death in THP-1 macrophages. We concluded that K+ channels are host mediators of amebic cytotoxicity in multiple cells types and of inflammasome activation in macrophages. PMID:26346926

  2. Recombinant fungal entomopathogen RNAi target insect gene.

    PubMed

    Hu, Qiongbo; Wu, Wei

    2016-11-01

    RNA interference (RNAi) technology is considered as an alternative for control of pests. However, RNAi has not been used in field conditions yet, since delivering exogenous ds/siRNA to target pests is very difficult. The laboratory methods of introducing the ds/siRNA into insects through feeding, micro feeding / dripping and injecting cannot be used in fields. Transgenic crop is perhaps the most effective application of RNAi for pest control, but it needs long-time basic researches in order to reduce the cost and evaluate the safety. Therefore, transgenic microbe is maybe a better choice. Entomopathogenic fungi generally invade the host insects through cuticle like chemical insecticides contact insect to control sucking sap pests. Isaria fumosorosea is a common fungal entomopathogen in whitefly, Bemisia tabaci. We constructed a recombinant strain of I. fumosorosea expressing specific dsRNA of whitefly's TLR7 gene. It could silence the TLR7 gene and improve the virulence against whitefly. Transgenic fungal entomopathogen has shown great potential to attain the application of RNAi technology for pests control in fields. In the future, the research interests should be focused on the selection of susceptible target pests and their vital genes, and optimizing the methods for screening genes and recombinants as well.

  3. Evaluation of Quantitative Environmental Stress Screening (ESS) Methods. Volume 1

    DTIC Science & Technology

    1991-11-01

    muu4 The objective of this study was to evaluate Environmental Stress Screening (ESS) techniques contained in DOD-HDBK-344,’ by applying the methodology...to several electronic products during actual factor production. Validation of the techniques , the develop- ment of improved, qi•p’lified,_ad...automated procedures and subsequent revisions to the Handbook were the objectives, qf the evaluation. The Rome Laboratory has developed techniques which

  4. Characterization of the Tyrosine Kinase-Regulated Proteome in Breast Cancer by Combined use of RNA interference (RNAi) and Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) Quantitative Proteomics*

    PubMed Central

    Stebbing, Justin; Zhang, Hua; Xu, Yichen; Grothey, Arnhild; Ajuh, Paul; Angelopoulos, Nicos; Giamas, Georgios

    2015-01-01

    Tyrosine kinases (TKs) are central regulators in cellular activities and perturbations of TK signaling contribute to oncogenesis. However, less than half of the TKs have been thoroughly studied and a global functional analysis of their proteomic portrait is lacking. Here we conducted a combined approach of RNA interference (RNAi) and stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics to decode the TK-regulated proteome and associated signaling dynamics. As a result, a broad proteomic repertoire modulated by TKs was revealed, upon silencing of the 65 TKs expressed in MCF7 breast cancer cells. This yielded 10 new distinctive TK clusters according to similarity in TK-regulated proteome, each characterized by a unique signaling signature in contrast to previous classifications. We provide functional analyses and identify critical pathways for each cluster based on their common downstream targets. Analysis of different breast cancer subtypes showed distinct correlations of each cluster with clinical outcome. From the significantly up- and down-regulated proteins, we identified a number of markers of drug sensitivity and resistance. These data supports the role of TKs in regulating major aspects of cellular activity, but also reveals redundancy in signaling, explaining why kinase inhibitors alone often fail to achieve their clinical aims. The TK-SILACepedia provides a comprehensive resource for studying the global function of TKs in cancer. PMID:26089344

  5. Characterization of the Tyrosine Kinase-Regulated Proteome in Breast Cancer by Combined use of RNA interference (RNAi) and Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) Quantitative Proteomics.

    PubMed

    Stebbing, Justin; Zhang, Hua; Xu, Yichen; Grothey, Arnhild; Ajuh, Paul; Angelopoulos, Nicos; Giamas, Georgios

    2015-09-01

    Tyrosine kinases (TKs) are central regulators in cellular activities and perturbations of TK signaling contribute to oncogenesis. However, less than half of the TKs have been thoroughly studied and a global functional analysis of their proteomic portrait is lacking. Here we conducted a combined approach of RNA interference (RNAi) and stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics to decode the TK-regulated proteome and associated signaling dynamics. As a result, a broad proteomic repertoire modulated by TKs was revealed, upon silencing of the 65 TKs expressed in MCF7 breast cancer cells. This yielded 10 new distinctive TK clusters according to similarity in TK-regulated proteome, each characterized by a unique signaling signature in contrast to previous classifications. We provide functional analyses and identify critical pathways for each cluster based on their common downstream targets. Analysis of different breast cancer subtypes showed distinct correlations of each cluster with clinical outcome. From the significantly up- and down-regulated proteins, we identified a number of markers of drug sensitivity and resistance. These data supports the role of TKs in regulating major aspects of cellular activity, but also reveals redundancy in signaling, explaining why kinase inhibitors alone often fail to achieve their clinical aims. The TK-SILACepedia provides a comprehensive resource for studying the global function of TKs in cancer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Antiviral RNAi: Translating Science Toward Therapeutic Success

    PubMed Central

    2016-01-01

    Viruses continuously evolve to contend with an ever-changing environment that involves transmission between hosts and sometimes species, immune responses, and in some cases therapeutic interventions. Given the high mutation rate of viruses relative to the timescales of host evolution and drug development, novel drug classes that are readily screened and translated to the clinic are needed. RNA interference (RNAi) – a natural mechanism for specific degradation of target RNAs that is conserved from plants to invertebrates and vertebrates – can potentially be harnessed to yield therapies with extensive specificity, ease of design, and broad application. In this review, we discuss basic mechanisms of action and therapeutic applications of RNAi, including design considerations and areas for future development in the field. PMID:21826573

  7. Rapid screening of triazines and quantitative determination in drinking water.

    PubMed

    Hamada, Mazen; Wintersteiger, Reinhold

    2002-01-01

    A sensitive, rapid and inexpensive analysis method has been developed for the triazines most frequently used in Palestine; the method includes fluorodensitometric screening and densitometric determination of the individual substances. Terbutryn as a model substance was derivatized with dansyl chloride in sodium hydrogen-carbonate or phosphate buffer solution to yield a green-blue fluorescent compound. Derivatization occurred at 120 degrees C within maximum of 10-min reaction time. The fluorescent compound formed was separated from excess reagent and other by-products on silica gel TLC plates and was then determined fluorodensitometrically. A linearity range between 20 and 1200 pg/spot was achieved. The method was also applied to other triazine herbicides such as ametryn, atrazine, propazine, terbuthylazine and simazine. Drinking water samples spiked with triazines were extracted using RP-C18 polar plus cartridges, and the extract could be then dansylated as a total. Recoveries were between 88% and 95%; the detection limit was 10 pg/spot and could be further improved to 2 pg/spot by a dipping solution. For quantification, each of the six triazines can be separated on one of three different stationary phases after solid phase extraction and measured densitometrically. The LOD for each individual triazine was 100 ng/l.

  8. An RNAi screen identifies additional members of the Drosophila Integrator complex and a requirement for cyclin C/Cdk8 in snRNA 3′-end formation

    PubMed Central

    Chen, Jiandong; Ezzeddine, Nader; Waltenspiel, Bernhard; Albrecht, Todd R.; Warren, William D.; Marzluff, William F.; Wagner, Eric J.

    2012-01-01

    Formation of the 3′ end of RNA polymerase II–transcribed snRNAs requires a poorly understood group of proteins called the Integrator complex. Here we used a fluorescence-based read-through reporter that expresses GFP in response to snRNA misprocessing and performed a genome-wide RNAi screen in Drosophila S2 cells to identify novel factors required for snRNA 3′-end formation. In addition to the known Integrator complex members, we identified Asunder and CG4785 as additional Integrator subunits. Functional and biochemical experiments revealed that Asunder and CG4785 are additional core members of the Integrator complex. We also identified a conserved requirement in both fly and human snRNA 3′-end processing for cyclin C and Cdk8 that is distinct from their function in the Mediator Cdk8 module. Moreover, we observed biochemical association between Integrator proteins and cyclin C/Cdk8, and that overexpression of a kinase-dead Cdk8 causes snRNA misprocessing. These data functionally define the Drosophila Integrator complex and demonstrate an additional function for cyclin C/Cdk8 unrelated to its function in Mediator. PMID:23097424

  9. Asian Citrus Psyllid RNAi Pathway – RNAi evidence

    PubMed Central

    Taning, Clauvis N. T.; Andrade, Eduardo C.; Hunter, Wayne B.; Christiaens, Olivier; Smagghe, Guy

    2016-01-01

    Diaphorina citri, known as the Asian citrus psyllid, is an important pest of citrus because it transmits a phloem-limited bacteria strongly implicated in huanglongbing (citrus greening disease). Emerging biotechnologies, such as RNA interference, could provide a new sustainable and environmentally friendly strategy for the management of this pest. In this study, genome and functional analysis were performed to verify whether the RNAi core genes are present in the Asian psyllid genome and if the RNAi machinery could be exploited to develop a management strategy for this pest. Analyses of RNAi-related genes in the Asian citrus psyllid genome showed an absence of sequences encoding R2D2, a dsRNA-binding protein that functions as a cofactor of Dicer-2 in Drosophila. Nevertheless, bioassays using an in Planta System showed that the Asian citrus psyllid was very sensitive to ingested dsRNA, demonstrating a strong RNAi response. A small dose of dsRNA administered through a citrus flush was enough to trigger the RNAi mechanism, causing significant suppression of the targeted transcript, and increased psyllid mortality. This study provides evidence of a functional RNAi machinery, which could be further exploited to develop RNAi based management strategies for the control of the Asian citrus psyllid. PMID:27901078

  10. A Drosophila RNAi library modulates Hippo pathway-dependent tissue growth.

    PubMed

    Vissers, Joseph H A; Manning, Samuel A; Kulkarni, Aishwarya; Harvey, Kieran F

    2016-01-13

    Libraries of transgenic Drosophila melanogaster carrying RNA interference (RNAi) constructs have been used extensively to perform large-scale functional genetic screens in vivo. For example, RNAi screens have facilitated the discovery of multiple components of the Hippo pathway, an evolutionarily conserved growth-regulatory network. Here we investigate an important technical limitation with the widely used VDRC KK RNAi collection. We find that approximately 25% of VDRC KK RNAi lines cause false-positive enhancement of the Hippo pathway, owing to ectopic expression of the Tiptop transcription factor. Of relevance to the broader Drosophila community, ectopic tiptop (tio) expression can also cause organ malformations and mask phenotypes such as organ overgrowth. To enhance the use of the VDRC KK RNAi library, we have generated a D. melanogaster strain that will allow researchers to test, in a single cross, whether their genetic screen of interest will be affected by ectopic tio expression.

  11. High throughput RNAi screening identifies ID1 as a synthetic sick/lethal gene interacting with the common TP53 mutation R175H

    PubMed Central

    IMAI, HIROO; KATO, SHUNSUKE; SAKAMOTO, YASUHIRO; KAKUDO, YUICHI; SHIMODAIRA, HIDEKI; ISHIOKA, CHIKASHI

    2014-01-01

    The TP53 mutation (R175H) is one of the most common mutations in human cancer. It is a highly attractive strategy for cancer therapy to find the genes that lead the R175H-expressing cancer cells. The aim of this study was to identify the synthetic sick/lethal gene interacting with R175H. Using lentiviral bar-coded comprehensive shRNA library and a tetracycline-inducible R175H expressed in the SF126 human glioblastoma cell line (SF126-tet-R175H), we conducted high-throughput screening to identify the candidate genes that induce synthetic sickness/lethality in R175H-expressing cells. We identified 906 candidate gene suppressions that may lead to accelerated cell growth inhibition in the presence of R175H. Inhibitor of differentiation 1 (ID1) was one of the candidate genes, and its suppression by siRNA resulted in the acceleration of growth inhibition in cell lines both transiently and endogenously expressing R175H but not in TP53-null cell lines or other common p53 mutants (such as R273H). Flow cytometry analysis showed that ID1 suppression resulted in G1 arrest, and the arrest was accelerated by the expression of R175H. ID1 is a synthetic sick/lethal gene that interacts with R175H and is considered to be a novel molecular target for cancer therapy in R175H-expressing cells. PMID:24378760

  12. A genome-wide IR-induced RAD51 foci RNAi screen identifies CDC73 involved in chromatin remodeling for DNA repair

    PubMed Central

    Herr, Patrick; Lundin, Cecilia; Evers, Bastiaan; Ebner, Daniel; Bauerschmidt, Christina; Kingham, Guy; Palmai-Pallag, Timea; Mortusewicz, Oliver; Frings, Oliver; Sonnhammer, Erik; Helleday, Thomas

    2015-01-01

    To identify new regulators of homologous recombination repair, we carried out a genome-wide short-interfering RNA screen combined with ionizing irradiation using RAD51 foci formation as readout. All candidates were confirmed by independent short-interfering RNAs and validated in secondary assays like recombination repair activity and RPA foci formation. Network analysis of the top modifiers identified gene clusters involved in recombination repair as well as components of the ribosome, the proteasome and the spliceosome, which are known to be required for effective DNA repair. We identified and characterized the RNA polymerase II-associated protein CDC73/Parafibromin as a new player in recombination repair and show that it is critical for genomic stability. CDC73 interacts with components of the SCF/Cullin and INO80/NuA4 chromatin-remodeling complexes to promote Histone ubiquitination. Our findings indicate that CDC73 is involved in local chromatin decondensation at sites of DNA damage to promote DNA repair. This function of CDC73 is related to but independent of its role in transcriptional elongation. PMID:27462432

  13. Environmental RNAi in herbivorous insects

    PubMed Central

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B. Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C.; Johnson, Steven; Meyer, Steve E.; Kerstetter, Randy A.; McNulty, Brian C.; Bolognesi, Renata; Heck, Gregory R.

    2015-01-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism. PMID:25802407

  14. Environmental RNAi in herbivorous insects.

    PubMed

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C; Johnson, Steven; Meyer, Steve E; Kerstetter, Randy A; McNulty, Brian C; Bolognesi, Renata; Heck, Gregory R

    2015-05-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism.

  15. A Genome-Wide RNAi Screen Identifies FOXO4 as a Metastasis-Suppressor through Counteracting PI3K/AKT Signal Pathway in Prostate Cancer

    PubMed Central

    Su, Bing; Gao, Lingqiu; Baranowski, Catherine; Gillard, Bryan; Wang, Jianmin; Ransom, Ryan; Ko, Hyun-Kyung; Gelman, Irwin H.

    2014-01-01

    Activation of the PI3K/AKT signal pathway is a known driving force for the progression to castration-recurrent prostate cancer (CR-CaP), which constitutes the major lethal phenotype of CaP. Here, we identify using a genomic shRNA screen the PI3K/AKT-inactivating downstream target, FOXO4, as a potential CaP metastasis suppressor. FOXO4 protein levels inversely correlate with the invasive potential of a panel of human CaP cell lines, with decreased mRNA levels correlating with increased incidence of clinical metastasis. Knockdown (KD) of FOXO4 in human LNCaP cells causes increased invasion in vitro and lymph node (LN) metastasis in vivo without affecting indices of proliferation or apoptosis. Increased Matrigel invasiveness was found by KD of FOXO1 but not FOXO3. Comparison of differentially expressed genes affected by FOXO4-KD in LNCaP cells in culture, in primary tumors and in LN metastases identified a panel of upregulated genes, including PIP, CAMK2N1, PLA2G16 and PGC, which, if knocked down by siRNA, could decrease the increased invasiveness associated with FOXO4 deficiency. Although only some of these genes encode FOXO promoter binding sites, they are all RUNX2-inducible, and RUNX2 binding to the PIP promoter is increased in FOXO4-KD cells. Indeed, the forced expression of FOXO4 reversed the increased invasiveness of LNCaP/shFOXO4 cells; the forced expression of FOXO4 did not alter RUNX2 protein levels, yet it decreased RUNX2 binding to the PIP promoter, resulting in PIP downregulation. Finally, there was a correlation between FOXO4, but not FOXO1 or FOXO3, downregulation and decreased metastasis-free survival in human CaP patients. Our data strongly suggest that increased PI3K/AKT-mediated metastatic invasiveness in CaP is associated with FOXO4 loss, and that mechanisms to induce FOXO4 re-expression might suppress CaP metastatic aggressiveness. PMID:24983969

  16. A novel method for tissue-specific RNAi rescue in Drosophila.

    PubMed

    Schulz, Joachim G; David, Guido; Hassan, Bassem A

    2009-07-01

    Targeted gene silencing by RNA interference allows the study of gene function in plants and animals. In cell culture and small animal models, genetic screens can be performed--even tissue-specifically in Drosophila--with genome-wide RNAi libraries. However, a major problem with the use of RNAi approaches is the unavoidable false-positive error caused by off-target effects. Until now, this is minimized by computational RNAi design, comparing RNAi to the mutant phenotype if known, and rescue with a presumed ortholog. The ultimate proof of specificity would be to restore expression of the same gene product in vivo. Here, we present a simple and efficient method to rescue the RNAi-mediated knockdown of two independent genes in Drosophila. By exploiting the degenerate genetic code, we generated Drosophila RNAi Escape Strategy Construct (RESC) rescue proteins containing frequent silent mismatches in the complete RNAi target sequence. RESC products were no longer efficiently silenced by RNAi in cell culture and in vivo. As a proof of principle, we rescue the RNAi-induced loss of function phenotype of the eye color gene white and tracheal defects caused by the knockdown of the heparan sulfate proteoglycan syndecan. Our data suggest that RESC is widely applicable to rescue and validate ubiquitous or tissue-specific RNAi and to perform protein structure-function analysis.

  17. A high-throughput, quantitative cell-based screen for efficient tailoring of RNA device activity

    PubMed Central

    Liang, Joe C.; Chang, Andrew L.; Kennedy, Andrew B.; Smolke, Christina D.

    2012-01-01

    Recent advances have demonstrated the use of RNA-based control devices to program sophisticated cellular functions; however, the efficiency with which these devices can be quantitatively tailored has limited their broader implementation in cellular networks. Here, we developed a high-efficiency, high-throughput and quantitative two-color fluorescence-activated cell sorting-based screening strategy to support the rapid generation of ribozyme-based control devices with user-specified regulatory activities. The high-efficiency of this screening strategy enabled the isolation of a single functional sequence from a library of over 106 variants within two sorting cycles. We demonstrated the versatility of our approach by screening large libraries generated from randomizing individual components within the ribozyme device platform to efficiently isolate new device sequences that exhibit increased in vitro cleavage rates up to 10.5-fold and increased in vivo activation ratios up to 2-fold. We also identified a titratable window within which in vitro cleavage rates and in vivo gene-regulatory activities are correlated, supporting the importance of optimizing RNA device activity directly in the cellular environment. Our two-color fluorescence-activated cell sorting-based screen provides a generalizable strategy for quantitatively tailoring genetic control elements for broader integration within biological networks. PMID:22810204

  18. RNAi: future in insect management.

    PubMed

    Burand, John P; Hunter, Wayne B

    2013-03-01

    RNA interference is a post- transcriptional, gene regulation mechanism found in virtually all plants and animals including insects. The demonstration of RNAi in insects and its successful use as a tool in the study of functional genomics opened the door to the development of a variety of novel, environmentally sound approaches for insect pest management. Here the current understanding of the biogenesis of the two RNAi classes in insects is reviewed. These are microRNAs (miRNAs) and short interfering RNAs (siRNAs). Several other key approaches in RNAi -based for insect control, as well as for the prevention of diseases in insects are also reviewed. The problems and prospects for the future use of RNAi in insects are presented.

  19. RNAi from plants to nematodes.

    PubMed

    Gheysen, Godelieve; Vanholme, Bartel

    2007-03-01

    Coincident with the award of the Nobel Prize for Medicine in 2006 to Fire and Mello for their discovery of RNAi, plant scientists have succeeded in using RNAi-based techniques to control nematodes, a hitherto unmanageable plant parasite. Recent work has demonstrated that the expression in a host plant of double-stranded RNA targeting housekeeping or parasitism genes in the root-knot nematode resulted in resistance to nematode infection.

  20. Quantitative screening of yeast surface-displayed polypeptide libraries by magnetic bead capture.

    PubMed

    Yeung, Yik A; Wittrup, K Dane

    2002-01-01

    Magnetic bead capture is demonstrated here to be a feasible alternative for quantitative screening of favorable mutants from a cell-displayed polypeptide library. Flow cytometric sorting with fluorescent probes has been employed previously for high throughput screening for either novel binders or improved mutants. However, many laboratories do not have ready access to this technology as a result of the limited availability and high cost of cytometers, restricting the use of cell-displayed libraries. Using streptavidin-coated magnetic beads and biotinylated ligands, an alternative approach to cell-based library screening for improved mutants was developed. Magnetic bead capture probability of labeled cells is shown to be closely correlated with the surface ligand density. A single-pass enrichment ratio of 9400 +/- 1800-fold, at the expense of 85 +/- 6% binder losses, is achieved from screening a library that contains one antibody-displaying cell (binder) in 1.1 x 10(5) nondisplaying cells. Additionally, kinetic screening for an initial high affinity to low affinity (7.7-fold lower) mutant ratio of 1:95,000, the magnetic bead capture method attains a single-pass enrichment ratio of 600 +/- 200-fold with a 75 +/- 24% probability of loss for the higher affinity mutant. The observed high loss probabilities can be straightforwardly compensated for by library oversampling, given the inherently parallel nature of the screen. Overall, these results demonstrate that magnetic beads are capable of quantitatively screening for novel binders and improved mutants. The described methods are directly analogous to procedures in common use for phage display and should lower the barriers to entry for use of cell surface display libraries.

  1. Development of new RNAi therapeutics.

    PubMed

    Liu, G; Wong-Staal, F; Li, Q-X

    2007-02-01

    RNAi-mediated gene inactivation has become a cornerstone of the present day gene function studies that are the foundation of mechanism and target based drug discovery and development, which could potentially shorten the otherwise long process of drug development. In particular, the coming of age of "RNAi drug" could provide new promising therapeutics bypassing traditional approaches. However, there are technological hurdles need to overcome and the biological limitations need to consider for achieving effective therapeutics. Major hurdles include the intrinsic poor pharmacokinetic property of siRNA and major biological restrictions include off-target effects, interferon response and the interference with endogenous miRNA. Recent innovations in nucleic acid chemistry, formulations and delivery methods have gradually rendered it possible to develop effective RNAi-based therapeutics. Careful design based on the newest RNAi/miRNA biology can also help to minimize the potential tissue toxicity. If successful with systemic application, RNAi drug will no doubt revolutionize the whole drug development process. This review attempts to describe the progress in this area, including applications in preclinical models and recent favorable experience in a number of human trials of local diseases, along with the discussion on the potential limitations of RNAi therapeutics.

  2. RNAi and functional genomics in plant parasitic nematodes.

    PubMed

    Rosso, M N; Jones, J T; Abad, P

    2009-01-01

    Plant nematology is currently undergoing a revolution with the availability of the first genome sequences as well as comprehensive expressed sequence tag (EST) libraries from a range of nematode species. Several strategies are being used to exploit this wealth of information. Comparative genomics is being used to explore the acquisition of novel genes associated with parasitic lifestyles. Functional analyses of nematode genes are moving toward larger scale studies including global transcriptome profiling. RNA interference (RNAi) has been shown to reduce expression of a range of plant parasitic nematode genes and is a powerful tool for functional analysis of nematode genes. RNAi-mediated suppression of genes essential for nematode development, survival, or parasitism is revealing new targets for nematode control. Plant nematology in the genomics era is now facing the challenge to develop RNAi screens adequate for high-throughput functional analyses.

  3. Opportunistic Osteoporosis Screening: Addition of Quantitative CT Bone Mineral Density Evaluation to CT Colonography.

    PubMed

    Ziemlewicz, Timothy J; Binkley, Neil; Pickhardt, Perry J

    2015-10-01

    For patients undergoing CT colonography (CTC), the screening presents an opportunity for concurrent osteoporosis screening, without increasing radiation exposure or the time involved for the patient, using proximal femur quantitative CT-CT x-ray absorptiometry (QCT-CTXA). This cohort included 129 women and 112 men (mean age: 60.1 ± 8.2 years; range: 50-95 years) who underwent CTC between March 2013 and September 2014. Areal bone mineral density (BMD; g/cm(2)), and resultant left femoral neck T-score, was prospectively measured on the supine CT series. QCT results were reported with the CTC. Chart review evaluated whether the patients were eligible for BMD screening according to guidelines from the US Preventive Services Task Force and the National Osteoporosis Foundation guidelines; whether they had undergone prior BMD testing; and whether QCT results changed patient management. Overall, 68.0% (164 of 241) of patients from this cohort had not previously undergone BMD screening. According to the National Osteoporosis Foundation guidelines, 44.0% (106 of 241) of patients were eligible for screening. T-scores within the osteopenic and osteoporotic range were detected in 32.3% (78 of 241) and 5.0% (12 of 241) of patients, respectively. Of these patients with low BMD, 66.7% (60 of 90) either had not previously undergone screening or were eligible for BMD testing. Reporting of QCT-CTXA T-scores altered management in 9 patients (3.7%) who had low BMD. Maximizing the pre-existing value from imaging studies is crucial in the current era of health care reform. We demonstrate that colorectal and osteoporosis screening can be combined at CT examination, adding clinical and likely economic value. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  4. Development of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    PubMed

    Oguchi, Taichi; Onishi, Mari; Minegishi, Yasutaka; Kurosawa, Yasunori; Kasahara, Masaki; Akiyama, Hiroshi; Teshima, Reiko; Futo, Satoshi; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2009-06-01

    A duplex real-time PCR method was developed for quantitative screening analysis of GM maize. The duplex real-time PCR simultaneously detected two GM-specific segments, namely the cauliflower mosaic virus (CaMV) 35S promoter (P35S) segment and an event-specific segment for GA21 maize which does not contain P35S. Calibration was performed with a plasmid calibrant specially designed for the duplex PCR. The result of an in-house evaluation suggested that the analytical precision of the developed method was almost equivalent to those of simplex real-time PCR methods, which have been adopted as ISO standard methods for the analysis of GMOs in foodstuffs and have also been employed for the analysis of GMOs in Japan. In addition, this method will reduce both the cost and time requirement of routine GMO analysis by half. The high analytical performance demonstrated in the current study would be useful for the quantitative screening analysis of GM maize. We believe the developed method will be useful for practical screening analysis of GM maize, although interlaboratory collaborative studies should be conducted to confirm this.

  5. Quantitative methylene blue decolourisation assays as rapid screening tools for assessing the efficiency of catalytic reactions.

    PubMed

    Kruid, Jan; Fogel, Ronen; Limson, Janice Leigh

    2017-05-01

    Identifying the most efficient oxidation process to achieve maximum removal of a target pollutant compound forms the subject of much research. There exists a need to develop rapid screening tools to support research in this area. In this work we report on the development of a quantitative assay as a means for identifying catalysts capable of decolourising methylene blue through the generation of oxidising species from hydrogen peroxide. Here, a previously described methylene blue test strip method was repurposed as a quantitative, aqueous-based spectrophotometric assay. From amongst a selection of metal salts and metallophthalocyanine complexes, monitoring of the decolourisation of the cationic dye methylene blue (via Fenton-like and non-Fenton oxidation reactions) by the assay identified the following to be suitable oxidation catalysts: CuSO4 (a Fenton-like catalyst), iron(II)phthalocyanine (a non-Fenton oxidation catalyst), as well as manganese(II) phthalocyanine. The applicability of the method was examined for the removal of bisphenol A (BPA), as measured by HPLC, during parallel oxidation experiments. The order of catalytic activity was identified as FePc > MnPc > CuSO4 for both BPA and MB. The quantitative MB decolourisation assay may offer a rapid method for screening a wide range of potential catalysts for oxidation processes.

  6. "Inject-mix-react-separate-and-quantitate" (IMReSQ) method for screening enzyme inhibitors.

    PubMed

    Wong, Edmund; Okhonin, Victor; Berezovski, Maxim V; Nozaki, Tomoyoshi; Waldmann, Herbert; Alexandrov, Kirill; Krylov, Sergey N

    2008-09-10

    Many regulatory enzymes are considered attractive therapeutic targets, and their inhibitors are potential drug candidates. Screening combinatorial libraries for enzyme inhibitors is pivotal to identifying hit compounds for the development of drugs targeting regulatory enzymes. Here, we introduce the first inhibitor screening method that consumes only nanoliters of the reactant solutions and is applicable to regulatory enzymes. The method is termed inject-mix-react-separate-and-quantitate (IMReSQ) and includes five steps. First, nanoliter volumes of substrate, candidate inhibitor, and enzyme solutions are injected by pressure into a capillary as separate plugs. Second, the plugs are mixed inside this capillary microreactor by transverse diffusion of laminar flow profiles. Third, the reaction mixture is incubated to form the enzymatic product. Fourth, the product is separated from the substrate inside the capillary by electrophoresis. Fifth, the amounts of the product and substrate are quantitated. In this proof-of-principle work, we applied IMReSQ to study inhibition of recently cloned protein farnesyltransferase from parasite Entamoeba histolytica. This enzyme is a potential therapeutic target for antiparasitic drugs. We identified three previously unknown inhibitors of this enzyme and proved that IMReSQ could be used for quantitatively ranking the potencies of inhibitors.

  7. Curating and Preparing High-Throughput Screening Data for Quantitative Structure-Activity Relationship Modeling.

    PubMed

    Kim, Marlene T; Wang, Wenyi; Sedykh, Alexander; Zhu, Hao

    2016-01-01

    Publicly available bioassay data often contains errors. Curating massive bioassay data, especially high-throughput screening (HTS) data, for Quantitative Structure-Activity Relationship (QSAR) modeling requires the assistance of automated data curation tools. Using automated data curation tools are beneficial to users, especially ones without prior computer skills, because many platforms have been developed and optimized based on standardized requirements. As a result, the users do not need to extensively configure the curation tool prior to the application procedure. In this chapter, a freely available automatic tool to curate and prepare HTS data for QSAR modeling purposes will be described.

  8. Colorimetric assays for quantitative analysis and screening of epoxide hydrolase activity.

    PubMed

    Cedrone, F; Bhatnagar, T; Baratti, Jacques C

    2005-12-01

    Focusing on directed evolution to tailor enzymes as usable biocatalysts for fine chemistry, we have studied in detail several colorimetric assays for quantitative analysis of epoxide hydrolase (EH) activity. In particular, two assays have been optimized to characterize variants issued from the directed evolution of the EH from Aspergillus niger. Assays described in this paper are sufficiently reliable for quantitative screening of EH activity in microtiter plates and are low cost alternatives to GC or MS analysis. Moreover, they are usable for various epoxides and not restricted to a type of substrate, such as those amenable to assay by UV absorbancy. They can be used to assay EH activity on any epoxide and to directly assay enantioselectivity when both (R) and (S) substrates are available. The advantages and drawbacks of these two methods to assay EH activity of a large number of natural samples are summarized.

  9. RNAI: Future in insect management

    USDA-ARS?s Scientific Manuscript database

    RNA interference is a post-transcriptional, gene regulation mechanism found in virtually all plants and animals including insects. The demonstration of RNAi in insects and its successful use as a tool in the study of functional genomics opened the door to the development of a variety of novel, envir...

  10. Using Weighted Entropy to Rank Chemicals in Quantitative High Throughput Screening Experiments

    PubMed Central

    Shockley, Keith R.

    2014-01-01

    Quantitative high throughput screening (qHTS) experiments can simultaneously produce concentration-response profiles for thousands of chemicals. In a typical qHTS study, a large chemical library is subjected to a primary screen in order to identify candidate hits for secondary screening, validation studies or prediction modeling. Different algorithms, usually based on the Hill equation logistic model, have been used to classify compounds as active or inactive (or inconclusive). However, observed concentration-response activity relationships may not adequately fit a sigmoidal curve. Furthermore, it is unclear how to prioritize chemicals for follow-up studies given the large uncertainties that often accompany parameter estimates from nonlinear models. Weighted Shannon entropy can address these concerns by ranking compounds according to profile-specific statistics derived from estimates of the probability mass distribution of response at the tested concentration levels. This strategy can be used to rank all tested chemicals in the absence of a pre-specified model structure or the approach can complement existing activity call algorithms by ranking the returned candidate hits. The weighted entropy approach was evaluated here using data simulated from the Hill equation model. The procedure was then applied to a chemical genomics profiling data set interrogating compounds for androgen receptor agonist activity. PMID:24056003

  11. A Guided Materials Screening Approach for Developing Quantitative Sol-gel Derived Protein Microarrays

    PubMed Central

    Helka, Blake-Joseph; Brennan, John D.

    2013-01-01

    Microarrays have found use in the development of high-throughput assays for new materials and discovery of small-molecule drug leads. Herein we describe a guided material screening approach to identify sol-gel based materials that are suitable for producing three-dimensional protein microarrays. The approach first identifies materials that can be printed as microarrays, narrows down the number of materials by identifying those that are compatible with a given enzyme assay, and then hones in on optimal materials based on retention of maximum enzyme activity. This approach is applied to develop microarrays suitable for two different enzyme assays, one using acetylcholinesterase and the other using a set of four key kinases involved in cancer. In each case, it was possible to produce microarrays that could be used for quantitative small-molecule screening assays and production of dose-dependent inhibitor response curves. Importantly, the ability to screen many materials produced information on the types of materials that best suited both microarray production and retention of enzyme activity. The materials data provide insight into basic material requirements necessary for tailoring optimal, high-density sol-gel derived microarrays. PMID:24022739

  12. Quantitative proteomic analysis for high-throughput screening of differential glycoproteins in hepatocellular carcinoma serum

    PubMed Central

    Gao, Hua-Jun; Chen, Ya-Jing; Zuo, Duo; Xiao, Ming-Ming; Li, Ying; Guo, Hua; Zhang, Ning; Chen, Rui-Bing

    2015-01-01

    Objective Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths. Novel serum biomarkers are required to increase the sensitivity and specificity of serum screening for early HCC diagnosis. This study employed a quantitative proteomic strategy to analyze the differential expression of serum glycoproteins between HCC and normal control serum samples. Methods Lectin affinity chromatography (LAC) was used to enrich glycoproteins from the serum samples. Quantitative mass spectrometric analysis combined with stable isotope dimethyl labeling and 2D liquid chromatography (LC) separations were performed to examine the differential levels of the detected proteins between HCC and control serum samples. Western blot was used to analyze the differential expression levels of the three serum proteins. Results A total of 2,280 protein groups were identified in the serum samples from HCC patients by using the 2D LC-MS/MS method. Up to 36 proteins were up-regulated in the HCC serum, whereas 19 proteins were down-regulated. Three differential glycoproteins, namely, fibrinogen gamma chain (FGG), FOS-like antigen 2 (FOSL2), and α-1,6-mannosylglycoprotein 6-β-N-acetylglucosaminyltransferase B (MGAT5B) were validated by Western blot. All these three proteins were up-regulated in the HCC serum samples. Conclusion A quantitative glycoproteomic method was established and proven useful to determine potential novel biomarkers for HCC. PMID:26487969

  13. Towards the elements of successful insect RNAi

    PubMed Central

    Scott, Jeffrey G.; Michel, Kristin; Bartholomay, Lyric; Siegfried, Blair D.; Hunter, Wayne B.; Smagghe, Guy; Zhu, Kun Yan; Douglas, Angela E.

    2013-01-01

    RNA interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that the efficiency of RNAi varies between different species, the mode of RNAi delivery, and the genes being targeted. There is also variation in the duration of transcript suppression. At present, we have a limited capacity to predict the ideal experimental strategy for RNAi of a particular gene/insect because of our incomplete understanding of whether and how the RNAi signal is amplified and spread among insect cells. Consequently, development of the optimal RNAi protocols is a highly empirical process. This limitation can be relieved by systematic analysis of the molecular physiological basis of RNAi mechanisms in insects. An enhanced conceptual understanding of RNAi function in insects will facilitate the application of RNAi for dissection of gene function, and to fast-track the application of RNAi to both control pests and develop effective methods to protect beneficial insects and non-insect arthropods, particularly the honey bee (Apis mellifera) and cultured Pacific white shrimp (Litopenaeus vannamei) from viral and parasitic diseases. PMID:24041495

  14. Towards the elements of successful insect RNAi.

    PubMed

    Scott, Jeffrey G; Michel, Kristin; Bartholomay, Lyric C; Siegfried, Blair D; Hunter, Wayne B; Smagghe, Guy; Zhu, Kun Yan; Douglas, Angela E

    2013-12-01

    RNA interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that the efficiency of RNAi varies between different species, the mode of RNAi delivery, and the genes being targeted. There is also variation in the duration of transcript suppression. At present, we have a limited capacity to predict the ideal experimental strategy for RNAi of a particular gene/insect because of our incomplete understanding of whether and how the RNAi signal is amplified and spread among insect cells. Consequently, development of the optimal RNAi protocols is a highly empirical process. This limitation can be relieved by systematic analysis of the molecular physiological basis of RNAi mechanisms in insects. An enhanced conceptual understanding of RNAi function in insects will facilitate the application of RNAi for dissection of gene function, and to fast-track the application of RNAi to both control pests and develop effective methods to protect beneficial insects and non-insect arthropods, particularly the honey bee (Apis mellifera) and cultured Pacific white shrimp (Litopenaeus vannamei) from viral and parasitic diseases.

  15. RNAi as a Routine Route Toward Breast Cancer Therapy

    DTIC Science & Technology

    2009-09-01

    a third -generation shRNA library 2. collection of cell lines for screening within the proposed program 6 3. determination that microRNAs can...08-1-0572 TITLE: RNAi as a routine route toward breast cancer therapy PRINCIPAL INVESTIGATOR: Gregory J. Hannon, Ph.D... therapy 5a. CONTRACT NUMBER W81XWH – 08 – 1 - 0572 5b. GRANT NUMBER BC076047 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  16. Quantitative high throughput screening identifies inhibitors of anthrax-induced cell death

    PubMed Central

    Zhu, Ping Jun; Hobson, Peyton; Southall, Noel; Qiu, Cunping; Thomas, Craig J.; Lu, Jiamo; Inglese, James; Zheng, Wei; Leppla, Stephen H.; Bugge, Thomas H.; Austin, Christopher P.; Liu, Shihui

    2009-01-01

    Here, we report the results of a quantitative high-throughput screen (qHTS) measuring the endocytosis and translocation of a β-lactamase-fused-lethal factor and the identification of small molecules capable of obstructing the process of anthrax toxin internalization. Several small molecules protect RAW264.7 macrophages and CHO cells from anthrax lethal toxin and protected cells from an LF-Pseudomonas exotoxin fusion protein and diphtheria toxin. Further efforts demonstrated that these compounds impaired the PA heptamer pre-pore to pore conversion in cells expressing the CMG2 receptor, but not the related TEM8 receptor, indicating that these compounds likely interfere with toxin internalization. PMID:19540764

  17. Quantitative characterization of planarian wild-type behavior as a platform for screening locomotion phenotypes.

    PubMed

    Talbot, Jared; Schötz, Eva-Maria

    2011-04-01

    Changes in animal behavior resulting from genetic or chemical intervention are frequently used for phenotype characterizations. The majority of these studies are qualitative in nature, especially in systems that go beyond the classical model organisms. Here, we introduce a quantitative method to characterize behavior in the freshwater planarian Schmidtea mediterranea. Wild-type locomotion in confinement was quantified using a wide set of parameters, and the influences of intrinsic intra-worm versus inter-worm variability on our measurements was studied. We also examined the effect of substrate, confinement geometry and the interactions with the boundary on planarian behavior. The method is based on a simple experimental setup, using automated center-of-mass tracking and image analysis, making it an easily implemented alternative to current methods for screening planarian locomotion phenotypes. As a proof of principle, two drug-induced behavioral phenotypes were generated to show the capacity of this method.

  18. QUANTITATIVE SCREENING OF SINGLE COPIES OF HUMAN PAPILLOMA VIRAL DNA WITHOUT AMPLIFICATION

    PubMed Central

    Li, Jiangwei; Lee, Ji-Young; Yeung, Edward S.

    2008-01-01

    We describe a novel quantitative viral screening method based on single-molecule detection that does not require amplification. DNA of human papilloma virus (HPV), the major etiological agent of cervical cancer, served as the screening target in this study. Eight 100-nucleotide (nt) single-stranded (ss)-DNA probes were designed complementary to the E6-E7 gene of HPV-16 DNA. The probes were covalently stained with Alexa Fluor 532 and hybridized to the target in solution. The individual hybridized molecules were imaged with an intensified charge-coupled device (ICCD) in two ways. In the single-color mode, target molecules were detected via fluorescence from hybridized probes only. This system could detect HPV-16 DNA in the presence of human genomic DNA down to 0.7 copy/cell, and had a linear dynamic range of over six orders of magnitude. In the dual-color mode, we employed fluorescence resonance energy transfer (FRET) and added YOYO-3 dye as the acceptor. The two colors from Alexa Fluor 532 and YOYO-3 were dispersed by a transmission grating located in front of the ICCD. With this reinforced criteria for identifying the hybridized molecules, zero false-positive count was achieved. We also showed that DNA extracts from Pap test specimens did not interfere with the measurements. PMID:16970325

  19. Enabling quantitative screening in retinal organoids: 3D automated reporter quantification technology (3D-ARQ).

    PubMed

    Vergara, M Natalia; Flores-Bellver, Miguel; Aparicio-Domingo, Silvia; McNally, Minda; Wahlin, Karl J; Saxena, Meera T; Mumm, Jeff S; Canto-Soler, M Valeria

    2017-09-04

    The advent of stem cell-derived retinal organoids has brought forth unprecedented opportunities for developmental and physiological studies, while presenting new therapeutic promise for retinal degenerative diseases. From a translational perspective, organoid systems provide exciting new prospects for drug discovery, offering the possibility to perform compound screening in a 3-dimensional (3D) human tissue context that resembles the native histoarchitecture and cellular interactions. However, inherent variability issues and a general lack of robust quantitative technologies for analyzing organoids in large-scale pose severe limitations for their use in translational applications. To address this need, we have developed a screening platform that enables accurate quantification of fluorescent reporters in complex human iPSC-derived retinal organoids. This platform incorporates a fluorescence microplate reader that allows XYZ-dimensional detection and fine-tuned wavelength selection. We have established optimal parameters for fluorescent reporter signal detection, devised methods to compensate for organoid size variability, evaluated performance and sensitivity parameters, and validated this technology for functional applications. © 2017. Published by The Company of Biologists Ltd.

  20. Development of Screening Method for an Frail Elderly by Measurement Quantitative Lower Limb Muscular Strength

    NASA Astrophysics Data System (ADS)

    Yamashita, Kazuhiko; Iwakami, Yumi; Imaizumi, Kazuya; Sato, Mitsuru; Nakajima, Sawako; Ino, Shuichi; Kawasumi, Masashi; Ifukube, Tohru

    Falling is one of the most serious problems for the elderly. The aim of this study was to develop a screening method for identifying factors that increase the risk of falling among the elderly, particularly with regard to lower limb muscular strength. Subjects were 48 elderly volunteers, including 25 classed as healthy and 23 classed as frail. All subjects underwent measurement of lower limb muscular strength via toe gap force and measurement of muscle strength of the hip joint adductor via knee gap force. In the frail group, toe gap force of the right foot was 20% lower than that in the healthy group; toe gap force of the left foot in the frail group was 23% lower than that in the healthy group, while knee gap force was 20% lower. Furthermore, we found that combining left toe gap force and knee gap force gave the highest odds ratio (6.05) with 82.6% sensitivity and 56.0% specificity when the toe gap force was 24 N and the knee gap force was 100 N. Thus, lower limb muscular strength can be used for simple and efficient screening, and approaches to prevent falls can be based on quantitative data such as lower limb muscular strength.

  1. Quantitative high-throughput screening for chemical toxicity in a population-based in vitro model.

    PubMed

    Lock, Eric F; Abdo, Nour; Huang, Ruili; Xia, Menghang; Kosyk, Oksana; O'Shea, Shannon H; Zhou, Yi-Hui; Sedykh, Alexander; Tropsha, Alexander; Austin, Christopher P; Tice, Raymond R; Wright, Fred A; Rusyn, Ivan

    2012-04-01

    A shift in toxicity testing from in vivo to in vitro may efficiently prioritize compounds, reveal new mechanisms, and enable predictive modeling. Quantitative high-throughput screening (qHTS) is a major source of data for computational toxicology, and our goal in this study was to aid in the development of predictive in vitro models of chemical-induced toxicity, anchored on interindividual genetic variability. Eighty-one human lymphoblast cell lines from 27 Centre d'Etude du Polymorphisme Humain trios were exposed to 240 chemical substances (12 concentrations, 0.26nM-46.0μM) and evaluated for cytotoxicity and apoptosis. qHTS screening in the genetically defined population produced robust and reproducible results, which allowed for cross-compound, cross-assay, and cross-individual comparisons. Some compounds were cytotoxic to all cell types at similar concentrations, whereas others exhibited interindividual differences in cytotoxicity. Specifically, the qHTS in a population-based human in vitro model system has several unique aspects that are of utility for toxicity testing, chemical prioritization, and high-throughput risk assessment. First, standardized and high-quality concentration-response profiling, with reproducibility confirmed by comparison with previous experiments, enables prioritization of chemicals for variability in interindividual range in cytotoxicity. Second, genome-wide association analysis of cytotoxicity phenotypes allows exploration of the potential genetic determinants of interindividual variability in toxicity. Furthermore, highly significant associations identified through the analysis of population-level correlations between basal gene expression variability and chemical-induced toxicity suggest plausible mode of action hypotheses for follow-up analyses. We conclude that as the improved resolution of genetic profiling can now be matched with high-quality in vitro screening data, the evaluation of the toxicity pathways and the effects of

  2. Quantitative screening for anticestode drugs based on changes in baseline enzyme secretion by Taenia crassiceps.

    PubMed

    Mahanty, Siddhartha; Madrid, Elise M; Nash, Theodore E

    2013-02-01

    Neurocysticercosis (NCC), an infection of the brain with the larval stage of the Taenia solium tapeworm, is responsible for an estimated one-third of adult-onset epilepsy cases in regions of the world where it is endemic. Currently, anthelmintic drugs used for treatment of NCC are only partially effective, and there is, therefore, a pressing need for new therapeutic agents. Discovery of new anthelmintics with activity against T. solium has been limited by the lack of suitable sensitive assays that allow high-throughput screening. Using an in vitro culture system with Taenia crassiceps metacestodes, we demonstrate that changes in secretion of parasite-associated alkaline phosphatase (AP) and phosphoglucose isomerase (PGI) can be used to detect and quantify anthelmintic effects of praziquantel (PZQ), a drug with activity against T. solium. We applied two enzyme release assays to screen for anti-T. crassiceps activity in nonconventional antiparasitic drugs and demonstrate that nitazoxanide and artesunate induced release of both AP and PGI in differing time- and dose-related patterns. Furthermore, imatinib, a tyrosine kinase inhibitor previously reported to have parasiticidal activity against Schistosoma mansoni, also induced release of both AP and PGI in a dose-dependent manner, similar in pattern to that observed with the other anthelmintics. We also evaluated release of ATP into cyst supernatants as an indicator of drug effects but did not see any differences between treated and untreated cysts. These data provide the basis for rapid and quantitative screening assays for testing for anthelmintic activity in candidate anticestode agents.

  3. A systematic study of mitochondrial toxicity of environmental chemicals using quantitative high throughput screening

    PubMed Central

    Attene-Ramos, Matias S.; Huang, Ruili; Sakamuru, Srilatha; Witt, Kristine L.; Beeson, Gyda C.; Shou, Louie; Schnellmann, Rick G.; Beeson, Craig C.; Tice, Raymond R.; Austin, Christopher P.; Xia, Menghang

    2014-01-01

    A goal of the Tox21 program is to transit toxicity testing from traditional in vivo models to in vitro assays that assess how chemicals affect cellular responses and toxicity pathways. A critical contribution of the NIH Chemical Genomics center (NCGC) to the Tox21 program is the implementation of a quantitative high throughput screening (qHTS) approach, using cell- and biochemical-based assays to generate toxicological profiles for thousands of environmental compounds. Here, we evaluated the effect of chemical compounds on mitochondrial membrane potential in HepG2 cells by screening a library of 1,408 compounds provided by the National Toxicology Program (NTP) in a qHTS platform. Compounds were screened over 14 concentrations, and results showed that 91 and 88 compounds disrupted mitochondrial membrane potential after treatment for one or five h, respectively. Seventy-six compounds active at both time points were clustered by structural similarity, producing 11 clusters and 23 singletons. Thirty-eight compounds covering most of the active chemical space were more extensively evaluated. Thirty-six of the 38 compounds were confirmed to disrupt mitochondrial membrane potential using a fluorescence plate reader and 35 were confirmed using a high content imaging approach. Among the 38 compounds, 4 and 6 induced LDH release, a measure of cytotoxicity, at 1 or 5 h, respectively. Compounds were further assessed for mechanism of action (MOA) by measuring changes in oxygen consumption rate, which enabled identification of 20 compounds as uncouplers. This comprehensive approach allows for evaluation of thousands of environmental chemicals for mitochondrial toxicity and identification of possible MOAs. PMID:23895456

  4. Quantitative High-Throughput Screen Identifies Inhibitors of the Schistosoma mansoni Redox Cascade

    PubMed Central

    Simeonov, Anton; Jadhav, Ajit; Sayed, Ahmed A.; Wang, Yuhong; Nelson, Michael E.; Thomas, Craig J.; Inglese, James; Williams, David L.; Austin, Christopher P.

    2008-01-01

    Schistosomiasis is a tropical disease associated with high morbidity and mortality, currently affecting over 200 million people worldwide. Praziquantel is the only drug used to treat the disease, and with its increased use the probability of developing drug resistance has grown significantly. The Schistosoma parasites can survive for up to decades in the human host due in part to a unique set of antioxidant enzymes that continuously degrade the reactive oxygen species produced by the host's innate immune response. Two principal components of this defense system have been recently identified in S. mansoni as thioredoxin/glutathione reductase (TGR) and peroxiredoxin (Prx) and as such these enzymes present attractive new targets for anti-schistosomiasis drug development. Inhibition of TGR/Prx activity was screened in a dual-enzyme format with reducing equivalents being transferred from NADPH to glutathione via a TGR-catalyzed reaction and then to hydrogen peroxide via a Prx-catalyzed step. A fully automated quantitative high-throughput (qHTS) experiment was performed against a collection of 71,028 compounds tested as 7- to 15-point concentration series at 5 µL reaction volume in 1536-well plate format. In order to generate a robust data set and to minimize the effect of compound autofluorescence, apparent reaction rates derived from a kinetic read were utilized instead of end-point measurements. Actives identified from the screen, along with previously untested analogues, were subjected to confirmatory experiments using the screening assay and subsequently against the individual targets in secondary assays. Several novel active series were identified which inhibited TGR at a range of potencies, with IC50s ranging from micromolar to the assay response limit (∼25 nM). This is, to our knowledge, the first report of a large-scale HTS to identify lead compounds for a helminthic disease, and provides a paradigm that can be used to jump-start development of novel

  5. Screening for osteoporosis after trauma: a new approach using quantitative computed tomography of the skull.

    PubMed

    Taylor, Amber; Waxman, Kenneth; Izfar, Seema; Grotts, Jonathan; Yim, Samantha

    2014-10-01

    The diagnosis of osteoporosis is important in the care of elderly patients at risk of trauma. While pelvis computed tomography (CT) is accurate in the measurement of bone mineral density, axial skull CT has not previously been evaluated for this purpose. This study investigated whether data from axial skull CT scans can screen for osteoporosis. Bone density measurements were derived from digital analysis of routine scans of the head and pelvis using quantitative CT. The study took place from October 2010 to November 2011 at a medium-sized community hospital. The first study phase included patients older than 18 years who had both a head and a pelvis CT scan within 30 days. The known diagnostic value for osteoporosis on pelvis CT scans was used to derive a diagnostic value for head CT. The second study phase included adult trauma patients who underwent noncontrast head CT during an initial trauma evaluation. A subgroup analysis was performed during Phase II on patients older than 65 years to identify the incidence of fracture as it is affected by age and bone mineral density. Our data demonstrated that head CT was able to identify osteoporosis with a sensitivity of 0.70, a specificity of 0.81, and an accuracy of 0.76 compared with pelvic CT. Of 261 trauma patients, 54% had bone disease based on axial skull CT criteria. Patients older than 65 years with a positive screen result for osteoporosis on head CT were twice as likely to have a fracture. Analysis of data from head CT scans has the potential to provide a useful screen for osteoporosis. Adding this analysis to CT scans performed for elderly trauma patients could result in improved diagnosis and treatment of osteoporosis. Diagnostic study, level II.

  6. A Data Analysis Pipeline Accounting for Artifacts in Tox21 Quantitative High-Throughput Screening Assays.

    PubMed

    Hsieh, Jui-Hua; Sedykh, Alexander; Huang, Ruili; Xia, Menghang; Tice, Raymond R

    2015-08-01

    A main goal of the U.S. Tox21 program is to profile a 10K-compound library for activity against a panel of stress-related and nuclear receptor signaling pathway assays using a quantitative high-throughput screening (qHTS) approach. However, assay artifacts, including nonreproducible signals and assay interference (e.g., autofluorescence), complicate compound activity interpretation. To address these issues, we have developed a data analysis pipeline that includes an updated signal noise-filtering/curation protocol and an assay interference flagging system. To better characterize various types of signals, we adopted a weighted version of the area under the curve (wAUC) to quantify the amount of activity across the tested concentration range in combination with the assay-dependent point-of-departure (POD) concentration. Based on the 32 Tox21 qHTS assays analyzed, we demonstrate that signal profiling using wAUC affords the best reproducibility (Pearson's r = 0.91) in comparison with the POD (0.82) only or the AC(50) (i.e., half-maximal activity concentration, 0.81). Among the activity artifacts characterized, cytotoxicity is the major confounding factor; on average, about 8% of Tox21 compounds are affected, whereas autofluorescence affects less than 0.5%. To facilitate data evaluation, we implemented two graphical user interface applications, allowing users to rapidly evaluate the in vitro activity of Tox21 compounds.

  7. Role of the Quantitative Imaging Biomarker Alliance in optimizing CT for the evaluation of lung cancer screen-detected nodules.

    PubMed

    Mulshine, James L; Gierada, David S; Armato, Samuel G; Avila, Rick S; Yankelevitz, David F; Kazerooni, Ella A; McNitt-Gray, Michael F; Buckler, Andrew J; Sullivan, Daniel C

    2015-04-01

    The Quantitative Imaging Biomarker Alliance (QIBA) is a multidisciplinary consortium sponsored by the RSNA to define processes that enable the implementation and advancement of quantitative imaging methods described in a QIBA profile document that outlines the process to reliably and accurately measure imaging features. A QIBA profile includes factors such as technical (product-specific) standards, user activities, and relationship to a clinically meaningful metric, such as with nodule measurement in the course of CT screening for lung cancer. In this report, the authors describe how the QIBA approach is being applied to the measurement of small pulmonary nodules such as those found during low-dose CT-based lung cancer screening. All sources of variance with imaging measurement were defined for this process. Through a process of experimentation, literature review, and assembly of expert opinion, the strongest evidence was used to define how to best implement each step in the imaging acquisition and evaluation process. This systematic approach to implementing a quantitative imaging biomarker with standardized specifications for image acquisition and postprocessing for a specific quantitative measurement of a pulmonary nodule results in consistent performance characteristics of the measurement (eg, bias and variance). Implementation of the QIBA small nodule profile may allow more efficient and effective clinical management of the diagnostic workup of individuals found to have suspicious pulmonary nodules in the course of lung cancer screening evaluation. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  8. A comparison of qualitative and quantitative fecal immunochemical tests in the Korean national colorectal cancer screening program.

    PubMed

    Park, Mi Jin; Choi, Kui Son; Lee, You Kyoung; Jun, Jae Kwan; Lee, Hoo-Yeon

    2012-04-01

    The National Cancer Screening Program (NCSP) has since 2004 provided annual colorectal cancer screening using the fecal immunochemical test (FIT) for individuals aged 50 years or older. The aim of this study was to examine the positivity and detection rates of the FIT and to compare the detection rates of the qualitative and quantitative FITs in participants in the 2009 NCSP. We analyzed positivity and detection rates according to FIT type (qualitative and quantitative). We used a multinomial logistic regression to analyze the odds ratio of "benign" or "suspicious cancer and cancer" compared to "normal," adjusted for gender, age, health insurance type, region of residence, hospital type, and FIT type. Of the 1,181,904 participants, 72.8% received a qualitative and 27.2% a quantitative FIT. The positivity rates were 8.1% for the qualitative and 2.5% for the quantitative FIT. The detection rate was 5.2% for the qualitative and 14.4% for the quantitative FIT. The odds ratio of a "suspicious cancer and cancer" versus a "normal" result was 2.73 (95% CI = 2.22-3.35) for the quantitative compared to qualitative FIT, after adjustment. The positivity rate of the qualitative FIT was around three times higher than that of the quantitative FIT. However, the odds ratio for detection of "suspicious cancer and cancer" versus "normal" of the quantitative FIT was about three times higher than that of the qualitative FIT. These findings suggest that quality control may be important, particularly for the qualitative FIT.

  9. Quantitative screening of genes regulating tryptophan hydroxylase transcription in Caenorhabditis elegans using microfluidics and an adaptive algorithm.

    PubMed

    Lee, Hyewon; Crane, Matthew M; Zhang, Yun; Lu, Hang

    2013-02-01

    Forward genetic screening via mutagenesis is a powerful method for identifying regulatory factors in target pathways in model organisms such as the soil-dwelling free-living nematode Caenorhabditis elegans (C. elegans). Currently manual microscopy is the standard technique for conducting such screens; however, it is labor-intensive and time-consuming because screening requires imaging thousands of animals. Recently microfluidic chips have been developed to increase the throughput of some of such experiments; nonetheless, most of these chips are multilayer devices and complicated to fabricate and therefore prone to failure during fabrication and operation. In addition, most sorting decisions are made manually and the criteria used for sorting are subjective. To overcome these limitations, we developed a simple single-layer microfluidic device and an adaptive algorithm to make sorting decisions. The one-layer device greatly improves the reliability, while quantitative analysis with the adaptive algorithm allows for the identification of mutations that generate subtle changes in expression, which would have been hard to detect by eye. The screening criterion is set based on the mutagenized population, not separate control populations measured prior to actual screening experiments, to account for stochasticity and day-to-day variations of gene expression in mutagenized worms. Moreover, during each experiment, the threshold is constantly updated to reflect the balance between maximizing sorting rate and minimizing false-positive rate. Using this system, we screened for mutants that have altered expression levels of tryptophan hydroxylase, a key enzyme for serotonin synthesis in a CaMKII gain-of-function background. We found several putative mutants in this screen. Furthermore, this microfluidic system and quantitative analysis can be easily adapted to study other pathways in C. elegans.

  10. Simultaneous screening and quantitation of 18 antihistamine drugs in blood by liquid chromatography ionspray tandem mass spectrometry.

    PubMed

    Gergov, M; Robson, J N; Ojanperä, I; Heinonen, O P; Vuori, E

    2001-09-15

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is presented for the simultaneous screening and quantitation of 18 antihistamine drugs in blood samples. Sample pretreatment involved liquid-liquid extraction of the basic antihistamines followed by a second extraction of the acidic antihistamines. The recoveries were 43-113% for basic drugs and 23-66% for acidic drugs. The combined extracts were run by LC on C(18) reversed phase column using acetonitrile-ammonium acetate mobile phase at pH 3.2. The mass spectrometric analysis was performed with a triple stage quadrupole mass analyzer. Screening was performed using multiple reaction monitoring (MRM) and any compounds tentatively identified as antihistamine drugs were then automatedly verified by their Product Ion Spectra in a subsequent MS/MS run. Quantitation was based on the MRM data from the screening step. In validation tests, the method showed good linearity at the relevant concentrations. The attained limits of quantitation varied between 0.0005 and 0.01mg/l in blood and were lower than the therapeutic concentrations (C(max)). The limits for identification by Product Ion Spectra were also lower than C(max), except for clemastine, which has exceptionally low concentrations in blood. The intra-assay relative standard deviations were better than 10% and the inaccuracy varied between 39% for levocabastine and 5% for cyclizine, the majority of the values being <20%.

  11. A Colony Multiplex Quantitative PCR-Based 3S3DBC Method and Variations of It for Screening DNA Libraries

    PubMed Central

    An, Yang; Toyoda, Atsushi; Zhao, Chen; Fujiyama, Asao; Agata, Kiyokazu

    2015-01-01

    A DNA library is a collection of DNA fragments cloned into vectors and stored individually in host cells, and is a valuable resource for molecular cloning, gene physical mapping, and genome sequencing projects. To take the best advantage of a DNA library, a good screening method is needed. After describing pooling strategies and issues that should be considered in DNA library screening, here we report an efficient colony multiplex quantitative PCR-based 3-step, 3-dimension, and binary-code (3S3DBC) method we used to screen genes from a planarian genomic DNA fosmid library. This method requires only 3 rounds of PCR reactions and only around 6 hours to distinguish one or more desired clones from a large DNA library. According to the particular situations in different research labs, this method can be further modified and simplified to suit their requirements. PMID:25646755

  12. The Mathematics of a Successful Deconvolution: A Quantitative Assessment of Mixture-Based Combinatorial Libraries Screened Against Two Formylpeptide Receptors

    PubMed Central

    Santos, Radleigh G.; Appel, Jon R.; Giulianotti, Marc A.; Edwards, Bruce S.; Sklar, Larry A.; Houghten, Richard A.; Pinilla, Clemencia

    2014-01-01

    In the past 20 years, synthetic combinatorial methods have fundamentally advanced the ability to synthesize and screen large numbers of compounds for drug discovery and basic research. Mixture-based libraries and positional scanning deconvolution combine two approaches for the rapid identification of specific scaffolds and active ligands. Here we present a quantitative assessment of the screening of 32 positional scanning libraries in the identification of highly specific and selective ligands for two formylpeptide receptors. We also compare and contrast two mixture-based library approaches using a mathematical model to facilitate the selection of active scaffolds and libraries to be pursued for further evaluation. The flexibility demonstrated in the differently formatted mixture-based libraries allows for their screening in a wide range of assays. PMID:23722730

  13. The mathematics of a successful deconvolution: a quantitative assessment of mixture-based combinatorial libraries screened against two formylpeptide receptors.

    PubMed

    Santos, Radleigh G; Appel, Jon R; Giulianotti, Marc A; Edwards, Bruce S; Sklar, Larry A; Houghten, Richard A; Pinilla, Clemencia

    2013-05-30

    In the past 20 years, synthetic combinatorial methods have fundamentally advanced the ability to synthesize and screen large numbers of compounds for drug discovery and basic research. Mixture-based libraries and positional scanning deconvolution combine two approaches for the rapid identification of specific scaffolds and active ligands. Here we present a quantitative assessment of the screening of 32 positional scanning libraries in the identification of highly specific and selective ligands for two formylpeptide receptors. We also compare and contrast two mixture-based library approaches using a mathematical model to facilitate the selection of active scaffolds and libraries to be pursued for further evaluation. The flexibility demonstrated in the differently formatted mixture-based libraries allows for their screening in a wide range of assays.

  14. The Future of Toxicity Testing: A Focus on In Vitro Methods Using a Quantitative High Throughput Screening Platform

    PubMed Central

    Shukla, Sunita J.; Huang, Ruili; Austin, Christopher P.; Xia, Menghang

    2010-01-01

    The U.S. Tox21 collaborative program represents a paradigm shift in toxicity testing of chemical compounds from traditional in vivo tests to less expensive and higher throughput in vitro methods to prioritize compounds for further study, identify mechanisms of action, and ultimately develop predictive models for adverse health effects in humans. The NIH Chemical Genomics Center (NCGC) is an integral component of the Tox21 collaboration due to its quantitative high throughput screening (qHTS) paradigm, in which titration-based screening is used to profile hundreds of thousands of compounds per week. Here, we describe the Tox21 collaboration, qHTS-based compound testing, and the various Tox21 screening assays that have been validated and tested at the NCGC to date. PMID:20708096

  15. Highly sensitive capillary electrophoresis-mass spectrometry for rapid screening and accurate quantitation of drugs of abuse in urine.

    PubMed

    Kohler, Isabelle; Schappler, Julie; Rudaz, Serge

    2013-05-30

    The combination of capillary electrophoresis (CE) and mass spectrometry (MS) is particularly well adapted to bioanalysis due to its high separation efficiency, selectivity, and sensitivity; its short analytical time; and its low solvent and sample consumption. For clinical and forensic toxicology, a two-step analysis is usually performed: first, a screening step for compound identification, and second, confirmation and/or accurate quantitation in cases of presumed positive results. In this study, a fast and sensitive CE-MS workflow was developed for the screening and quantitation of drugs of abuse in urine samples. A CE with a time-of-flight MS (CE-TOF/MS) screening method was developed using a simple urine dilution and on-line sample preconcentration with pH-mediated stacking. The sample stacking allowed for a high loading capacity (20.5% of the capillary length), leading to limits of detection as low as 2 ng mL(-1) for drugs of abuse. Compound quantitation of positive samples was performed by CE-MS/MS with a triple quadrupole MS equipped with an adapted triple-tube sprayer and an electrospray ionization (ESI) source. The CE-ESI-MS/MS method was validated for two model compounds, cocaine (COC) and methadone (MTD), according to the Guidance of the Food and Drug Administration. The quantitative performance was evaluated for selectivity, response function, the lower limit of quantitation, trueness, precision, and accuracy. COC and MTD detection in urine samples was determined to be accurate over the range of 10-1000 ng mL(-1) and 21-1000 ng mL(-1), respectively.

  16. Intelligent Interfaces for Mining Large-Scale RNAi-HCS Image Databases.

    PubMed

    Lin, Chen; Mak, Wayne; Hong, Pengyu; Sepp, Katharine; Perrimon, Norbert

    2007-11-05

    Recently, High-content screening (HCS) has been combined with RNA interference (RNAi) to become an essential image-based high-throughput method for studying genes and biological networks through RNAi-induced cellular phenotype analyses. However, a genome-wide RNAi-HCS screen typically generates tens of thousands of images, most of which remain uncategorized due to the inadequacies of existing HCS image analysis tools. Until now, it still requires highly trained scientists to browse a prohibitively large RNAi-HCS image database and produce only a handful of qualitative results regarding cellular morphological phenotypes. For this reason we have developed intelligent interfaces to facilitate the application of the HCS technology in biomedical research. Our new interfaces empower biologists with computational power not only to effectively and efficiently explore large-scale RNAi-HCS image databases, but also to apply their knowledge and experience to interactive mining of cellular phenotypes using Content-Based Image Retrieval (CBIR) with Relevance Feedback (RF) techniques.

  17. Intelligent Interfaces for Mining Large-Scale RNAi-HCS Image Databases

    PubMed Central

    Lin, Chen; Mak, Wayne; Hong, Pengyu; Sepp, Katharine; Perrimon, Norbert

    2010-01-01

    Recently, High-content screening (HCS) has been combined with RNA interference (RNAi) to become an essential image-based high-throughput method for studying genes and biological networks through RNAi-induced cellular phenotype analyses. However, a genome-wide RNAi-HCS screen typically generates tens of thousands of images, most of which remain uncategorized due to the inadequacies of existing HCS image analysis tools. Until now, it still requires highly trained scientists to browse a prohibitively large RNAi-HCS image database and produce only a handful of qualitative results regarding cellular morphological phenotypes. For this reason we have developed intelligent interfaces to facilitate the application of the HCS technology in biomedical research. Our new interfaces empower biologists with computational power not only to effectively and efficiently explore large-scale RNAi-HCS image databases, but also to apply their knowledge and experience to interactive mining of cellular phenotypes using Content-Based Image Retrieval (CBIR) with Relevance Feedback (RF) techniques. PMID:21278820

  18. Progress in RNAi-based antiviral therapeutics.

    PubMed

    Zhou, Jiehua; Rossi, John J

    2011-01-01

    RNA interference (RNAi) refers to the conserved sequence-specific degradation of message RNA mediated by small interfering (si)RNA duplexes 21-25 nucleotides in length. Given the ability to specifically silence any gene of interest, siRNAs offers several advantages over conventional drugs as potential therapeutic agents for the treatment of human maladies including cancers, genetic disorders, and infectious diseases. Antiviral RNAi strategies have received much attention and several compounds are currently being tested in clinical trials. In particular, the development of siRNA-based HIV (human immunodeficiency virus) therapeutics has progressed rapidly and many recent studies have shown that the use of RNAi could inhibit HIV-1 replication by targeting a number of viral or cellular genes. Therefore, the present chapter mainly focuses on the recent progress of RNAi-based anti-HIV gene therapeutics, with particular attention to molecular targets and delivery strategies of the siRNAs.

  19. Nuclear organisation and RNAi in fission yeast.

    PubMed

    Woolcock, Katrina J; Bühler, Marc

    2013-06-01

    Over the last decade, the fission yeast Schizosaccharomyces pombe has been used extensively for investigating RNA interference (RNAi)-mediated heterochromatin assembly. However, only recently have studies begun to shed light on the 3D organisation of chromatin and the RNAi machinery in the fission yeast nucleus. These studies indicate association of repressive and active chromatin with different regions of the nuclear periphery, similar to other model organisms, and clustering of functionally related genomic features. Unexpectedly, RNAi factors were shown to associate with nuclear pores and were implicated in the regulation of genomic features outside of the well-studied heterochromatic regions. Nuclear organisation is likely to contribute to substrate specificity of the RNAi pathway. However, further studies are required to elucidate the exact mechanisms and functional importance of this nuclear organisation.

  20. Topographic quantitative EEG sequelae of chronic marihuana use: a replication using medically and psychiatrically screened normal subjects.

    PubMed

    Struve, F A; Straumanis, J J; Patrick, G; Leavitt, J; Manno, J E; Manno, B R

    1999-10-01

    In two previous studies it was reported that chronic marihuana (THC) use was associated with unique quantitative EEG features which were present in the non-intoxicated state. THC users, as contrasted with controls, had significant elevations of Absolute Power, Relative Power, and Coherence of alpha activity over the bilateral frontal cortex. Furthermore, a quantitative EEG discriminant function analyses permitted a 95% correct user versus non-user classification. However, because all of the THC users and 58% of the non-user controls were psychiatric inpatients, diagnostic and medication effects, if any, were uncontrolled. In the present study the same quantitative EEG methods were used to study daily THC users and non-user controls who underwent a rigorous screening process to insure that they were medically and psychiatrically healthy. The results of previous studies were replicated and an additional EEG correlate of chronic THC exposure (reduced alpha frequency) was identified.

  1. Contributing Factors to Colorectal Cancer Screening among Chinese People: A Review of Quantitative Studies

    PubMed Central

    Leung, Doris Y. P.; Chow, Ka Ming; Lo, Sally W. S.; So, Winnie K. W.; Chan, Carmen W. H.

    2016-01-01

    Colorectal cancer (CRC) is a major health problem in Asia. It has been reported that the Chinese are more susceptible to CRC than many other ethnic groups. Screening for CRC is a cost-effective prevention and control strategy; however, the screening rates among the Chinese are sub-optimal. We conducted a review to identify the factors associated with CRC screening participation among Chinese people. Twenty-two studies that examined the factors related to CRC screening behaviors among the Chinese were identified through five databases. Seven factors were consistently reported to influence CRC screening behaviors in at least one of the studies: socio-demographic characteristics (educational level, health insurance, and knowledge about CRC and its screening); psychological factors (perceived severity of CRC, susceptibility of having CRC, and barriers to screening); and contact with medical provider (physician recommendation). The evidence base for many of these relationships is quite limited. Furthermore, the associations of many factors, including age, gender, income, cancer worry/fear, and self-efficacy with CRC screening behaviors, were mixed or inconsistent across these studies, thereby indicating that more studies are needed in this area. PMID:27196920

  2. Predictive power of quantitative and qualitative fecal immunochemical tests for hemoglobin in population screening for colorectal neoplasm.

    PubMed

    Huang, Yanqin; Li, Qilong; Ge, Weiting; Cai, Shanrong; Zhang, Suzhan; Zheng, Shu

    2014-01-01

    The aim of this study was to evaluate the performance of qualitative and quantitative fecal immunochemical tests (FITs) in population screening for colorectal neoplasm. A total of 9000 participants aged between 40 and 74 years were enrolled in this study. Each participant received two stool sampling tubes and was asked to simultaneously submit two stool samples from the same bowel movement. The stool samples of each participant were tested using an immunogold labeling FIT dipstick (qualitative FIT) and an automated fecal blood analyzer (quantitative FIT). Colonoscopy was performed for those who test positive in either FIT. The positive predictive values and population detection rates of the FITs for predicting colorectal neoplasm were compared. A total of 6494 (72.16%) participants simultaneously submitted two stool samples. The diagnostic consistency for a positive result between quantitative and qualitative FITs was poor (κ=0.278, 95% confidence interval=0.223-0.333). The positive predictive values of the quantitative FIT were significantly higher than those of the qualitative FIT for predicting large (≥1 cm) adenomas (23 cases, 14.29% and 16 cases, 6.72%, P=0.013) and colorectal cancer (10 cases, 6.21% and 5 cases, 2.10%, P=0.034); however, the population detection rate for advanced neoplasm of the quantitative FIT was not significantly different from that of the qualitative FIT. Quantitative FIT is superior to qualitative FIT in predicting advanced colorectal neoplasm during colorectal cancer screening. Further studies are needed to elucidate the causes of the predictive superiority.

  3. Label-free high-throughput screening via mass spectrometry: a single cystathionine quantitative method for multiple applications.

    PubMed

    Holt, Tom G; Choi, Bernard K; Geoghagen, Neil S; Jensen, Kristian K; Luo, Qi; LaMarr, William A; Makara, Gergely M; Malkowitz, Lorraine; Ozbal, Can C; Xiong, Yusheng; Dufresne, Claude; Luo, Ming-Juan

    2009-10-01

    Label-free mass spectrometric (MS) technologies are particularly useful for enzyme assay design for drug discovery screens. MS permits the selective detection of enzyme substrates or products in a wide range of biological matrices without need for derivatization, labeling, or capture technologies. As part of a cardiovascular drug discovery effort aimed at finding modulators of cystathionine beta-synthase (CBS), we used the RapidFire((R)) label-free high-throughput MS (HTMS) technology to develop a high-throughput screening (HTS) assay for CBS activity. The in vitro assay used HTMS to quantify the unlabeled product of the CBS reaction, cystathionine. Cystathionine HTMS analyses were carried out with a throughput of 7 s per sample and quantitation over a linear range of 80-10,000 nM. A compound library of 25,559 samples (or 80 384-well plates) was screened as singlets using the HTMS assay in a period of 8 days. With a hit rate of 0.32%, the actives showed a 90% confirmation rate. The in vitro assay was applied to secondary screens in more complex matrices with no additional analytical development. Our results show that the HTMS method was useful for screening samples containing serum, for cell-based assays, and for liver explants. The novel extension of the in vitro analytical method, without modification, to secondary assays resulted in a significant and advantageous economy of development time for the drug discovery project.

  4. A historical overview of RNAi in plants.

    PubMed

    Lindbo, John A

    2012-01-01

    RNA interference, or RNAi, is arguably one of the most significant discoveries in biology in the last several decades. First recognized in plants (where it was called post-transcriptional gene silencing, PTGS) RNAi is a gene down-regulation mechanism since demonstrated to exist in all eukaryotes. In RNAi, small RNAs (of about 21-24 nucleotides) function to guide specific effector proteins (members of the Argonaute protein family) to a target nucleotide sequence by complementary base pairing. The effector protein complex then down-regulates the expression of the targeted RNA or DNA. Small RNA-directed gene regulation systems were independently discovered (and named) in plants, fungi, worms, flies, and mammalian cells. Collectively, PTGS, RNA silencing, and co-suppression (in plants); quelling (in fungi and algae); and RNAi (in Caenorhabditis elegans, Drosophila, and mammalian cells) are all examples of small RNA-based gene regulation systems. From the very beginning, plant research has had a major impact on our understanding of RNAi. The purpose of this chapter is to provide an historical perspective and overview on the discovery, characterization, and applications of RNAi in plants.

  5. RNAi-mediated plant protection against aphids.

    PubMed

    Yu, Xiu-Dao; Liu, Zong-Cai; Huang, Si-Liang; Chen, Zhi-Qin; Sun, Yong-Wei; Duan, Peng-Fei; Ma, You-Zhi; Xia, Lan-Qin

    2016-06-01

    Aphids (Aphididae) are major agricultural pests that cause significant yield losses of crop plants each year by inflicting damage both through the direct effects of feeding and by vectoring harmful plant viruses. Expression of double-stranded RNA (dsRNA) directed against suitable insect target genes in transgenic plants has been shown to give protection against pests through plant-mediated RNA interference (RNAi). Thus, as a potential alternative and effective strategy for insect pest management in agricultural practice, plant-mediated RNAi for aphid control has received close attention in recent years. In this review, the mechanism of RNAi in insects and the so far explored effective RNAi target genes in aphids, their potential applications in the development of transgenic plants for aphid control and the major challenges in this regard are reviewed, and the future prospects of using plant-mediated RNAi for aphid control are discussed. This review is intended to be a helpful insight into the generation of aphid-resistant plants through plant-mediated RNAi strategy. © 2016 Society of Chemical Industry.

  6. RNAi for functional genomics in plants.

    PubMed

    McGinnis, Karen M

    2010-03-01

    RNAi refers to several different types of gene silencing mediated by small, dsRNA molecules. Over the course of 20 years, the scientific understanding of RNAi has developed from the initial observation of unexpected expression patterns to a sophisticated understanding of a multi-faceted, evolutionarily conserved network of mechanisms that regulate gene expression in many organisms. It has also been developed as a genetic tool that can be exploited in a wide range of species. Because transgene-induced RNAi has been effective at silencing one or more genes in a wide range of plants, this technology also bears potential as a powerful functional genomics tool across the plant kingdom. Transgene-induced RNAi has indeed been shown to be an effective mechanism for silencing many genes in many organisms, but the results from multiple projects which attempted to exploit RNAi on a genome-wide scale suggest that there is a great deal of variation in the silencing efficacy between transgenic events, silencing targets and silencing-induced phenotype. The results from these projects indicate several important variables that should be considered in experimental design prior to the initiation of functional genomics efforts based on RNAi silencing. In recent years, alternative strategies have been developed for targeted gene silencing, and a combination of approaches may also enhance the use of targeted gene silencing for functional genomics.

  7. A status report on RNAi therapeutics

    PubMed Central

    2010-01-01

    Fire and Mello initiated the current explosion of interest in RNA interference (RNAi) biology with their seminal work in Caenorhabditis elegans. These observations were closely followed by the demonstration of RNAi in Drosophila melanogaster. However, the full potential of these new discoveries only became clear when Tuschl and colleagues showed that 21-22 bp RNA duplexes with 3" overhangs, termed small interfering (si)RNAs, could reliably execute RNAi in a range of mammalian cells. Soon afterwards, it became clear that many different human cell types had endogenous machinery, the RNA-induced silencing complex (RISC), which could be harnessed to silence any gene in the genome. Beyond the availability of a novel way to dissect biology, an important target validation tool was now available. More importantly, two key properties of the RNAi pathway - sequence-mediated specificity and potency - suggested that RNAi might be the most important pharmacological advance since the advent of protein therapeutics. The implications were profound. One could now envisage selecting disease-associated targets at will and expect to suppress proteins that had remained intractable to inhibition by conventional methods, such as small molecules. This review attempts to summarize the current understanding on siRNA lead discovery, the delivery of RNAi therapeutics, typical in vivo pharmacological profiles, preclinical safety evaluation and an overview of the 14 programs that have already entered clinical practice. PMID:20615220

  8. Performance of a quantitative fecal immunochemical test in a colorectal cancer screening pilot program: a prospective cohort study

    PubMed Central

    Telford, Jennifer; Gentile, Laura; Gondara, Lovedeep; McGahan, Colleen; Coldman, Andrew

    2016-01-01

    Background: British Columbia undertook a colorectal cancer screening pilot program in 3 communities. Our objective was to assess the performance of 2-specimen fecal immunochemical testing in the detection of colorectal neoplasms in this population-based screening program. Methods: A prospective cohort of asymptomatic, average-risk people aged 50 to 74 years completed 2 quantitative fecal immunochemical tests every 2 years, with follow-up colonoscopy if the result of either test was positive. Participant demographics, fecal immunochemical test results, colonoscopy quality indicators and pathology results were recorded. Non-screen-detected colorectal cancer that developed in program participants was identified through review of data from the BC Cancer Registry. Results: A total of 16 234 people completed a first round of fecal immunochemical testing, with a positivity rate of 8.6%; 5378 (86.0% of eligible participants) completed a second round before the end of the pilot program, with a positivity rate of 6.7%. Of the 1756 who had a positive test result, 1555 (88.6%) underwent colonoscopy. The detection rate of colorectal cancer was 3.5 per 1000 participants. The positive predictive value of the fecal immunochemical test was 4.9% (95% confidence interval [CI] 3.8%-6.0%) for colorectal cancer, 35.0% (95% CI 32.5%-37.2%) for high-risk polyps and 62.0% (95% CI 59.6%-64.4%) for all neoplasms. The number needed to screen was 283 to detect 1 cancer, 40 to detect 1 high-risk polyp and 22 to detect any neoplasm. Interpretation: Screening every 2 years with a 2-specimen fecal immunochemical test surpassed the current benchmark for colorectal cancer detection in population-based screening. This study has implications for other jurisdictions planning colorectal cancer screening programs. PMID:28018880

  9. Performance of a quantitative fecal immunochemical test in a colorectal cancer screening pilot program: a prospective cohort study.

    PubMed

    Telford, Jennifer; Gentile, Laura; Gondara, Lovedeep; McGahan, Colleen; Coldman, Andrew

    2016-01-01

    British Columbia undertook a colorectal cancer screening pilot program in 3 communities. Our objective was to assess the performance of 2-specimen fecal immunochemical testing in the detection of colorectal neoplasms in this population-based screening program. A prospective cohort of asymptomatic, average-risk people aged 50 to 74 years completed 2 quantitative fecal immunochemical tests every 2 years, with follow-up colonoscopy if the result of either test was positive. Participant demographics, fecal immunochemical test results, colonoscopy quality indicators and pathology results were recorded. Non-screen-detected colorectal cancer that developed in program participants was identified through review of data from the BC Cancer Registry. A total of 16 234 people completed a first round of fecal immunochemical testing, with a positivity rate of 8.6%; 5378 (86.0% of eligible participants) completed a second round before the end of the pilot program, with a positivity rate of 6.7%. Of the 1756 who had a positive test result, 1555 (88.6%) underwent colonoscopy. The detection rate of colorectal cancer was 3.5 per 1000 participants. The positive predictive value of the fecal immunochemical test was 4.9% (95% confidence interval [CI] 3.8%-6.0%) for colorectal cancer, 35.0% (95% CI 32.5%-37.2%) for high-risk polyps and 62.0% (95% CI 59.6%-64.4%) for all neoplasms. The number needed to screen was 283 to detect 1 cancer, 40 to detect 1 high-risk polyp and 22 to detect any neoplasm. Screening every 2 years with a 2-specimen fecal immunochemical test surpassed the current benchmark for colorectal cancer detection in population-based screening. This study has implications for other jurisdictions planning colorectal cancer screening programs.

  10. Development of a sensitive E-screen assay for quantitative analysis of estrogenic activity in municipal sewage plant effluents.

    PubMed

    Körner, W; Hanf, V; Schuller, W; Kempter, C; Metzger, J; Hagenmaier, H

    1999-01-12

    A simplified proliferation test with human estrogen receptor-positive MCF-7 breast cancer cells (E-screen assay) was optimized and validated for the sensitive quantitative determination of total estrogenic activity in effluent samples from municipal sewage plants. After solid phase extraction of 1 l sewage on either 0.2 g polystyrene copolymer (ENV+) or 1 g RP-C18 material and removal of the solvent, analysis of the extracts in the E-screen assay could be performed without any clean-up step. This was even possible with untreated sewage. Parallel extraction of four sewage samples on both different solid phase materials gave comparable quantitative results in the E-screen. A blank sample did not induce cell proliferation. As additive behaviour of the estrogenic response of single compounds was proven for two different mixtures each containing three xenoestrogens, total estrogenic activity in the sewage samples, expressed as 17 beta-estradiol equivalent concentration (EEQ), could be calculated comparing the EC50 values of the samples with those of the positive control 17 beta-estradiol. The detection limit of the E-screen method was 0.05 pmol EEQ/l (0.014 ng EEQ/l), the limit of quantification 0.25-0.5 pmol EEQ/l (0.07-0.14 ng EEQ/l). In total, extracts of nine effluent and one influent sample from five different municipal sewage plants in South Germany were analyzed in the E-screen. All samples strongly induced cell proliferation in a dose-dependent manner which was completely inhibited by coincubation with 5 nM of the estrogen receptor-antagonist ICI 182,780. The proliferative effect relative to the positive control 17 beta-estradiol (RPE) was between 30 and 101%. 17 beta-Estradiol equivalent concentrations were between 2.5 and 25 ng/l indicating a significant input of estrogenic substances via sewage treatment plants into rivers.

  11. Development of RNAi Methods for Peregrinus maidis, the Corn Planthopper

    PubMed Central

    Yao, Jianxiu; Rotenberg, Dorith; Afsharifar, Alireza; Barandoc-Alviar, Karen; Whitfield, Anna E.

    2013-01-01

    The corn planthopper, Peregrinus maidis, is a major pest of agronomically-important crops. Peregrinus maidis has a large geographical distribution and transmits Maize mosaic rhabdovirus (MMV) and Maize stripe tenuivirus (MSpV). The objective of this study was to develop effective RNAi methods for P. maidis. Vacuolar-ATPase (V-ATPase) is an essential enzyme for hydrolysis of ATP and for transport of protons out of cells thereby maintaining membrane ion balance, and it has been demonstrated to be an efficacious target for RNAi in other insects. In this study, two genes encoding subunits of P. maidis V-ATPase (V-ATPase B and V-ATPase D) were chosen as RNAi target genes. The open reading frames of V-ATPase B and D were generated and used for constructing dsRNA fragments. Experiments were conducted using oral delivery and microinjection of V-ATPase B and V-ATPase D dsRNA to investigate the effectiveness of RNAi in P. maidis. Real-time quantitative reverse transcriptase-PCR (qRT-PCR) analysis indicated that microinjection of V-ATPase dsRNA led to a minimum reduction of 27-fold in the normalized abundance of V-ATPase transcripts two days post injection, while ingestion of dsRNA resulted in a two-fold reduction after six days of feeding. While both methods of dsRNA delivery resulted in knockdown of target transcripts, the injection method was more rapid and effective. The reduction in V-ATPase transcript abundance resulted in observable phenotypes. Specifically, the development of nymphs injected with 200 ng of either V-ATPase B or D dsRNA was impaired, resulting in higher mortality and lower fecundity than control insects injected with GFP dsRNA. Microscopic examination of these insects revealed that female reproductive organs did not develop normally. The successful development of RNAi in P. maidis to target specific genes will enable the development of new insect control strategies and functional analysis of vital genes and genes associated with interactions between P

  12. Development of RNAi methods for Peregrinus maidis, the corn planthopper.

    PubMed

    Yao, Jianxiu; Rotenberg, Dorith; Afsharifar, Alireza; Barandoc-Alviar, Karen; Whitfield, Anna E

    2013-01-01

    The corn planthopper, Peregrinus maidis, is a major pest of agronomically-important crops. Peregrinus maidis has a large geographical distribution and transmits Maize mosaic rhabdovirus (MMV) and Maize stripe tenuivirus (MSpV). The objective of this study was to develop effective RNAi methods for P. maidis. Vacuolar-ATPase (V-ATPase) is an essential enzyme for hydrolysis of ATP and for transport of protons out of cells thereby maintaining membrane ion balance, and it has been demonstrated to be an efficacious target for RNAi in other insects. In this study, two genes encoding subunits of P. maidis V-ATPase (V-ATPase B and V-ATPase D) were chosen as RNAi target genes. The open reading frames of V-ATPase B and D were generated and used for constructing dsRNA fragments. Experiments were conducted using oral delivery and microinjection of V-ATPase B and V-ATPase D dsRNA to investigate the effectiveness of RNAi in P. maidis. Real-time quantitative reverse transcriptase-PCR (qRT-PCR) analysis indicated that microinjection of V-ATPase dsRNA led to a minimum reduction of 27-fold in the normalized abundance of V-ATPase transcripts two days post injection, while ingestion of dsRNA resulted in a two-fold reduction after six days of feeding. While both methods of dsRNA delivery resulted in knockdown of target transcripts, the injection method was more rapid and effective. The reduction in V-ATPase transcript abundance resulted in observable phenotypes. Specifically, the development of nymphs injected with 200 ng of either V-ATPase B or D dsRNA was impaired, resulting in higher mortality and lower fecundity than control insects injected with GFP dsRNA. Microscopic examination of these insects revealed that female reproductive organs did not develop normally. The successful development of RNAi in P. maidis to target specific genes will enable the development of new insect control strategies and functional analysis of vital genes and genes associated with interactions between P

  13. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control.

    PubMed

    Zhang, Hao; Li, Hai-Chao; Miao, Xue-Xia

    2013-02-01

    Numerous studies indicate that target gene silencing by RNA interference (RNAi) could lead to insect death. This phenomenon has been considered as a potential strategy for insect pest control, and it is termed RNAi-mediated crop protection. However, there are many limitations using RNAi-based technology for pest control, with the effectiveness target gene selection and reliable double-strand RNA (dsRNA) delivery being two of the major challenges. With respect to target gene selection, at present, the use of homologous genes and genome-scale high-throughput screening are the main strategies adopted by researchers. Once the target gene is identified, dsRNA can be delivered by micro-injection or by feeding as a dietary component. However, micro-injection, which is the most common method, can only be used in laboratory experiments. Expression of dsRNAs directed against insect genes in transgenic plants and spraying dsRNA reagents have been shown to induce RNAi effects on target insects. Hence, RNAi-mediated crop protection has been considered as a potential new-generation technology for pest control, or as a complementary method of existing pest control strategies; however, further development to improve the efficacy of protection and range of species affected is necessary. In this review, we have summarized current research on RNAi-based technology for pest insect management. Current progress has proven that RNAi technology has the potential to be a tool for designing a new generation of insect control measures. To accelerate its practical application in crop protection, further study on dsRNA uptake mechanisms based on the knowledge of insect physiology and biochemistry is needed. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.

  14. Application of RNAi to Genomic Drug Target Validation in Schistosomes

    PubMed Central

    Guidi, Alessandra; Mansour, Nuha R.; Paveley, Ross A.; Carruthers, Ian M.; Besnard, Jérémy; Hopkins, Andrew L.; Gilbert, Ian H.; Bickle, Quentin D.

    2015-01-01

    Concerns over the possibility of resistance developing to praziquantel (PZQ), has stimulated efforts to develop new drugs for schistosomiasis. In addition to the development of improved whole organism screens, the success of RNA interference (RNAi) in schistosomes offers great promise for the identification of potential drug targets to initiate drug discovery. In this study we set out to contribute to RNAi based validation of putative drug targets. Initially a list of 24 target candidates was compiled based on the identification of putative essential genes in schistosomes orthologous of C. elegans essential genes. Knockdown of Calmodulin (Smp_026560.2) (Sm-Calm), that topped this list, produced a phenotype characterised by waves of contraction in adult worms but no phenotype in schistosomula. Knockdown of the atypical Protein Kinase C (Smp_096310) (Sm-aPKC) resulted in loss of viability in both schistosomula and adults and led us to focus our attention on other kinase genes that were identified in the above list and through whole organism screening of known kinase inhibitor sets followed by chemogenomic evaluation. RNAi knockdown of these kinase genes failed to affect adult worm viability but, like Sm-aPKC, knockdown of Polo-like kinase 1, Sm-PLK1 (Smp_009600) and p38-MAPK, Sm-MAPK p38 (Smp_133020) resulted in an increased mortality of schistosomula after 2-3 weeks, an effect more marked in the presence of human red blood cells (hRBC). For Sm-PLK-1 the same effects were seen with the specific inhibitor, BI2536, which also affected viable egg production in adult worms. For Sm-PLK-1 and Sm-aPKC the in vitro effects were reflected in lower recoveries in vivo. We conclude that the use of RNAi combined with culture with hRBC is a reliable method for evaluating genes important for larval development. However, in view of the slow manifestation of the effects of Sm-aPKC knockdown in adults and the lack of effects of Sm-PLK-1 and Sm-MAPK p38 on adult viability, these

  15. Fast Quantitative Real-Time PCR-Based Screening for Common Chromosomal Aneuploidies in Mouse Embryonic Stem Cells

    PubMed Central

    D’Hulst, Charlotte; Parvanova, Irena; Tomoiaga, Delia; Sapar, Maria L.; Feinstein, Paul

    2013-01-01

    Summary Chromosomal integrity has been known for many years to affect the ability of mouse embryonic stem cells (mESCs) to contribute to the germline of chimeric mice. Abnormal chromosomes are generally detected by standard cytogenetic karyotyping. However, this method is expensive, time consuming, and often omitted prior to blastocyst injection, consequently reducing the frequency of mESC-derived offspring. Here, we show a fast, accurate, and inexpensive screen for identifying the two most common aneuploidies (Trisomy 8 and loss of chromosome Y) in genetically manipulated mESCs using quantitative real-time PCR (qPCR). Screening against these two aneuploidies significantly increases the fraction of normal mESC clones. Our method is extremely sensitive and can detect as low as 10% aneuploidy among a large population of mESCs. It greatly expedites the generation of mutant mice and provides a quick tool for assessing the aneuploidy percentages of any mESC line. PMID:24319669

  16. Development and interlaboratory validation of quantitative polymerase chain reaction method for screening analysis of genetically modified soybeans.

    PubMed

    Takabatake, Reona; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2013-01-01

    A novel real-time polymerase chain reaction (PCR)-based quantitative screening method was developed for three genetically modified soybeans: RRS, A2704-12, and MON89788. The 35S promoter (P35S) of cauliflower mosaic virus is introduced into RRS and A2704-12 but not MON89788. We then designed a screening method comprised of the combination of the quantification of P35S and the event-specific quantification of MON89788. The conversion factor (Cf) required to convert the amount of a genetically modified organism (GMO) from a copy number ratio to a weight ratio was determined experimentally. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDR), respectively. The determined RSDR values for the method were less than 25% for both targets. We consider that the developed method would be suitable for the simple detection and approximate quantification of GMO.

  17. High-content screening of drug-induced cardiotoxicity using quantitative single cell imaging cytometry on microfluidic device.

    PubMed

    Kim, Min Jung; Lee, Su Chul; Pal, Sukdeb; Han, Eunyoung; Song, Joon Myong

    2011-01-07

    Drug-induced cardiotoxicity or cytotoxicity followed by cell death in cardiac muscle is one of the major concerns in drug development. Herein, we report a high-content quantitative multicolor single cell imaging tool for automatic screening of drug-induced cardiotoxicity in an intact cell. A tunable multicolor imaging system coupled with a miniaturized sample platform was destined to elucidate drug-induced cardiotoxicity via simultaneous quantitative monitoring of intracellular sodium ion concentration, potassium ion channel permeability and apoptosis/necrosis in H9c2(2-1) cell line. Cells were treated with cisapride (a human ether-à-go-go-related gene (hERG) channel blocker), digoxin (Na(+)/K(+)-pump blocker), camptothecin (anticancer agent) and a newly synthesized anti-cancer drug candidate (SH-03). Decrease in potassium channel permeability in cisapride-treated cells indicated that it can also inhibit the trafficking of the hERG channel. Digoxin treatment resulted in an increase of intracellular [Na(+)]. However, it did not affect potassium channel permeability. Camptothecin and SH-03 did not show any cytotoxic effect at normal use (≤300 nM and 10 μM, respectively). This result clearly indicates the potential of SH-03 as a new anticancer drug candidate. The developed method was also used to correlate the cell death pathway with alterations in intracellular [Na(+)]. The developed protocol can directly depict and quantitate targeted cellular responses, subsequently enabling an automated, easy to operate tool that is applicable to drug-induced cytotoxicity monitoring with special reference to next generation drug discovery screening. This multicolor imaging based system has great potential as a complementary system to the conventional patch clamp technique and flow cytometric measurement for the screening of drug cardiotoxicity.

  18. Providing Quantitative Information and a Nudge to Undergo Stool Testing in a Colorectal Cancer Screening Decision Aid: A Randomized Clinical Trial.

    PubMed

    Schwartz, Peter H; Perkins, Susan M; Schmidt, Karen K; Muriello, Paul F; Althouse, Sandra; Rawl, Susan M

    2017-08-01

    Guidelines recommend that patient decision aids should provide quantitative information about probabilities of potential outcomes, but the impact of this information is unknown. Behavioral economics suggests that patients confused by quantitative information could benefit from a "nudge" towards one option. We conducted a pilot randomized trial to estimate the effect sizes of presenting quantitative information and a nudge. Primary care patients (n = 213) eligible for colorectal cancer screening viewed basic screening information and were randomized to view (a) quantitative information (quantitative module), (b) a nudge towards stool testing with the fecal immunochemical test (FIT) (nudge module), (c) neither a nor b, or (d) both a and b. Outcome measures were perceived colorectal cancer risk, screening intent, preferred test, and decision conflict, measured before and after viewing the decision aid, and screening behavior at 6 months. Patients viewing the quantitative module were more likely to be screened than those who did not ( P = 0.012). Patients viewing the nudge module had a greater increase in perceived colorectal cancer risk than those who did not ( P = 0.041). Those viewing the quantitative module had a smaller increase in perceived risk than those who did not ( P = 0.046), and the effect was moderated by numeracy. Among patients with high numeracy who did not view the nudge module, those who viewed the quantitative module had a greater increase in intent to undergo FIT ( P = 0.028) than did those who did not. The limitations of this study were the limited sample size and single healthcare system. Adding quantitative information to a decision aid increased uptake of colorectal cancer screening, while adding a nudge to undergo FIT did not increase uptake. Further research on quantitative information in decision aids is warranted.

  19. Characterisation by RNAi of pioneer genes expressed in the dorsal pharyngeal gland cell of Heterodera glycines and the effects of combinatorial RNAi.

    PubMed

    Bakhetia, M; Urwin, P E; Atkinson, H J

    2008-11-01

    Changes in transcript abundance of 24 genes expressed in the dorsal pharyngeal gland cell of Heterodera glycines encoding for putative secretions of unknown function were monitored by quantitative PCR (qPCR) at 0, 2, 7, 14 and 21 days post-invasion (pi) of soybean plantlets. Five groups of temporal patterns (A, B1, B2, C and D) were defined for the 24 genes plus data for two previously studied genes expressed in the same cell. Group D (two genes) showed no significant increase between 0 and 2 days pi and were the least abundantly expressed at 7-21 days pi. Transcripts of group C (nine genes including one studied previously) increased in abundance from 0 to 2 days pi but were the second least expressed for 7-21 days pi. Groups A (three genes), B1 (seven genes) and B2 (five genes including one studied previously) were all abundant at 7-21 days pi. B1 and B2 were discriminated by their relative abundance at 0 and 2 days pi. RNA interference (RNAi) targeting two genes of group A and one each of B1 and B2 in nematodes prior to invasion resulted in phenotypic effects on total parasites per plant and sexual fate at 10 days pi. Phenotype penetrance was reduced for three genes showing such effects and one with a strong effect in earlier work when two genes rather than one were concurrently targeted for RNAi. One gene (dg13) was more abundantly expressed after combinatorial RNAi than for either control nematodes or when targeting singly by RNAi. This work reports the unexpected elevation in mRNA expression after combinatorial RNAi that requires understanding before combinatorial RNAi can be advanced for highly effective cyst nematode control via plant biotechnology.

  20. Gene mutation, quantitative mutagenesis, and mutagen screening in mammalian cells: study with the CHO/HGPRT system

    SciTech Connect

    Hsie, A.W.

    1980-01-01

    We have employed CHO cells to develop and define a set of stringent conditions for studying mutation induction to TG resistance. Several lines of evidence support the CHO/HGPRT system as a specific-locus mutational assay. The system permits quantification of mutation at the HGPRT locus induced by various physical and chemical mutagens. The quantitative nature of the system provides a basis for the study of structure-function relationships of various classes of chemical mutagens. The intra- and interlaboratory reproducibility of this system suggests its potential for screening environmental agents for mutagenic activity.

  1. [Comparison between application of fecal occult blood quantitive testing instrument and colloidal gold strip method in colorectal cancer screening].

    PubMed

    Huang, Yan-qin; Zhang, Meng-wen; Shen, Yong-zhou; Ma, Hao-qing; Cai, Shan-rong; Zhang, Su-zhan; Zheng, Shu

    2013-08-01

    To compare the performances of fecal occult blood quantitive testing instrument and colloidal gold strip method in colorectal cancer screening. A representative random population of 9000 subjects aging between 40 and 74 years old were selected from Xuxiang, Haining city, Zhejiang province, by random cluster sampling method in year 2011. The fecal samples from each subject were separately detected by the two methods, namely fecal occult blood quantitive testing instrument and colloidal gold strip method. The positive result was standardized by hemoglobin concentration (HGB) ≥ 100 ng/ml under the application of quantitive testing instrument, or color-developing by colloidal gold strip method. The positive subjects from either method would be provided a further colonoscopy examination for pathological diagnosis. The positive rate and consistency of the two methods were compared, as well as the positive predictive value and population detecting rate of the colorectal cancer and adenoma. A total of 6475 (71.9%) subjects submitted their two fecal samples according to our requirement in 9000 subjects. There were separately 319 positive cases (4.9%) and 146 positive cases (2.3%) by the performances of fecal occult blood quantitive testing instrument and colloidal gold strip method, including 45 positive in both tests (Kappa = 0.168, 95%CI:0.119-0.217).184 out of the 319 positive cases (57.7%) in the test by quantitive testing instrument and 89 out of 146 positive cases (61.0%) in the test by colloidal gold strip method received the colonoscopy examination. There were no significant statistical differences between the two methods in the positive predictive value of colorectal cancer (P > 0.05) , developing adenoma and non-developing adenoma.However, the population detecting rate of the colorectal cancer and developing adenoma were higher in the test by quantitive testing instrument (26 cases, 0.402%) than it in the test by colloidal gold strip method (10 cases, 0

  2. Simultaneous quantitative determination, identification and qualitative screening of pesticides in fruits and vegetables using LC-Q-Orbitrap™-MS.

    PubMed

    Zomer, Paul; Mol, Hans G J

    2015-01-01

    A method based on QuEChERS extraction and LC-quadrupole-Orbitrap™ MS detection was established utilising an improved fully non-targeted way of data acquisition with and without fragmentation. A full-scan acquisition event without fragmentation (resolving power 70,000) was followed by five consecutive fragmentation events (variable data independent acquisition - vDIA; resolving power 35,000) where all ions from the full-scan range are fragmented. Compared with fragmentation in a single event (all-ion fragmentation - AIF), this improves both selectivity and sensitivity for the fragment ions, which is beneficial for screening performance and identification capability. The method was validated, using the data from the same measurements, for two types of analysis: quantitation/identification and qualitative screening. The quantitative validation, performed according to the guidelines in SANCO/12571/2013, tested the performance of the method for 184 compounds in lettuce and orange at two spiking levels: 10 and 50 ng g(-1). The validation showed that the vast majority of the compounds met the criteria for trueness and precision set in the SANCO guidance document. In the qualitative validation the same 184 compounds were used to test the untargeted screening capabilities of the method. In this validation the compounds were spiked at three levels into 11 different fruit and vegetable matrices, which were measured twice on separate days. Taking all data from the qualitative validation together, an overall detection rate of 92% was achieved at the 10 ng g(-1) level, increasing to 98% at 200 ng g(-1). A screening detection limit (as defined in the SANCO guidelines) of 10 ng g(-1) could be achieved for 134 compounds. For 39 and two pesticides the SDL was 50 and 200 ng g(-1), respectively. For the other nine compounds no SDL could be established. The identification (ion ratio) criteria as recommended in the SANCO document could be met for 93% of the detected pesticide

  3. Quantitative real-time PCR eliminates false-positives in colony screening PCR.

    PubMed

    Skarratt, Kristen K; Fuller, Stephen J

    2014-01-01

    We report an alternative approach to colony screening using real-time PCR (qPCR) which can be used instead of the traditional end-point PCR to eliminate false-positives and reduce processing times. False-positive transformants can easily be distinguished from true-positives by comparing Ct values derived from qPCR amplification curves. In addition, the use of qPCR allows for more efficient processing since a gel electrophoresis step is not required and the screening process is no longer limited by the capacity of the gel apparatus.

  4. Identifying targets for topical RNAi therapeutics in psoriasis: assessment of a new in vitro psoriasis model.

    PubMed

    Bracke, S; Desmet, E; Guerrero-Aspizua, S; Tjabringa, S G; Schalkwijk, J; Van Gele, M; Carretero, M; Lambert, J

    2013-08-01

    Diseases of the skin are amenable to RNAi-based therapies and targeting key components in the pathophysiology of psoriasis using RNAi may represent a successful new therapeutic strategy. We aimed to develop a straightforward and highly reproducible in vitro psoriasis model useful to study the effects of gene knockdown by RNAi and to identify new targets for topical RNAi therapeutics. We evaluated the use of keratinocytes derived from psoriatic plaques and normal human keratinocytes (NHKs). To induce a psoriatic phenotype in NHKs, combinations of pro-inflammatory cytokines (IL-1α, IL-17A, IL-6 and TNF-α) were tested. The model based on NHK met our needs of a reliable and predictive preclinical model, and this model was further selected for gene expression analyses, comprising a panel of 55 psoriasis-associated genes and five micro-RNAs (miRNAs). Gene silencing studies were conducted by using small interfering RNAs (siRNAs) and miRNA inhibitors directed against potential target genes such as CAMP and DEFB4 and miRNAs such as miR-203. We describe a robust and highly reproducible in vitro psoriasis model that recapitulates expression of a large panel of genes and miRNAs relevant to the pathogenesis of psoriasis. Furthermore, we show that our model is a powerful first step model system for testing and screening RNAi-based therapeutics.

  5. MORC-1 Integrates Nuclear RNAi and Transgenerational Chromatin Architecture to Promote Germline Immortality.

    PubMed

    Weiser, Natasha E; Yang, Danny X; Feng, Suhua; Kalinava, Natallia; Brown, Kristen C; Khanikar, Jayshree; Freeberg, Mallory A; Snyder, Martha J; Csankovszki, Györgyi; Chan, Raymond C; Gu, Sam G; Montgomery, Taiowa A; Jacobsen, Steven E; Kim, John K

    2017-05-22

    Germline-expressed endogenous small interfering RNAs (endo-siRNAs) transmit multigenerational epigenetic information to ensure fertility in subsequent generations. In Caenorhabditis elegans, nuclear RNAi ensures robust inheritance of endo-siRNAs and deposition of repressive H3K9me3 marks at target loci. How target silencing is maintained in subsequent generations is poorly understood. We discovered that morc-1 is essential for transgenerational fertility and acts as an effector of endo-siRNAs. Unexpectedly, morc-1 is dispensable for siRNA inheritance but is required for target silencing and maintenance of siRNA-dependent chromatin organization. A forward genetic screen identified mutations in met-1, which encodes an H3K36 methyltransferase, as potent suppressors of morc-1(-) and nuclear RNAi mutant phenotypes. Further analysis of nuclear RNAi and morc-1(-) mutants revealed a progressive, met-1-dependent enrichment of H3K36me3, suggesting that robust fertility requires repression of MET-1 activity at nuclear RNAi targets. Without MORC-1 and nuclear RNAi, MET-1-mediated encroachment of euchromatin leads to detrimental decondensation of germline chromatin and germline mortality. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Core RNAi machinery and gene knockdown in the emerald ash borer (Agrilus planipennis).

    PubMed

    Zhao, Chaoyang; Alvarez Gonzales, Miguel A; Poland, Therese M; Mittapalli, Omprakash

    2015-01-01

    The RNA interference (RNAi) technology has been widely used in insect functional genomics research and provides an alternative approach for insect pest management. To understand whether the emerald ash borer (Agrilus planipennis), an invasive and destructive coleopteran insect pest of ash tree (Fraxinus spp.), possesses a strong RNAi machinery that is capable of degrading target mRNA as a response to exogenous double-stranded RNA (dsRNA) induction, we identified three RNAi pathway core component genes, Dicer-2, Argonaute-2 and R2D2, from the A. planipennis genome sequence. Characterization of these core components revealed that they contain conserved domains essential for the proteins to function in the RNAi pathway. Phylogenetic analyses showed that they are closely related to homologs derived from other coleopteran species. We also delivered the dsRNA fragment of AplaScrB-2, a β-fructofuranosidase-encoding gene horizontally acquired by A. planipennis as we reported previously, into A. planipennis adults through microinjection. Quantitative real-time PCR analysis on the dsRNA-treated beetles demonstrated a significantly decreased gene expression level of AplaScrB-2 appearing on day 2 and lasting until at least day 6. This study is the first record of RNAi applied in A. planipennis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. High-throughput RNAi screen in Ewing sarcoma cells identifies leucine rich repeats and WD repeat domain containing 1 (LRWD1) as a regulator of EWS-FLI1 driven cell viability.

    PubMed

    He, Tao; Surdez, Didier; Rantala, Juha K; Haapa-Paananen, Saija; Ban, Jozef; Kauer, Maximilian; Tomazou, Eleni; Fey, Vidal; Alonso, Javier; Kovar, Heinrich; Delattre, Olivier; Iljin, Kristiina

    2017-01-05

    A translocation leading to the formation of an oncogenic EWS-ETS fusion protein defines Ewing sarcoma. The most frequent gene fusion, present in 85 percent of Ewing sarcomas, is EWS-FLI1. Here, a high-throughput RNA interference screen was performed to identify genes whose function is critical for EWS-FLI1 driven cell viability. In total, 6781 genes were targeted by siRNA molecules and the screen was performed both in presence and absence of doxycycline-inducible expression of the EWS-FLI1 shRNA in A673/TR/shEF Ewing sarcoma cells. The Leucine rich repeats and WD repeat Domain containing 1 (LRWD1) targeting siRNA pool was the strongest hit reducing cell viability only in EWS-FLI1 expressing Ewing sarcoma cells. LRWD1 had been previously described as a testis specific gene with only limited information on its function. Analysis of LRWD1 mRNA levels in patient samples indicated that high expression associated with poor overall survival in Ewing sarcoma. Gene ontology analysis of LRWD1 co-expressed genes in Ewing tumors revealed association with DNA replication and analysis of differentially expressed genes in LRWD1 depleted Ewing sarcoma cells indicated a role in connective tissue development and cellular morphogenesis. Moreover, EWS-FLI1 repressed genes with repressive H3K27me3 chromatin marks were highly enriched among LRWD1 target genes in A673/TR/shEF Ewing sarcoma cells, suggesting that LRWD1 contributes to EWS-FLI1 driven transcriptional regulation. Taken together, we have identified LRWD1 as a novel regulator of EWS-FLI1 driven cell viability in A673/TR/shEF Ewing sarcoma cells, shown association between high LRWD1 mRNA expression and aggressive disease and identified processes by which LRWD1 may promote oncogenesis in Ewing sarcoma.

  8. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    PubMed

    Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.

  9. A Quantitative Toxicogenomics Assay for High-throughput and Mechanistic Genotoxicity Assessment and Screening of Environmental Pollutants.

    PubMed

    Lan, Jiaqi; Gou, Na; Rahman, Sheikh Mokhles; Gao, Ce; He, Miao; Gu, April Z

    2016-03-15

    The ecological and health concern of mutagenicity and carcinogenicity potentially associated with an overwhelmingly large and ever-increasing number of chemicals demands for cost-effective and feasible method for genotoxicity screening and risk assessment. This study proposed a genotoxicity assay using GFP-tagged yeast reporter strains, covering 38 selected protein biomarkers indicative of all the seven known DNA damage repair pathways. The assay was applied to assess four model genotoxic chemicals, eight environmental pollutants and four negative controls across six concentrations. Quantitative molecular genotoxicity end points were derived based on dose response modeling of a newly developed integrated molecular effect quantifier, Protein Effect Level Index (PELI). The molecular genotoxicity end points were consistent with multiple conventional in vitro genotoxicity assays, as well as with in vivo carcinogenicity assay results. Further more, the proposed genotoxicity end point PELI values quantitatively correlated with both comet assay in human cell and carcinogenicity potency assay in mice, providing promising evidence for linking the molecular disturbance measurements to adverse outcomes at a biological relevant level. In addition, the high-resolution DNA damaging repair pathway alternated protein expression profiles allowed for chemical clustering and classification. This toxicogenomics-based assay presents a promising alternative for fast, efficient and mechanistic genotoxicity screening and assessment of drugs, foods, and environmental contaminants.

  10. A Shorter Route to Antibody Binders via Quantitative in vitro Bead-Display Screening and Consensus Analysis.

    PubMed

    Mankowska, Sylwia A; Gatti-Lafranconi, Pietro; Chodorge, Matthieu; Sridharan, Sudharsan; Minter, Ralph R; Hollfelder, Florian

    2016-11-07

    Affinity panning of large libraries is a powerful tool to identify protein binders. However, panning rounds are followed by the tedious re-screening of the clones obtained to evaluate binders precisely. In a first application of Bead Surface Display (BeSD) we show successful in vitro affinity selections based on flow cytometric analysis that allows fine quantitative discrimination between binders. Subsequent consensus analysis of the resulting sequences enables identification of clones that bind tighter than those arising directly from the experimental selection output. This is demonstrated by evolution of an anti-Fas receptor single-chain variable fragment (scFv) that was improved 98-fold vs the parental clone. Four rounds of quantitative screening by fluorescence-activated cell sorting of an error-prone library based on fine discrimination between binders in BeSD were followed by analysis of 200 full-length output sequences that suggested a new consensus design with a Kd ∼140 pM. This approach shortens the time and effort to obtain high affinity reagents and its cell-free nature transcends limitations inherent in previous in vivo display systems.

  11. A Shorter Route to Antibody Binders via Quantitative in vitro Bead-Display Screening and Consensus Analysis

    PubMed Central

    Mankowska, Sylwia A.; Gatti-Lafranconi, Pietro; Chodorge, Matthieu; Sridharan, Sudharsan; Minter, Ralph R.; Hollfelder, Florian

    2016-01-01

    Affinity panning of large libraries is a powerful tool to identify protein binders. However, panning rounds are followed by the tedious re-screening of the clones obtained to evaluate binders precisely. In a first application of Bead Surface Display (BeSD) we show successful in vitro affinity selections based on flow cytometric analysis that allows fine quantitative discrimination between binders. Subsequent consensus analysis of the resulting sequences enables identification of clones that bind tighter than those arising directly from the experimental selection output. This is demonstrated by evolution of an anti-Fas receptor single-chain variable fragment (scFv) that was improved 98-fold vs the parental clone. Four rounds of quantitative screening by fluorescence-activated cell sorting of an error-prone library based on fine discrimination between binders in BeSD were followed by analysis of 200 full-length output sequences that suggested a new consensus design with a Kd ∼140 pM. This approach shortens the time and effort to obtain high affinity reagents and its cell-free nature transcends limitations inherent in previous in vivo display systems. PMID:27819305

  12. A qualitative screening and quantitative measurement of organic contaminants on different types of marine plastic debris.

    PubMed

    Gauquie, Johanna; Devriese, Lisa; Robbens, Johan; De Witte, Bavo

    2015-11-01

    Chemical compounds present on plastic were characterised on different types of plastic litter and beached pellets, using a general GC-MS screening method. A variety of plastic related compounds, such as building blocks, antioxidants, additives and degradation products, were identified next to diverse environmental pollutants and biofilm compounds. A validated method for the analysis of PAHs and PCBs on beached pellets at the Belgian Coast, showed concentrations of ∑ 16 EPA-PAHs of 1076-3007 ng g(-1) plastic, while the concentrations of ∑ 7 OSPAR-PCBs ranged from 31 to 236 ng g(-1) plastic. The wide variety of plastic compounds retrieved in the general screening showed the importance of plastic as a potential source of contaminants and their degradation products.

  13. Quantitative assessment of smoking-induced emphysema progression in longitudinal CT screening for lung cancer

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Mizuguchi, R.; Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2015-03-01

    Computed tomography has been used for assessing structural abnormalities associated with emphysema. It is important to develop a robust CT based imaging biomarker that would allow quantification of emphysema progression in early stage. This paper presents effect of smoking on emphysema progression using annual changes of low attenuation volume (LAV) by each lung lobe acquired from low-dose CT images in longitudinal screening for lung cancer. The percentage of LAV (LAV%) was measured after applying CT value threshold method and small noise reduction. Progression of emphysema was assessed by statistical analysis of the annual changes represented by linear regression of LAV%. This method was applied to 215 participants in lung cancer CT screening for five years (18 nonsmokers, 85 past smokers, and 112 current smokers). The results showed that LAV% is useful to classify current smokers with rapid progression of emphysema (0.2%/year, p<0.05). This paper demonstrates effectiveness of the proposed method in diagnosis and prognosis of early emphysema in CT screening for lung cancer.

  14. Antenatal screening for Down syndrome: a quantitative demonstration of the improvements over the past 20 years.

    PubMed

    Renshaw, Richard; Ellis, Katrina; Jacobs, Patricia; Morris, Joan

    2013-10-01

    Pregnant women who receive a high screening risk result for Down, Edwards or Patau syndrome are offered diagnostic tests that carry a procedure-related risk of miscarriage. This study quantifies the improvement in the screening tests by calculating the number of women who had such tests per syndrome diagnosis from 1991 to 2010. Routinely stored data on prenatal chorionic villus sampling (CVS) and amniocentesis samples performed from 1991 to 2010 from the Wessex Regional Genetics Laboratory in England were extracted from the laboratory database. The numbers of diagnostic tests performed per Down, Edwards or Patau syndrome diagnosis were calculated according to the type of diagnostic test, and were adjusted for maternal age and gestational age at diagnosis. A total of 32,345 CVSs and amniocenteses identified 872 diagnoses of Down syndrome and 328 of Edwards and Patau syndrome. In 1991, there were 46 (95%CI: 16-111) CVSs per syndrome diagnosis compared with five (95%CI: 4-7) in 2010. For amniocenteses, the number fell from 53 (37-78) to 15 (11-22). This analysis demonstrates the improvements in antenatal screening for Down syndrome that have been made over the past 20 years, resulting in a reduction in the number of women tested and thus in the number of foetal deaths attributable to the testing procedure.

  15. Three classes of glucocerebrosidase inhibitors identified by quantitative high-throughput screening are chaperone leads for Gaucher disease

    PubMed Central

    Zheng, Wei; Padia, Janak; Urban, Daniel J.; Jadhav, Ajit; Goker-Alpan, Ozlem; Simeonov, Anton; Goldin, Ehud; Auld, Douglas; LaMarca, Mary E.; Inglese, James; Austin, Christopher P.; Sidransky, Ellen

    2007-01-01

    Gaucher disease is an autosomal recessive lysosomal storage disorder caused by mutations in the glucocerebrosidase gene. Missense mutations result in reduced enzyme activity that may be due to misfolding, raising the possibility of small-molecule chaperone correction of the defect. Screening large compound libraries by quantitative high-throughput screening (qHTS) provides comprehensive information on the potency, efficacy, and structure–activity relationships (SAR) of active compounds directly from the primary screen, facilitating identification of leads for medicinal chemistry optimization. We used qHTS to rapidly identify three structural series of potent, selective, nonsugar glucocerebrosidase inhibitors. The three structural classes had excellent potencies and efficacies and, importantly, high selectivity against closely related hydrolases. Preliminary SAR data were used to select compounds with high activity in both enzyme and cell-based assays. Compounds from two of these structural series increased N370S mutant glucocerebrosidase activity by 40–90% in patient cell lines and enhanced lysosomal colocalization, indicating chaperone activity. These small molecules have potential as leads for chaperone therapy for Gaucher disease, and this paradigm promises to accelerate the development of leads for other rare genetic disorders. PMID:17670938

  16. Quantitative High Throughput Screening Using a Live Cell cAMP Assay Identifies Small Molecule Agonists of the TSH Receptor

    PubMed Central

    Titus, Steve; Neumann, Susanne; Zheng, Wei; Southall, Noel; Michael, Sam; Klumpp, Carleen; Yasgar, Adam; Shinn, Paul; Thomas, Craig J.; Inglese, Jim; Gershengorn, Marvin C.; Austin, Christopher P.

    2009-01-01

    The thyroid stimulating hormone receptor (TSHR) belongs to the glycoprotein hormone receptor subfamily of seven-transmembrane spanning receptors. TSHR is expressed in thyroid follicular cells and is activated by TSH, which regulates growth and function of these cells. Recombinant TSH is used in diagnostic screens for thyroid cancer, especially in patients after thyroid cancer surgery. Currently, no selective small molecule agonist of the TSHR is available. To screen for novel TSHR agonists, we miniaturized a cell-based cAMP assay into 1536-well plate format. This assay uses a HEK293 cell line stably expressing the TSHR and a cyclic nucleotide gated ion channel (CNG), which functions as a biosensor. From a quantitative high-throughput screen of 73,180 compounds in parallel with a parental cell line (without the TSHR), 276 primary active compounds were identified. The activities of the selected active compounds were further confirmed in an orthogonal HTRF cAMP-based assay. 49 compounds in several structural classes have been confirmed as small molecule TSHR agonists that will serve as starting compounds for chemical optimization and studies of thyroid physiology in health and disease. PMID:18216391

  17. Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan

    PubMed Central

    Jan, Syed Umer; Faridullah, Syed; Sherani, Samiullah; Jahan, Nusrat

    2017-01-01

    The aim of this study was to evaluate the antioxidant activity, screening the phytogenic chemical compounds, and to assess the alkaloids present in the E. intermedia to prove its uses in Pakistani folk medicines for the treatment of asthma and bronchitis. Antioxidant activity was analyzed by using 2,2-diphenyl-1-picryl-hydrazyl-hydrate assay. Standard methods were used for the identification of cardiac glycosides, phenolic compounds, flavonoids, anthraquinones, and alkaloids. High performance liquid chromatography (HPLC) was used for quantitative purpose of ephedrine alkaloids in E. intermedia. The quantitative separation was confirmed on Shimadzu 10AVP column (Shampack) of internal diameter (id) 3.0 mm and 50 mm in length. The extract of the solute in flow rate of 1 ml/min at the wavelength 210 nm and methanolic extract showed the antioxidant activity and powerful oxygen free radicals scavenging activities and the IC50 for the E. intermedia plant was near to the reference standard ascorbic acid. The HPLC method was useful for the quantitative purpose of ephedrine (E) and pseudoephedrine (PE) used for 45 samples of one species collected from central habitat in three districts (Ziarat, Shairani, and Kalat) of Balochistan. Results showed that average alkaloid substance in E. intermedia was as follows: PE (0.209%, 0.238%, and 0.22%) and E (0.0538%, 0.0666%, and 0.0514%). PMID:28386582

  18. Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan.

    PubMed

    Gul, Rahman; Jan, Syed Umer; Faridullah, Syed; Sherani, Samiullah; Jahan, Nusrat

    2017-01-01

    The aim of this study was to evaluate the antioxidant activity, screening the phytogenic chemical compounds, and to assess the alkaloids present in the E. intermedia to prove its uses in Pakistani folk medicines for the treatment of asthma and bronchitis. Antioxidant activity was analyzed by using 2,2-diphenyl-1-picryl-hydrazyl-hydrate assay. Standard methods were used for the identification of cardiac glycosides, phenolic compounds, flavonoids, anthraquinones, and alkaloids. High performance liquid chromatography (HPLC) was used for quantitative purpose of ephedrine alkaloids in E. intermedia. The quantitative separation was confirmed on Shimadzu 10AVP column (Shampack) of internal diameter (id) 3.0 mm and 50 mm in length. The extract of the solute in flow rate of 1 ml/min at the wavelength 210 nm and methanolic extract showed the antioxidant activity and powerful oxygen free radicals scavenging activities and the IC50 for the E. intermedia plant was near to the reference standard ascorbic acid. The HPLC method was useful for the quantitative purpose of ephedrine (E) and pseudoephedrine (PE) used for 45 samples of one species collected from central habitat in three districts (Ziarat, Shairani, and Kalat) of Balochistan. Results showed that average alkaloid substance in E. intermedia was as follows: PE (0.209%, 0.238%, and 0.22%) and E (0.0538%, 0.0666%, and 0.0514%).

  19. Development, validation and quantitative assessment of an enzymatic assay suitable for small molecule screening and profiling: A case-study.

    PubMed

    Sancenon, Vicente; Goh, Wei Hau; Sundaram, Aishwarya; Er, Kai Shih; Johal, Nidhi; Mukhina, Svetlana; Carr, Grant; Dhakshinamoorthy, Saravanakumar

    2015-06-01

    The successful discovery and subsequent development of small molecule inhibitors of drug targets relies on the establishment of robust, cost-effective, quantitative, and physiologically relevant in vitro assays that can support prolonged screening and optimization campaigns. The current study illustrates the process of developing and validating an enzymatic assay for the discovery of small molecule inhibitors using alkaline phosphatase from bovine intestine as model target. The assay development workflow includes an initial phase of optimization of assay materials, reagents, and conditions, continues with a process of miniaturization and automation, and concludes with validation by quantitative measurement of assay performance and signal variability. The assay is further evaluated for dose-response and mechanism-of-action studies required to support structure-activity-relationship studies. Emphasis is placed on the most critical aspects of assay optimization and other relevant considerations, including the technology, assay materials, buffer constituents, reaction conditions, liquid handling equipment, analytical instrumentation, and quantitative assessments. Examples of bottlenecks encountered during assay development and strategies to address them are provided.

  20. Comparison of array comparative genomic hybridization and quantitative real-time PCR-based aneuploidy screening of blastocyst biopsies.

    PubMed

    Capalbo, Antonio; Treff, Nathan R; Cimadomo, Danilo; Tao, Xin; Upham, Kathleen; Ubaldi, Filippo Maria; Rienzi, Laura; Scott, Richard T

    2015-07-01

    Comprehensive chromosome screening (CCS) methods are being extensively used to select chromosomally normal embryos in human assisted reproduction. Some concerns related to the stage of analysis and which aneuploidy screening method to use still remain. In this study, the reliability of blastocyst-stage aneuploidy screening and the diagnostic performance of the two mostly used CCS methods (quantitative real-time PCR (qPCR) and array comparative genome hybridization (aCGH)) has been assessed. aCGH aneuploid blastocysts were rebiopsied, blinded, and evaluated by qPCR. Discordant cases were subsequently rebiopsied, blinded, and evaluated by single-nucleotide polymorphism (SNP) array-based CCS. Although 81.7% of embryos showed the same diagnosis when comparing aCGH and qPCR-based CCS, 18.3% (22/120) of embryos gave a discordant result for at least one chromosome. SNP array reanalysis showed that a discordance was reported in ten blastocysts for aCGH, mostly due to false positives, and in four cases for qPCR. The discordant aneuploidy call rate per chromosome was significantly higher for aCGH (5.7%) compared with qPCR (0.6%; P<0.01). To corroborate these findings, 39 embryos were simultaneously biopsied for aCGH and qPCR during blastocyst-stage aneuploidy screening cycles. 35 matched including all 21 euploid embryos. Blinded SNP analysis on rebiopsies of the four embryos matched qPCR. These findings demonstrate the high reliability of diagnosis performed at the blastocyst stage with the use of different CCS methods. However, the application of aCGH can be expected to result in a higher aneuploidy rate than other contemporary methods of CCS.

  1. Quantitative high-throughput screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries

    PubMed Central

    Inglese, James; Auld, Douglas S.; Jadhav, Ajit; Johnson, Ronald L.; Simeonov, Anton; Yasgar, Adam; Zheng, Wei; Austin, Christopher P.

    2006-01-01

    High-throughput screening (HTS) of chemical compounds to identify modulators of molecular targets is a mainstay of pharmaceutical development. Increasingly, HTS is being used to identify chemical probes of gene, pathway, and cell functions, with the ultimate goal of comprehensively delineating relationships between chemical structures and biological activities. Achieving this goal will require methodologies that efficiently generate pharmacological data from the primary screen and reliably profile the range of biological activities associated with large chemical libraries. Traditional HTS, which tests compounds at a single concentration, is not suited to this task, because HTS is burdened by frequent false positives and false negatives and requires extensive follow-up testing. We have developed a paradigm, quantitative HTS (qHTS), tested with the enzyme pyruvate kinase, to generate concentration–response curves for >60,000 compounds in a single experiment. We show that this method is precise, refractory to variations in sample preparation, and identifies compounds with a wide range of activities. Concentration–response curves were classified to rapidly identify pyruvate kinase activators and inhibitors with a variety of potencies and efficacies and elucidate structure–activity relationships directly from the primary screen. Comparison of qHTS with traditional single-concentration HTS revealed a high prevalence of false negatives in the single-point screen. This study demonstrates the feasibility of qHTS for accurately profiling every compound in large chemical libraries (>105 compounds). qHTS produces rich data sets that can be immediately mined for reliable biological activities, thereby providing a platform for chemical genomics and accelerating the identification of leads for drug discovery. PMID:16864780

  2. Quantitative High-Throughput Screening Identifies 8-Hydroxyquinolines as Cell-Active Histone Demethylase Inhibitors

    PubMed Central

    Kawamura, Akane; Rose, Nathan R.; Ng, Stanley S.; Quinn, Amy M.; Rai, Ganesha; Mott, Bryan T.; Beswick, Paul; Klose, Robert J.; Oppermann, Udo; Jadhav, Ajit; Heightman, Tom D.; Maloney, David J.; Schofield, Christopher J.; Simeonov, Anton

    2010-01-01

    Background Small molecule modulators of epigenetic processes are currently sought as basic probes for biochemical mechanisms, and as starting points for development of therapeutic agents. Nε-Methylation of lysine residues on histone tails is one of a number of post-translational modifications that together enable transcriptional regulation. Histone lysine demethylases antagonize the action of histone methyltransferases in a site- and methylation state-specific manner. Nε-Methyllysine demethylases that use 2-oxoglutarate as co-factor are associated with diverse human diseases, including cancer, inflammation and X-linked mental retardation; they are proposed as targets for the therapeutic modulation of transcription. There are few reports on the identification of templates that are amenable to development as potent inhibitors in vivo and large diverse collections have yet to be exploited for the discovery of demethylase inhibitors. Principal Findings High-throughput screening of a ∼236,000-member collection of diverse molecules arrayed as dilution series was used to identify inhibitors of the JMJD2 (KDM4) family of 2-oxoglutarate-dependent histone demethylases. Initial screening hits were prioritized by a combination of cheminformatics, counterscreening using a coupled assay enzyme, and orthogonal confirmatory detection of inhibition by mass spectrometric assays. Follow-up studies were carried out on one of the series identified, 8-hydroxyquinolines, which were shown by crystallographic analyses to inhibit by binding to the active site Fe(II) and to modulate demethylation at the H3K9 locus in a cell-based assay. Conclusions These studies demonstrate that diverse compound screening can yield novel inhibitors of 2OG dependent histone demethylases and provide starting points for the development of potent and selective agents to interrogate epigenetic regulation. PMID:21124847

  3. Genome-Wide RNAi High-Throughput Screen Identifies Proteins Necessary for the AHR-Dependent Induction of CYP1A1 by 2,3,7,8-Tetrachlorodibenzo-p-dioxin

    PubMed Central

    Hankinson, Oliver

    2013-01-01

    The aryl hydrocarbon receptor (AHR) has a plethora of physiological roles, and upon dysregulation, carcinogenesis can occur. One target gene of AHR encodes the xenobiotic and drug-metabolizing enzyme CYP1A1, which is inducible by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) via the AHR. An siRNA library targeted against over 5600 gene candidates in the druggable genome was used to transfect mouse Hepa-1 cells, which were then treated with TCDD, and subsequently assayed for CYP1A1-dependent ethoxyresorufin-o-deethylase (EROD) activity. Following redundant siRNA activity (RSA) statistical analysis, we identified 93 hits that reduced EROD activity with a p value ≤ .005 and substantiated 39 of these as positive hits in a secondary screening using endoribonuclease-prepared siRNAs (esiRNAs). Twelve of the corresponding gene products were subsequently confirmed to be necessary for the induction of CYP1A1 messenger RNA by TCDD. None of the candidates were deficient in aryl hydrocarbon nuclear translocator expression. However 6 gene products including UBE2i, RAB40C, CRYGD, DCTN4, RBM5, and RAD50 are required for the expression of AHR as well as for induction of CYP1A1. We also found 2 gene products, ARMC8 and TCF20, to be required for the induction of CYP1A1, but our data are ambiguous as to whether they are required for the expression of AHR. In contrast, SIN3A, PDC, TMEM5, and CD9 are not required for AHR expression but are required for the induction of CYP1A1, implicating a direct role in Cyp1a1 transcription. Our methods, although applied to Cyp1a1, could be modified for identifying proteins that regulate other inducible genes. PMID:23997114

  4. Novel Methods for Mosquito Control using RNAi.

    USDA-ARS?s Scientific Manuscript database

    The discovery and development of novel insecticides for vector control is a primary focus of toxicology research conducted at the Mosquito and Fly Research Unit, Gainesville, FL. Targeting critical genes/proteins in mosquitoes using RNA interference (RNAi) is being investigated as a method to devel...

  5. RNAi in treating honey bee diseases

    USDA-ARS?s Scientific Manuscript database

    RNA interference (RNAi) is a sequence-specific posttranscriptional gene-silencing mechanism that the cell uses to eliminate unwanted genetic elements in organisms ranging from plants to mammals and has been a powerful tool for treating a variety of diseases. We conducted studies to elucidate the ...

  6. RNAi induced gene silencing in crop improvement.

    PubMed

    Sinha, Subodh Kumar

    2010-12-01

    The RNA silencing is one of the innovative and efficient molecular biology tools to harness the down-regulation of expression of gene(s) specifically. To accomplish such selective modification of gene expression of a particular trait, homology dependent gene silencing uses a stunning variety of gene silencing viz. co-suppression, post-transcriptional gene silencing, virus-induced gene silencing etc. This family of diverse molecular phenomena has a common exciting feature of gene silencing which is collectively called RNA interference abbreviated to as RNAi. This molecular phenomenon has become a focal point of plant biology and medical research throughout the world. As a result, this technology has turned out to be a powerful tool in understanding the function of individual gene and has ultimately led to the tremendous use in crop improvement. This review article illustrates the application of RNAi in a broad area of crop improvement where this technology has been successfully used. It also provides historical perspective of RNAi discovery and its contemporary phenomena, mechanism of RNAi pathway.

  7. RNAi strategies to suppress insects of fruit and tree crops

    USDA-ARS?s Scientific Manuscript database

    Use of ribonucleic acid interference, RNAi, to reduce plant feeding Hemiptera in fruit tree and grapevines. The successful use of RNAi strategies to reduce insect pests, psyllids and leafhoppers was demonstrated. An RNAi bioassay which absorbs dsRNA into plant tissues provided up to 40 days of act...

  8. Are RNAi and miRNA therapeutics truly dead?

    PubMed

    Conde, João; Artzi, Natalie

    2015-03-01

    Only a few years ago pharmaceutical companies were excited about the potential of RNA interference (RNAi). Now, financial volatility and subsequent dissolutions of in-house facilities by pharmaceutical companies have had media channels pronouncing that RNAi therapeutics are dead. However, advances in nanomedicine may now help the vast potential of RNAi therapeutics to be fulfilled. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Targeting the undruggable: Advances and obstacles in current RNAi therapy

    PubMed Central

    Wu, Sherry Y.; Lopez-Berestein, Gabriel; Calin, George A.; Sood, Anil K.

    2014-01-01

    RNA interference (RNAi) therapeutics represents a rapidly emerging platform for personalized cancer treatment. Recent advances in delivery, target selection, and safety of RNAi cancer therapy provide unprecedented opportunities for clinical translation. Here, we discuss these advances and present strategies for making RNAi-based therapy a viable part of cancer management. PMID:24920658

  10. Performance comparison of quantitative semantic features and lung-RADS in the National Lung Screening Trial

    NASA Astrophysics Data System (ADS)

    Li, Qian; Balagurunathan, Yoganand; Liu, Ying; Schabath, Matthew; Gillies, Robert J.

    2016-03-01

    Background: Lung-RADS is the new oncology classification guideline proposed by American College of Radiology (ACR), which provides recommendation for further follow up in lung cancer screening. However, only two features (solidity and size) are included in this system. We hypothesize that additional sematic features can be used to better characterize lung nodules and diagnose cancer. Objective: We propose to develop and characterize a systematic methodology based on semantic image traits to more accurately predict occurrence of cancerous nodules. Methods: 24 radiological image traits were systematically scored on a point scale (up to 5) by a trained radiologist, and lung-RADS was independently scored. A linear discriminant model was used on the semantic features to access their performance in predicting cancer status. The semantic predictors were then compared to lung-RADS classification in 199 patients (60 cancers, 139 normal controls) obtained from the National Lung Screening Trial. Result: There were different combinations of semantic features that were strong predictors of cancer status. Of these, contour, border definition, size, solidity, focal emphysema, focal fibrosis and location emerged as top candidates. The performance of two semantic features (short axial diameter and contour) had an AUC of 0.945, and was comparable to that of lung-RADS (AUC: 0.871). Conclusion: We propose that a semantics-based discrimination approach may act as a complement to the lung-RADS to predict cancer status.

  11. Assessment of a semi-quantitative screening method for diagnosis of ethylene glycol poisoning.

    PubMed

    Sankaralingam, Arun; Thomas, Annette; James, David R; Wierzbicki, Anthony S

    2017-07-01

    Background Ethylene glycol poisoning remains a rare but important presentation to acute toxicology units. Guidelines recommended that ethylene glycol should be available as an 'urgent' test within 4 h, but these are difficult to deliver in practice. This study assessed a semi-quantitative enzymatic spectrophotometric assay for ethylene glycol compatible with automated platforms. Methods The ethylene glycol method was assessed in 21 samples from patients with an increased anion gap and metabolic acidosis not due to ethylene glycol ingestion, and seven samples known to contain ethylene glycol. All samples were analysed in random order in a blinded manner to their origin on a laboratory spectrophotometer. Results In this study, seven samples were known to contain ethylene glycol at concentrations >100 mg/L. The method correctly identified all seven samples as containing ethylene glycol. No false-positives were observed. Thirteen samples gave clear negative results. Ethylene glycol was present at <20 mg/L in one sample, but this sample remained within the limits of the negative control. Passing-Bablock correlation of estimates of ethylene glycol concentration against results obtained when the samples had been analysed using the quantitative method on an automated analyser showed a good correlation (R = 0.84) but with an apparent under-recovery. Conclusions A semi-quantitative assay for ethylene glycol was able to discriminate well between samples containing ethylene glycol and those with other causes of acidosis. It is a practical small-scale assay for rapid identification of cases of ethylene glycol poisoning.

  12. Establishing RNAi in a Non-Model Organism: The Antarctic Nematode Panagrolaimus sp. DAW1

    PubMed Central

    Seybold, Anna C.; Wharton, David A.; Thorne, Michael A. S.

    2016-01-01

    The Antarctic nematode Panagrolaimus sp. DAW1 is one of the only organisms known to survive extensive intracellular freezing throughout its tissues. Although the physiological mechanisms of this extreme adaptation are partly understood, the molecular mechanisms remain largely unknown. RNAi is a method that allows the examination of gene function in a direct, targeted manner, by knocking out specific mRNAs and revealing the effects on the phenotype. In this study we have explored the viability of RNAi in Panagrolaimus sp. DAW1. In the first trial, nematodes were fed E. coli expressing Panagrolaimus sp. DAW1 dsRNA of the embryonic lethal genes rps-2 and dhc, and the blister gene duox. Pd-rps-2(RNAi)-treated nematodes showed a significant decrease in larval hatching. However, qPCR showed no significant decrease in the amount of rps-2 mRNA in Pd-rps-2(RNAi)-treated animals. Several soaking protocols for dsRNA uptake were investigated using the fluorescent dye FITC. Desiccation-enhanced soaking showed the strongest uptake of FITC and resulted in a significant and consistent decrease of mRNA levels of two of the four tested genes (rps-2 and tps-2a), suggesting effective uptake of dsRNA-containing solution by the nematode. These findings suggest that RNAi by desiccation-enhanced soaking is viable in Panagrolaimus sp. DAW1 and provide the first functional genomic approach to investigate freezing tolerance in this non-model organism. RNAi, in conjunction with qPCR, can be used to screen for candidate genes involved in intracellular freezing tolerance in Panagrolaimus sp. DAW1. PMID:27832164

  13. Identification of Autophagosome-associated Proteins and Regulators by Quantitative Proteomic Analysis and Genetic Screens*

    PubMed Central

    Dengjel, Jörn; Høyer-Hansen, Maria; Nielsen, Maria O.; Eisenberg, Tobias; Harder, Lea M.; Schandorff, Søren; Farkas, Thomas; Kirkegaard, Thomas; Becker, Andrea C.; Schroeder, Sabrina; Vanselow, Katja; Lundberg, Emma; Nielsen, Mogens M.; Kristensen, Anders R.; Akimov, Vyacheslav; Bunkenborg, Jakob; Madeo, Frank; Jäättelä, Marja; Andersen, Jens S.

    2012-01-01

    Autophagy is one of the major intracellular catabolic pathways, but little is known about the composition of autophagosomes. To study the associated proteins, we isolated autophagosomes from human breast cancer cells using two different biochemical methods and three stimulus types: amino acid deprivation or rapamycin or concanamycin A treatment. The autophagosome-associated proteins were dependent on stimulus, but a core set of proteins was stimulus-independent. Remarkably, proteasomal proteins were abundant among the stimulus-independent common autophagosome-associated proteins, and the activation of autophagy significantly decreased the cellular proteasome level and activity supporting interplay between the two degradation pathways. A screen of yeast strains defective in the orthologs of the human genes encoding for a common set of autophagosome-associated proteins revealed several regulators of autophagy, including subunits of the retromer complex. The combined spatiotemporal proteomic and genetic data sets presented here provide a basis for further characterization of autophagosome biogenesis and cargo selection. PMID:22311637

  14. A Quantitative PCR-Electrochemical Genosensor Test for the Screening of Biotech Crops.

    PubMed

    Moura-Melo, Suely; Miranda-Castro, Rebeca; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Dos Santos Junior, José Ribeiro; da Silva Fonseca, Rosana A; Lobo-Castañón, María Jesús

    2017-04-18

    The design of screening methods for the detection of genetically modified organisms (GMOs) in food would improve the efficiency in their control. We report here a PCR amplification method combined with a sequence-specific electrochemical genosensor for the quantification of a DNA sequence characteristic of the 35S promoter derived from the cauliflower mosaic virus (CaMV). Specifically, we employ a genosensor constructed by chemisorption of a thiolated capture probe and p-aminothiophenol gold surfaces to entrap on the sensing layer the unpurified PCR amplicons, together with a signaling probe labeled with fluorescein. The proposed test allows for the determination of a transgene copy number in both hemizygous (maize MON810 trait) and homozygous (soybean GTS40-3-2) transformed plants, and exhibits a limit of quantification of at least 0.25% for both kinds of GMO lines.

  15. A Quantitative PCR-Electrochemical Genosensor Test for the Screening of Biotech Crops

    PubMed Central

    Moura-Melo, Suely; Miranda-Castro, Rebeca; de-los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J.; dos Santos Junior, José Ribeiro; da Silva Fonseca, Rosana A.; Lobo-Castañón, María Jesús

    2017-01-01

    The design of screening methods for the detection of genetically modified organisms (GMOs) in food would improve the efficiency in their control. We report here a PCR amplification method combined with a sequence-specific electrochemical genosensor for the quantification of a DNA sequence characteristic of the 35S promoter derived from the cauliflower mosaic virus (CaMV). Specifically, we employ a genosensor constructed by chemisorption of a thiolated capture probe and p-aminothiophenol gold surfaces to entrap on the sensing layer the unpurified PCR amplicons, together with a signaling probe labeled with fluorescein. The proposed test allows for the determination of a transgene copy number in both hemizygous (maize MON810 trait) and homozygous (soybean GTS40-3-2) transformed plants, and exhibits a limit of quantification of at least 0.25% for both kinds of GMO lines. PMID:28420193

  16. Quantitative low-energy ion beam characterization by beam profiling and imaging via scintillation screens

    NASA Astrophysics Data System (ADS)

    Germer, S.; Pietag, F.; Polak, J.; Arnold, T.

    2016-11-01

    This study presents the imaging and characterization of low-current ion beams in the neutralized state monitored via single crystal YAG:Ce (Y3Al5O12) scintillators. To validate the presented beam diagnostic tool, Faraday cup measurements and test etchings were performed. Argon ions with a typical energy of 1.0 keV were emitted from an inductively coupled radio-frequency (13.56 MHz) ion beam source with total currents of some mA. Different beam properties, such as, lateral ion current density, beam divergence angle, and current density in pulsed ion beams have been studied to obtain information about the spatial beam profile and the material removal rate distribution. We observed excellent imaging properties with the scintillation screen and achieved a detailed characterization of the neutralized ion beam. A strong correlation between the scintillator light output, the ion current density, and the material removal rate could be observed.

  17. Odorant Screening and Quantitation of Thiols in Carmenere Red Wine by Gas Chromatography-Olfactometry and Stable Isotope Dilution Assays.

    PubMed

    Pavez, Carolina; Agosin, Eduardo; Steinhaus, Martin

    2016-05-04

    The sensory impact of thiols in Vitis vinifera 'Carmenere' red wines was evaluated. For this purpose, aroma extract dilution analysis was applied to the thiols isolated from a Carmenere red wine by affinity chromatography with a mercurated agarose gel. Results revealed the presence of four odorants, identified as 2-furanylmethanethiol, 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, and 2-methyl-3-sulfanyl-1-butanol, with the latter being described here for the first time in Carmenere red wines. Quantitation of the four thiols in the Carmenere wine screened by aroma extract dilution analysis and in three additional Carmenere wines by stable isotope dilution assays resulted in concentrations above the respective orthonasal odor detection threshold values. Triangle tests applied to wine model solutions with and without the addition of the four thiols showed significant differences, thus suggesting that the compounds do have the potential to influence the overall aroma of red wine.

  18. Toxin screening in phytoplankton: detection and quantitation using MALDI triple quadrupole mass spectrometry.

    PubMed

    Sleno, Lekha; Volmer, Dietrich A

    2005-03-01

    The investigation of a MALDI triple quadrupole instrument for the analysis of spirolide toxins in phytoplankton samples is described in this study. A high-frequency (kHz) laser was employed for MALDI, generating a semicontinuous ion beam, thus taking advantage of the high duty cycle obtained in sensitive triple quadrupole MRM experiments. Initially, several experimental parameters such as type of organic matrix and concentration, solvent composition, and matrix-to-analyte ratio were optimized, and their impact on sensitivity and precision of the obtained ion currents for a reference spirolide, 13-desmethyl-C, was studied. In all quantitative experiments, excellent linearities in the concentration range between 0.01 and 1.75 microg/mL were obtained, with R2 values of 0.99 or higher. The average precision of the quantitative MALDI measurements was 7.4+/-2.4% RSD. No systematic errors were apparent with this method as shown by a direct comparison to an electrospray LC/MS/MS method. Most importantly, the MALDI technique was very fast; each sample spot was analyzed in less than 5 s as compared to several minutes with the electrospray assay. To demonstrate the potential of the MALDI triple quadrupole method, its application to quantitative analysis in several different phytoplankton samples was investigated, including crude extracts and samples from mass-triggered fractionation experiments. 13-Desmethyl spirolide C was successfully quantified in these complex samples at concentration levels from 0.05 to 90.4 microg/mL (prior to dilution to have samples fall within the dynamic range of the method) without extensive sample preparation steps. The versatility of the MALDI triple quadrupole method was also exhibited for the identification of unknown spirolide analogues. Through the use of dedicated linked scan functions such as precursor ion and neutral loss scans, several spirolide compounds were tentatively identified directly from the crude extract, without the usual time

  19. Quantitative high-throughput screening data analysis: challenges and recent advances

    PubMed Central

    Shockley, Keith R.

    2014-01-01

    In vitro HTS holds much potential to advance drug discovery and provide cell-based alternatives for toxicity testing. In quantitative HTS, concentration–response data can be generated simultaneously for thousands of different compounds and mixtures. However, nonlinear modeling in these multiple-concentration assays presents important statistical challenges that are not problematic for linear models. Importantly, parameter estimation with the widely used Hill equation model is highly variable when using standard designs. Failure to consider parameter estimate uncertainty properly would greatly hinder chemical genomics and toxicity testing efforts. In this light, optimal study designs should be developed to improve nonlinear parameter estimation; or alternative approaches with reliable performance characteristics should be used to describe concentration–response profiles. PMID:25449657

  20. Screening hypochromism (sieve effect) in red blood cells: a quantitative analysis

    PubMed Central

    Razi Naqvi, K.

    2014-01-01

    Multiwavelength UV-visible spectroscopy, Kramers-Kronig analysis, and several other experimental and theoretical tools have been applied over the last several decades to fathom absorption and scattering of light by suspensions of micron-sized pigmented particles, including red blood cells, but a satisfactory quantitative analysis of the difference between the absorption spectra of suspension of intact and lysed red blood cells is still lacking. It is stressed that such a comparison is meaningful only if the pertinent spectra are free from, or have been corrected for, scattering losses, and it is shown that Duysens’ theory can, whereas that of Vekshin cannot, account satisfactorily for the observed hypochromism of suspensions of red blood cells. PMID:24761307

  1. Rapid and Inexpensive Screening of Genomic Copy Number Variations Using a Novel Quantitative Fluorescent PCR Method

    PubMed Central

    Han, Joan C.; Elsea, Sarah H.; Pena, Heloísa B.; Pena, Sérgio Danilo Junho

    2013-01-01

    Detection of human microdeletion and microduplication syndromes poses significant burden on public healthcare systems in developing countries. With genome-wide diagnostic assays frequently inaccessible, targeted low-cost PCR-based approaches are preferred. However, their reproducibility depends on equally efficient amplification using a number of target and control primers. To address this, the recently described technique called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR) was shown to reliably detect four human syndromes by quantifying DNA amplification in an internally controlled PCR reaction. Here, we confirm its utility in the detection of eight human microdeletion syndromes, including the more common WAGR, Smith-Magenis, and Potocki-Lupski syndromes with 100% sensitivity and 100% specificity. We present selection, design, and performance evaluation of detection primers using variety of approaches. We conclude that MQF-PCR is an easily adaptable method for detection of human pathological chromosomal aberrations. PMID:24288428

  2. Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy

    PubMed Central

    Kenny, Hilary A.; Lal-Nag, Madhu; White, Erin A.; Shen, Min; Chiang, Chun-Yi; Mitra, Anirban K.; Zhang, Yilin; Curtis, Marion; Schryver, Elizabeth M.; Bettis, Sam; Jadhav, Ajit; Boxer, Matthew B.; Li, Zhuyin; Ferrer, Marc; Lengyel, Ernst

    2015-01-01

    The tumour microenvironment contributes to cancer metastasis and drug resistance. However, most high throughput screening (HTS) assays for drug discovery use cancer cells grown in monolayers. Here we show that a multilayered culture containing primary human fibroblasts, mesothelial cells and extracellular matrix can be adapted into a reliable 384- and 1,536-multi-well HTS assay that reproduces the human ovarian cancer (OvCa) metastatic microenvironment. We validate the identified inhibitors in secondary in vitro and in vivo biological assays using three OvCa cell lines: HeyA8, SKOV3ip1 and Tyk-nu. The active compounds directly inhibit at least two of the three OvCa functions: adhesion, invasion and growth. In vivo, these compounds prevent OvCa adhesion, invasion and metastasis, and improve survival in mouse models. Collectively, these data indicate that a complex three-dimensional culture of the tumour microenvironment can be adapted for quantitative HTS and may improve the disease relevance of assays used for drug screening. PMID:25653139

  3. 3' UTR seed matches, but not overall identity, are associated with RNAi off-targets.

    PubMed

    Birmingham, Amanda; Anderson, Emily M; Reynolds, Angela; Ilsley-Tyree, Diane; Leake, Devin; Fedorov, Yuriy; Baskerville, Scott; Maksimova, Elena; Robinson, Kathryn; Karpilow, Jon; Marshall, William S; Khvorova, Anastasia

    2006-03-01

    Off-target gene silencing can present a notable challenge in the interpretation of data from large-scale RNA interference (RNAi) screens. We performed a detailed analysis of off-targeted genes identified by expression profiling of human cells transfected with small interfering RNA (siRNA). Contrary to common assumption, analysis of the subsequent off-target gene database showed that overall identity makes little or no contribution to determining whether the expression of a particular gene will be affected by a given siRNA, except for near-perfect matches. Instead, off-targeting is associated with the presence of one or more perfect 3' untranslated region (UTR) matches with the hexamer or heptamer seed region (positions 2-7 or 2-8) of the antisense strand of the siRNA. These findings have strong implications for future siRNA design and the application of RNAi in high-throughput screening and therapeutic development.

  4. Rational quantitative structure-activity relationship (RQSAR) screen for PXR and CAR isoform-specific nuclear receptor ligands.

    PubMed

    Dring, Ann M; Anderson, Linnea E; Qamar, Saima; Stoner, Matthew A

    2010-12-05

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related orphan nuclear receptor proteins that share several ligands and target overlapping sets of genes involved in homeostasis and all phases of drug metabolism. CAR and PXR are involved in the development of certain diseases, including diabetes, metabolic syndrome and obesity. Ligand screens for these receptors so far have typically focused on steroid hormone analogs with pharmacophore-based approaches, only to find relatively few new hits. Multiple CAR isoforms have been detected in human liver, with the most abundant being the constitutively active reference, CAR1, and the ligand-dependent isoform CAR3. It has been assumed that any compound that binds CAR1 should also activate CAR3, and so CAR3 can be used as a ligand-activated surrogate for CAR1 studies. The possibility of CAR3-specific ligands has not, so far, been addressed. To investigate the differences between CAR1, CAR3 and PXR, and to look for more CAR ligands that may be of use in quantitative structure-activity relationship (QSAR) studies, we performed a luciferase transactivation assay screen of 60 mostly non-steroid compounds. Known active compounds with different core chemistries were chosen as starting points and structural variants were rationally selected for screening. Distinct differences in agonist versus inverse agonist/antagonist effects were seen in 49 compounds that had some ligand effect on at least one receptor and 18 that had effects on all three receptors; eight were CAR1 ligands only, three were CAR3 only ligands and four affected PXR only. This work provides evidence for new CAR ligands, some of which have CAR3-specific effects, and provides observational data on CAR and PXR ligands with which to inform in silico strategies. Compounds that demonstrated unique activity on any one receptor are potentially valuable diagnostic tools for the investigation of in vivo molecular targets. Copyright © 2010

  5. Rational Quantitative Structure-Activity Relationship (RQSAR) Screen for PXR and CAR Isoform-Specific Nuclear Receptor Ligands

    PubMed Central

    Dring, Ann M.; Anderson, Linnea E.; Qamar, Saima; Stoner, Matthew A.

    2010-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related orphan nuclear receptor proteins that share several ligands and target overlapping sets of genes involved in homeostasis and all phases of drug metabolism. CAR and PXR are involved in the development of certain diseases, including diabetes, metabolic syndrome and obesity. Ligand screens for these receptors so far have typically focused on steroid hormone analogs with pharmacophore-based approaches, only to find relatively few new hits. Multiple CAR isoforms have been detected in human liver, with the most abundant being the constitutively active reference, CAR1, and the ligand-dependent isoform CAR3. It has been assumed that any compound that binds CAR1 should also activate CAR3, and so CAR3 can be used as a ligand-activated surrogate for CAR1 studies. The possibility of CAR3-specific ligands has not, so far, been addressed. To investigate the differences between CAR1, CAR3 and PXR, and to look for more CAR ligands that may be of use in quantitative structure-activity relationship (QSAR) studies, we performed a luciferase transactivation assay screen of 60 mostly non-steroid compounds. Known active compounds with different core chemistries were chosen as starting points and structural variants were rationally selected for screening. Distinct differences in agonist versus inverse agonist/antagonist effects were seen in 49 compounds that had some ligand effect on at least one receptor and 18 that had effects on all three receptors; eight were CAR1 ligands only, three were CAR3 only ligands and four affected PXR only. This work provides evidence for new CAR ligands, some of which have CAR3-specific effects, and provides observational data on CAR and PXR ligands with which to inform in silico strategies. Compounds that demonstrated unique activity on any one receptor are potentially valuable diagnostic tools for the investigation of in vivo molecular targets. PMID:20869355

  6. Identification of pregnane X receptor ligands using time-resolved fluorescence resonance energy transfer and quantitative high-throughput screening.

    PubMed

    Shukla, Sunita J; Nguyen, Dac-Trung; Macarthur, Ryan; Simeonov, Anton; Frazee, William J; Hallis, Tina M; Marks, Bryan D; Singh, Upinder; Eliason, Hildegard C; Printen, John; Austin, Christopher P; Inglese, James; Auld, Douglas S

    2009-04-01

    The human pregnane X nuclear receptor (PXR) is a xenobiotic-regulated receptor that is activated by a range of diverse chemicals, including antibiotics, antifungals, glucocorticoids, and herbal extracts. PXR has been characterized as an important receptor in the metabolism of xenobiotics due to induction of cytochrome P450 isozymes and activation by a large number of prescribed medications. Developing methodologies that can efficiently detect PXR ligands will be clinically beneficial to avoid potential drug-drug interactions. To facilitate the identification of PXR ligands, a time-resolved fluorescence resonance energy transfer (TR-FRET) assay was miniaturized to a 1,536-well microtiter plate format to employ quantitative high-throughput screening (qHTS). The optimized 1,536-well TR-FRET assay showed Z'-factors of >or=0.5. Seven- to 15-point concentration-response curves (CRCs) were generated for 8,280 compounds using both terbium and fluorescein emission data, resulting in the generation of 241,664 data points. The qHTS method allowed us to retrospectively examine single concentration screening datasets to assess the sensitivity and selectivity of the PXR assay at different compound screening concentrations. Furthermore, nonspecific assay artifacts such as concentration-based quenching of the terbium signal and compound fluorescence were identified through the examination of CRCs for specific emission channels. The CRC information was also used to define chemotypes associated with PXR ligands. This study demonstrates the feasibility of profiling thousands of compounds against PXR using the TR-FRET assay in a high-throughput format.

  7. Diabetes screening after gestational diabetes in England: a quantitative retrospective cohort study

    PubMed Central

    McGovern, Andrew; Butler, Lucilla; Jones, Simon; van Vlymen, Jeremy; Sadek, Khaled; Munro, Neil; Carr, Helen; de Lusignan, Simon

    2014-01-01

    Background The National Institute for Health and Care Excellence (NICE) recommends postpartum and annual monitoring for diabetes for females who have had a diagnosis of gestational diabetes mellitus (GDM). Aim To describe the current state of follow-up after GDM in primary care, in England. Design and setting A retrospective cohort study in 127 primary care practices. The total population analysed comprised 473 772 females, of whom 2016 had a diagnosis of GDM. Method Two subgroups of females were analysed using electronic general practice records. In the first group of females (n = 788) the quality of postpartum follow-up was assessed during a 6-month period. The quality of long-term annual follow-up was assessed in a second group of females (n = 718), over a 5-year period. The two outcome measures were blood glucose testing performed within 6 months postpartum (first group) and blood glucose testing performed annually (second group). Results Postpartum follow-up was performed in 146 (18.5%) females within 6 months of delivery. Annual rates of long-term follow-up stayed consistently around 20% a year. Publication of the Diabetes in Pregnancy NICE guidelines, in 2008, had no effect on long-term screening rates. Substantial regional differences were identified among rates of follow-up. Conclusion Monitoring of females after GDM is markedly suboptimal despite current recommendations. PMID:24567578

  8. Quantitative high-throughput gene expression profiling of human striatal development to screen stem cell–derived medium spiny neurons

    PubMed Central

    Straccia, Marco; Garcia-Diaz Barriga, Gerardo; Sanders, Phil; Bombau, Georgina; Carrere, Jordi; Mairal, Pedro Belio; Vinh, Ngoc-Nga; Yung, Sun; Kelly, Claire M; Svendsen, Clive N; Kemp, Paul J; Arjomand, Jamshid; Schoenfeld, Ryan C; Alberch, Jordi; Allen, Nicholas D; Rosser, Anne E; Canals, Josep M

    2015-01-01

    A systematic characterization of the spatio-temporal gene expression during human neurodevelopment is essential to understand brain function in both physiological and pathological conditions. In recent years, stem cell technology has provided an in vitro tool to recapitulate human development, permitting also the generation of human models for many diseases. The correct differentiation of human pluripotent stem cell (hPSC) into specific cell types should be evaluated by comparison with specific cells/tissue profiles from the equivalent adult in vivo organ. Here, we define by a quantitative high-throughput gene expression analysis the subset of specific genes of the whole ganglionic eminence (WGE) and adult human striatum. Our results demonstrate that not only the number of specific genes is crucial but also their relative expression levels between brain areas. We next used these gene profiles to characterize the differentiation of hPSCs. Our findings demonstrate a temporal progression of gene expression during striatal differentiation of hPSCs from a WGE toward an adult striatum identity. Present results establish a gene expression profile to qualitatively and quantitatively evaluate the telencephalic hPSC-derived progenitors eventually used for transplantation and mature striatal neurons for disease modeling and drug-screening. PMID:26417608

  9. High-throughput label-free screening of euglena gracilis with optofluidic time-stretch quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Baoshan; Lei, Cheng; Ito, Takuro; Yaxiaer, Yalikun; Kobayashi, Hirofumi; Jiang, Yiyue; Tanaka, Yo; Ozeki, Yasuyuki; Goda, Keisuke

    2017-02-01

    The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, microalgal biofuel is expected to play a key role in reducing the detrimental effects of global warming since microalgae absorb atmospheric CO2 via photosynthesis. Unfortunately, conventional analytical methods only provide population-averaged lipid contents and fail to characterize a diverse population of microalgal cells with single-cell resolution in a noninvasive and interference-free manner. Here we demonstrate high-throughput label-free single-cell screening of lipid-producing microalgal cells with optofluidic time-stretch quantitative phase microscopy. In particular, we use Euglena gracilis - an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement) within lipid droplets. Our optofluidic time-stretch quantitative phase microscope is based on an integration of a hydrodynamic-focusing microfluidic chip, an optical time-stretch phase-contrast microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase contents of every single cell at a high throughput of 10,000 cells/s. We characterize heterogeneous populations of E. gracilis cells under two different culture conditions to evaluate their lipid production efficiency. Our method holds promise as an effective analytical tool for microalgaebased biofuel production.

  10. Nanoparticle-Based Delivery of RNAi Therapeutics: Progress and Challenges

    PubMed Central

    Zhou, Jiehua; Shum, Ka-To; Burnett, John C.; Rossi, John J.

    2013-01-01

    RNA interference (RNAi) is an evolutionarily conserved, endogenous process for post-transcriptional regulation of gene expression. Although RNAi therapeutics have recently progressed through the pipeline toward clinical trials, the application of these as ideal, clinical therapeutics requires the development of safe and effective delivery systems. Inspired by the immense progress with nanotechnology in drug delivery, efforts have been dedicated to the development of nanoparticle-based RNAi delivery systems. For example, a precisely engineered, multifunctional nanocarrier with combined passive and active targeting capabilities may address the delivery challenges for the widespread use of RNAi as a therapy. Therefore, in this review, we introduce the major hurdles in achieving efficient RNAi delivery and discuss the current advances in applying nanotechnology-based delivery systems to overcome the delivery hurdles of RNAi therapeutics. In particular, some representative examples of nanoparticle-based delivery formulations for targeted RNAi therapeutics are highlighted. PMID:23667320

  11. Emerging strategies for RNA interference (RNAi) applications in insects.

    PubMed

    Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W

    2015-01-01

    RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response.

  12. Emerging strategies for RNA interference (RNAi) applications in insects

    PubMed Central

    Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W

    2015-01-01

    RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response. PMID:25424593

  13. Automated, quantitative cognitive/behavioral screening of mice: for genetics, pharmacology, animal cognition and undergraduate instruction.

    PubMed

    Gallistel, C R; Balci, Fuat; Freestone, David; Kheifets, Aaron; King, Adam

    2014-02-26

    We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be

  14. Screening for Suitable Reference Genes for Quantitative Real-Time PCR in Heterosigma akashiwo (Raphidophyceae).

    PubMed

    Ji, Nanjing; Li, Ling; Lin, Lingxiao; Lin, Senjie

    2015-01-01

    The raphidophyte Heterosigma akashiwo is a globally distributed harmful alga that has been associated with fish kills in coastal waters. To understand the mechanisms of H. akashiwo bloom formation, gene expression analysis is often required. To accurately characterize the expression levels of a gene of interest, proper reference genes are essential. In this study, we assessed ten of the previously reported algal candidate genes (rpL17-2, rpL23, cox2, cal, tua, tub, ef1, 18S, gapdh, and mdh) for their suitability as reference genes in this species. We used qRT-PCR to quantify the expression levels of these genes in H. akashiwo grown under different temperatures, light intensities, nutrient concentrations, and time points over a diel cycle. The expression stability of these genes was evaluated using geNorm and NormFinder algorithms. Although none of these genes exhibited invariable expression levels, cal, tub, rpL17-2 and rpL23 expression levels were the most stable across the different conditions tested. For further validation, these selected genes were used to normalize the expression levels of ribulose-1, 5-bisphosphate carboxylase/oxygenase large unite (HrbcL) over a diel cycle. Results showed that the expression of HrbcL normalized against each of these reference genes was the highest at midday and lowest at midnight, similar to the diel patterns typically documented for this gene in algae. While the validated reference genes will be useful for future gene expression studies on H. akashiwo, we expect that the procedure used in this study may be helpful to future efforts to screen reference genes for other algae.

  15. Larval RNAi in Nasonia (parasitoid wasp).

    PubMed

    Werren, John H; Loehlin, David W; Giebel, Jonathan D

    2009-10-01

    Nasonia is a complex of four closely related species of wasps with several features that make it an excellent system for a variety of genetic studies. These include a short generation time, ease of rearing, interfertile species, visible and molecular markers, and a sequenced genome. Furthermore, its parasitoid lifestyle allows investigations of questions relating to parasitoid/host dynamics, host preference, and specialist versus generalist biology. It also can serve as a behavior model for studies of courtship, male aggression and territoriality, female dispersal, and sex ratio control. This protocol describes a method to use RNA interference (RNAi) to knock down genes in Nasonia larvae. Unlike in Drosophila, RNAi in Nasonia is systemic. In the example presented here, adult red-eye-color phenotypes are produced by injecting double-stranded RNA (dsRNA) against the eye color gene cinnabar into last-instar Nasonia larvae.

  16. Lossless compression of RNAi fluorescence images using regional fluctuations of pixels.

    PubMed

    Karimi, Nader; Samavi, Shadrokh; Shirani, Shahram

    2013-03-01

    RNA interference (RNAi) is considered one of the most powerful genomic tools which allows the study of drug discovery and understanding of the complex cellular processes by high-content screens. This field of study, which was the subject of 2006 Nobel Prize of medicine, has drastically changed the conventional methods of analysis of genes. A large number of images have been produced by the RNAi experiments. Even though a number of capable special purpose methods have been proposed recently for the processing of RNAi images but there is no customized compression scheme for these images. Hence, highly proficient tools are required to compress these images. In this paper, we propose a new efficient lossless compression scheme for the RNAi images. A new predictor specifically designed for these images is proposed. It is shown that pixels can be classified into three categories based on their intensity distributions. Using classification of pixels based on the intensity fluctuations among the neighbors of a pixel a context-based method is designed. Comparisons of the proposed method with the existing state-of-the-art lossless compression standards and well-known general-purpose methods are performed to show the efficiency of the proposed method.

  17. Clone Mapper: An Online Suite of Tools for RNAi Experiments in Caenorhabditis elegans

    PubMed Central

    Thakur, Nishant; Pujol, Nathalie; Tichit, Laurent; Ewbank, Jonathan J.

    2014-01-01

    RNA interference (RNAi), mediated by the introduction of a specific double-stranded RNA, is a powerful method to investigate gene function. It is widely used in the Caenorhabditis elegans research community. An expanding number of laboratories conduct genome-wide RNAi screens, using standard libraries of bacterial clones each designed to produce a specific double-stranded RNA. Proper interpretation of results from RNAi experiments requires a series of analytical steps, from the verification of the identity of bacterial clones, to the identification of the clones’ potential targets. Despite the popularity of the technique, no user-friendly set of tools allowing these steps to be carried out accurately, automatically, and at a large scale, is currently available. We report here the design and production of Clone Mapper, an online suite of tools specifically adapted to the analysis pipeline typical for RNAi experiments with C. elegans. We show that Clone Mapper overcomes the limitations of existing techniques and provide examples illustrating its potential for the identification of biologically relevant genes. The Clone Mapper tools are freely available via http://www.ciml.univ-mrs.fr/EWBANK_jonathan/software.html. PMID:25187039

  18. Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity

    SciTech Connect

    Sirenko, Oksana; Cromwell, Evan F.; Crittenden, Carole; Wignall, Jessica A.; Wright, Fred A.; Rusyn, Ivan

    2013-12-15

    of cardiotoxicity is possible in a high-throughput format. • The assay shows benefits of automated data integration across multiple parameters. • Quantitative assessment of concentration–response is possible using iPSCs. • Multi-parametric screening allows for cardiotoxicity risk assessment.

  19. The efficacy of semi-quantitative urine protein-to-creatinine (P/C) ratio for the detection of significant proteinuria in urine specimens in health screening settings.

    PubMed

    Chang, Chih-Chun; Su, Ming-Jang; Ho, Jung-Li; Tsai, Yu-Hui; Tsai, Wei-Ting; Lee, Shu-Jene; Yen, Tzung-Hai; Chu, Fang-Yeh

    2016-01-01

    Urine protein detection could be underestimated using the conventional dipstick method because of variations in urine aliquots. This study aimed to assess the efficacy of the semi-quantitative urine protein-to-creatinine (P/C) ratio compared with other laboratory methods. Random urine samples were requested from patients undergoing chronic kidney disease screening. Significant proteinuria was determined by the quantitative P/C ratio of at least 150 mg protein/g creatinine. The semi-quantitative P/C ratio, dipstick protein and quantitative protein concentrations were compared and analyzed. In the 2932 urine aliquots, 156 (5.3 %) urine samples were considered as diluted and 60 (39.2 %) were found as significant proteinuria. The semi-quantitative P/C ratio testing had the best sensitivity (70.0 %) and specificity (95.9 %) as well as the lowest underestimation rate (0.37 %) when compared to other laboratory methods in the study. In the semi-quantitative P/C ratio test, 19 (12.2 %) had positive, 52 (33.3 %) had diluted, and 85 (54.5 %) had negative results. Of those with positive results, 7 (36.8 %) were positive detected by traditional dipstick urine protein test, and 9 (47.4 %) were positive detected by quantitative urine protein test. Additionally, of those with diluted results, 25 (48.1 %) had significant proteinuria, and all were assigned as no significant proteinuria by both tests. The semi-quantitative urine P/C ratio is clinically applicable based on its better sensitivity and screening ability for significant proteinuria than other laboratory methods, particularly in diluted urine samples. To establish an effective strategy for CKD prevention, urine protein screening with semi-quantitative P/C ratio could be considered.

  20. Transcriptome analysis and systemic RNAi response in the African sweetpotato weevil (Cylas puncticollis, Coleoptera, Brentidae).

    PubMed

    Prentice, Katterinne; Pertry, Ine; Christiaens, Olivier; Bauters, Lander; Bailey, Ana; Niblett, Chuck; Ghislain, Marc; Gheysen, Godelieve; Smagghe, Guy

    2015-01-01

    The African sweetpotato weevil (SPW) Cylas puncticollis Boheman is one of the most important constraints of sweetpotato production in Sub-Saharan Africa and yet is largely an uncharacterized insect pest. Here, we report on the transcriptome analysis of SPW generated using an Illumina platform. More than 213 million sequencing reads were obtained and assembled into 89,599 contigs. This assembly was followed by a gene ontology annotation. Subsequently, a transcriptome search showed that the necessary RNAi components relevant to the three major RNAi pathways, were found to be expressed in SPW. To address the functionality of the RNAi mechanism in this species, dsRNA was injected into second instar larvae targeting laccase2, a gene which encodes an enzyme involved in the sclerotization of insect exoskeleton. The body of treated insects showed inhibition of sclerotization, leading eventually to death. Quantitative Real Time PCR (qPCR) confirmed this phenotype to be the result of gene silencing. Together, our results provide valuable sequence data on this important insect pest and demonstrate that a functional RNAi pathway with a strong and systemic effect is present in SPW and can further be explored as a new strategy for controlling this important pest.

  1. Coupling desorption electrospray ionization with solid-phase microextraction for screening and quantitative analysis of drugs in urine.

    PubMed

    Kennedy, Joseph H; Aurand, Craig; Shirey, Robert; Laughlin, Brian C; Wiseman, Justin M

    2010-09-01

    Direct analysis of silica C(18)-coated solid-phase microextraction (SPME) fibers using desorption electrospray ionization mass spectrometry (DESI-MS) for the purpose of analyzing drugs from raw urine is presented. The method combines a simple, inexpensive, and solvent-less sample preparation technique with the specificity and speed of DESI-MS and MS/MS. Extraction of seven drugs from raw urine is performed using specially designed SPME fibers coated uniformly with silica-C(18) stationary phase. Each SPME device is inserted into unprocessed urine under gentle agitation and, then, removed, rinsed, and analyzed directly by DESI-MS (MS/MS). Rapid screening over a wide mass range is afforded by coupling the method with a time of flight (TOF) mass spectrometer while quantitative analysis is performed using selected reaction monitoring (SRM) using a triple quadrupole mass spectrometer. The performance of the SPME DESI-MS/MS method was evaluated by preparing calibration standards and quality control (QC) samples of the seven drug compounds from urine over a range from 20 to 1000 ng/mL, with the exception of meprobamate which was prepared from 200 to 10000 ng/mL. The calibration curves constructed for each analyte had an R(2) > 0.99. The range of precision (%CV) and accuracy values (% bias) for low QC samples was 1-11% and 3-38%, respectively. Precision and accuracy values for high QC samples range from 0.9 to 8% and -31 to -8%. Results from urine specimens of actual exposure to drugs screened using the SPME DESI-MS/MS method showed good agreement with the conventional immunoassays and GC/MS analysis. Liquid desorption of the SPME fiber followed by LC/MS/MS also showed good agreement with the SPME DESI-MS/MS method.

  2. NeuronCyto II: An automatic and quantitative solution for crossover neural cells in high throughput screening

    PubMed Central

    Ong, Kok Haur; De, Jaydeep

    2016-01-01

    Abstract Microscopy is a fundamental technology driving new biological discoveries. Today microscopy allows a large number of images to be acquired using, for example, High Throughput Screening (HTS) and 4D imaging. It is essential to be able to interrogate these images and extract quantitative information in an automated fashion. In the context of neurobiology, it is important to automatically quantify the morphology of neurons in terms of neurite number, length, branching and complexity, etc. One major issue in quantification of neuronal morphology is the “crossover” problem where neurites cross and it is difficult to assign which neurite belongs to which cell body. In the present study, we provide a solution to the “crossover” problem, the software package NeuronCyto II. NeuronCyto II is an interactive and user‐friendly software package for automatic neurite quantification. It has a well‐designed graphical user interface (GUI) with only a few free parameters allowing users to optimize the software by themselves and extract relevant quantitative information routinely. Users are able to interact with the images and the numerical features through the Result Inspector. The processing of neurites without crossover was presented in our previous work. Our solution for the “crossover” problem is developed based on our recently published work with directed graph theory. Both methods are implemented in NeuronCyto II. The results show that our solution is able to significantly improve the reliability and accuracy of the neurons displaying “crossover.” NeuronCyto II is freely available at the website: https://sites.google.com/site/neuroncyto/ , which includes user support and where software upgrades will also be placed in the future. © 2016 The Authors. Cytometry Part A Published by Wiley Periodicals, Inc. on behalf of ISAC. PMID:27233092

  3. Phalangeal quantitative ultrasound: cheaper methods for screening and follow-up of bone pathologies in HIV-infected women?

    PubMed

    Prinapori, Roberta; Rosso, Rffaella; Di Biagio, Antonio; Nicolini, Laura; Giacobbe, Daniele Roberto; De Hoffer, Laura; Grignolo, Sara; De Terlizzi, Francesca; Vignolo, Marina; Borderi, Marco; Martelli, Giulia; Calza, Leonardo; Viale, Pierluigi; Vescini, Fabio; Viscoli, Claudio

    2013-10-01

    This study estimated the prevalence of bone pathologies in a cohort of HIV-infected women in comparison with a cohort of HIV-negative women. Bone mineral density was measured by phalangeal quantitative ultrasound (AD-SoS: amplitude- dependent speed of sound; UBPI: ultrasound bone profile index). Risk of fracture, expressed by UBPI, was considered for value <0.39. Comparisons between groups and multivariate analyses were carried out using an ANOVA model. Correlations were evaluated using the Pearson correlation coefficient. Osteopenia and osteoporosis were present in 34.4% and 2% of patients, respectively. UBPI was pathologic in 5.7%. In a multivariate linear regression model significant correlations were found between AD-SoS z-score, duration of HIV-infection and BMI value. We also compared our cohort with 499 HIV-negative women as a historical control group of healthy subjects. AdSoS (2100 versus 2070 m/s) and UBPI (0.89 versus 0.74) were lower in HIV-infected women (p<0.001). Significant differences were also found in T-score values (p = 0.0013). These data show a high prevalence of bone diseases in women with HIV infection, correlated with duration of HIV-infection and BMI values. This non-invasive technique opens up new interesting perspectives, suggesting a possible use for bone mass screening in HIV-infected women.

  4. Rapid screening and quantitative determination of bioactive compounds from fruit extracts of Myristica species and their in vitro antiproliferative activity.

    PubMed

    Pandey, Renu; Mahar, Rohit; Hasanain, Mohammad; Shukla, Sanjeev K; Sarkar, Jayanta; Rameshkumar, K B; Kumar, Brijesh

    2016-11-15

    Efficient and sensitive LC-MS/MS methods have been developed for the rapid screening and determination of bioactive compounds in different fruit parts of four Myristica species, viz., Myristica beddomeii, Myristica fragrans, Myristica fatua and Myristica malabarica. Twenty-one compounds were identified and characterized on the basis of their accurate mass and MS/MS fragmentation pattern using HPLC-QTOF-MS/MS and NMR analysis. Quantitative determination of five major bioactive compounds was performed using multiple-reaction monitoring mode with continuous polarity switching by UHPLC-QqQLIT-MS/MS. Moreover, in vitro antiproliferative activity of these Myristica species was evaluated against five human cancer cell lines A549, DLD-1, DU145, FaDu and MCF-7 using SRB assay. Seventeen phytoconstituents were identified and reported for the first time from M. beddomeii and sixteen from M. fatua. Quantification result showed highest total content of five major bioactive compounds in mace of M. fragrans. Evaluation of in vitro antiproliferative activity revealed potent activity in all investigated species except M. fragrans.

  5. The Rapid and Sensitive Quantitative Determination of Galactose by Combined Enzymatic and Colorimetric Method: Application in Neonatal Screening.

    PubMed

    Kianmehr, Anvarsadat; Mahrooz, Abdolkarim; Ansari, Javad; Oladnabi, Morteza; Shahbazmohammadi, Hamid

    2016-05-01

    The quantitative measurement of galactose in blood is essential for the early diagnosis, treatment, and dietary monitoring of galactosemia patients. In this communication, we aimed to develop a rapid, sensitive, and cost-effective combined method for galactose determination in dry blood spots. This procedure was based on the combination of enzymatic reactions of galactose dehydrogenase (GalDH), dihydrolipoyl dehydrogenase (DLD), and alkaline phosphates with a colorimetric system. The incubation time and the concentration of enzymes used in new method were also optimized. The analytical performance was studied by the precision, recovery, linearity, and sensitivity parameters. Statistical analysis was applied to method comparison experiment. The regression equation and correlation coefficient (R (2)) were Y = 0.0085x + 0.032 and R (2) = 0.998, respectively. This assay exhibited a recovery in the range of 91.7-114.3 % and had the limit detection of 0.5 mg/dl for galactose. The between-run coefficient of variation (CV) was between 2.6 and 11.1 %. The within-run CV was between 4.9 and 9.2 %. Our results indicated that the new and reference methods were in agreement because no significant biases exist between them. Briefly, a quick and reliable combined enzymatic and colorimetric assay was presented for application in newborn mass screening and monitoring of galactosemia patients.

  6. Geographic variation in RNAi sensitivity in the migratory locust.

    PubMed

    Sugahara, Ryohei; Tanaka, Seiji; Jouraku, Akiya; Shiotsuki, Takahiro

    2017-03-20

    The RNA interference (RNAi) technology has been widely used in basic and applied research. It is known that RNAi works in some species but not in others, although the cause for this difference remains unclear. Here, we present inter- and intra-populational variations in RNAi sensitivity in the migratory locust Locusta migratoria, and provide information on the genetic background of such variations. In the four strains analyzed, originating from different Japanese localities, most individuals from two of the strains were sensitive to injections of double-stranded RNA (dsRNA) against the corazonin (CRZ) and ecdysone receptor genes, whereas those from the other two strains were resistant. Selection for individuals sensitive to dsCRZ produced a dramatic increase in the RNAi sensitivity in the following generations, although phenotypes also varied in the selected line, suggesting that several genes might control RNAi sensitivity. Reciprocal crosses between a sensitive and a resistant strain suggested that the resistant phenotype is dominant. The expression levels of nine RNAi-associated genes known for other organisms were not correlated with the variation in RNAi sensitivity observed in L. migratoria. Variations in RNAi sensitivity as the ones observed in this study should be considered when using RNAi in basic and applied research as well as in pest management.

  7. An endogenous, systemic RNAi pathway in plants.

    PubMed

    Dunoyer, Patrice; Brosnan, Christopher A; Schott, Gregory; Wang, Yu; Jay, Florence; Alioua, Abdelmalek; Himber, Christophe; Voinnet, Olivier

    2010-05-19

    Recent work on metazoans has uncovered the existence of an endogenous RNA-silencing pathway that functionally recapitulates the effects of experimental RNA interference (RNAi) used for gene knockdown in organisms such as Caenorhabditis elegans and Drosophila. The endogenous short interfering (si)RNA involved in this pathway are processed by Dicer-like nucleases from genomic loci re-arranged to form extended inverted repeats (IRs) that produce perfect or near-perfect dsRNA molecules. Although such IR loci are commonly detected in plant genomes, their genetics, evolution and potential contribution to plant biology through endogenous silencing have remained largely unexplored. Through an exhaustive analysis performed using Arabidopsis, we provide here evidence that at least two such endogenous IRs are genetically virtually indistinguishable from the transgene constructs commonly used for RNAi in plants. We show how these loci can be useful probes of the cellular mechanism and fluidity of RNA-silencing pathways in plants, and provide evidence that they may arise and disappear on an ecotype scale, show highly cell-specific expression patterns and respond to various stresses. IR loci thus have the potential to act as molecular sensors of the local environments found within distinct ecological plant niches. We further show that the various siRNA size classes produced by at least one of these IR loci are functionally loaded into cognate effector proteins and mediate both post-transcriptional gene silencing and RNA-directed DNA methylation (RdDM) of endogenous as well as exogenous targets. Finally, and as previously reported during plant experimental RNAi, we provide evidence that endogenous IR-derived siRNAs of all size classes are not cell-autonomous and can be transported through graft junctions over long distances, in target tissues where they are functional, at least in mediating RdDM. Collectively, these results define the existence of a bona fide, endogenous and

  8. Gene Silencing in Insect Cells Using RNAi.

    PubMed

    Wu, Hsuan-Chen; March, John C; Bentley, William E

    2016-01-01

    A technique is described for synthesizing and transfecting double stranded RNA (dsRNA) for RNA interference (RNAi) in Sf-21 cell culture. Transfection with dsRNA only requires an hour and the cells usually recover within 12 h. Suggestions for designing dsRNA are included in the methods. Furthermore, websites are provided for rapid and effective dsRNA design. Three kits are essential for using the described methods: RNAqueous®-4PCR, Megascript™ T7 kit, and the Superscript™ III kit from Life Technologies, Inc.

  9. RNAi Codex: a portal/database for short-hairpin RNA (shRNA) gene-silencing constructs.

    PubMed

    Olson, A; Sheth, N; Lee, J S; Hannon, G; Sachidanandam, R

    2006-01-01

    Use of RNA interference (RNAi) in forward genetic screens is proliferating. Currently, short-interfering RNAs (siRNAs) and short-hairpin RNAs (shRNAs) are being used to silence genes to tease out functional information. It is becoming easier to harness RNAi to silence specific genes, owing to the development of libraries of readymade shRNA and siRNA gene-silencing constructs by using a variety of sources. RNAi Codex, which consists of a database of shRNA related information and an associated website, has been developed as a portal for publicly available shRNA resources and is accessible at http://codex.cshl.org. RNAi Codex currently holds data from the Hannon-Elledge shRNA library and allows the use of biologist-friendly gene names to access information on shRNA constructs that can silence the gene of interest. It is designed to hold user-contributed annotations and publications for each construct, as and when such data become available. We will describe features of RNAi Codex and explain the use of the tool.

  10. RNAi Codex: a portal/database for short-hairpin RNA (shRNA) gene-silencing constructs

    PubMed Central

    Olson, A.; Sheth, N.; Lee, J. S.; Hannon, G.; Sachidanandam, R.

    2006-01-01

    Use of RNA interference (RNAi) in forward genetic screens is proliferating. Currently, short-interfering RNAs (siRNAs) and short-hairpin RNAs (shRNAs) are being used to silence genes to tease out functional information. It is becoming easier to harness RNAi to silence specific genes, owing to the development of libraries of readymade shRNA and siRNA gene-silencing constructs by using a variety of sources. RNAi Codex, which consists of a database of shRNA related information and an associated website, has been developed as a portal for publicly available shRNA resources and is accessible at . RNAi Codex currently holds data from the Hannon–Elledge shRNA library and allows the use of biologist-friendly gene names to access information on shRNA constructs that can silence the gene of interest. It is designed to hold user-contributed annotations and publications for each construct, as and when such data become available. We will describe features of RNAi Codex and explain the use of the tool. PMID:16381835

  11. Suppression of intestinal immunity through silencing of TCTP by RNAi in transgenic silkworm, Bombyx mori.

    PubMed

    Hu, Cuimei; Wang, Fei; Ma, Sanyuan; Li, Xianyang; Song, Liang; Hua, Xiaoting; Xia, Qingyou

    2015-12-10

    Intestinal immune response is a front line of host defense. The host factors that participate in intestinal immunity response remain largely unknown. We recently reported that Translationally Controlled Tumor Protein (BmTCTP) was obtained by constructing a phage display cDNA library of the silkworm midgut and carrying out high throughput screening of pathogen binding molecules. To further address the function of BmTCTP in silkworm intestinal immunity, transgenic RNAi silkworms were constructed by microinjection piggBac plasmid to Dazao embryos. The antimicrobial capacity of transgenic silkworm decreased since the expression of gut antimicrobial peptide from transgenic silkworm was not sufficiently induced during oral microbial challenge. Moreover, dynamic ERK phosphorylation from transgenic silkworm midgut was disrupted. Taken together, the innate immunity of intestinal was suppressed through disruption of dynamic ERK phosphorylation after oral microbial infection as a result of RNAi-mediated knockdown of midgut TCTP in transgenic silkworm. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. FLIGHT: database and tools for the integration and cross-correlation of large-scale RNAi phenotypic datasets

    PubMed Central

    Sims, David; Bursteinas, Borisas; Gao, Qiong; Zvelebil, Marketa; Baum, Buzz

    2006-01-01

    FLIGHT () is a new database designed to help researchers browse and cross-correlate data from large-scale RNAi studies. To date, the majority of these functional genomic screens have been carried out using Drosophila cell lines. These RNAi screens follow 100 years of classical Drosophila genetics, but have already revealed their potential by ascribing an impressive number of functions to known and novel genes. This has in turn given rise to a pressing need for tools to simplify the analysis of the large amount of phenotypic information generated. FLIGHT aims to do this by providing users with a gene-centric view of screen results and by making it possible to cluster phenotypic data to identify genes with related functions. Additionally, FLIGHT provides microarray expression data for many of the Drosophila cell lines commonly used in RNAi screens. This, together with information about cell lines, protocols and dsRNA primer sequences, is intended to help researchers design their own cell-based screens. Finally, although the current focus of FLIGHT is Drosophila, the database has been designed to facilitate the comparison of functional data across species and to help researchers working with other systems navigate their way through the fly genome. PMID:16381916

  13. RNA Interference as a Method for Target-Site Screening in the Western Corn Rootworm, Diabrotica Virgifera Virgifera

    PubMed Central

    Alves, Analiza P.; Lorenzen, Marcé D.; Beeman, Richard W.; Foster, John E.; Siegfried, Blair D.

    2010-01-01

    To test the efficacy of RNA interference (RNAi) as a method for target-site screening in Diabrotica virgifera virgifera LeConte (Coleptera: Chrysomelidae) larvae, genes were identified and tested for which clear RNAi phenotypes had been identified in the Coleopteran model, Tribolium castaneum. Here the cloning of the D. v. vergifera orthologs of laccase 2 (DvvLac2) and chitin synthase 2 (DvvCHS2) is reported. Injection of DvvLac2-specific double-stranded RNA resulted in prevention of post-molt cuticular tanning, while injection of DvvCHS2-specific dsRNA reduced chitin levels in midguts. Silencing of both DvvLac2 and DvvCHS2 was confirmed by RT-PCR and quantitative RT-PCR. As in T. castaneum, RNAi-mediated gene silencing is systemic in Diabrotica. The results indicate that RNAi-induced silencing of D. v. vergifera genes provides a powerful tool for identifying potential insecticide targets. PMID:21067417

  14. RNA interference as a method for target-site screening in the Western corn rootworm, Diabrotica virgifera virgifera.

    PubMed

    Alves, Analiza P; Lorenzen, Marcé D; Beeman, Richard W; Foster, John E; Siegfried, Blair D

    2010-01-01

    To test the efficacy of RNA interference (RNAi) as a method for target-site screening in Diabrotica virgifera virgifera LeConte (Coleptera: Chrysomelidae) larvae, genes were identified and tested for which clear RNAi phenotypes had been identified in the Coleopteran model, Tribolium castaneum. Here the cloning of the D. v. vergifera orthologs of laccase 2 (DvvLac2) and chitin synthase 2 (DvvCHS2) is reported. Injection of DvvLac2-specific double-stranded RNA resulted in prevention of post-molt cuticular tanning, while injection of DvvCHS2-specific dsRNA reduced chitin levels in midguts. Silencing of both DvvLac2 and DvvCHS2 was confirmed by RT-PCR and quantitative RT-PCR. As in T. castaneum, RNAi-mediated gene silencing is systemic in Diabrotica. The results indicate that RNAi-induced silencing of D. v. vergifera genes provides a powerful tool for identifying potential insecticide targets.

  15. Towards the elements of successful insect Ribonucleic acid interference (RNAi)

    USDA-ARS?s Scientific Manuscript database

    Ribonucleic acid interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that ...

  16. "Caenorhabditis Elegans" as an Undergraduate Educational Tool for Teaching RNAi

    ERIC Educational Resources Information Center

    Andersen, Janet; Krichevsky, Alexander; Leheste, Joerg R.; Moloney, Daniel J.

    2008-01-01

    Discovery of RNA-mediated interference (RNAi) is widely recognized as one of the most significant molecular biology breakthroughs in the past 10 years. There is a need for science educators to develop teaching tools and laboratory activities that demonstrate the power of this new technology and help students to better understand the RNAi process.…

  17. RNAi mediated, stable resistance to Triticum mosaic virus in wheat

    USDA-ARS?s Scientific Manuscript database

    Triticum mosaic virus (TriMV), discovered in 2006, affects wheat production systems in the Great Plains of the United States. There are no available TriMV resistant commercial varieties. RNA interference (RNAi) was evaluated as an alternative strategy to generate resistance to TriMV. An RNAi pANDA...

  18. RNAi control of aflatoxins in peanut plants, a multifactorial system

    USDA-ARS?s Scientific Manuscript database

    RNA-interference (RNAi)-mediated control of aflatoxin contamination in peanut plants is a multifactorial and hyper variable system. The use of RNAi biotechnology to silence single genes in plants has inherently high-variability among transgenic events. Also the level of expression of small interfe...

  19. Bringing RNA Interference (RNAi) into the High School Classroom

    ERIC Educational Resources Information Center

    Sengupta, Sibani

    2013-01-01

    RNA interference (abbreviated RNAi) is a relatively new discovery in the field of mechanisms that serve to regulate gene expression (a.k.a. protein synthesis). Gene expression can be regulated at the transcriptional level (mRNA production, processing, or stability) and at the translational level (protein synthesis). RNAi acts in a gene-specific…

  20. "Caenorhabditis Elegans" as an Undergraduate Educational Tool for Teaching RNAi

    ERIC Educational Resources Information Center

    Andersen, Janet; Krichevsky, Alexander; Leheste, Joerg R.; Moloney, Daniel J.

    2008-01-01

    Discovery of RNA-mediated interference (RNAi) is widely recognized as one of the most significant molecular biology breakthroughs in the past 10 years. There is a need for science educators to develop teaching tools and laboratory activities that demonstrate the power of this new technology and help students to better understand the RNAi process.…

  1. Bringing RNA Interference (RNAi) into the High School Classroom

    ERIC Educational Resources Information Center

    Sengupta, Sibani

    2013-01-01

    RNA interference (abbreviated RNAi) is a relatively new discovery in the field of mechanisms that serve to regulate gene expression (a.k.a. protein synthesis). Gene expression can be regulated at the transcriptional level (mRNA production, processing, or stability) and at the translational level (protein synthesis). RNAi acts in a gene-specific…

  2. Simultaneous fingerprint, quantitative analysis and anti-oxidative based screening of components in Rhizoma Smilacis Glabrae using liquid chromatography coupled with Charged Aerosol and Coulometric array Detection.

    PubMed

    Yang, Guang; Zhao, Xin; Wen, Jun; Zhou, Tingting; Fan, Guorong

    2017-04-01

    An analytical approach including fingerprint, quantitative analysis and rapid screening of anti-oxidative components was established and successfully applied for the comprehensive quality control of Rhizoma Smilacis Glabrae (RSG), a well-known Traditional Chinese Medicine with the homology of medicine and food. Thirteen components were tentatively identified based on their retention behavior, UV absorption and MS fragmentation patterns. Chemometric analysis based on coulmetric array data was performed to evaluate the similarity and variation between fifteen batches. Eight discriminating components were quantified using single-compound calibration. The unit responses of those components in coulmetric array detection were calculated and compared with those of several compounds reported to possess antioxidant activity, and four of them were tentatively identified as main contributors to the total anti-oxidative activity. The main advantage of the proposed approach was that it realized simultaneous fingerprint, quantitative analysis and screening of anti-oxidative components, providing comprehensive information for quality assessment of RSG.

  3. Flavivirus RNAi suppression: decoding non-coding RNA.

    PubMed

    Pijlman, Gorben P

    2014-08-01

    Flaviviruses are important human pathogens that are transmitted by invertebrate vectors, mostly mosquitoes and ticks. During replication in their vector, flaviviruses are subject to a potent innate immune response known as antiviral RNA interference (RNAi). This defense mechanism is associated with the production of small interfering (si)RNA that lead to degradation of viral RNA. To what extent flaviviruses would benefit from counteracting antiviral RNAi is subject of debate. Here, the experimental evidence to suggest the existence of flavivirus RNAi suppressors is discussed. I will highlight the putative role of non-coding, subgenomic flavivirus RNA in suppression of RNAi in insect and mammalian cells. Novel insights from ongoing research will reveal how arthropod-borne viruses modulate innate immunity including antiviral RNAi. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. RNAi-dependent and RNAi-independent mechanisms contribute to the silencing of RIPed sequences in Neurospora crassa.

    PubMed

    Chicas, Agustin; Cogoni, Carlo; Macino, Giuseppe

    2004-01-01

    RNA interference (RNAi) can silence genes at the transcriptional level by targeting locus-specific Lys9H3 methylation or at the post-transcriptional level by targeting mRNA degradation. Here we have cloned and sequenced genomic regions methylated in Lys9H3 in Neurospora crassa to test the requirements for components of the RNAi pathway in this modification. We find that 90% of clones map to repeated sequences and relics of transposons that have undergone repeat-induced point mutations (RIP). We find siRNAs derived from transposon relics indicating that the RNAi machinery targets these regions. This is confirmed by the fact that the presence of these siRNAs depends on components of the RNAi pathway such as the RdRP (QDE-1), the putative RecQ helicase (QDE-3) and the two Dicer enzymes. We show that Lys9H3 methylation of RIP sequences is not affected in mutants of the RNAi pathway indicating that the RNAi machinery is not involved in transcriptional gene silencing in Neurospora. We find that RIP regions are transcribed and that the transcript level increases in the mutants of the RNAi pathway. These data suggest that the biological function of the Neurospora RNAi machinery is to control transposon relics and repeated sequences by targeting degradation of transcripts derived from these regions.

  5. RNAi-dependent and RNAi-independent mechanisms contribute to the silencing of RIPed sequences in Neurospora crassa

    PubMed Central

    Chicas, Agustin; Cogoni, Carlo; Macino, Giuseppe

    2004-01-01

    RNA interference (RNAi) can silence genes at the transcriptional level by targeting locus-specific Lys9H3 methylation or at the post-transcriptional level by targeting mRNA degradation. Here we have cloned and sequenced genomic regions methylated in Lys9H3 in Neurospora crassa to test the requirements for components of the RNAi pathway in this modification. We find that 90% of clones map to repeated sequences and relics of transposons that have undergone repeat-induced point mutations (RIP). We find siRNAs derived from transposon relics indicating that the RNAi machinery targets these regions. This is confirmed by the fact that the presence of these siRNAs depends on components of the RNAi pathway such as the RdRP (QDE-1), the putative RecQ helicase (QDE-3) and the two Dicer enzymes. We show that Lys9H3 methylation of RIP sequences is not affected in mutants of the RNAi pathway indicating that the RNAi machinery is not involved in transcriptional gene silencing in Neurospora. We find that RIP regions are transcribed and that the transcript level increases in the mutants of the RNAi pathway. These data suggest that the biological function of the Neurospora RNAi machinery is to control transposon relics and repeated sequences by targeting degradation of transcripts derived from these regions. PMID:15302921

  6. RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies.

    PubMed

    Malhotra, Meenakshi; Toulouse, André; Godinho, Bruno M D C; Mc Carthy, David John; Cryan, John F; O'Driscoll, Caitriona M

    2015-10-01

    Malignant primary brain tumors are aggressive cancerous cells that invade the surrounding tissues of the central nervous system. The current treatment options for malignant brain tumors are limited due to the inability to cross the blood-brain barrier. The advancements in current research has identified and characterized certain molecular markers that are essential for tumor survival, progression, metastasis and angiogenesis. These molecular markers have served as therapeutic targets for the RNAi based therapies, which enable site-specific silencing of the gene responsible for tumor proliferation. However, to bring about therapeutic success, an efficient delivery carrier that can cross the blood-brain barrier and reach the targeted site is essential. The current review focuses on the potential of targeted, non-viral and viral particles containing RNAi therapeutic molecules as delivery strategies specifically for brain tumors.

  7. RNAi-mediated crop protection against insects.

    PubMed

    Price, Daniel R G; Gatehouse, John A

    2008-07-01

    Downregulation of the expression of specific genes through RNA interference (RNAi), has been widely used for genetic research in insects. The method has relied on the injection of double-stranded RNA (dsRNA), which is not possible for practical applications in crop protection. By contrast, specific suppression of gene expression in nematodes is possible through feeding with dsRNA. This approach was thought to be unfeasible in insects, but recent results have shown that dsRNA fed as a diet component can be effective in downregulating targeted genes. More significantly, expression of dsRNA directed against suitable insect target genes in transgenic plants has been shown to give protection against pests, opening the way for a new generation of insect-resistant crops.

  8. [Inhibiting GDF-8 expression by retrovirus-based RNAi stably].

    PubMed

    Liu, Chaowu; Yang, Zhuo; Zhao, Bin; Liu, Changmei

    2008-02-01

    We cloned human U6 promoter from pAVU6 + 27 vector into pXSN to transcripe small RNA. Meanwhile, a shRNA targeting GDF-8 was cloned down-stream of the hU6 promoter to construct recombinant vector. Then the packing cell GP-293 was co-transfected the recombinant with pVSV-G to gernarate virus particle. Resistant C2C12 cell pools were screened using G418. Levels of mRNA and protein of GDF-8 were tested by Real-Time PCR and western blotting. Cell proliferation and cell cycle were analyzed using MTT and FACS. The expression of GDF-8 was dramatically decreased by the retrovirus-based system in C2C12 cells. Cells proliferated effectively after integrating the recombinant. The cells in G0/G1 phase decreased by 13.7%, while cells in S phase increased by 14.9%. In conclusion, the retrovirus-based RNAi could be used to stably silence GDF-8. It can be a powerful tool in curing muscle atrophy.

  9. Current issues of RNAi therapeutics delivery and development.

    PubMed

    Haussecker, D

    2014-12-10

    12 years following the discovery of the RNAi mechanism in Man, a number of RNAi therapeutics development candidates have emerged with profiles suggesting that they could become drugs of significant medical importance for diseases like TTR amyloidosis, HBV, solid cancers, and hemophilia. Despite this robust progress, the perception of RNAi therapeutics has been on a roller-coaster ride driven not only by science, but also regulatory trends, the stock markets, and Big Pharma business development decisions [1]. This presentation provides an update on the current state of RNAi therapeutics development with a particular focus on what RNAi delivery can achieve today and key challenges to be overcome to expand therapeutic opportunities. The delivery of RNAi triggers to disease-relevant cell types clearly represents the rate-limiting factor in broadly expanding the applicability of RNAi therapeutics. Today, with at least 3 delivery options (lipid nanoparticles/LNPs, GalNAc-siRNA conjugates, Dynamic PolyConjugates/DPCs) for which profound gene knockdowns have been demonstrated in non-human primates and in the clinic, RNAi therapeutics should in principle be able to address most diseases related to gene expression in the liver. Given the central importance of the liver in systemic physiology, this already represents a significant therapeutic and commercial opportunity rivaling that of e.g. monoclonal antibodies. Beyond the liver, there is a reason to believe that current RNAi therapeutics technologies can address a number of solid tumors (e.g. LNPs), diseases of the eye (e.g. self-delivering RNAi triggers) as well as diseases involving the respiratory epithelium (e.g. aerosolized LNPs), certain phagocytic cells (LNPs), hematopoietic stem cells and their progeny (lentiviral DNA-directed RNAi), vascular endothelial cells (cationic lipoplexes), and certain cell types in the kidney (self-delivering RNAi triggers, DPCs; Table 1). Despite this success, there has been a sense that

  10. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation

    PubMed Central

    Zubakov, Dmitry; Boersma, Anton W. M.; Choi, Ying; van Kuijk, Patricia F.; Wiemer, Erik A. C.

    2010-01-01

    MicroRNAs (miRNAs) are non-protein coding molecules with important regulatory functions; many have tissue-specific expression patterns. Their very small size in principle makes them less prone to degradation processes, unlike messenger RNAs (mRNAs), which were previously proposed as molecular tools for forensic body fluid identification. To identify suitable miRNA markers for forensic body fluid identification, we first screened total RNA samples derived from saliva, semen, vaginal secretion, and venous and menstrual blood for the expression of 718 human miRNAs using a microarray platform. All body fluids could be easily distinguished from each other on the basis of complete array-based miRNA expression profiles. Results from quantitative reverse transcription PCR (RT-PCR; TaqMan) assays for microarray candidate markers confirmed strong over-expression in the targeting body fluid of several miRNAs for venous blood and several others for semen. However, no candidate markers from array experiments for other body fluids such as saliva, vaginal secretion, or menstrual blood could be confirmed by RT-PCR. Time-wise degradation of venous blood and semen stains for at least 1 year under lab conditions did not significantly affect the detection sensitivity of the identified miRNA markers. The detection limit of the TaqMan assays tested for selected venous blood and semen miRNA markers required only subpicogram amounts of total RNA per single RT-PCR test, which is considerably less than usually needed for reliable mRNA RT-PCR detection. We therefore propose the application of several stable miRNA markers for the forensic identification of blood stains and several others for semen stain identification, using commercially available TaqMan assays. Additional work remains necessary in search for suitable miRNA markers for other forensically relevant body fluids. Electronic supplementary material The online version of this article (doi:10.1007/s00414-009-0402-3) contains

  11. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing).

    PubMed

    Hajeri, Subhas; Killiny, Nabil; El-Mohtar, Choaa; Dawson, William O; Gowda, Siddarame

    2014-04-20

    A transient expression vector based on Citrus tristeza virus (CTV) is unusually stable. Because of its stability it is being considered for use in the field to control Huanglongbing (HLB), which is caused by Candidatus Liberibacter asiaticus (CLas) and vectored by Asian citrus psyllid, Diaphorina citri. In the absence of effective control strategies for CLas, emphasis has been on control of D. citri. Coincident cohabitation in phloem tissue by CLas, D. citri and CTV was exploited to develop a novel method to mitigate HLB through RNA interference (RNAi). Since CTV has three RNA silencing suppressors, it was not known if CTV-based vector could induce RNAi in citrus. Yet, expression of sequences targeting citrus phytoene desaturase gene by CTV-RNAi resulted in photo-bleaching phenotype. CTV-RNAi vector, engineered with truncated abnormal wing disc (Awd) gene of D. citri, induced altered Awd expression when silencing triggers ingested by feeding D. citri nymphs. Decreased Awd in nymphs resulted in malformed-wing phenotype in adults and increased adult mortality. This impaired ability of D. citri to fly would potentially limit the successful vectoring of CLas bacteria between citrus trees in the grove. CTV-RNAi vector would be relevant for fast-track screening of candidate sequences for RNAi-mediated pest control. Copyright © 2014. Published by Elsevier B.V.

  12. RNAi applications in therapy development for neurodegenerative disease.

    PubMed

    Maxwell, M M

    2009-01-01

    RNA-mediated interference (RNAi) is a powerful tool for experimental manipulation of gene expression and is widely used to investigate gene function both in vitro and in vivo. RNAi refers to an evolutionarily conserved cellular mechanism for sequence-specific post-transcriptional gene silencing, in which double-stranded RNAs promote selective degradation of homologous cellular mRNAs. Because RNAi-based techniques can be employed to reduce expression of specific genes, this approach holds great promise as a therapy for diverse diseases, including devastating neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis (ALS). Importantly, in recent years RNAi has also emerged as a key tool in target identification and validation studies designed to complement traditional (i.e., small molecule-based) drug development strategies. These studies harness the power of RNAi-mediated reverse genetics to probe disease-associated pathways in both cell-based and animal models, and thus may provide critical data needed to focus drug development efforts around disease-relevant targets. This review highlights recent progress in the preclinical development of RNAi-based therapeutics for neurodegenerative disease and discusses the particular challenges that disorders of the central nervous system (CNS) pose for this approach. It further describes current applications of RNAi techniques for target identification and validation studies and underscores the importance of this methodology to developing treatments for neurological diseases.

  13. A High Resolution/Accurate Mass (HRAM) Data-Dependent MS3 Neutral Loss Screening, Classification, and Relative Quantitation Methodology for Carbonyl Compounds in Saliva

    NASA Astrophysics Data System (ADS)

    Dator, Romel; Carrà, Andrea; Maertens, Laura; Guidolin, Valeria; Villalta, Peter W.; Balbo, Silvia

    2017-04-01

    Reactive carbonyl compounds (RCCs) are ubiquitous in the environment and are generated endogenously as a result of various physiological and pathological processes. These compounds can react with biological molecules inducing deleterious processes believed to be at the basis of their toxic effects. Several of these compounds are implicated in neurotoxic processes, aging disorders, and cancer. Therefore, a method characterizing exposures to these chemicals will provide insights into how they may influence overall health and contribute to disease pathogenesis. Here, we have developed a high resolution accurate mass (HRAM) screening strategy allowing simultaneous identification and relative quantitation of DNPH-derivatized carbonyls in human biological fluids. The screening strategy involves the diagnostic neutral loss of hydroxyl radical triggering MS3 fragmentation, which is only observed in positive ionization mode of DNPH-derivatized carbonyls. Unique fragmentation pathways were used to develop a classification scheme for characterizing known and unanticipated/unknown carbonyl compounds present in saliva. Furthermore, a relative quantitation strategy was implemented to assess variations in the levels of carbonyl compounds before and after exposure using deuterated d 3 -DNPH. This relative quantitation method was tested on human samples before and after exposure to specific amounts of alcohol. The nano-electrospray ionization (nano-ESI) in positive mode afforded excellent sensitivity with detection limits on-column in the high-attomole levels. To the best of our knowledge, this is the first report of a method using HRAM neutral loss screening of carbonyl compounds. In addition, the method allows simultaneous characterization and relative quantitation of DNPH-derivatized compounds using nano-ESI in positive mode.

  14. A High Resolution/Accurate Mass (HRAM) Data-Dependent MS3 Neutral Loss Screening, Classification, and Relative Quantitation Methodology for Carbonyl Compounds in Saliva

    NASA Astrophysics Data System (ADS)

    Dator, Romel; Carrà, Andrea; Maertens, Laura; Guidolin, Valeria; Villalta, Peter W.; Balbo, Silvia

    2016-10-01

    Reactive carbonyl compounds (RCCs) are ubiquitous in the environment and are generated endogenously as a result of various physiological and pathological processes. These compounds can react with biological molecules inducing deleterious processes believed to be at the basis of their toxic effects. Several of these compounds are implicated in neurotoxic processes, aging disorders, and cancer. Therefore, a method characterizing exposures to these chemicals will provide insights into how they may influence overall health and contribute to disease pathogenesis. Here, we have developed a high resolution accurate mass (HRAM) screening strategy allowing simultaneous identification and relative quantitation of DNPH-derivatized carbonyls in human biological fluids. The screening strategy involves the diagnostic neutral loss of hydroxyl radical triggering MS3 fragmentation, which is only observed in positive ionization mode of DNPH-derivatized carbonyls. Unique fragmentation pathways were used to develop a classification scheme for characterizing known and unanticipated/unknown carbonyl compounds present in saliva. Furthermore, a relative quantitation strategy was implemented to assess variations in the levels of carbonyl compounds before and after exposure using deuterated d 3 -DNPH. This relative quantitation method was tested on human samples before and after exposure to specific amounts of alcohol. The nano-electrospray ionization (nano-ESI) in positive mode afforded excellent sensitivity with detection limits on-column in the high-attomole levels. To the best of our knowledge, this is the first report of a method using HRAM neutral loss screening of carbonyl compounds. In addition, the method allows simultaneous characterization and relative quantitation of DNPH-derivatized compounds using nano-ESI in positive mode.

  15. iBeetle-Base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum.

    PubMed

    Dönitz, Jürgen; Schmitt-Engel, Christian; Grossmann, Daniela; Gerischer, Lizzy; Tech, Maike; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-01-01

    The iBeetle-Base (http://ibeetle-base.uni-goettingen.de) makes available annotations of RNAi phenotypes, which were gathered in a large scale RNAi screen in the red flour beetle Tribolium castaneum (iBeetle screen). In addition, it provides access to sequence information and links for all Tribolium castaneum genes. The iBeetle-Base contains the annotations of phenotypes of several thousands of genes knocked down during embryonic and metamorphic epidermis and muscle development in addition to phenotypes linked to oogenesis and stink gland biology. The phenotypes are described according to the EQM (entity, quality, modifier) system using controlled vocabularies and the Tribolium morphological ontology (TrOn). Furthermore, images linked to the respective annotations are provided. The data are searchable either for specific phenotypes using a complex 'search for morphological defects' or a 'quick search' for gene names and IDs. The red flour beetle Tribolium castaneum has become an important model system for insect functional genetics and is a representative of the most species rich taxon, the Coleoptera, which comprise several devastating pests. It is used for studying insect typical development, the evolution of development and for research on metabolism and pest control. Besides Drosophila, Tribolium is the first insect model organism where large scale unbiased screens have been performed.

  16. Quantitative and mixed analyses to identify factors that affect cervical cancer screening uptake among lesbian and bisexual women and transgender men.

    PubMed

    Johnson, Michael J; Mueller, Martina; Eliason, Michele J; Stuart, Gail; Nemeth, Lynne S

    2016-12-01

    The purposes of this study were to measure the prevalence of, and identify factors associated with, cervical cancer screening among a sample of lesbian, bisexual and queer women, and transgender men. Past research has found that lesbian, bisexual and queer women underuse cervical screening service. Because deficient screening remains the most significant risk factor for cervical cancer, it is essential to understand the differences between routine and nonroutine screeners. A convergent-parallel mixed methods design. A convenience sample of 21- to 65-year-old lesbian and bisexual women and transgender men were recruited in the USA from August-December 2014. Quantitative data were collected via a 48-item Internet questionnaire (N = 226), and qualitative data were collected through in-depth telephone interviews (N = 20) and open-ended questions on the Internet questionnaire. Seventy-three per cent of the sample was routine cervical screeners. The results showed that a constellation of factors influence the use of cervical cancer screening among lesbian, bisexual and queer women. Some of those factors overlap with the general female population, whereas others are specific to the lesbian, bisexual or queer identity. Routine screeners reported feeling more welcome in the health care setting, while nonroutine screeners reported more discrimination related to their sexual orientation and gender expression. Routine screeners were also more likely to 'out' to their provider. The quantitative and qualitative factors were also compared and contrasted. Many of the factors identified in this study to influence cervical cancer screening relate to the health care environment and to interactions between the patient and provider. Nurses should be involved with creating welcoming environments for lesbian, bisexual and queer women and their partners. Moreover, nurses play a large role in patient education and should promote self-care behaviours among lesbian women and transgender

  17. Fluorescence microscopy-based RNA interference screening.

    PubMed

    Gunkel, Manuel; Beil, Nina; Beneke, Jürgen; Reymann, Jürgen; Erfle, Holger

    2015-01-01

    Using RNAi interference (RNAi), it is possible to study the effect of specific gene knockdowns in mammalian cells. In this protocol we present the automated preparation of "ready to transfect" multiwell plates and cell arrays, on which cells can be grown which are then reversely transfected with one type of siRNA in every individual well or spot. Additionally, different microscope types for screening approaches are compared and considerations about the information workflow are made.

  18. Core RNAi Machinery and Sid1, a Component for Systemic RNAi, in the Hemipteran Insect, Aphis glycines.

    PubMed

    Bansal, Raman; Michel, Andy P

    2013-02-08

    RNA interference (RNAi) offers a novel tool to manage hemipteran pests. For the success of RNAi based pest control in the field, a robust and systemic RNAi response is a prerequisite. We identified and characterized major genes of the RNAi machinery, Dicer2 (Dcr2), Argonaute2 (Ago2), and R2d2 in Aphis glycines, a serious pest of soybean. The A. glycines genome encodes for at least one copy of Dcr2, R2d2 and Ago2. Comparative and molecular evolution analyses (dN/dS) showed that domain regions of encoded proteins are highly conserved, whereas linker (non-domain) regions are diversified. Sequence homology and phylogenetic analyses suggested that the RNAi machinery of A. glycines is more similar to that of Tribolium casteneum as compared to that of Drosophila melanogaster. We also characterized Sid1, a major gene implicated in the systemic response for RNAi-mediated gene knockdown. Through qPCR, Dcr2, R2d2, Ago2, and Sid1 were found to be expressed at similar levels in various tissues, but higher expression of Dcr2, R2d2, and Ago2 was seen in first and second instars. Characterization of RNAi pathway and Sid1 in A. glycines will provide the foundation of future work for controlling one of the most important insect pests of soybean in North America.

  19. Simultaneous quantitation of hexacosanoyl lysophosphatidylcholine, amino acids, acylcarnitines, and succinylacetone during FIA–ESI–MS/MS analysis of dried blood spot extracts for newborn screening

    PubMed Central

    Haynes, Christopher A.; De Jesús, Víctor R.

    2016-01-01

    Objectives The goal of this study was to include the quantitation of hexacosanoyl lysophosphatidylcholine, a biomarker for X-linked adrenoleukodystrophy and other peroxisomal disorders, in the routine extraction and analysis procedure used to quantitate amino acids, acylcarnitines, and succinylacetone during newborn screening. Criteria for the method included use of a single punch from a dried blood spot, one simple extraction of the punch, no high-performance liquid chromatography, and utilizing tandem mass spectrometry to quantitate the analytes. Design and methods Dried blood spot punches were extracted with a methanolic solution of stable-isotope labeled internal standards, formic acid, and hydrazine, followed by flow injection analysis–electrospray ionization–tandem mass spectrometry. Results Quantitation of amino acids, acylcarnitines, and hexacosanoyl lysophosphatidylcholine using this combined method was similar to results obtained using two separate methods. Conclusions A single dried blood spot punch extracted by a rapid (45 min), simple procedure can be analyzed with high throughput (2 min per sample) to quantitate amino acids, acylcarnitines, succinylacetone, and hexacosanoyl lysophosphatidylcholine. PMID:26432925

  20. Screening method for the detection of aflatoxins in mixed feeds and other agricultural commodities with subsequent confirmation and quantitative measurement of aflatoxins in positive samples.

    PubMed

    Romer, T R

    1975-05-01

    The method described will detect total aflatoxins (B1, B2, G1, and G2) in mixed feeds, grains nuts, and fruit products in samples containing as little as 5-15 mug/kg. In addition, the presence of aflatoxins in the positive samples can be confirmed and the toxins can be quantitatively measured, using the same extract as that used for the screening method. In the screening method, aflatoxins are extracted with acetone-water (85+15), and interferences are removed by adding cupric carbonate and ferric chloride gel. The aflatoxins are extracted from the aqueous phase with chloroform and the chloroform extract is washed with a basic aqueous solution. A Velasco-type minicolumn is used to further purify the extract and capture the aflatoxins in a tight band. The screening method has been successfully applied to 24 different agricultural commodities. Quantitative thin layer chromatography was also performed with extracts of each of these commodities. An average recovery of 94% B1, 108% B2, 130% G1, and 103% G2 was obtained compared to the official final action AOAC method for cottonseed products, 26.048-26.056. Within-laboratory coefficients of variation of 10-15% were obtained for each of the aflatoxins and total aflatoxins in a sample of peanut meal naturally contaminated with 11 mug B1+3 mug B2+11 mug G1+5 mug G2/kg.

  1. Adult Willingness to Use Email and Social Media for Peer-to-Peer Cancer Screening Communication: Quantitative Interview Study.

    PubMed

    Cutrona, Sarah L; Roblin, Douglas W; Wagner, Joann L; Gaglio, Bridget; Williams, Andrew E; Torres Stone, Rosalie; Field, Terry S; Mazor, Kathleen M

    2013-11-28

    Adults over age 40 are increasing their use of email and social media, raising interest in use of peer-to-peer Internet-based messaging to promote cancer screening. The objective of our study was to assess current practices and attitudes toward use of email and other e-communication for peer-to-peer dialogues on cancer screening. We conducted in-person interviews with 438 insured adults ages 42-73 in Georgia, Hawaii, and Massachusetts. Participants reported on use of email and other e-communication including social media to discuss with peers routine health topics including breast and colorectal cancer (CRC). We ascertained willingness to share personal CRC screening experiences via conversation, postcard, email, or other e-communication. Health literacy scores were measured. Email had been used by one-third (33.8%, 148/438) to discuss routine health topics, by 14.6% (64/438) to discuss breast cancer screening, and by 12.6% (55/438) to discuss CRC screening. Other e-communication was used to discuss routine health topics (11.6%, 51/438), screening for breast cancer (3.9%, 17/438), and CRC (2.3%, 10/438). In the preceding week, 84.5% (370/438) of participants had used email, 55.9% (245/438) had used e-communication of some type; 44.3% (194/438) text, 32.9% (144/438) Facebook, 12.3% (54/438) instant message, 7.1% (31/438) video chat, and 4.8% (21/438) Twitter. Many participants were willing to share their CRC screening experiences via email (32.4%, 142/438 might be willing; 36.3%, 159/438 very willing) and via other e-communication (15.8%, 69/438 might be willing; 14.4%, 63/438 very willing). Individuals willing to send CRC screening emails scored significantly higher on tests of health literacy compared to those willing to send only postcards (P<.001). Many adults are willing to use email and e-communication to promote cancer screening to peers. Optimal approaches for encouraging peer-to-peer transmission of accurate and appropriate cancer screening messages must be

  2. The development of RNA interference (RNAi) in gastrointestinal nematodes.

    PubMed

    Selkirk, Murray E; Huang, Stanley C; Knox, David P; Britton, Collette

    2012-04-01

    Despite the utility of RNAi for defining gene function in Caenorhabditis elegans and early successes reported in parasitic nematodes, RNAi has proven to be stubbornly inconsistent or ineffective in the animal parasitic nematodes examined to date. Here, we summarise some of our experiences with RNAi in parasitic nematodes affecting animals and discuss the available data in the context of our own unpublished work, taking account of mode of delivery, larval activation, site of gene transcription and the presence/absence of essential RNAi pathway genes as defined by comparisons to C. elegans. We discuss future directions briefly including the evaluation of nanoparticles as a means to enhance delivery of interfering RNA to the target worm tissue.

  3. RNAi as a Route Toward Breast Cancer Therapy

    DTIC Science & Technology

    2011-09-01

    CONTRACTING ORGANIZATION: Cold Spring Harbor Laboratory... Cold Spring Harbor , NY 11724... Cold Spring Harbor Laboratory Cold Spring Harbor , NY 11724 RNAi, sequencing No abstract provided. 8 1 SEP 2010-31 AUG 2011Annual01-09-2011 hannon

  4. Autonomously folded α-helical lockers promote RNAi*

    PubMed Central

    Guyader, Christian P. E.; Lamarre, Baptiste; De Santis, Emiliana; Noble, James E.; Slater, Nigel K.; Ryadnov, Maxim G.

    2016-01-01

    RNAi is an indispensable research tool with a substantial therapeutic potential. However, the complete transition of the approach to an applied capability remains hampered due to poorly understood relationships between siRNA delivery and gene suppression. Here we propose that interfacial tertiary contacts between α-helices can regulate siRNA cytoplasmic delivery and RNAi. We introduce a rationale of helical amphipathic lockers that differentiates autonomously folded helices, which promote gene silencing, from helices folded with siRNA, which do not. Each of the helical designs can deliver siRNA into cells via energy-dependent endocytosis, while only autonomously folded helices with pre-locked hydrophobic interfaces were able to promote statistically appreciable gene silencing. We propose that it is the amphipathic locking of interfacing helices prior to binding to siRNA that enables RNAi. The rationale offers structurally balanced amphipathic scaffolds to advance the exploitation of functional RNAi. PMID:27721465

  5. Autonomously folded α-helical lockers promote RNAi.

    PubMed

    Guyader, Christian P E; Lamarre, Baptiste; De Santis, Emiliana; Noble, James E; Slater, Nigel K; Ryadnov, Maxim G

    2016-10-10

    RNAi is an indispensable research tool with a substantial therapeutic potential. However, the complete transition of the approach to an applied capability remains hampered due to poorly understood relationships between siRNA delivery and gene suppression. Here we propose that interfacial tertiary contacts between α-helices can regulate siRNA cytoplasmic delivery and RNAi. We introduce a rationale of helical amphipathic lockers that differentiates autonomously folded helices, which promote gene silencing, from helices folded with siRNA, which do not. Each of the helical designs can deliver siRNA into cells via energy-dependent endocytosis, while only autonomously folded helices with pre-locked hydrophobic interfaces were able to promote statistically appreciable gene silencing. We propose that it is the amphipathic locking of interfacing helices prior to binding to siRNA that enables RNAi. The rationale offers structurally balanced amphipathic scaffolds to advance the exploitation of functional RNAi.

  6. Beyond Drosophila: RNAi in vivo and functional genomics in insects.

    PubMed

    Bellés, Xavier

    2010-01-01

    The increasing availability of insect genomes has revealed a large number of genes with unknown functions and the resulting problem of how to discover these functions. The RNA interference (RNAi) technique, which generates loss-of-function phenotypes by depletion of a chosen transcript, can help to overcome this challenge. RNAi can unveil the functions of new genes, lead to the discovery of new functions for old genes, and find the genes for old functions. Moreover, the possibility of studying the functions of homologous genes in different species can allow comparisons of the genetic networks regulating a given function in different insect groups, thereby facilitating an evolutionary insight into developmental processes. RNAi also has drawbacks and obscure points, however, such as those related to differences in species sensitivity. Disentangling these differences is one of the main challenges in the RNAi field.

  7. Ribonucleic acid interference (RNAi) and control of citrus pests

    USDA-ARS?s Scientific Manuscript database

    Ribonucleic acid interference, RNAi, applications and function are described for the non-scientist to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control. ...

  8. Autonomously folded α-helical lockers promote RNAi*

    NASA Astrophysics Data System (ADS)

    Guyader, Christian P. E.; Lamarre, Baptiste; de Santis, Emiliana; Noble, James E.; Slater, Nigel K.; Ryadnov, Maxim G.

    2016-10-01

    RNAi is an indispensable research tool with a substantial therapeutic potential. However, the complete transition of the approach to an applied capability remains hampered due to poorly understood relationships between siRNA delivery and gene suppression. Here we propose that interfacial tertiary contacts between α-helices can regulate siRNA cytoplasmic delivery and RNAi. We introduce a rationale of helical amphipathic lockers that differentiates autonomously folded helices, which promote gene silencing, from helices folded with siRNA, which do not. Each of the helical designs can deliver siRNA into cells via energy-dependent endocytosis, while only autonomously folded helices with pre-locked hydrophobic interfaces were able to promote statistically appreciable gene silencing. We propose that it is the amphipathic locking of interfacing helices prior to binding to siRNA that enables RNAi. The rationale offers structurally balanced amphipathic scaffolds to advance the exploitation of functional RNAi.

  9. RNAi Trigger Delivery into Anopheles gambiae Pupae.

    PubMed

    Regna, Kimberly; Harrison, Rachel M; Heyse, Shannon A; Chiles, Thomas C; Michel, Kristin; Muskavitch, Marc A T

    2016-03-08

    RNA interference (RNAi), a naturally occurring phenomenon in eukaryotic organisms, is an extremely valuable tool that can be utilized in the laboratory for functional genomic studies. The ability to knockdown individual genes selectively via this reverse genetic technique has allowed many researchers to rapidly uncover the biological roles of numerous genes within many organisms, by evaluation of loss-of-function phenotypes. In the major human malaria vector Anopheles gambiae, the predominant method used to reduce the function of targeted genes involves injection of double-stranded (dsRNA) into the hemocoel of the adult mosquito. While this method has been successful, gene knockdown in adults excludes the functional assessment of genes that are expressed and potentially play roles during pre-adult stages, as well as genes that are expressed in limited numbers of cells in adult mosquitoes. We describe a method for the injection of Serine Protease Inhibitor 2 (SRPN2) dsRNA during the early pupal stage and validate SRPN2 protein knockdown by observing decreased target protein levels and the formation of melanotic pseudo-tumors in SRPN2 knockdown adult mosquitoes. This evident phenotype has been described previously for adult stage knockdown of SRPN2 function, and we have recapitulated this adult phenotype by SRPN2 knockdown initiated during pupal development. When used in conjunction with a dye-labeled dsRNA solution, this technique enables easy visualization by simple light microscopy of injection quality and distribution of dsRNA in the hemocoel.

  10. Biotechnological uses of RNAi in plants: risk assessment considerations.

    PubMed

    Casacuberta, Josep M; Devos, Yann; du Jardin, Patrick; Ramon, Matthew; Vaucheret, Hervé; Nogué, Fabien

    2015-03-01

    RNAi offers opportunities to generate new traits in genetically modified (GM) plants. Instead of expressing novel proteins, RNAi-based GM plants reduce target gene expression. Silencing of off-target genes may trigger unintended effects, and identifying these genes would facilitate risk assessment. However, using bioinformatics alone is not reliable, due to the lack of genomic data and insufficient knowledge of mechanisms governing mRNA-small (s)RNA interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A Quantitative High-Throughput Screen for Modulators of IL-6 Signaling: A Model for Interrogating Biological Networks using Chemical Libraries

    PubMed Central

    Johnson, Ronald L.; Huang, Ruili; Jadhav, Ajit; Southall, Noel; Wichterman, Jennifer; MacArthur, Ryan; Xia, Menghang; Bi, Kun; Printen, John; Austin, Christopher P.; Inglese, James

    2009-01-01

    Small molecule modulators are critical for dissecting and understanding signaling pathways at the molecular level. Interleukin 6 (IL-6) is a cytokine that signals via the JAK/STAT pathway and is implicated in cancer and inflammation. To identify modulators of this pathway, we screened a chemical collection against an IL-6 responsive cell line stably expressing a beta-lactamase reporter gene fused to a sis-inducible element (SIE-bla cells). This assay was optimized for a 1536-well microplate format and screened against 11,693 small molecules using quantitative high-throughput screening (qHTS), a method that assays a chemical library at multiple concentrations to generate titration-response profiles for each compound. The qHTS recovered 564 actives with well-fit curves that clustered into 32 distinct chemical series of 13 activators and 19 inhibitors. A retrospective analysis of the qHTS data indicated that single concentration data at 1.5 and 7.7 uM scored 35 and 71% of qHTS actives, respectively, as inactive and were therefore false negatives. Following counter screens to identify fluorescent and nonselective series, we found four activator and one inhibitor series that modulated SIE-bla cells but did not show similar activity in reporter gene assays induced by EGF and hypoxia. Small molecules within these series will make useful tool compounds to investigate IL-6 signaling mediated by JAK/STAT activation. PMID:19668870

  12. Four-hour quantitative real-time polymerase chain reaction-based comprehensive chromosome screening and accumulating evidence of accuracy, safety, predictive value, and clinical efficacy.

    PubMed

    Treff, Nathan R; Scott, Richard T

    2013-03-15

    Embryonic comprehensive chromosomal euploidy may represent a powerful biomarker to improve the success of IVF. However, there are a number of aneuploidy screening strategies to consider, including different technologic platforms with which to interrogate the embryonic DNA, and different embryonic developmental stages from which DNA can be analyzed. Although there are advantages and disadvantages associated with each strategy, a series of experiments producing evidence of accuracy, safety, clinical predictive value, and clinical efficacy indicate that trophectoderm biopsy and quantitative real-time polymerase chain reaction (qPCR)-based comprehensive chromosome screening (CCS) may represent a useful strategy to improve the success of IVF. This Biomarkers in Reproductive Medicine special issue review summarizes the accumulated experience with the development and clinical application of a 4-hour blastocyst qPCR-based CCS technology. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Phylogenetic Origin and Diversification of RNAi Pathway Genes in Insects

    PubMed Central

    Pauli, Thomas; Donath, Alexander; Meusemann, Karen; Podsiadlowski, Lars; Petersen, Malte; Peters, Ralph S.; Mayer, Christoph; Liu, Shanlin; Zhou, Xin; Misof, Bernhard

    2016-01-01

    Abstract RNA interference (RNAi) refers to the set of molecular processes found in eukaryotic organisms in which small RNA molecules mediate the silencing or down-regulation of target genes. In insects, RNAi serves a number of functions, including regulation of endogenous genes, anti-viral defense, and defense against transposable elements. Despite being well studied in model organisms, such as Drosophila, the distribution of core RNAi pathway genes and their evolution in insects is not well understood. Here we present the most comprehensive overview of the distribution and diversity of core RNAi pathway genes across 100 insect species, encompassing all currently recognized insect orders. We inferred the phylogenetic origin of insect-specific RNAi pathway genes and also identified several hitherto unrecorded gene expansions using whole-body transcriptome data from the international 1KITE (1000 Insect Transcriptome Evolution) project as well as other resources such as i5K (5000 Insect Genome Project). Specifically, we traced the origin of the double stranded RNA binding protein R2D2 to the last common ancestor of winged insects (Pterygota), the loss of Sid-1/Tag-130 orthologs in Antliophora (fleas, flies and relatives, and scorpionflies in a broad sense), and confirm previous evidence for the splitting of the Argonaute proteins Aubergine and Piwi in Brachyceran flies (Diptera, Brachycera). Our study offers new reference points for future experimental research on RNAi-related pathway genes in insects. PMID:28062756

  14. Stacking up CRISPR against RNAi for therapeutic gene inhibition.

    PubMed

    Haussecker, Dirk

    2016-09-01

    Both RNA interference (RNAi) and clustered regularly-interspaced short palindromic repeats (CRISPR) technologies allow for the sequence-specific inhibition of gene function and therefore have the potential to be used as therapeutic modalities. By judging the current public and scientific journal interest, it would seem that CRISPR, by enabling clean, durable knockouts, will dominate therapeutic gene inhibition, also at the expense of RNAi. This review aims to look behind prevailing sentiments and to more clearly define the likely scope of the therapeutic applications of the more recently developed CRISPR technology and its relative strengths and weaknesses with regards to RNAi. It is found that largely because of their broadly overlapping delivery constraints, while CRISPR presents formidable competition for DNA-directed RNAi strategies, its impact on RNAi therapeutics triggered by synthetic oligonucleotides will likely be more moderate. Instead, RNAi and genome editing, and in particular CRISPR, are poised to jointly promote a further shift toward sequence-targeted precision medicines. © 2016 Federation of European Biochemical Societies.

  15. RNAi technology: a new platform for crop pest control.

    PubMed

    Mamta, B; Rajam, M V

    2017-07-01

    The insect pests are big threat in meeting the food demands for future generation. The present pest control strategies, including the existing transgenic approaches show certain limitations and are not completely successful in limiting the insect pests. However, the sequence-specific gene silencing via RNA interference (RNAi) holds a great promise for effective management of agricultural pests. RNAi is naturally occurring conserved process responsible for gene regulation and defense against pathogens. The efficacy of RNAi varies among different insect orders and also depends upon various factors, including the target gene selection, method of dsRNAs delivery, expression of dsRNAs and presence of off-target effects. RNAi-mediated silencing of different insect genes involved in various physiological processes was found to be detrimental to insects growth, development and survival. In this article, we have reviewed the potential of RNAi-based strategies for effective management of insect pests. We have also discussed the various parameters, which are to be considered for host-induced RNAi-mediated control of insect pests without producing any effect on non-target organisms and environment.

  16. Validation of a novel screening device (NeuroQuick) for quantitative assessment of small nerve fiber dysfunction as an early feature of diabetic polyneuropathy.

    PubMed

    Ziegler, Dan; Siekierka-Kleiser, Ewa; Meyer, Bernd; Schweers, Michael

    2005-05-01

    To validate a handheld screening device (NeuroQuick) for an early detection of diabetic distal symmetric polyneuropathy (DSP) by quantitative testing of cold sensation based on the wind chill factor (NeuroQuick threshold [NQT]). NQT was measured on the dorsum of the foot in 160 healthy subjects as well as 60 and 128 diabetic patients without and with DSP, respectively. DSP was diagnosed by a neurological examination, motor and sensory nerve conduction velocity, vibration perception threshold, and warm and cold thermal perception threshold (TPT) (TPT Medoc). In addition, a C-64 Hz tuning fork and TipTherm device were used as screening instruments. In the diabetic cohort, NQT correlated significantly with all nerve function tests, with the highest correlation coefficients being found on the foot versus Medoc warm TPT (r = 0.618, P < 0.001) and cold TPT (r = 0.529, P < 0.001). Among patients with DSP, NQT was abnormal, whereas Medoc warm TPT was normal in 34%, whereas only 5% showed the opposite constellation (P < 0.05). Likewise, the corresponding percentages for Medoc cold TPT were 32 and 11%, for TipTherm 47 and 2%, and for the tuning fork 29 and 10% (all P < 0.05), whereas no significant differences were noted when comparing NQT with peroneal motor nerve conduction velocity, sural sensory nerve conduction velocity, and malleolar vibration perception threshold. The coefficients of variation for repeated NQT measurements in 41 control and 41 diabetic subjects were 20.4 and 8.5%, respectively. The NeuroQuick is a valid and reliable screening tool for quantitative assessment of small nerve fiber dysfunction. This device appears to be more sensitive in detecting early diabetic polyneuropathy than both elaborate thermal testing and screening tests such as the tuning fork.

  17. Quantitative digital image analysis of chromogenic assays for high throughput screening of alpha-amylase mutant libraries.

    PubMed

    Shankar, Manoharan; Priyadharshini, Ramachandran; Gunasekaran, Paramasamy

    2009-08-01

    An image analysis-based method for high throughput screening of an alpha-amylase mutant library using chromogenic assays was developed. Assays were performed in microplates and high resolution images of the assay plates were read using the Virtual Microplate Reader (VMR) script to quantify the concentration of the chromogen. This method is fast and sensitive in quantifying 0.025-0.3 mg starch/ml as well as 0.05-0.75 mg glucose/ml. It was also an effective screening method for improved alpha-amylase activity with a coefficient of variance of 18%.

  18. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass.

    PubMed

    Wang, Guangliang; Rajpurohit, Surendra K; Delaspre, Fabien; Walker, Steven L; White, David T; Ceasrine, Alexis; Kuruvilla, Rejji; Li, Ruo-Jing; Shim, Joong S; Liu, Jun O; Parsons, Michael J; Mumm, Jeff S

    2015-07-28

    Whole-organism chemical screening can circumvent bottlenecks that impede drug discovery. However, in vivo screens have not attained throughput capacities possible with in vitro assays. We therefore developed a method enabling in vivo high-throughput screening (HTS) in zebrafish, termed automated reporter quantification in vivo (ARQiv). In this study, ARQiv was combined with robotics to fully actualize whole-organism HTS (ARQiv-HTS). In a primary screen, this platform quantified cell-specific fluorescent reporters in >500,000 transgenic zebrafish larvae to identify FDA-approved (Federal Drug Administration) drugs that increased the number of insulin-producing β cells in the pancreas. 24 drugs were confirmed as inducers of endocrine differentiation and/or stimulators of β-cell proliferation. Further, we discovered novel roles for NF-κB signaling in regulating endocrine differentiation and for serotonergic signaling in selectively stimulating β-cell proliferation. These studies demonstrate the power of ARQiv-HTS for drug discovery and provide unique insights into signaling pathways controlling β-cell mass, potential therapeutic targets for treating diabetes.

  19. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass

    PubMed Central

    Wang, Guangliang; Rajpurohit, Surendra K; Delaspre, Fabien; Walker, Steven L; White, David T; Ceasrine, Alexis; Kuruvilla, Rejji; Li, Ruo-jing; Shim, Joong S; Liu, Jun O; Parsons, Michael J; Mumm, Jeff S

    2015-01-01

    Whole-organism chemical screening can circumvent bottlenecks that impede drug discovery. However, in vivo screens have not attained throughput capacities possible with in vitro assays. We therefore developed a method enabling in vivo high-throughput screening (HTS) in zebrafish, termed automated reporter quantification in vivo (ARQiv). In this study, ARQiv was combined with robotics to fully actualize whole-organism HTS (ARQiv-HTS). In a primary screen, this platform quantified cell-specific fluorescent reporters in >500,000 transgenic zebrafish larvae to identify FDA-approved (Federal Drug Administration) drugs that increased the number of insulin-producing β cells in the pancreas. 24 drugs were confirmed as inducers of endocrine differentiation and/or stimulators of β-cell proliferation. Further, we discovered novel roles for NF-κB signaling in regulating endocrine differentiation and for serotonergic signaling in selectively stimulating β-cell proliferation. These studies demonstrate the power of ARQiv-HTS for drug discovery and provide unique insights into signaling pathways controlling β-cell mass, potential therapeutic targets for treating diabetes. DOI: http://dx.doi.org/10.7554/eLife.08261.001 PMID:26218223

  20. Profiling Environmental Chemicals in the Antioxidant Response Element Pathway using Quantitative High Throughput Screening (qHTS)

    EPA Science Inventory

    The antioxidant response element (ARE) signaling pathway plays an important role in the amelioration of oxidative stress, which can contribute to a number of diseases, including cancer. We screened 1408 NTP-provided substances in 1536-well qHTS format at concentrations ranging fr...

  1. Profiling Environmental Chemicals in the Antioxidant Response Element Pathway using Quantitative High Throughput Screening (qHTS)

    EPA Science Inventory

    The antioxidant response element (ARE) signaling pathway plays an important role in the amelioration of oxidative stress, which can contribute to a number of diseases, including cancer. We screened 1408 NTP-provided substances in 1536-well qHTS format at concentrations ranging fr...

  2. Large Scale RNAi Reveals the Requirement of Nuclear Envelope Breakdown for Nuclear Import of Human Papillomaviruses

    PubMed Central

    Snijder, Berend; Samperio Ventayol, Pilar; Kühbacher, Andreas; Becker, Miriam; Day, Patricia M.; Schiller, John T.; Kann, Michael; Pelkmans, Lucas; Helenius, Ari; Schelhaas, Mario

    2014-01-01

    A two-step, high-throughput RNAi silencing screen was used to identify host cell factors required during human papillomavirus type 16 (HPV16) infection. Analysis of validated hits implicated a cluster of mitotic genes and revealed a previously undetermined mechanism for import of the viral DNA (vDNA) into the nucleus. In interphase cells, viruses were endocytosed, routed to the perinuclear area, and uncoated, but the vDNA failed to be imported into the nucleus. Upon nuclear envelope perforation in interphase cells HPV16 infection occured. During mitosis, the vDNA and L2 associated with host cell chromatin on the metaphase plate. Hence, we propose that HPV16 requires nuclear envelope breakdown during mitosis for access of the vDNA to the nucleoplasm. The results accentuate the value of genes found by RNAi screens for investigation of viral infections. The list of cell functions required during HPV16 infection will, moreover, provide a resource for future virus-host cell interaction studies. PMID:24874089

  3. Large scale RNAi reveals the requirement of nuclear envelope breakdown for nuclear import of human papillomaviruses.

    PubMed

    Aydin, Inci; Weber, Susanne; Snijder, Berend; Samperio Ventayol, Pilar; Kühbacher, Andreas; Becker, Miriam; Day, Patricia M; Schiller, John T; Kann, Michael; Pelkmans, Lucas; Helenius, Ari; Schelhaas, Mario

    2014-05-01

    A two-step, high-throughput RNAi silencing screen was used to identify host cell factors required during human papillomavirus type 16 (HPV16) infection. Analysis of validated hits implicated a cluster of mitotic genes and revealed a previously undetermined mechanism for import of the viral DNA (vDNA) into the nucleus. In interphase cells, viruses were endocytosed, routed to the perinuclear area, and uncoated, but the vDNA failed to be imported into the nucleus. Upon nuclear envelope perforation in interphase cells HPV16 infection occured. During mitosis, the vDNA and L2 associated with host cell chromatin on the metaphase plate. Hence, we propose that HPV16 requires nuclear envelope breakdown during mitosis for access of the vDNA to the nucleoplasm. The results accentuate the value of genes found by RNAi screens for investigation of viral infections. The list of cell functions required during HPV16 infection will, moreover, provide a resource for future virus-host cell interaction studies.

  4. Quantitative comparison of functional screening by measuring intracellular Ca2+ with radioligand binding at recombinant human dopamine receptors.

    PubMed

    Kassack, Matthias U

    2002-01-01

    The purpose of this study was to test whether screening at dopamine receptors performed with a recently described functional assay for G-protein coupled receptors (GPCRs) provides data that correlate significantly with radioligand binding data in the literature, thus possibly allowing researchers to replace radioligand binding with nonradioactive functional screening. Human dopamine receptors hD1 and hD2L (representing Gs [hD1] or Gi [hD2L] coupled GPCRs) were recombinantly expressed in human embryonic kidney (HEK293) cells. Cells were loaded with Oregon Green 488 BAPTA-1/AM and evenly distributed in 384 well plates. Seventeen test compounds were screened for agonistic activity by injection into the cell suspension and monitoringH of intracellular Ca2+ with a fluorescence microplate reader. Then, standard agonists (100nM SKF38393 for hD1, 30nM quinpirole for hD2L) were injected into wells preincubated with test compounds (screening for antagonism). Injection of various agonists resulted in a concentration-dependent increase in fluorescence. Further, preincubation of antagonists with dopamine receptor expressing cells inhibits concentration-dependent the agonist-induced increase in fluorescence. Calculated apparent functional Ki values correlate with radioligand binding data in the literature (r2 = 0.7796 for D1, r2 = 0.7743 for D2). The correlation between apparent functional Ki values and radioligand binding data for the 17 tested compounds suggests that screening of test compounds at dopamine receptors with the functional Ca2+ assay can replace radioligand binding studies. Furthermore, besides apparent Ki values, information about agonistic or antagonistic properties of a test compound can be obtained with the functional Ca2+ assay.

  5. RNAi Induces Innate Immunity through Multiple Cellular Signaling Pathways

    PubMed Central

    Wu, Jun; Pei, Rongjuan; Xu, Yang; Yang, Dongliang; Roggendorf, Michael; Lu, Mengji

    2013-01-01

    Background & Aims Our previous results showed that the knockdown of woodchuck hepatitis virus (WHV) by RNA interference (RNAi) led to upregulation of interferon stimulated genes (ISGs) in primary hepatocytes. In the present study, we tested the hypothesis that the cellular signaling pathways recognizing RNA molecules may be involved the ISG stimulation by RNAi. Methods Primary murine hepatocytes (PMHs) from wild type mice and WHV transgenic (Tg) mice were prepared and treated with defined siRNAs. The mRNA levels of target genes and ISGs were detected by real-time RT-PCR. The involvement of the signaling pathways including RIG-I/MDA5, PKR, and TLR3/7/8/9 was examined by specific inhibition and the analysis of their activation by Western blotting. Results In PMHs from WHV Tg mice, specific siRNAs targeting WHV, mouse β-actin, and GAPDH reduced the levels of targeted mRNAs and increased the mRNA expression of IFN-β, MxA, and IP-10. The enhanced ISG expression by siRNA transfection were abolished by siRNA-specific 2′-O-methyl antisense RNA and the inhibitors 2-AP and chloroquine blocking PKR and other TLR-mediated signaling pathways. Furthermore, Western blotting revealed that RNAi results in an increase in PKR phosphorylation and nuclear translocation of IRF3 and NF-êB, indicating the possible role of IRF3 in the RNAi-directed induction of ISGs. In contrast, silencing of RIG-I and MDA5 failed to block RNAi-mediated MxA induction. Conclusions RNAi is capable of enhancing innate immune responses through the PKR- and TLR-dependent signaling pathways in primary hepatocytes. The immune stimulation by RNAi may contribute to the antiviral activity of siRNAs in vivo. PMID:23700487

  6. Cost-effectiveness of quantitative ultrasound as a technique for screening of osteoporotic fracture risk: report on a health technology assessment conducted in 2001

    PubMed Central

    Aidelsburger, Pamela; Hessel, Franz; Wasem, Jürgen

    2004-01-01

    Aim: On behalf of the German Agency for Health Technology Assessment (DAHTA@DIMDI) a rapid economic HTA was conducted. Aim of the HTA was to evaluate the cost-effectiveness of quantitative ultrasound (QUS) for screening of osteoporotic fracture risk. Study population was formed by postmenopausal women. QUS was compared to the dual X-ray absorptiometry (DXA) as the most frequently used method of measurement. Methods: According to the recommendations for rapid economic HTA a comprehensive literature search was conducted. Data of identified and relevant publications have been extracted in form of a qualitative and quantitative information synthesis. The authors calculated incremental cost-effectiveness ratios for different screening procedures: (1) one-step proceeding comparing QUS with DXA, (2) two-step proceeding starting with QUS followed by DXA in pathologic cases. Results: An additional case diagnosed by DXA in a one-step proceeding rises additional costs of about 1,000 EURO. A two-step proceeding with QUS is cost-effective as long as the costs of one QUS examination are lower than 31%-51% of the costs of one DXA examination. Discussion: All considered studies showed methodological limitations. None of them included long term effects like avoided bone fractures. Considering long-term effects probably would change the results. Due to the weakness of data no concluding judgement about the cost-effectiveness of QUS can be given. PMID:19675686

  7. Quantitative EEG Magnitudes in Children with and without Attention Deficit Disorder during Neurological Screening and Cognitive Tasks.

    ERIC Educational Resources Information Center

    Crawford, Helen J.; Barabasz, Marianne

    1996-01-01

    Quantitative EEG magnitude data were obtained from children with and without attention deficit disorder (ADD). The data suggest that the right fronto-centro-temporal region is not as "cognitively activated" relative to the left hemisphere in those children with ADD. Neurotherapy training of the right frontal and central regions in ADD…

  8. Functional genomic screening to enhance oncolytic virotherapy.

    PubMed

    Mahoney, D J; Stojdl, D F

    2013-02-05

    Functional genomic screening has emerged as a powerful approach for understanding complex biological phenomena. Of the available tools, genome-wide RNA interference (RNAi) technology is unquestionably the most incisive, as it directly probes gene function. Recent applications of RNAi screening have been impressive. Notable amongst these are its use in elucidated mechanism(s) for signal transduction, various aspects of cell biology, tumourigenesis and metastasis, resistance to cancer therapeutics, and the host's response to a pathogen. Herein we discuss how recent RNAi screening efforts have helped turn our attention to the targetability of non-oncogene support pathways for cancer treatment, with a particular focus on a recent study that identified a non-oncogene addiction to the ER stress response as a synergist target for oncolytic virus therapy (OVT). Moreover, we give our thoughts on the future of RNAi screening as a tool to enhance OVT and describe recent technical improvements that are poised to make genome-scale RNAi experiments more sensitive, less noisy, more applicable in vivo, and more easily validated in clinically relevant animal models.

  9. In vitro screening of compounds against laboratory and field isolates of human hookworm reveals quantitative differences in anthelmintic susceptibility.

    PubMed

    Treger, Rebecca S; Otchere, Joseph; Keil, Martin F; Quagraine, Josephine E; Rai, Ganesha; Mott, Bryan T; Humphries, Debbie L; Wilson, Michael; Cappello, Michael; Vermeire, Jon J

    2014-01-01

    A panel of 80 compounds was screened for anthelmintic activity against a laboratory strain of Ancylostoma ceylanicum and field isolates of hookworm obtained from school children in the Kintampo North District of the Brong Ahafo Region of Ghana. Although the laboratory strain of A. ceylanicum was more susceptible to the compounds tested than the field isolates of hookworm, a twofold increase in compound concentration resulted in comparable egg hatch percent inhibition for select compounds. These data provide evidence that the efficacy of anthelmintic compounds may be species-dependent and that field and laboratory strains of hookworm differ in their sensitivities to the anthelmintics tested. These data also suggest that both compound concentration and hookworm species must be considered when screening to identify novel anthelmintic compounds.

  10. Quantitative Phenotyping-Based In Vivo Chemical Screening in a Zebrafish Model of Leukemia Stem Cell Xenotransplantation

    PubMed Central

    Zhang, Beibei; Shimada, Yasuhito; Kuroyanagi, Junya; Umemoto, Noriko; Nishimura, Yuhei; Tanaka, Toshio

    2014-01-01

    Zebrafish-based chemical screening has recently emerged as a rapid and efficient method to identify important compounds that modulate specific biological processes and to test the therapeutic efficacy in disease models, including cancer. In leukemia, the ablation of leukemia stem cells (LSCs) is necessary to permanently eradicate the leukemia cell population. However, because of the very small number of LSCs in leukemia cell populations, their use in xenotransplantation studies (in vivo) and the difficulties in functionally and pathophysiologically replicating clinical conditions in cell culture experiments (in vitro), the progress of drug discovery for LSC inhibitors has been painfully slow. In this study, we developed a novel phenotype-based in vivo screening method using LSCs xenotransplanted into zebrafish. Aldehyde dehydrogenase-positive (ALDH+) cells were purified from chronic myelogenous leukemia K562 cells tagged with a fluorescent protein (Kusabira-orange) and then implanted in young zebrafish at 48 hours post-fertilization. Twenty-four hours after transplantation, the animals were treated with one of eight different therapeutic agents (imatinib, dasatinib, parthenolide, TDZD-8, arsenic trioxide, niclosamide, salinomycin, and thioridazine). Cancer cell proliferation, and cell migration were determined by high-content imaging. Of the eight compounds that were tested, all except imatinib and dasatinib selectively inhibited ALDH+ cell proliferation in zebrafish. In addition, these anti-LSC agents suppressed tumor cell migration in LSC-xenotransplants. Our approach offers a simple, rapid, and reliable in vivo screening system that facilitates the phenotype-driven discovery of drugs effective in suppressing LSCs. PMID:24454867

  11. RNAi pathway participates in chromosome segregation in mammalian cells.

    PubMed

    Huang, Chuan; Wang, Xiaolin; Liu, Xu; Cao, Shuhuan; Shan, Ge

    2015-01-01

    The RNAi machinery is a mighty regulator in a myriad of life events. Despite lines of evidence that small RNAs and components of the RNAi pathway may be associated with structure and behavior of mitotic chromosomes in diverse organisms, a direct role of the RNAi pathway in mammalian mitotic chromosome segregation remains elusive. Here we report that Dicer and AGO2, two central components of the mammalian RNAi pathway, participate in the chromosome segregation. Knockdown of Dicer or AGO2 results in a higher incidence of chromosome lagging, and this effect is independent from microRNAs as examined with DGCR8 knockout cells. Further investigation has revealed that α-satellite RNA, a noncoding RNA derived from centromeric repeat region, is managed by AGO2 under the guidance of endogenous small interference RNAs (ASAT siRNAs) generated by Dicer. Furthermore, the slicer activity of AGO2 is essential for the chromosome segregation. Level and distribution of chromosome-associated α-satellite RNA have crucial regulatory effect on the localization of centromeric proteins such as centromere protein C1 (CENPC1). With these results, we also provide a paradigm in which the RNAi pathway participates in vital cellular events through the maintenance of level and distribution of noncoding RNAs in cells.

  12. RNAi pathway participates in chromosome segregation in mammalian cells

    PubMed Central

    Huang, Chuan; Wang, Xiaolin; Liu, Xu; Cao, Shuhuan; Shan, Ge

    2015-01-01

    The RNAi machinery is a mighty regulator in a myriad of life events. Despite lines of evidence that small RNAs and components of the RNAi pathway may be associated with structure and behavior of mitotic chromosomes in diverse organisms, a direct role of the RNAi pathway in mammalian mitotic chromosome segregation remains elusive. Here we report that Dicer and AGO2, two central components of the mammalian RNAi pathway, participate in the chromosome segregation. Knockdown of Dicer or AGO2 results in a higher incidence of chromosome lagging, and this effect is independent from microRNAs as examined with DGCR8 knockout cells. Further investigation has revealed that α-satellite RNA, a noncoding RNA derived from centromeric repeat region, is managed by AGO2 under the guidance of endogenous small interference RNAs (ASAT siRNAs) generated by Dicer. Furthermore, the slicer activity of AGO2 is essential for the chromosome segregation. Level and distribution of chromosome-associated α-satellite RNA have crucial regulatory effect on the localization of centromeric proteins such as centromere protein C1 (CENPC1). With these results, we also provide a paradigm in which the RNAi pathway participates in vital cellular events through the maintenance of level and distribution of noncoding RNAs in cells. PMID:27462427

  13. Intravenous, non-viral RNAi gene therapy of brain cancer.

    PubMed

    Pardridge, William M

    2004-07-01

    RNA interference (RNAi) has the potential to knock down oncogenes in cancer, including brain cancer. However, the therapeutic potential of RNAi will not be realised until the rate-limiting step of delivery is solved. The development of RNA-based therapeutics is not practical, due to the instability of RNA in vivo. However, plasmid DNA can be engineered to express short hairpin RNA (shRNA), similar to endogenous microRNAs. Intravenous, non-viral RNAi-based gene therapy is enabled with a new gene-targeting technology, which encapsulates the plasmid DNA inside receptor-specific pegylated immunoliposomes (PILs). The feasibility of this RNAi approach was evaluated by showing it was possible to achieve a 90% knockdown of brain tumour-specific gene expression with a single intravenous injection in adult rats or mice with intracranial brain cancer. The survival of mice with intracranial human brain cancer was extended by nearly 90% with weekly intravenous injections of PILs carrying plasmid DNA expressing a shRNA directed against the human epidermal growth factor receptor. RNAi-based gene therapy can be coupled with gene therapy that replaces mutated tumour suppressor genes to build a polygenic approach to the gene therapy of cancer.

  14. Development of patatin knockdown potato tubers using RNA interference (RNAi) technology, for the production of human-therapeutic glycoproteins

    PubMed Central

    Kim, Yoon-Sik; Lee, Yong-Hwa; Kim, Hyun-Soon; Kim, Mi-Sun; Hahn, Kyu-Woong; Ko, Jeong-Heon; Joung, Hyouk; Jeon, Jae-Heung

    2008-01-01

    Background Patatins encoded by a multi-gene family are one of the major storage glycoproteins in potato tubers. Potato tubers have recently emerged as bioreactors for the production of human therapeutic glycoproteins (vaccines). Increasing the yield of recombinant proteins, targeting the produced proteins to specific cellular compartments, and diminishing expensive protein purification steps are important research goals in plant biotechnology. In the present study, potato patatins were eliminated almost completely via RNA interference (RNAi) technology to develop potato tubers as a more efficient protein expression system. The gene silencing effect of patatins in the transgenic potato plants was examined at individual isoform levels. Results Based upon the sequence similarity within the multi-gene family of patatins, a highly conserved target sequence (635 nts) of patatin gene pat3-k1 [GenBank accession no. DQ114421] in potato plants (Solanum tuberosum L.) was amplified for the construction of a patatin-specific hairpin RNAi (hpRNAi) vector. The CaMV 35S promoter-driven patatin hpRNAi vector was transformed into the potato cultivar Desiree by Agrobacterium-mediated transformation. Ten transgenic potato lines bearing patatin hpRNA were generated. The effects of RNA interference were characterized at both the protein and mRNA levels using 1D and 2D SDS/PAGE and quantitative real-time RT-PCR analysis. Dependent upon the patatin hpRNAi line, patatins decreased by approximately 99% at both the protein and mRNA levels. However, the phenotype (e.g. the number and size of potato tuber, average tuber weight, growth pattern, etc.) of hpRNAi lines was not distinguishable from wild-type potato plants under both in vitro and ex vitro growth conditions. During glycoprotein purification, patatin-knockdown potato tubers allowed rapid purification of other potato glycoproteins with less contamination of patatins. Conclusion Patatin-specific hpRNAi effectively suppressed the

  15. Silencing of odorant binding protein gene AlinOBP4 by RNAi induces declining electrophysiological responses of Adelphocoris lineolatus to six semiochemicals.

    PubMed

    Zhang, Xue-Ying; Zhu, Xiao-Qiang; Gu, Shao-Hua; Zhou, Yan-Le; Wang, Song-Ying; Zhang, Yong-Jun; Guo, Yu-Yuan

    2016-06-06

    Odorant binding proteins (OBPs) are believed to be important for transporting semiochemicals through the aqueous sensillar lymph to the olfactory receptor cells within the insect antennal sensilla. Here, we injected AlinOBP4-siRNA into the conjunctivum between prothorax and mesothorax of the lucerne plant bug, Adelphocoris lineolatus and evaluated the silencing of AlinOBP4 by reverse transcription polymerase chain reaction (RT-PCR) analysis, quantitative real-time PCR (qPCR) test and electroantennogram (EAG) assay. The combination of RT-PCR and qPCR analyses revealed that the levels of messenger RNA transcript were significantly reduced ∼95% in AlinOBP4-siRNA-treated A. lineolatus males and ∼75% in RNAi-treated females within 48 hours. It was found that there are different EAG responses between male and female bugs when the AlinOBP4 gene was silenced by RNAi. The EAGs of A. lineolatus to two plant volatiles, tridecanal and hexyl alcohol, were reduced 9.09% and 79.45% in RNAi-treated males, 62.08% and 62.08% in RNAi-treated females compared to the controls, separately. Antennae of RNAi-treated bugs showed significantly lower electrophysiological responses to four sex pheromone analogs, butyl butanoate, 1-hexyl butyrate, (E)-2-hexenyl butyrate and hexyl hexanoate. The EAG recordings were reduced 35.43%, 35.24%, 39.96% and 78.47% in RNAi-treated males and 64.52%, 18.13%, 36.88% and 49.52% in RNAi-treated females, respectively. The results suggested that AlinOBP4 might play dual-roles in the identification of plant volatiles and sex pheromones. It was suspected that AlinOBP4 may have different functions in odor perception between male and female A. lineolatus.

  16. Quantitation of bacteria through adsorption of intracellular biomolecules on carbon paste and screen-printed carbon electrodes and voltammetry of redox-active probes.

    PubMed

    Obuchowska, Agnes

    2008-03-01

    A new electrochemical method for the quantitation of bacteria that is rapid, inexpensive, and amenable to miniaturization is reported. Cyclic voltammetry was used to quantitate M. luteus, C. sporogenes, and E. coli JM105 in exponential and stationary phases, following exposure of screen-printed carbon working electrodes (SPCEs) to lysed culture samples. Ferricyanide was used as a probe. The detection limits (3s) were calculated and the dynamic ranges for E. coli (exponential and stationary phases), M. luteus (exponential and stationary phases), and C. sporogenes (exponential phase) lysed by lysozyme were 3 x 10(4) to 5 x 10(6) colony-forming units (CFU) mL(-1), 5 x 10(6) to 2 x 10(8) CFU mL(-1) and 3 x 10(3) to 3 x 10(5) CFU mL(-1), respectively. Good overlap was obtained between the calibration curves when the electrochemical signal was plotted against the dry bacterial weight, or between the protein concentration in the bacterial lysate. In contrast, unlysed bacteria did not change the electrochemical signal of ferricyanide. The results indicate that the reduction of the electrochemical signal in the presence of the lysate is mainly due to the fouling of the electrode by proteins. Similar results were obtained with carbon-paste electrodes although detection limits were better with SPCEs. The method described herein was applied to quantitation of bacteria in a cooling tower water sample.

  17. Assessment of Beating Parameters in Human Induced Pluripotent Stem Cells Enables Quantitative In Vitro Screening for Cardiotoxicity

    PubMed Central

    Sirenko, Oksana; Cromwell, Evan F.; Crittenden, Carole; Wignall, Jessica A.; Wright, Fred A.; Rusyn, Ivan

    2014-01-01

    Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes show promise for screening during early drug development. Here, we tested a hypothesis that in vitro assessment of multiple cardiomyocyte physiological parameters enables predictive and mechanistically-interpretable evaluation of cardiotoxicity in a high-throughput format. Human iPSC-derived cardiomyocytes were exposed for 30 minutes or 24 hours to 131 drugs, positive (107) and negative (24) for in vivo cardiotoxicity, in up to 6 concentrations (3 nM to 30 μM) in 384-well plates. Fast kinetic imaging was used to monitor changes in cardiomyocyte function using intracellular Ca2+ flux readouts synchronous with beating, and cell viability. A number of physiological parameters of cardiomyocyte beating, such as beat rate, peak shape (amplitude, width, raise, decay, etc.) and regularity were collected using automated data analysis. Concentration-response profiles were evaluated using logistic modeling to derive a benchmark concentration (BMC) point-of-departure value, based on one standard deviation departure from the estimated baseline in vehicle (0.3% dimethylsulfoxide)-treated cells. BMC values were used for cardiotoxicity classification and ranking of compounds. Beat rate and several peak shape parameters were found to be good predictors, while cell viability had poor classification accuracy. In addition, we applied the Toxicological Prioritization Index approach to integrate and display data across many collected parameters, to derive “cardiosafety” ranking of tested compounds. Multi-parameter screening of beating profiles allows for cardiotoxicity risk assessment and identification of specific patterns defining mechanism-specific effects. The data and analysis methods may be used widely for compound screening and early safety evaluation in the drug development process. PMID:24095675

  18. Identification of genotoxic compounds using isogenic DNA repair deficient DT40 cell lines on a quantitative high throughput screening platform

    PubMed Central

    Nishihara, Kana; Huang, Ruili; Zhao, Jinghua; Shahane, Sampada A.; Witt, Kristine L.; Smith-Roe, Stephanie L.; Tice, Raymond R.; Takeda, Shunichi; Xia, Menghang

    2016-01-01

    DNA repair pathways play a critical role in maintaining cellular homeostasis by repairing DNA damage induced by endogenous processes and xenobiotics, including environmental chemicals. Induction of DNA damage may lead to genomic instability, disruption of cellular homeostasis and potentially tumours. Isogenic chicken DT40 B-lymphocyte cell lines deficient in DNA repair pathways can be used to identify genotoxic compounds and aid in characterising the nature of the induced DNA damage. As part of the US Tox21 program, we previously optimised several different DT40 isogenic clones on a high-throughput screening platform and confirmed the utility of this approach for detecting genotoxicants by measuring differential cytotoxicity in wild-type and DNA repair-deficient clones following chemical exposure. In the study reported here, we screened the Tox21 10K compound library against two isogenic DNA repair-deficient DT40 cell lines (KU70 −/−/RAD54 −/− and REV3 −/−) and the wild-type cell line using a cell viability assay that measures intracellular adenosine triphosphate levels. KU70 and RAD54 are genes associated with DNA double-strand break repair processes, and REV3 is associated with translesion DNA synthesis pathways. Active compounds identified in the primary screening included many well-known genotoxicants (e.g. adriamycin, melphalan) and several compounds previously untested for genotoxicity. A subset of compounds was further evaluated by assessing their ability to induce micronuclei and phosphorylated H2AX. Using this comprehensive approach, three compounds with previously undefined genotoxicity—2-oxiranemethanamine, AD-67 and tetraphenylolethane glycidyl ether—were identified as genotoxic. These results demonstrate the utility of this approach for identifying and prioritising compounds that may damage DNA. PMID:26243743

  19. RNAi-based targeted gene knockdown in the model oleaginous microalgae Nannochloropsis oceanica.

    PubMed

    Wei, Li; Xin, Yi; Wang, Qintao; Yang, Juan; Hu, Hanhua; Xu, Jian

    2017-03-01

    Microalgae are promising feedstock for renewable fuels such as biodiesel, yet development of industrial oleaginous strains has been hindered by the paucity and inefficiency of reverse genetics tools. Here we established an efficient RNAi-based targeted gene-knockdown method for Nannochloropsis spp., which are emerging model organisms for industrial microalgal oil production. The method achieved a 40-80% success rate in Nannochloropsis oceanica strain IMET1. When transcript level of one carbonic anhydrase (CA) was inhibited by 62-83% via RNAi, mutant cells exhibited photosynthetic oxygen evolution (POE) rates that were 68-100% higher than wild-type (WT) at pH 6.0, equivalent to WT at pH 8.2, yet 39-45% lower than WT at pH 9.0. Moreover, the mutant POE rates were negatively correlated with the increase of culture pH, an exact opposite of WT. Thus, a dynamic carbon concentration mechanism (CCM) that is highly sensitive to pH homeostasis was revealed, where the CA inhibition likely partially abrogated the mechanism that normally deactivates CCM under a high level of dissolved CO2 . Extension of the method to another sequenced N. oceanica strain of CCMP 1779 demonstrated comparable performance. Finally, McrBC-PCR followed by bisulfite sequencing revealed that the gene knockdown is mediated by the CG, CHG and CHH types of DNA methylation at the coding region of the targeted gene. The efficiency, robustness and general applicability of this reverse genetics approach suggested the possibility of large-scale RNAi-based gene function screening in industrial microalgae.

  20. RNA Viruses and RNAi: Quasispecies Implications for Viral Escape.

    PubMed

    Presloid, John B; Novella, Isabel S

    2015-06-19

    Due to high mutation rates, populations of RNA viruses exist as a collection of closely related mutants known as a quasispecies. A consequence of error-prone replication is the potential for rapid adaptation of RNA viruses when a selective pressure is applied, including host immune systems and antiviral drugs. RNA interference (RNAi) acts to inhibit protein synthesis by targeting specific mRNAs for degradation and this process has been developed to target RNA viruses, exhibiting their potential as a therapeutic against infections. However, viruses containing mutations conferring resistance to RNAi were isolated in nearly all cases, underlining the problems of rapid viral evolution. Thus, while promising, the use of RNAi in treating or preventing viral diseases remains fraught with the typical complications that result from high specificity of the target, as seen in other antiviral regimens.

  1. Gene silencing in Medicago truncatula roots using RNAi.

    PubMed

    Floss, Daniela S; Schmitz, Alexa M; Starker, Colby G; Gantt, J Stephen; Harrison, Maria J

    2013-01-01

    Medicago truncatula is used widely as a model system for studies of root symbioses, interactions with parasitic nematodes and fungal pathogens, as well as studies of development and secondary metabolism. In Medicago truncatula as well as other legumes, RNA interference (RNAi) coupled with Agrobacterium rhizogenes-mediated root transformation, has been used very successfully for analyses of gene function in roots. One of the major advantages of this approach is the ease and relative speed with which transgenic roots can be generated. There are several methods, both for the generation of the RNAi constructs and the root transformation. Here we provide details of an RNAi and root transformation protocol that has been used successfully in M. truncatula and which can be scaled up to enable the analysis of several hundred constructs.

  2. An ultrasensitive fluorescence method suitable for quantitative analysis of mung bean nuclease and inhibitor screening in vitro and vivo.

    PubMed

    Peng, Lan; Fan, Jialong; Tong, Chunyi; Xie, Zhenhua; Zhao, Chuan; Liu, Xuanming; Zhu, Yonghua; Liu, Bin

    2016-09-15

    Mung bean nuclease is a single stranded specific DNA and RNA endonuclease purified from mung bean sprouts. It yields 5'-phosphate terminated mono- and oligonucleotides. The activity level of this nuclease can act as a marker to monitor the developmental process of mung bean sprouts. In order to facilitate the activity and physiological analysis of this nuclease, we have developed a biosensing assay system based on the mung bean nuclease-induced single-stranded DNA scission and the affinity difference of graphene oxide for single-stranded DNA containing different numbers of bases. This end-point measurement method can detect mung bean nuclease in a range of 2×10(-4) to 4×10(-2) with a detection limit of 1×10(-4) unit/mL. In addition, we demonstrate the utility of the assay for screening chemical antibiotics and metal ions, resulting in the identification of several inhibitors of this enzyme in vitro. Furthermore, we firstly report that inhibiting mung bean nuclease by gentamycin sulfate and kanamycin in vivo can suppress mung bean sprouts growth. In summary, this method provides an alternative tool for the biochemical analysis for mung bean nuclease and indicates the feasibility of high-throughput screening specific inhibitors of this nuclease in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Development of RNAi technology for targeted therapy--a track of siRNA based agents to RNAi therapeutics.

    PubMed

    Zhou, Yinjian; Zhang, Chunling; Liang, Wei

    2014-11-10

    RNA interference (RNAi) was intensively studied in the past decades due to its potential in therapy of diseases. The target specificity and universal treatment spectrum endowed siRNA advantages over traditional small molecules and protein drugs. However, barriers exist in the blood circulation system and the diseased tissues blocked the actualization of RNAi effect, which raised function versatility requirements to siRNA therapeutic agents. Appropriate functionalization of siRNAs is necessary to break through these barriers and target diseased tissues in local or systemic targeted application. In this review, we summarized that barriers exist in the delivery process and popular functionalized technologies for siRNA such as chemical modification and physical encapsulation. Preclinical targeted siRNA delivery and the current status of siRNA based RNAi therapeutic agents in clinical trial were reviewed and finally the future of siRNA delivery was proposed. The valuable experience from the siRNA agent delivery study and the RNAi therapeutic agents in clinical trial paved ways for practical RNAi therapeutics to emerge early.

  4. Antitumor therapeutic application of self-assembled RNAi-AuNP nanoconstructs: Combination of VEGF-RNAi and photothermal ablation

    PubMed Central

    Son, Sejin; Kim, Namho; You, Dong Gil; Yoon, Hong Yeol; Yhee, Ji Young; Kim, Kwangmeyung; Kwon, Ick Chan; Kim, Sun Hwa

    2017-01-01

    Nucleic acid-directed self-assembly provides an attractive method to fabricate prerequisite nanoscale structures for a wide range of technological applications due to the remarkable programmability of DNA/RNA molecules. In this study, exquisite RNAi-AuNP nanoconstructs with various geometries were developed by utilizing anti-VEGF siRNA molecules as RNAi-based therapeutics in addition to their role as building blocks for programmed self-assembly. In particular, the anti-VEGF siRNA-functionalized AuNP nanoconstructs can take additional advantage of gold-nanoclusters for photothermal cancer therapeutic agent. A noticeable technical aspect of self-assembled RNAi-AuNP nanoconstructs in this study is the precise conjugation and separation of designated numbers of therapeutic siRNA onto AuNP to develop highly sophisticated RNA-based building blocks capable of creating various geometries of RNAi-AuNP nano-assemblies. The therapeutic potential of RNAi-AuNP nanoconstructs was validated in vivo as well as in vitro by combining heat generation capability of AuNP and anti-angiogenesis mechanism of siRNA. This strategy of combining anti-VEGF mechanism for depleting angiogenesis process at initial tumor progression and complete ablation of residual tumors with photothermal activity of AuNP at later tumor stage showed effective tumor growth inhibition and tumor ablation with PC-3 tumor bearing mice. PMID:28042312

  5. Quantitative immunochemical fecal occult blood testing for colorectal adenoma detection: evaluation in the target population of screening and comparison with qualitative tests.

    PubMed

    Haug, Ulrike; Hundt, Sabrina; Brenner, Hermann

    2010-03-01

    Quantitative and qualitative immunochemical fecal occult blood tests (FOBTs) have been proposed for noninvasive colorectal cancer screening, but comparative evaluation is lacking. The aim of this study was to determine the diagnostic accuracy of two (quantitative) enzyme-linked immunosorbent assay (ELISA)-based immunochemical FOBTs for identifying colorectal adenomas in the target population of screening and to compare the results with six (qualitative) immunochromatographic FOBTs, previously evaluated in the same study participants using the same stool samples. A total of 1,319 participants of screening colonoscopy at average risk for colorectal neoplasia (mean age 63 years; age range 31-86 years; 50% men) were recruited prospectively from January 2006 to December 2007 in collaboration with 20 gastroenterological practices in Germany. Fecal hemoglobin and hemoglobin-haptoglobin levels were measured using an automated ELISA (RIDASCREEN). Test performance characteristics at different cutoff values were derived by comparing the results of stool testing with the results of colonoscopy in a blinded manner. A total of 130 participants (10%) had an advanced adenoma. The area under the receiver-operating characteristic curve with regard to advanced adenomas was 0.68 (0.65-0.71) for hemoglobin and 0.64 (0.61-0.67) for hemoglobin-haptoglobin (P=0.034). At a specificity of approximately 95%, the sensitivity (95% confidence interval) for advanced adenomas was 33% (25-42%) for hemoglobin and 24% (17-32%) for hemoglobin-haptoglobin, respectively. The sensitivity for hemoglobin was very close to sensitivities of the six qualitative FOBTs at (strongly divergent) levels of specificity observed for the latter. ELISA-based measurement of hemoglobin was superior to hemoglobin-haptoglobin, but showed a similar sensitivity for advanced adenomas compared with (qualitative) immunochromatographic FOBTs at defined levels of specificity. Compared with the latter, its quantitative nature

  6. Phylogenetic Origin and Diversification of RNAi Pathway Genes in Insects.

    PubMed

    Dowling, Daniel; Pauli, Thomas; Donath, Alexander; Meusemann, Karen; Podsiadlowski, Lars; Petersen, Malte; Peters, Ralph S; Mayer, Christoph; Liu, Shanlin; Zhou, Xin; Misof, Bernhard; Niehuis, Oliver

    2016-12-01

    RNA interference (RNAi) refers to the set of molecular processes found in eukaryotic organisms in which small RNA molecules mediate the silencing or down-regulation of target genes. In insects, RNAi serves a number of functions, including regulation of endogenous genes, anti-viral defense, and defense against transposable elements. Despite being well studied in model organisms, such as Drosophila, the distribution of core RNAi pathway genes and their evolution in insects is not well understood. Here we present the most comprehensive overview of the distribution and diversity of core RNAi pathway genes across 100 insect species, encompassing all currently recognized insect orders. We inferred the phylogenetic origin of insect-specific RNAi pathway genes and also identified several hitherto unrecorded gene expansions using whole-body transcriptome data from the international 1KITE (1000 Insect Transcriptome Evolution) project as well as other resources such as i5K (5000 Insect Genome Project). Specifically, we traced the origin of the double stranded RNA binding protein R2D2 to the last common ancestor of winged insects (Pterygota), the loss of Sid-1/Tag-130 orthologs in Antliophora (fleas, flies and relatives, and scorpionflies in a broad sense), and confirm previous evidence for the splitting of the Argonaute proteins Aubergine and Piwi in Brachyceran flies (Diptera, Brachycera). Our study offers new reference points for future experimental research on RNAi-related pathway genes in insects. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Quantitative phase imaging of cellular and subcellular structures for non-invasive screening diagnostics of socially significant diseases

    NASA Astrophysics Data System (ADS)

    Vasilenko, Irina; Metelin, Vladislav; Nasyrov, Marat; Belyakov, Vladimir; Kuznetsov, Alexander; Sukhenko, Evgeniy

    2015-03-01

    The objective of the present study is to increase the quality of the early diagnosis using cytological differential-diagnostic criteria for reactive changes in the nuclear structures of the immunocompetent cells. The morphofunctional status of living cells were estimated in the real time using new technologic platform of the hardware-software complex for phase cell imaging. The level of functional activity for lymphocyte subpopulations was determined on the base of modification of nuclear structures and decreasing of nuclear phase thickness. The dynamics of nuclear parameters was used as the quantitative measuring for cell activating level and increasing of proliferative potential.

  8. From Guide to Target: Molecular Insights into Eukaryotic RNAi Machinery

    PubMed Central

    Ipsaro, Jonathan J.; Joshua-Tor, Leemor

    2015-01-01

    Since its relatively recent discovery, RNA interference (RNAi) has emerged as a potent, specific, and ubiquitous means of gene regulation. Through a number of pathways that are conserved from yeast to humans, small non-coding RNAs direct molecular machinery to silence gene expression. In this review, we focus on mechanisms and structures that govern RNA silencing in higher organisms. In addition to highlighting recent advances, parallels and differences between RNAi pathways are discussed. Together, the studies reviewed herein reveal the versatility and programmability of RNA-induced Silencing Complexes (RISCs) and emphasize the importance of both upstream biogenesis and downstream silencing factors. PMID:25565029

  9. Enhancement of larval RNAi efficiency by over-expressing Argonaute2 in Bombyx mori.

    PubMed

    Li, Zhiqian; Zeng, Baosheng; Ling, Lin; Xu, Jun; You, Lang; Aslam, Abu F M; Tan, Anjiang; Huang, Yongping

    2015-01-01

    RNA interference has been described as a powerful genetic tool for gene functional analysis and a promising approach for pest management. However, RNAi efficiency varies significantly among insect species due to distinct RNAi machineries. Lepidopteran insects include a large number of pests as well as model insects, such as the silkworm, Bombyx mori. However, only limited success of in vivo RNAi has been reported in lepidoptera, particularly during the larval stages when the worms feed the most and do the most harm to the host plant. Enhancing the efficiency of larval RNAi in lepidoptera is urgently needed to develop RNAi-based pest management strategies. In the present study, we investigate the function of the conserved RNAi core factor, Argonaute2 (Ago2), in mediating B. mori RNAi efficiency. We demonstrate that introducing BmAgo2 dsRNA inhibits the RNAi response in both BmN cells and embryos. Furthermore, we establish several transgenic silkworm lines to assess the roles of BmAgo2 in larval RNAi. Over-expressing BmAgo2 significantly facilitated both dsRNA-mediated larval RNAi when targeting DsRed using dsRNA injection and shRNA-mediated larval RNAi when targeting BmBlos2 using transgenic shRNA expression. Our results show that BmAgo2 is involved in RNAi in B. mori and provides a promising approach for improving larval RNAi efficiency in B. mori and in lepidopteran insects in general.

  10. The RootScope: a simple high-throughput screening system for quantitating gene expression dynamics in plant roots.

    PubMed

    Kast, Erin J; Nguyen, Minh-Duyen T; Lawrence, Rosalie E; Rabeler, Christina; Kaplinsky, Nicholas J

    2013-10-12

    High temperature stress responses are vital for plant survival. The mechanisms that plants use to sense high temperatures are only partially understood and involve multiple sensing and signaling pathways. Here we describe the development of the RootScope, an automated microscopy system for quantitating heat shock responses in plant roots. The promoter of Hsp17.6 was used to build a Hsp17.6p:GFP transcriptional reporter that is induced by heat shock in Arabidopsis. An automated fluorescence microscopy system which enables multiple roots to be imaged in rapid succession was used to quantitate Hsp17.6p:GFP response dynamics. Hsp17.6p:GFP signal increased with temperature increases from 28°C to 37°C. At 40°C the kinetics and localization of the response are markedly different from those at 37°C. This suggests that different mechanisms mediate heat shock responses above and below 37°C. Finally, we demonstrate that Hsp17.6p:GFP expression exhibits wave like dynamics in growing roots. The RootScope system is a simple and powerful platform for investigating the heat shock response in plants.

  11. The RootScope: a simple high-throughput screening system for quantitating gene expression dynamics in plant roots

    PubMed Central

    2013-01-01

    Background High temperature stress responses are vital for plant survival. The mechanisms that plants use to sense high temperatures are only partially understood and involve multiple sensing and signaling pathways. Here we describe the development of the RootScope, an automated microscopy system for quantitating heat shock responses in plant roots. Results The promoter of Hsp17.6 was used to build a Hsp17.6p:GFP transcriptional reporter that is induced by heat shock in Arabidopsis. An automated fluorescence microscopy system which enables multiple roots to be imaged in rapid succession was used to quantitate Hsp17.6p:GFP response dynamics. Hsp17.6p:GFP signal increased with temperature increases from 28°C to 37°C. At 40°C the kinetics and localization of the response are markedly different from those at 37°C. This suggests that different mechanisms mediate heat shock responses above and below 37°C. Finally, we demonstrate that Hsp17.6p:GFP expression exhibits wave like dynamics in growing roots. Conclusions The RootScope system is a simple and powerful platform for investigating the heat shock response in plants. PMID:24119322

  12. A quantitative screening-level approach to incorporate chemical exposure and risk/safety into alternative assessment evaluations.

    PubMed

    Arnold, Scott M; Greggs, Bill; Goyak, Katy O; Landenberger, Bryce D; Mason, Ann M; Howard, Brett; Zaleski, Rosemary; Howard, Brett; Zaleski, Rosemary T

    2017-03-10

    As the general public and retailers ask for disclosure of chemical ingredients in the marketplace, a number of hazard screening tools were developed to evaluate the so called "greenness" of individual chemical ingredients and/or formulations. The majority of these tools focus only on hazard, often using chemical lists, ignoring the other part of the risk equation: exposure. Using a hazard-only focus can result in regrettable substitutions, changing one chemical ingredient for another that turns out to be more hazardous or shifts the toxicity burden to others. To minimize the incidents of regrettable substitutions, BizNGO describes 'Common Principles' to frame a process for informed substitution. Two of the six principles state reduce hazard and minimize exposure. A number of frameworks have emerged to evaluate and assess alternatives. One framework developed by leading experts under the auspices of the U.S. National Academy of Sciences recommended that hazard and exposure be specifically addressed in the same step when assessing candidate alternatives. For the alternative assessment community, this paper serves as an informational resource for considering exposure in an alternatives assessment using elements of problem formulation; product identity, use, and composition; hazard analysis; exposure analysis; and risk characterization. These conceptual elements build upon practices from government, academia, and industry and are exemplified through two hypothetical case studies demonstrating the questions asked and decisions faced in new product development. These two case studies - inhalation exposure to a generic paint product and environmental exposure to a shampoo rinsed down the drain - demonstrate the criteria, considerations, and methods required to combine exposure models addressing human health and environmental impacts to provide a screening level hazard/exposure (risk) analysis. This paper informs practices for these elements within a comparative risk

  13. Hand-held photoionization instruments for quantitative detection of sarin vapor and for rapid qualitative screening of contaminated objects.

    PubMed

    Smith, Philip A; Lepage, Carmela Jackson; Harrer, Kristin L; Brochu, Paul J

    2007-10-01

    Suitable detectors are needed to support survey needs of incident responders and health care personnel who may receive patients from an incident with exposures to hazardous chemicals. In the health care setting, such a detector would avoid cross-contamination to workers, patients, and to the treatment facility and associated equipment. An ideal survey detector would be sensitive, hand-held, capable of extended battery operation, and would provide a nearly immediate detector response on exposure to a broad range of high-concern chemicals. For responders, important capabilities would include quantitative measurement of gas/vapor contamination, and for both response and health care settings, qualitative detection of contaminated people and objects. In this study, the operating characteristics of photoionization detector (PID) instruments were examined using O-isopropyl methylphosphonofluoridate (sarin) in a laboratory setting. Instrument response factors were calculated for quantitation of airborne sarin, and speed of detector response and recovery were examined with point-contaminated cloth material. By sampling a range of sarin-contaminated air, calculated isobutylene unit response factors for high-and moderate-sensitivity commercial PID instrument types were 11.3 and 14.0 (dry air) and 20.1 and 44.4 (50% relative humidity), respectively. Response of the PID systems was highly correlated to concentration sampled, with R(2) values greater than or equal to 0.997 for all combinations of PID detector type and humidity. While not sensitive enough to warn the unprotected public against a chemical with an extremely low "safe" exposure concentration, quantitation with available PID instruments could be useful to quickly prioritize corrective measures for a PID-detectable chemical. Qualitative survey characteristics were examined for the more sensitive PID tested using a piece of cloth material contaminated by a 1.0 micro L droplet of liquid sarin. Rapid response and

  14. Development of a screening method for genetically modified soybean by plasmid-based quantitative competitive polymerase chain reaction.

    PubMed

    Shimizu, Eri; Kato, Hisashi; Nakagawa, Yuki; Kodama, Takashi; Futo, Satoshi; Minegishi, Yasutaka; Watanabe, Takahiro; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2008-07-23

    A novel type of quantitative competitive polymerase chain reaction (QC-PCR) system for the detection and quantification of the Roundup Ready soybean (RRS) was developed. This system was designed based on the advantage of a fully validated real-time PCR method used for the quantification of RRS in Japan. A plasmid was constructed as a competitor plasmid for the detection and quantification of genetically modified soy, RRS. The plasmid contained the construct-specific sequence of RRS and the taxon-specific sequence of lectin1 (Le1), and both had 21 bp oligonucleotide insertion in the sequences. The plasmid DNA was used as a reference molecule instead of ground seeds, which enabled us to precisely and stably adjust the copy number of targets. The present study demonstrated that the novel plasmid-based QC-PCR method could be a simple and feasible alternative to the real-time PCR method used for the quantification of genetically modified organism contents.

  15. Screening and analysis of Hc-ubq and Hc-gst related to desiccation survival of infective Haemonchus contortus larvae.

    PubMed

    Yang, Yi; Ma, Yujie; Chen, Xueqiu; Guo, Xiaolu; Yan, Baolong; Du, Aifang

    2015-06-15

    Infective Haemonchus contortus larvae (L3s) are able to protect themselves from desiccation. To explore the molecular mechanisms of desiccation survival, mRNA differential display RT-PCR was used to screen differentially expressed genes in L3s upon desiccation, followed by RNAi experiments to define gene functions. In this, 58 differentially expressed transcripts were obtained. Among these, the BF-U01A and CH-U02A fragments represent genes with the highest identity percentage in bioinformatic analysis. They were named Hc-ubq and Hc-gst based on their respective homologous ubiquitin in Caenorhabditis elegans and glutathione S-transferase in H. contortus. Quantitive RT-PCR results indicated that they were both up-regulated in desiccated L3s. Hc-ubq and Hc-gst RNAi in H. contortus showed reduced survival rate of L3s, with unchanged locomotion behavior. Homologous Ce-ubq-2 and Ce-gst-7 RNAi in C. elegans also displayed higher larval death rate. These results suggest that ubq and gst may play important roles in nematode desiccation tolerance. Our study analyzed desiccation resistance related genes in H. contortus L3s, and revealed significant research implications on the mechanisms behind nematode desiccation survival. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Screening biological stains with qPCR versus lateral flow immunochromatographic test strips: a quantitative comparison using analytical figures of merit.

    PubMed

    Oechsle, Crystal Simson; Haddad, Sandra; Sgueglia, Joanne B; Grgicak, Catherine M

    2014-01-01

    Biological fluid identification is an important facet of evidence examination in forensic laboratories worldwide. While identifying bodily fluids may provide insight into which downstream DNA methods to employ, these screening techniques consume a vital portion of the available evidence, are usually qualitative, and rely on visual interpretation. In contrast, qPCR yields information regarding the amount and proportion of amplifiable genetic material. In this study, dilution series of either semen or male saliva were prepared in either buffer or female blood. The samples were subjected to both lateral flow immunochromatographic test strips and qPCR analysis. Analytical figures of merit-including sensitivity, minimum distinguishable signal (MDS) and limit of detection (LOD)-were calculated and compared between methods. By applying the theory of the propagation of random errors, LODs were determined to be 0.05 μL of saliva for the RSID™ Saliva cards, 0.03 μL of saliva for Quantifiler(®) Duo, and 0.001 μL of semen for Quantifiler(®) Duo. In conclusion, quantitative PCR was deemed a viable and effective screening method for subsequent DNA profiling due to its stability in different matrices, sensitivity, and low limits of detection.

  17. Simple and sensitive screening and quantitative determination of 88 psychoactive drugs and their metabolites in blood through LC-MS/MS: application on postmortem samples.

    PubMed

    Sempio, Cristina; Morini, Luca; Vignali, Claudia; Groppi, Angelo

    2014-11-01

    The aim of the study was to develop and validate a simple, sensitive and specific method for the detection and quantitative determination of 88 substances among psychoactive drugs and their metabolites in whole blood, and to apply the procedure to postmortem cases. Samples were consecutively diluted with methanol, acetonitrile and mobile phase. All the molecules were separated and then identified through a liquid chromatographic, tandem mass spectrometric system, and eventually fully validated according to the international guidelines. The method proved to be highly sensitive and specific and all the validation parameters fulfilled the acceptance criteria. In particular linearity was studied in the range LOQ-1000 ng/mL; matrix effects and carry over were negligible and the majority of the compounds assessed to be stable over several freeze and thaw processes. Olanzapine is the most unstable compound. Protryptiline and flupenthixol did not fulfilled acceptance criteria, and although their transitions were kept on the instrumental settings, they were not considered for the fully validation. The method was applied to several postmortem cases, and the results were compared to the GC-MS systematic toxicological analysis currently in use in our laboratory, assessing to be a good complementary procedure and providing a better sensitivity. The LC-MS/MS method could be easily applicable to routine analyses of postmortem samples, as well as to a screening procedure for clinical purposes; however it should be carried out in combination with a general unknown screening method. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The Discovery of Geranylgeranyltransferase-I Inhibitors with Novel Scaffolds by the Means of Quantitative Structure-Activity Relationship Modeling, Virtual Screening, and Experimental Validation

    PubMed Central

    Peterson, Yuri K.; Wang, Xiang S.; Casey, Patrick J.; Tropsha, Alexander

    2009-01-01

    Geranylgeranylation is critical to the function of several proteins including Rho, Rap1, Rac, Cdc42, and G-protein gamma subunits. Geranylgeranyltransferase type I (GGTase-I) inhibitors (GGTIs) have therapeutic potential to treat inflammation, multiple sclerosis, atherosclerosis, and many other diseases. Following our standard QSAR modeling workflow, we have developed and rigorously validated Quantitative Structure Activity Relationship (QSAR) models for 48 GGTIs using variable selection k nearest neighbor (kNN), automated lazy learning (ALL), and partial least square (PLS) methods. The QSAR models were employed for virtual screening of 9.5 million commercially available chemicals yielding 47 diverse computational hits. Seven of these compounds with novel scaffolds and high predicted GGTase-I inhibitory activities were tested in vitro, and all were found to be bona fide and selective micromolar inhibitors. Notably, these novel hits could not be identified using traditional similarity search. These data demonstrate that rigorously developed QSAR models can serve as reliable virtual screening tools. PMID:19537691

  19. A novel high-throughput and quantitative method based on visible color shifts for screening Bacillus subtilis THY-15 for surfactin production.

    PubMed

    Yang, Huan; Yu, Huimin; Shen, Zhongyao

    2015-08-01

    A novel chromatic visible screening method using bromothymol blue (BTB) as a color indicator and cetylpyridinium chloride (CPC) as a mediator was constructed to obtain the high titer surfactin-producing strains. The reliability and quantification accuracy of color shift were also confirmed. Regular chromatic responses from faint yellow-green to dark green and bright blue reflected the different ranges of surfactin concentrations. Moreover, the quantitative accuracy of surfactin quantification in the range of 100-500 mg/L was verified by reverse-phase high-performance liquid chromatography (RP-HPLC) using different fermentation supernatant samples. Using this CPC-BTB method, a superior surfactin producer, Bacillus subtilis THY-15, was successfully screened. The producer's surfactin (Srf) titer reached 1240 mg/L. RP-HPLC analysis of THY-15 revealed four surfactin isoforms. As identified by amino acid analysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, the isoforms of surfactin in fraction 1, 2 and 4 had the same circular peptide sequence of Glu-Leu-Leu-Val-Asp-Leu-Leu but different iso-C13, C14 and C15 fatty acid chains, but the isoform in fraction 3 possessed a special peptide sequence of Glu-Val-Leu-Leu-Asp-Leu-Val.

  20. Application of Quantitative Structure–Activity Relationship Models of 5-HT1A Receptor Binding to Virtual Screening Identifies Novel and Potent 5-HT1A Ligands

    PubMed Central

    2015-01-01

    The 5-hydroxytryptamine 1A (5-HT1A) serotonin receptor has been an attractive target for treating mood and anxiety disorders such as schizophrenia. We have developed binary classification quantitative structure–activity relationship (QSAR) models of 5-HT1A receptor binding activity using data retrieved from the PDSP Ki database. The prediction accuracy of these models was estimated by external 5-fold cross-validation as well as using an additional validation set comprising 66 structurally distinct compounds from the World of Molecular Bioactivity database. These validated models were then used to mine three major types of chemical screening libraries, i.e., drug-like libraries, GPCR targeted libraries, and diversity libraries, to identify novel computational hits. The five best hits from each class of libraries were chosen for further experimental testing in radioligand binding assays, and nine of the 15 hits were confirmed to be active experimentally with binding affinity better than 10 μM. The most active compound, Lysergol, from the diversity library showed very high binding affinity (Ki) of 2.3 nM against 5-HT1A receptor. The novel 5-HT1A actives identified with the QSAR-based virtual screening approach could be potentially developed as novel anxiolytics or potential antischizophrenic drugs. PMID:24410373

  1. Clinical validation of a type-specific real-time quantitative human papillomavirus PCR against the performance of hybrid capture 2 for the purpose of cervical cancer screening.

    PubMed

    Depuydt, C E; Benoy, I H; Beert, J F A; Criel, A M; Bogers, J J; Arbyn, M

    2012-12-01

    To be acceptable for use in cervical cancer screening, a new assay that detects DNA of high-risk human papillomavirus (hrHPV) types must demonstrate high reproducibility and performance not inferior to that of a clinically validated HPV test. In the present study, a real-time quantitative PCR (qPCR) assay targeting the E6 and E7 genes of hrHPV was compared with Hybrid Capture 2 (hc2) in a Belgian cervical cancer screening setting. In women >30 years old, the sensitivity and specificity for intraepithelial neoplasias of grade 2 or worse (93 cases of cervical intraepithelial neoplasias of grade 2 or worse (CIN2+) and 1,207 cases of no CIN or CIN1) were 93.6% and 95.6%, respectively, and those of hc2 were 83.9% and 94.5%, respectively {relative sensitivity of qPCR/hc2 = 1.12 [95% confidence interval (CI), 1.01 to 1.23]; relative specificity = 1.01 [95% CI, 0.99 to 1.03]}. A score test showed that the sensitivity (P < 0.0001) and specificity (P < 0.0001) of the qPCR assay were not inferior to those of hc2 at the required thresholds of 90% and 98%, respectively. The overall agreement of hrHPV positivity between the two runs of the qPCR tests was 98.7% (95% CI, 97.5 to 99.4%), with a kappa value of 0.96 (95% CI, 0.83 to 1.00). The qPCR assay used in this study can be considered a reliable HPV assay that fulfills the clinical validation criteria defined for use in cervical cancer screening.

  2. High-throughput multiplexed T-cell-receptor excision circle quantitative PCR assay with internal controls for detection of severe combined immunodeficiency in population-based newborn screening.

    PubMed

    Gerstel-Thompson, Jacalyn L; Wilkey, Jonathan F; Baptiste, Jennifer C; Navas, Jennifer S; Pai, Sung-Yun; Pass, Kenneth A; Eaton, Roger B; Comeau, Anne Marie

    2010-09-01

    Real-time quantitative PCR (qPCR) targeting a specific marker of functional T cells, the T-cell-receptor excision circle (TREC), detects the absence of functional T cells and has a demonstrated clinical validity for detecting severe combined immunodeficiency (SCID) in infants. There is need for a qPCR TREC assay with an internal control to monitor DNA quality and the relative cellular content of the particular dried blood spot punch sampled in each reaction. The utility of the qPCR TREC assay would also be far improved if more tests could be performed on the same newborn screening sample. We approached the multiplexing of qPCR for TREC by attenuating the reaction for the reference gene, with focus on maintaining tight quality assurance for reproducible slopes and for prevention of sample-to-sample cross contamination. Statewide newborn screening for SCID using the multiplexed assay was implemented, and quality-assurance data were recorded. The multiplex qPCR TREC assay showed nearly 100% amplification efficiency for each of the TREC and reference sequences, clinical validity for multiple forms of SCID, and an analytic limit of detection consistent with prevention of contamination. The eluate and residual ghost from a 3.2-mm dried blood spot could be used as source material for multiplexed immunoassays and multiplexed DNA tests (Multiplex Plus), with no disruption to the multiplex TREC qPCR. Population-based SCID newborn screening programs should consider multiplexing for quality assurance purposes. Potential benefits of using Multiplex Plus include the ability to perform multianalyte profiling.

  3. A Rapid, Semi-Quantitative Assay to Screen for Modulators of Alpha-Synuclein Oligomerization Ex vivo

    PubMed Central

    Delenclos, Marion; Trendafilova, Teodora; Jones, Daryl R.; Moussaud, Simon; Baine, Ann-Marie; Yue, Mei; Hirst, Warren D.; McLean, Pamela J.

    2016-01-01

    Alpha synuclein (αsyn) aggregates are associated with the pathogenesis of Parkinson's disease and others related disorders. Although modulation of αsyn aggregation is an attractive therapeutic target, new powerful methodologies are desperately needed to facilitate in vivo screening of novel therapeutics. Here, we describe an in vivo rodent model with the unique ability to rapidly track αsyn-αsyn interactions and thus oligomerization using a bioluminescent protein complementation strategy that monitors spatial and temporal αsyn oligomerization ex vivo. We find that αsyn forms oligomers in vivo as early as 1 week after stereotactic AAV injection into rat substantia nigra. Strikingly, although abundant αsyn expression is also detected in striatum at 1 week, no αsyn oligomers are detected at this time point. By 4 weeks, oligomerization of αsyn is detected in both striatum and substantia nigra homogenates. Moreover, in a proof-of-principle experiment, the effect of a previously described Hsp90 inhibitor known to prevent αsyn oligomer formation, demonstrates the utility of this rapid and sensitive animal model to monitor αsyn oligomerization status in the rat brain. PMID:26834539

  4. A Rapid, Semi-Quantitative Assay to Screen for Modulators of Alpha-Synuclein Oligomerization Ex vivo.

    PubMed

    Delenclos, Marion; Trendafilova, Teodora; Jones, Daryl R; Moussaud, Simon; Baine, Ann-Marie; Yue, Mei; Hirst, Warren D; McLean, Pamela J

    2015-01-01

    Alpha synuclein (αsyn) aggregates are associated with the pathogenesis of Parkinson's disease and others related disorders. Although modulation of αsyn aggregation is an attractive therapeutic target, new powerful methodologies are desperately needed to facilitate in vivo screening of novel therapeutics. Here, we describe an in vivo rodent model with the unique ability to rapidly track αsyn-αsyn interactions and thus oligomerization using a bioluminescent protein complementation strategy that monitors spatial and temporal αsyn oligomerization ex vivo. We find that αsyn forms oligomers in vivo as early as 1 week after stereotactic AAV injection into rat substantia nigra. Strikingly, although abundant αsyn expression is also detected in striatum at 1 week, no αsyn oligomers are detected at this time point. By 4 weeks, oligomerization of αsyn is detected in both striatum and substantia nigra homogenates. Moreover, in a proof-of-principle experiment, the effect of a previously described Hsp90 inhibitor known to prevent αsyn oligomer formation, demonstrates the utility of this rapid and sensitive animal model to monitor αsyn oligomerization status in the rat brain.

  5. Interspecies quantitative structure-activity relationships (QSARs) for eco-toxicity screening of chemicals: the role of physicochemical properties.

    PubMed

    Furuhama, A; Hasunuma, K; Aoki, Y

    2015-01-01

    In addition to molecular structure profiles, descriptors based on physicochemical properties are useful for explaining the eco-toxicities of chemicals. In a previous study we reported that a criterion based on the difference between the partition coefficient (log POW) and distribution coefficient (log D) values of chemicals enabled us to identify aromatic amines and phenols for which interspecies relationships with strong correlations could be developed for fish-daphnid and algal-daphnid toxicities. The chemicals that met the log D-based criterion were expected to have similar toxicity mechanisms (related to membrane penetration). Here, we investigated the applicability of log D-based criteria to the eco-toxicity of other kinds of chemicals, including aliphatic compounds. At pH 10, use of a log POW - log D > 0 criterion and omission of outliers resulted in the selection of more than 100 chemicals whose acute fish toxicities or algal growth inhibition toxicities were almost equal to their acute daphnid toxicities. The advantage of log D-based criteria is that they allow for simple, rapid screening and prioritizing of chemicals. However, inorganic molecules and chemicals containing certain structural elements cannot be evaluated, because calculated log D values are unavailable.

  6. Identification of novel transcriptional regulators of PKA subunits in Saccharomyces cerevisiae by quantitative promoter-reporter screening.

    PubMed

    Pautasso, Constanza; Reca, Sol; Chatfield-Reed, Kate; Chua, Gordon; Galello, Fiorella; Portela, Paula; Zaremberg, Vanina; Rossi, Silvia

    2016-08-01

    The cAMP-dependent protein kinase (PKA) signaling is a broad pathway that plays important roles in the transduction of environmental signals triggering precise physiological responses. However, how PKA achieves the cAMP-signal transduction specificity is still in study. The regulation of expression of subunits of PKA should contribute to the signal specificity. Saccharomyces cerevisiae PKA holoenzyme contains two catalytic subunits encoded by TPK1, TPK2 and TPK3 genes, and two regulatory subunits encoded by BCY1 gene. We studied the activity of these gene promoters using a fluorescent reporter synthetic genetic array screen, with the goal of systematically identifying novel regulators of expression of PKA subunits. Gene ontology analysis of the identified modulators showed enrichment not only in the category of transcriptional regulators, but also in less expected categories such as lipid and phosphate metabolism. Inositol, choline and phosphate were identified as novel upstream signals that regulate transcription of PKA subunit genes. The results support the role of transcription regulation of PKA subunits in cAMP specificity signaling. Interestingly, known targets of PKA phosphorylation are associated with the identified pathways opening the possibility of a reciprocal regulation. PKA would be coordinating different metabolic pathways and these processes would in turn regulate expression of the kinase subunits. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Microchip electrophoresis-SDS methods with high-resolution and silver stain sensitivity for quality screening and quantitation of protein products.

    PubMed

    Han, Hongling; Chen, Xiaoyu

    2012-03-01

    Two microchip electrophoresis (ME)-SDS methods have been developed for high throughput quantitation and quality screening of protein products. Both methods utilize a commercial microchip instrument to separate dodecyl sulfate-coated proteins within 1 min. In the high-resolution ME-SDS method, improved separation selectivity is achieved using a mixture of sieving polymers. Proteins of similar sizes, such as different fragment antigen-binding (Fab) assemblies can be readily resolved and individually quantified. A high-sensitivity ME-SDS method was also developed with sensitivity comparable to that of SDS-PAGE with silver staining. In this method, protein molecules are derivatized with a fluorescence reagent prior to analysis. LIF detection of the covalently attached fluorophore enables accurate quantitation of low-expressing proteins and detection of minor species at 0.04% level (1 ng/mL loading concentration). Both the high-resolution and the high-sensitivity ME-SDS methods can be applied to crude fermentation samples. The utilities of these methods in process development and formulation stability study are presented. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. RNAi in fission yeast finds new targets and new ways of targeting at the nuclear periphery.

    PubMed

    Holoch, Daniel; Moazed, Danesh

    2012-04-15

    RNAi in Schizosaccharomyces pombe is critical for centromeric heterochromatin formation. It has remained unclear, however, whether RNAi also regulates the expression of protein-coding loci. In the April 1, 2012, issue of Genes & Development, Woolcock and colleagues (pp. 683-667) reported an elegant mechanism for the conditional RNAi-mediated repression of stress response genes involving association with Dcr1 at the nuclear pore. Unexpectedly, the initial targeting of RNAi components to these genes does not require small RNA guides.

  9. RNAi at work: Targeting invertebrate pests and beneficial organisms' diseases

    USDA-ARS?s Scientific Manuscript database

    Invertebrates present two types of large scale RNAi application opportunities: pest control and beneficial insect health. The former involves the introduction of sustainable applications to keep pest populations low, and the latter represents the challenge of keeping beneficial organisms healthy. RN...

  10. Combinatorial RNAi Against HIV-1 Using Extended Short Hairpin RNAs

    PubMed Central

    Liu, Ying Poi; von Eije, Karin Jasmijn; Schopman, Nick CT; Westerink, Jan-Tinus; Brake, Olivier ter; Haasnoot, Joost; Berkhout, Ben

    2009-01-01

    RNA interference (RNAi) is a widely used gene suppression tool that holds great promise as a novel antiviral approach. However, for error-prone viruses including human immunodeficiency virus type 1(HIV-1), a combinatorial approach against multiple conserved sequences is required to prevent the emergence of RNAi-resistant escape viruses. Previously, we constructed extended short hairpin RNAs (e-shRNAs) that encode two potent small interfering RNAs (siRNAs) (e2-shRNAs). We showed that a minimal hairpin stem length of 43 base pairs (bp) is needed to obtain two functional siRNAs. In this study, we elaborated on the e2-shRNA design to make e-shRNAs encoding three or four antiviral siRNAs. We demonstrate that siRNA production and the antiviral effect is optimal for e3-shRNA of 66 bp. Further extension of the hairpin stem results in a loss of RNAi activity. The same was observed for long hairpin RNAs (lhRNAs) that target consecutive HIV-1 sequences. Importantly, we show that HIV-1 replication is durably inhibited in T cells stably transduced with a lentiviral vector containing the e3-shRNA expression cassette. These results show that e-shRNAs can be used as a combinatorial RNAi approach to target error-prone viruses. PMID:19672247

  11. Non-transgenic RNAi technology to control insects on citrus

    USDA-ARS?s Scientific Manuscript database

    This research demonstrated a non-transgenic delivery method for ribonucleic acid interference, RNAi, that reduced fitness as measured in increased mortality over time, of two insect pests of citrus, ie. psyllids and leafhoppers. The Asian citrus psyllid transmits a deadly plant-infecting bacterium o...

  12. The interaction of fungi with the environment orchestrated by RNAi.

    PubMed

    Villalobos-Escobedo, José Manuel; Herrera-Estrella, Alfredo; Carreras-Villaseñor, Nohemí

    2016-01-01

    The fungal kingdom has been key in the investigation of the biogenesis and function of small RNAs (sRNAs). The discovery of phenomena such as quelling in Neurospora crassa represents pioneering work in the identification of the main elements of the RNA interference (RNAi) machinery. Recent discoveries in the regulatory mechanisms in some yeast and filamentous fungi are helping us reach a deeper understanding of the transcriptional and post-transcriptional gene-silencing mechanisms involved in genome protection against viral infections, DNA damage and transposon activity. Although most of these mechanisms are reasonably well understood, their role in the physiology, response to the environment and interaction of fungi with other organisms had remained elusive. Nevertheless, studies in fungi such as Mucor circinelloides, Magnaporthe oryzae, Cryptococcus neoformans, Trichoderma atroviride, Botrytis cinerea and others have started to shed light on the relevance of the RNAi pathway. In these fungi gene regulation by RNAi is important for growth, reproduction, control of viral infections and transposon activity, as well as in the development of antibiotic resistance and interactions with their hosts. Moreover, the increasing number of reports of the discovery of microRNA-like RNAs in fungi under different conditions highlights the importance of fungi as models for understanding adaptation to the environment using regulation by sRNAs. The goal of this review is to provide the reader with an up-to-date overview of the importance of RNAi in the interaction of fungi with their environment. © 2016 by The Mycological Society of America.

  13. Efficiency of gene silencing in Arabidopsis: direct inverted repeats vs. transitive RNAi vectors.

    SciTech Connect

    Filichkin, Sergei A; DiFazio, Steven P; Brunner, Amy M; Davis, John M; Yang, Zamin Koo; Kalluri, Udaya C; Arias, Renee S; Etherington, Elizabeth; Tuskan, Gerald A; Strauss, S

    2007-01-01

    We investigated the efficiency of RNA interference (RNAi) in Arabidopsis using transitive and homologous inverted repeat (hIR) vectors. hIR constructs carry self-complementary intron-spliced fragments of the target gene whereas transitive vectors have the target sequence fragment adjacent to an intron-spliced, inverted repeat of heterologous origin. Both transitive and hIR constructs facilitated specific and heritable silencing in the three genes studied (AP1, ETTIN and TTG1). Both types of vectors produced a phenotypic series that phenocopied reduction of function mutants for the respective target gene. The hIR yielded up to fourfold higher proportions of events with strongly manifested reduction of function phenotypes compared to transitive RNAi. We further investigated the efficiency and potential off-target effects of AP1 silencing by both types of vectors using genome-scale microarrays and quantitative RT-PCR. The depletion of AP1 transcripts coincided with reduction of function phenotypic changes among both hIR and transitive lines and also showed similar expression patterns among differentially regulated genes. We did not detect significant silencing directed against homologous potential off-target genes when constructs were designed with minimal sequence similarity. Both hIR and transitive methods are useful tools in plant biotechnology and genomics. The choice of vector will depend on specific objectives such as cloning throughput, number of events and degree of suppression required.

  14. Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells

    PubMed Central

    Kalantari, Roya; Hicks, Jessica A.; Li, Liande; Gagnon, Keith T.; Sridhara, Viswanadham; Lemoff, Andrew; Mirzaei, Hamid; Corey, David R.

    2016-01-01

    Argonaute 2 (AGO2), the catalytic engine of RNAi, is typically associated with inhibition of translation in the cytoplasm. AGO2 has also been implicated in nuclear processes including transcription and splicing. There has been little insight into AGO2's nuclear interactions or how they might differ relative to cytoplasm. Here we investigate the interactions of cytoplasmic and nuclear AGO2 using semi-quantitative mass spectrometry. Mass spectrometry often reveals long lists of candidate proteins, complicating efforts to rigorously discriminate true interacting partners from artifacts. We prioritized candidates using orthogonal analytical strategies that compare replicate mass spectra of proteins associated with Flag-tagged and endogenous AGO2. Interactions with TRNC6A, TRNC6B, TNRC6C, and AGO3 are conserved between nuclei and cytoplasm. TAR binding protein interacted stably with cytoplasmic AGO2 but not nuclear AGO2, consistent with strand loading in the cytoplasm. Our data suggest that interactions between functionally important components of RNAi machinery are conserved between the nucleus and cytoplasm but that accessory proteins differ. Orthogonal analysis of mass spectra is a powerful approach to streamlining identification of protein partners. PMID:27198507

  15. Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells.

    PubMed

    Kalantari, Roya; Hicks, Jessica A; Li, Liande; Gagnon, Keith T; Sridhara, Viswanadham; Lemoff, Andrew; Mirzaei, Hamid; Corey, David R

    2016-07-01

    Argonaute 2 (AGO2), the catalytic engine of RNAi, is typically associated with inhibition of translation in the cytoplasm. AGO2 has also been implicated in nuclear processes including transcription and splicing. There has been little insight into AGO2's nuclear interactions or how they might differ relative to cytoplasm. Here we investigate the interactions of cytoplasmic and nuclear AGO2 using semi-quantitative mass spectrometry. Mass spectrometry often reveals long lists of candidate proteins, complicating efforts to rigorously discriminate true interacting partners from artifacts. We prioritized candidates using orthogonal analytical strategies that compare replicate mass spectra of proteins associated with Flag-tagged and endogenous AGO2. Interactions with TRNC6A, TRNC6B, TNRC6C, and AGO3 are conserved between nuclei and cytoplasm. TAR binding protein interacted stably with cytoplasmic AGO2 but not nuclear AGO2, consistent with strand loading in the cytoplasm. Our data suggest that interactions between functionally important components of RNAi machinery are conserved between the nucleus and cytoplasm but that accessory proteins differ. Orthogonal analysis of mass spectra is a powerful approach to streamlining identification of protein partners. © 2016 Kalantari et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. RNAi-mediated resistance to whitefly (Bemisia tabaci) in genetically engineered lettuce (Lactuca sativa).

    PubMed

    Ibrahim, Abdulrazak B; Monteiro, Tatiane R; Cabral, Glaucia B; Aragão, Francisco J L

    2017-07-15

    RNA interference (RNAi)-based transgenic technologies have evolved as potent biochemical tools for silencing specific genes of plant pathogens and pests. The approach has been demonstrated to be useful in silencing genes in insect species. Here, we report on the successful construction of RNAi-based plasmid containing an interfering cassette designed to generate dsRNAs that target a novel v-ATPase transcript in whitefly (Bemisia tabaci), an important agricultural pest in tropical and sub-tropical regions. The presence of the transgene was confirmed in T0 and T1 generations of transgenic lettuce lines, segregating in a Mendelian fashion. Seven lines were infested with whiteflies and monitored over a period of 32 days. Analysis of mortality showed that within five days of feeding, insects on transgenic plants showed a mortality rate of 83.8-98.1%. In addition, a reduced number of eggs (95 fold less) was observed in flies feeding on transgenic lettuce plants than insects on control lines. Quantitative reverse transcription PCR showed decreased expression level of endogenous v-ATPase gene in whiteflies feeding on transgenic plants. This technology is a foundation for the production of whitefly-resistant commercial crops, improving agricultural sustainability and food security, reducing the use of more environmentally aggressive methods of pest control.

  17. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy.

    PubMed

    Guo, Baoshan; Lei, Cheng; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Jiang, Yiyue; Tanaka, Yo; Ozeki, Yasuyuki; Goda, Keisuke

    2017-04-11

    The development of reliable, sustainable, and economical sources of alternative fuels to petroleum is required to tackle the global energy crisis. One such alternative is microalgal biofuel, which is expected to play a key role in reducing the detrimental effects of global warming as microalgae absorb atmospheric CO2 via photosynthesis. Unfortunately, conventional analytical methods only provide population-averaged lipid amounts and fail to characterize a diverse population of microalgal cells with single-cell resolution in a non-invasive and interference-free manner. Here high-throughput label-free single-cell screening of lipid-producing microalgal cells with optofluidic time-stretch quantitative phase microscopy was demonstrated. In particular, Euglena gracilis, an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement), within lipid droplets was investigated. The optofluidic time-stretch quantitative phase microscope is based on an integration of a hydrodynamic-focusing microfluidic chip, an optical time-stretch quantitative phase microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase maps of every single cell at a high throughput of 10,000 cells/s, enabling accurate cell classification without the need for fluorescent staining. Specifically, the dataset was used to characterize heterogeneous populations of E. gracilis cells under two different culture conditions (nitrogen-sufficient and nitrogen-deficient) and achieve the cell classification with an error rate of only 2.15%. The method holds promise as an effective analytical tool for microalgae-based biofuel production. © 2017 International Society for Advancement of Cytometry.

  18. Risk assessment of high-energy chemicals by in vitro toxicity screening and quantitative structure-activity relationships.

    PubMed

    Trohalaki, Steven; Zellmer, Robert J; Pachter, Ruth; Hussain, Saber M; Frazier, John M

    2002-08-01

    Hydrazine propellants pose a substantial operational concern to the U.S. Air Force and to the aerospace industry because of their toxicity. In our continuing efforts to develop methods for the prediction of the toxicological response to such materials, we have measured in vitro toxicity endpoints for a series of high-energy chemicals (HECs) that were recently proposed as propellants. The HECs considered are structurally diverse and can be classified into four chemical types (hydrazine-based, amino-based, triazoles, and a quaternary ammonium salt), although most are hydrazine derivatives. We measured the following endpoints in primary cultures of isolated rat hepatocytes: mitochondrial function (MTT), lactate dehydrogenase leakage (LDH), generation of reactive oxygen species (ROS), and total glutathione content (GSH). In several instances, effective concentrations (EC) were indeterminate, and only lower limits to the measured endpoints could be ascertained. Using molecular descriptors calculated with a semiempirical molecular orbital method, quantitative structure-activity relationships (QSARs) were derived for MTT (EC25) and for GSH (EC50). Correlation coefficients for 2- and 3-parameter QSARs of about 0.9 enable us to predict the toxicity for similar compounds. Furthermore, except in one case, predicted EC values for the uncertain endpoints were consistent with experiment. Descriptors comprising the QSARs for MTT were consistent with the biophysical mechanism of toxic response found experimentally for hydrazine derivatives. Application of our derived QSARs will assist in predicting toxicity for newly proposed propellants.

  19. Mosquito and Drosophila entomobirnaviruses suppress dsRNA- and siRNA-induced RNAi.

    PubMed

    van Cleef, Koen W R; van Mierlo, Joël T; Miesen, Pascal; Overheul, Gijs J; Fros, Jelke J; Schuster, Susan; Marklewitz, Marco; Pijlman, Gorben P; Junglen, Sandra; van Rij, Ronald P

    2014-07-01

    RNA interference (RNAi) is a crucial antiviral defense mechanism in insects, including the major mosquito species that transmit important human viruses. To counteract the potent antiviral RNAi pathway, insect viruses encode RNAi suppressors. However, whether mosquito-specific viruses suppress RNAi remains unclear. We therefore set out to study RNAi suppression by Culex Y virus (CYV), a mosquito-specific virus of the Birnaviridae family that was recently isolated from Culex pipiens mosquitoes. We found that the Culex RNAi machinery processes CYV double-stranded RNA (dsRNA) into viral small interfering RNAs (vsiRNAs). Furthermore, we show that RNAi is suppressed in CYV-infected cells and that the viral VP3 protein is responsible for RNAi antagonism. We demonstrate that VP3 can functionally replace B2, the well-characterized RNAi suppressor of Flock House virus. VP3 was found to bind long dsRNA as well as siRNAs and interfered with Dicer-2-mediated cleavage of long dsRNA into siRNAs. Slicing of target RNAs by pre-assembled RNA-induced silencing complexes was not affected by VP3. Finally, we show that the RNAi-suppressive activity of VP3 is conserved in Drosophila X virus, a birnavirus that persistently infects Drosophila cell cultures. Together, our data indicate that mosquito-specific viruses may encode RNAi antagonists to suppress antiviral RNAi.

  20. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design.

    PubMed

    Smith, Justin D; Suresh, Sundari; Schlecht, Ulrich; Wu, Manhong; Wagih, Omar; Peltz, Gary; Davis, Ronald W; Steinmetz, Lars M; Parts, Leopold; St Onge, Robert P

    2016-03-08

    Genome-scale CRISPR interference (CRISPRi) has been used in human cell lines; however, the features of effective guide RNAs (gRNAs) in different organisms have not been well characterized. Here, we define rules that determine gRNA effectiveness for transcriptional repression in Saccharomyces cerevisiae. We create an inducible single plasmid CRISPRi system for gene repression in yeast, and use it to analyze fitness effects of gRNAs under 18 small molecule treatments. Our approach correctly identifies previously described chemical-genetic interactions, as well as a new mechanism of suppressing fluconazole toxicity by repression of the ERG25 gene. Assessment of multiple target loci across treatments using gRNA libraries allows us to determine generalizable features associated with gRNA efficacy. Guides that target regions with low nucleosome occupancy and high chromatin accessibility are clearly more effective. We also find that the best region to target gRNAs is between the transcription start site (TSS) and 200 bp upstream of the TSS. Finally, unlike nuclease-proficient Cas9 in human cells, the specificity of truncated gRNAs (18 nt of complementarity to the target) is not clearly superior to full-length gRNAs (20 nt of complementarity), as truncated gRNAs are generally less potent against both mismatched and perfectly matched targets. Our results establish a powerful functional and chemical genomics screening method and provide guidelines for designing effective gRNAs, which consider chromatin state and position relative to the target gene TSS. These findings will enable effective library design and genome-wide programmable gene repression in many genetic backgrounds.

  1. An optimized lentiviral vector system for conditional RNAi and efficient cloning of microRNA embedded short hairpin RNA libraries.

    PubMed

    Adams, Felix F; Heckl, Dirk; Hoffmann, Thomas; Talbot, Steven R; Kloos, Arnold; Thol, Felicitas; Heuser, Michael; Zuber, Johannes; Schambach, Axel; Schwarzer, Adrian

    2017-09-01

    RNA interference (RNAi) and CRISPR-Cas9-based screening systems have emerged as powerful and complementary tools to unravel genetic dependencies through systematic gain- and loss-of-function studies. In recent years, a series of technical advances helped to enhance the performance of virally delivered RNAi. For instance, the incorporation of short hairpin RNAs (shRNAs) into endogenous microRNA contexts (shRNAmiRs) allows the use of Tet-regulated promoters for synchronous onset of gene knockdown and precise interrogation of gene dosage effects. However, remaining challenges include lack of efficient cloning strategies, inconsistent knockdown potencies and leaky expression. Here, we present a simple, one-step cloning approach for rapid and efficient cloning of miR-30 shRNAmiR libraries. We combined a human miR-30 backbone retaining native flanking sequences with an optimized all-in-one lentiviral vector system for conditional RNAi to generate a versatile toolbox characterized by higher doxycycline sensitivity, reduced leakiness and enhanced titer. Furthermore, refinement of existing shRNA design rules resulted in substantially improved prediction of powerful shRNAs. Our approach was validated by accurate quantification of the knockdown potency of over 250 single shRNAmiRs. To facilitate access and use by the scientific community, an online tool was developed for the automated design of refined shRNA-coding oligonucleotides ready for cloning into our system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. ELLI-1, a novel germline protein, modulates RNAi activity and P-granule accumulation in Caenorhabditis elegans.

    PubMed

    Andralojc, Karolina M; Campbell, Anne C; Kelly, Ashley L; Terrey, Markus; Tanner, Paige C; Gans, Ian M; Senter-Zapata, Michael J; Khokhar, Eraj S; Updike, Dustin L

    2017-02-01

    Germ cells contain non-membrane bound cytoplasmic organelles that help maintain germline integrity. In C. elegans they are called P granules; without them, the germline undergoes partial masculinization and aberrant differentiation. One key P-granule component is the Argonaute CSR-1, a small-RNA binding protein that antagonizes accumulation of sperm-specific transcripts in developing oocytes and fine-tunes expression of proteins critical to early embryogenesis. Loss of CSR-1 complex components results in a very specific, enlarged P-granule phenotype. In a forward screen to identify mutants with abnormal P granules, ten alleles were recovered with a csr-1 P-granule phenotype, eight of which contain mutations in known components of the CSR-1 complex (csr-1, ego-1, ekl-1, and drh-3). The remaining two alleles are in a novel gene now called elli-1 (enlarged germline granules). ELLI-1 is first expressed in primordial germ cells during mid-embryogenesis, and continues to be expressed in the adult germline. While ELLI-1 forms cytoplasmic aggregates, they occasionally dock, but do not co-localize with P granules. Instead, the majority of ELLI-1 aggregates accumulate in the shared germline cytoplasm. In elli-1 mutants, several genes that promote RNAi and P-granule accumulation are upregulated, and embryonic lethality, sterility, and RNAi resistance in a hypomorphic drh-3 allele is enhanced, suggesting that ELLI-1 functions with CSR-1 to modulate RNAi activity, P-granule accumulation, and post-transcriptional expression in the germline.

  3. A Genome-wide Survey and Systematic RNAi-based Characterization of Helicase-like Genes in Caenorhabditis elegans

    PubMed Central

    Eki, Toshihiko; Ishihara, Takeshi; Katsura, Isao; Hanaoka, Fumio

    2007-01-01

    Helicase-like proteins play a crucial role in nucleic acid- and chromatin-mediated reactions. In this study, we identified 134 helicase-like proteins in the nematode Caenorhabditis elegans and classified the proteins into 10 known subfamilies and a group of orphan genes on the basis of sequence similarity. We characterized loss-of-function phenotypes in RNA interference (RNAi)-treated animals for helicase family members, using the RNAi feeding method, and found several previously unreported phenotypes. Fifty-one (39.5%) of 129 genes tested showed development- or growth-defect phenotypes, and many of these genes were putative nematode homologs of essential genes in a unicellular eukaryote, budding yeast, suggesting conservation of these essential proteins in both species. Comparative analyses between these species identified evolutionarily diverged nematode proteins as well as conserved family members. Chromosome mapping of the nematode genes revealed 10 pairs of putative duplicated genes and clusters of C. elegans-specific SNF2-like genes and Helitrons. Analyses of transcriptional profile data revealed a predominantly oogenesis- and germline-enriched expression of many helicase-like genes. Finally, we identified the D2005.5(drh-3) gene in an RNAi-based screen for genes involved in resistance to X-ray irradiation. Analysis of DRH-3 will clarify the potentially novel mechanism by which it protects against X-ray-induced damage in C. elegans. PMID:17921522

  4. Role of RNA Interference (RNAi) in the Moss Physcomitrella patens

    PubMed Central

    Arif, Muhammad Asif; Frank, Wolfgang; Khraiwesh, Basel

    2013-01-01

    RNA interference (RNAi) is a mechanism that regulates genes by either transcriptional (TGS) or posttranscriptional gene silencing (PTGS), required for genome maintenance and proper development of an organism. Small non-coding RNAs are the key players in RNAi and have been intensively studied in eukaryotes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs are synthesized from a short hairpin structure while siRNAs are derived from long double-stranded RNAs (dsRNA). Both miRNA and siRNAs control the expression of cognate target RNAs by binding to reverse complementary sequences mediating cleavage or translational inhibition of the target RNA. They also act on the DNA and cause epigenetic changes such as DNA methylation and histone modifications. In the last years, the analysis of plant RNAi pathways was extended to the bryophyte Physcomitrella patens, a non-flowering, non-vascular ancient land plant that diverged from the lineage of seed plants approximately 450 million years ago. Based on a number of characteristic features and its phylogenetic key position in land plant evolution P. patens emerged as a plant model species to address basic as well as applied topics in plant biology. Here we summarize the current knowledge on the role of RNAi in P. patens that shows functional overlap with RNAi pathways from seed plants, and also unique features specific to this species. PMID:23344055

  5. Antifungal drug resistance evoked via RNAi-dependent epimutations.

    PubMed

    Calo, Silvia; Shertz-Wall, Cecelia; Lee, Soo Chan; Bastidas, Robert J; Nicolás, Francisco E; Granek, Joshua A; Mieczkowski, Piotr; Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M; Cardenas, Maria E; Heitman, Joseph

    2014-09-25

    Microorganisms evolve via a range of mechanisms that may include or involve sexual/parasexual reproduction, mutators, aneuploidy, Hsp90 and even prions. Mechanisms that may seem detrimental can be repurposed to generate diversity. Here we show that the human fungal pathogen Mucor circinelloides develops spontaneous resistance to the antifungal drug FK506 (tacrolimus) via two distinct mechanisms. One involves Mendelian mutations that confer stable drug resistance; the other occurs via an epigenetic RNA interference (RNAi)-mediated pathway resulting in unstable drug resistance. The peptidylprolyl isomerase FKBP12 interacts with FK506 forming a complex that inhibits the protein phosphatase calcineurin. Calcineurin inhibition by FK506 blocks M. circinelloides transition to hyphae and enforces yeast growth. Mutations in the fkbA gene encoding FKBP12 or the calcineurin cnbR or cnaA genes confer FK506 resistance and restore hyphal growth. In parallel, RNAi is spontaneously triggered to silence the fkbA gene, giving rise to drug-resistant epimutants. FK506-resistant epimutants readily reverted to the drug-sensitive wild-type phenotype when grown without exposure to the drug. The establishment of these epimutants is accompanied by generation of abundant fkbA small RNAs and requires the RNAi pathway as well as other factors that constrain or reverse the epimutant state. Silencing involves the generation of a double-stranded RNA trigger intermediate using the fkbA mature mRNA as a template to produce antisense fkbA RNA. This study uncovers a novel epigenetic RNAi-based epimutation mechanism controlling phenotypic plasticity, with possible implications for antimicrobial drug resistance and RNAi-regulatory mechanisms in fungi and other eukaryotes.

  6. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi.

    PubMed

    Zuber, Johannes; McJunkin, Katherine; Fellmann, Christof; Dow, Lukas E; Taylor, Meredith J; Hannon, Gregory J; Lowe, Scott W

    2011-01-01

    Short hairpin RNAs (shRNAs) are versatile tools for analyzing loss-of-function phenotypes in vitro and in vivo. However, their use for studying genes involved in proliferation and survival, which are potential therapeutic targets in cancer and other diseases, is confounded by the strong selective advantage of cells in which shRNA expression is inefficient. We therefore developed a toolkit that combines Tet-regulated miR30-shRNA technology, robust transactivator expression and two fluorescent reporters to track and isolate cells with potent target knockdown. We demonstrated that this system improves the study of essential genes and was sufficiently robust to eradicate aggressive cancer in mice by suppressing a single gene. Further, we applied this system for in vivo negative-selection screening with pooled shRNAs and propose a streamlined, inexpensive workflow that will facilitate the use of RNA interference (RNAi) for the identification and evaluation of essential therapeutic targets.

  7. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium

    PubMed Central

    Tomoyasu, Yoshinori; Miller, Sherry C; Tomita, Shuichiro; Schoppmeier, Michael; Grossmann, Daniela; Bucher, Gregor

    2008-01-01

    Background RNA interference (RNAi) is a highly conserved cellular mechanism. In some organisms, such as Caenorhabditis elegans, the RNAi response can be transmitted systemically. Some insects also exhibit a systemic RNAi response. However, Drosophila, the leading insect model organism, does not show a robust systemic RNAi response, necessitating another model system to study the molecular mechanism of systemic RNAi in insects. Results We used Tribolium, which exhibits robust systemic RNAi, as an alternative model system. We have identified the core RNAi genes, as well as genes potentially involved in systemic RNAi, from the Tribolium genome. Both phylogenetic and functional analyses suggest that Tribolium has a somewhat larger inventory of core component genes than Drosophila, perhaps allowing a more sensitive response to double-stranded RNA (dsRNA). We also identified three Tribolium homologs of C. elegans sid-1, which encodes a possible dsRNA channel. However, detailed sequence analysis has revealed that these Tribolium homologs share more identity with another C. elegans gene, tag-130. We analyzed tag-130 mutants, and found that this gene does not have a function in systemic RNAi in C. elegans. Likewise, the Tribolium sid-like genes do not seem to be required for systemic RNAi. These results suggest that insect sid-1-like genes have a different function than dsRNA uptake. Moreover, Tribolium lacks homologs of several genes important for RNAi in C. elegans. Conclusion Although both Tribolium and C. elegans show a robust systemic RNAi response, our genome-wide survey reveals significant differences between the RNAi mechanisms of these organisms. Thus, insects may use an alternative mechanism for the systemic RNAi response. Understanding this process would assist with rendering other insects amenable to systemic RNAi, and may influence pest control approaches. PMID:18201385

  8. RNA interference as a method for target-site screening in the Western Corn Rootworm, Diabrotica virgifera virgifera

    USDA-ARS?s Scientific Manuscript database

    RNA interference (RNAi) is one of the most powerful and extraordinarily-specific means by which to silence genes. The ability of RNAi to silence genes makes it possible to ascertain function from genomic data, thereby making it an excellent choice for target-site screening. To test the efficacy of...

  9. Defense and counterdefense in the RNAi-based antiviral immune system in insects.

    PubMed

    van Mierlo, Joël T; van Cleef, Koen W R; van Rij, Ronald P

    2011-01-01

    RNA interference (RNAi) is an important pathway to combat virus infections in insects and plants. Hallmarks of antiviral RNAi in these organisms are: (1) an increase in virus replication after inactivation of major actors in the RNAi pathway, (2) production of virus-derived small interfering RNAs (v-siRNAs), and (3) suppression of RNAi by dedicated viral proteins. In this chapter, we will review the mechanism of RNAi in insects, its function as an antiviral immune system, viral small RNA profiles, and viral counterdefense strategies. We will also consider alternative, inducible antiviral immune responses.

  10. A quantitative method for acylcarnitines and amino acids using high resolution chromatography and tandem mass spectrometry in newborn screening dried blood spot analysis.

    PubMed

    Miller, John H; Poston, Philip A; Karnes, H Thomas

    2012-08-15

    We have developed a high resolution liquid chromatographic separation with electrospray ionization (ESI) mass spectrometry detection for the combined analysis of twelve acylcarnitines and seven amino acids commonly measured in newborn screening heritable metabolic disorders. Samples were prepared by punching 3.2 mm disks out of dried blood spots and extracting with a mixture of methanol and 0.1% formic acid containing stable isotopically labeled internal standards. Analysis was performed on an UHPLC system using a HILIC amide, 2.1 mm × 50 mm, 1.7 μm column. A normal phase gradient, employing 10mM ammonium acetate in 90:10 acetonitrile/water for mobile phase B and 0.1% formic acid in water for mobile phase A, was used. Optimized multiple reaction monitoring (MRM) was used for detection of amino acids and acylcarnitines on a Waters Premier mass spectrometer. Quantification of analytes was performed using internal calibration by fortification of sodium heparin whole blood with analytes at appropriate levels to encompass the range around the reported cut-off values. The method was fully validated with respect to precision, accuracy, recovery, linearity, matrix suppression and extraction robustness. Precision and accuracy were evaluated over 3 days and determined to be acceptable with an overall precision within 10% and accuracy within 15% of theoretical for all analytes except for acetylcarnitne at one fortified level, which quantitated 21.8% lower than the expected value. This method is suitable as a second-tier test for newborn screening of specific disorders associated with abnormal levels of acylcarnitines and amino acids, potentially reducing false positive cases and shortening the time to diagnosis.

  11. Simultaneous measurement in mass and mass/mass mode for accurate qualitative and quantitative screening analysis of pharmaceuticals in river water.

    PubMed

    Martínez Bueno, M J; Ulaszewska, Maria M; Gomez, M J; Hernando, M D; Fernández-Alba, A R

    2012-09-21

    A new approach for the analysis of pharmaceuticals (target and non-target) in water by LC-QTOF-MS is described in this work. The study has been designed to assess the performance of the simultaneous quantitative screening of target compounds, and the qualitative analysis of non-target analytes, in just one run. The features of accurate mass full scan mass spectrometry together with high MS/MS spectral acquisition rates - by means of information dependent acquisition (IDA) - have demonstrated their potential application in this work. Applying this analytical strategy, an identification procedure is presented based on library searching for compounds which were not included a priori in the analytical method as target compounds, thus allowing their characterization by data processing of accurate mass measurements in MS and MS/MS mode. The non-target compounds identified in river water samples were ketorolac, trazodone, fluconazole, metformin and venlafaxine. Simultaneously, this strategy allowed for the identification of other compounds which were not included in the library by screening the highest intensity peaks detected in the samples and by analysis of the full scan TOF-MS, isotope pattern and MS/MS spectra - the example of loratadine (histaminergic) is described. The group of drugs of abuse selected as target compounds for evaluation included analgesics, opioids and psychostimulants. Satisfactory results regarding sensitivity and linearity of the developed method were obtained. Limits of detection for the selected target compounds were from 0.003 to 0.01 μg/L and 0.01 to 0.5 μg/L, in MS and MS/MS mode, respectively - by direct sample injection of 100 μL. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Maximizing the quantitative accuracy and reproducibility of Förster resonance energy transfer measurement for screening by high throughput widefield microscopy.

    PubMed

    Schaufele, Fred

    2014-03-15

    Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) provides insights into the proximities and orientations of FPs as surrogates of the biochemical interactions and structures of the factors to which the FPs are genetically fused. As powerful as FRET methods are, technical issues have impeded their broad adoption in the biologic sciences. One hurdle to accurate and reproducible FRET microscopy measurement stems from variable fluorescence backgrounds both within a field and between different fields. Those variations introduce errors into the precise quantification of fluorescence levels on which the quantitative accuracy of FRET measurement is highly dependent. This measurement error is particularly problematic for screening campaigns since minimal well-to-well variation is necessary to faithfully identify wells with altered values. High content screening depends also upon maximizing the numbers of cells imaged, which is best achieved by low magnification high throughput microscopy. But, low magnification introduces flat-field correction issues that degrade the accuracy of background correction to cause poor reproducibility in FRET measurement. For live cell imaging, fluorescence of cell culture media in the fluorescence collection channels for the FPs commonly used for FRET analysis is a high source of background error. These signal-to-noise problems are compounded by the desire to express proteins at biologically meaningful levels that may only be marginally above the strong fluorescence background. Here, techniques are presented that correct for background fluctuations. Accurate calculation of FRET is realized even from images in which a non-flat background is 10-fold higher than the signal. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. ElectroTaxis-on-a-Chip (ETC): an integrated quantitative high-throughput screening platform for electrical field-directed cell migration†

    PubMed Central

    Zhao, Siwei; Zhu, Kan; Zhang, Yan; Zhu, Zijie; Xu, Zhengping

    2015-01-01

    Both endogenous and externally applied electrical stimulation can affect a wide range of cellular functions, including growth, migration, differentiation and division. Among those effects, the electrical field (EF)-directed cell migration, also known as electrotaxis, has received broad attention because it holds great potential in facilitating clinical wound healing. Electrotaxis experiment is conventionally conducted in centimetre-sized flow chambers built in Petri dishes. Despite the recent efforts to adapt microfluidics for electrotaxis studies, the current electrotaxis experimental setup is still cumbersome due to the needs of an external power supply and EF controlling/monitoring systems. There is also a lack of parallel experimental systems for high-throughput electrotaxis studies. In this paper, we present a first independently operable microfluidic platform for high-throughput electrotaxis studies, integrating all functional components for cell migration under EF stimulation (except microscopy) on a compact footprint (the same as a credit card), referred to as ElectroTaxis-on-a-Chip (ETC). Inspired by the R–2R resistor ladder topology in digital signal processing, we develop a systematic approach to design an infinitely expandable microfluidic generator of EF gradients for high-throughput and quantitative studies of EF-directed cell migration. Furthermore, a vacuum-assisted assembly method is utilized to allow direct and reversible attachment of our device to existing cell culture media on biological surfaces, which separates the cell culture and device preparation/fabrication steps. We have demonstrated that our ETC platform is capable of screening human cornea epithelial cell migration under the stimulation of an EF gradient spanning over three orders of magnitude. The screening results lead to the identification of the EF-sensitive range of that cell type, which can provide valuable guidance to the clinical application of EF-facilitated wound healing

  14. Quantitative High-Throughput Drug Screening Identifies Novel Classes of Drugs with Anticancer Activity in Thyroid Cancer Cells: Opportunities for Repurposing

    PubMed Central

    Zhang, Lisa; He, Mei; Zhang, Yaqin; Nilubol, Naris; Shen, Min

    2012-01-01

    Context: Despite increased understanding of the pathogenesis and targets for thyroid cancer and other cancers, developing a new anticancer chemical agent remains an expensive and long process. An alternative approach is the exploitation of clinically used and/or bioactive compounds. Objective: Our objective was to identify agents with an anticancer effect in thyroid cancer cell lines using quantitative high-throughput screening (qHTS). Design: We used the newly assembled National Institutes of Health Chemical Genomic Center's pharmaceutical collection, which contains 2816 clinically approved drugs and bioactive compounds to perform qHTS. Results: Multiple agents, across a variety of therapeutic categories and with different modes of action, were found to have an antiproliferative effect. We found the following therapeutic categories were the most enriched categories with antiproliferative activity: cardiotonic and antiobesity agents. Sixteen agents had an efficacy of greater than 60% and a 50% inhibitory concentration (IC50) in the nanomolar range. We validated the results of the qHTS using two agents (bortezomib and ouabain) in additional cell lines representing different histological subtypes of thyroid cancer and with different mutations (BRAF V600E, RET/PTC1, p53, PTEN). Both agents induced apoptosis, and ouabain also caused cell cycle arrest. Conclusions: To our knowledge, this is the first study to use qHTS of a large drug library to identify candidate drugs for anticancer therapy. Our results indicate such a screening approach can lead to the discovery of novel agents in different therapeutic categories and drugs with nonclassic chemotherapy mode of action. Our approach could lead to drug repurposing and accelerate clinical trials of compounds with well-established pharmacokinetics and toxicity profiles. PMID:22170715

  15. ElectroTaxis-on-a-Chip (ETC): an integrated quantitative high-throughput screening platform for electrical field-directed cell migration.

    PubMed

    Zhao, Siwei; Zhu, Kan; Zhang, Yan; Zhu, Zijie; Xu, Zhengping; Zhao, Min; Pan, Tingrui

    2014-11-21

    Both endogenous and externally applied electrical stimulation can affect a wide range of cellular functions, including growth, migration, differentiation and division. Among those effects, the electrical field (EF)-directed cell migration, also known as electrotaxis, has received broad attention because it holds great potential in facilitating clinical wound healing. Electrotaxis experiment is conventionally conducted in centimetre-sized flow chambers built in Petri dishes. Despite the recent efforts to adapt microfluidics for electrotaxis studies, the current electrotaxis experimental setup is still cumbersome due to the needs of an external power supply and EF controlling/monitoring systems. There is also a lack of parallel experimental systems for high-throughput electrotaxis studies. In this paper, we present a first independently operable microfluidic platform for high-throughput electrotaxis studies, integrating all functional components for cell migration under EF stimulation (except microscopy) on a compact footprint (the same as a credit card), referred to as ElectroTaxis-on-a-Chip (ETC). Inspired by the R-2R resistor ladder topology in digital signal processing, we develop a systematic approach to design an infinitely expandable microfluidic generator of EF gradients for high-throughput and quantitative studies of EF-directed cell migration. Furthermore, a vacuum-assisted assembly method is utilized to allow direct and reversible attachment of our device to existing cell culture media on biological surfaces, which separates the cell culture and device preparation/fabrication steps. We have demonstrated that our ETC platform is capable of screening human cornea epithelial cell migration under the stimulation of an EF gradient spanning over three orders of magnitude. The screening results lead to the identification of the EF-sensitive range of that cell type, which can provide valuable guidance to the clinical application of EF-facilitated wound healing.

  16. Maximizing the quantitative accuracy and reproducibility of Förster resonance energy transfer measurement for screening by high throughput widefield microscopy

    PubMed Central

    Schaufele, Fred

    2013-01-01

    Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) provides insights into the proximities and orientations of FPs as surrogates of the biochemical interactions and structures of the factors to which the FPs are genetically fused. As powerful as FRET methods are, technical issues have impeded their broad adoption in the biologic sciences. One hurdle to accurate and reproducible FRET microscopy measurement stems from variable fluorescence backgrounds both within a field and between different fields. Those variations introduce errors into the precise quantification of fluorescence levels on which the quantitative accuracy of FRET measurement is highly dependent. This measurement error is particularly problematic for screening campaigns since minimal well-to-well variation is necessary to faithfully identify wells with altered values. High content screening depends also upon maximizing the numbers of cells imaged, which is best achieved by low magnification high throughput microscopy. But, low magnification introduces flat-field correction issues that degrade the accuracy of background correction to cause poor reproducibility in FRET measurement. For live cell imaging, fluorescence of cell culture media in the fluorescence collection channels for the FPs commonly used for FRET analysis is a high source of background error. These signal-to-noise problems are compounded by the desire to express proteins at biologically meaningful levels that may only be marginally above the strong fluorescence background. Here, techniques are presented that correct for background fluctuations. Accurate calculation of FRET is realized even from images in which a non-flat background is 10-fold higher than the signal. PMID:23927839

  17. Quantitative and Qualitative Analysis of Circulating Cell-Free DNA Can Be Used as an Adjuvant Tool for Prostate Cancer Screening: A Meta-Analysis.

    PubMed

    Yin, Changqing; Luo, Changliang; Hu, Wei; Ding, Xu; Yuan, Chunhui; Wang, Fubing

    2016-01-01

    As part of "liquid biopsy," lots of literature indicated the potential diagnostic value of circulating cell-free DNA (cfDNA) in the management of prostate cancer (PCa). However, the literature on the accuracy of cfDNA detection in PCa has been inconsistent. Hence, we performed this meta-analysis to assess the diagnostic value of cfDNA in PCa. A total of 19 articles were included in this analysis according to the inclusion and exclusion criteria. We then investigated two main subgroups in this meta-analysis, including qualitative analysis of abnormal level of cfDNA and qualitative analysis of single-gene methylation alterations. Overall, the results of quantitative analysis showed sensitivity of 0.73 (95% CI, 0.62-0.82) and specificity of 0.80 (95% CI, 0.70-0.87), with an area under the curve (AUC) of 0.83 (95% CI, 0.80-0.86). For qualitative assessment, the values were 0.34 (95% CI, 0.22-0.48), 0.99 (95% CI, 0.97-1.00), and 0.91 (95% CI, 0.88-0.93), respectively. Our results suggest the pooled specificity of each subgroup is much higher than the specificity of prostate-specific antigen (PSA). However, they are not recommended for PCa screening alone, because their sensitivities are not higher than the conventional serum biomarkers PSA. We conclude that analysis of cfDNA can be used as an adjuvant tool for PCa screening.

  18. Quantitative and Qualitative Analysis of Circulating Cell-Free DNA Can Be Used as an Adjuvant Tool for Prostate Cancer Screening: A Meta-Analysis

    PubMed Central

    Luo, Changliang; Hu, Wei; Ding, Xu; Yuan, Chunhui

    2016-01-01

    As part of “liquid biopsy,” lots of literature indicated the potential diagnostic value of circulating cell-free DNA (cfDNA) in the management of prostate cancer (PCa). However, the literature on the accuracy of cfDNA detection in PCa has been inconsistent. Hence, we performed this meta-analysis to assess the diagnostic value of cfDNA in PCa. A total of 19 articles were included in this analysis according to the inclusion and exclusion criteria. We then investigated two main subgroups in this meta-analysis, including qualitative analysis of abnormal level of cfDNA and qualitative analysis of single-gene methylation alterations. Overall, the results of quantitative analysis showed sensitivity of 0.73 (95% CI, 0.62–0.82) and specificity of 0.80 (95% CI, 0.70–0.87), with an area under the curve (AUC) of 0.83 (95% CI, 0.80–0.86). For qualitative assessment, the values were 0.34 (95% CI, 0.22–0.48), 0.99 (95% CI, 0.97–1.00), and 0.91 (95% CI, 0.88–0.93), respectively. Our results suggest the pooled specificity of each subgroup is much higher than the specificity of prostate-specific antigen (PSA). However, they are not recommended for PCa screening alone, because their sensitivities are not higher than the conventional serum biomarkers PSA. We conclude that analysis of cfDNA can be used as an adjuvant tool for PCa screening. PMID:27766004

  19. RNAiDB and PhenoBlast: web tools for genome-wide phenotypic mapping projects

    PubMed Central

    Gunsalus, Kristin C.; Yueh, Wan-Chen; MacMenamin, Philip; Piano, Fabio

    2004-01-01

    RNA interference (RNAi) is being used in large-scale genomic studies as a rapid way to obtain in vivo functional information associated with specific genes. How best to archive and mine the complex data derived from these studies provides a series of challenges associated with both the methods used to elicit the RNAi response and the functional data gathered. RNAiDB (RNAi Database; http://www.rnai.org) has been created for the archival, distribution and analysis of phenotypic data from large-scale RNAi analyses in Caenorhabditis elegans. The database contains a compendium of publicly available data and provides information on experimental methods and phenotypic results, including raw data in the form of images and streaming time-lapse movies. Phenotypic summaries together with graphical displays of RNAi to gene mappings allow quick intuitive comparison of results from different RNAi assays and visualization of the gene product(s) potentially inhibited by each RNAi experiment based on multiple sequence analysis methods. RNAiDB can be searched using combinatorial queries and using the novel tool PhenoBlast, which ranks genes according to their overall phenotypic similarity. RNAiDB could serve as a model database for distributing and navigating in vivo functional information from large-scale systematic phenotypic analyses in different organisms. PMID:14681444

  20. The RNAi Universe in Fungi: A Varied Landscape of Small RNAs and Biological Functions.

    PubMed

    Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M

    2017-09-08

    RNA interference (RNAi) is a conserved eukaryotic mechanism that uses small RNA molecules to suppress gene expression through sequence-specific messenger RNA degradation, translational repression, or transcriptional inhibition. In filamentous fungi, the protective function of