Sample records for quantitative structural analysis

  1. Farber's Disease

    MedlinePlus

    ... of these disorders. Additional studies will emphasize the quantitative analysis of the central nervous system structure and ... of these disorders. Additional studies will emphasize the quantitative analysis of the central nervous system structure and ...

  2. Quantitative structure-property relationship (correlation analysis) of phosphonic acid-based chelates in design of MRI contrast agent.

    PubMed

    Tiwari, Anjani K; Ojha, Himanshu; Kaul, Ankur; Dutta, Anupama; Srivastava, Pooja; Shukla, Gauri; Srivastava, Rakesh; Mishra, Anil K

    2009-07-01

    Nuclear magnetic resonance imaging is a very useful tool in modern medical diagnostics, especially when gadolinium (III)-based contrast agents are administered to the patient with the aim of increasing the image contrast between normal and diseased tissues. With the use of soft modelling techniques such as quantitative structure-activity relationship/quantitative structure-property relationship after a suitable description of their molecular structure, we have studied a series of phosphonic acid for designing new MRI contrast agent. Quantitative structure-property relationship studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors of the phosphonic acid-based chelating agent and their stability constants. The final quantitative structure-property relationship mathematical models were found as--quantitative structure-property relationship Model for phosphonic acid series (Model 1)--log K(ML) = {5.00243(+/-0.7102)}- MR {0.0263(+/-0.540)}n = 12 l r l = 0.942 s = 0.183 F = 99.165 quantitative structure-property relationship Model for phosphonic acid series (Model 2)--log K(ML) = {5.06280(+/-0.3418)}- MR {0.0252(+/- .198)}n = 12 l r l = 0.956 s = 0.186 F = 99.256.

  3. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.

    PubMed

    Chavez, Juan D; Eng, Jimmy K; Schweppe, Devin K; Cilia, Michelle; Rivera, Keith; Zhong, Xuefei; Wu, Xia; Allen, Terrence; Khurgel, Moshe; Kumar, Akhilesh; Lampropoulos, Athanasios; Larsson, Mårten; Maity, Shuvadeep; Morozov, Yaroslav; Pathmasiri, Wimal; Perez-Neut, Mathew; Pineyro-Ruiz, Coriness; Polina, Elizabeth; Post, Stephanie; Rider, Mark; Tokmina-Roszyk, Dorota; Tyson, Katherine; Vieira Parrine Sant'Ana, Debora; Bruce, James E

    2016-01-01

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.

  4. Local structure in LaMnO3 and CaMnO3 perovskites: A quantitative structural refinement of Mn K -edge XANES data

    NASA Astrophysics Data System (ADS)

    Monesi, C.; Meneghini, C.; Bardelli, F.; Benfatto, M.; Mobilio, S.; Manju, U.; Sarma, D. D.

    2005-11-01

    Hole-doped perovskites such as La1-xCaxMnO3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K -edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3 . The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K -edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds.

  5. Using enterprise architecture to analyse how organisational structure impact motivation and learning

    NASA Astrophysics Data System (ADS)

    Närman, Pia; Johnson, Pontus; Gingnell, Liv

    2016-06-01

    When technology, environment, or strategies change, organisations need to adjust their structures accordingly. These structural changes do not always enhance the organisational performance as intended partly because organisational developers do not understand the consequences of structural changes in performance. This article presents a model-based analysis framework for quantitative analysis of the effect of organisational structure on organisation performance in terms of employee motivation and learning. The model is based on Mintzberg's work on organisational structure. The quantitative analysis is formalised using the Object Constraint Language (OCL) and the Unified Modelling Language (UML) and implemented in an enterprise architecture tool.

  6. Comparative Analysis of Predictive Models for Liver Toxicity Using ToxCast Assays and Quantitative Structure-Activity Relationships (MCBIOS)

    EPA Science Inventory

    Comparative Analysis of Predictive Models for Liver Toxicity Using ToxCast Assays and Quantitative Structure-Activity Relationships Jie Liu1,2, Richard Judson1, Matthew T. Martin1, Huixiao Hong3, Imran Shah1 1National Center for Computational Toxicology (NCCT), US EPA, RTP, NC...

  7. Quantitative analysis of voids in percolating structures in two-dimensional N-body simulations

    NASA Technical Reports Server (NTRS)

    Harrington, Patrick M.; Melott, Adrian L.; Shandarin, Sergei F.

    1993-01-01

    We present in this paper a quantitative method for defining void size in large-scale structure based on percolation threshold density. Beginning with two-dimensional gravitational clustering simulations smoothed to the threshold of nonlinearity, we perform percolation analysis to determine the large scale structure. The resulting objective definition of voids has a natural scaling property, is topologically interesting, and can be applied immediately to redshift surveys.

  8. Two worlds collide: Image analysis methods for quantifying structural variation in cluster molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steenbergen, K. G., E-mail: kgsteen@gmail.com; Gaston, N.

    2014-02-14

    Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement formore » a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.« less

  9. Two worlds collide: image analysis methods for quantifying structural variation in cluster molecular dynamics.

    PubMed

    Steenbergen, K G; Gaston, N

    2014-02-14

    Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement for a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.

  10. Developing a Multiplexed Quantitative Cross-Linking Mass Spectrometry Platform for Comparative Structural Analysis of Protein Complexes.

    PubMed

    Yu, Clinton; Huszagh, Alexander; Viner, Rosa; Novitsky, Eric J; Rychnovsky, Scott D; Huang, Lan

    2016-10-18

    Cross-linking mass spectrometry (XL-MS) represents a recently popularized hybrid methodology for defining protein-protein interactions (PPIs) and analyzing structures of large protein assemblies. In particular, XL-MS strategies have been demonstrated to be effective in elucidating molecular details of PPIs at the peptide resolution, providing a complementary set of structural data that can be utilized to refine existing complex structures or direct de novo modeling of unknown protein structures. To study structural and interaction dynamics of protein complexes, quantitative cross-linking mass spectrometry (QXL-MS) strategies based on isotope-labeled cross-linkers have been developed. Although successful, these approaches are mostly limited to pairwise comparisons. In order to establish a robust workflow enabling comparative analysis of multiple cross-linked samples simultaneously, we have developed a multiplexed QXL-MS strategy, namely, QMIX (Quantitation of Multiplexed, Isobaric-labeled cross (X)-linked peptides) by integrating MS-cleavable cross-linkers with isobaric labeling reagents. This study has established a new analytical platform for quantitative analysis of cross-linked peptides, which can be directly applied for multiplexed comparisons of the conformational dynamics of protein complexes and PPIs at the proteome scale in future studies.

  11. Assessment and monitoring of forest ecosystem structure

    Treesearch

    Oscar A. Aguirre Calderón; Javier Jiménez Pérez; Horst Kramer

    2006-01-01

    Characterization of forest ecosystems structure must be based on quantitative indices that allow objective analysis of human influences or natural succession processes. The objective of this paper is the compilation of diverse quantitative variables to describe structural attributes from the arboreal stratum of the ecosystem, as well as different methods of forest...

  12. In silico quantitative structure-toxicity relationship study of aromatic nitro compounds.

    PubMed

    Pasha, Farhan Ahmad; Neaz, Mohammad Morshed; Cho, Seung Joo; Ansari, Mohiuddin; Mishra, Sunil Kumar; Tiwari, Sharvan

    2009-05-01

    Small molecules often have toxicities that are a function of molecular structural features. Minor variations in structural features can make large difference in such toxicity. Consequently, in silico techniques may be used to correlate such molecular toxicities with their structural features. Relative to nine different sets of aromatic nitro compounds having known observed toxicities against different targets, we developed ligand-based 2D quantitative structure-toxicity relationship models using 20 selected topological descriptors. The topological descriptors have several advantages such as conformational independency, facile and less time-consuming computation to yield good results. Multiple linear regression analysis was used to correlate variations of toxicity with molecular properties. The information index on molecular size, lopping centric index and Kier flexibility index were identified as fundamental descriptors for different kinds of toxicity, and further showed that molecular size, branching and molecular flexibility might be particularly important factors in quantitative structure-toxicity relationship analysis. This study revealed that topological descriptor-guided quantitative structure-toxicity relationship provided a very useful, cost and time-efficient, in silico tool for describing small-molecule toxicities.

  13. Tannin structural elucidation and quantitative ³¹P NMR analysis. 2. Hydrolyzable tannins and proanthocyanidins.

    PubMed

    Melone, Federica; Saladino, Raffaele; Lange, Heiko; Crestini, Claudia

    2013-10-02

    An unprecedented analytical method that allows simultaneous structural and quantitative characterization of all functional groups present in tannins is reported. In situ labeling of all labile H groups (aliphatic and phenolic hydroxyls and carboxylic acids) with a phosphorus-containing reagent (Cl-TMDP) followed by quantitative ³¹P NMR acquisition constitutes a novel fast and reliable analytical tool for the analysis of tannins and proanthocyanidins with significant implications for the fields of food and feed analyses, tannery, and the development of natural polyphenolics containing products.

  14. Analysis of defect structure in silicon. Characterization of samples from UCP ingot 5848-13C

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Guyer, T.; Stringfellow, G. B.

    1982-01-01

    Statistically significant quantitative structural imperfection measurements were made on samples from ubiquitous crystalline process (UCP) Ingot 5848 - 13 C. Important trends were noticed between the measured data, cell efficiency, and diffusion length. Grain boundary substructure appears to have an important effect on the conversion efficiency of solar cells from Semix material. Quantitative microscopy measurements give statistically significant information compared to other microanalytical techniques. A surface preparation technique to obtain proper contrast of structural defects suitable for QTM analysis was perfected.

  15. Quantitative Analysis Of Three-dimensional Branching Systems From X-ray Computed Microtomography Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinney, Adriana L.; Varga, Tamas

    Branching structures such as lungs, blood vessels and plant roots play a critical role in life. Growth, structure, and function of these branching structures have an immense effect on our lives. Therefore, quantitative size information on such structures in their native environment is invaluable for studying their growth and the effect of the environment on them. X-ray computed tomography (XCT) has been an effective tool for in situ imaging and analysis of branching structures. We developed a costless tool that approximates the surface and volume of branching structures. Our methodology of noninvasive imaging, segmentation and extraction of quantitative information ismore » demonstrated through the analysis of a plant root in its soil medium from 3D tomography data. XCT data collected on a grass specimen was used to visualize its root structure. A suite of open-source software was employed to segment the root from the soil and determine its isosurface, which was used to calculate its volume and surface. This methodology of processing 3D data is applicable to other branching structures even when the structure of interest is of similar x-ray attenuation to its environment and difficulties arise with sample segmentation.« less

  16. Conflagration Analysis System II: Bibliography.

    DTIC Science & Technology

    1985-04-01

    Therefore, it is Lmportant to examine both the reinforcement and the supplemental considerations Eor the quantitative methods for conflagration...and the meaningful quantitative factors for conflagration analysis are determined, the relevatn literature will be brought into the nainstream of the... quantitative :hods. Fire Development in Multiple Structures From a purely analytical view, the research identified in the literature fire development in

  17. A Comprehensive Analysis in Terms of Molecule-Intrinsic, Quasi-Atomic Orbitals. III. The Covalent Bonding Structure of Urea.

    PubMed

    West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus

    2015-10-15

    The analysis of molecular electron density matrices in terms of quasi-atomic orbitals, which was developed in previous investigations, is quantitatively exemplified by a detailed application to the urea molecule. The analysis is found to identify strong and weak covalent bonding interactions as well as intramolecular charge transfers. It yields a qualitative as well as quantitative ab initio description of the bonding structure of this molecule, which raises questions regarding some traditional rationalizations.

  18. Quantitative structure-activity relationship of organosulphur compounds as soybean 15-lipoxygenase inhibitors using CoMFA and CoMSIA.

    PubMed

    Caballero, Julio; Fernández, Michael; Coll, Deysma

    2010-12-01

    Three-dimensional quantitative structure-activity relationship studies were carried out on a series of 28 organosulphur compounds as 15-lipoxygenase inhibitors using comparative molecular field analysis and comparative molecular similarity indices analysis. Quantitative information on structure-activity relationships is provided for further rational development and direction of selective synthesis. All models were carried out over a training set including 22 compounds. The best comparative molecular field analysis model only included steric field and had a good Q² = 0.789. Comparative molecular similarity indices analysis overcame the comparative molecular field analysis results: the best comparative molecular similarity indices analysis model also only included steric field and had a Q² = 0.894. In addition, this model predicted adequately the compounds contained in the test set. Furthermore, plots of steric comparative molecular similarity indices analysis field allowed conclusions to be drawn for the choice of suitable inhibitors. In this sense, our model should prove useful in future 15-lipoxygenase inhibitor design studies. © 2010 John Wiley & Sons A/S.

  19. Tannin structural elucidation and quantitative ³¹P NMR analysis. 1. Model compounds.

    PubMed

    Melone, Federica; Saladino, Raffaele; Lange, Heiko; Crestini, Claudia

    2013-10-02

    Tannins and flavonoids are secondary metabolites of plants that display a wide array of biological activities. This peculiarity is related to the inhibition of extracellular enzymes that occurs through the complexation of peptides by tannins. Not only the nature of these interactions, but more fundamentally also the structure of these heterogeneous polyphenolic molecules are not completely clear. This first paper describes the development of a new analytical method for the structural characterization of tannins on the basis of tannin model compounds employing an in situ labeling of all labile H groups (aliphatic OH, phenolic OH, and carboxylic acids) with a phosphorus reagent. The ³¹P NMR analysis of ³¹P-labeled samples allowed the unprecedented quantitative and qualitative structural characterization of hydrolyzable tannins, proanthocyanidins, and catechin tannin model compounds, forming the foundations for the quantitative structural elucidation of a variety of actual tannin samples described in part 2 of this series.

  20. Analysis of defect structure in silicon. Characterization of SEMIX material. Silicon sheet growth development for the large area silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Stringfellow, G. B.; Virkar, A. V.; Dunn, J.; Guyer, T.

    1983-01-01

    Statistically significant quantitative structural imperfection measurements were made on samples from ubiquitous crystalline process (UCP) Ingot 5848 - 13C. Important correlation was obtained between defect densities, cell efficiency, and diffusion length. Grain boundary substructure displayed a strong influence on the conversion efficiency of solar cells from Semix material. Quantitative microscopy measurements gave statistically significant information compared to other microanalytical techniques. A surface preparation technique to obtain proper contrast of structural defects suitable for quantimet quantitative image analyzer (QTM) analysis was perfected and is used routinely. The relationships between hole mobility and grain boundary density was determined. Mobility was measured using the van der Pauw technique, and grain boundary density was measured using quantitative microscopy technique. Mobility was found to decrease with increasing grain boundary density.

  1. Two-dimensional auto-correlation analysis and Fourier-transform analysis of second-harmonic-generation image for quantitative analysis of collagen fiber in human facial skin

    NASA Astrophysics Data System (ADS)

    Ogura, Yuki; Tanaka, Yuji; Hase, Eiji; Yamashita, Toyonobu; Yasui, Takeshi

    2018-02-01

    We compare two-dimensional auto-correlation (2D-AC) analysis and two-dimensional Fourier transform (2D-FT) for evaluation of age-dependent structural change of facial dermal collagen fibers caused by intrinsic aging and extrinsic photo-aging. The age-dependent structural change of collagen fibers for female subjects' cheek skin in their 20s, 40s, and 60s were more noticeably reflected in 2D-AC analysis than in 2D-FT analysis. Furthermore, 2D-AC analysis indicated significantly higher correlation with the skin elasticity measured by Cutometer® than 2D-AC analysis. 2D-AC analysis of SHG image has a high potential for quantitative evaluation of not only age-dependent structural change of collagen fibers but also skin elasticity.

  2. Advancing the study of violence against women using mixed methods: integrating qualitative methods into a quantitative research program.

    PubMed

    Testa, Maria; Livingston, Jennifer A; VanZile-Tamsen, Carol

    2011-02-01

    A mixed methods approach, combining quantitative with qualitative data methods and analysis, offers a promising means of advancing the study of violence. Integrating semi-structured interviews and qualitative analysis into a quantitative program of research on women's sexual victimization has resulted in valuable scientific insight and generation of novel hypotheses for testing. This mixed methods approach is described and recommendations for integrating qualitative data into quantitative research are provided.

  3. Comparison of genetic diversity and population structure of Pacific Coast whitebark pine across multiple markers

    Treesearch

    Andrew D. Bower; Bryce A. Richardson; Valerie Hipkins; Regina Rochefort; Carol Aubry

    2011-01-01

    Analysis of "neutral" molecular markers and "adaptive" quantitative traits are common methods of assessing genetic diversity and population structure. Molecular markers typically reflect the effects of demographic and stochastic processes but are generally assumed to not reflect natural selection. Conversely, quantitative (or "adaptive")...

  4. ADVANCING THE STUDY OF VIOLENCE AGAINST WOMEN USING MIXED METHODS: INTEGRATING QUALITATIVE METHODS INTO A QUANTITATIVE RESEARCH PROGRAM

    PubMed Central

    Testa, Maria; Livingston, Jennifer A.; VanZile-Tamsen, Carol

    2011-01-01

    A mixed methods approach, combining quantitative with qualitative data methods and analysis, offers a promising means of advancing the study of violence. Integrating semi-structured interviews and qualitative analysis into a quantitative program of research on women’s sexual victimization has resulted in valuable scientific insight and generation of novel hypotheses for testing. This mixed methods approach is described and recommendations for integrating qualitative data into quantitative research are provided. PMID:21307032

  5. Confirmatory Factor Analytic Structure and Measurement Invariance of Quantitative Autistic Traits Measured by the Social Responsiveness Scale-2

    ERIC Educational Resources Information Center

    Frazier, Thomas W.; Ratliff, Kristin R.; Gruber, Chris; Zhang, Yi; Law, Paul A.; Constantino, John N.

    2014-01-01

    Understanding the factor structure of autistic symptomatology is critical to the discovery and interpretation of causal mechanisms in autism spectrum disorder. We applied confirmatory factor analysis and assessment of measurement invariance to a large ("N" = 9635) accumulated collection of reports on quantitative autistic traits using…

  6. Using normalization 3D model for automatic clinical brain quantative analysis and evaluation

    NASA Astrophysics Data System (ADS)

    Lin, Hong-Dun; Yao, Wei-Jen; Hwang, Wen-Ju; Chung, Being-Tau; Lin, Kang-Ping

    2003-05-01

    Functional medical imaging, such as PET or SPECT, is capable of revealing physiological functions of the brain, and has been broadly used in diagnosing brain disorders by clinically quantitative analysis for many years. In routine procedures, physicians manually select desired ROIs from structural MR images and then obtain physiological information from correspondent functional PET or SPECT images. The accuracy of quantitative analysis thus relies on that of the subjectively selected ROIs. Therefore, standardizing the analysis procedure is fundamental and important in improving the analysis outcome. In this paper, we propose and evaluate a normalization procedure with a standard 3D-brain model to achieve precise quantitative analysis. In the normalization process, the mutual information registration technique was applied for realigning functional medical images to standard structural medical images. Then, the standard 3D-brain model that shows well-defined brain regions was used, replacing the manual ROIs in the objective clinical analysis. To validate the performance, twenty cases of I-123 IBZM SPECT images were used in practical clinical evaluation. The results show that the quantitative analysis outcomes obtained from this automated method are in agreement with the clinical diagnosis evaluation score with less than 3% error in average. To sum up, the method takes advantage of obtaining precise VOIs, information automatically by well-defined standard 3-D brain model, sparing manually drawn ROIs slice by slice from structural medical images in traditional procedure. That is, the method not only can provide precise analysis results, but also improve the process rate for mass medical images in clinical.

  7. Silicon sheet growth development for the large area silicon sheet task of the low cost solar array project. Quantitative analysis of defects in silicon

    NASA Technical Reports Server (NTRS)

    Natesh, R.

    1978-01-01

    The various steps involved in obtaining quantitative information of structural defects in crystalline silicon samples are described. Procedures discussed include: (1) chemical polishing; (2) chemical etching; and (3) automated image analysis of samples on the QTM 720 System.

  8. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    PubMed

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  9. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    PubMed

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  10. An optimized color transformation for the analysis of digital images of hematoxylin & eosin stained slides.

    PubMed

    Zarella, Mark D; Breen, David E; Plagov, Andrei; Garcia, Fernando U

    2015-01-01

    Hematoxylin and eosin (H&E) staining is ubiquitous in pathology practice and research. As digital pathology has evolved, the reliance of quantitative methods that make use of H&E images has similarly expanded. For example, cell counting and nuclear morphometry rely on the accurate demarcation of nuclei from other structures and each other. One of the major obstacles to quantitative analysis of H&E images is the high degree of variability observed between different samples and different laboratories. In an effort to characterize this variability, as well as to provide a substrate that can potentially mitigate this factor in quantitative image analysis, we developed a technique to project H&E images into an optimized space more appropriate for many image analysis procedures. We used a decision tree-based support vector machine learning algorithm to classify 44 H&E stained whole slide images of resected breast tumors according to the histological structures that are present. This procedure takes an H&E image as an input and produces a classification map of the image that predicts the likelihood of a pixel belonging to any one of a set of user-defined structures (e.g., cytoplasm, stroma). By reducing these maps into their constituent pixels in color space, an optimal reference vector is obtained for each structure, which identifies the color attributes that maximally distinguish one structure from other elements in the image. We show that tissue structures can be identified using this semi-automated technique. By comparing structure centroids across different images, we obtained a quantitative depiction of H&E variability for each structure. This measurement can potentially be utilized in the laboratory to help calibrate daily staining or identify troublesome slides. Moreover, by aligning reference vectors derived from this technique, images can be transformed in a way that standardizes their color properties and makes them more amenable to image processing.

  11. Characterization of ceramic powders by an X-ray measuring method

    NASA Technical Reports Server (NTRS)

    Ziegler, B.

    1983-01-01

    X-ray line broadening analysis gives quantitative data on structural changes of ceramic powders after different processing steps. Various Al2O3 powders were investigated and the following points are discussed on the basis of these results: X-ray line broadening analysis, structural changes during grinding, structural changes during annealing, influence of structural properties on sintering behavior and application of line broadening analysis to quality control of powders.

  12. Doing Quantitative Research in Education with SPSS

    ERIC Educational Resources Information Center

    Muijs, Daniel

    2004-01-01

    This book looks at quantitative research methods in education. The book is structured to start with chapters on conceptual issues and designing quantitative research studies before going on to data analysis. While each chapter can be studied separately, a better understanding will be reached by reading the book sequentially. This book is intended…

  13. Quantitative twoplex glycan analysis using 12C6 and 13C6 stable isotope 2-aminobenzoic acid labelling and capillary electrophoresis mass spectrometry.

    PubMed

    Váradi, Csaba; Mittermayr, Stefan; Millán-Martín, Silvia; Bones, Jonathan

    2016-12-01

    Capillary electrophoresis (CE) offers excellent efficiency and orthogonality to liquid chromatographic (LC) separations for oligosaccharide structural analysis. Combination of CE with high resolution mass spectrometry (MS) for glycan analysis remains a challenging task due to the MS incompatibility of background electrolyte buffers and additives commonly used in offline CE separations. Here, a novel method is presented for the analysis of 2-aminobenzoic acid (2-AA) labelled glycans by capillary electrophoresis coupled to mass spectrometry (CE-MS). To ensure maximum resolution and excellent precision without the requirement for excessive analysis times, CE separation conditions including the concentration and pH of the background electrolyte, the effect of applied pressure on the capillary inlet and the capillary length were evaluated. Using readily available 12/13 C 6 stable isotopologues of 2-AA, the developed method can be applied for quantitative glycan profiling in a twoplex manner based on the generation of extracted ion electropherograms (EIE) for 12 C 6 'light' and 13 C 6 'heavy' 2-AA labelled glycan isotope clusters. The twoplex quantitative CE-MS glycan analysis platform is ideally suited for comparability assessment of biopharmaceuticals, such as monoclonal antibodies, for differential glycomic analysis of clinical material for potential biomarker discovery or for quantitative microheterogeneity analysis of different glycosylation sites within a glycoprotein. Additionally, due to the low injection volume requirements of CE, subsequent LC-MS analysis of the same sample can be performed facilitating the use of orthogonal separation techniques for structural elucidation or verification of quantitative performance.

  14. qHNMR Analysis of Purity of Common Organic Solvents--An Undergraduate Quantitative Analysis Laboratory Experiment

    ERIC Educational Resources Information Center

    Bell, Peter T.; Whaley, W. Lance; Tochterman, Alyssa D.; Mueller, Karl S.; Schultz, Linda D.

    2017-01-01

    NMR spectroscopy is currently a premier technique for structural elucidation of organic molecules. Quantitative NMR (qNMR) methodology has developed more slowly but is now widely accepted, especially in the areas of natural product and medicinal chemistry. However, many undergraduate students are not routinely exposed to this important concept.…

  15. A Quantitative Analysis of "Ataque de Nervios" in Puerto Rico: Further Examination of a Cultural Syndrome

    ERIC Educational Resources Information Center

    Febo San Miguel, Vivian E.; Guarnaccia, Peter J.; Shrout, Patrick E.; Lewis-Fernandez, Roberto; Canino, Glorisa J.; Ramirez, Rafael R.

    2006-01-01

    The authors present a quantitative analysis and assessment of the symptoms of "ataque de nervios." A sample of 121 individuals living in Puerto Rico provided qualitative and structured data on "ataques de nervios" and psychiatric correlates. A total of 77 participants reported having an "ataque de nervios" during…

  16. Obscure phenomena in statistical analysis of quantitative structure-activity relationships. Part 1: Multicollinearity of physicochemical descriptors.

    PubMed

    Mager, P P; Rothe, H

    1990-10-01

    Multicollinearity of physicochemical descriptors leads to serious consequences in quantitative structure-activity relationship (QSAR) analysis, such as incorrect estimators and test statistics of regression coefficients of the ordinary least-squares (OLS) model applied usually to QSARs. Beside the diagnosis of the known simple collinearity, principal component regression analysis (PCRA) also allows the diagnosis of various types of multicollinearity. Only if the absolute values of PCRA estimators are order statistics that decrease monotonically, the effects of multicollinearity can be circumvented. Otherwise, obscure phenomena may be observed, such as good data recognition but low predictive model power of a QSAR model.

  17. Quantitative analysis of single-molecule superresolution images

    PubMed Central

    Coltharp, Carla; Yang, Xinxing; Xiao, Jie

    2014-01-01

    This review highlights the quantitative capabilities of single-molecule localization-based superresolution imaging methods. In addition to revealing fine structural details, the molecule coordinate lists generated by these methods provide the critical ability to quantify the number, clustering, and colocalization of molecules with 10 – 50 nm resolution. Here we describe typical workflows and precautions for quantitative analysis of single-molecule superresolution images. These guidelines include potential pitfalls and essential control experiments, allowing critical assessment and interpretation of superresolution images. PMID:25179006

  18. Analysis of artifacts suggests DGGE should not be used for quantitative diversity analysis.

    PubMed

    Neilson, Julia W; Jordan, Fiona L; Maier, Raina M

    2013-03-01

    PCR-denaturing gradient gel electrophoresis (PCR-DGGE) is widely used in microbial ecology for the analysis of comparative community structure. However, artifacts generated during PCR-DGGE of mixed template communities impede the application of this technique to quantitative analysis of community diversity. The objective of the current study was to employ an artificial bacterial community to document and analyze artifacts associated with multiband signatures and preferential template amplification and to highlight their impacts on the use of this technique for quantitative diversity analysis. Six bacterial species (three Betaproteobacteria, two Alphaproteobacteria, and one Firmicutes) were amplified individually and in combinations with primers targeting the V7/V8 region of the 16S rRNA gene. Two of the six isolates produced multiband profiles demonstrating that band number does not correlate directly with α-diversity. Analysis of the multiple bands from one of these isolates confirmed that both bands had identical sequences which lead to the hypothesis that the multiband pattern resulted from two distinct structural conformations of the same amplicon. In addition, consistent preferential amplification was demonstrated following pairwise amplifications of the six isolates. DGGE and real time PCR analysis identified primer mismatch and PCR inhibition due to 16S rDNA secondary structure as the most probable causes of preferential amplification patterns. Reproducible DGGE community profiles generated in this study confirm that PCR-DGGE provides an excellent high-throughput tool for comparative community structure analysis, but that method-specific artifacts preclude its use for accurate comparative diversity analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Characterizing microstructural features of biomedical samples by statistical analysis of Mueller matrix images

    NASA Astrophysics Data System (ADS)

    He, Honghui; Dong, Yang; Zhou, Jialing; Ma, Hui

    2017-03-01

    As one of the salient features of light, polarization contains abundant structural and optical information of media. Recently, as a comprehensive description of polarization property, the Mueller matrix polarimetry has been applied to various biomedical studies such as cancerous tissues detections. In previous works, it has been found that the structural information encoded in the 2D Mueller matrix images can be presented by other transformed parameters with more explicit relationship to certain microstructural features. In this paper, we present a statistical analyzing method to transform the 2D Mueller matrix images into frequency distribution histograms (FDHs) and their central moments to reveal the dominant structural features of samples quantitatively. The experimental results of porcine heart, intestine, stomach, and liver tissues demonstrate that the transformation parameters and central moments based on the statistical analysis of Mueller matrix elements have simple relationships to the dominant microstructural properties of biomedical samples, including the density and orientation of fibrous structures, the depolarization power, diattenuation and absorption abilities. It is shown in this paper that the statistical analysis of 2D images of Mueller matrix elements may provide quantitative or semi-quantitative criteria for biomedical diagnosis.

  20. Reliability and safety, and the risk of construction damage in mining areas

    NASA Astrophysics Data System (ADS)

    Skrzypczak, Izabela; Kogut, Janusz P.; Kokoszka, Wanda; Oleniacz, Grzegorz

    2018-04-01

    This article concerns the reliability and safety of building structures in mining areas, with a particular emphasis on the quantitative risk analysis of buildings. The issues of threat assessment and risk estimation, in the design of facilities in mining exploitation areas, are presented here, indicating the difficulties and ambiguities associated with their quantification and quantitative analysis. This article presents the concept of quantitative risk assessment of the impact of mining exploitation, in accordance with ISO 13824 [1]. The risk analysis is illustrated through an example of a construction located within an area affected by mining exploitation.

  1. In Vivo Characterization of Traumatic Brain Injury Neuropathology with Structural and Functional Neuroimaging

    PubMed Central

    LEVINE, BRIAN; FUJIWARA, ESTHER; O’CONNOR, CHARLENE; RICHARD, NADINE; KOVACEVIC, NATASA; MANDIC, MARINA; RESTAGNO, ADRIANA; EASDON, CRAIG; ROBERTSON, IAN H.; GRAHAM, SIMON J.; CHEUNG, GORDON; GAO, FUQIANG; SCHWARTZ, MICHAEL L.; BLACK, SANDRA E.

    2007-01-01

    Quantitative neuroimaging is increasingly used to study the effects of traumatic brain injury (TBI) on brain structure and function. This paper reviews quantitative structural and functional neuroimaging studies of patients with TBI, with an emphasis on the effects of diffuse axonal injury (DAI), the primary neuropathology in TBI. Quantitative structural neuroimaging has evolved from simple planometric measurements through targeted region-of-interest analyses to whole-brain analysis of quantified tissue compartments. Recent studies converge to indicate widespread volume loss of both gray and white matter in patients with moderate-to-severe TBI. These changes can be documented even when patients with focal lesions are excluded. Broadly speaking, performance on standard neuropsychological tests of speeded information processing are related to these changes, but demonstration of specific brain-behavior relationships requires more refined experimental behavioral measures. The functional consequences of these structural changes can be imaged with activation functional neuroimaging. Although this line of research is at an early stage, results indicate that TBI causes a more widely dispersed activation in frontal and posterior cortices. Further progress in analysis of the consequences of TBI on neural structure and function will require control of variability in neuropathology and behavior. PMID:17020478

  2. Quantitative Protein Topography Analysis and High-Resolution Structure Prediction Using Hydroxyl Radical Labeling and Tandem-Ion Mass Spectrometry (MS)*

    PubMed Central

    Kaur, Parminder; Kiselar, Janna; Yang, Sichun; Chance, Mark R.

    2015-01-01

    Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca+2-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes. PMID:25687570

  3. Effect of substituents on prediction of TLC retention of tetra-dentate Schiff bases and their Copper(II) and Nickel(II) complexes.

    PubMed

    Stevanović, Nikola R; Perušković, Danica S; Gašić, Uroš M; Antunović, Vesna R; Lolić, Aleksandar Đ; Baošić, Rada M

    2017-03-01

    The objectives of this study were to gain insights into structure-retention relationships and to propose the model to estimating their retention. Chromatographic investigation of series of 36 Schiff bases and their copper(II) and nickel(II) complexes was performed under both normal- and reverse-phase conditions. Chemical structures of the compounds were characterized by molecular descriptors which are calculated from the structure and related to the chromatographic retention parameters by multiple linear regression analysis. Effects of chelation on retention parameters of investigated compounds, under normal- and reverse-phase chromatographic conditions, were analyzed by principal component analysis, quantitative structure-retention relationship and quantitative structure-activity relationship models were developed on the basis of theoretical molecular descriptors, calculated exclusively from molecular structure, and parameters of retention and lipophilicity. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Twoplex 12/13 C6 aniline stable isotope and linkage-specific sialic acid labeling 2D-LC-MS workflow for quantitative N-glycomics.

    PubMed

    Albrecht, Simone; Mittermayr, Stefan; Smith, Josh; Martín, Silvia Millán; Doherty, Margaret; Bones, Jonathan

    2017-01-01

    Quantitative glycomics represents an actively expanding research field ranging from the discovery of disease-associated glycan alterations to the quantitative characterization of N-glycans on therapeutic proteins. Commonly used analytical platforms for comparative relative quantitation of complex glycan samples include MALDI-TOF-MS or chromatographic glycan profiling with subsequent data alignment and statistical evaluation. Limitations of such approaches include run-to-run technical variation and the potential introduction of subjectivity during data processing. Here, we introduce an offline 2D LC-MS E workflow for the fractionation and relative quantitation of twoplex isotopically labeled N-linked oligosaccharides using neutral 12 C 6 and 13 C 6 aniline (Δmass = 6 Da). Additional linkage-specific derivatization of sialic acids using 4-(4,6-dimethoxy-1,3,5-trizain-2-yl)-4-methylmorpholinium chloride offered simultaneous and advanced in-depth structural characterization. The potential of the method was demonstrated for the differential analysis of structurally defined N-glycans released from serum proteins of patients diagnosed with various stages of colorectal cancer. The described twoplex 12 C 6 / 13 C 6 aniline 2D LC-MS platform is ideally suited for differential glycomic analysis of structurally complex N-glycan pools due to combination and analysis of samples in a single LC-MS injection and the associated minimization in technical variation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Rapid qualitative and quantitative analysis of proanthocyanidin oligomers and polymers by UPLC-MS/MS

    USDA-ARS?s Scientific Manuscript database

    Proanthocyanidins (PAs) are a structurally complex and bioactive group of tannins. Detailed analysis of PA concentration, composition, and structure typically requires the use of one or more time-consuming analytical methods. For example, the commonly employed thiolysis and phloroglucinolysis method...

  6. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis

    PubMed Central

    Falter, Christian; Ellinger, Dorothea; von Hülsen, Behrend; Heim, René; Voigt, Christian A.

    2015-01-01

    The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape – liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant–microbe interaction with their potential outreach into crop breeding. PMID:25870605

  7. Simple preparation of plant epidermal tissue for laser microdissection and downstream quantitative proteome and carbohydrate analysis.

    PubMed

    Falter, Christian; Ellinger, Dorothea; von Hülsen, Behrend; Heim, René; Voigt, Christian A

    2015-01-01

    The outwardly directed cell wall and associated plasma membrane of epidermal cells represent the first layers of plant defense against intruding pathogens. Cell wall modifications and the formation of defense structures at sites of attempted pathogen penetration are decisive for plant defense. A precise isolation of these stress-induced structures would allow a specific analysis of regulatory mechanism and cell wall adaption. However, methods for large-scale epidermal tissue preparation from the model plant Arabidopsis thaliana, which would allow proteome and cell wall analysis of complete, laser-microdissected epidermal defense structures, have not been provided. We developed the adhesive tape - liquid cover glass technique (ACT) for simple leaf epidermis preparation from A. thaliana, which is also applicable on grass leaves. This method is compatible with subsequent staining techniques to visualize stress-related cell wall structures, which were precisely isolated from the epidermal tissue layer by laser microdissection (LM) coupled to laser pressure catapulting. We successfully demonstrated that these specific epidermal tissue samples could be used for quantitative downstream proteome and cell wall analysis. The development of the ACT for simple leaf epidermis preparation and the compatibility to LM and downstream quantitative analysis opens new possibilities in the precise examination of stress- and pathogen-related cell wall structures in epidermal cells. Because the developed tissue processing is also applicable on A. thaliana, well-established, model pathosystems that include the interaction with powdery mildews can be studied to determine principal regulatory mechanisms in plant-microbe interaction with their potential outreach into crop breeding.

  8. Temporal lobe epilepsy: quantitative MR volumetry in detection of hippocampal atrophy.

    PubMed

    Farid, Nikdokht; Girard, Holly M; Kemmotsu, Nobuko; Smith, Michael E; Magda, Sebastian W; Lim, Wei Y; Lee, Roland R; McDonald, Carrie R

    2012-08-01

    To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE). This study was conducted with institutional review board approval and in compliance with HIPAA regulations. Volumetric MR imaging data were analyzed for 34 patients with TLE and 116 control subjects. Structural volumes were calculated by using U.S. Food and Drug Administration-cleared software for automated quantitative MR imaging analysis (NeuroQuant). Results of quantitative MR imaging were compared with visual detection of atrophy, and, when available, with histologic specimens. Receiver operating characteristic analyses were performed to determine the optimal sensitivity and specificity of quantitative MR imaging for detecting HA and asymmetry. A linear classifier with cross validation was used to estimate the ability of quantitative MR imaging to help lateralize the seizure focus. Quantitative MR imaging-derived hippocampal asymmetries discriminated patients with TLE from control subjects with high sensitivity (86.7%-89.5%) and specificity (92.2%-94.1%). When a linear classifier was used to discriminate left versus right TLE, hippocampal asymmetry achieved 94% classification accuracy. Volumetric asymmetries of other subcortical structures did not improve classification. Compared with invasive video electroencephalographic recordings, lateralization accuracy was 88% with quantitative MR imaging and 85% with visual inspection of volumetric MR imaging studies but only 76% with visual inspection of clinical MR imaging studies. Quantitative MR imaging can depict the presence and laterality of HA in TLE with accuracy rates that may exceed those achieved with visual inspection of clinical MR imaging studies. Thus, quantitative MR imaging may enhance standard visual analysis, providing a useful and viable means for translating volumetric analysis into clinical practice.

  9. A comparative analysis of human plasma and serum proteins by combining native PAGE, whole-gel slicing and quantitative LC-MS/MS: Utilizing native MS-electropherograms in proteomic analysis for discovering structure and interaction-correlated differences.

    PubMed

    Wen, Meiling; Jin, Ya; Manabe, Takashi; Chen, Shumin; Tan, Wen

    2017-12-01

    MS identification has long been used for PAGE-separated protein bands, but global and systematic quantitation utilizing MS after PAGE has remained rare and not been reported for native PAGE. Here we reported on a new method combining native PAGE, whole-gel slicing and quantitative LC-MS/MS, aiming at comparative analysis on not only abundance, but also structures and interactions of proteins. A pair of human plasma and serum samples were used as test samples and separated on a native PAGE gel. Six lanes of each sample were cut, each lane was further sliced into thirty-five 1.1 mm × 1.1 mm squares and all the squares were subjected to standardized procedures of in-gel digestion and quantitative LC-MS/MS. The results comprised 958 data rows that each contained abundance values of a protein detected in one square in eleven gel lanes (one plasma lane excluded). The data were evaluated to have satisfactory reproducibility of assignment and quantitation. Totally 315 proteins were assigned, with each protein assigned in 1-28 squares. The abundance distributions in the plasma and serum gel lanes were reconstructed for each protein, named as "native MS-electropherograms". Comparison of the electropherograms revealed significant plasma-versus-serum differences on 33 proteins in 87 squares (fold difference > 2 or < 0.5, p < 0.05). Many of the differences matched with accumulated knowledge on protein interactions and proteolysis involved in blood coagulation, complement and wound healing processes. We expect this method would be useful to provide more comprehensive information in comparative proteomic analysis, on both quantities and structures/interactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Correlative SEM SERS for quantitative analysis of dimer nanoparticles.

    PubMed

    Timmermans, F J; Lenferink, A T M; van Wolferen, H A G M; Otto, C

    2016-11-14

    A Raman microscope integrated with a scanning electron microscope was used to investigate plasmonic structures by correlative SEM-SERS analysis. The integrated Raman-SEM microscope combines high-resolution electron microscopy information with SERS signal enhancement from selected nanostructures with adsorbed Raman reporter molecules. Correlative analysis is performed for dimers of two gold nanospheres. Dimers were selected on the basis of SEM images from multi aggregate samples. The effect of the orientation of the dimer with respect to the polarization state of the laser light and the effect of the particle gap size on the Raman signal intensity is observed. Additionally, calculations are performed to simulate the electric near field enhancement. These simulations are based on the morphologies observed by electron microscopy. In this way the experiments are compared with the enhancement factor calculated with near field simulations and are subsequently used to quantify the SERS enhancement factor. Large differences between experimentally observed and calculated enhancement factors are regularly detected, a phenomenon caused by nanoscale differences between the real and 'simplified' simulated structures. Quantitative SERS experiments reveal the structure induced enhancement factor, ranging from ∼200 to ∼20 000, averaged over the full nanostructure surface. The results demonstrate correlative Raman-SEM microscopy for the quantitative analysis of plasmonic particles and structures, thus enabling a new analytical method in the field of SERS and plasmonics.

  11. Quantitative analysis of biological tissues using Fourier transform-second-harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Ambekar Ramachandra Rao, Raghu; Mehta, Monal R.; Toussaint, Kimani C., Jr.

    2010-02-01

    We demonstrate the use of Fourier transform-second-harmonic generation (FT-SHG) imaging of collagen fibers as a means of performing quantitative analysis of obtained images of selected spatial regions in porcine trachea, ear, and cornea. Two quantitative markers, preferred orientation and maximum spatial frequency are proposed for differentiating structural information between various spatial regions of interest in the specimens. The ear shows consistent maximum spatial frequency and orientation as also observed in its real-space image. However, there are observable changes in the orientation and minimum feature size of fibers in the trachea indicating a more random organization. Finally, the analysis is applied to a 3D image stack of the cornea. It is shown that the standard deviation of the orientation is sensitive to the randomness in fiber orientation. Regions with variations in the maximum spatial frequency, but with relatively constant orientation, suggest that maximum spatial frequency is useful as an independent quantitative marker. We emphasize that FT-SHG is a simple, yet powerful, tool for extracting information from images that is not obvious in real space. This technique can be used as a quantitative biomarker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.

  12. Changes in quantitative 3D shape features of the optic nerve head associated with age

    NASA Astrophysics Data System (ADS)

    Christopher, Mark; Tang, Li; Fingert, John H.; Scheetz, Todd E.; Abramoff, Michael D.

    2013-02-01

    Optic nerve head (ONH) structure is an important biological feature of the eye used by clinicians to diagnose and monitor progression of diseases such as glaucoma. ONH structure is commonly examined using stereo fundus imaging or optical coherence tomography. Stereo fundus imaging provides stereo views of the ONH that retain 3D information useful for characterizing structure. In order to quantify 3D ONH structure, we applied a stereo correspondence algorithm to a set of stereo fundus images. Using these quantitative 3D ONH structure measurements, eigen structures were derived using principal component analysis from stereo images of 565 subjects from the Ocular Hypertension Treatment Study (OHTS). To evaluate the usefulness of the eigen structures, we explored associations with the demographic variables age, gender, and race. Using regression analysis, the eigen structures were found to have significant (p < 0.05) associations with both age and race after Bonferroni correction. In addition, classifiers were constructed to predict the demographic variables based solely on the eigen structures. These classifiers achieved an area under receiver operating characteristic curve of 0.62 in predicting a binary age variable, 0.52 in predicting gender, and 0.67 in predicting race. The use of objective, quantitative features or eigen structures can reveal hidden relationships between ONH structure and demographics. The use of these features could similarly allow specific aspects of ONH structure to be isolated and associated with the diagnosis of glaucoma, disease progression and outcomes, and genetic factors.

  13. 2D- and 3D-quantitative structure-activity relationship studies for a series of phenazine N,N'-dioxide as antitumour agents.

    PubMed

    Cunha, Jonathan Da; Lavaggi, María Laura; Abasolo, María Inés; Cerecetto, Hugo; González, Mercedes

    2011-12-01

    Hypoxic regions of tumours are associated with increased resistance to radiation and chemotherapy. Nevertheless, hypoxia has been used as a tool for specific activation of some antitumour prodrugs, named bioreductive agents. Phenazine dioxides are an example of such bioreductive prodrugs. Our 2D-quantitative structure activity relationship studies established that phenazine dioxides electronic and lipophilic descriptors are related to survival fraction in oxia or in hypoxia. Additionally, statistically significant models, derived by partial least squares, were obtained between survival fraction in oxia and comparative molecular field analysis standard model (r² = 0.755, q² = 0.505 and F = 26.70) or comparative molecular similarity indices analysis-combined steric and electrostatic fields (r² = 0.757, q² = 0.527 and F = 14.93), and survival fraction in hypoxia and comparative molecular field analysis standard model (r² = 0.736, q² = 0.521 and F = 18.63) or comparative molecular similarity indices analysis-hydrogen bond acceptor field (r² = 0.858, q² = 0.737 and F = 27.19). Categorical classification was used for the biological parameter selective cytotoxicity emerging also good models, derived by soft independent modelling of class analogy, with both comparative molecular field analysis standard model (96% of overall classification accuracy) and comparative molecular similarity indices analysis-steric field (92% of overall classification accuracy). 2D- and 3D-quantitative structure-activity relationships models provided important insights into the chemical and structural basis involved in the molecular recognition process of these phenazines as bioreductive agents and should be useful for the design of new structurally related analogues with improved potency. © 2011 John Wiley & Sons A/S.

  14. Size-exclusive Nanosensor for Quantitative Analysis of Fullerene C60: A Concept Paper

    EPA Science Inventory

    This paper presents the first development of a mass-sensitive nanosensor for the isolation and quantitative analyses of engineered fullerene (C60) nanoparticles, while excluding mixtures of structurally similar fullerenes. Amino-modified beta cyclodextrin (β-CD-NH

  15. LANDSCAPE STRUCTURE AND ESTUARINE CONDITION IN THE MID-ATLANTIC REGION OF THE UNITED STATES: I. DEVELOPING QUANTITATIVE RELATIONSHIPS

    EPA Science Inventory

    In a previously published study, quantitative relationships were developed between landscape metrics and sediment contamination for 25 small estuarine systems within Chesapeake Bay. Nonparametric statistical analysis (rank transformation) was used to develop an empirical relation...

  16. Structure and Function of Iron-Loaded Synthetic Melanin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yiwen; Xie, Yijun; Wang, Zhao

    We describe a synthetic method for increasing and controlling the iron loading of synthetic melanin nanoparticles and use the resulting materials to perform a systematic quantitative investigation on their structure- property relationship. A comprehensive analysis by magnetometry, electron paramagnetic resonance, and nuclear magnetic relaxation dispersion reveals the complexities of their magnetic behavior and how these intraparticle magnetic interactions manifest in useful material properties such as their performance as MRI contrast agents. This analysis allows predictions of the optimal iron loading through a quantitative modeling of antiferromagnetic coupling that arises from proximal iron ions. This study provides a detailed understanding ofmore » this complex class of synthetic biomaterials and gives insight into interactions and structures prevalent in naturally occurring melanins.« less

  17. Quantitative analysis of RNA-protein interactions on a massively parallel array for mapping biophysical and evolutionary landscapes

    PubMed Central

    Buenrostro, Jason D.; Chircus, Lauren M.; Araya, Carlos L.; Layton, Curtis J.; Chang, Howard Y.; Snyder, Michael P.; Greenleaf, William J.

    2015-01-01

    RNA-protein interactions drive fundamental biological processes and are targets for molecular engineering, yet quantitative and comprehensive understanding of the sequence determinants of affinity remains limited. Here we repurpose a high-throughput sequencing instrument to quantitatively measure binding and dissociation of MS2 coat protein to >107 RNA targets generated on a flow-cell surface by in situ transcription and inter-molecular tethering of RNA to DNA. We decompose the binding energy contributions from primary and secondary RNA structure, finding that differences in affinity are often driven by sequence-specific changes in association rates. By analyzing the biophysical constraints and modeling mutational paths describing the molecular evolution of MS2 from low- to high-affinity hairpins, we quantify widespread molecular epistasis, and a long-hypothesized structure-dependent preference for G:U base pairs over C:A intermediates in evolutionary trajectories. Our results suggest that quantitative analysis of RNA on a massively parallel array (RNAMaP) relationships across molecular variants. PMID:24727714

  18. Statistical shape analysis using 3D Poisson equation--A quantitatively validated approach.

    PubMed

    Gao, Yi; Bouix, Sylvain

    2016-05-01

    Statistical shape analysis has been an important area of research with applications in biology, anatomy, neuroscience, agriculture, paleontology, etc. Unfortunately, the proposed methods are rarely quantitatively evaluated, and as shown in recent studies, when they are evaluated, significant discrepancies exist in their outputs. In this work, we concentrate on the problem of finding the consistent location of deformation between two population of shapes. We propose a new shape analysis algorithm along with a framework to perform a quantitative evaluation of its performance. Specifically, the algorithm constructs a Signed Poisson Map (SPoM) by solving two Poisson equations on the volumetric shapes of arbitrary topology, and statistical analysis is then carried out on the SPoMs. The method is quantitatively evaluated on synthetic shapes and applied on real shape data sets in brain structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Quantitative method of medication system interface evaluation.

    PubMed

    Pingenot, Alleene Anne; Shanteau, James; Pingenot, James D F

    2007-01-01

    The objective of this study was to develop a quantitative method of evaluating the user interface for medication system software. A detailed task analysis provided a description of user goals and essential activity. A structural fault analysis was used to develop a detailed description of the system interface. Nurses experienced with use of the system under evaluation provided estimates of failure rates for each point in this simplified fault tree. Means of estimated failure rates provided quantitative data for fault analysis. Authors note that, although failures of steps in the program were frequent, participants reported numerous methods of working around these failures so that overall system failure was rare. However, frequent process failure can affect the time required for processing medications, making a system inefficient. This method of interface analysis, called Software Efficiency Evaluation and Fault Identification Method, provides quantitative information with which prototypes can be compared and problems within an interface identified.

  20. Deformation analysis of MEMS structures by modified digital moiré methods

    NASA Astrophysics Data System (ADS)

    Liu, Zhanwei; Lou, Xinhao; Gao, Jianxin

    2010-11-01

    Quantitative deformation analysis of micro-fabricated electromechanical systems is of importance for the design and functional control of microsystems. In this paper, two modified digital moiré processing methods, Gaussian blurring algorithm combined with digital phase shifting and geometrical phase analysis (GPA) technique based on digital moiré method, are developed to quantitatively analyse the deformation behaviour of micro-electro-mechanical system (MEMS) structures. Measuring principles and experimental procedures of the two methods are described in detail. A digital moiré fringe pattern is generated by superimposing a specimen grating etched directly on a microstructure surface with a digital reference grating (DRG). Most of the grating noise is removed from the digital moiré fringes, which enables the phase distribution of the moiré fringes to be obtained directly. Strain measurement result of a MEMS structure demonstrates the feasibility of the two methods.

  1. 3D-quantitative structure-activity relationship studies on benzothiadiazepine hydroxamates as inhibitors of tumor necrosis factor-alpha converting enzyme.

    PubMed

    Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram

    2008-04-01

    A set of 29 benzothiadiazepine hydroxamates having selective tumor necrosis factor-alpha converting enzyme inhibitory activity were used to compare the quality and predictive power of 3D-quantitative structure-activity relationship, comparative molecular field analysis, and comparative molecular similarity indices models for the atom-based, centroid/atom-based, data-based, and docked conformer-based alignment. Removal of two outliers from the initial training set of molecules improved the predictivity of models. Among the 3D-quantitative structure-activity relationship models developed using the above four alignments, the database alignment provided the optimal predictive comparative molecular field analysis model for the training set with cross-validated r(2) (q(2)) = 0.510, non-cross-validated r(2) = 0.972, standard error of estimates (s) = 0.098, and F = 215.44 and the optimal comparative molecular similarity indices model with cross-validated r(2) (q(2)) = 0.556, non-cross-validated r(2) = 0.946, standard error of estimates (s) = 0.163, and F = 99.785. These models also showed the best test set prediction for six compounds with predictive r(2) values of 0.460 and 0.535, respectively. The contour maps obtained from 3D-quantitative structure-activity relationship studies were appraised for activity trends for the molecules analyzed. The comparative molecular similarity indices models exhibited good external predictivity as compared with that of comparative molecular field analysis models. The data generated from the present study helped us to further design and report some novel and potent tumor necrosis factor-alpha converting enzyme inhibitors.

  2. Software analysis handbook: Software complexity analysis and software reliability estimation and prediction

    NASA Technical Reports Server (NTRS)

    Lee, Alice T.; Gunn, Todd; Pham, Tuan; Ricaldi, Ron

    1994-01-01

    This handbook documents the three software analysis processes the Space Station Software Analysis team uses to assess space station software, including their backgrounds, theories, tools, and analysis procedures. Potential applications of these analysis results are also presented. The first section describes how software complexity analysis provides quantitative information on code, such as code structure and risk areas, throughout the software life cycle. Software complexity analysis allows an analyst to understand the software structure, identify critical software components, assess risk areas within a software system, identify testing deficiencies, and recommend program improvements. Performing this type of analysis during the early design phases of software development can positively affect the process, and may prevent later, much larger, difficulties. The second section describes how software reliability estimation and prediction analysis, or software reliability, provides a quantitative means to measure the probability of failure-free operation of a computer program, and describes the two tools used by JSC to determine failure rates and design tradeoffs between reliability, costs, performance, and schedule.

  3. Quantitative patterns of stylistic influence in the evolution of literature.

    PubMed

    Hughes, James M; Foti, Nicholas J; Krakauer, David C; Rockmore, Daniel N

    2012-05-15

    Literature is a form of expression whose temporal structure, both in content and style, provides a historical record of the evolution of culture. In this work we take on a quantitative analysis of literary style and conduct the first large-scale temporal stylometric study of literature by using the vast holdings in the Project Gutenberg Digital Library corpus. We find temporal stylistic localization among authors through the analysis of the similarity structure in feature vectors derived from content-free word usage, nonhomogeneous decay rates of stylistic influence, and an accelerating rate of decay of influence among modern authors. Within a given time period we also find evidence for stylistic coherence with a given literary topic, such that writers in different fields adopt different literary styles. This study gives quantitative support to the notion of a literary "style of a time" with a strong trend toward increasingly contemporaneous stylistic influence.

  4. Quantitative characterization of the atomic-scale structure of oxyhydroxides in rusts formed on steel surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, M.; Suzuki, S.; Kimura, M.

    Quantitative X-ray structural analysis coupled with anomalous X-ray scattering has been used for characterizing the atomic-scale structure of rust formed on steel surfaces. Samples were prepared from rust layers formed on the surfaces of two commercial steels. X-ray scattered intensity profiles of the two samples showed that the rusts consisted mainly of two types of ferric oxyhydroxide, {alpha}-FeOOH and {gamma}-FeOOH. The amounts of these rust components and the realistic atomic arrangements in the components were estimated by fitting both the ordinary and the environmental interference functions with a model structure calculated using the reverse Monte Carlo simulation technique. The twomore » rust components were found to be the network structure formed by FeO{sub 6} octahedral units, the network structure itself deviating from the ideal case. The present results also suggest that the structural analysis method using anomalous X-ray scattering and the reverse Monte Carlo technique is very successful in determining the atomic-scale structure of rusts formed on the steel surfaces.« less

  5. [Quantitative relationship between gas chromatographic retention time and structural parameters of alkylphenols].

    PubMed

    Ruan, Xiaofang; Zhang, Ruisheng; Yao, Xiaojun; Liu, Mancang; Fan, Botao

    2007-03-01

    Alkylphenols are a group of permanent pollutants in the environment and could adversely disturb the human endocrine system. It is therefore important to effectively separate and measure the alkylphenols. To guide the chromatographic analysis of these compounds in practice, the development of quantitative relationship between the molecular structure and the retention time of alkylphenols becomes necessary. In this study, topological, constitutional, geometrical, electrostatic and quantum-chemical descriptors of 44 alkylphenols were calculated using a software, CODESSA, and these descriptors were pre-selected using the heuristic method. As a result, three-descriptor linear model (LM) was developed to describe the relationship between the molecular structure and the retention time of alkylphenols. Meanwhile, the non-linear regression model was also developed based on support vector machine (SVM) using the same three descriptors. The correlation coefficient (R(2)) for the LM and SVM was 0.98 and 0. 92, and the corresponding root-mean-square error was 0. 99 and 2. 77, respectively. By comparing the stability and prediction ability of the two models, it was found that the linear model was a better method for describing the quantitative relationship between the retention time of alkylphenols and the molecular structure. The results obtained suggested that the linear model could be applied for the chromatographic analysis of alkylphenols with known molecular structural parameters.

  6. Indirect Observation in Everyday Contexts: Concepts and Methodological Guidelines within a Mixed Methods Framework.

    PubMed

    Anguera, M Teresa; Portell, Mariona; Chacón-Moscoso, Salvador; Sanduvete-Chaves, Susana

    2018-01-01

    Indirect observation is a recent concept in systematic observation. It largely involves analyzing textual material generated either indirectly from transcriptions of audio recordings of verbal behavior in natural settings (e.g., conversation, group discussions) or directly from narratives (e.g., letters of complaint, tweets, forum posts). It may also feature seemingly unobtrusive objects that can provide relevant insights into daily routines. All these materials constitute an extremely rich source of information for studying everyday life, and they are continuously growing with the burgeoning of new technologies for data recording, dissemination, and storage. Narratives are an excellent vehicle for studying everyday life, and quantitization is proposed as a means of integrating qualitative and quantitative elements. However, this analysis requires a structured system that enables researchers to analyze varying forms and sources of information objectively. In this paper, we present a methodological framework detailing the steps and decisions required to quantitatively analyze a set of data that was originally qualitative. We provide guidelines on study dimensions, text segmentation criteria, ad hoc observation instruments, data quality controls, and coding and preparation of text for quantitative analysis. The quality control stage is essential to ensure that the code matrices generated from the qualitative data are reliable. We provide examples of how an indirect observation study can produce data for quantitative analysis and also describe the different software tools available for the various stages of the process. The proposed method is framed within a specific mixed methods approach that involves collecting qualitative data and subsequently transforming these into matrices of codes (not frequencies) for quantitative analysis to detect underlying structures and behavioral patterns. The data collection and quality control procedures fully meet the requirement of flexibility and provide new perspectives on data integration in the study of biopsychosocial aspects in everyday contexts.

  7. Informatics in radiology: automated structured reporting of imaging findings using the AIM standard and XML.

    PubMed

    Zimmerman, Stefan L; Kim, Woojin; Boonn, William W

    2011-01-01

    Quantitative and descriptive imaging data are a vital component of the radiology report and are frequently of paramount importance to the ordering physician. Unfortunately, current methods of recording these data in the report are both inefficient and error prone. In addition, the free-text, unstructured format of a radiology report makes aggregate analysis of data from multiple reports difficult or even impossible without manual intervention. A structured reporting work flow has been developed that allows quantitative data created at an advanced imaging workstation to be seamlessly integrated into the radiology report with minimal radiologist intervention. As an intermediary step between the workstation and the reporting software, quantitative and descriptive data are converted into an extensible markup language (XML) file in a standardized format specified by the Annotation and Image Markup (AIM) project of the National Institutes of Health Cancer Biomedical Informatics Grid. The AIM standard was created to allow image annotation data to be stored in a uniform machine-readable format. These XML files containing imaging data can also be stored on a local database for data mining and analysis. This structured work flow solution has the potential to improve radiologist efficiency, reduce errors, and facilitate storage of quantitative and descriptive imaging data for research. Copyright © RSNA, 2011.

  8. Analysis of atomic force microscopy data for surface characterization using fuzzy logic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Mousa, Amjed, E-mail: aalmousa@vt.edu; Niemann, Darrell L.; Niemann, Devin J.

    2011-07-15

    In this paper we present a methodology to characterize surface nanostructures of thin films. The methodology identifies and isolates nanostructures using Atomic Force Microscopy (AFM) data and extracts quantitative information, such as their size and shape. The fuzzy logic based methodology relies on a Fuzzy Inference Engine (FIE) to classify the data points as being top, bottom, uphill, or downhill. The resulting data sets are then further processed to extract quantitative information about the nanostructures. In the present work we introduce a mechanism which can consistently distinguish crowded surfaces from those with sparsely distributed structures and present an omni-directional searchmore » technique to improve the structural recognition accuracy. In order to demonstrate the effectiveness of our approach we present a case study which uses our approach to quantitatively identify particle sizes of two specimens each with a unique gold nanoparticle size distribution. - Research Highlights: {yields} A Fuzzy logic analysis technique capable of characterizing AFM images of thin films. {yields} The technique is applicable to different surfaces regardless of their densities. {yields} Fuzzy logic technique does not require manual adjustment of the algorithm parameters. {yields} The technique can quantitatively capture differences between surfaces. {yields} This technique yields more realistic structure boundaries compared to other methods.« less

  9. Interrelation of structure and operational states in cascading failure of overloading lines in power grids

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Bompard, Ettore; Huang, Tao; Jiang, Lin; Lu, Shaofeng; Zhu, Huaiying

    2017-09-01

    As the modern power system is expected to develop to a more intelligent and efficient version, i.e. the smart grid, or to be the central backbone of energy internet for free energy interactions, security concerns related to cascading failures have been raised with consideration of catastrophic results. The researches of topological analysis based on complex networks have made great contributions in revealing structural vulnerabilities of power grids including cascading failure analysis. However, existing literature with inappropriate assumptions in modeling still cannot distinguish the effects between the structure and operational state to give meaningful guidance for system operation. This paper is to reveal the interrelation between network structure and operational states in cascading failure and give quantitative evaluation by integrating both perspectives. For structure analysis, cascading paths will be identified by extended betweenness and quantitatively described by cascading drop and cascading gradient. Furthermore, the operational state for cascading paths will be described by loading level. Then, the risk of cascading failure along a specific cascading path can be quantitatively evaluated considering these two factors. The maximum cascading gradient of all possible cascading paths can be used as an overall metric to evaluate the entire power grid for its features related to cascading failure. The proposed method is tested and verified on IEEE30-bus system and IEEE118-bus system, simulation evidences presented in this paper suggests that the proposed model can identify the structural causes for cascading failure and is promising to give meaningful guidance for the protection of system operation in the future.

  10. Shallow Investigations of the Deep Seafloor: Quantitative Morphology in the Levant Basin, Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kanari, M.; Ketter, T.; Tibor, G.; Schattner, U.

    2017-12-01

    We aim to characterize the seafloor morphology and its shallow sub-surface structures and deformations in the deep part of the Levant basin (eastern Mediterranean) using recently acquired high-resolution shallow seismic reflection data and multibeam bathymetry, which allow quantitative analysis of morphology and structure. The Levant basin at the eastern Mediterranean is considered a passive continental margin, where most of the recent geological processes were related in literature to salt tectonics rooted at the Messinian deposits from 6Ma. We analyzed two sets of recently acquired high-resolution data from multibeam bathymetry and 3.5 kHz Chirp sub-bottom seismic reflection in the deep basin of the continental shelf offshore Israel (water depths up to 2100 m). Semi-automatic mapping of seafloor features and seismic data interpretation resulted in quantitative morphological analysis of the seafloor and its underlying sediment with penetration depth up to 60 m. The quantitative analysis and its interpretation are still in progress. Preliminary results reveal distinct morphologies of four major elements: channels, faults, folds and sediment waves, validated by seismic data. From the spatial distribution and orientation analyses of these phenomena, we identify two primary process types which dominate the formation of the seafloor in the Levant basin: structural and sedimentary. Characterization of the geological and geomorphological processes forming the seafloor helps to better understand the transport mechanisms and the relations between sediment transport and deposition in deep water and the shallower parts of the shelf and slope.

  11. Corporatized Higher Education: A Quantitative Study Examining Faculty Motivation Using Self-Determination Theory

    ERIC Educational Resources Information Center

    Brown, Aaron D.

    2016-01-01

    The intent of this research is to offer a quantitative analysis of self-determined faculty motivation within the current corporate model of higher education across public and private research universities. With such a heightened integration of accountability structures, external reward systems, and the ongoing drive for more money and…

  12. Quantitative classification of a historic northern Wisconsin (U.S.A.) landscape: mapping forests at regional scales

    Treesearch

    Lisa A. Schulte; David J. Mladenoff; Erik V. Nordheim

    2002-01-01

    We developed a quantitative and replicable classification system to improve understanding of historical composition and structure within northern Wisconsin's forests. The classification system was based on statistical cluster analysis and two forest metrics, relative dominance (% basal area) and relative importance (mean of relative dominance and relative density...

  13. The structure-activity relationship of inhibitors of serotonin uptake and receptor binding

    NASA Astrophysics Data System (ADS)

    Hansch, Corwin; Caldwell, Jonathan

    1991-10-01

    An analysis of five different datasets of inhibitors of serotonin uptake has yielded quantitative structure/ activity relationships (QSARs) which delineate the role of steric and hydrophobic properties essential for inhibition by phenylethylamine-type analogues.

  14. Structured Qualitative Research: Organizing “Mountains of Words” for Data Analysis, both Qualitative and Quantitative

    PubMed Central

    Johnson, Bruce D.; Dunlap, Eloise; Benoit, Ellen

    2008-01-01

    Qualitative research creates mountains of words. U.S. federal funding supports mostly structured qualitative research, which is designed to test hypotheses using semi-quantitative coding and analysis. The authors have 30 years of experience in designing and completing major qualitative research projects, mainly funded by the US National Institute on Drug Abuse [NIDA]. This article reports on strategies for planning, organizing, collecting, managing, storing, retrieving, analyzing, and writing about qualitative data so as to most efficiently manage the mountains of words collected in large-scale ethnographic projects. Multiple benefits accrue from this approach. Several different staff members can contribute to the data collection, even when working from remote locations. Field expenditures are linked to units of work so productivity is measured, many staff in various locations have access to use and analyze the data, quantitative data can be derived from data that is primarily qualitative, and improved efficiencies of resources are developed. The major difficulties involve a need for staff who can program and manage large databases, and who can be skillful analysts of both qualitative and quantitative data. PMID:20222777

  15. Temporal Lobe Epilepsy: Quantitative MR Volumetry in Detection of Hippocampal Atrophy

    PubMed Central

    Farid, Nikdokht; Girard, Holly M.; Kemmotsu, Nobuko; Smith, Michael E.; Magda, Sebastian W.; Lim, Wei Y.; Lee, Roland R.

    2012-01-01

    Purpose: To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE). Materials and Methods: This study was conducted with institutional review board approval and in compliance with HIPAA regulations. Volumetric MR imaging data were analyzed for 34 patients with TLE and 116 control subjects. Structural volumes were calculated by using U.S. Food and Drug Administration–cleared software for automated quantitative MR imaging analysis (NeuroQuant). Results of quantitative MR imaging were compared with visual detection of atrophy, and, when available, with histologic specimens. Receiver operating characteristic analyses were performed to determine the optimal sensitivity and specificity of quantitative MR imaging for detecting HA and asymmetry. A linear classifier with cross validation was used to estimate the ability of quantitative MR imaging to help lateralize the seizure focus. Results: Quantitative MR imaging–derived hippocampal asymmetries discriminated patients with TLE from control subjects with high sensitivity (86.7%–89.5%) and specificity (92.2%–94.1%). When a linear classifier was used to discriminate left versus right TLE, hippocampal asymmetry achieved 94% classification accuracy. Volumetric asymmetries of other subcortical structures did not improve classification. Compared with invasive video electroencephalographic recordings, lateralization accuracy was 88% with quantitative MR imaging and 85% with visual inspection of volumetric MR imaging studies but only 76% with visual inspection of clinical MR imaging studies. Conclusion: Quantitative MR imaging can depict the presence and laterality of HA in TLE with accuracy rates that may exceed those achieved with visual inspection of clinical MR imaging studies. Thus, quantitative MR imaging may enhance standard visual analysis, providing a useful and viable means for translating volumetric analysis into clinical practice. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112638/-/DC1 PMID:22723496

  16. Canadian Air Force Establishment Analysis: Creating a meta-methodology to address integrated questions of force structure, workforce planning and organizational design

    DTIC Science & Technology

    2010-01-28

    Considerations – Position categories: • Hard • Generic or “ soft ” • Advanced Training – Language requirements – Need for • military, combat and/or field...Analysis (DGMPRA) Presentation to MORS WG Personnel and National Security: A Quantitative Approach 25-28 January 2010 Defence Research and...SUPPLEMENTARY NOTES Personnel and National Security: A Quantitative Approach (Unclass), 25-28 January 2010, Johns Hopkins University Applied Physics

  17. [Methods of quantitative proteomics].

    PubMed

    Kopylov, A T; Zgoda, V G

    2007-01-01

    In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.

  18. [Quantitative analysis of the structure of neuronal dendritic spines in the striatum using the Leitz-ASM system].

    PubMed

    Leontovich, T A; Zvegintseva, E G

    1985-10-01

    Two principal classes of striatum long axonal neurons (sparsely ramified reticular cells and densely ramified dendritic cells) were analyzed quantitatively in four animal species: hedgehog, rabbit, dog and monkey. The cross section area, total dendritic length and the area of dendritic field were measured using "LEITZ-ASM" system. Classes of neurons studied were significantly different in dogs and monkeys, while no differences were noted between hedgehog and rabbit. Reticular neurons of different species varied much more than dendritic ones. Quantitative analysis has revealed the progressive increase in the complexity of dendritic tree in mammals from rabbit to monkey.

  19. Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR

    DOE PAGES

    Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi; ...

    2018-02-03

    In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less

  20. Quantitative atomic-scale structure characterization of ordered mesoporous carbon materials by solid state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhuoran; Opembe, Naftali; Kobayashi, Takeshi

    In this study, solid-state (SS)NMR techniques were applied to characterize the atomic-scale structures of ordered mesoporous carbon (OMC) materials prepared using Pluronic F127 as template with resorcinol and formaldehyde as polymerizing precursors. A rigorous quantitative analysis was developed using a combination of 13C SSNMR spectra acquired with direct polarization and cross polarization on natural abundant and selectively 13C-enriched series of samples pyrolyzed at various temperatures. These experiments identified and counted the key functional groups present in the OMCs at various stages of preparation and thermal treatment. Lastly, the chemical evolution of molecular networks, the average sizes of aromatic clusters andmore » the extended molecular structures of OMCs were then inferred by coupling this information with the elemental analysis results.« less

  1. Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives.

    PubMed

    Gao, Jia-Suo; Tong, Xu-Peng; Chang, Yi-Qun; He, Yu-Xuan; Mei, Yu-Dan; Tan, Pei-Hong; Guo, Jia-Liang; Liao, Guo-Chao; Xiao, Gao-Keng; Chen, Wei-Min; Zhou, Shu-Feng; Sun, Ping-Hua

    2015-01-01

    Factor IXa (FIXa), a blood coagulation factor, is specifically inhibited at the initiation stage of the coagulation cascade, promising an excellent approach for developing selective and safe anticoagulants. Eighty-four amidinobenzothiophene antithrombotic derivatives targeting FIXa were selected to establish three-dimensional quantitative structure-activity relationship (3D-QSAR) and three-dimensional quantitative structure-selectivity relationship (3D-QSSR) models using comparative molecular field analysis and comparative similarity indices analysis methods. Internal and external cross-validation techniques were investigated as well as region focusing and bootstrapping. The satisfactory q (2) values of 0.753 and 0.770, and r (2) values of 0.940 and 0.965 for 3D-QSAR and 3D-QSSR, respectively, indicated that the models are available to predict both the inhibitory activity and selectivity on FIXa against Factor Xa, the activated status of Factor X. This work revealed that the steric, hydrophobic, and H-bond factors should appropriately be taken into account in future rational design, especially the modifications at the 2'-position of the benzene and the 6-position of the benzothiophene in the R group, providing helpful clues to design more active and selective FIXa inhibitors for the treatment of thrombosis. On the basis of the three-dimensional quantitative structure-property relationships, 16 new potent molecules have been designed and are predicted to be more active and selective than Compound 33, which has the best activity as reported in the literature.

  2. Analysis of Synthetic Polymers.

    ERIC Educational Resources Information Center

    Smith, Charles G.; And Others

    1989-01-01

    Reviews techniques for the characterization and analysis of synthetic polymers, copolymers, and blends. Includes techniques for structure determination, separation, and quantitation of additives and residual monomers; determination of molecular weight; and the study of thermal properties including degradation mechanisms. (MVL)

  3. A quantitative flood risk analysis methodology for urban areas with integration of social research data

    NASA Astrophysics Data System (ADS)

    Escuder-Bueno, I.; Castillo-Rodríguez, J. T.; Zechner, S.; Jöbstl, C.; Perales-Momparler, S.; Petaccia, G.

    2012-09-01

    Risk analysis has become a top priority for authorities and stakeholders in many European countries, with the aim of reducing flooding risk, considering the population's needs and improving risk awareness. Within this context, two methodological pieces have been developed in the period 2009-2011 within the SUFRI project (Sustainable Strategies of Urban Flood Risk Management with non-structural measures to cope with the residual risk, 2nd ERA-Net CRUE Funding Initiative). First, the "SUFRI Methodology for pluvial and river flooding risk assessment in urban areas to inform decision-making" provides a comprehensive and quantitative tool for flood risk analysis. Second, the "Methodology for investigation of risk awareness of the population concerned" presents the basis to estimate current risk from a social perspective and identify tendencies in the way floods are understood by citizens. Outcomes of both methods are integrated in this paper with the aim of informing decision making on non-structural protection measures. The results of two case studies are shown to illustrate practical applications of this developed approach. The main advantage of applying the methodology herein presented consists in providing a quantitative estimation of flooding risk before and after investing in non-structural risk mitigation measures. It can be of great interest for decision makers as it provides rational and solid information.

  4. Comparison of 3D quantitative structure-activity relationship methods: Analysis of the in vitro antimalarial activity of 154 artemisinin analogues by hypothetical active-site lattice and comparative molecular field analysis

    NASA Astrophysics Data System (ADS)

    Woolfrey, John R.; Avery, Mitchell A.; Doweyko, Arthur M.

    1998-03-01

    Two three-dimensional quantitative structure-activity relationship (3D-QSAR) methods, comparative molecular field analysis (CoMFA) and hypothetical active site lattice (HASL), were compared with respect to the analysis of a training set of 154 artemisinin analogues. Five models were created, including a complete HASL and two trimmed versions, as well as two CoMFA models (leave-one-out standard CoMFA and the guided-region selection protocol). Similar r2 and q2 values were obtained by each method, although some striking differences existed between CoMFA contour maps and the HASL output. Each of the four predictive models exhibited a similar ability to predict the activity of a test set of 23 artemisinin analogues, although some differences were noted as to which compounds were described well by either model.

  5. Nanoscale Structure of Type I Collagen Fibrils: Quantitative Measurement of D-spacing

    PubMed Central

    Erickson, Blake; Fang, Ming; Wallace, Joseph M.; Orr, Bradford G.; Les, Clifford M.; Holl, Mark M. Banaszak

    2012-01-01

    This paper details a quantitative method to measure the D-periodic spacing of Type I collagen fibrils using Atomic Force Microscopy coupled with analysis using a 2D Fast Fourier Transform approach. Instrument calibration, data sampling and data analysis are all discussed and comparisons of the data to the complementary methods of electron microscopy and X-ray scattering are made. Examples of the application of this new approach to the analysis of Type I collagen morphology in disease models of estrogen depletion and Osteogenesis Imperfecta are provided. We demonstrate that it is the D-spacing distribution, not the D-spacing mean, that showed statistically significant differences in estrogen depletion associated with early stage Osteoporosis and Osteogenesis Imperfecta. The ability to quantitatively characterize nanoscale morphological features of Type I collagen fibrils will provide important structural information regarding Type I collagen in many research areas, including tissue aging and disease, tissue engineering, and gene knock out studies. Furthermore, we also envision potential clinical applications including evaluation of tissue collagen integrity under the impact of diseases or drug treatments. PMID:23027700

  6. Three-dimensional cardiac architecture determined by two-photon microtomy

    NASA Astrophysics Data System (ADS)

    Huang, Hayden; MacGillivray, Catherine; Kwon, Hyuk-Sang; Lammerding, Jan; Robbins, Jeffrey; Lee, Richard T.; So, Peter

    2009-07-01

    Cardiac architecture is inherently three-dimensional, yet most characterizations rely on two-dimensional histological slices or dissociated cells, which remove the native geometry of the heart. We previously developed a method for labeling intact heart sections without dissociation and imaging large volumes while preserving their three-dimensional structure. We further refine this method to permit quantitative analysis of imaged sections. After data acquisition, these sections are assembled using image-processing tools, and qualitative and quantitative information is extracted. By examining the reconstructed cardiac blocks, one can observe end-to-end adjacent cardiac myocytes (cardiac strands) changing cross-sectional geometries, merging and separating from other strands. Quantitatively, representative cross-sectional areas typically used for determining hypertrophy omit the three-dimensional component; we show that taking orientation into account can significantly alter the analysis. Using fast-Fourier transform analysis, we analyze the gross organization of cardiac strands in three dimensions. By characterizing cardiac structure in three dimensions, we are able to determine that the α crystallin mutation leads to hypertrophy with cross-sectional area increases, but not necessarily via changes in fiber orientation distribution.

  7. Accelerated life assessment of coating on the radar structure components in coastal environment.

    PubMed

    Liu, Zhe; Ming, ZhiMao

    2016-07-04

    This paper aimed to build an accelerated life test scheme and carry out quantitative analysis between accelerated life test in the laboratory and actual service for the coating composed of epoxy primer and polyurethane paint on structure components of some kind of radar served in the coastal environment of South China Sea. The accelerated life test scheme was built based on the service environment and failure analysis of the coating. The quantitative analysis between accelerated life test and actual service was conducted by comparing the gloss loss, discoloration, chalking, blistering, cracking and electrochemical impedance spectroscopy of the coating. The main factors leading to the coating failure were ultraviolet radiation, temperature, moisture, salt fog and loads, the accelerated life test included ultraviolet radiation, damp heat, thermal shock, fatigue and salt spray. The quantitative relationship was that one cycle of the accelerated life test was equal to actual service for one year. It was established that one cycle of the accelerated life test was equal to actual service for one year. It provided a precise way to predict actual service life of newly developed coatings for the manufacturer.

  8. Digital 3D Microstructure Analysis of Concrete using X-Ray Micro Computed Tomography SkyScan 1173: A Preliminary Study

    NASA Astrophysics Data System (ADS)

    Latief, F. D. E.; Mohammad, I. H.; Rarasati, A. D.

    2017-11-01

    Digital imaging of a concrete sample using high resolution tomographic imaging by means of X-Ray Micro Computed Tomography (μ-CT) has been conducted to assess the characteristic of the sample’s structure. A standard procedure of image acquisition, reconstruction, image processing of the method using a particular scanning device i.e., the Bruker SkyScan 1173 High Energy Micro-CT are elaborated. A qualitative and a quantitative analysis were briefly performed on the sample to deliver some basic ideas of the capability of the system and the bundled software package. Calculation of total VOI volume, object volume, percent of object volume, total VOI surface, object surface, object surface/volume ratio, object surface density, structure thickness, structure separation, total porosity were conducted and analysed. This paper should serve as a brief description of how the device can produce the preferred image quality as well as the ability of the bundled software packages to help in performing qualitative and quantitative analysis.

  9. The Adoption Process of Ricefield-Based Fish Seed Production in Northwest Bangladesh: An Understanding through Quantitative and Qualitative Investigation

    ERIC Educational Resources Information Center

    Haque, Mohammad Mahfujul; Little, David C.; Barman, Benoy K.; Wahab, Md. Abdul

    2010-01-01

    Purpose: The purpose of the study was to understand the adoption process of ricefield based fish seed production (RBFSP) that has been developed, promoted and established in Northwest Bangladesh. Design/Methodology/Approach: Quantitative investigation based on regression analysis and qualitative investigation using semi-structured interview were…

  10. Quantitative Analysis of Defects in Silicon. [to predict energy conversion efficiency of silicon samples for solar cells

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Smith, J. M.; Qidwai, H. A.; Bruce, T.

    1979-01-01

    The evaluation and prediction of the conversion efficiency for a variety of silicon samples with differences in structural defects, such as grain boundaries, twin boundaries, precipitate particles, dislocations, etc. are discussed. Quantitative characterization of these structural defects, which were revealed by etching the surface of silicon samples, is performed by using an image analyzer. Due to different crystal growth and fabrication techniques the various types of silicon contain a variety of trace impurity elements and structural defects. The two most important criteria in evaluating the various silicon types for solar cell applications are cost and conversion efficiency.

  11. Online interactive analysis of protein structure ensembles with Bio3D-web.

    PubMed

    Skjærven, Lars; Jariwala, Shashank; Yao, Xin-Qiu; Grant, Barry J

    2016-11-15

    Bio3D-web is an online application for analyzing the sequence, structure and conformational heterogeneity of protein families. Major functionality is provided for identifying protein structure sets for analysis, their alignment and refined structure superposition, sequence and structure conservation analysis, mapping and clustering of conformations and the quantitative comparison of their predicted structural dynamics. Bio3D-web is based on the Bio3D and Shiny R packages. All major browsers are supported and full source code is available under a GPL2 license from http://thegrantlab.org/bio3d-web CONTACT: bjgrant@umich.edu or lars.skjarven@uib.no. © The Author 2016. Published by Oxford University Press.

  12. Pyrolysis Mass Spectrometry of Complex Organic Materials.

    ERIC Educational Resources Information Center

    Meuzelaar, Henk L. C.; And Others

    1984-01-01

    Illustrates the state of the art in pyrolysis mass spectrometry techniques through applications in: (1) structural determination and quality control of synthetic polymers; (2) quantitative analysis of polymer mixtures; (3) classification and structural characterization of fossil organic matter; and (4) nonsupervised numerical extraction of…

  13. Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis

    PubMed Central

    Morelli, Sylvia A.; Sacchet, Matthew D.; Zaki, Jamil

    2015-01-01

    Individuals experience reward not only when directly receiving positive outcomes (e.g., food or money), but also when observing others receive such outcomes. This latter phenomenon, known as vicarious reward, is a perennial topic of interest among psychologists and economists. More recently, neuroscientists have begun exploring the neuroanatomy underlying vicarious reward. Here we present a quantitative whole-brain meta-analysis of this emerging literature. We identified 25 functional neuroimaging studies that included contrasts between vicarious reward and a neutral control, and subjected these contrasts to an activation likelihood estimate (ALE) meta-analysis. This analysis revealed a consistent pattern of activation across studies, spanning structures typically associated with the computation of value (especially ventromedial prefrontal cortex) and mentalizing (including dorsomedial prefrontal cortex and superior temporal sulcus). We further quantitatively compared this activation pattern to activation foci from a previous meta-analysis of personal reward. Conjunction analyses yielded overlapping VMPFC activity in response to personal and vicarious reward. Contrast analyses identified preferential engagement of the nucleus accumbens in response to personal as compared to vicarious reward, and in mentalizing-related structures in response to vicarious as compared to personal reward. These data shed light on the common and unique components of the reward that individuals experience directly and through their social connections. PMID:25554428

  14. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review

    USDA-ARS?s Scientific Manuscript database

    Current wet chemical methods for biomass composition analysis using two-step sulfuric acid hydrolysis are time-consuming, labor-intensive, and unable to provide structural information about biomass. Infrared techniques provide fast, low-cost analysis, are non-destructive, and have shown promising re...

  15. Aggregation and Disaggregation of Senile Plaques in Alzheimer Disease

    NASA Astrophysics Data System (ADS)

    Cruz, L.; Urbanc, B.; Buldyrev, S. V.; Christie, R.; Gomez-Isla, T.; Havlin, S.; McNamara, M.; Stanley, H. E.; Hyman, B. T.

    1997-07-01

    We quantitatively analyzed, using laser scanning confocal microscopy, the three-dimensional structure of individual senile plaques in Alzheimer disease. We carried out the quantitative analysis using statistical methods to gain insights about the processes that govern Aβ peptide deposition. Our results show that plaques are complex porous structures with characteristic pore sizes. We interpret plaque morphology in the context of a new dynamical model based on competing aggregation and disaggregation processes in kinetic steady-state equilibrium with an additional diffusion process allowing Aβ deposits to diffuse over the surface of plaques.

  16. Evaluating and learning from RNA pseudotorsional space: quantitative validation of a reduced representation for RNA structure.

    PubMed

    Wadley, Leven M; Keating, Kevin S; Duarte, Carlos M; Pyle, Anna Marie

    2007-09-28

    Quantitatively describing RNA structure and conformational elements remains a formidable problem. Seven standard torsion angles and the sugar pucker are necessary to characterize the conformation of an RNA nucleotide completely. Progress has been made toward understanding the discrete nature of RNA structure, but classifying simple and ubiquitous structural elements such as helices and motifs remains a difficult task. One approach for describing RNA structure in a simple, mathematically consistent, and computationally accessible manner involves the invocation of two pseudotorsions, eta (C4'(n-1), P(n), C4'(n), P(n+1)) and theta (P(n), C4'(n), P(n+1), C4'(n+1)), which can be used to describe RNA conformation in much the same way that varphi and psi are used to describe backbone configuration of proteins. Here, we conduct an exploration and statistical evaluation of pseudotorsional space and of the Ramachandran-like eta-theta plot. We show that, through the rigorous quantitative analysis of the eta-theta plot, the pseudotorsional descriptors eta and theta, together with sugar pucker, are sufficient to describe RNA backbone conformation fully in most cases. These descriptors are also shown to contain considerable information about nucleotide base conformation, revealing a previously uncharacterized interplay between backbone and base orientation. A window function analysis is used to discern statistically relevant regions of density in the eta-theta scatter plot and then nucleotides in colocalized clusters in the eta-theta plane are shown to have similar 3-D structures through RMSD analysis of the RNA structural constituents. We find that major clusters in the eta-theta plot are few, underscoring the discrete nature of RNA backbone conformation. Like the Ramachandran plot, the eta-theta plot is a valuable system for conceptualizing biomolecular conformation, it is a useful tool for analyzing RNA tertiary structures, and it is a vital component of new approaches for solving the 3-D structures of large RNA molecules and RNA assemblies.

  17. Quantitative analysis of surface characteristics and morphology in Death Valley, California using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Kierein-Young, K. S.; Kruse, F. A.; Lefkoff, A. B.

    1992-01-01

    The Jet Propulsion Laboratory Airborne Synthetic Aperture Radar (JPL-AIRSAR) is used to collect full polarimetric measurements at P-, L-, and C-bands. These data are analyzed using the radar analysis and visualization environment (RAVEN). The AIRSAR data are calibrated using in-scene corner reflectors to allow for quantitative analysis of the radar backscatter. RAVEN is used to extract surface characteristics. Inversion models are used to calculate quantitative surface roughness values and fractal dimensions. These values are used to generate synthetic surface plots that represent the small-scale surface structure of areas in Death Valley. These procedures are applied to a playa, smooth salt-pan, and alluvial fan surfaces in Death Valley. Field measurements of surface roughness are used to verify the accuracy.

  18. Quantitative analysis of the flexibility effect of cisplatin on circular DNA

    NASA Astrophysics Data System (ADS)

    Ji, Chao; Zhang, Lingyun; Wang, Peng-Ye

    2013-10-01

    We study the effects of cisplatin on the circular configuration of DNA using atomic force microscopy (AFM) and observe that the DNA gradually transforms to a complex configuration with an intersection and interwound structures from a circlelike structure. An algorithm is developed to extract the configuration profiles of circular DNA from AFM images and the radius of gyration is used to describe the flexibility of circular DNA. The quantitative analysis of the circular DNA demonstrates that the radius of gyration gradually decreases and two processes on the change of flexibility of circular DNA are found as the cisplatin concentration increases. Furthermore, a model is proposed and discussed to explain the mechanism for understanding the complicated interaction between DNA and cisplatin.

  19. The Intellectual Structure of Metacognitive Scaffolding in Science Education: A Co-Citation Network Analysis

    ERIC Educational Resources Information Center

    Tang, Kai-Yu; Wang, Chia-Yu; Chang, Hsin-Yi; Chen, Sufen; Lo, Hao-Chang; Tsai, Chin-Chung

    2016-01-01

    The issues of metacognitive scaffolding in science education (MSiSE) have become increasingly popular and important. Differing from previous content reviews, this study proposes a series of quantitative computer-based analyses by integrating document co-citation analysis, social network analysis, and exploratory factor analysis to explore the…

  20. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system.

    PubMed

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. This database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.

  1. Electron-density descriptors as predictors in quantitative structure--activity/property relationships and drug design.

    PubMed

    Matta, Chérif F; Arabi, Alya A

    2011-06-01

    The use of electron density-based molecular descriptors in drug research, particularly in quantitative structure--activity relationships/quantitative structure--property relationships studies, is reviewed. The exposition starts by a discussion of molecular similarity and transferability in terms of the underlying electron density, which leads to a qualitative introduction to the quantum theory of atoms in molecules (QTAIM). The starting point of QTAIM is the topological analysis of the molecular electron-density distributions to extract atomic and bond properties that characterize every atom and bond in the molecule. These atomic and bond properties have considerable potential as bases for the construction of robust quantitative structure--activity/property relationships models as shown by selected examples in this review. QTAIM is applicable to the electron density calculated from quantum-chemical calculations and/or that obtained from ultra-high resolution x-ray diffraction experiments followed by nonspherical refinement. Atomic and bond properties are introduced followed by examples of application of each of these two families of descriptors. The review ends with a study whereby the molecular electrostatic potential, uniquely determined by the density, is used in conjunction with atomic properties to elucidate the reasons for the biological similarity of bioisosteres.

  2. Augmented multivariate image analysis applied to quantitative structure-activity relationship modeling of the phytotoxicities of benzoxazinone herbicides and related compounds on problematic weeds.

    PubMed

    Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson

    2013-09-11

    Two of major weeds affecting cereal crops worldwide are Avena fatua L. (wild oat) and Lolium rigidum Gaud. (rigid ryegrass). Thus, development of new herbicides against these weeds is required; in line with this, benzoxazinones, their degradation products, and analogues have been shown to be important allelochemicals and natural herbicides. Despite earlier structure-activity studies demonstrating that hydrophobicity (log P) of aminophenoxazines correlates to phytotoxicity, our findings for a series of benzoxazinone derivatives do not show any relationship between phytotoxicity and log P nor with other two usual molecular descriptors. On the other hand, a quantitative structure-activity relationship (QSAR) analysis based on molecular graphs representing structural shape, atomic sizes, and colors to encode other atomic properties performed very accurately for the prediction of phytotoxicities of these compounds against wild oat and rigid ryegrass. Therefore, these QSAR models can be used to estimate the phytotoxicity of new congeners of benzoxazinone herbicides toward A. fatua L. and L. rigidum Gaud.

  3. RosettaHoles: rapid assessment of protein core packing for structure prediction, refinement, design, and validation.

    PubMed

    Sheffler, Will; Baker, David

    2009-01-01

    We present a novel method called RosettaHoles for visual and quantitative assessment of underpacking in the protein core. RosettaHoles generates a set of spherical cavity balls that fill the empty volume between atoms in the protein interior. For visualization, the cavity balls are aggregated into contiguous overlapping clusters and small cavities are discarded, leaving an uncluttered representation of the unfilled regions of space in a structure. For quantitative analysis, the cavity ball data are used to estimate the probability of observing a given cavity in a high-resolution crystal structure. RosettaHoles provides excellent discrimination between real and computationally generated structures, is predictive of incorrect regions in models, identifies problematic structures in the Protein Data Bank, and promises to be a useful validation tool for newly solved experimental structures.

  4. RosettaHoles: Rapid assessment of protein core packing for structure prediction, refinement, design, and validation

    PubMed Central

    Sheffler, Will; Baker, David

    2009-01-01

    We present a novel method called RosettaHoles for visual and quantitative assessment of underpacking in the protein core. RosettaHoles generates a set of spherical cavity balls that fill the empty volume between atoms in the protein interior. For visualization, the cavity balls are aggregated into contiguous overlapping clusters and small cavities are discarded, leaving an uncluttered representation of the unfilled regions of space in a structure. For quantitative analysis, the cavity ball data are used to estimate the probability of observing a given cavity in a high-resolution crystal structure. RosettaHoles provides excellent discrimination between real and computationally generated structures, is predictive of incorrect regions in models, identifies problematic structures in the Protein Data Bank, and promises to be a useful validation tool for newly solved experimental structures. PMID:19177366

  5. A Dimensionally Reduced Clustering Methodology for Heterogeneous Occupational Medicine Data Mining.

    PubMed

    Saâdaoui, Foued; Bertrand, Pierre R; Boudet, Gil; Rouffiac, Karine; Dutheil, Frédéric; Chamoux, Alain

    2015-10-01

    Clustering is a set of techniques of the statistical learning aimed at finding structures of heterogeneous partitions grouping homogenous data called clusters. There are several fields in which clustering was successfully applied, such as medicine, biology, finance, economics, etc. In this paper, we introduce the notion of clustering in multifactorial data analysis problems. A case study is conducted for an occupational medicine problem with the purpose of analyzing patterns in a population of 813 individuals. To reduce the data set dimensionality, we base our approach on the Principal Component Analysis (PCA), which is the statistical tool most commonly used in factorial analysis. However, the problems in nature, especially in medicine, are often based on heterogeneous-type qualitative-quantitative measurements, whereas PCA only processes quantitative ones. Besides, qualitative data are originally unobservable quantitative responses that are usually binary-coded. Hence, we propose a new set of strategies allowing to simultaneously handle quantitative and qualitative data. The principle of this approach is to perform a projection of the qualitative variables on the subspaces spanned by quantitative ones. Subsequently, an optimal model is allocated to the resulting PCA-regressed subspaces.

  6. Insights from Industry: A Quantitative Analysis of Engineers' Perceptions of Empathy and Care within Their Practice

    ERIC Educational Resources Information Center

    Hess, Justin L.; Strobel, Johannes; Pan, Rui; Wachter Morris, Carrie A.

    2017-01-01

    This study focuses on two seldom-investigated skills or dispositions aligned with engineering habits of mind--empathy and care. In order to conduct quantitative research, we designed, explored the underlying structure of, validated, and tested the reliability of the Empathy and Care Questionnaire (ECQ), a new psychometric instrument. In the second…

  7. Feared consequences of panic attacks in panic disorder: a qualitative and quantitative analysis.

    PubMed

    Raffa, Susan D; White, Kamila S; Barlow, David H

    2004-01-01

    Cognitions are hypothesized to play a central role in panic disorder (PD). Previous studies have used questionnaires to assess cognitive content, focusing on prototypical cognitions associated with PD; however, few studies have qualitatively examined cognitions associated with the feared consequences of panic attacks. The purpose of this study was to conduct a qualitative and quantitative analysis of feared consequences of panic attacks. The initial, qualitative analysis resulted in the development of 32 categories of feared consequences. The categories were derived from participant responses to a standardized, semi-structured question (n = 207). Five expert-derived categories were then utilized to quantitatively examine the relationship between cognitions and indicators of PD severity. Cognitions did not predict PD severity; however, correlational analyses indicated some predictive validity to the expert-derived categories. The qualitative analysis identified additional areas of patient-reported concern not included in previous research that may be important in the assessment and treatment of PD.

  8. Characteristics of calls to the Israeli hotline during the Intifada.

    PubMed

    Gilat, Itzhak; Latzer, Yael

    2007-08-01

    The present study examined the help-seeking characteristics of callers to the ten Israeli hotline centers during the Intifada - the Palestinian uprising in the Israeli administered territories. The research method combined quantitative and qualitative analyses of the volunteers' written reports. The quantitative analysis was conducted on a sample of 21,315 structured forms, and the qualitative content analysis was carried out on a sample of 498 verbal descriptions of calls. The quantitative analysis revealed a U-shaped curve illustrating the frequency of Intifada-related calls in relation to the time of the study. The qualitative analysis showed that the main complaints of the callers were focused on direct and masked manifestations of anxiety and feelings of helplessness. The implications of the findings are discussed in terms of understanding the unique psychological response to a new kind of stress, as seen from the perspective of calls to a hotline.

  9. A Simple Approach to Inference in Covariance Structure Modeling with Missing Data: Bayesian Analysis. Project 2.4, Quantitative Models To Monitor the Status and Progress of Learning and Performance and Their Antecedents.

    ERIC Educational Resources Information Center

    Muthen, Bengt

    This paper investigates methods that avoid using multiple groups to represent the missing data patterns in covariance structure modeling, attempting instead to do a single-group analysis where the only action the analyst has to take is to indicate that data is missing. A new covariance structure approach developed by B. Muthen and G. Arminger is…

  10. Genetic analysis of PAX3 for diagnosis of Waardenburg syndrome type I.

    PubMed

    Matsunaga, Tatsuo; Mutai, Hideki; Namba, Kazunori; Morita, Noriko; Masuda, Sawako

    2013-04-01

    PAX3 genetic analysis increased the diagnostic accuracy for Waardenburg syndrome type I (WS1). Analysis of the three-dimensional (3D) structure of PAX3 helped verify the pathogenicity of a missense mutation, and multiple ligation-dependent probe amplification (MLPA) analysis of PAX3 increased the sensitivity of genetic diagnosis in patients with WS1. Clinical diagnosis of WS1 is often difficult in individual patients with isolated, mild, or non-specific symptoms. The objective of the present study was to facilitate the accurate diagnosis of WS1 through genetic analysis of PAX3 and to expand the spectrum of known PAX3 mutations. In two Japanese families with WS1, we conducted a clinical evaluation of symptoms and genetic analysis, which involved direct sequencing, MLPA analysis, quantitative PCR of PAX3, and analysis of the predicted 3D structure of PAX3. The normal-hearing control group comprised 92 subjects who had normal hearing according to pure tone audiometry. In one family, direct sequencing of PAX3 identified a heterozygous mutation, p.I59F. Analysis of PAX3 3D structures indicated that this mutation distorted the DNA-binding site of PAX3. In the other family, MLPA analysis and subsequent quantitative PCR detected a large, heterozygous deletion spanning 1759-2554 kb that eliminated 12-18 genes including a whole PAX3 gene.

  11. STRUCTURAL DETERMINATION AND QUANTITATIVE ANALYSIS OF BACTERIAL PHOSPHOLIPIDS USING LIQUID CHROMATOGRAPHY/ELECTROSPRAY IONIZATION/MASS SPECTROMETRY

    EPA Science Inventory

    This report presents a comprehensive spectral analysis of common bacterial phospholipids using electrospray/mass spectrometry (ESI/MS) under both negative and positive ionization conditions. Phospholipids under positive ionization yield sodium-adduct molecular ions which are mos...

  12. Quantitative analysis of crystalline pharmaceuticals in powders and tablets by a pattern-fitting procedure using X-ray powder diffraction data.

    PubMed

    Yamamura, S; Momose, Y

    2001-01-16

    A pattern-fitting procedure for quantitative analysis of crystalline pharmaceuticals in solid dosage forms using X-ray powder diffraction data is described. This method is based on a procedure for pattern-fitting in crystal structure refinement, and observed X-ray scattering intensities were fitted to analytical expressions including some fitting parameters, i.e. scale factor, peak positions, peak widths and degree of preferred orientation of the crystallites. All fitting parameters were optimized by the non-linear least-squares procedure. Then the weight fraction of each component was determined from the optimized scale factors. In the present study, well-crystallized binary systems, zinc oxide-zinc sulfide (ZnO-ZnS) and salicylic acid-benzoic acid (SA-BA), were used as the samples. In analysis of the ZnO-ZnS system, the weight fraction of ZnO or ZnS could be determined quantitatively in the range of 5-95% in the case of both powders and tablets. In analysis of the SA-BA systems, the weight fraction of SA or BA could be determined quantitatively in the range of 20-80% in the case of both powders and tablets. Quantitative analysis applying this pattern-fitting procedure showed better reproducibility than other X-ray methods based on the linear or integral intensities of particular diffraction peaks. Analysis using this pattern-fitting procedure also has the advantage that the preferred orientation of the crystallites in solid dosage forms can be also determined in the course of quantitative analysis.

  13. Indirect Observation in Everyday Contexts: Concepts and Methodological Guidelines within a Mixed Methods Framework

    PubMed Central

    Anguera, M. Teresa; Portell, Mariona; Chacón-Moscoso, Salvador; Sanduvete-Chaves, Susana

    2018-01-01

    Indirect observation is a recent concept in systematic observation. It largely involves analyzing textual material generated either indirectly from transcriptions of audio recordings of verbal behavior in natural settings (e.g., conversation, group discussions) or directly from narratives (e.g., letters of complaint, tweets, forum posts). It may also feature seemingly unobtrusive objects that can provide relevant insights into daily routines. All these materials constitute an extremely rich source of information for studying everyday life, and they are continuously growing with the burgeoning of new technologies for data recording, dissemination, and storage. Narratives are an excellent vehicle for studying everyday life, and quantitization is proposed as a means of integrating qualitative and quantitative elements. However, this analysis requires a structured system that enables researchers to analyze varying forms and sources of information objectively. In this paper, we present a methodological framework detailing the steps and decisions required to quantitatively analyze a set of data that was originally qualitative. We provide guidelines on study dimensions, text segmentation criteria, ad hoc observation instruments, data quality controls, and coding and preparation of text for quantitative analysis. The quality control stage is essential to ensure that the code matrices generated from the qualitative data are reliable. We provide examples of how an indirect observation study can produce data for quantitative analysis and also describe the different software tools available for the various stages of the process. The proposed method is framed within a specific mixed methods approach that involves collecting qualitative data and subsequently transforming these into matrices of codes (not frequencies) for quantitative analysis to detect underlying structures and behavioral patterns. The data collection and quality control procedures fully meet the requirement of flexibility and provide new perspectives on data integration in the study of biopsychosocial aspects in everyday contexts. PMID:29441028

  14. Comparative analysis of quantitative efficiency evaluation methods for transportation networks

    PubMed Central

    He, Yuxin; Hong, Jian

    2017-01-01

    An effective evaluation of transportation network efficiency could offer guidance for the optimal control of urban traffic. Based on the introduction and related mathematical analysis of three quantitative evaluation methods for transportation network efficiency, this paper compares the information measured by them, including network structure, traffic demand, travel choice behavior and other factors which affect network efficiency. Accordingly, the applicability of various evaluation methods is discussed. Through analyzing different transportation network examples it is obtained that Q-H method could reflect the influence of network structure, traffic demand and user route choice behavior on transportation network efficiency well. In addition, the transportation network efficiency measured by this method and Braess’s Paradox can be explained with each other, which indicates a better evaluation of the real operation condition of transportation network. Through the analysis of the network efficiency calculated by Q-H method, it can also be drawn that a specific appropriate demand is existed to a given transportation network. Meanwhile, under the fixed demand, both the critical network structure that guarantees the stability and the basic operation of the network and a specific network structure contributing to the largest value of the transportation network efficiency can be identified. PMID:28399165

  15. Comparative analysis of quantitative efficiency evaluation methods for transportation networks.

    PubMed

    He, Yuxin; Qin, Jin; Hong, Jian

    2017-01-01

    An effective evaluation of transportation network efficiency could offer guidance for the optimal control of urban traffic. Based on the introduction and related mathematical analysis of three quantitative evaluation methods for transportation network efficiency, this paper compares the information measured by them, including network structure, traffic demand, travel choice behavior and other factors which affect network efficiency. Accordingly, the applicability of various evaluation methods is discussed. Through analyzing different transportation network examples it is obtained that Q-H method could reflect the influence of network structure, traffic demand and user route choice behavior on transportation network efficiency well. In addition, the transportation network efficiency measured by this method and Braess's Paradox can be explained with each other, which indicates a better evaluation of the real operation condition of transportation network. Through the analysis of the network efficiency calculated by Q-H method, it can also be drawn that a specific appropriate demand is existed to a given transportation network. Meanwhile, under the fixed demand, both the critical network structure that guarantees the stability and the basic operation of the network and a specific network structure contributing to the largest value of the transportation network efficiency can be identified.

  16. Proflavine Hemisulfate as a Fluorescent Contrast Agent for Point-of-Care Cytology

    PubMed Central

    Prieto, Sandra P.; Powless, Amy J.; Boice, Jackson W.; Sharma, Shree G.; Muldoon, Timothy J.

    2015-01-01

    Proflavine hemisulfate, an acridine-derived fluorescent dye, can be used as a rapid stain for cytologic examination of biological specimens. Proflavine fluorescently stains cell nuclei and cytoplasmic structures, owing to its small amphipathic structure and ability to intercalate DNA. In this manuscript, we demonstrated the use of proflavine as a rapid cytologic dye on a number of specimens, including normal exfoliated oral squamous cells, cultured human oral squamous carcinoma cells, and leukocytes derived from whole blood specimens using a custom-built, portable, LED-illuminated fluorescence microscope. No incubation time was needed after suspending cells in 0.01% (w/v) proflavine diluted in saline. Images of proflavine stained oral cells had clearly visible nuclei as well as granular cytoplasm, while stained leukocytes exhibited bright nuclei, and highlighted the multilobar nature of nuclei in neutrophils. We also demonstrated the utility of quantitative analysis of digital images of proflavine stained cells, which can be used to detect significant morphological differences between different cell types. Proflavine stained oral cells have well-defined nuclei and cell membranes which allowed for quantitative analysis of nuclear to cytoplasmic ratios, as well as image texture analysis to extract quantitative image features. PMID:25962131

  17. Proflavine Hemisulfate as a Fluorescent Contrast Agent for Point-of-Care Cytology.

    PubMed

    Prieto, Sandra P; Powless, Amy J; Boice, Jackson W; Sharma, Shree G; Muldoon, Timothy J

    2015-01-01

    Proflavine hemisulfate, an acridine-derived fluorescent dye, can be used as a rapid stain for cytologic examination of biological specimens. Proflavine fluorescently stains cell nuclei and cytoplasmic structures, owing to its small amphipathic structure and ability to intercalate DNA. In this manuscript, we demonstrated the use of proflavine as a rapid cytologic dye on a number of specimens, including normal exfoliated oral squamous cells, cultured human oral squamous carcinoma cells, and leukocytes derived from whole blood specimens using a custom-built, portable, LED-illuminated fluorescence microscope. No incubation time was needed after suspending cells in 0.01% (w/v) proflavine diluted in saline. Images of proflavine stained oral cells had clearly visible nuclei as well as granular cytoplasm, while stained leukocytes exhibited bright nuclei, and highlighted the multilobar nature of nuclei in neutrophils. We also demonstrated the utility of quantitative analysis of digital images of proflavine stained cells, which can be used to detect significant morphological differences between different cell types. Proflavine stained oral cells have well-defined nuclei and cell membranes which allowed for quantitative analysis of nuclear to cytoplasmic ratios, as well as image texture analysis to extract quantitative image features.

  18. The College Mathematics Experience and Changes in Majors: A Structural Model Analysis.

    ERIC Educational Resources Information Center

    Whiteley, Meredith A.; Fenske, Robert H.

    1990-01-01

    Testing of a structural equation model with college mathematics experience as the focal variable in 745 students' final decisions concerning major or dropping out over 4 years of college yielded separate model estimates for 3 fields: scientific/technical, quantitative business, and business management majors. (Author/MSE)

  19. Molecular design of anticancer drug leads based on three-dimensional quantitative structure-activity relationship.

    PubMed

    Huang, Xiao Yan; Shan, Zhi Jie; Zhai, Hong Lin; Li, Li Na; Zhang, Xiao Yun

    2011-08-22

    Heat shock protein 90 (Hsp90) takes part in the developments of several cancers. Novobiocin, a typically C-terminal inhibitor for Hsp90, will probably used as an important anticancer drug in the future. In this work, we explored the valuable information and designed new novobiocin derivatives based on a three-dimensional quantitative structure-activity relationship (3D QSAR). The comparative molecular field analysis and comparative molecular similarity indices analysis models with high predictive capability were established, and their reliabilities are supported by the statistical parameters. Based on the several important influence factors obtained from these models, six new novobiocin derivatives with higher inhibitory activities were designed and confirmed by the molecular simulation with our models, which provide the potential anticancer drug leads for further research.

  20. Combining formal and functional approaches to topic structure.

    PubMed

    Zellers, Margaret; Post, Brechtje

    2012-03-01

    Fragmentation between formal and functional approaches to prosodic variation is an ongoing problem in linguistic research. In particular, the frameworks of the Phonetics of Talk-in-Interaction (PTI) and Empirical Phonology (EP) take very different theoretical and methodological approaches to this kind of variation. We argue that it is fruitful to adopt the insights of both PTI's qualitative analysis and EP's quantitative analysis and combine them into a multiple-methods approach. One realm in which it is possible to combine these frameworks is in the analysis of discourse topic structure and the prosodic cues relevant to it. By combining a quantitative and a qualitative approach to discourse topic structure, it is possible to give a better account of the observed variation in prosody, for example in the case of fundamental frequency (F0) peak timing, which can be explained in terms of pitch accent distribution over different topic structure categories. Similarly, local and global patterns in speech rate variation can be better explained and motivated by adopting insights from both PTI and EP in the study of topic structure. Combining PTI and EP can provide better accounts of speech data as well as opening up new avenues of investigation which would not have been possible in either approach alone.

  1. Social Network Analysis: A New Methodology for Counseling Research.

    ERIC Educational Resources Information Center

    Koehly, Laura M.; Shivy, Victoria A.

    1998-01-01

    Social network analysis (SNA) uses indices of relatedness among individuals to produce representations of social structures and positions inherent in dyads or groups. SNA methods provide quantitative representations of ongoing transactional patterns in a given social environment. Methodological issues, applications and resources are discussed…

  2. Critical considerations for the qualitative and quantitative determination of process-induced disorder in crystalline solids.

    PubMed

    Newman, Ann; Zografi, George

    2014-09-01

    Solid-state instabilities in crystalline solids arise during processing primarily because a certain level of structural disorder has been introduced into the crystal. Many physical instabilities appear to be associated with the recrystallization of molecules from these disordered regions, while chemical instabilities arise from sufficient molecular mobility to allow solid-state chemical reactivity. In this Commentary we discuss the various forms of structural disorder, processing which can produce disorder, the quantitative analysis of process-induced order, and strategies to limit disorder and its effects. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. A versatile pipeline for the multi-scale digital reconstruction and quantitative analysis of 3D tissue architecture

    PubMed Central

    Morales-Navarrete, Hernán; Segovia-Miranda, Fabián; Klukowski, Piotr; Meyer, Kirstin; Nonaka, Hidenori; Marsico, Giovanni; Chernykh, Mikhail; Kalaidzidis, Alexander; Zerial, Marino; Kalaidzidis, Yannis

    2015-01-01

    A prerequisite for the systems biology analysis of tissues is an accurate digital three-dimensional reconstruction of tissue structure based on images of markers covering multiple scales. Here, we designed a flexible pipeline for the multi-scale reconstruction and quantitative morphological analysis of tissue architecture from microscopy images. Our pipeline includes newly developed algorithms that address specific challenges of thick dense tissue reconstruction. Our implementation allows for a flexible workflow, scalable to high-throughput analysis and applicable to various mammalian tissues. We applied it to the analysis of liver tissue and extracted quantitative parameters of sinusoids, bile canaliculi and cell shapes, recognizing different liver cell types with high accuracy. Using our platform, we uncovered an unexpected zonation pattern of hepatocytes with different size, nuclei and DNA content, thus revealing new features of liver tissue organization. The pipeline also proved effective to analyse lung and kidney tissue, demonstrating its generality and robustness. DOI: http://dx.doi.org/10.7554/eLife.11214.001 PMID:26673893

  4. Symposium II: Mechanochemistry in Materials Science, MRS Fall Meeting, Nov 30-Dec 4, 2009, Boston, MA

    DTIC Science & Technology

    2010-09-02

    Dynamic Mechanical Analysis (DMA). The fracture behavior of the mechanophore-linked polymer is also examined through the Double Cleavage Drilled ...multinary complex structures. Structural, microstructural, and chemical characterizations were explored by metrological tools to support this...simple hydrocarbons in order to quantitatively define structure-property relationships for reacting materials under shock compression. Embedded gauge

  5. Development of a method for urine bikunin/urinary trypsin inhibitor (UTI) quantitation and structural characterization: Application to type 1 and type 2 diabetes.

    PubMed

    Lepedda, Antonio Junior; Nieddu, Gabriele; Rocchiccioli, Silvia; Fresu, Pietro; De Muro, Pierina; Formato, Marilena

    2013-12-01

    Bikunin is a plasma proteinase inhibitor often associated with inflammatory conditions. It has a half-life of few minutes and it is rapidly excreted into urine as urinary trypsin inhibitor (UTI). UTI levels are usually low in healthy individuals but they can increase up to tenfold in both acute and chronic inflammatory diseases. This article describes a sensitive method for both direct UTI quantitation and structural characterization. UTI purification was performed by anion exchange micro-chromatography followed by SDS-PAGE. A calibration curve for protein quantitation was set up by using a purified UTI fraction. UTI identification and structural characterization was performed by Nano-LC-MS/MS analysis. The method was applied on urine samples from 9 patients with type 1 diabetes, 11 patients with type 2 diabetes, and 28 healthy controls, matched for age and sex with patients, evidencing higher UTI levels in both groups of patients with respect to controls (p < 0.001 and p = 0.001, respectively). Spearman's correlation tests highlighted no association between UTI levels and age in each group tested. Owing to the elevated sensitivity and specificity, the described method allows UTI quantitation from very low quantities of specimen. Furthermore, as UTI concentration is normalized for creatinine level, the analysis could be also performed on randomly collected urine samples. Finally, MS/MS analysis prospects the possibility of characterizing PTM sites potentially able to affect UTI localization, function, and pathophysiological activity. Preliminary results suggest that UTI levels could represent a useful marker of chronic inflammatory condition in type 1 and 2 diabetes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Quantitative structure-property relationship modeling of Grätzel solar cell dyes.

    PubMed

    Venkatraman, Vishwesh; Åstrand, Per-Olof; Alsberg, Bjørn Kåre

    2014-01-30

    With fossil fuel reserves on the decline, there is increasing focus on the design and development of low-cost organic photovoltaic devices, in particular, dye-sensitized solar cells (DSSCs). The power conversion efficiency (PCE) of a DSSC is heavily influenced by the chemical structure of the dye. However, as far as we know, no predictive quantitative structure-property relationship models for DSSCs with PCE as one of the response variables have been reported. Thus, we report for the first time the successful application of comparative molecular field analysis (CoMFA) and vibrational frequency-based eigenvalue (EVA) descriptors to model molecular structure-photovoltaic performance relationships for a set of 40 coumarin derivatives. The results show that the models obtained provide statistically robust predictions of important photovoltaic parameters such as PCE, the open-circuit voltage (V(OC)), short-circuit current (J(SC)) and the peak absorption wavelength λ(max). Some of our findings based on the analysis of the models are in accordance with those reported in the literature. These structure-property relationships can be applied to the rational structural design and evaluation of new photovoltaic materials. Copyright © 2013 Wiley Periodicals, Inc.

  7. Infrared spectroscopy as a tool to characterise starch ordered structure--a joint FTIR-ATR, NMR, XRD and DSC study.

    PubMed

    Warren, Frederick J; Gidley, Michael J; Flanagan, Bernadine M

    2016-03-30

    Starch has a heterogeneous, semi-crystalline granular structure and the degree of ordered structure can affect its behaviour in foods and bioplastics. A range of methodologies are employed to study starch structure; differential scanning calorimetry, (13)C nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Despite the appeal of FTIR as a rapid, non-destructive methodology, there is currently no systematically defined quantitative relationship between FTIR spectral features and other starch structural measures. Here, we subject 61 starch samples to structural analysis, and systematically correlate FTIR spectra with other measures of starch structure. A hydration dependent peak position shift in the FTIR spectra of starch is observed, resulting from increased molecular order, but with complex, non-linear behaviour. We demonstrate that FTIR is a tool that can quantitatively probe short range interactions in starch structure. However, the assumptions of linear relationships between starch ordered structure and peak ratios are overly simplistic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. High-Content Microscopy Analysis of Subcellular Structures: Assay Development and Application to Focal Adhesion Quantification.

    PubMed

    Kroll, Torsten; Schmidt, David; Schwanitz, Georg; Ahmad, Mubashir; Hamann, Jana; Schlosser, Corinne; Lin, Yu-Chieh; Böhm, Konrad J; Tuckermann, Jan; Ploubidou, Aspasia

    2016-07-01

    High-content analysis (HCA) converts raw light microscopy images to quantitative data through the automated extraction, multiparametric analysis, and classification of the relevant information content. Combined with automated high-throughput image acquisition, HCA applied to the screening of chemicals or RNAi-reagents is termed high-content screening (HCS). Its power in quantifying cell phenotypes makes HCA applicable also to routine microscopy. However, developing effective HCA and bioinformatic analysis pipelines for acquisition of biologically meaningful data in HCS is challenging. Here, the step-by-step development of an HCA assay protocol and an HCS bioinformatics analysis pipeline are described. The protocol's power is demonstrated by application to focal adhesion (FA) detection, quantitative analysis of multiple FA features, and functional annotation of signaling pathways regulating FA size, using primary data of a published RNAi screen. The assay and the underlying strategy are aimed at researchers performing microscopy-based quantitative analysis of subcellular features, on a small scale or in large HCS experiments. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  9. Quantitative and qualitative comparison of MR imaging of the temporomandibular joint at 1.5 and 3.0 T using an optimized high-resolution protocol

    PubMed Central

    Spinner, Georg; Wyss, Michael; Erni, Stefan; Ettlin, Dominik A; Nanz, Daniel; Ulbrich, Erika J; Gallo, Luigi M; Andreisek, Gustav

    2016-01-01

    Objectives: To quantitatively and qualitatively compare MRI of the temporomandibular joint (TMJ) using an optimized high-resolution protocol at 3.0 T and a clinical standard protocol at 1.5 T. Methods: A phantom and 12 asymptomatic volunteers were MR imaged using a 2-channel surface coil (standard TMJ coil) at 1.5 and 3.0 T (Philips Achieva and Philips Ingenia, respectively; Philips Healthcare, Best, Netherlands). Imaging protocol consisted of coronal and oblique sagittal proton density-weighted turbo spin echo sequences. For quantitative evaluation, a spherical phantom was imaged. Signal-to-noise ratio (SNR) maps were calculated on a voxelwise basis. For qualitative evaluation, all volunteers underwent MRI of the TMJ with the jaw in closed position. Two readers independently assessed visibility and delineation of anatomical structures of the TMJ and overall image quality on a 5-point Likert scale. Quantitative and qualitative measurements were compared between field strengths. Results: The quantitative analysis showed similar SNR for the high-resolution protocol at 3.0 T compared with the clinical protocol at 1.5 T. The qualitative analysis showed significantly better visibility and delineation of clinically relevant anatomical structures of the TMJ, including the TMJ disc and pterygoid muscle as well as better overall image quality at 3.0 T than at 1.5 T. Conclusions: The presented results indicate that expected gains in SNR at 3.0 T can be used to increase the spatial resolution when imaging the TMJ, which translates into increased visibility and delineation of anatomical structures of the TMJ. Therefore, imaging at 3.0 T should be preferred over 1.5 T for imaging the TMJ. PMID:26371077

  10. Quantitative and qualitative comparison of MR imaging of the temporomandibular joint at 1.5 and 3.0 T using an optimized high-resolution protocol.

    PubMed

    Manoliu, Andrei; Spinner, Georg; Wyss, Michael; Erni, Stefan; Ettlin, Dominik A; Nanz, Daniel; Ulbrich, Erika J; Gallo, Luigi M; Andreisek, Gustav

    2016-01-01

    To quantitatively and qualitatively compare MRI of the temporomandibular joint (TMJ) using an optimized high-resolution protocol at 3.0 T and a clinical standard protocol at 1.5 T. A phantom and 12 asymptomatic volunteers were MR imaged using a 2-channel surface coil (standard TMJ coil) at 1.5 and 3.0 T (Philips Achieva and Philips Ingenia, respectively; Philips Healthcare, Best, Netherlands). Imaging protocol consisted of coronal and oblique sagittal proton density-weighted turbo spin echo sequences. For quantitative evaluation, a spherical phantom was imaged. Signal-to-noise ratio (SNR) maps were calculated on a voxelwise basis. For qualitative evaluation, all volunteers underwent MRI of the TMJ with the jaw in closed position. Two readers independently assessed visibility and delineation of anatomical structures of the TMJ and overall image quality on a 5-point Likert scale. Quantitative and qualitative measurements were compared between field strengths. The quantitative analysis showed similar SNR for the high-resolution protocol at 3.0 T compared with the clinical protocol at 1.5 T. The qualitative analysis showed significantly better visibility and delineation of clinically relevant anatomical structures of the TMJ, including the TMJ disc and pterygoid muscle as well as better overall image quality at 3.0 T than at 1.5 T. The presented results indicate that expected gains in SNR at 3.0 T can be used to increase the spatial resolution when imaging the TMJ, which translates into increased visibility and delineation of anatomical structures of the TMJ. Therefore, imaging at 3.0 T should be preferred over 1.5 T for imaging the TMJ.

  11. Quantitative analysis of diet structure by real-time PCR, reveals different feeding patterns by two dominant grasshopper species

    PubMed Central

    Huang, Xunbing; Wu, Huihui; McNeill, Mark Richard; Qin, Xinghu; Ma, Jingchuan; Tu, Xiongbing; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2016-01-01

    Studies on grasshopper diets have historically employed a range of methodologies, each with certain advantages and disadvantages. For example, some methodologies are qualitative instead of quantitative. Others require long experimental periods or examine population-level effects, only. In this study, we used real-time PCR to examine diets of individual grasshoppers. The method has the advantage of being both fast and quantitative. Using two grasshopper species, Oedaleus asiaticus and Dasyhippus barbipes, we designed ITS primer sequences for their three main host plants, Stipa krylovii, Leymus chinensis and Cleistogenes squarrosa and used real-time PCR method to test diet structure both qualitatively and quantitatively. The lowest detection efficiency of the three grass species was ~80% with a strong correlation between actual and PCR-measured food intake. We found that Oedaleus asiaticus maintained an unchanged diet structure across grasslands with different grass communities. By comparison, Dasyhippus barbipes changed its diet structure. These results revealed why O. asiaticus distribution is mainly confined to Stipa-dominated grassland, and D. barbipes is more widely distributed across Inner Mongolia. Overall, real-time PCR was shown to be a useful tool for investigating grasshopper diets, which in turn offers some insight into grasshopper distributions and improved pest management. PMID:27562455

  12. Knowledge Management for the Analysis of Complex Experimentation.

    ERIC Educational Resources Information Center

    Maule, R.; Schacher, G.; Gallup, S.

    2002-01-01

    Describes a knowledge management system that was developed to help provide structure for dynamic and static data and to aid in the analysis of complex experimentation. Topics include quantitative and qualitative data; mining operations using artificial intelligence techniques; information architecture of the system; and transforming data into…

  13. Specification and estimation of sources of bias affecting neurological studies in PET/MR with an anatomical brain phantom

    NASA Astrophysics Data System (ADS)

    Teuho, J.; Johansson, J.; Linden, J.; Saunavaara, V.; Tolvanen, T.; Teräs, M.

    2014-01-01

    Selection of reconstruction parameters has an effect on the image quantification in PET, with an additional contribution from a scanner-specific attenuation correction method. For achieving comparable results in inter- and intra-center comparisons, any existing quantitative differences should be identified and compensated for. In this study, a comparison between PET, PET/CT and PET/MR is performed by using an anatomical brain phantom, to identify and measure the amount of bias caused due to differences in reconstruction and attenuation correction methods especially in PET/MR. Differences were estimated by using visual, qualitative and quantitative analysis. The qualitative analysis consisted of a line profile analysis for measuring the reproduction of anatomical structures and the contribution of the amount of iterations to image contrast. The quantitative analysis consisted of measurement and comparison of 10 anatomical VOIs, where the HRRT was considered as the reference. All scanners reproduced the main anatomical structures of the phantom adequately, although the image contrast on the PET/MR was inferior when using a default clinical brain protocol. Image contrast was improved by increasing the amount of iterations from 2 to 5 while using 33 subsets. Furthermore, a PET/MR-specific bias was detected, which resulted in underestimation of the activity values in anatomical structures closest to the skull, due to the MR-derived attenuation map that ignores the bone. Thus, further improvements for the PET/MR reconstruction and attenuation correction could be achieved by optimization of RAMLA-specific reconstruction parameters and implementation of bone to the attenuation template.

  14. Remote sensing image denoising application by generalized morphological component analysis

    NASA Astrophysics Data System (ADS)

    Yu, Chong; Chen, Xiong

    2014-12-01

    In this paper, we introduced a remote sensing image denoising method based on generalized morphological component analysis (GMCA). This novel algorithm is the further extension of morphological component analysis (MCA) algorithm to the blind source separation framework. The iterative thresholding strategy adopted by GMCA algorithm firstly works on the most significant features in the image, and then progressively incorporates smaller features to finely tune the parameters of whole model. Mathematical analysis of the computational complexity of GMCA algorithm is provided. Several comparison experiments with state-of-the-art denoising algorithms are reported. In order to make quantitative assessment of algorithms in experiments, Peak Signal to Noise Ratio (PSNR) index and Structural Similarity (SSIM) index are calculated to assess the denoising effect from the gray-level fidelity aspect and the structure-level fidelity aspect, respectively. Quantitative analysis on experiment results, which is consistent with the visual effect illustrated by denoised images, has proven that the introduced GMCA algorithm possesses a marvelous remote sensing image denoising effectiveness and ability. It is even hard to distinguish the original noiseless image from the recovered image by adopting GMCA algorithm through visual effect.

  15. Investigation on Quantitative Structure Activity Relationships of a Series of Inducible Nitric Oxide.

    PubMed

    Sharma, Mukesh C; Sharma, S

    2016-12-01

    A series of 2-dihydro-4-quinazolin with potent highly selective inhibitors of inducible nitric oxide synthase activities was subjected to quantitative structure activity relationships (QSAR) analysis. Statistically significant equations with high correlation coefficient (r 2  = 0.8219) were developed. The k-nearest neighbor model has showed good cross-validated correlation coefficient and external validation values of 0.7866 and 0.7133, respectively. The selected electrostatic field descriptors the presence of blue ball around R1 and R4 in the quinazolinamine moiety showed electronegative groups favorable for nitric oxide synthase activity. The QSAR models may lead to the structural requirements of inducible nitric oxide compounds and help in the design of new compounds.

  16. Structures of glycans bound to receptors from saturation transfer difference (STD) NMR spectroscopy: quantitative analysis by using CORCEMA-ST.

    PubMed

    Enríquez-Navas, Pedro M; Guzzi, Cinzia; Muñoz-García, Juan C; Nieto, Pedro M; Angulo, Jesús

    2015-01-01

    Glycan-receptor interactions are of fundamental relevance for a large number of biological processes, and their kinetics properties (medium/weak binding affinities) make them appropriated to be studied by ligand observed NMR techniques, among which saturation transfer difference (STD) NMR spectroscopy has been shown to be a very robust and powerful approach. The quantitative analysis of the results from a STD NMR study of a glycan-receptor interaction is essential to be able to translate the resulting spectral intensities into a 3D molecular model of the complex. This chapter describes how to carry out such a quantitative analysis by means of the Complete Relaxation and Conformational Exchange Matrix Approach for STD NMR (CORCEMA-ST), in general terms, and an example of a previous work on an antibody-glycan interaction is also shown.

  17. A spectral approach for the quantitative description of cardiac collagen network from nonlinear optical imaging.

    PubMed

    Masè, Michela; Cristoforetti, Alessandro; Avogaro, Laura; Tessarolo, Francesco; Piccoli, Federico; Caola, Iole; Pederzolli, Carlo; Graffigna, Angelo; Ravelli, Flavia

    2015-01-01

    The assessment of collagen structure in cardiac pathology, such as atrial fibrillation (AF), is essential for a complete understanding of the disease. This paper introduces a novel methodology for the quantitative description of collagen network properties, based on the combination of nonlinear optical microscopy with a spectral approach of image processing and analysis. Second-harmonic generation (SHG) microscopy was applied to atrial tissue samples from cardiac surgery patients, providing label-free, selective visualization of the collagen structure. The spectral analysis framework, based on 2D-FFT, was applied to the SHG images, yielding a multiparametric description of collagen fiber orientation (angle and anisotropy indexes) and texture scale (dominant wavelength and peak dispersion indexes). The proof-of-concept application of the methodology showed the capability of our approach to detect and quantify differences in the structural properties of the collagen network in AF versus sinus rhythm patients. These results suggest the potential of our approach in the assessment of collagen properties in cardiac pathologies related to a fibrotic structural component.

  18. Review of progress in quantitative NDE. [Nondestructive Evaluation (NDE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    This booklet is composed of abstracts from papers submitted at a meeting on quantitative NDE. A multitude of topics are discussed including analysis of composite materials, NMR uses, x-ray instruments and techniques, manufacturing uses, neural networks, eddy currents, stress measurements, magnetic materials, adhesive bonds, signal processing, NDE of mechanical structures, tomography,defect sizing, NDE of plastics and ceramics, new techniques, optical and electromagnetic techniques, and nonlinear techniques. (GHH)

  19. Coding Early Naturalists' Accounts into Long-Term Fish Community Changes in the Adriatic Sea (1800–2000)

    PubMed Central

    Fortibuoni, Tomaso; Libralato, Simone; Raicevich, Saša; Giovanardi, Otello; Solidoro, Cosimo

    2010-01-01

    The understanding of fish communities' changes over the past centuries has important implications for conservation policy and marine resource management. However, reconstructing these changes is difficult because information on marine communities before the second half of the 20th century is, in most cases, anecdotal and merely qualitative. Therefore, historical qualitative records and modern quantitative data are not directly comparable, and their integration for long-term analyses is not straightforward. We developed a methodology that allows the coding of qualitative information provided by early naturalists into semi-quantitative information through an intercalibration with landing proportions. This approach allowed us to reconstruct and quantitatively analyze a 200-year-long time series of fish community structure indicators in the Northern Adriatic Sea (Mediterranean Sea). Our analysis provides evidence of long-term changes in fish community structure, including the decline of Chondrichthyes, large-sized and late-maturing species. This work highlights the importance of broadening the time-frame through which we look at marine ecosystem changes and provides a methodology to exploit, in a quantitative framework, historical qualitative sources. To the purpose, naturalists' eyewitness accounts proved to be useful for extending the analysis on fish community back in the past, well before the onset of field-based monitoring programs. PMID:21103349

  20. Data set for the proteomic inventory and quantitative analysis of chicken eggshell matrix proteins during the primary events of eggshell mineralization and the active growth phase of calcification.

    PubMed

    Marie, Pauline; Labas, Valérie; Brionne, Aurélien; Harichaux, Grégoire; Hennequet-Antier, Christelle; Rodriguez-Navarro, Alejandro B; Nys, Yves; Gautron, Joël

    2015-09-01

    Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1) widespread deposition of amorphous calcium carbonate (ACC), (2) ACC transformation into crystalline calcite aggregates, (3) formation of larger calcite crystal units and (4) rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suresh, Niraj; Stephens, Sean A.; Adams, Lexor

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as processes with important implications to climate change and forest management. Quantitative size information on roots in their native environment is invaluable for studying root growth and environmental processes involving the plant. X ray computed tomography (XCT) has been demonstrated to be an effective tool for in situ root scanning and analysis. Our group at the Environmental Molecular Sciences Laboratory (EMSL) has developed an XCT-based tool to image and quantitatively analyze plant root structures in their native soil environment. XCT data collected on amore » Prairie dropseed (Sporobolus heterolepis) specimen was used to visualize its root structure. A combination of open-source software RooTrak and DDV were employed to segment the root from the soil, and calculate its isosurface, respectively. Our own computer script named 3DRoot-SV was developed and used to calculate root volume and surface area from a triangular mesh. The process utilizing a unique combination of tools, from imaging to quantitative root analysis, including the 3DRoot-SV computer script, is described.« less

  2. Data set for the proteomic inventory and quantitative analysis of chicken eggshell matrix proteins during the primary events of eggshell mineralization and the active growth phase of calcification

    PubMed Central

    Marie, Pauline; Labas, Valérie; Brionne, Aurélien; Harichaux, Grégoire; Hennequet-Antier, Christelle; Rodriguez-Navarro, Alejandro B.; Nys, Yves; Gautron, Joël

    2015-01-01

    Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1) widespread deposition of amorphous calcium carbonate (ACC), (2) ACC transformation into crystalline calcite aggregates, (3) formation of larger calcite crystal units and (4) rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed. PMID:26306314

  3. A thorough experimental study of CH/π interactions in water: quantitative structure-stability relationships for carbohydrate/aromatic complexes.

    PubMed

    Jiménez-Moreno, Ester; Jiménez-Osés, Gonzalo; Gómez, Ana M; Santana, Andrés G; Corzana, Francisco; Bastida, Agatha; Jiménez-Barbero, Jesus; Asensio, Juan Luis

    2015-11-13

    CH/π interactions play a key role in a large variety of molecular recognition processes of biological relevance. However, their origins and structural determinants in water remain poorly understood. In order to improve our comprehension of these important interaction modes, we have performed a quantitative experimental analysis of a large data set comprising 117 chemically diverse carbohydrate/aromatic stacking complexes, prepared through a dynamic combinatorial approach recently developed by our group. The obtained free energies provide a detailed picture of the structure-stability relationships that govern the association process, opening the door to the rational design of improved carbohydrate-based ligands or carbohydrate receptors. Moreover, this experimental data set, supported by quantum mechanical calculations, has contributed to the understanding of the main driving forces that promote complex formation, underlining the key role played by coulombic and solvophobic forces on the stabilization of these complexes. This represents the most quantitative and extensive experimental study reported so far for CH/π complexes in water.

  4. Rapid structural analysis of nanomaterials in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ryuzaki, Sou; Tsutsui, Makusu; He, Yuhui; Yokota, Kazumichi; Arima, Akihide; Morikawa, Takanori; Taniguchi, Masateru; Kawai, Tomoji

    2017-04-01

    Rapid structural analysis of nanoscale matter in a liquid environment represents innovative technologies that reveal the identities and functions of biologically important molecules. However, there is currently no method with high spatio-temporal resolution that can scan individual particles in solutions to gain structural information. Here we report the development of a nanopore platform realizing quantitative structural analysis for suspended nanomaterials in solutions with a high z-axis and xy-plane spatial resolution of 35.8 ± 1.1 and 12 nm, respectively. We used a low thickness-to-diameter aspect ratio pore architecture for achieving cross sectional areas of analyte (i.e. tomograms). Combining this with multiphysics simulation methods to translate ionic current data into tomograms, we demonstrated rapid structural analysis of single polystyrene (Pst) beads and single dumbbell-like Pst beads in aqueous solutions.

  5. The National Health Educator Job Analysis 2010: Process and Outcomes

    ERIC Educational Resources Information Center

    Doyle, Eva I.; Caro, Carla M.; Lysoby, Linda; Auld, M. Elaine; Smith, Becky J.; Muenzen, Patricia M.

    2012-01-01

    The National Health Educator Job Analysis 2010 was conducted to update the competencies model for entry- and advanced-level health educators. Qualitative and quantitative methods were used. Structured interviews, focus groups, and a modified Delphi technique were implemented to engage 59 health educators from diverse work settings and experience…

  6. A conductive grating sensor for online quantitative monitoring of fatigue crack.

    PubMed

    Li, Peiyuan; Cheng, Li; Yan, Xiaojun; Jiao, Shengbo; Li, Yakun

    2018-05-01

    Online quantitative monitoring of crack damage due to fatigue is a critical challenge for structural health monitoring systems assessing structural safety. To achieve online quantitative monitoring of fatigue crack, a novel conductive grating sensor based on the principle of electrical potential difference is proposed. The sensor consists of equidistant grating channels to monitor the fatigue crack length and conductive bars to provide the circuit path. An online crack monitoring system is established to verify the sensor's capability. The experimental results prove that the sensor is suitable for online quantitative monitoring of fatigue crack. A finite element model for the sensor is also developed to optimize the sensitivity of crack monitoring, which is defined by the rate of sensor resistance change caused by the break of the first grating channel. Analysis of the model shows that the sensor sensitivity can be enhanced by reducing the number of grating channels and increasing their resistance and reducing the resistance of the conductive bar.

  7. A conductive grating sensor for online quantitative monitoring of fatigue crack

    NASA Astrophysics Data System (ADS)

    Li, Peiyuan; Cheng, Li; Yan, Xiaojun; Jiao, Shengbo; Li, Yakun

    2018-05-01

    Online quantitative monitoring of crack damage due to fatigue is a critical challenge for structural health monitoring systems assessing structural safety. To achieve online quantitative monitoring of fatigue crack, a novel conductive grating sensor based on the principle of electrical potential difference is proposed. The sensor consists of equidistant grating channels to monitor the fatigue crack length and conductive bars to provide the circuit path. An online crack monitoring system is established to verify the sensor's capability. The experimental results prove that the sensor is suitable for online quantitative monitoring of fatigue crack. A finite element model for the sensor is also developed to optimize the sensitivity of crack monitoring, which is defined by the rate of sensor resistance change caused by the break of the first grating channel. Analysis of the model shows that the sensor sensitivity can be enhanced by reducing the number of grating channels and increasing their resistance and reducing the resistance of the conductive bar.

  8. Critically appraising qualitative research: a guide for clinicians more familiar with quantitative techniques.

    PubMed

    Kisely, Stephen; Kendall, Elizabeth

    2011-08-01

    Papers using qualitative methods are increasingly common in psychiatric journals. This overview is an introduction to critically appraising a qualitative paper for clinicians who are more familiar with quantitative methods. Qualitative research uses data from interviews (semi-structured or unstructured), focus groups, observations or written materials. Data analysis is inductive, allowing meaning to emerge from the data, rather than the more deductive, hypothesis centred approach of quantitative research. This overview compares and contrasts quantitative and qualitative research methods. Quantitative concepts such as reliability, validity, statistical power, bias and generalisability have qualitative equivalents. These include triangulation, trustworthiness, saturation, reflexivity and applicability. Reflexivity also shares features of transference. Qualitative approaches include: ethnography, action-assessment, grounded theory, case studies and mixed methods. Qualitative research can complement quantitative approaches. An understanding of both is useful in critically appraising the psychiatric literature.

  9. MDB: the Metalloprotein Database and Browser at The Scripps Research Institute

    PubMed Central

    Castagnetto, Jesus M.; Hennessy, Sean W.; Roberts, Victoria A.; Getzoff, Elizabeth D.; Tainer, John A.; Pique, Michael E.

    2002-01-01

    The Metalloprotein Database and Browser (MDB; http://metallo.scripps.edu) at The Scripps Research Institute is a web-accessible resource for metalloprotein research. It offers the scientific community quantitative information on geometrical parameters of metal-binding sites in protein structures available from the Protein Data Bank (PDB). The MDB also offers analytical tools for the examination of trends or patterns in the indexed metal-binding sites. A user can perform interactive searches, metal-site structure visualization (via a Java applet), and analysis of the quantitative data by accessing the MDB through a web browser without requiring an external application or platform-dependent plugin. The MDB also has a non-interactive interface with which other web sites and network-aware applications can seamlessly incorporate data or statistical analysis results from metal-binding sites. The information contained in the MDB is periodically updated with automated algorithms that find and index metal sites from new protein structures released by the PDB. PMID:11752342

  10. Chiral Analysis of Isopulegol by Fourier Transform Molecular Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Chiral analysis on molecules with multiple chiral centers can be performed using pulsed-jet Fourier transform rotational spectroscopy. This analysis includes quantitative measurement of diastereomer products and, with the three wave mixing methods developed by Patterson, Schnell, and Doyle (Nature 497, 475-477 (2013)), quantitative determination of the enantiomeric excess of each diastereomer. The high resolution features enable to perform the analysis directly on complex samples without the need for chromatographic separation. Isopulegol has been chosen to show the capabilities of Fourier transform rotational spectroscopy for chiral analysis. Broadband rotational spectroscopy produces spectra with signal-to-noise ratio exceeding 1000:1. The ability to identify low-abundance (0.1-1%) diastereomers in the sample will be described. Methods to rapidly identify rotational spectra from isotopologues at natural abundance will be shown and the molecular structures obtained from this analysis will be compared to theory. The role that quantum chemistry calculations play in identifying structural minima and estimating their spectroscopic properties to aid spectral analysis will be described. Finally, the implementation of three wave mixing techniques to measure the enantiomeric excess of each diastereomer and determine the absolute configuration of the enantiomer in excess will be described.

  11. Novel benzanthrone probes for membrane and protein studies

    NASA Astrophysics Data System (ADS)

    Ryzhova, Olga; Vus, Kateryna; Trusova, Valeriya; Kirilova, Elena; Kirilov, Georgiy; Gorbenko, Galyna; Kinnunen, Paavo

    2016-09-01

    The applicability of a series of novel benzanthrone dyes to monitoring the changes in physicochemical properties of lipid bilayer and to differentiating between the native and aggregated protein states has been evaluated. Based on the quantitative parameters of the dye-membrane and dye-protein binding derived from the fluorimetric titration data, the most prospective membrane probes and amyloid tracers have been selected from the group of examined compounds. Analysis of the red edge excitation shifts of the membrane- and amyloid-bound dyes provided information on the properties of benzanthrone binding sites within the lipid and protein matrixes. To understand how amyloid specificity of benzanthrones correlates with their structure, quantitative structure activity relationship (QSAR) analysis was performed involving a range of quantum chemical molecular descriptors. A statistically significant model was obtained for predicting the sensitivity of novel benzanthrone dyes to amyloid fibrils.

  12. Quantitative Understanding of SHAPE Mechanism from RNA Structure and Dynamics Analysis.

    PubMed

    Hurst, Travis; Xu, Xiaojun; Zhao, Peinan; Chen, Shi-Jie

    2018-05-10

    The selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) method probes RNA local structural and dynamic information at single nucleotide resolution. To gain quantitative insights into the relationship between nucleotide flexibility, RNA 3D structure, and SHAPE reactivity, we develop a 3D Structure-SHAPE Relationship model (3DSSR) to rebuild SHAPE profiles from 3D structures. The model starts from RNA structures and combines nucleotide interaction strength and conformational propensity, ligand (SHAPE reagent) accessibility, and base-pairing pattern through a composite function to quantify the correlation between SHAPE reactivity and nucleotide conformational stability. The 3DSSR model shows the relationship between SHAPE reactivity and RNA structure and energetics. Comparisons between the 3DSSR-predicted SHAPE profile and the experimental SHAPE data show correlation, suggesting that the extracted analytical function may have captured the key factors that determine the SHAPE reactivity profile. Furthermore, the theory offers an effective method to sieve RNA 3D models and exclude models that are incompatible with experimental SHAPE data.

  13. Quantitative Analysis of the Efficiency of OLEDs.

    PubMed

    Sim, Bomi; Moon, Chang-Ki; Kim, Kwon-Hyeon; Kim, Jang-Joo

    2016-12-07

    We present a comprehensive model for the quantitative analysis of factors influencing the efficiency of organic light-emitting diodes (OLEDs) as a function of the current density. The model takes into account the contribution made by the charge carrier imbalance, quenching processes, and optical design loss of the device arising from various optical effects including the cavity structure, location and profile of the excitons, effective radiative quantum efficiency, and out-coupling efficiency. Quantitative analysis of the efficiency can be performed with an optical simulation using material parameters and experimental measurements of the exciton profile in the emission layer and the lifetime of the exciton as a function of the current density. This method was applied to three phosphorescent OLEDs based on a single host, mixed host, and exciplex-forming cohost. The three factors (charge carrier imbalance, quenching processes, and optical design loss) were influential in different ways, depending on the device. The proposed model can potentially be used to optimize OLED configurations on the basis of an analysis of the underlying physical processes.

  14. Quantitative Analysis of Nucleic Acid Stability with Ligands Under High Pressure to Design Novel Drugs Targeting G-Quadruplexes.

    PubMed

    Takahashi, Shuntaro; Sugimoto, Naoki

    2017-09-18

    Nucleic acids (DNA and RNA) can form various non-canonical structures. Because some serious diseases are caused by the conformational change of G-quadruplex DNA structures, the development of ligands that bind and stabilize G-quadruplex DNA is of interest to the field of nucleic acid chemistry. Volumetric changes (ΔV) in the biomolecular reaction include the structural change of biomolecules and hydration behaviors, which provide information about the tertiary interaction between G-quadruplex DNA and ligands. Thus, it is valuable to investigate ΔV values to understand the mechanism of interaction between non-canonical structures and their ligands. This unit describes methods that can be used to quantitatively analyze the interaction between G-quadruplex DNA and ligands by using high-pressure UV melting. The combination of thermodynamic parameters (ΔG, ΔH, ΔS, and ΔV) is a powerful tool to elucidate the mechanism of ligand binding to G-quadruplex without real structural analysis by NMR and X-ray spectroscopy, and gives useful information to design novel drugs. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  15. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.« less

  16. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system

    DOE PAGES

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.« less

  17. Analysis of the time structure of synchronization in multidimensional chaotic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarenko, A. V., E-mail: avm.science@mail.ru

    2015-05-15

    A new approach is proposed to the integrated analysis of the time structure of synchronization of multidimensional chaotic systems. The method allows one to diagnose and quantitatively evaluate the intermittency characteristics during synchronization of chaotic oscillations in the T-synchronization mode. A system of two identical logistic mappings with unidirectional coupling that operate in the developed chaos regime is analyzed. It is shown that the widely used approach, in which only synchronization patterns are subjected to analysis while desynchronization areas are considered as a background signal and removed from analysis, should be regarded as methodologically incomplete.

  18. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D)

    PubMed Central

    Li, Weizhe; Germain, Ronald N.

    2017-01-01

    Organ homeostasis, cellular differentiation, signal relay, and in situ function all depend on the spatial organization of cells in complex tissues. For this reason, comprehensive, high-resolution mapping of cell positioning, phenotypic identity, and functional state in the context of macroscale tissue structure is critical to a deeper understanding of diverse biological processes. Here we report an easy to use method, clearing-enhanced 3D (Ce3D), which generates excellent tissue transparency for most organs, preserves cellular morphology and protein fluorescence, and is robustly compatible with antibody-based immunolabeling. This enhanced signal quality and capacity for extensive probe multiplexing permits quantitative analysis of distinct, highly intermixed cell populations in intact Ce3D-treated tissues via 3D histo-cytometry. We use this technology to demonstrate large-volume, high-resolution microscopy of diverse cell types in lymphoid and nonlymphoid organs, as well as to perform quantitative analysis of the composition and tissue distribution of multiple cell populations in lymphoid tissues. Combined with histo-cytometry, Ce3D provides a comprehensive strategy for volumetric quantitative imaging and analysis that bridges the gap between conventional section imaging and disassociation-based techniques. PMID:28808033

  19. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis

    NASA Astrophysics Data System (ADS)

    Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.

    2016-07-01

    Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.

  20. Process for structural geologic analysis of topography and point data

    DOEpatents

    Eliason, Jay R.; Eliason, Valerie L. C.

    1987-01-01

    A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

  1. Quantifying the relationship between sequence and three-dimensional structure conservation in RNA

    PubMed Central

    2010-01-01

    Background In recent years, the number of available RNA structures has rapidly grown reflecting the increased interest on RNA biology. Similarly to the studies carried out two decades ago for proteins, which gave the fundamental grounds for developing comparative protein structure prediction methods, we are now able to quantify the relationship between sequence and structure conservation in RNA. Results Here we introduce an all-against-all sequence- and three-dimensional (3D) structure-based comparison of a representative set of RNA structures, which have allowed us to quantitatively confirm that: (i) there is a measurable relationship between sequence and structure conservation that weakens for alignments resulting in below 60% sequence identity, (ii) evolution tends to conserve more RNA structure than sequence, and (iii) there is a twilight zone for RNA homology detection. Discussion The computational analysis here presented quantitatively describes the relationship between sequence and structure for RNA molecules and defines a twilight zone region for detecting RNA homology. Our work could represent the theoretical basis and limitations for future developments in comparative RNA 3D structure prediction. PMID:20550657

  2. Three-dimensional quantitative structure-activity relationship analysis for human pregnane X receptor for the prediction of CYP3A4 induction in human hepatocytes: structure-based comparative molecular field analysis.

    PubMed

    Handa, Koichi; Nakagome, Izumi; Yamaotsu, Noriyuki; Gouda, Hiroaki; Hirono, Shuichi

    2015-01-01

    The pregnane X receptor [PXR (NR1I2)] induces the expression of xenobiotic metabolic genes and transporter genes. In this study, we aimed to establish a computational method for quantifying the enzyme-inducing potencies of different compounds via their ability to activate PXR, for the application in drug discovery and development. To achieve this purpose, we developed a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) for predicting enzyme-inducing potencies, based on computer-ligand docking to multiple PXR protein structures sampled from the trajectory of a molecular dynamics simulation. Molecular mechanics-generalized born/surface area scores representing the ligand-protein-binding free energies were calculated for each ligand. As a result, the predicted enzyme-inducing potencies for compounds generated by the CoMFA model were in good agreement with the experimental values. Finally, we concluded that this 3D-QSAR model has the potential to predict the enzyme-inducing potencies of novel compounds with high precision and therefore has valuable applications in the early stages of the drug discovery process. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy.

    PubMed

    Rappaz, Benjamin; Cano, Elena; Colomb, Tristan; Kühn, Jonas; Depeursinge, Christian; Simanis, Viesturs; Magistretti, Pierre J; Marquet, Pierre

    2009-01-01

    Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.

  4. The use of Latin terminology in medical case reports: quantitative, structural, and thematic analysis.

    PubMed

    Lysanets, Yuliia V; Bieliaieva, Olena M

    2018-02-23

    This paper focuses on the prevalence of Latin terms and terminological collocations in the issues of Journal of Medical Case Reports (February 2007-August 2017) and discusses the role of Latin terminology in the contemporary process of writing medical case reports. The objective of the research is to study the frequency of using Latin terminology in English-language medical case reports, thus providing relevant guidelines for medical professionals who deal with this genre and drawing their attention to the peculiarities of using Latin in case reports. The selected medical case reports are considered, using methods of quantitative examination and structural, narrative, and contextual analyses. We developed structural and thematic typologies of Latin terms and expressions, and we conducted a quantitative analysis that enabled us to observe the tendencies in using these lexical units in medical case reports. The research revealed that the use of Latin fully complies with the communicative strategies of medical case reports as a genre. Owing to the fact that Latin medical lexis is internationally adopted and understood worldwide, it promotes the conciseness of medical case reports, as well as contributes to their narrative style and educational intentions. The adequate use of Latin terms in medical case reports is an essential prerequisite of effective sharing of one's clinical findings with fellow researchers from all over the world. Therefore, it is highly important to draw students' attention to Latin terms and expressions that are used in medical case reports most frequently. Hence, the analysis of structural, thematic, and contextual features of Latin terms in case reports should be an integral part of curricula at medical universities.

  5. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.

    PubMed

    Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao

    2016-04-01

    To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.

  6. Quantitative risk analysis of oil storage facilities in seismic areas.

    PubMed

    Fabbrocino, Giovanni; Iervolino, Iunio; Orlando, Francesca; Salzano, Ernesto

    2005-08-31

    Quantitative risk analysis (QRA) of industrial facilities has to take into account multiple hazards threatening critical equipment. Nevertheless, engineering procedures able to evaluate quantitatively the effect of seismic action are not well established. Indeed, relevant industrial accidents may be triggered by loss of containment following ground shaking or other relevant natural hazards, either directly or through cascade effects ('domino effects'). The issue of integrating structural seismic risk into quantitative probabilistic seismic risk analysis (QpsRA) is addressed in this paper by a representative study case regarding an oil storage plant with a number of atmospheric steel tanks containing flammable substances. Empirical seismic fragility curves and probit functions, properly defined both for building-like and non building-like industrial components, have been crossed with outcomes of probabilistic seismic hazard analysis (PSHA) for a test site located in south Italy. Once the seismic failure probabilities have been quantified, consequence analysis has been performed for those events which may be triggered by the loss of containment following seismic action. Results are combined by means of a specific developed code in terms of local risk contour plots, i.e. the contour line for the probability of fatal injures at any point (x, y) in the analysed area. Finally, a comparison with QRA obtained by considering only process-related top events is reported for reference.

  7. Freight Terminals Operating Environment

    DOT National Transportation Integrated Search

    1981-06-01

    The research analysis has been directed toward (1) developing a realistic, quantitative description of the structure of the economic zones that are centered upon medium-size urban areas, (2) determining the nature of traffic in manufactured goods whi...

  8. Structural, chemical and physical properties of pure and La3+ doped L-Threonine acetate crystals

    NASA Astrophysics Data System (ADS)

    Senthamizhan, A.; Sambathkumar, K.; Nithiyanantham, S.; Venkatachalapathy, M.; Rajkamal, N.

    2017-12-01

    The pure and La3+ doped L- Threonine crystals can be grown by slow evaporation techniques. The crystal structure were examined through X-Ray diffraction (XRD) analysis, confirmed the P212121 system. The quantitative nature of dopant can be analyzed with Inductively Coupled Plasma (ICP) study. The Fourier Transform Infra-Red (FTIR) and Fourier Transform (FT- Raman) investigations yields the possible stretching/bonding with their functional groups and the qualitative/quantitative nature of both crystals is analyzed. The optical behavior of crystals can be studied through Ultra Violet (UV) - Visible spectrometer. The mechanical, thermal and decomposition studies can be carried out through Vickers hardness test, Thermo Gravometric Analysis (TGA) and Differential Thermal Analysis (DTA). The Non Linear Optical (NLO) properties are found more than Potassium Phosphate (KDP) through Kurtz powders technique. The dielectric and optical absorption studies for both pure and L-doped crystals were studied and interpreted all the properties. The La3+ dopant increases the properties are investigated.

  9. In silico designing of power conversion efficient organic lead dyes for solar cells using todays innovative approaches to assure renewable energy for future

    NASA Astrophysics Data System (ADS)

    Kar, Supratik; Roy, Juganta K.; Leszczynski, Jerzy

    2017-06-01

    Advances in solar cell technology require designing of new organic dye sensitizers for dye-sensitized solar cells with high power conversion efficiency to circumvent the disadvantages of silicon-based solar cells. In silico studies including quantitative structure-property relationship analysis combined with quantum chemical analysis were employed to understand the primary electron transfer mechanism and photo-physical properties of 273 arylamine organic dyes from 11 diverse chemical families explicit to iodine electrolyte. The direct quantitative structure-property relationship models enable identification of the essential electronic and structural attributes necessary for quantifying the molecular prerequisites of 11 classes of arylamine organic dyes, responsible for high power conversion efficiency of dye-sensitized solar cells. Tetrahydroquinoline, N,N'-dialkylaniline and indoline have been least explored classes under arylamine organic dyes for dye-sensitized solar cells. Therefore, the identified properties from the corresponding quantitative structure-property relationship models of the mentioned classes were employed in designing of "lead dyes". Followed by, a series of electrochemical and photo-physical parameters were computed for designed dyes to check the required variables for electron flow of dye-sensitized solar cells. The combined computational techniques yielded seven promising lead dyes each for all three chemical classes considered. Significant (130, 183, and 46%) increment in predicted %power conversion efficiency was observed comparing with the existing dye with highest experimental %power conversion efficiency value for tetrahydroquinoline, N,N'-dialkylaniline and indoline, respectively maintaining required electrochemical parameters.

  10. Quantitative Analysis of Cellular Metabolic Dissipative, Self-Organized Structures

    PubMed Central

    de la Fuente, Ildefonso Martínez

    2010-01-01

    One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the dynamical organization of cell metabolism. Here we present an overview of how mathematical models can be used to address the properties of dissipative metabolic structures at different organizational levels, both for individual enzymatic associations and for enzymatic networks. Recent analyses performed with dissipative metabolic networks have shown that unicellular organisms display a singular global enzymatic structure common to all living cellular organisms, which seems to be an intrinsic property of the functional metabolism as a whole. Mathematical models firmly based on experiments and their corresponding computational approaches are needed to fully grasp the molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative and qualitative analysis of the cellular catalytic reactions and also to help comprehend the conditions under which the structural dynamical phenomena and biological rhythms arise. Understanding the molecular mechanisms responsible for the metabolic dissipative structures is crucial for unraveling the dynamics of cellular life. PMID:20957111

  11. Structural Analysis of PTM Hotspots (SAPH-ire) – A Quantitative Informatics Method Enabling the Discovery of Novel Regulatory Elements in Protein Families*

    PubMed Central

    Dewhurst, Henry M.; Choudhury, Shilpa; Torres, Matthew P.

    2015-01-01

    Predicting the biological function potential of post-translational modifications (PTMs) is becoming increasingly important in light of the exponential increase in available PTM data from high-throughput proteomics. We developed structural analysis of PTM hotspots (SAPH-ire)—a quantitative PTM ranking method that integrates experimental PTM observations, sequence conservation, protein structure, and interaction data to allow rank order comparisons within or between protein families. Here, we applied SAPH-ire to the study of PTMs in diverse G protein families, a conserved and ubiquitous class of proteins essential for maintenance of intracellular structure (tubulins) and signal transduction (large and small Ras-like G proteins). A total of 1728 experimentally verified PTMs from eight unique G protein families were clustered into 451 unique hotspots, 51 of which have a known and cited biological function or response. Using customized software, the hotspots were analyzed in the context of 598 unique protein structures. By comparing distributions of hotspots with known versus unknown function, we show that SAPH-ire analysis is predictive for PTM biological function. Notably, SAPH-ire revealed high-ranking hotspots for which a functional impact has not yet been determined, including phosphorylation hotspots in the N-terminal tails of G protein gamma subunits—conserved protein structures never before reported as regulators of G protein coupled receptor signaling. To validate this prediction we used the yeast model system for G protein coupled receptor signaling, revealing that gamma subunit–N-terminal tail phosphorylation is activated in response to G protein coupled receptor stimulation and regulates protein stability in vivo. These results demonstrate the utility of integrating protein structural and sequence features into PTM prioritization schemes that can improve the analysis and functional power of modification-specific proteomics data. PMID:26070665

  12. Quantitative analysis of Ni2+/Ni3+ in Li[NixMnyCoz]O2 cathode materials: Non-linear least-squares fitting of XPS spectra

    NASA Astrophysics Data System (ADS)

    Fu, Zewei; Hu, Juntao; Hu, Wenlong; Yang, Shiyu; Luo, Yunfeng

    2018-05-01

    Quantitative analysis of Ni2+/Ni3+ using X-ray photoelectron spectroscopy (XPS) is important for evaluating the crystal structure and electrochemical performance of Lithium-nickel-cobalt-manganese oxide (Li[NixMnyCoz]O2, NMC). However, quantitative analysis based on Gaussian/Lorentzian (G/L) peak fitting suffers from the challenges of reproducibility and effectiveness. In this study, the Ni2+ and Ni3+ standard samples and a series of NMC samples with different Ni doping levels were synthesized. The Ni2+/Ni3+ ratios in NMC were quantitatively analyzed by non-linear least-squares fitting (NLLSF). Two Ni 2p overall spectra of synthesized Li [Ni0.33Mn0.33Co0.33]O2(NMC111) and bulk LiNiO2 were used as the Ni2+ and Ni3+ reference standards. Compared to G/L peak fitting, the fitting parameters required no adjustment, meaning that the spectral fitting process was free from operator dependence and the reproducibility was improved. Comparison of residual standard deviation (STD) showed that the fitting quality of NLLSF was superior to that of G/L peaks fitting. Overall, these findings confirmed the reproducibility and effectiveness of the NLLSF method in XPS quantitative analysis of Ni2+/Ni3+ ratio in Li[NixMnyCoz]O2 cathode materials.

  13. Factor Structure and Reliability of the 2008 and 2009 SERU/UCUES Questionnaire Core. SERU Project Technical Report

    ERIC Educational Resources Information Center

    Chatman, Steve

    2009-01-01

    This technical report summarizes the third independent factor analysis of the SERU/UCUES questionnaire responses of students with majors. The 2009 solution employed the same quantitative analysis used in the prior solutions--varimax orthogonal rotation to determine principal components followed by promax oblique rotation to identify…

  14. Structural Analysis of Treatment Cycles Representing Transitions between Nursing Organizational Units Inferred from Diabetes

    PubMed Central

    Dehmer, Matthias; Kurt, Zeyneb; Emmert-Streib, Frank; Them, Christa; Schulc, Eva; Hofer, Sabine

    2015-01-01

    In this paper, we investigate treatment cycles inferred from diabetes data by means of graph theory. We define the term treatment cycles graph-theoretically and perform a descriptive as well as quantitative analysis thereof. Also, we interpret our findings in terms of nursing and clinical management. PMID:26030296

  15. High-resolution NMR study of light and heavy crude oils: “structure-property” analysis

    NASA Astrophysics Data System (ADS)

    Rakhmatullin, I.; Efimov, S.; Varfolomeev, M.; Klochkov, V.

    2018-05-01

    Measurements of three light and one heavy crude oil samples were carried out by high-resolution nuclear magnetic resonance (NMR) spectroscopy methods. Quantitative fractions of aromatic molecules and functional groups constituting oil hydrocarbons were determined, and comparative analysis of the oil samples of different viscosity and origin was done.

  16. Stress Analysis for the Formation of En Echelon Veins and Vortex Structures: a Lesson Plan with a Brief Illumination

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Birnbaum, S.

    2006-12-01

    An English lesson plan exploring stress analysis of En Echelon veins and vortex structures used in the bilingual course in Structural Geology at the National Science Training Base of China is described. Two mechanical models are introduced in class and both mathematical and mechanical analyses are conducted. Samples, pictures and case studies are selected from Britain, Switzerland, and China. These case studies are augmented from the previous research results of the first author. Students are guided through the entire thought process, including methods and procedures used in the stress analysis of geologic structures. The teaching procedures are also illustrated. The method showed is effective to help students to get the initial knowledge of quantitative analysis for the formation of geological structures. This work is supported by the Ministry of Education of China, the Education Bureau of Hubei Province of China and China University of Geosciences (Wuhan).

  17. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/Epoxy Tows and Implications for Composite Structures

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Saulsberry, Regor L.; Nichols, Charles T.; Wentzel, Daniel J.

    2010-01-01

    This slide presentation reviews the use of Modal Acoustic Emission to monitor damage progression to carbon fiber/epoxy tows. There is a risk for catastrophic failure of composite overwrapped pressure vessels (COPVs) due to burst-before-leak (BBL) stress rupture (SR) failure of carbon-epoxy (C/Ep) COPVs. A lack of quantitative nondestructive evaluation (NDE) is causing problems in current and future spacecraft designs. It is therefore important to develop and demonstrate critical NDE that can be implemented during stages of the design process since the observed rupture can occur with little of no advanced warning. Therefore a program was required to develop quantitative acoustic emission (AE) procedures specific to C/Ep overwraps, but which also have utility for monitoring damage accumulation in composite structure in general, and to lay the groundwork for establishing critical thresholds for accumulated damage in composite structures, such as COPVs, so that precautionary or preemptive engineering steps can be implemented to minimize of obviate the risk of catastrophic failure. A computed Felicity Ratio (FR) coupled with fast Fourier Transform (FFT) frequency analysis shows promise as an analytical pass/fail criterion. The FR analysis and waveform and FFT analysis are reviewed

  18. Antitumor activity of 3,4-ethylenedioxythiophene derivatives and quantitative structure-activity relationship analysis

    NASA Astrophysics Data System (ADS)

    Jukić, Marijana; Rastija, Vesna; Opačak-Bernardi, Teuta; Stolić, Ivana; Krstulović, Luka; Bajić, Miroslav; Glavaš-Obrovac, Ljubica

    2017-04-01

    The aim of this study was to evaluate nine newly synthesized amidine derivatives of 3,4- ethylenedioxythiophene (3,4-EDOT) for their cytotoxic activity against a panel of human cancer cell lines and to perform a quantitative structure-activity relationship (QSAR) analysis for the antitumor activity of a total of 27 3,4-ethylenedioxythiophene derivatives. Induction of apoptosis was investigated on the selected compounds, along with delivery options for the optimization of activity. The best obtained QSAR models include the following group of descriptors: BCUT, WHIM, 2D autocorrelations, 3D-MoRSE, GETAWAY descriptors, 2D frequency fingerprint and information indices. Obtained QSAR models should be relieved in elucidation of important physicochemical and structural requirements for this biological activity. Highly potent molecules have a symmetrical arrangement of substituents along the x axis, high frequency of distance between N and O atoms at topological distance 9, as well as between C and N atoms at topological distance 10, and more C atoms located at topological distances 6 and 3. Based on the conclusion given in the QSAR analysis, a new compound with possible great activity was proposed.

  19. Analysis and Visualization of Nerve Vessel Contacts for Neurovascular Decompression

    NASA Astrophysics Data System (ADS)

    Süßmuth, Jochen; Piazza, Alexander; Enders, Frank; Naraghi, Ramin; Greiner, Günther; Hastreiter, Peter

    Neurovascular compression syndromes are caused by a pathological contact between cranial nerves and vascular structures at the surface of the brainstem. Aiming at improved pre-operative analysis of the target structures, we propose calculating distance fields to provide quantitative information of the important nerve-vessel contacts. Furthermore, we suggest reconstructing polygonal models for the nerves and vessels. Color-coding with the respective distance information is used for enhanced visualization. Overall, our new strategy contributes to a significantly improved clinical understanding.

  20. Computerized image analysis for quantitative neuronal phenotyping in zebrafish.

    PubMed

    Liu, Tianming; Lu, Jianfeng; Wang, Ye; Campbell, William A; Huang, Ling; Zhu, Jinmin; Xia, Weiming; Wong, Stephen T C

    2006-06-15

    An integrated microscope image analysis pipeline is developed for automatic analysis and quantification of phenotypes in zebrafish with altered expression of Alzheimer's disease (AD)-linked genes. We hypothesize that a slight impairment of neuronal integrity in a large number of zebrafish carrying the mutant genotype can be detected through the computerized image analysis method. Key functionalities of our zebrafish image processing pipeline include quantification of neuron loss in zebrafish embryos due to knockdown of AD-linked genes, automatic detection of defective somites, and quantitative measurement of gene expression levels in zebrafish with altered expression of AD-linked genes or treatment with a chemical compound. These quantitative measurements enable the archival of analyzed results and relevant meta-data. The structured database is organized for statistical analysis and data modeling to better understand neuronal integrity and phenotypic changes of zebrafish under different perturbations. Our results show that the computerized analysis is comparable to manual counting with equivalent accuracy and improved efficacy and consistency. Development of such an automated data analysis pipeline represents a significant step forward to achieve accurate and reproducible quantification of neuronal phenotypes in large scale or high-throughput zebrafish imaging studies.

  1. Analysis of Vaginal Microbicide Film Hydration Kinetics by Quantitative Imaging Refractometry

    PubMed Central

    Rinehart, Matthew; Grab, Sheila; Rohan, Lisa; Katz, David; Wax, Adam

    2014-01-01

    We have developed a quantitative imaging refractometry technique, based on holographic phase microscopy, as a tool for investigating microscopic structural changes in water-soluble polymeric materials. Here we apply the approach to analyze the structural degradation of vaginal topical microbicide films due to water uptake. We implemented transmission imaging of 1-mm diameter film samples loaded into a flow chamber with a 1.5×2 mm field of view. After water was flooded into the chamber, interference images were captured and analyzed to obtain high resolution maps of the local refractive index and subsequently the volume fraction and mass density of film material at each spatial location. Here, we compare the hydration dynamics of a panel of films with varying thicknesses and polymer compositions, demonstrating that quantitative imaging refractometry can be an effective tool for evaluating and characterizing the performance of candidate microbicide film designs for anti-HIV drug delivery. PMID:24736376

  2. Analysis of vaginal microbicide film hydration kinetics by quantitative imaging refractometry.

    PubMed

    Rinehart, Matthew; Grab, Sheila; Rohan, Lisa; Katz, David; Wax, Adam

    2014-01-01

    We have developed a quantitative imaging refractometry technique, based on holographic phase microscopy, as a tool for investigating microscopic structural changes in water-soluble polymeric materials. Here we apply the approach to analyze the structural degradation of vaginal topical microbicide films due to water uptake. We implemented transmission imaging of 1-mm diameter film samples loaded into a flow chamber with a 1.5×2 mm field of view. After water was flooded into the chamber, interference images were captured and analyzed to obtain high resolution maps of the local refractive index and subsequently the volume fraction and mass density of film material at each spatial location. Here, we compare the hydration dynamics of a panel of films with varying thicknesses and polymer compositions, demonstrating that quantitative imaging refractometry can be an effective tool for evaluating and characterizing the performance of candidate microbicide film designs for anti-HIV drug delivery.

  3. Quantitative analysis of the chromatin of lymphocytes: an assay on comparative structuralism.

    PubMed

    Meyer, F

    1980-01-01

    With 26 letters we can form all the words we use, and with a few words it is possible to form an infinite number of different meaningful sentences. In our case, the letters will be a few simple neighborhood image transformations and area measurements. The paper shows how, by iterating these transformations, it is possible to obtain a good quantitative description of the nuclear structure of Feulgen-stained lymphocytes (CLL and normal). The fact that we restricted ourselves to a small number of image transformations made it possible to construct an image analysis system (TAS) able to do these transformations very quickly. We will see, successively, how to segment the nucleus itself, the chromatin, and the interchromatinic channels, how openings and closings lead to size and spatial distribution curves, and how skeletons may be used for measuring the lengths of interchromatinic channels.

  4. Quantitative analysis of ultrasonic images of fibrotic liver using co-occurrence matrix based on multi-Rayleigh model

    NASA Astrophysics Data System (ADS)

    Isono, Hiroshi; Hirata, Shinnosuke; Hachiya, Hiroyuki

    2015-07-01

    In medical ultrasonic images of liver disease, a texture with a speckle pattern indicates a microscopic structure such as nodules surrounded by fibrous tissues in hepatitis or cirrhosis. We have been applying texture analysis based on a co-occurrence matrix to ultrasonic images of fibrotic liver for quantitative tissue characterization. A co-occurrence matrix consists of the probability distribution of brightness of pixel pairs specified with spatial parameters and gives new information on liver disease. Ultrasonic images of different types of fibrotic liver were simulated and the texture-feature contrast was calculated to quantify the co-occurrence matrices generated from the images. The results show that the contrast converges with a value that can be theoretically estimated using a multi-Rayleigh model of echo signal amplitude distribution. We also found that the contrast value increases as liver fibrosis progresses and fluctuates depending on the size of fibrotic structure.

  5. Quantitative analysis of dislocation arrangements induced by electromigration in a passivated Al (0.5 wt % Cu) interconnect

    NASA Astrophysics Data System (ADS)

    Barabash, R. I.; Ice, G. E.; Tamura, N.; Valek, B. C.; Bravman, J. C.; Spolenak, R.; Patel, J. R.

    2003-05-01

    Electromigration during accelerated testing can induce plastic deformation in apparently undamaged Al interconnect lines as recently revealed by white beam scanning x-ray microdiffraction. In the present article, we provide a first quantitative analysis of the dislocation structure generated in individual micron-sized Al grains during an in situ electromigration experiment. Laue reflections from individual interconnect grains show pronounced streaking during the early stages of electromigration. We demonstrate that the evolution of the dislocation structure during electromigration is highly inhomogeneous and results in the formation of unpaired randomly distributed dislocations as well as geometrically necessary dislocation boundaries. Approximately half of all unpaired dislocations are grouped within the walls. The misorientation created by each boundary and density of unpaired individual dislocations is determined. The origin of the observed plastic deformation is considered in view of the constraints for dislocation arrangements under the applied electric field during electromigration.

  6. Boiling points of halogenated aliphatic compounds: a quantitative structure-property relationship for prediction and validation.

    PubMed

    Oberg, Tomas

    2004-01-01

    Halogenated aliphatic compounds have many technical uses, but substances within this group are also ubiquitous environmental pollutants that can affect the ozone layer and contribute to global warming. The establishment of quantitative structure-property relationships is of interest not only to fill in gaps in the available database but also to validate experimental data already acquired. The three-dimensional structures of 240 compounds were modeled with molecular mechanics prior to the generation of empirical descriptors. Two bilinear projection methods, principal component analysis (PCA) and partial-least-squares regression (PLSR), were used to identify outliers. PLSR was subsequently used to build a multivariate calibration model by extracting the latent variables that describe most of the covariation between the molecular structure and the boiling point. Boiling points were also estimated with an extension of the group contribution method of Stein and Brown.

  7. Putting tools in the toolbox: Development of a free, open-source toolbox for quantitative image analysis of porous media.

    NASA Astrophysics Data System (ADS)

    Iltis, G.; Caswell, T. A.; Dill, E.; Wilkins, S.; Lee, W. K.

    2014-12-01

    X-ray tomographic imaging of porous media has proven to be a valuable tool for investigating and characterizing the physical structure and state of both natural and synthetic porous materials, including glass bead packs, ceramics, soil and rock. Given that most synchrotron facilities have user programs which grant academic researchers access to facilities and x-ray imaging equipment free of charge, a key limitation or hindrance for small research groups interested in conducting x-ray imaging experiments is the financial cost associated with post-experiment data analysis. While the cost of high performance computing hardware continues to decrease, expenses associated with licensing commercial software packages for quantitative image analysis continue to increase, with current prices being as high as $24,000 USD, for a single user license. As construction of the Nation's newest synchrotron accelerator nears completion, a significant effort is being made here at the National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory (BNL), to provide an open-source, experiment-to-publication toolbox that reduces the financial and technical 'activation energy' required for performing sophisticated quantitative analysis of multidimensional porous media data sets, collected using cutting-edge x-ray imaging techniques. Implementation focuses on leveraging existing open-source projects and developing additional tools for quantitative analysis. We will present an overview of the software suite that is in development here at BNL including major design decisions, a demonstration of several test cases illustrating currently available quantitative tools for analysis and characterization of multidimensional porous media image data sets and plans for their future development.

  8. Quantitative 3D analysis of bone in hip osteoarthritis using clinical computed tomography.

    PubMed

    Turmezei, Tom D; Treece, Graham M; Gee, Andrew H; Fotiadou, Anastasia F; Poole, Kenneth E S

    2016-07-01

    To assess the relationship between proximal femoral cortical bone thickness and radiological hip osteoarthritis using quantitative 3D analysis of clinical computed tomography (CT) data. Image analysis was performed on clinical CT imaging data from 203 female volunteers with a technique called cortical bone mapping (CBM). Colour thickness maps were created for each proximal femur. Statistical parametric mapping was performed to identify statistically significant differences in cortical bone thickness that corresponded with the severity of radiological hip osteoarthritis. Kellgren and Lawrence (K&L) grade, minimum joint space width (JSW) and a novel CT-based osteophyte score were also blindly assessed from the CT data. For each increase in K&L grade, cortical thickness increased by up to 25 % in distinct areas of the superolateral femoral head-neck junction and superior subchondral bone plate. For increasing severity of CT osteophytes, the increase in cortical thickness was more circumferential, involving a wider portion of the head-neck junction, with up to a 7 % increase in cortical thickness per increment in score. Results were not significant for minimum JSW. These findings indicate that quantitative 3D analysis of the proximal femur can identify changes in cortical bone thickness relevant to structural hip osteoarthritis. • CT is being increasingly used to assess bony involvement in osteoarthritis • CBM provides accurate and reliable quantitative analysis of cortical bone thickness • Cortical bone is thicker at the superior femoral head-neck with worse osteoarthritis • Regions of increased thickness co-locate with impingement and osteophyte formation • Quantitative 3D bone analysis could enable clinical disease prediction and therapy development.

  9. Subsurface imaging and cell refractometry using quantitative phase/ shear-force feedback microscopy

    NASA Astrophysics Data System (ADS)

    Edward, Kert; Farahi, Faramarz

    2009-10-01

    Over the last few years, several novel quantitative phase imaging techniques have been developed for the study of biological cells. However, many of these techniques are encumbered by inherent limitations including 2π phase ambiguities and diffraction limited spatial resolution. In addition, subsurface information in the phase data is not exploited. We hereby present a novel quantitative phase imaging system without 2 π ambiguities, which also allows for subsurface imaging and cell refractometry studies. This is accomplished by utilizing simultaneously obtained shear-force topography information. We will demonstrate how the quantitative phase and topography data can be used for subsurface and cell refractometry analysis and will present results for a fabricated structure and a malaria infected red blood cell.

  10. Quantitative percussion diagnostics as an indicator of the level of the structural pathology of teeth: Retrospective follow-up investigation of high-risk sites that remained pathological after restorative treatment.

    PubMed

    Sheets, Cherilyn G; Wu, Jean C; Earthman, James C

    2017-11-29

    Structural damage may remain even after a tooth is restored. Conventional diagnostic aids do not quantify the severity of structural damage or allow the monitoring of structural changes after restoration. The purpose of this retrospective clinical study was to provide an in-depth analysis of 9 high-risk sites after restoration. The analysis followed structural defects found upon disassembly, restorative materials used, therapeutic procedures provided, current longevity, and long-term quantitative percussion diagnostics (QPD) to monitor results. The hypothesis was that QPD can be used to quantify positive and negative changes in structural stability. Sixty sites requiring restoration were part of an institutional review board-approved clinical study. Each participant was examined comprehensively, including QPD testing, at each follow-up. Long-term changes in normal fit error (NFE) values after restoration were evaluated according to a pathology rating system established in an earlier publication. Nine highly compromised sites were chosen for further analysis and monitored for an additional 6 years. Of the 9 high-risk sites (NFE>0.04), 7 sites improved and 2 sites deteriorated. Potential causes for each trend were documented. The data support the hypothesis that QPD can be used to monitor changes in structural stability after restoration. Knowledge of changes in advance of any symptoms allows further preventive or therapeutic intervention before serious structural damage can occur. Follow-up QPD indications of site improvement can also assure the clinician of the desired structural outcome. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Considerations in the design of large space structures

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.; Macneal, R. H.; Knapp, K.; Macgillivray, C. S.

    1981-01-01

    Several analytical studies of topics relevant to the design of large space structures are presented. Topics covered are: the types and quantitative evaluation of the disturbances to which large Earth-oriented microwave reflectors would be subjected and the resulting attitude errors of such spacecraft; the influence of errors in the structural geometry of the performance of radiofrequency antennas; the effect of creasing on the flatness of tensioned reflector membrane surface; and an analysis of the statistics of damage to truss-type structures due to meteoroids.

  12. A Quantitative Comparison of the Similarity between Genes and Geography in Worldwide Human Populations

    PubMed Central

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A.

    2012-01-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure. PMID:22927824

  13. The gastro-esophageal reflux barrier: biophysical analysis on 3D models of anatomy from magnetic resonance imaging.

    PubMed

    Roy, S; Fox, M R; Curcic, J; Schwizer, W; Pal, A

    2012-07-01

    The function and structure of the gastro-esophageal junction (GEJ) determine its efficacy as a reflux barrier. This study presents a novel methodology for the quantitative assessment of GEJ and proximal gastric morphology from magnetic resonance (MR) imaging. Based on this data we propose a new conceptualization of the hypothesis that a flap valve mechanism contributes to reflux protection. 3D models of the GEJ and proximal stomach were reconstructed from MR images in 12 healthy volunteers during respiration and on eating a test meal to maximum satiation. A rotating plane analysis measured the gastro-esophageal insertion angle and span of contact. An ellipsoid fit provided quantitative assessment of gastric shape and orientation relative to a fixed anatomical reference point. Position of the esophageal insertion on the 'gastric ellipse' was noted. An ellipsoid-cylinder model was designed to analyze the relationships among parameters describing the GEJ morphology. The insertion angle became more acute on expiration, but did not change with meal ingestion. In contrast the span of contact did not vary with respiration, but increased with gastric filling. Changes in gastric morphology with distension further augmented the span of gastro-esophageal contact in almost 70% of the studies. Novel MR imaging and biophysical analysis of the GEJ and proximal stomach provide a quantitative description of structures contributing to the reflux barrier. Changes in these parameters during respiration and on eating support the hypothesis that structural components of a functional 'flap valve' like mechanism contribute to reflux protection. © 2012 Blackwell Publishing Ltd.

  14. A quantitative comparison of the similarity between genes and geography in worldwide human populations.

    PubMed

    Wang, Chaolong; Zöllner, Sebastian; Rosenberg, Noah A

    2012-08-01

    Multivariate statistical techniques such as principal components analysis (PCA) and multidimensional scaling (MDS) have been widely used to summarize the structure of human genetic variation, often in easily visualized two-dimensional maps. Many recent studies have reported similarity between geographic maps of population locations and MDS or PCA maps of genetic variation inferred from single-nucleotide polymorphisms (SNPs). However, this similarity has been evident primarily in a qualitative sense; and, because different multivariate techniques and marker sets have been used in different studies, it has not been possible to formally compare genetic variation datasets in terms of their levels of similarity with geography. In this study, using genome-wide SNP data from 128 populations worldwide, we perform a systematic analysis to quantitatively evaluate the similarity of genes and geography in different geographic regions. For each of a series of regions, we apply a Procrustes analysis approach to find an optimal transformation that maximizes the similarity between PCA maps of genetic variation and geographic maps of population locations. We consider examples in Europe, Sub-Saharan Africa, Asia, East Asia, and Central/South Asia, as well as in a worldwide sample, finding that significant similarity between genes and geography exists in general at different geographic levels. The similarity is highest in our examples for Asia and, once highly distinctive populations have been removed, Sub-Saharan Africa. Our results provide a quantitative assessment of the geographic structure of human genetic variation worldwide, supporting the view that geography plays a strong role in giving rise to human population structure.

  15. Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using (1) H-NMR spectroscopy.

    PubMed

    Santos Pimenta, Lúcia P; Schilthuizen, Menno; Verpoorte, Robert; Choi, Young Hae

    2014-01-01

    Prunus serotina is native to North America but has been invasively introduced in Europe since the seventeenth century. This plant contains cyanogenic glycosides that are believed to be related to its success as an invasive plant. For these compounds, chromatographic- or spectrometric-based (targeting on HCN hydrolysis) methods of analysis have been employed so far. However, the conventional methods require tedious preparation steps and a long measuring time. To develop a fast and simple method to quantify the cyanogenic glycosides, amygdalin and prunasin in dried Prunus serotina leaves without any pre-purification steps using (1) H-NMR spectroscopy. Extracts of Prunus serotina leaves using CH3 OH-d4 and KH2 PO4 buffer in D2 O (1:1) were quantitatively analysed for amygdalin and prunasin using (1) H-NMR spectroscopy. Different internal standards were evaluated for accuracy and stability. The purity of quantitated (1) H-NMR signals was evaluated using several two-dimensional NMR experiments. Trimethylsilylpropionic acid sodium salt-d4 proved most suitable as the internal standard for quantitative (1) H-NMR analysis. Two-dimensional J-resolved NMR was shown to be a useful tool to confirm the structures and to check for possible signal overlapping with the target signals for the quantitation. Twenty-two samples of P. serotina were subsequently quantitatively analysed for the cyanogenic glycosides prunasin and amygdalin. The NMR method offers a fast, high-throughput analysis of cyanogenic glycosides in dried leaves permitting simultaneous quantification and identification of prunasin and amygdalin in Prunus serotina. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Frequency analysis for modulation-enhanced powder diffraction.

    PubMed

    Chernyshov, Dmitry; Dyadkin, Vadim; van Beek, Wouter; Urakawa, Atsushi

    2016-07-01

    Periodic modulation of external conditions on a crystalline sample with a consequent analysis of periodic diffraction response has been recently proposed as a tool to enhance experimental sensitivity for minor structural changes. Here the intensity distributions for both a linear and nonlinear structural response induced by a symmetric and periodic stimulus are analysed. The analysis is further extended for powder diffraction when an external perturbation changes not only the intensity of Bragg lines but also their positions. The derived results should serve as a basis for a quantitative modelling of modulation-enhanced diffraction data measured in real conditions.

  17. Quantitative analysis on collagen of dermatofibrosarcoma protuberans skin by second harmonic generation microscopy.

    PubMed

    Wu, Shulian; Huang, Yudian; Li, Hui; Wang, Yunxia; Zhang, Xiaoman

    2015-01-01

    Dermatofibrosarcoma protuberans (DFSP) is a skin cancer usually mistaken as other benign tumors. Abnormal DFSP resection results in tumor recurrence. Quantitative characterization of collagen alteration on the skin tumor is essential for developing a diagnostic technique. In this study, second harmonic generation (SHG) microscopy was performed to obtain images of the human DFSP skin and normal skin. Subsequently, structure and texture analysis methods were applied to determine the differences in skin texture characteristics between the two skin types, and the link between collagen alteration and tumor was established. Results suggest that combining SHG microscopy and texture analysis methods is a feasible and effective method to describe the characteristics of skin tumor like DFSP. © Wiley Periodicals, Inc.

  18. Attenuation correction for brain PET imaging using deep neural network based on dixon and ZTE MR images.

    PubMed

    Gong, Kuang; Yang, Jaewon; Kim, Kyungsang; El Fakhri, Georges; Seo, Youngho; Li, Quanzheng

    2018-05-23

    Positron Emission Tomography (PET) is a functional imaging modality widely used in neuroscience studies. To obtain meaningful quantitative results from PET images, attenuation correction is necessary during image reconstruction. For PET/MR hybrid systems, PET attenuation is challenging as Magnetic Resonance (MR) images do not reflect attenuation coefficients directly. To address this issue, we present deep neural network methods to derive the continuous attenuation coefficients for brain PET imaging from MR images. With only Dixon MR images as the network input, the existing U-net structure was adopted and analysis using forty patient data sets shows it is superior than other Dixon based methods. When both Dixon and zero echo time (ZTE) images are available, we have proposed a modified U-net structure, named GroupU-net, to efficiently make use of both Dixon and ZTE information through group convolution modules when the network goes deeper. Quantitative analysis based on fourteen real patient data sets demonstrates that both network approaches can perform better than the standard methods, and the proposed network structure can further reduce the PET quantification error compared to the U-net structure. © 2018 Institute of Physics and Engineering in Medicine.

  19. QSAR and 3D QSAR of inhibitors of the epidermal growth factor receptor

    NASA Astrophysics Data System (ADS)

    Pinto-Bazurco, Mariano; Tsakovska, Ivanka; Pajeva, Ilza

    This article reports quantitative structure-activity relationships (QSAR) and 3D QSAR models of 134 structurally diverse inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase. Free-Wilson analysis was used to derive the QSAR model. It identified the substituents in aniline, the polycyclic system, and the substituents at the 6- and 7-positions of the polycyclic system as the most important structural features. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used in the 3D QSAR modeling. The steric and electrostatic interactions proved the most important for the inhibitory effect. Both QSAR and 3D QSAR models led to consistent results. On the basis of the statistically significant models, new structures were proposed and their inhibitory activities were predicted.

  20. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize.

    PubMed

    Majeran, Wojciech; Friso, Giulia; Ponnala, Lalit; Connolly, Brian; Huang, Mingshu; Reidel, Edwin; Zhang, Cankui; Asakura, Yukari; Bhuiyan, Nazmul H; Sun, Qi; Turgeon, Robert; van Wijk, Klaas J

    2010-11-01

    C(4) grasses, such as maize (Zea mays), have high photosynthetic efficiency through combined biochemical and structural adaptations. C(4) photosynthesis is established along the developmental axis of the leaf blade, leading from an undifferentiated leaf base just above the ligule into highly specialized mesophyll cells (MCs) and bundle sheath cells (BSCs) at the tip. To resolve the kinetics of maize leaf development and C(4) differentiation and to obtain a systems-level understanding of maize leaf formation, the accumulation profiles of proteomes of the leaf and the isolated BSCs with their vascular bundle along the developmental gradient were determined using large-scale mass spectrometry. This was complemented by extensive qualitative and quantitative microscopy analysis of structural features (e.g., Kranz anatomy, plasmodesmata, cell wall, and organelles). More than 4300 proteins were identified and functionally annotated. Developmental protein accumulation profiles and hierarchical cluster analysis then determined the kinetics of organelle biogenesis, formation of cellular structures, metabolism, and coexpression patterns. Two main expression clusters were observed, each divided in subclusters, suggesting that a limited number of developmental regulatory networks organize concerted protein accumulation along the leaf gradient. The coexpression with BSC and MC markers provided strong candidates for further analysis of C(4) specialization, in particular transporters and biogenesis factors. Based on the integrated information, we describe five developmental transitions that provide a conceptual and practical template for further analysis. An online protein expression viewer is provided through the Plant Proteome Database.

  1. Quantitative risk assessment system (QRAS)

    NASA Technical Reports Server (NTRS)

    Tan, Zhibin (Inventor); Mosleh, Ali (Inventor); Weinstock, Robert M (Inventor); Smidts, Carol S (Inventor); Chang, Yung-Hsien (Inventor); Groen, Francisco J (Inventor); Swaminathan, Sankaran (Inventor)

    2001-01-01

    A quantitative risk assessment system (QRAS) builds a risk model of a system for which risk of failure is being assessed, then analyzes the risk of the system corresponding to the risk model. The QRAS performs sensitivity analysis of the risk model by altering fundamental components and quantifications built into the risk model, then re-analyzes the risk of the system using the modifications. More particularly, the risk model is built by building a hierarchy, creating a mission timeline, quantifying failure modes, and building/editing event sequence diagrams. Multiplicities, dependencies, and redundancies of the system are included in the risk model. For analysis runs, a fixed baseline is first constructed and stored. This baseline contains the lowest level scenarios, preserved in event tree structure. The analysis runs, at any level of the hierarchy and below, access this baseline for risk quantitative computation as well as ranking of particular risks. A standalone Tool Box capability exists, allowing the user to store application programs within QRAS.

  2. Acquiring a Variable Structure: An Interlanguage Analysis of Second Language Mood Use in Spanish

    ERIC Educational Resources Information Center

    Gudmestad, Aarnes

    2012-01-01

    This investigation connects issues in second language (L2) acquisition to topics in quantitative sociolinguistics by exploring the relationship between native-speaker (NS) and L2 variation. It is the first large-scale analysis of L2 mood use (the subjunctive-indicative contrast) in Spanish. It applies variationist findings on the range of…

  3. The Relationship of Core Self-Evaluations and Life Satisfaction in College Students with Disabilities: Evaluation of a Mediator Model

    ERIC Educational Resources Information Center

    Smedema, Susan Miller; Chan, Fong; Yaghmaian, Rana A.; Cardoso, Elizabeth DaSilva; Muller, Veronica; Keegan, John; Dutta, Alo; Ebener, Deborah J.

    2015-01-01

    This study examined the factorial structure of the construct core self-evaluations (CSE) and tested a mediational model of the relationship between CSE and life satisfaction in college students with disabilities. We conducted a quantitative descriptive design using exploratory and confirmatory factor analysis and multiple regression analysis.…

  4. New methodologies for multi-scale time-variant reliability analysis of complex lifeline networks

    NASA Astrophysics Data System (ADS)

    Kurtz, Nolan Scot

    The cost of maintaining existing civil infrastructure is enormous. Since the livelihood of the public depends on such infrastructure, its state must be managed appropriately using quantitative approaches. Practitioners must consider not only which components are most fragile to hazard, e.g. seismicity, storm surge, hurricane winds, etc., but also how they participate on a network level using network analysis. Focusing on particularly damaged components does not necessarily increase network functionality, which is most important to the people that depend on such infrastructure. Several network analyses, e.g. S-RDA, LP-bounds, and crude-MCS, and performance metrics, e.g. disconnection bounds and component importance, are available for such purposes. Since these networks are existing, the time state is also important. If networks are close to chloride sources, deterioration may be a major issue. Information from field inspections may also have large impacts on quantitative models. To address such issues, hazard risk analysis methodologies for deteriorating networks subjected to seismicity, i.e. earthquakes, have been created from analytics. A bridge component model has been constructed for these methodologies. The bridge fragilities, which were constructed from data, required a deeper level of analysis as these were relevant for specific structures. Furthermore, chloride-induced deterioration network effects were investigated. Depending on how mathematical models incorporate new information, many approaches are available, such as Bayesian model updating. To make such procedures more flexible, an adaptive importance sampling scheme was created for structural reliability problems. Additionally, such a method handles many kinds of system and component problems with singular or multiple important regions of the limit state function. These and previously developed analysis methodologies were found to be strongly sensitive to the network size. Special network topologies may be more or less computationally difficult, while the resolution of the network also has large affects. To take advantage of some types of topologies, network hierarchical structures with super-link representation have been used in the literature to increase the computational efficiency by analyzing smaller, densely connected networks; however, such structures were based on user input and subjective at times. To address this, algorithms must be automated and reliable. These hierarchical structures may indicate the structure of the network itself. This risk analysis methodology has been expanded to larger networks using such automated hierarchical structures. Component importance is the most important objective from such network analysis; however, this may only provide the information of which bridges to inspect/repair earliest and little else. High correlations influence such component importance measures in a negative manner. Additionally, a regional approach is not appropriately modelled. To investigate a more regional view, group importance measures based on hierarchical structures have been created. Such structures may also be used to create regional inspection/repair approaches. Using these analytical, quantitative risk approaches, the next generation of decision makers may make both component and regional-based optimal decisions using information from both network function and further effects of infrastructure deterioration.

  5. 3D OCT imaging in clinical settings: toward quantitative measurements of retinal structures

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Fuller, Alfred R.; Zhao, Mingtao; Wiley, David F.; Choi, Stacey S.; Bower, Bradley A.; Hamann, Bernd; Izatt, Joseph A.; Werner, John S.

    2006-02-01

    The acquisition speed of current FD-OCT (Fourier Domain - Optical Coherence Tomography) instruments allows rapid screening of three-dimensional (3D) volumes of human retinas in clinical settings. To take advantage of this ability requires software used by physicians to be capable of displaying and accessing volumetric data as well as supporting post processing in order to access important quantitative information such as thickness maps and segmented volumes. We describe our clinical FD-OCT system used to acquire 3D data from the human retina over the macula and optic nerve head. B-scans are registered to remove motion artifacts and post-processed with customized 3D visualization and analysis software. Our analysis software includes standard 3D visualization techniques along with a machine learning support vector machine (SVM) algorithm that allows a user to semi-automatically segment different retinal structures and layers. Our program makes possible measurements of the retinal layer thickness as well as volumes of structures of interest, despite the presence of noise and structural deformations associated with retinal pathology. Our software has been tested successfully in clinical settings for its efficacy in assessing 3D retinal structures in healthy as well as diseased cases. Our tool facilitates diagnosis and treatment monitoring of retinal diseases.

  6. Tropical Pacific moisture variability: Its detection, synoptic structure and consequences in the general circulation

    NASA Technical Reports Server (NTRS)

    Mcguirk, James P.

    1990-01-01

    Satellite data analysis tools are developed and implemented for the diagnosis of atmospheric circulation systems over the tropical Pacific Ocean. The tools include statistical multi-variate procedures, a multi-spectral radiative transfer model, and the global spectral forecast model at NMC. Data include in-situ observations; satellite observations from VAS (moisture, infrared and visible) NOAA polar orbiters (including Tiros Operational Satellite System (TOVS) multi-channel sounding data and OLR grids) and scanning multichannel microwave radiometer (SMMR); and European Centre for Medium Weather Forecasts (ECHMWF) analyses. A primary goal is a better understanding of the relation between synoptic structures of the area, particularly tropical plumes, and the general circulation, especially the Hadley circulation. A second goal is the definition of the quantitative structure and behavior of all Pacific tropical synoptic systems. Finally, strategies are examined for extracting new and additional information from existing satellite observations. Although moisture structure is emphasized, thermal patterns are also analyzed. Both horizontal and vertical structures are studied and objective quantitative results are emphasized.

  7. 3D quantitative comparative analysis of long bone diaphysis variations in microanatomy and cross-sectional geometry.

    PubMed

    Houssaye, Alexandra; Taverne, Maxime; Cornette, Raphaël

    2018-05-01

    Long bone inner structure and cross-sectional geometry display a strong functional signal, leading to convergences, and are widely analyzed in comparative anatomy at small and large taxonomic scales. Long bone microanatomical studies have essentially been conducted on transverse sections but also on a few longitudinal ones. Recent studies highlighted the interest in analyzing variations of the inner structure along the diaphysis using a qualitative as well as a quantitative approach. With the development of microtomography, it has become possible to study three-dimensional (3D) bone microanatomy and, in more detail, the form-function relationships of these features. This study focused on the selection of quantitative parameters to describe in detail the cross-sectional shape changes and distribution of the osseous tissue along the diaphysis. Two-dimensional (2D) virtual transverse sections were also performed in the two usual reference planes and results were compared with those obtained based on the whole diaphysis analysis. The sample consisted in 14 humeri and 14 femora of various mammalian taxa that are essentially terrestrial. Comparative quantitative analyses between different datasets made it possible to highlight the parameters that are strongly impacted by size and phylogeny and the redundant ones, and thus to estimate their relevance for use in form-function analyses. The analysis illustrated that results based on 2D transverse sections are similar for both sectional planes; thus if a strong bias exists when mixing sections from the two reference planes in the same analysis, it would not problematic to use either one plane or the other in comparative studies. However, this may no longer hold for taxa showing a much stronger variation in bone microstructure along the diaphysis. Finally, the analysis demonstrated the significant contribution of the parameters describing variations along the diaphysis, and thus the interest in performing 3D analyses; this should be even more fruitful for heterogeneous diaphyses. In addition, covariation analyses showed that there is a strong interest in removing the size effect to access the differences in the microstructure of the humerus and femur. This methodological study provides a reference for future quantitative analyses on long bone inner structure and should make it possible, through a detailed knowledge of each descriptive parameter, to better interpret results from the multivariate analyses associated with these studies. This will have direct implications for studies in vertebrate anatomy, but also in paleontology and anthropology. © 2018 Anatomical Society.

  8. Research Review: Neural response to threat in children, adolescents, and adults after child maltreatment - a quantitative meta-analysis.

    PubMed

    Hein, Tyler C; Monk, Christopher S

    2017-03-01

    Child maltreatment is common and has long-term consequences for affective function. Investigations of neural consequences of maltreatment have focused on the amygdala. However, developmental neuroscience indicates that other brain regions are also likely to be affected by child maltreatment, particularly in the social information processing network (SIPN). We conducted a quantitative meta-analysis to: confirm that maltreatment is related to greater bilateral amygdala activation in a large sample that was pooled across studies; investigate other SIPN structures that are likely candidates for altered function; and conduct a data-driven examination to identify additional regions that show altered activation in maltreated children, teens, and adults. We conducted an activation likelihood estimation analysis with 1,733 participants across 20 studies of emotion processing in maltreated individuals. Maltreatment is associated with increased bilateral amygdala activation to emotional faces. One SIPN structure is altered: superior temporal gyrus, of the detection node, is hyperactive in maltreated individuals. The results of the whole-brain corrected analysis also show hyperactivation of the parahippocampal gyrus and insula in maltreated individuals. The meta-analysis confirms that maltreatment is related to increased bilateral amygdala reactivity and also shows that maltreatment affects multiple additional structures in the brain that have received little attention in the literature. Thus, although the majority of studies examining maltreatment and brain function have focused on the amygdala, these findings indicate that the neural consequences of child maltreatment involve a broader network of structures. © 2016 Association for Child and Adolescent Mental Health.

  9. Photothermal technique in cell microscopy studies

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitry; Chebot'ko, Igor; Kutchinsky, Georgy; Cherenkevitch, Sergey

    1995-01-01

    Photothermal (PT) method is applied for a cell imaging and quantitative studies. The techniques for cell monitoring, imaging and cell viability test are developed. The method and experimental set up for optical and PT-image acquisition and analysis is described. Dual- pulsed laser set up combined with phase contrast illumination of a sample provides visualization of temperature field or absorption structure of a sample with spatial resolution 0.5 micrometers . The experimental optics, hardware and software are designed using the modular principle, so the whole set up can be adjusted for various experiments: PT-response monitoring or photothermal spectroscopy studies. Sensitivity of PT-method provides the imaging of the structural elements of live (non-stained) white blood cells. The results of experiments with normal and subnormal blood cells (red blood cells, lymphocytes, neutrophyles and lymphoblasts) are reported. Obtained PT-images are different from optical analogs and deliver additional information about cell structure. The quantitative analysis of images was used for cell population comparative diagnostic. The viability test for red blood cell differentiation is described. During the study of neutrophyles in norma and sarcoidosis disease the differences in PT-images of cells were found.

  10. Antifeedant effect of polygodial and drimenol derivatives against Spodoptera frugiperda and Epilachna paenulata and quantitative structure-activity analysis.

    PubMed

    Montenegro, Iván J; Del Corral, Soledad; Diaz Napal, Georgina N; Carpinella, María C; Mellado, Marco; Madrid, Alejandro M; Villena, Joan; Palacios, Sara M; Cuellar, Mauricio A

    2018-07-01

    The antifeedant activity of 18 sesquiterpenoids of the drimane family (polygodial, drimenol and derivatives) was investigated. Polygodial, drimanic and nordrimanic derivatives were found to exert antifeedant effects against two insect species, Spodoptera frugiperda and Epilachna paenulata, which are pests of agronomic interest, indicating that they have potential as biopesticide agents. Among the 18 compounds tested, the epoxynordrimane compound (11) and isonordrimenone (4) showed the highest activity [50% effective concentration (EC 50 ) = 23.28 and 25.63 nmol cm - 2 , respectively, against S. frugiperda, and 50.50 and 59.00 nmol/cm 2 , respectively, against E. paenulata]. The results suggest that drimanic compounds have potential as new agents against S. frugiperda and E. paenulata. A quantitative structure-activity relationship (QSAR) analysis of the whole series, supported by electronic studies, suggested that drimanic compounds have structural features necessary for increasing antifeedant activity, namely a C-9 carbonyl group and an epoxide at C-8 and C-9. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  11. Structure and evolution of a European Parliament via a network and correlation analysis

    NASA Astrophysics Data System (ADS)

    Puccio, Elena; Pajala, Antti; Piilo, Jyrki; Tumminello, Michele

    2016-11-01

    We present a study of the network of relationships among elected members of the Finnish parliament, based on a quantitative analysis of initiative co-signatures, and its evolution over 16 years. To understand the structure of the parliament, we constructed a statistically validated network of members, based on the similarity between the patterns of initiatives they signed. We looked for communities within the network and characterized them in terms of members' attributes, such as electoral district and party. To gain insight on the nested structure of communities, we constructed a hierarchical tree of members from the correlation matrix. Afterwards, we studied parliament dynamics yearly, with a focus on correlations within and between parties, by also distinguishing between government and opposition. Finally, we investigated the role played by specific individuals, at a local level. In particular, whether they act as proponents who gather consensus, or as signers. Our results provide a quantitative background to current theories in political science. From a methodological point of view, our network approach has proven able to highlight both local and global features of a complex social system.

  12. Histomorphometric, fractal and lacunarity comparative analysis of sheep (Ovis aries), goat (Capra hircus) and roe deer (Capreolus capreolus) compact bone samples.

    PubMed

    Gudea, A I; Stefan, A C

    2013-08-01

    Quantitative and qualitative studies dealing with histomorphometry of the bone tissue play a new role in modern legal medicine/forensic medicine and archaeozoology nowadays. This study deals with the differences found in case of humerus and metapodial bones of recent sheep (Ovis aries), goat (Capra hircus) and roedeer (Capreolus capreolus) specimens, both from a qualitative point of view, but mainly from a quantitative perspective. A novel perspective given by the fractal analysis performed on the digital histological images is approached. This study shows that the qualitative assessment may not be a reliable one due to the close resemblance of the structures. From the quantitative perspective (several measurements performed on osteonal units and statistical processing of data),some of the elements measured show significant differences among 3 species(the primary osteonal diameter, etc.). The fractal analysis and the lacunarity of the images show a great deal of potential, proving that this type of analysis can be of great help in the separation of the material from this perspective.

  13. [Morphometric analysis of lymphocyte nuclei in chronic lymphocytic leukemia].

    PubMed

    Ostapenko, V A; Kruchinskiĭ, N G; Smirnova, L A; Cherednik, A B; Nesterov, V N; Tepliakov, A I

    1994-01-01

    This work is dedicated to the study of use of quantitative analysis of cell nucleus structure for the analysis of peripheral blood lymphocytes in patients with chronic lymphocytic leukaemia. The structure of lymphocytic nuclei of healthy donors was evaluated by means of staining by toluidine blue purified cell suspensions smears. The preparations were analysed on the television measuring system "omnicon" with measurements of the following parameters: square of the nucleus, euchromatin, heterochromatin, and the ratio of heterochromatin and euchromatin squares. Actuarial analysis and nuclei classification of the previously mentioned parameters showed, that in peripheral blood of patients with chronic lymphocytic leukemia a large amount of atypical lymphocytes is present with reduced nucleus sizes. Atypical cells retain the ratio of structural components of chromatine, characteristic to normal cells, which show their low proliferative activity.

  14. Image Analysis of DNA Fiber and Nucleus in Plants.

    PubMed

    Ohmido, Nobuko; Wako, Toshiyuki; Kato, Seiji; Fukui, Kiichi

    2016-01-01

    Advances in cytology have led to the application of a wide range of visualization methods in plant genome studies. Image analysis methods are indispensable tools where morphology, density, and color play important roles in the biological systems. Visualization and image analysis methods are useful techniques in the analyses of the detailed structure and function of extended DNA fibers (EDFs) and interphase nuclei. The EDF is the highest in the spatial resolving power to reveal genome structure and it can be used for physical mapping, especially for closely located genes and tandemly repeated sequences. One the other hand, analyzing nuclear DNA and proteins would reveal nuclear structure and functions. In this chapter, we describe the image analysis protocol for quantitatively analyzing different types of plant genome, EDFs and interphase nuclei.

  15. Do organizational and political-legal arrangements explain financial wrongdoing?

    PubMed

    Prechel, Harland; Zheng, Lu

    2016-12-01

    The 2008 financial crisis was a systemic problem with deep-rooted structural causes that created opportunities to engage in financial malfeasance, a form of corporate wrongdoing. However, few quantitative studies exist on the effects of organizational and political-legal arrangements on financial malfeasance. In this paper, we examine the effects of organizational and political-legal arrangements that emerged in the 1990s in the FIRE sector (i.e., financial, insurance, and real estate) on financial malfeasance. Our historical contextualization demonstrates how changes in the political-legal arrangements facilitate the emergence of new corporate structures and opportunities for financial malfeasance. Our longitudinal quantitative analysis demonstrates that US FIRE sector corporations with a more complex organizational structure, larger size, lower dividend payment, and higher executive compensation are more prone to commit financial malfeasance. © London School of Economics and Political Science 2016.

  16. Widely-targeted quantitative lipidomics methodology by supercritical fluid chromatography coupled with fast-scanning triple quadrupole mass spectrometry.

    PubMed

    Takeda, Hiroaki; Izumi, Yoshihiro; Takahashi, Masatomo; Paxton, Thanai; Tamura, Shohei; Koike, Tomonari; Yu, Ying; Kato, Noriko; Nagase, Katsutoshi; Shiomi, Masashi; Bamba, Takeshi

    2018-05-03

    Lipidomics, the mass spectrometry-based comprehensive analysis of lipids, has attracted attention as an analytical approach to provide novel insight into lipid metabolism and to search for biomarkers. However, an ideal method for both comprehensive and quantitative analysis of lipids has not been fully developed. Herein, we have proposed a practical methodology for widely-targeted quantitative lipidome analysis using supercritical fluid chromatography fast-scanning triple-quadrupole mass spectrometry (SFC/QqQMS) and theoretically calculated a comprehensive lipid multiple reaction monitoring (MRM) library. Lipid classes can be separated by SFC with a normal phase diethylamine-bonded silica column with high-resolution, high-throughput, and good repeatability. Structural isomers of phospholipids can be monitored by mass spectrometric separation with fatty acyl-based MRM transitions. SFC/QqQMS analysis with an internal standard-dilution method offers quantitative information for both lipid class and individual lipid molecular species in the same lipid class. Additionally, data acquired using this method has advantages including reduction of misidentification and acceleration of data analysis. Using the SFC/QqQMS system, alteration of plasma lipid levels in myocardial infarction-prone rabbits to the supplementation of eicosapentaenoic acid was first observed. Our developed SFC/QqQMS method represents a potentially useful tool for in-depth studies focused on complex lipid metabolism and biomarker discovery. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Chronic obstructive pulmonary disease: quantitative and visual ventilation pattern analysis at xenon ventilation CT performed by using a dual-energy technique.

    PubMed

    Park, Eun-Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Hyun Ju; Lee, Chang Hyun; Park, Chang Min; Yoo, Chul-Gyu; Kim, Jong Hyo

    2010-09-01

    To evaluate the potential of xenon ventilation computed tomography (CT) in the quantitative and visual analysis of chronic obstructive pulmonary disease (COPD). This study was approved by the institutional review board. After informed consent was obtained, 32 patients with COPD underwent CT performed before the administration of xenon, two-phase xenon ventilation CT with wash-in (WI) and wash-out (WO) periods, and pulmonary function testing (PFT). For quantitative analysis, results of PFT were compared with attenuation parameters from prexenon images and xenon parameters from xenon-enhanced images in the following three areas at each phase: whole lung, lung with normal attenuation, and low-attenuating lung (LAL). For visual analysis, ventilation patterns were categorized according to the pattern of xenon attenuation in the area of structural abnormalities compared with that in the normal-looking background on a per-lobe basis: pattern A consisted of isoattenuation or high attenuation in the WI period and isoattenuation in the WO period; pattern B, isoattenuation or high attenuation in the WI period and high attenuation in the WO period; pattern C, low attenuation in both the WI and WO periods; and pattern D, low attenuation in the WI period and isoattenuation or high attenuation in the WO period. Among various attenuation and xenon parameters, xenon parameters of the LAL in the WO period showed the best inverse correlation with results of PFT (P < .0001). At visual analysis, while emphysema (which affected 99 lobes) commonly showed pattern A or B, airway diseases such as obstructive bronchiolitis (n = 5) and bronchiectasis (n = 2) and areas with a mucus plug (n = 1) or centrilobular nodules (n = 5) showed pattern D or C. WI and WO xenon ventilation CT is feasible for the simultaneous regional evaluation of structural and ventilation abnormalities both quantitatively and qualitatively in patients with COPD. (c) RSNA, 2010.

  18. A strategy to improve the identification reliability of the chemical constituents by high-resolution mass spectrometry-based isomer structure prediction combined with a quantitative structure retention relationship analysis: Phthalide compounds in Chuanxiong as a test case.

    PubMed

    Zhang, Qingqing; Huo, Mengqi; Zhang, Yanling; Qiao, Yanjiang; Gao, Xiaoyan

    2018-06-01

    High-resolution mass spectrometry (HRMS) provides a powerful tool for the rapid analysis and identification of compounds in herbs. However, the diversity and large differences in the content of the chemical constituents in herbal medicines, especially isomerisms, are a great challenge for mass spectrometry-based structural identification. In the current study, a new strategy for the structural characterization of potential new phthalide compounds was proposed by isomer structure predictions combined with a quantitative structure-retention relationship (QSRR) analysis using phthalide compounds in Chuanxiong as an example. This strategy consists of three steps. First, the structures of phthalide compounds were reasonably predicted on the basis of the structure features and MS/MS fragmentation patterns: (1) the collected raw HRMS data were preliminarily screened by an in-house database; (2) the MS/MS fragmentation patterns of the analogous compounds were summarized; (3) the reported phthalide compounds were identified, and the structures of the isomers were reasonably predicted. Second, the QSRR model was established and verified using representative phthalide compound standards. Finally, the retention times of the predicted isomers were calculated by the QSRR model, and the structures of these peaks were rationally characterized by matching retention times of the detected chromatographic peaks and the predicted isomers. A multiple linear regression QSRR model in which 6 physicochemical variables were screened was built using 23 phthalide standards. The retention times of the phthalide isomers in Chuanxiong were well predicted by the QSRR model combined with reasonable structure predictions (R 2 =0.955). A total of 81 peaks were detected from Chuanxiong and assigned to reasonable structures, and 26 potential new phthalide compounds were structurally characterized. This strategy can improve the identification efficiency and reliability of homologues in complex materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. In Situ Three-Dimensional Reciprocal-Space Mapping of Diffuse Scattering Intensity Distribution and Data Analysis for Precursor Phenomenon in Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Cheng, Tian-Le; Ma, Fengde D.; Zhou, Jie E.; Jennings, Guy; Ren, Yang; Jin, Yongmei M.; Wang, Yu U.

    2012-01-01

    Diffuse scattering contains rich information on various structural disorders, thus providing a useful means to study the nanoscale structural deviations from the average crystal structures determined by Bragg peak analysis. Extraction of maximal information from diffuse scattering requires concerted efforts in high-quality three-dimensional (3D) data measurement, quantitative data analysis and visualization, theoretical interpretation, and computer simulations. Such an endeavor is undertaken to study the correlated dynamic atomic position fluctuations caused by thermal vibrations (phonons) in precursor state of shape-memory alloys. High-quality 3D diffuse scattering intensity data around representative Bragg peaks are collected by using in situ high-energy synchrotron x-ray diffraction and two-dimensional digital x-ray detector (image plate). Computational algorithms and codes are developed to construct the 3D reciprocal-space map of diffuse scattering intensity distribution from the measured data, which are further visualized and quantitatively analyzed to reveal in situ physical behaviors. Diffuse scattering intensity distribution is explicitly formulated in terms of atomic position fluctuations to interpret the experimental observations and identify the most relevant physical mechanisms, which help set up reduced structural models with minimal parameters to be efficiently determined by computer simulations. Such combined procedures are demonstrated by a study of phonon softening phenomenon in precursor state and premartensitic transformation of Ni-Mn-Ga shape-memory alloy.

  20. Resilience Among Naval Recruits: A Quantitative and Qualitative Analysis of Interventions at Recruit Training Command and Implications on Fleet Readiness

    DTIC Science & Technology

    2016-03-01

    associated with higher levels of resilience (Connor & Davidson, 2003). The CD-RISC offers a validated quantitative scale to researchers , allowing for the...a total of 35 recruits and 12 RDCs were interviewed. Four focus groups and 30 personal interviews were conducted. The interviews included recruits...two to four individuals. The interviews and focus groups were semi-structured. A set of questions were identified prior to the interviews as a

  1. Fundamentals of Structural Geology

    NASA Astrophysics Data System (ADS)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  2. Quantitative profiling of immune repertoires for minor lymphocyte counts using unique molecular identifiers.

    PubMed

    Egorov, Evgeny S; Merzlyak, Ekaterina M; Shelenkov, Andrew A; Britanova, Olga V; Sharonov, George V; Staroverov, Dmitriy B; Bolotin, Dmitriy A; Davydov, Alexey N; Barsova, Ekaterina; Lebedev, Yuriy B; Shugay, Mikhail; Chudakov, Dmitriy M

    2015-06-15

    Emerging high-throughput sequencing methods for the analyses of complex structure of TCR and BCR repertoires give a powerful impulse to adaptive immunity studies. However, there are still essential technical obstacles for performing a truly quantitative analysis. Specifically, it remains challenging to obtain comprehensive information on the clonal composition of small lymphocyte populations, such as Ag-specific, functional, or tissue-resident cell subsets isolated by sorting, microdissection, or fine needle aspirates. In this study, we report a robust approach based on unique molecular identifiers that allows profiling Ag receptors for several hundred to thousand lymphocytes while preserving qualitative and quantitative information on clonal composition of the sample. We also describe several general features regarding the data analysis with unique molecular identifiers that are critical for accurate counting of starting molecules in high-throughput sequencing applications. Copyright © 2015 by The American Association of Immunologists, Inc.

  3. Quantitative imaging of aggregated emulsions.

    PubMed

    Penfold, Robert; Watson, Andrew D; Mackie, Alan R; Hibberd, David J

    2006-02-28

    Noise reduction, restoration, and segmentation methods are developed for the quantitative structural analysis in three dimensions of aggregated oil-in-water emulsion systems imaged by fluorescence confocal laser scanning microscopy. Mindful of typical industrial formulations, the methods are demonstrated for concentrated (30% volume fraction) and polydisperse emulsions. Following a regularized deconvolution step using an analytic optical transfer function and appropriate binary thresholding, novel application of the Euclidean distance map provides effective discrimination of closely clustered emulsion droplets with size variation over at least 1 order of magnitude. The a priori assumption of spherical nonintersecting objects provides crucial information to combat the ill-posed inverse problem presented by locating individual particles. Position coordinates and size estimates are recovered with sufficient precision to permit quantitative study of static geometrical features. In particular, aggregate morphology is characterized by a novel void distribution measure based on the generalized Apollonius problem. This is also compared with conventional Voronoi/Delauney analysis.

  4. Prediction of Environmental Impact of High-Energy Materials with Atomistic Computer Simulations

    DTIC Science & Technology

    2010-11-01

    from a training set of compounds. Other methods include Quantitative Struc- ture-Activity Relationship ( QSAR ) and Quantitative Structure-Property...26 28 the development of QSPR/ QSAR models, in contrast to boiling points and critical parameters derived from empirical correlations, to improve...Quadratic Configuration Interaction Singles Doubles QSAR Quantitative Structure-Activity Relationship QSPR Quantitative Structure-Property

  5. Quantitative Structure-Cytotoxicity Relationship of Cinnamic Acid Phenetyl Esters.

    PubMed

    Uesawa, Yoshihiro; Sakagami, Hiroshi; Okudaira, Noriyuki; Toda, Kazuhiro; Takao, Koichi; Kagaya, Hajime; Sugita, Yoshiaki

    2018-02-01

    Many phenolic acid phenethyl esters possess diverse biological effects including antioxidant, cytoprotective, anti-inflammation and anti-tumor activities. However, most previous antitumor studies have not considered the cytotoxicity against normal cells. Ten cinnamic acid phenetyl esters were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity and tumor-specificity, in order to find their new biological activities. Cytotoxicity against four human oral squamous cell carcinoma cell lines and three oral normal mesenchymal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor specificity (TS) was evaluated by the ratio of the mean 50% cytotoxic concentration (CC 50 ) against normal oral cells to that against human oral squamous cell carcinoma cell lines. Potency-selectivity expression (PSE) value was calculated by dividing the TS value by CC 50 against tumor cells. Apoptosis markers were detected by western blot analysis. Physicochemical, structural and quantum-chemical parameters were calculated based on the conformations optimized by force-field minimization. Western blot analysis demonstrated that [ 9 ] stimulated the cleavage of caspase-3, suggesting the induction of apoptosis. QSAR analysis demonstrated that TS values were correlated with shape, size and ionization potential. Chemical modification of the lead compound may be a potential choice for designing a new type of anticancer drugs. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. A quantification model for the structure of clay materials.

    PubMed

    Tang, Liansheng; Sang, Haitao; Chen, Haokun; Sun, Yinlei; Zhang, Longjian

    2016-07-04

    In this paper, the quantification for clay structure is explicitly explained, and the approach and goals of quantification are also discussed. The authors consider that the purpose of the quantification for clay structure is to determine some parameters that can be used to quantitatively characterize the impact of clay structure on the macro-mechanical behaviour. According to the system theory and the law of energy conservation, a quantification model for the structure characteristics of clay materials is established and three quantitative parameters (i.e., deformation structure potential, strength structure potential and comprehensive structure potential) are proposed. And the corresponding tests are conducted. The experimental results show that these quantitative parameters can accurately reflect the influence of clay structure on the deformation behaviour, strength behaviour and the relative magnitude of structural influence on the above two quantitative parameters, respectively. These quantitative parameters have explicit mechanical meanings, and can be used to characterize the structural influences of clay on its mechanical behaviour.

  7. Steroid receptors analysis in human mammary tumors by isoelectric focusing in agarose.

    PubMed

    Bailleul, S; Gauduchon, P; Malas, J P; Lechevrel, C; Roussel, G; Goussard, J

    1988-08-01

    A high resolution and quantitative method for isoelectric focusing has been developed to separate the isoforms of estrogen and progesterone receptors in human mammary tumor cytosols stabilized by sodium molybdate. Agarose gels (0.5%) were used. Six samples can be analyzed on one gel in about 2 h, and 35-microliters samples are sufficient to determine the estrogen receptor isoform pattern. The constant yields and the reproducibility of data allow a quantitative analysis of these receptors. Four estrogen receptor isoforms have been observed (pI 4.7, 5.5, 6, and 6.5), isoforms with pI 4.7 and 6.5 being present in all tumors. After incubation at 28 degrees C in high ionic strength, the comparison of isoelectric focusing and high-performance size exclusion chromatography patterns of estrogen receptor confirms the oligomeric structure of the pI 4.7 isoform and suggests a monomeric structure for the pI 6.5 isoform. Under the same conditions of analysis, only one progesterone receptor isoform has been detected with pI 4.7.

  8. Quantitative Structure-Activity Relationship Modeling Coupled with Molecular Docking Analysis in Screening of Angiotensin I-Converting Enzyme Inhibitory Peptides from Qula Casein Hydrolysates Obtained by Two-Enzyme Combination Hydrolysis.

    PubMed

    Lin, Kai; Zhang, Lanwei; Han, Xue; Meng, Zhaoxu; Zhang, Jianming; Wu, Yifan; Cheng, Dayou

    2018-03-28

    In this study, Qula casein derived from yak milk casein was hydrolyzed using a two-enzyme combination approach, and high angiotensin I-converting enzyme (ACE) inhibitory activity peptides were screened by quantitative structure-activity relationship (QSAR) modeling integrated with molecular docking analysis. Hydrolysates (<3 kDa) derived from combinations of thermolysin + alcalase and thermolysin + proteinase K demonstrated high ACE inhibitory activities. Peptide sequences in hydrolysates derived from these two combinations were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). On the basis of the QSAR modeling prediction, a total of 16 peptides were selected for molecular docking analysis. The docking study revealed that four of the peptides (KFPQY, MPFPKYP, MFPPQ, and QWQVL) bound the active site of ACE. These four novel peptides were chemically synthesized, and their IC 50 was determined. Among these peptides, KFPQY showed the highest ACE inhibitory activity (IC 50 = 12.37 ± 0.43 μM). Our study indicated that Qula casein presents an excellent source to produce ACE inhibitory peptides.

  9. Detection of sex chromosome aneuploidies using quantitative fluorescent PCR in the Hungarian population.

    PubMed

    Nagy, Balint; Nagy, Richard Gyula; Lazar, Levente; Schonleber, Julianna; Papp, Csaba; Rigo, Janos

    2015-05-20

    Aneuploidies are the most frequent chromosomal abnormalities at birth. Autosomal aneuploidies cause serious malformations like trisomy 21, trisomy 18 and trisomy 13. However sex chromosome aneuploidies are causing less severe syndromes. For the detection of these aneuploidies, the "gold standard" method is the cytogenetic analysis of fetal cells, karyograms show all numerical and structural abnormalities, but it takes 2-4 weeks to get the reports. Molecular biological methods were developed to overcome the long culture time, thus, FISH and quantitative fluorescent PCR were introduced. In this work we show our experience with a commercial kit for the detection of sex chromosome aneuploidies. We analyzed 20.173 amniotic fluid samples for the period of 2006-2013 in our department. A conventional cytogenetic analysis was performed on the samples. We checked the reliability of quantitative fluorescent PCR and DNA fragment analysis on those samples where sex chromosomal aneuploidy was diagnosed. From the 20.173 amniotic fluid samples we found 50 samples with sex chromosome aneuploidy. There were 19 samples showing 46, XO, 17 samples with 46, XXY, 9 samples with 47, XXX and 5 samples with 47, XYY karyotypes. The applied quantitative fluorescent PCR and DNA fragment analyses method are suitable to detect all abnormal sex chromosome aneuploidies. Quantitative fluorescent PCR is a fast and reliable method for detection of sex chromosome aneuploidies. Copyright © 2015. Published by Elsevier B.V.

  10. Integrated experimental and theoretical approach for the structural characterization of Hg2+ aqueous solutions

    NASA Astrophysics Data System (ADS)

    D'Angelo, Paola; Migliorati, Valentina; Mancini, Giordano; Barone, Vincenzo; Chillemi, Giovanni

    2008-02-01

    The structural and dynamic properties of the solvated Hg2+ ion in aqueous solution have been investigated by a combined experimental-theoretical approach employing x-ray absorption spectroscopy and molecular dynamics (MD) simulations. This method allows one to perform a quantitative analysis of the x-ray absorption near-edge structure (XANES) spectra of ionic solutions using a proper description of the thermal and structural fluctuations. XANES spectra have been computed starting from the MD trajectory, without carrying out any minimization in the structural parameter space. The XANES experimental data are accurately reproduced by a first-shell heptacoordinated cluster only if the second hydration shell is included in the calculations. These results confirm at the same time the existence of a sevenfold first hydration shell for the Hg2+ ion in aqueous solution and the reliability of the potentials used in the MD simulations. The combination of MD and XANES is found to be very helpful to get important new insights into the quantitative estimation of structural properties of disordered systems.

  11. The effect of leverage and/or influential on structure-activity relationships.

    PubMed

    Bolboacă, Sorana D; Jäntschi, Lorentz

    2013-05-01

    In the spirit of reporting valid and reliable Quantitative Structure-Activity Relationship (QSAR) models, the aim of our research was to assess how the leverage (analysis with Hat matrix, h(i)) and the influential (analysis with Cook's distance, D(i)) of QSAR models may reflect the models reliability and their characteristics. The datasets included in this research were collected from previously published papers. Seven datasets which accomplished the imposed inclusion criteria were analyzed. Three models were obtained for each dataset (full-model, h(i)-model and D(i)-model) and several statistical validation criteria were applied to the models. In 5 out of 7 sets the correlation coefficient increased when compounds with either h(i) or D(i) higher than the threshold were removed. Withdrawn compounds varied from 2 to 4 for h(i)-models and from 1 to 13 for D(i)-models. Validation statistics showed that D(i)-models possess systematically better agreement than both full-models and h(i)-models. Removal of influential compounds from training set significantly improves the model and is recommended to be conducted in the process of quantitative structure-activity relationships developing. Cook's distance approach should be combined with hat matrix analysis in order to identify the compounds candidates for removal.

  12. Citation Structure: An Analysis of the Literature Cited in the "Journal of Leadership Education" from 2002 to 2006

    ERIC Educational Resources Information Center

    Edgar, Leslie D.; Cox, Casandra

    2010-01-01

    The "Journal of Leadership Education (JOLE)" has been a primary outlet of leadership education publishing and research dissemination since 2002. The purpose of this study was to assess the first five years of literature cited in "JOLE". The study used a quantitative content analysis design. Analyzed in the study were 45…

  13. Statistics, Structures & Satisfied Customers: Using Web Log Data to Improve Site Performance.

    ERIC Educational Resources Information Center

    Peacock, Darren

    This paper explores some of the ways in which the National Museum of Australia is using Web analysis tools to shape its future directions in the delivery of online services. In particular, it explores the potential of quantitative analysis, based on Web server log data, to convert these ephemeral traces of user experience into a strategic…

  14. Geostatistics for spatial genetic structures: study of wild populations of perennial ryegrass.

    PubMed

    Monestiez, P; Goulard, M; Charmet, G

    1994-04-01

    Methods based on geostatistics were applied to quantitative traits of agricultural interest measured on a collection of 547 wild populations of perennial ryegrass in France. The mathematical background of these methods, which resembles spatial autocorrelation analysis, is briefly described. When a single variable is studied, the spatial structure analysis is similar to spatial autocorrelation analysis, and a spatial prediction method, called "kriging", gives a filtered map of the spatial pattern over all the sampled area. When complex interactions of agronomic traits with different evaluation sites define a multivariate structure for the spatial analysis, geostatistical methods allow the spatial variations to be broken down into two main spatial structures with ranges of 120 km and 300 km, respectively. The predicted maps that corresponded to each range were interpreted as a result of the isolation-by-distance model and as a consequence of selection by environmental factors. Practical collecting methodology for breeders may be derived from such spatial structures.

  15. Robust LOD scores for variance component-based linkage analysis.

    PubMed

    Blangero, J; Williams, J T; Almasy, L

    2000-01-01

    The variance component method is now widely used for linkage analysis of quantitative traits. Although this approach offers many advantages, the importance of the underlying assumption of multivariate normality of the trait distribution within pedigrees has not been studied extensively. Simulation studies have shown that traits with leptokurtic distributions yield linkage test statistics that exhibit excessive Type I error when analyzed naively. We derive analytical formulae relating the deviation from the expected asymptotic distribution of the lod score to the kurtosis and total heritability of the quantitative trait. A simple correction constant yields a robust lod score for any deviation from normality and for any pedigree structure, and effectively eliminates the problem of inflated Type I error due to misspecification of the underlying probability model in variance component-based linkage analysis.

  16. Leading for the long haul: a mixed-method evaluation of the Sustainment Leadership Scale (SLS).

    PubMed

    Ehrhart, Mark G; Torres, Elisa M; Green, Amy E; Trott, Elise M; Willging, Cathleen E; Moullin, Joanna C; Aarons, Gregory A

    2018-01-19

    Despite our progress in understanding the organizational context for implementation and specifically the role of leadership in implementation, its role in sustainment has received little attention. This paper took a mixed-method approach to examine leadership during the sustainment phase of the Exploration, Preparation, Implementation, Sustainment (EPIS) framework. Utilizing the Implementation Leadership Scale as a foundation, we sought to develop a short, practical measure of sustainment leadership that can be used for both applied and research purposes. Data for this study were collected as a part of a larger mixed-method study of evidence-based intervention, SafeCare®, sustainment. Quantitative data were collected from 157 providers using web-based surveys. Confirmatory factor analysis was used to examine the factor structure of the Sustainment Leadership Scale (SLS). Qualitative data were collected from 95 providers who participated in one of 15 focus groups. A framework approach guided qualitative data analysis. Mixed-method integration was also utilized to examine convergence of quantitative and qualitative findings. Confirmatory factor analysis supported the a priori higher order factor structure of the SLS with subscales indicating a single higher order sustainment leadership factor. The SLS demonstrated excellent internal consistency reliability. Qualitative analyses offered support for the dimensions of sustainment leadership captured by the quantitative measure, in addition to uncovering a fifth possible factor, available leadership. This study found qualitative and quantitative support for the pragmatic SLS measure. The SLS can be used for assessing leadership of first-level leaders to understand how staff perceive leadership during sustainment and to suggest areas where leaders could direct more attention in order to increase the likelihood that EBIs are institutionalized into the normal functioning of the organization.

  17. [Quantitative histoenzymatic analysis of the adenohypophysis and adrenal cortex during the early stages of involution].

    PubMed

    Prochukhanov, R A; Rostovtseva, T I

    1977-11-01

    A method of quantitative histenzymatic analysis was applied for determination of the involution changes of the neuroendocrine system. The activity of NAD- and NADP-reductases, acid and alkaline phosphatases, glucose-6-phosphoric dehydrogenase, 3-OH-steroid-dehydrogenase, 11-hydroxysteroid dehydrogenases was investigated in the adenohypophysis and in the adrenal cortex of rats aged 4 and 12 months. There were revealed peculiarities attending the structural-metabolic provision of physiological reconstructions of the neuro-endocrine system under conditions of the estral cycle at the early involution stages. An initial reduction of the cell ular-vascular transport with the retention of the functional activity of the intracellular organoids was demonstrated in ageing animals.

  18. Coercivity degradation caused by inhomogeneous grain boundaries in sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Chen, Hansheng; Yun, Fan; Qu, Jiangtao; Li, Yingfei; Cheng, Zhenxiang; Fang, Ruhao; Ye, Zhixiao; Ringer, Simon P.; Zheng, Rongkun

    2018-05-01

    Quantitative correlation between intrinsic coercivity and grain boundaries in three dimensions is critical to further improve the performance of sintered Nd-Fe-B permanent magnets. Here, we quantitatively reveal the local composition variation across and especially along grain boundaries using the powerful atomic-scale analysis technique known as atom probe tomography. We also estimate the saturation magnetization, magnetocrystalline anisotropy constant, and exchange stiffness of the grain boundaries on the basis of the experimentally determined structure and composition. Finally, using micromagnetic simulations, we quantify the intrinsic coercivity degradation caused by inhomogeneous grain boundaries. This approach can be applied to other magnetic materials for the analysis and optimization of magnetic properties.

  19. Organizing "mountains of words" for data analysis, both qualitative and quantitative.

    PubMed

    Johnson, Bruce D; Dunlap, Eloise; Benoit, Ellen

    2010-04-01

    Qualitative research creates mountains of words. U.S. federal funding supports mostly structured qualitative research, which is designed to test hypotheses using semiquantitative coding and analysis. This article reports on strategies for planning, organizing, collecting, managing, storing, retrieving, analyzing, and writing about qualitative data so as to most efficiently manage the mountains of words collected in large-scale ethnographic projects. Multiple benefits accrue from this approach. Field expenditures are linked to units of work so productivity is measured, many staff in various locations have access to use and analyze the data, quantitative data can be derived from data that is primarily qualitative, and improved efficiencies of resources are developed.

  20. The quantitative structure-insecticidal activity relationships from plant derived compounds against chikungunya and zika Aedes aegypti (Diptera:Culicidae) vector.

    PubMed

    Saavedra, Laura M; Romanelli, Gustavo P; Rozo, Ciro E; Duchowicz, Pablo R

    2018-01-01

    The insecticidal activity of a series of 62 plant derived molecules against the chikungunya, dengue and zika vector, the Aedes aegypti (Diptera:Culicidae) mosquito, is subjected to a Quantitative Structure-Activity Relationships (QSAR) analysis. The Replacement Method (RM) variable subset selection technique based on Multivariable Linear Regression (MLR) proves to be successful for exploring 4885 molecular descriptors calculated with Dragon 6. The predictive capability of the obtained models is confirmed through an external test set of compounds, Leave-One-Out (LOO) cross-validation and Y-Randomization. The present study constitutes a first necessary computational step for designing less toxic insecticides. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Quantitative nondestructive evaluation: Requirements for tomorrow's reliability

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1991-01-01

    Quantitative Nondestructive Evaluation (QNDE) is the technology of measurement, analysis, and prediction of the state of material/structural systems for safety, reliability, and mission assurance. QNDE has impact on everyday life from the cars we drive, the planes we fly, the buildings we work or live in, literally to the infrastructure of our world. Here, researchers highlight some of the new sciences and technologies that are part of a safer, cost effective tomorrow. Specific technologies that are discussed are thermal QNDE of aircraft structural integrity, ultrasonic QNDE for materials characterization, and technology spinoffs from aerospace to the medical sector. In each case, examples are given of how new requirements result in enabling measurement technologies, which in turn change the boundaries of design/practice.

  2. QSAR, QSPR and QSRR in Terms of 3-D-MoRSE Descriptors for In Silico Screening of Clofibric Acid Analogues.

    PubMed

    Di Tullio, Maurizio; Maccallini, Cristina; Ammazzalorso, Alessandra; Giampietro, Letizia; Amoroso, Rosa; De Filippis, Barbara; Fantacuzzi, Marialuigia; Wiczling, Paweł; Kaliszan, Roman

    2012-07-01

    A series of 27 analogues of clofibric acid, mostly heteroarylalkanoic derivatives, have been analyzed by a novel high-throughput reversed-phase HPLC method employing combined gradient of eluent's pH and organic modifier content. The such determined hydrophobicity (lipophilicity) parameters, log kw , and acidity constants, pKa , were subjected to multiple regression analysis to get a QSRR (Quantitative StructureRetention Relationships) and a QSPR (Quantitative Structure-Property Relationships) equation, respectively, describing these pharmacokinetics-determining physicochemical parameters in terms of the calculation chemistry derived structural descriptors. The previously determined in vitro log EC50 values - transactivation activity towards PPARα (human Peroxisome Proliferator-Activated Receptor α) - have also been described in a QSAR (Quantitative StructureActivity Relationships) equation in terms of the 3-D-MoRSE descriptors (3D-Molecule Representation of Structures based on Electron diffraction descriptors). The QSAR model derived can serve for an a priori prediction of bioactivity in vitro of any designed analogue, whereas the QSRR and the QSPR models can be used to evaluate lipophilicity and acidity, respectively, of the compounds, and hence to rational guide selection of structures of proper pharmacokinetics. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis, Spectra, and Theoretical Investigations of 1,3,5-Triazines Compounds as Ultraviolet Rays Absorber Based on Time-Dependent Density Functional Calculations and three-Dimensional Quantitative Structure-Property Relationship.

    PubMed

    Wang, Xueding; Xu, Yilian; Yang, Lu; Lu, Xiang; Zou, Hao; Yang, Weiqing; Zhang, Yuanyuan; Li, Zicheng; Ma, Menglin

    2018-03-01

    A series of 1,3,5-triazines were synthesized and their UV absorption properties were tested. The computational chemistry methods were used to construct quantitative structure-property relationship (QSPR), which was used to computer aided design of new 1,3,5-triazines ultraviolet rays absorber compounds. The experimental UV absorption data are in good agreement with those predicted data using the Time-dependent density functional theory (TD-DFT) [B3LYP/6-311 + G(d,p)]. A suitable forecasting model (R > 0.8, P < 0.0001) was revealed. Predictive three-dimensional quantitative structure-property relationship (3D-QSPR) model was established using multifit molecular alignment rule of Sybyl program, which conclusion is consistent with the TD-DFT calculation. The exceptional photostability mechanism of such ultraviolet rays absorber compounds was studied and confirmed as principally banked upon their ability to undergo excited-state deactivation via an ultrafast excited-state proton transfer (ESIPT). The intramolecular hydrogen bond (IMHB) of 1,3,5-triazines compounds is the basis for the excited state proton transfer, which was explored by IR spectroscopy, UV spectra, structural and energetic aspects of different conformers and frontier molecular orbitals analysis.

  4. A Quantitative Structure-Property Relationship (QSPR) Study of Aliphatic Alcohols by the Method of Dividing the Molecular Structure into Substructure

    PubMed Central

    Liu, Fengping; Cao, Chenzhong; Cheng, Bin

    2011-01-01

    A quantitative structure–property relationship (QSPR) analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP), n-octanol–water partition coefficient (lg POW), water solubility (lg W) and the chromatographic retention indices (RI) on different polar stationary phases. In order to investigate the quantitative structure–property relationship of aliphatic alcohols, the molecular structure ROH is divided into two parts, R and OH to generate structural parameter. It was proposed that the property is affected by three main factors for aliphatic alcohols, alkyl group R, substituted group OH, and interaction between R and OH. On the basis of the polarizability effect index (PEI), previously developed by Cao, the novel molecular polarizability effect index (MPEI) combined with odd-even index (OEI), the sum eigenvalues of bond-connecting matrix (SX1CH) previously developed in our team, were used to predict the property of aliphatic alcohols. The sets of molecular descriptors were derived directly from the structure of the compounds based on graph theory. QSPR models were generated using only calculated descriptors and multiple linear regression techniques. These QSPR models showed high values of multiple correlation coefficient (R > 0.99) and Fisher-ratio statistics. The leave-one-out cross-validation demonstrated the final models to be statistically significant and reliable. PMID:21731451

  5. Printing 2-dimentional droplet array for single-cell reverse transcription quantitative PCR assay with a microfluidic robot.

    PubMed

    Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo

    2015-04-01

    This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis.

  6. Printing 2-Dimentional Droplet Array for Single-Cell Reverse Transcription Quantitative PCR Assay with a Microfluidic Robot

    PubMed Central

    Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo

    2015-01-01

    This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis. PMID:25828383

  7. Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging.

    PubMed

    Zhang, Qinnan; Zhong, Liyun; Tang, Ping; Yuan, Yingjie; Liu, Shengde; Tian, Jindong; Lu, Xiaoxu

    2017-05-31

    Cell refractive index, an intrinsic optical parameter, is closely correlated with the intracellular mass and concentration. By combining optical phase-shifting interferometry (PSI) and atomic force microscope (AFM) imaging, we constructed a label free, non-invasive and quantitative refractive index of single cell measurement system, in which the accurate phase map of single cell was retrieved with PSI technique and the cell morphology with nanoscale resolution was achieved with AFM imaging. Based on the proposed AFM/PSI system, we achieved quantitative refractive index distributions of single red blood cell and Jurkat cell, respectively. Further, the quantitative change of refractive index distribution during Daunorubicin (DNR)-induced Jurkat cell apoptosis was presented, and then the content changes of intracellular biochemical components were achieved. Importantly, these results were consistent with Raman spectral analysis, indicating that the proposed PSI/AFM based refractive index system is likely to become a useful tool for intracellular biochemical components analysis measurement, and this will facilitate its application for revealing cell structure and pathological state from a new perspective.

  8. Exploring the interactome: microfluidic isolation of proteins and interacting partners for quantitative analysis by electron microscopy.

    PubMed

    Giss, Dominic; Kemmerling, Simon; Dandey, Venkata; Stahlberg, Henning; Braun, Thomas

    2014-05-20

    Multimolecular protein complexes are important for many cellular processes. However, the stochastic nature of the cellular interactome makes the experimental detection of complex protein assemblies difficult and quantitative analysis at the single molecule level essential. Here, we present a fast and simple microfluidic method for (i) the quantitative isolation of endogenous levels of untagged protein complexes from minute volumes of cell lysates under close to physiological conditions and (ii) the labeling of specific components constituting these complexes. The method presented uses specific antibodies that are conjugated via a photocleavable linker to magnetic beads that are trapped in microcapillaries to immobilize the target proteins. Proteins are released by photocleavage, eluted, and subsequently analyzed by quantitative transmission electron microscopy at the single molecule level. Additionally, before photocleavage, immunogold can be employed to label proteins that interact with the primary target protein. Thus, the presented method provides a new way to study the interactome and, in combination with single molecule transmission electron microscopy, to structurally characterize the large, dynamic, heterogeneous multimolecular protein complexes formed.

  9. Characterization and analysis of Porous, Brittle solid structures by X-ray micro computed tomography

    NASA Astrophysics Data System (ADS)

    Lin, C. L.; Videla, A. R.; Yu, Q.; Miller, J. D.

    2010-12-01

    The internal structure of porous, brittle solid structures, such as porous rock, foam metal and wallboard, is extremely complex. For example, in the case of wallboard, the air bubble size and the thickness/composition of the wall structure are spatial parameters that vary significantly and influence mechanical, thermal, and acoustical properties. In this regard, the complex geometry and the internal texture of material, such as wallboard, is characterized and analyzed in 3-D using cone beam x-ray micro computed tomography. Geometrical features of the porous brittle structure are quantitatively analyzed based on calibration of the x-ray linear attenuation coefficient, use of a 3-D watershed algorithm, and use of a 3-D skeletonization procedure. Several examples of the 3-D analysis for porous, wallboard structures are presented and the results discussed.

  10. [A quantitative approach to sports training-adapted social determinants concerning sport].

    PubMed

    Alvis-Gómez, Martina K; Neira-Tolosa, Nury A

    2013-01-01

    Identifying and quantitatively analysing social determinants affecting disabled teenagers' inclusion/exclusion in high-performance sports. This was a descriptive cross-sectional study involving 19 12- to 19-year-old athletes suffering physical and sensory disability and 17 staff from the District Institute of Recreation and Sport. Likert-type rating scales were used, based on four analysis categories, i.e. social structure, socio-economic, educational and living condition determinants. Social inequity pervades the national paralympic sports' system. This is because 74 % of individuals only become recognised as sportspeople when they have obtained meritorious results in set competition without appropriate conditions having been previously provided by such paralympic sports institution to enable them to overcome structural and intermediate barriers. The social structure imposed on district-based paralympic sport stigmatises individuals regarding their individual abilities, affects their empowerment and freedom due to the discrimination experienced by disabled teenagers regarding their competitive achievements.

  11. Development of quantitative analysis method for stereotactic brain image: assessment of reduced accumulation in extent and severity using anatomical segmentation.

    PubMed

    Mizumura, Sunao; Kumita, Shin-ichiro; Cho, Keiichi; Ishihara, Makiko; Nakajo, Hidenobu; Toba, Masahiro; Kumazaki, Tatsuo

    2003-06-01

    Through visual assessment by three-dimensional (3D) brain image analysis methods using stereotactic brain coordinates system, such as three-dimensional stereotactic surface projections and statistical parametric mapping, it is difficult to quantitatively assess anatomical information and the range of extent of an abnormal region. In this study, we devised a method to quantitatively assess local abnormal findings by segmenting a brain map according to anatomical structure. Through quantitative local abnormality assessment using this method, we studied the characteristics of distribution of reduced blood flow in cases with dementia of the Alzheimer type (DAT). Using twenty-five cases with DAT (mean age, 68.9 years old), all of whom were diagnosed as probable Alzheimer's disease based on NINCDS-ADRDA, we collected I-123 iodoamphetamine SPECT data. A 3D brain map using the 3D-SSP program was compared with the data of 20 cases in the control group, who age-matched the subject cases. To study local abnormalities on the 3D images, we divided the whole brain into 24 segments based on anatomical classification. We assessed the extent of an abnormal region in each segment (rate of the coordinates with a Z-value that exceeds the threshold value, in all coordinates within a segment), and severity (average Z-value of the coordinates with a Z-value that exceeds the threshold value). This method clarified orientation and expansion of reduced accumulation, through classifying stereotactic brain coordinates according to the anatomical structure. This method was considered useful for quantitatively grasping distribution abnormalities in the brain and changes in abnormality distribution.

  12. Quantitative collision induced mass spectrometry of substituted piperazines - A correlative analysis between theory and experiment

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka; Spiteller, Michael

    2017-12-01

    The present paper deals with quantitative kinetics and thermodynamics of collision induced dissociation (CID) reactions of piperazines under different experimental conditions together with a systematic description of effect of counter-ions on common MS fragment reactions of piperazines; and intra-molecular effect of quaternary cyclization of substituted piperazines yielding to quaternary salts. There are discussed quantitative model equations of rate constants as well as free Gibbs energies of series of m-independent CID fragment processes in GP, which have been evidenced experimentally. Both kinetic and thermodynamic parameters are also predicted by computational density functional theory (DFT) and ab initio both static and dynamic methods. The paper examines validity of Maxwell-Boltzmann distribution to non-Boltzmann CID processes in quantitatively as well. The experiments conducted within the latter framework yield to an excellent correspondence with theoretical quantum chemical modeling. The important property of presented model equations of reaction kinetics is the applicability in predicting unknown and assigning of known mass spectrometric (MS) patterns. The nature of "GP" continuum of CID-MS coupled scheme of measurements with electrospray ionization (ESI) source is discussed, performing parallel computations in gas-phase (GP) and polar continuum at different temperatures and ionic strengths. The effect of pressure is presented. The study contributes significantly to methodological and phenomenological developments of CID-MS and its analytical implementations for quantitative and structural analyses. It also demonstrates great prospective of a complementary application of experimental CID-MS and computational quantum chemistry studying chemical reactivity, among others. To a considerable extend this work underlies the place of computational quantum chemistry to the field of experimental analytical chemistry in particular highlighting the structural analysis.

  13. Efficient multiscale magnetic-domain analysis of iron-core material under mechanical stress

    NASA Astrophysics Data System (ADS)

    Nishikubo, Atsushi; Ito, Shumpei; Mifune, Takeshi; Matsuo, Tetsuji; Kaido, Chikara; Takahashi, Yasuhito; Fujiwara, Koji

    2018-05-01

    For an efficient analysis of magnetization, a partial-implicit solution method is improved using an assembled domain structure model with six-domain mesoscopic particles exhibiting pinning-type hysteresis. The quantitative analysis of non-oriented silicon steel succeeds in predicting the stress dependence of hysteresis loss with computation times greatly reduced by using the improved partial-implicit method. The effect of cell division along the thickness direction is also evaluated.

  14. Quantitative 3D reconstruction of airway and pulmonary vascular trees using HRCT

    NASA Astrophysics Data System (ADS)

    Wood, Susan A.; Hoford, John D.; Hoffman, Eric A.; Zerhouni, Elias A.; Mitzner, Wayne A.

    1993-07-01

    Accurate quantitative measurements of airway and vascular dimensions are essential to evaluate function in the normal and diseased lung. In this report, a novel method is described for three-dimensional extraction and analysis of pulmonary tree structures using data from High Resolution Computed Tomography (HRCT). Serially scanned two-dimensional slices of the lower left lobe of isolated dog lungs were stacked to create a volume of data. Airway and vascular trees were three-dimensionally extracted using a three dimensional seeded region growing algorithm based on difference in CT number between wall and lumen. To obtain quantitative data, we reduced each tree to its central axis. From the central axis, branch length is measured as the distance between two successive branch points, branch angle is measured as the angle produced by two daughter branches, and cross sectional area is measured from a plane perpendicular to the central axis point. Data derived from these methods can be used to localize and quantify structural differences both during changing physiologic conditions and in pathologic lungs.

  15. Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography.

    PubMed

    Govyadinov, Alexander A; Mastel, Stefan; Golmar, Federico; Chuvilin, Andrey; Carney, P Scott; Hillenbrand, Rainer

    2014-07-22

    The increasing complexity of composite materials structured on the nanometer scale requires highly sensitive analytical tools for nanoscale chemical identification, ideally in three dimensions. While infrared near-field microscopy provides high chemical sensitivity and nanoscopic spatial resolution in two dimensions, the quantitative extraction of material properties of three-dimensionally structured samples has not been achieved yet. Here we introduce a method to perform rapid recovery of the thickness and permittivity of simple 3D structures (such as thin films and nanostructures) from near-field measurements, and provide its first experimental demonstration. This is accomplished via a novel nonlinear invertible model of the imaging process, taking advantage of the near-field data recorded at multiple harmonics of the oscillation frequency of the near-field probe. Our work enables quantitative nanoscale-resolved optical studies of thin films, coatings, and functionalization layers, as well as the structural analysis of multiphase materials, among others. It represents a major step toward the further goal of near-field nanotomography.

  16. Harnessing cell-to-cell variations to probe bacterial structure and biophysics

    NASA Astrophysics Data System (ADS)

    Cass, Julie A.

    Advances in microscopy and biotechnology have given us novel insights into cellular biology and physics. While bacteria were long considered to be relatively unstructured, the development of fluorescence microscopy techniques, and spatially and temporally resolved high-throughput quantitative studies, have uncovered that the bacterial cell is highly organized, and its structure rigorously maintained. In this thesis I will describe our gateTool software, designed to harness cell-to-cell variations to probe bacterial structure, and discuss two exciting aspects of structure that we have employed gateTool to investigate: (i) chromosome organization and the cellular mechanisms for controlling DNA dynamics, and (ii) the study of cell wall synthesis, and how the genes in the synthesis pathway impact cellular shape. In the first project, we develop a spatial and temporal mapping of cell-cycle-dependent chromosomal organization, and use this quantitative map to discover that chromosomal loci segregate from midcell with universal dynamics. In the second project, I describe preliminary time- lapse and snapshot imaging analysis suggesting phentoypical coherence across peptidoglycan synthesis pathways.

  17. Structural Analysis of PTM Hotspots (SAPH-ire)--A Quantitative Informatics Method Enabling the Discovery of Novel Regulatory Elements in Protein Families.

    PubMed

    Dewhurst, Henry M; Choudhury, Shilpa; Torres, Matthew P

    2015-08-01

    Predicting the biological function potential of post-translational modifications (PTMs) is becoming increasingly important in light of the exponential increase in available PTM data from high-throughput proteomics. We developed structural analysis of PTM hotspots (SAPH-ire)--a quantitative PTM ranking method that integrates experimental PTM observations, sequence conservation, protein structure, and interaction data to allow rank order comparisons within or between protein families. Here, we applied SAPH-ire to the study of PTMs in diverse G protein families, a conserved and ubiquitous class of proteins essential for maintenance of intracellular structure (tubulins) and signal transduction (large and small Ras-like G proteins). A total of 1728 experimentally verified PTMs from eight unique G protein families were clustered into 451 unique hotspots, 51 of which have a known and cited biological function or response. Using customized software, the hotspots were analyzed in the context of 598 unique protein structures. By comparing distributions of hotspots with known versus unknown function, we show that SAPH-ire analysis is predictive for PTM biological function. Notably, SAPH-ire revealed high-ranking hotspots for which a functional impact has not yet been determined, including phosphorylation hotspots in the N-terminal tails of G protein gamma subunits--conserved protein structures never before reported as regulators of G protein coupled receptor signaling. To validate this prediction we used the yeast model system for G protein coupled receptor signaling, revealing that gamma subunit-N-terminal tail phosphorylation is activated in response to G protein coupled receptor stimulation and regulates protein stability in vivo. These results demonstrate the utility of integrating protein structural and sequence features into PTM prioritization schemes that can improve the analysis and functional power of modification-specific proteomics data. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. a Chiral Tagging Strategy for Determining Absolute Configuration and Enantiomeric Excess by Molecular Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Caminati, Walther; Patterson, David; Thomas, Javix; Xu, Yunjie; West, Channing; Pate, Brooks

    2017-06-01

    The introduction of three wave mixing rotational spectroscopy by Patterson, Schnell, and Doyle [1,2] has expanded applications of molecular rotational spectroscopy into the field of chiral analysis. Chiral analysis of a molecule is the quantitative measurement of the relative abundances of all stereoisomers of the molecule and these include both diastereomers (with distinct molecular rotational spectra) and enantiomers (with equivalent molecular rotational spectra). This work adapts a common strategy in chiral analysis of enantiomers to molecular rotational spectroscopy. A "chiral tag" is attached to the molecule of interest by making a weakly bound complex in a pulsed jet expansion. When this tag molecule is enantiopure, it will create diastereomeric complexes with the two enantiomers of the molecule being analyzed and these can be differentiated by molecule rotational spectroscopy. Identifying the structure of this complex, with knowledge of the absolute configuration of the tag, establishes the absolute configuration of the molecule of interest. Furthermore, the diastereomer complex spectra can be used to determine the enantiomeric excess of the sample. The ability to perform chiral analysis will be illustrated by a study of solketal using propylene oxide as the tag. The possibility of using current methods of quantum chemistry to assign a specific structure to the chiral tag complex will be discussed. Finally, chiral tag rotational spectroscopy offers a "gold standard" method for determining the absolute configuration of the molecule through determination of the substitution structure of the complex. When this measurement is possible, rotational spectroscopy can deliver a quantitative three dimensional structure of the molecule with correct stereochemistry as the analysis output. [1] David Patterson, Melanie Schnell, John M. Doyle, Nature 497, 475 (2013). [2] David Patterson, John M. Doyle, Phys. Rev. Lett. 111, 023008 (2013).

  19. INVERSE QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP ANALYSIS FOR IMPROVING PREDICTIONS OF CHEMICAL TOXICITY

    EPA Science Inventory

    The toxic outcomes associated with environmental contaminants are often not due to the chemical form that was originally introduced into the environment, but rather to the chemical having undergone a transformation prior to reaching the vulnerable species. More importantly, the c...

  20. Improved hydrophilic interaction chromatography LC/MS of heparinoids using a chip with postcolumn makeup flow.

    PubMed

    Staples, Gregory O; Naimy, Hicham; Yin, Hongfeng; Kileen, Kevin; Kraiczek, Karsten; Costello, Catherine E; Zaia, Joseph

    2010-01-15

    Heparan sulfate (HS) and heparin are linear, heterogeneous carbohydrates of the glycosaminoglycan (GAG) family that are modified by N-acetylation, N-sulfation, O-sulfation, and uronic acid epimerization. HS interacts with growth factors in the extracellular matrix, thereby modulating signaling pathways that govern cell growth, development, differentiation, proliferation, and adhesion. High-performance liquid chromatography (HPLC)-chip-based hydrophilic interaction liquid chromatography/mass spectrometry has emerged as a method for analyzing the domain structure of GAGs. However, analysis of highly sulfated GAG structures decasaccharide or larger in size has been limited by spray instability in the negative-ion mode. This report demonstrates that addition of postcolumn makeup flow to the amide-HPLC-chip configuration permits robust and reproducible analysis of extended GAG domains (up to degree of polymerization 18) from HS and heparin. This platform provides quantitative information regarding the oligosaccharide profile, degree of sulfation, and nonreducing chain termini. It is expected that this technology will enable quantitative, comparative glycomics profiling of extended GAG oligosaccharide domains of functional interest.

  1. Time-of-flight scattering and recoiling spectrometry (TOF-SARS) analysis of Pt{110}. I. Quantitative structural study of the clean (1 × 2) surface

    NASA Astrophysics Data System (ADS)

    Masson, F.; Rabalais, J. W.

    1991-08-01

    The technique of time-of-flight scattering and recoiling spectrometry (TOF-SARS) is used for quantitative structural characterization of the reconstructed (1 × 2) missing-row Pt{110} clean surface. The results are presented as scans of scattered intensity versus incident angle at two scattering angles and are interpreted in terms of simple classical concepts (shadowing, blocking, focusing). Measured critical incident and exit angles corresponding to interatomic spacings unaffected by reconstruction are used to calibrate the screening constant of the interaction potential employed in the trajectory simulations. Analysis of the surface reconstruction is performed by combining experimental data and calibrated computations. The results indicate a contraction of the first-to-second interlayer spacing (-0.22 ± 0.07 Å, i.e., -16 ± 5%), a buckling of amplitude 0.19 ± 0.13 Å in the third layer and, possibly, a row-pairing in the second layer. These observations are in agreement with LEED, MEIS, GXRD, and RHEED experiments.

  2. Genotype-phenotype association study via new multi-task learning model

    PubMed Central

    Huo, Zhouyuan; Shen, Dinggang

    2018-01-01

    Research on the associations between genetic variations and imaging phenotypes is developing with the advance in high-throughput genotype and brain image techniques. Regression analysis of single nucleotide polymorphisms (SNPs) and imaging measures as quantitative traits (QTs) has been proposed to identify the quantitative trait loci (QTL) via multi-task learning models. Recent studies consider the interlinked structures within SNPs and imaging QTs through group lasso, e.g. ℓ2,1-norm, leading to better predictive results and insights of SNPs. However, group sparsity is not enough for representing the correlation between multiple tasks and ℓ2,1-norm regularization is not robust either. In this paper, we propose a new multi-task learning model to analyze the associations between SNPs and QTs. We suppose that low-rank structure is also beneficial to uncover the correlation between genetic variations and imaging phenotypes. Finally, we conduct regression analysis of SNPs and QTs. Experimental results show that our model is more accurate in prediction than compared methods and presents new insights of SNPs. PMID:29218896

  3. 3D Filament Network Segmentation with Multiple Active Contours

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  4. Quantitative analysis of the effect of environmental-scanning electron microscopy on collagenous tissues.

    PubMed

    Lee, Woowon; Toussaint, Kimani C

    2018-05-31

    Environmental-scanning electron microscopy (ESEM) is routinely applied to various biological samples due to its ability to maintain a wet environment while imaging; moreover, the technique obviates the need for sample coating. However, there is limited research carried out on electron-beam (e-beam) induced tissue damage resulting from using the ESEM. In this paper, we use quantitative second-harmonic generation (SHG) microscopy to examine the effects of e-beam exposure from the ESEM on collagenous tissue samples prepared as either fixed, frozen, wet or dehydrated. Quantitative SHG analysis of tissues, before and after ESEM e-beam exposure in low-vacuum mode, reveals evidence of cross-linking of collagen fibers, however there are no structural differences observed in fixed tissue. Meanwhile wet-mode ESEM appears to radically alter the structure from a regular fibrous arrangement to a more random fiber orientation. We also confirm that ESEM images of collagenous tissues show higher spatial resolution compared to SHG microscopy, but the relative tradeoff with collagen specificity reduces its effectiveness in quantifying collagen fiber organization. Our work provides insight on both the limitations of the ESEM for tissue imaging, and the potential opportunity to use as a complementary technique when imaging fine features in the non-collagenous regions of tissue samples.

  5. Quantitative ROESY analysis of computational models: structural studies of citalopram and β-cyclodextrin complexes by (1) H-NMR and computational methods.

    PubMed

    Ali, Syed Mashhood; Shamim, Shazia

    2015-07-01

    Complexation of racemic citalopram with β-cyclodextrin (β-CD) in aqueous medium was investigated to determine atom-accurate structure of the inclusion complexes. (1) H-NMR chemical shift change data of β-CD cavity protons in the presence of citalopram confirmed the formation of 1 : 1 inclusion complexes. ROESY spectrum confirmed the presence of aromatic ring in the β-CD cavity but whether one of the two or both rings was not clear. Molecular mechanics and molecular dynamic calculations showed the entry of fluoro-ring from wider side of β-CD cavity as the most favored mode of inclusion. Minimum energy computational models were analyzed for their accuracy in atomic coordinates by comparison of calculated and experimental intermolecular ROESY peak intensities, which were not found in agreement. Several least energy computational models were refined and analyzed till calculated and experimental intensities were compatible. The results demonstrate that computational models of CD complexes need to be analyzed for atom-accuracy and quantitative ROESY analysis is a promising method. Moreover, the study also validates that the quantitative use of ROESY is feasible even with longer mixing times if peak intensity ratios instead of absolute intensities are used. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Quantitative analysis of rib movement based on dynamic chest bone images: preliminary results

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sanada, S.; Oda, M.; Mitsutaka, M.; Suzuki, K.; Sakuta, K.; Kawashima, H.

    2014-03-01

    Rib movement during respiration is one of the diagnostic criteria in pulmonary impairments. In general, the rib movement is assessed in fluoroscopy. However, the shadows of lung vessels and bronchi overlapping ribs prevent accurate quantitative analysis of rib movement. Recently, an image-processing technique for separating bones from soft tissue in static chest radiographs, called "bone suppression technique", has been developed. Our purpose in this study was to evaluate the usefulness of dynamic bone images created by the bone suppression technique in quantitative analysis of rib movement. Dynamic chest radiographs of 10 patients were obtained using a dynamic flat-panel detector (FPD). Bone suppression technique based on a massive-training artificial neural network (MTANN) was applied to the dynamic chest images to create bone images. Velocity vectors were measured in local areas on the dynamic bone images, which formed a map. The velocity maps obtained with bone and original images for scoliosis and normal cases were compared to assess the advantages of bone images. With dynamic bone images, we were able to quantify and distinguish movements of ribs from those of other lung structures accurately. Limited rib movements of scoliosis patients appeared as reduced rib velocity vectors. Vector maps in all normal cases exhibited left-right symmetric distributions, whereas those in abnormal cases showed nonuniform distributions. In conclusion, dynamic bone images were useful for accurate quantitative analysis of rib movements: Limited rib movements were indicated as a reduction of rib movement and left-right asymmetric distribution on vector maps. Thus, dynamic bone images can be a new diagnostic tool for quantitative analysis of rib movements without additional radiation dose.

  7. Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Leonard, Desiree M.

    1991-01-01

    Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.

  8. Quantitative comparison of high-resolution MRI and myelin-stained histology of the human cerebral cortex.

    PubMed

    Osechinskiy, Sergey; Kruggel, Frithjof

    2009-01-01

    The architectonic analysis of the human cerebral cortex is presently based on the examination of stained tissue sections. Recent progress in high-resolution magnetic resonance imaging (MRI) promotes the feasibility of an in vivo architectonic analysis. Since the exact relationship between the laminar fine-structure of a cortical MRI signal and histological cyto-and myeloarchitectonic staining patterns is not known, a quantitative study comparing high-resolution MRI to histological ground truth images is necessary for validating a future MRI based architectonic analysis. This communication describes an ongoing study comparing post mortem MR images to a myelin-stained histology of the brain cortex. After establishing a close spatial correspondence between histological sections and MRI using a slice-to-volume nonrigid registration algorithm, transcortical intensity profiles, extracted from both imaging modalities along curved trajectories of a Laplacian vector field, are compared via a cross-correlational analysis.

  9. Quantitative nanoscopy: Tackling sampling limitations in (S)TEM imaging of polymers and composites.

    PubMed

    Gnanasekaran, Karthikeyan; Snel, Roderick; de With, Gijsbertus; Friedrich, Heiner

    2016-01-01

    Sampling limitations in electron microscopy questions whether the analysis of a bulk material is representative, especially while analyzing hierarchical morphologies that extend over multiple length scales. We tackled this problem by automatically acquiring a large series of partially overlapping (S)TEM images with sufficient resolution, subsequently stitched together to generate a large-area map using an in-house developed acquisition toolbox (TU/e Acquisition ToolBox) and stitching module (TU/e Stitcher). In addition, we show that quantitative image analysis of the large scale maps provides representative information that can be related to the synthesis and process conditions of hierarchical materials, which moves electron microscopy analysis towards becoming a bulk characterization tool. We demonstrate the power of such an analysis by examining two different multi-phase materials that are structured over multiple length scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    NASA Astrophysics Data System (ADS)

    Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.

    2016-03-01

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  11. Quantitative analysis of crystalline pharmaceuticals in tablets by pattern-fitting procedure using X-ray diffraction pattern.

    PubMed

    Takehira, Rieko; Momose, Yasunori; Yamamura, Shigeo

    2010-10-15

    A pattern-fitting procedure using an X-ray diffraction pattern was applied to the quantitative analysis of binary system of crystalline pharmaceuticals in tablets. Orthorhombic crystals of isoniazid (INH) and mannitol (MAN) were used for the analysis. Tablets were prepared under various compression pressures using a direct compression method with various compositions of INH and MAN. Assuming that X-ray diffraction pattern of INH-MAN system consists of diffraction intensities from respective crystals, observed diffraction intensities were fitted to analytic expression based on X-ray diffraction theory and separated into two intensities from INH and MAN crystals by a nonlinear least-squares procedure. After separation, the contents of INH were determined by using the optimized normalization constants for INH and MAN. The correction parameter including all the factors that are beyond experimental control was required for quantitative analysis without calibration curve. The pattern-fitting procedure made it possible to determine crystalline phases in the range of 10-90% (w/w) of the INH contents. Further, certain characteristics of the crystals in the tablets, such as the preferred orientation, size of crystallite, and lattice disorder were determined simultaneously. This method can be adopted to analyze compounds whose crystal structures are known. It is a potentially powerful tool for the quantitative phase analysis and characterization of crystals in tablets and powders using X-ray diffraction patterns. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Quantitatively probing propensity for structural transitions in engineered virus nanoparticles by single-molecule mechanical analysis

    NASA Astrophysics Data System (ADS)

    Castellanos, Milagros; Carrillo, Pablo J. P.; Mateu, Mauricio G.

    2015-03-01

    Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies.Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07046a

  13. Characterization method for relative Raman enhancement for surface-enhanced Raman spectroscopy using gold nanoparticle dimer array

    NASA Astrophysics Data System (ADS)

    Sugano, Koji; Ikegami, Kohei; Isono, Yoshitada

    2017-06-01

    In this paper, a characterization method for Raman enhancement for highly sensitive and quantitative surface-enhanced Raman spectroscopy (SERS) is reported. A particle dimer shows a marked electromagnetic enhancement when the particle connection direction is matched to the polarization direction of incident light. In this study, dimers were arrayed by nanotrench-guided self-assembly for a marked total Raman enhancement. By measuring acetonedicarboxylic acid, the fabricated structures were characterized for SERS depending on the polarization angle against the particle connection direction. This indicates that the fabricated structures cause an effective SERS enhancement, which is dominated by the electromagnetic enhancement. Then, we measured 4,4‧-bipyridine, which is a pesticide material, for quantitative analysis. In advance, we evaluated the enhancement of the particle structure by the Raman measurement of acetonedicarboxylic acid. Finally, we compared the Raman intensities of acetonedicarboxylic acid and 4,4‧-bipyridine. Their intensities showed good correlation. The advantage of this method for previously evaluating the enhancement of the substrate was demonstrated. This developed SERS characterization method is expected to be applied to various quantitative trace analyses of molecules with high sensitivity.

  14. Organic chemistry as a language and the implications of chemical linguistics for structural and retrosynthetic analyses.

    PubMed

    Cadeddu, Andrea; Wylie, Elizabeth K; Jurczak, Janusz; Wampler-Doty, Matthew; Grzybowski, Bartosz A

    2014-07-28

    Methods of computational linguistics are used to demonstrate that a natural language such as English and organic chemistry have the same structure in terms of the frequency of, respectively, text fragments and molecular fragments. This quantitative correspondence suggests that it is possible to extend the methods of computational corpus linguistics to the analysis of organic molecules. It is shown that within organic molecules bonds that have highest information content are the ones that 1) define repeat/symmetry subunits and 2) in asymmetric molecules, define the loci of potential retrosynthetic disconnections. Linguistics-based analysis appears well-suited to the analysis of complex structural and reactivity patterns within organic molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effects of dynamic diffraction conditions on magnetic parameter determination in a double perovskite Sr2FeMoO6 using electron energy-loss magnetic chiral dichroism.

    PubMed

    Wang, Z C; Zhong, X Y; Jin, L; Chen, X F; Moritomo, Y; Mayer, J

    2017-05-01

    Electron energy-loss magnetic chiral dichroism (EMCD) spectroscopy, which is similar to the well-established X-ray magnetic circular dichroism spectroscopy (XMCD), can determine the quantitative magnetic parameters of materials with high spatial resolution. One of the major obstacles in quantitative analysis using the EMCD technique is the relatively poor signal-to-noise ratio (SNR), compared to XMCD. Here, in the example of a double perovskite Sr 2 FeMoO 6 , we predicted the optimal dynamical diffraction conditions such as sample thickness, crystallographic orientation and detection aperture position by theoretical simulations. By using the optimized conditions, we showed that the SNR of experimental EMCD spectra can be significantly improved and the error of quantitative magnetic parameter determined by EMCD technique can be remarkably lowered. Our results demonstrate that, with enhanced SNR, the EMCD technique can be a unique tool to understand the structure-property relationship of magnetic materials particularly in the high-density magnetic recording and spintronic devices by quantitatively determining magnetic structure and properties at the nanometer scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A Quantitative Method for the Analysis of Nomothetic Relationships between Idiographic Structures: Dynamic Patterns Create Attractor States for Sustained Posttreatment Change

    ERIC Educational Resources Information Center

    Fisher, Aaron J.; Newman, Michelle G.; Molenaar, Peter C. M.

    2011-01-01

    Objective: The present article aimed to demonstrate that the establishment of dynamic patterns during the course of psychotherapy can create attractor states for continued adaptive change following the conclusion of treatment. Method: This study is a secondary analysis of T. D. Borkovec and E. Costello (1993). Of the 55 participants in the…

  17. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiefel, Denis, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer, E-mail: Denis.Kiefel@airbus.com, E-mail: Rainer.Stoessel@airbus.com; Grosse, Christian, E-mail: Grosse@tum.de

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT)more » system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.« less

  18. Characterizing structural transitions using localized free energy landscape analysis.

    PubMed

    Banavali, Nilesh K; Mackerell, Alexander D

    2009-01-01

    Structural changes in molecules are frequently observed during biological processes like replication, transcription and translation. These structural changes can usually be traced to specific distortions in the backbones of the macromolecules involved. Quantitative energetic characterization of such distortions can greatly advance the atomic-level understanding of the dynamic character of these biological processes. Molecular dynamics simulations combined with a variation of the Weighted Histogram Analysis Method for potential of mean force determination are applied to characterize localized structural changes for the test case of cytosine (underlined) base flipping in a GTCAGCGCATGG DNA duplex. Free energy landscapes for backbone torsion and sugar pucker degrees of freedom in the DNA are used to understand their behavior in response to the base flipping perturbation. By simplifying the base flipping structural change into a two-state model, a free energy difference of upto 14 kcal/mol can be attributed to the flipped state relative to the stacked Watson-Crick base paired state. This two-state classification allows precise evaluation of the effect of base flipping on local backbone degrees of freedom. The calculated free energy landscapes of individual backbone and sugar degrees of freedom expectedly show the greatest change in the vicinity of the flipping base itself, but specific delocalized effects can be discerned upto four nucleotide positions away in both 5' and 3' directions. Free energy landscape analysis thus provides a quantitative method to pinpoint the determinants of structural change on the atomic scale and also delineate the extent of propagation of the perturbation along the molecule. In addition to nucleic acids, this methodology is anticipated to be useful for studying conformational changes in all macromolecules, including carbohydrates, lipids, and proteins.

  19. Use of a deuterated internal standard with pyrolysis-GC/MS dimeric marker analysis to quantify tire tread particles in the environment.

    PubMed

    Unice, Kenneth M; Kreider, Marisa L; Panko, Julie M

    2012-11-08

    Pyrolysis(pyr)-GC/MS analysis of characteristic thermal decomposition fragments has been previously used for qualitative fingerprinting of organic sources in environmental samples. A quantitative pyr-GC/MS method based on characteristic tire polymer pyrolysis products was developed for tread particle quantification in environmental matrices including soil, sediment, and air. The feasibility of quantitative pyr-GC/MS analysis of tread was confirmed in a method evaluation study using artificial soil spiked with known amounts of cryogenically generated tread. Tread concentration determined by blinded analyses was highly correlated (r2 ≥ 0.88) with the known tread spike concentration. Two critical refinements to the initial pyrolysis protocol were identified including use of an internal standard and quantification by the dimeric markers vinylcyclohexene and dipentene, which have good specificity for rubber polymer with no other appreciable environmental sources. A novel use of deuterated internal standards of similar polymeric structure was developed to correct the variable analyte recovery caused by sample size, matrix effects, and ion source variability. The resultant quantitative pyr-GC/MS protocol is reliable and transferable between laboratories.

  20. Designing a ticket to ride with the Cognitive Work Analysis Design Toolkit.

    PubMed

    Read, Gemma J M; Salmon, Paul M; Lenné, Michael G; Jenkins, Daniel P

    2015-01-01

    Cognitive work analysis has been applied in the design of numerous sociotechnical systems. The process used to translate analysis outputs into design concepts, however, is not always clear. Moreover, structured processes for translating the outputs of ergonomics methods into concrete designs are lacking. This paper introduces the Cognitive Work Analysis Design Toolkit (CWA-DT), a design approach which has been developed specifically to provide a structured means of incorporating cognitive work analysis outputs in design using design principles and values derived from sociotechnical systems theory. This paper outlines the CWA-DT and describes its application in a public transport ticketing design case study. Qualitative and quantitative evaluations of the process provide promising early evidence that the toolkit fulfils the evaluation criteria identified for its success, with opportunities for improvement also highlighted. The Cognitive Work Analysis Design Toolkit has been developed to provide ergonomics practitioners with a structured approach for translating the outputs of cognitive work analysis into design solutions. This paper demonstrates an application of the toolkit and provides evaluation findings.

  1. Enzyme Active Site Interactions by Raman/FTIR, NMR, and Ab Initio Calculations

    PubMed Central

    Deng, Hua

    2017-01-01

    Characterization of enzyme active site structure and interactions at high resolution is important for the understanding of the enzyme catalysis. Vibrational frequency and NMR chemical shift measurements of enzyme-bound ligands are often used for such purpose when X-ray structures are not available or when higher resolution active site structures are desired. This review is focused on how ab initio calculations may be integrated with vibrational and NMR chemical shift measurements to quantitatively determine high-resolution ligand structures (up to 0.001 Å for bond length and 0.01 Å for hydrogen bonding distance) and how interaction energies between bound ligand and its surroundings at the active site may be determined. Quantitative characterization of substrate ionic states, bond polarizations, tautomeric forms, conformational changes and its interactions with surroundings in enzyme complexes that mimic ground state or transition state can provide snapshots for visualizing the substrate structural evolution along enzyme-catalyzed reaction pathway. Our results have shown that the integration of spectroscopic studies with theoretical computation greatly enhances our ability to interpret experimental data and significantly increases the reliability of the theoretical analysis. PMID:24018325

  2. GUIDOS: tools for the assessment of pattern, connectivity, and fragmentation

    NASA Astrophysics Data System (ADS)

    Vogt, Peter

    2013-04-01

    Pattern, connectivity, and fragmentation can be considered as pillars for a quantitative analysis of digital landscape images. The free software toolbox GUIDOS (http://forest.jrc.ec.europa.eu/download/software/guidos) includes a variety of dedicated methodologies for the quantitative assessment of these features. Amongst others, Morphological Spatial Pattern Analysis (MSPA) is used for an intuitive description of image pattern structures and the automatic detection of connectivity pathways. GUIDOS includes tools for the detection and quantitative assessment of key nodes and links as well as to define connectedness in raster images and to setup appropriate input files for an enhanced network analysis using Conefor Sensinode. Finally, fragmentation is usually defined from a species point of view but a generic and quantifiable indicator is needed to measure fragmentation and its changes. Some preliminary results for different conceptual approaches will be shown for a sample dataset. Complemented by pre- and post-processing routines and a complete GIS environment the portable GUIDOS Toolbox may facilitate a holistic assessment in risk assessment studies, landscape planning, and conservation/restoration policies. Alternatively, individual analysis components may contribute to or enhance studies conducted with other software packages in landscape ecology.

  3. The effects of morphine on the temporal structure of Wistar rat behavioral response to pain in hot-plate.

    PubMed

    Casarrubea, Maurizio; Faulisi, Fabiana; Magnusson, Magnus S; Crescimanno, Giuseppe

    2016-08-01

    The largest amount of researches on the hot-plate test was carried out using quantitative assessments. However, the evaluation of the relationships among the different elements that compose the behavioral response to pain requires different approaches. Although previous studies have provided clear information on the behavioral structure of the response, no data are available on its temporal structure. The objective of this study was to investigate the temporal structure of the behavioral response to pain in Wistar rat tested in hot-plate and how this structure was influenced by morphine-induced analgesia. The behavior of four groups of subjects tested in hot-plate, one administered saline and three with different doses (3, 6, 12 mg/kg) of morphine IP, was analyzed by means of quantitative and t-pattern analyses. The latter is a multivariate technique able to detect the existence of statistically significant temporal relationships among the behavioral events in time. A clear-cut influence of morphine on quantitative parameters of the response to the noxious stimulation was observed. T-pattern analysis evidenced profound structural changes of behavior. Twenty-four different t-patterns were identified following saline, whereas a dose-dependent reduction was observed following morphine. Such a reduction was accompanied by a decrease of the total amount of t-patterns detected. Morphine, by reducing the effects of the noxious stimulation, orients animal behavior prevalently toward exploratory t-patterns. In addition, it is suggested that the temporal structure of the response is very quickly organized and adapted to environmental noxious cues.

  4. A Model Comparison for Characterizing Protein Motions from Structure

    NASA Astrophysics Data System (ADS)

    David, Charles; Jacobs, Donald

    2011-10-01

    A comparative study is made using three computational models that characterize native state dynamics starting from known protein structures taken from four distinct SCOP classifications. A geometrical simulation is performed, and the results are compared to the elastic network model and molecular dynamics. The essential dynamics is quantified by a direct analysis of a mode subspace constructed from ANM and a principal component analysis on both the FRODA and MD trajectories using root mean square inner product and principal angles. Relative subspace sizes and overlaps are visualized using the projection of displacement vectors on the model modes. Additionally, a mode subspace is constructed from PCA on an exemplar set of X-ray crystal structures in order to determine similarly with respect to the generated ensembles. Quantitative analysis reveals there is significant overlap across the three model subspaces and the model independent subspace. These results indicate that structure is the key determinant for native state dynamics.

  5. Detect and exploit hidden structure in fatty acid signature data

    USGS Publications Warehouse

    Budge, Suzanne; Bromaghin, Jeffrey F.; Thiemann, Gregory

    2017-01-01

    Estimates of predator diet composition are essential to our understanding of their ecology. Although several methods of estimating diet are practiced, methods based on biomarkers have become increasingly common. Quantitative fatty acid signature analysis (QFASA) is a popular method that continues to be refined and extended. Quantitative fatty acid signature analysis is based on differences in the signatures of prey types, often species, which are recognized and designated by investigators. Similarly, predator signatures may be structured by known factors such as sex or age class, and the season or region of sample collection. The recognized structure in signature data inherently influences QFASA results in important and typically beneficial ways. However, predator and prey signatures may contain additional, hidden structure that investigators either choose not to incorporate into an analysis or of which they are unaware, being caused by unknown ecological mechanisms. Hidden structure also influences QFASA results, most often negatively. We developed a new method to explore signature data for hidden structure, called divisive magnetic clustering (DIMAC). Our DIMAC approach is based on the same distance measure used in diet estimation, closely linking methods of data exploration and parameter estimation, and it does not require data transformation or distributional assumptions, as do many multivariate ordination methods in common use. We investigated the potential benefits of the DIMAC method to detect and subsequently exploit hidden structure in signature data using two prey signature libraries with quite different characteristics. We found that the existence of hidden structure in prey signatures can increase the confusion between prey types and thereby reduce the accuracy and precision of QFASA diet estimates. Conversely, the detection and exploitation of hidden structure represent a potential opportunity to improve predator diet estimates and may lead to new insights into the ecology of either predator or prey. The DIMAC algorithm is implemented in the R diet estimation package qfasar.

  6. 77 FR 68773 - FIFRA Scientific Advisory Panel; Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... for physical chemical properties that cannot be easily tested in in vitro systems or stable enough for.... Quantitative structural-activity relationship (QSAR) models and estrogen receptor (ER) expert systems development. High-throughput data generation and analysis (expertise focused on how this methodology can be...

  7. Quantitative analysis of NMR spectra with chemometrics

    NASA Astrophysics Data System (ADS)

    Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.

    2008-01-01

    The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.

  8. Tertiary structural propensities reveal fundamental sequence/structure relationships.

    PubMed

    Zheng, Fan; Zhang, Jian; Grigoryan, Gevorg

    2015-05-05

    Extracting useful generalizations from the continually growing Protein Data Bank (PDB) is of central importance. We hypothesize that the PDB contains valuable quantitative information on the level of local tertiary structural motifs (TERMs). We show that by breaking a protein structure into its constituent TERMs, and querying the PDB to characterize the natural ensemble matching each, we can estimate the compatibility of the structure with a given amino acid sequence through a metric we term "structure score." Considering submissions from recent Critical Assessment of Structure Prediction (CASP) experiments, we found a strong correlation (R = 0.69) between structure score and model accuracy, with poorly predicted regions readily identifiable. This performance exceeds that of leading atomistic statistical energy functions. Furthermore, TERM-based analysis of two prototypical multi-state proteins rapidly produced structural insights fully consistent with prior extensive experimental studies. We thus find that TERM-based analysis should have considerable utility for protein structural biology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Quantitative 3D investigation of Neuronal network in mouse spinal cord model

    NASA Astrophysics Data System (ADS)

    Bukreeva, I.; Campi, G.; Fratini, M.; Spanò, R.; Bucci, D.; Battaglia, G.; Giove, F.; Bravin, A.; Uccelli, A.; Venturi, C.; Mastrogiacomo, M.; Cedola, A.

    2017-01-01

    The investigation of the neuronal network in mouse spinal cord models represents the basis for the research on neurodegenerative diseases. In this framework, the quantitative analysis of the single elements in different districts is a crucial task. However, conventional 3D imaging techniques do not have enough spatial resolution and contrast to allow for a quantitative investigation of the neuronal network. Exploiting the high coherence and the high flux of synchrotron sources, X-ray Phase-Contrast multiscale-Tomography allows for the 3D investigation of the neuronal microanatomy without any aggressive sample preparation or sectioning. We investigated healthy-mouse neuronal architecture by imaging the 3D distribution of the neuronal-network with a spatial resolution of 640 nm. The high quality of the obtained images enables a quantitative study of the neuronal structure on a subject-by-subject basis. We developed and applied a spatial statistical analysis on the motor neurons to obtain quantitative information on their 3D arrangement in the healthy-mice spinal cord. Then, we compared the obtained results with a mouse model of multiple sclerosis. Our approach paves the way to the creation of a “database” for the characterization of the neuronal network main features for a comparative investigation of neurodegenerative diseases and therapies.

  10. An alpha-numeric code for representing N-linked glycan structures in secreted glycoproteins.

    PubMed

    Yusufi, Faraaz Noor Khan; Park, Wonjun; Lee, May May; Lee, Dong-Yup

    2009-01-01

    Advances in high-throughput techniques have led to the creation of increasing amounts of glycome data. The storage and analysis of this data would benefit greatly from a compact notation for describing glycan structures that can be easily stored and interpreted by computers. Towards this end, we propose a fixed-length alpha-numeric code for representing N-linked glycan structures commonly found in secreted glycoproteins from mammalian cell cultures. This code, GlycoDigit, employs a pre-assigned alpha-numeric index to represent the monosaccharides attached in different branches to the core glycan structure. The present branch-centric representation allows us to visualize the structure while the numerical nature of the code makes it machine readable. In addition, a difference operator can be defined to quantitatively differentiate between glycan structures for further analysis. The usefulness and applicability of GlycoDigit were demonstrated by constructing and visualizing an N-linked glycosylation network.

  11. Inferring Biological Structures from Super-Resolution Single Molecule Images Using Generative Models

    PubMed Central

    Maji, Suvrajit; Bruchez, Marcel P.

    2012-01-01

    Localization-based super resolution imaging is presently limited by sampling requirements for dynamic measurements of biological structures. Generating an image requires serial acquisition of individual molecular positions at sufficient density to define a biological structure, increasing the acquisition time. Efficient analysis of biological structures from sparse localization data could substantially improve the dynamic imaging capabilities of these methods. Using a feature extraction technique called the Hough Transform simple biological structures are identified from both simulated and real localization data. We demonstrate that these generative models can efficiently infer biological structures in the data from far fewer localizations than are required for complete spatial sampling. Analysis at partial data densities revealed efficient recovery of clathrin vesicle size distributions and microtubule orientation angles with as little as 10% of the localization data. This approach significantly increases the temporal resolution for dynamic imaging and provides quantitatively useful biological information. PMID:22629348

  12. Characterization of Low-Molecular-Weight Heparins by Strong Anion-Exchange Chromatography.

    PubMed

    Sadowski, Radosław; Gadzała-Kopciuch, Renata; Kowalkowski, Tomasz; Widomski, Paweł; Jujeczka, Ludwik; Buszewski, Bogusław

    2017-11-01

    Currently, detailed structural characterization of low-molecular-weight heparin (LMWH) products is an analytical subject of great interest. In this work, we carried out a comprehensive structural analysis of LMWHs and applied a modified pharmacopeial method, as well as methods developed by other researchers, to the analysis of novel biosimilar LMWH products; and, for the first time, compared the qualitative and quantitative composition of commercially available drugs (enoxaparin, nadroparin, and dalteparin). For this purpose, we used strong anion-exchange (SAX) chromatography with spectrophotometric detection because this method is more helpful, easier, and faster than other separation techniques for the detailed disaccharide analysis of new LMWH drugs. In addition, we subjected the obtained results to statistical analysis (factor analysis, t-test, and Newman-Keuls post hoc test).

  13. UPLC-MS/MS quantitative analysis and structural fragmentation study of five Parmotrema lichens from the Eastern Ghats.

    PubMed

    Kumar, K; Siva, Bandi; Sarma, V U M; Mohabe, Satish; Reddy, A Madhusudana; Boustie, Joel; Tiwari, Ashok K; Rao, N Rama; Babu, K Suresh

    2018-07-15

    Comparative phytochemical analysis of five lichen species [Parmotrema tinctorum (Delise ex Nyl.) Hale, P. andinum (Mull. Arg.) Hale, P. praesorediosum (Nyl.) Hale, P. grayanum (Hue) Hale, P. austrosinense (Zahlbr.) Hale] of Parmotrema genus were performed using two complementary UPLC-MS systems. The first system consists of high resolution UPLC-QToF-MS/MS spectrometer and the second system consisted of UPLC-MS/MS in Multiple Reaction Monitoring (MRM) mode for quantitative analysis of major constituents in the selected lichen species. The individual compounds (47 compounds) were identified using Q-ToF-MS/MS, via comparison of the exact molecular masses from their MS/MS spectra, the comparison of literature data and retention times to those of standard compounds which were isolated from crude extract of abundant lichen, P. tinctorum. The analysis also allowed us to identify unknown peaks/compounds, which were further characterized by their mass fragmentation studies. The quantitative MRM analysis was useful to have a better discrimination of species according to their chemical profile. Moreover, the determination of antioxidant activities (ABTS + inhibition) and Advance Glycation Endproducts (AGEs) inhibition carried out for the crude extracts revealed a potential antiglycaemic activity to be confirmed for P. austrosinense. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Analysis of human serum lipoprotein lipid composition using MALDI-TOF mass spectrometry.

    PubMed

    Hidaka, Hiroya; Hanyu, Noboru; Sugano, Mitsutoshi; Kawasaki, Kenji; Yamauchi, Kazuyoshi; Katsuyama, Tsutomu

    2007-01-01

    This study used matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify all lipid classes in human serum lipoproteins. After the major lipoproteins classes were isolated from serum by ultracentrifugation, the lipids were extracted and mixed with 2,5-dihydroxybenzoic acid (2,5-DHB) dissolved in Folch's solution (chloroform/methanol 2:1, v/v). MALDI-TOF MS analysis of the samples identified phospholipids (PLs), lysophospholipids (lysoPLs), sphingolipids (SLs), triglycerides (TGs), cholesteryl esters (CEs), and free cholesterol; it also showed the characteristics of individual fatty acid chains in serum lipids. MALDI-TOF MS allowed analysis of strongly hydrophobic and non-polar molecules such as CEs and TGs as well as hydrophilic molecules such as phospholipids. Direct analysis of fatty acids was not possible. The concentrations of lipids were not consistent with the ion peak intensities, since the extent of polarity affected the ionization characteristics of the molecules. However, lipid molecules with similar molecular structures but various fatty acid chains, such as phosphatidylcholine (PCs), were analyzed quantitatively by MALDI-TOF MS. Quantitative measurement of cholesterol was possible with the use of an internal standard. This study shows that MALDI-TOF MS can be used for direct investigation and quantitative analysis of the phospholipid composition of serum lipoproteins.

  15. Atomic Force Microscopy Analysis of Nanocrystalline Patterns Fabricated Using Micromolding in Capillaries

    ERIC Educational Resources Information Center

    Lyman, Benjamin M.; Farmer, Orrin J.; Ramsey, Ryan D.; Lindsey, Samuel T.; Stout, Stephanie; Robison, Adam; Moore, Holly J.; Sanders, Wesley C.

    2012-01-01

    A cost-effective, hands-on laboratory exercise is described for demonstrating nanoscale fabrication at non-research-based educational institutions. The laboratory exercise also contains a component involving qualitative and quantitative surface characterization of student-fabricated nanoscale structures at institutions with on-site access to an…

  16. Beyond Multiple Regression: Using Commonality Analysis to Better Understand R[superscript 2] Results

    ERIC Educational Resources Information Center

    Warne, Russell T.

    2011-01-01

    Multiple regression is one of the most common statistical methods used in quantitative educational research. Despite the versatility and easy interpretability of multiple regression, it has some shortcomings in the detection of suppressor variables and for somewhat arbitrarily assigning values to the structure coefficients of correlated…

  17. Validating a Lifestyle Physical Activity Measure for People with Serious Mental Illness

    ERIC Educational Resources Information Center

    Bezyak, Jill L.; Chan, Fong; Chiu, Chung-Yi; Kaya, Cahit; Huck, Garrett

    2014-01-01

    Purpose: To evaluate the measurement structure of the "Physical Activity Scale for Individuals With Physical Disabilities" (PASIPD) as an assessment tool of lifestyle physical activities for people with severe mental illness. Method: A quantitative descriptive research design using factor analysis was employed. A sample of 72 individuals…

  18. Imaging and quantitative methods for studying cytoskeletal rearrangements during root development and gravitropism.

    PubMed

    Jacques, Eveline; Wells, Darren M; Bennett, Malcolm J; Vissenberg, Kris

    2015-01-01

    High-resolution imaging of cytoskeletal structures paves the way for standardized methods to quantify cytoskeletal organization. Here we provide a detailed description of the analysis performed to determine the microtubule patterns in gravistimulated roots, using the recently developed software tool MicroFilament Analyzer.

  19. Strategies for estimating the marine geoid from altimeter data

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Kahn, W. D.; Garza-Robles, R.

    1976-01-01

    Altimeter data from a spacecraft borne altimeter was processed to estimate the fine structure of the marine geoid. Simulation studies show that, among several competing parameterizations, the mean free air gravity anomaly model exhibited promising geoid recovery characteristics. Using covariance analysis techniques, quantitative measures of the orthogonality properties are investigated.

  20. Analysis of defect structure in silicon. Effect of grain boundary density on carrier mobility in UCP material

    NASA Technical Reports Server (NTRS)

    Dunn, J.; Stringfellow, G. B.; Natesh, R.

    1982-01-01

    The relationships between hole mobility and grain boundary density were studied. Mobility was measured using the van der Pauw technique, and grain boundary density was measured using a quantitative microscopy technique. Mobility was found to decrease with increasing grain boundary density.

  1. Representations of Scientists in Canadian High School and College Textbooks

    ERIC Educational Resources Information Center

    van Eijck, Michiel; Roth, Wolff-Michael

    2008-01-01

    This study investigated the representations of a select group of scientists (n = 10) in a sample of Canadian high school and college textbooks. Drawing on semiotic and cultural-historical activity theoretical frameworks, we conducted two analyses. A coarse-grained, quantitative analysis of the prevalence and structure of these representations…

  2. Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR) Methodology

    PubMed Central

    Wen, Jia-Long; Sun, Shao-Long; Xue, Bai-Liang; Sun, Run-Cang

    2013-01-01

    The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA), nitrobenzene oxidation (NBO), and derivatization followed by reductive cleavage (DFRC). Recent advances in nuclear magnetic resonance (NMR) technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (in situ), as well as their applications are reviewed. PMID:28809313

  3. From kinetic-structure analysis to engineering crystalline fiber networks in soft materials.

    PubMed

    Wang, Rong-Yao; Wang, Peng; Li, Jing-Liang; Yuan, Bing; Liu, Yu; Li, Li; Liu, Xiang-Yang

    2013-03-07

    Understanding the role of kinetics in fiber network microstructure formation is of considerable importance in engineering gel materials to achieve their optimized performances/functionalities. In this work, we present a new approach for kinetic-structure analysis for fibrous gel materials. In this method, kinetic data is acquired using a rheology technique and is analyzed in terms of an extended Dickinson model in which the scaling behaviors of dynamic rheological properties in the gelation process are taken into account. It enables us to extract the structural parameter, i.e. the fractal dimension, of a fibrous gel from the dynamic rheological measurement of the gelation process, and to establish the kinetic-structure relationship suitable for both dilute and concentrated gelling systems. In comparison to the fractal analysis method reported in a previous study, our method is advantageous due to its general validity for a wide range of fractal structures of fibrous gels, from a highly compact network of the spherulitic domains to an open fibrous network structure. With such a kinetic-structure analysis, we can gain a quantitative understanding of the role of kinetic control in engineering the microstructure of the fiber network in gel materials.

  4. Plant pigments (antioxidants) of medicinal plants Malva silvestris L. and Malva moschata L. (Malvaceae).

    PubMed

    Redzić, Sulejman; Hodzić, Nizama; Tuka, Mijat

    2005-05-01

    Qualitative-quantitative structure of plant pigments in wild plants Malva silvestrs L. and Malva moschata L. (Malvaceae), which were collected in 20 locations in Sarajevo area and surroundings, was tested during spring and summer in 2003. Acetone extracts of both categories were made and rising paper-chromatography done for the purpose of qualitative analysis. Quantitative analysis was done by spectrophotometry. Chlorophyll a, chlorophyll b and xanthophylls presence was confirmed by separation of pigments from acetone extract of these plant species. Spectrophotometric analysis of acetone extracts showed these results (given in mg/L): chlorophyll a 2,386, chlorophyll b 0,332 and carrotenoides 1,037. Data given in mg/g dry substance are: chlorophyll a 1,193x10(-2), chlorophyll b 1,66x10(-3), and carrotenoides 5,185x10(-3). Pigments structure (in mg/L) in species Malva moschata is 1,6 for chlorophyll; 1,419 for chlorophyll b; and 0,364 for carrotenoides. Data given in mg/g are: chlorophyll a 8x10(-3), chlorophyll b 7,09x10(-3), and carrotenoides 1,82x10(-3). Considering that species Malva moschata L. grows on ecologically clear soils as opposed to well-known medicinal species Malva sylvestris L., and considering the production of phytomass, phytochemical structure and pharmacological influence it can be considered very medical and be given advantage over this wider spread category.

  5. Analysis of Mammalian Sphingolipids by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) and Tissue Imaging Mass Spectrometry (TIMS)

    PubMed Central

    Sullards, M. Cameron; Liu, Ying; Chen, Yanfeng; Merrill, Alfred H.

    2011-01-01

    Sphingolipids are a highly diverse category of molecules that serve not only as components of biological structures but also as regulators of numerous cell functions. Because so many of the structural features of sphingolipids give rise to their biological activity, there is a need for comprehensive or “sphingolipidomic” methods for identification and quantitation of as many individual subspecies as possible. This review defines sphingolipids as a class, briefly discusses classical methods for their analysis, and focuses primarily on liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Recently, a set of evolving and expanding methods have been developed and rigorously validated for the extraction, identification, separation, and quantitation of sphingolipids by LC-MS/MS. Quantitation of these biomolecules is made possible via the use of an internal standard cocktail. The compounds that can be readily analyzed are free long-chain (sphingoid) bases, sphingoid base 1-phosphates, and more complex species such as ceramides, ceramide 1-phosphates, sphingomyelins, mono- and di-hexosylceramides sulfatides, and novel compounds such as the 1-deoxy- and 1-(deoxymethyl)-sphingoid bases and their N-acyl-derivatives. These methods can be altered slightly to separate and quantitate isomeric species such as glucosyl/galactosylceramide. Because these techniques require the extraction of sphingolipids from their native environment, any information regarding their localization in histological slices is lost. Therefore, this review also describes methods for TIMS. This technique has been shown to be a powerful tool to determine the localization of individual molecular species of sphingolipids directly from tissue slices. PMID:21749933

  6. How structurally stable are global socioeconomic systems?

    PubMed Central

    Saavedra, Serguei; Rohr, Rudolf P.; Gilarranz, Luis J.; Bascompte, Jordi

    2014-01-01

    The stability analysis of socioeconomic systems has been centred on answering whether small perturbations when a system is in a given quantitative state will push the system permanently to a different quantitative state. However, typically the quantitative state of socioeconomic systems is subject to constant change. Therefore, a key stability question that has been under-investigated is how strongly the conditions of a system itself can change before the system moves to a qualitatively different behaviour, i.e. how structurally stable the systems is. Here, we introduce a framework to investigate the structural stability of socioeconomic systems formed by a network of interactions among agents competing for resources. We measure the structural stability of the system as the range of conditions in the distribution and availability of resources compatible with the qualitative behaviour in which all the constituent agents can be self-sustained across time. To illustrate our framework, we study an empirical representation of the global socioeconomic system formed by countries sharing and competing for multinational companies used as proxy for resources. We demonstrate that the structural stability of the system is inversely associated with the level of competition and the level of heterogeneity in the distribution of resources. Importantly, we show that the qualitative behaviour of the observed global socioeconomic system is highly sensitive to changes in the distribution of resources. We believe that this work provides a methodological basis to develop sustainable strategies for socioeconomic systems subject to constantly changing conditions. PMID:25165600

  7. Segmentation of the Knee for Analysis of Osteoarthritis

    NASA Astrophysics Data System (ADS)

    Zerfass, Peter; Museyko, Oleg; Bousson, Valérie; Laredo, Jean-Denis; Kalender, Willi A.; Engelke, Klaus

    Osteoarthritis changes the load distribution within joints and also changes bone density and structure. Within typical timelines of clinical studies these changes can be very small. Therefore precise definition of evaluation regions which are highly robust and show little to no interand intra-operator variance are essential for high quality quantitative analysis. To achieve this goal we have developed a system for the definition of such regions with minimal user input.

  8. Quantitative structure-property relationship analysis for the retention index of fragrance-like compounds on a polar stationary phase.

    PubMed

    Rojas, Cristian; Duchowicz, Pablo R; Tripaldi, Piercosimo; Pis Diez, Reinaldo

    2015-11-27

    A quantitative structure-property relationship (QSPR) was developed for modeling the retention index of 1184 flavor and fragrance compounds measured using a Carbowax 20M glass capillary gas chromatography column. The 4885 molecular descriptors were calculated using Dragon software, and then were simultaneously analyzed through multivariable linear regression analysis using the replacement method (RM) variable subset selection technique. We proceeded in three steps, the first one by considering all descriptor blocks, the second one by excluding conformational descriptor blocks, and the last one by analyzing only 3D-descriptor families. The models were validated through an external test set of compounds. Cross-validation methods such as leave-one-out and leave-many-out were applied, together with Y-randomization and applicability domain analysis. The developed model was used to estimate the I of a set of 22 molecules. The results clearly suggest that 3D-descriptors do not offer relevant information for modeling the retention index, while a topological index such as the Randić-like index from reciprocal squared distance matrix has a high relevance for this purpose. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. An analysis of disruptions in aerospace/defense organizations that affect the supply chain

    NASA Astrophysics Data System (ADS)

    Dickerson, Toscha L.

    The purpose of this quantitative study was to determine whether or not functions of procurement organizations structures' and aerospace suppliers were perceived as disruptions and to identify their effects on lead time and costs within a supply chain. An analysis of employees' perception of centralized and decentralized procurement functions, aerospace and defense suppliers, lead times of goods and services, price increases, and schedule delays was conducted. Prior studies are limited in regards to understanding how specific procurement functions affects an organization procurement structure. This non-experimental quantitative study allowed for a survey to be administered to aerospace and defense companies throughout the United States to obtain information from sourcing and procurement professionals with 5 or more years of experience. The current study utilized a 10 question survey based on the 5- point Likert -type scale to determine the findings. Through descriptive and inferential statistics, using regression analysis, standard deviation, and P-value; findings indicated that the majority of the participants surveyed perceived both centralized and decentralized procurement functions affected lead time and cost of goods and services resulted in a positive effect and were considered as supply chain disruptions.

  10. A Method for Quantifying, Visualising, and Analysing Gastropod Shell Form

    PubMed Central

    Liew, Thor-Seng; Schilthuizen, Menno

    2016-01-01

    Quantitative analysis of organismal form is an important component for almost every branch of biology. Although generally considered an easily-measurable structure, the quantification of gastropod shell form is still a challenge because many shells lack homologous structures and have a spiral form that is difficult to capture with linear measurements. In view of this, we adopt the idea of theoretical modelling of shell form, in which the shell form is the product of aperture ontogeny profiles in terms of aperture growth trajectory that is quantified as curvature and torsion, and of aperture form that is represented by size and shape. We develop a workflow for the analysis of shell forms based on the aperture ontogeny profile, starting from the procedure of data preparation (retopologising the shell model), via data acquisition (calculation of aperture growth trajectory, aperture form and ontogeny axis), and data presentation (qualitative comparison between shell forms) and ending with data analysis (quantitative comparison between shell forms). We evaluate our methods on representative shells of the genera Opisthostoma and Plectostoma, which exhibit great variability in shell form. The outcome suggests that our method is a robust, reproducible, and versatile approach for the analysis of shell form. Finally, we propose several potential applications of our methods in functional morphology, theoretical modelling, taxonomy, and evolutionary biology. PMID:27280463

  11. Morphometric Analysis of Chemoreception Organ in Male and Female Ticks (Acari: Ixodidae).

    PubMed

    Josek, Tanya; Allan, Brian F; Alleyne, Marianne

    2018-05-04

    The Haller's organ plays a crucial role in a tick's ability to detect hosts. Even though this sensory organ is vital to tick survival, the morphology of this organ is not well understood. The objective of this study was to characterize variation in the morphological components of the Haller's organ of three medically important tick species using quantitative methods. The Haller's organs of Ixodes scapularis Say (Ixodida: Ixodidae) (black-legged tick), Amblyomma americanum (L.) (Ixodida: Ixodidae) (lone star tick), and Dermacentor variabilis (Say) (Ixodida: Ixodidae) (American dog tick) were morphologically analyzed using environmental scanning electron microscopy and geometric morphometrics, and the results were statistically interpreted using canonical variate analysis. Our data reveal significant, quantitative differences in the morphology of the Haller's organ among all three tick species and that in D. variabilis the sensory structure is sexually dimorphic. Studies like this can serve as a quantitative basis for further studies on sensor physiology, behavior, and tick species life history, potentially leading to novel methods for the prevention of tick-borne disease.

  12. MIiSR: Molecular Interactions in Super-Resolution Imaging Enables the Analysis of Protein Interactions, Dynamics and Formation of Multi-protein Structures.

    PubMed

    Caetano, Fabiana A; Dirk, Brennan S; Tam, Joshua H K; Cavanagh, P Craig; Goiko, Maria; Ferguson, Stephen S G; Pasternak, Stephen H; Dikeakos, Jimmy D; de Bruyn, John R; Heit, Bryan

    2015-12-01

    Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.

  13. Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli

    PubMed Central

    Tyurin, Vladimir A.; Tyurina, Yulia Y.; Jung, Mi-Yeon; Tungekar, Muhammad A.; Wasserloos, Karla J.; Bayir, Hülya; Greenberger, Joel S.; Kochanek, Patrick M.; Shvedova, Anna A.; Pitt, Bruce; Kagan, Valerian E.

    2009-01-01

    Oxidation of two anionic phospholipids - cardiolipin (CL) in mitochondria and phosphatidylserine (PS) in extramitochondrial compartments - are important signaling events, particularly during the execution of programmed cell death and clearance of apoptotic cells. Quantitative analysis of CL and PS oxidation products is central to understanding their molecular mechanisms of action. We combined the identification of diverse phospholipid molecular species by ESI-MS with quantitative assessments of lipid hydroperoxides using a fluorescence HPLC-based protocol. We characterized CL and PS oxidation products formed in a model system (cyt c/H2O2), in apoptotic cells (neurons, pulmonary artery endothelial cells) and mouse lung under inflammatory/oxidative stress conditions (hyperoxia, inhalation of single walled carbon nanotubes). Our results demonstrate the usefulness of this approach for quantitative assessments, identification of individual molecular species and structural characterization of anionic phospholipids that are involved in oxidative modification in cells and tissues. PMID:19328050

  14. Qualitative and quantitative analysis of branches in dextran using high-performance anion exchange chromatography coupled to quadrupole time-of-flight mass spectrometry.

    PubMed

    Yi, Lin; Ouyang, Yilan; Sun, Xue; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2015-12-04

    Dextran, a family of natural polysaccharides, consists of an α (1→6) linked-glucose main (backbone) chain having a number of branches. The determination of the types and the quantities of branches in dextran is important in understanding its various biological roles. In this study, a hyphenated method using high-performance anion exchange chromatography (HPAEC) in parallel with pulsed amperometric detection (PAD) and mass spectrometry (MS) was applied to qualitative and quantitative analysis of dextran branches. A rotary cation-exchange cartridge array desalter was used for removal of salt from the HPAEC eluent making it MS compatible. MS and MS/MS were used to provide structural information on the enzymatically prepared dextran oligosaccharides. PAD provides quantitative data on the ratio of enzyme-resistant, branched dextran oligosaccharides. Both the types and degree of branching found in a variety of dextrans could be simultaneously determined online using this method. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Mechanical Model Analysis for Quantitative Evaluation of Liver Fibrosis Based on Ultrasound Tissue Elasticity Imaging

    NASA Astrophysics Data System (ADS)

    Shiina, Tsuyoshi; Maki, Tomonori; Yamakawa, Makoto; Mitake, Tsuyoshi; Kudo, Masatoshi; Fujimoto, Kenji

    2012-07-01

    Precise evaluation of the stage of chronic hepatitis C with respect to fibrosis has become an important issue to prevent the occurrence of cirrhosis and to initiate appropriate therapeutic intervention such as viral eradication using interferon. Ultrasound tissue elasticity imaging, i.e., elastography can visualize tissue hardness/softness, and its clinical usefulness has been studied to detect and evaluate tumors. We have recently reported that the texture of elasticity image changes as fibrosis progresses. To evaluate fibrosis progression quantitatively on the basis of ultrasound tissue elasticity imaging, we introduced a mechanical model of fibrosis progression and simulated the process by which hepatic fibrosis affects elasticity images and compared the results with those clinical data analysis. As a result, it was confirmed that even in diffuse diseases like chronic hepatitis, the patterns of elasticity images are related to fibrous structural changes caused by hepatic disease and can be used to derive features for quantitative evaluation of fibrosis stage.

  16. X-ray vision of fuel sprays.

    PubMed

    Wang, Jin

    2005-03-01

    With brilliant synchrotron X-ray sources, microsecond time-resolved synchrotron X-ray radiography and tomography have been used to elucidate the detailed three-dimensional structure and dynamics of high-pressure high-speed fuel sprays in the near-nozzle region. The measurement allows quantitative determination of the fuel distribution in the optically impenetrable region owing to the multiple scattering of visible light by small atomized fuel droplets surrounding the jet. X-radiographs of the jet-induced shock waves prove that the fuel jets become supersonic under appropriate injection conditions and that the quantitative analysis of the thermodynamic properties of the shock waves can also be derived from the most direct measurement. In other situations where extremely axial-asymmetric sprays are encountered, mass deconvolution and cross-sectional fuel distribution models can be computed based on the monochromatic and time-resolved X-radiographic images collected from various rotational orientations of the sprays. Such quantitative analysis reveals the never-before-reported characteristics and most detailed near-nozzle mass distribution of highly transient fuel sprays.

  17. A preliminary study of DTI Fingerprinting on stroke analysis.

    PubMed

    Ma, Heather T; Ye, Chenfei; Wu, Jun; Yang, Pengfei; Chen, Xuhui; Yang, Zhengyi; Ma, Jingbo

    2014-01-01

    DTI (Diffusion Tensor Imaging) is a well-known MRI (Magnetic Resonance Imaging) technique which provides useful structural information about human brain. However, the quantitative measurement to physiological variation of subtypes of ischemic stroke is not available. An automatically quantitative method for DTI analysis will enhance the DTI application in clinics. In this study, we proposed a DTI Fingerprinting technology to quantitatively analyze white matter tissue, which was applied in stroke classification. The TBSS (Tract Based Spatial Statistics) method was employed to generate mask automatically. To evaluate the clustering performance of the automatic method, lesion ROI (Region of Interest) is manually drawn on the DWI images as a reference. The results from the DTI Fingerprinting were compared with those obtained from the reference ROIs. It indicates that the DTI Fingerprinting could identify different states of ischemic stroke and has promising potential to provide a more comprehensive measure of the DTI data. Further development should be carried out to improve DTI Fingerprinting technology in clinics.

  18. In vitro and in vivo comparison of wrist MR imaging at 3.0 and 7.0 tesla using a gradient echo sequence and identical eight-channel coil array designs.

    PubMed

    Nordmeyer-Massner, Jurek A; Wyss, Michael; Andreisek, Gustav; Pruessmann, Klaas P; Hodler, Juerg

    2011-03-01

    To evaluate in vivo MR imaging of the wrist at 3.0 Tesla (T) and 7.0T quantitatively and qualitatively. To enable unbiased signal-to-noise ratio (SNR) comparisons, geometrically identical eight-channel receiver arrays were used at both field strengths. First, in vitro images of a phantom bottle were acquired at 3.0T and 7.0T to obtain an estimate of the maximum SNR gain that can be expected. MR images of the dominant wrist of 10 healthy volunteers were acquired at both field strengths. All measurements were done using the same sequence parameters. Quantitative SNR maps were calculated on a pixel-by-pixel basis and analyzed in several regions-of-interest. Furthermore, the images were qualitatively evaluated by two independent radiologists. The quantitative analysis showed SNR increases of up to 100% at 7.0T compared with 3.0T, with considerable variation between different anatomical structures. The qualitative analysis revealed no significant difference in the visualization of anatomical structures comparing 3.0T and 7.0T MR images (P>0.05). The presented results establish the SNR benefits of the transition from 3.0T to 7.0T for wrist imaging without bias by different array designs and based on exact, algebraic SNR quantification. The observed SNR increase nearly reaches expected values but varies greatly between different tissues. It does not necessarily improve the visibility of anatomic structures but adds valuable latitude for sequence optimization. Copyright © 2011 Wiley-Liss, Inc.

  19. Hologram quantitative structure-activity relationship and comparative molecular field analysis studies within a series of tricyclic phthalimide HIV-1 integrase inhibitors.

    PubMed

    Magalhães, Uiaran de Oliveira; Souza, Alessandra Mendonça Teles de; Albuquerque, Magaly Girão; Brito, Monique Araújo de; Bello, Murilo Lamim; Cabral, Lucio Mendes; Rodrigues, Carlos Rangel

    2013-01-01

    Acquired immunodeficiency syndrome is a public health problem worldwide caused by the Human immunodeficiency virus (HIV). Treatment with antiretroviral drugs is the best option for viral suppression, reducing morbidity and mortality. However, viral resistance in HIV-1 therapy has been reported. HIV-1 integrase (IN) is an essential enzyme for effective viral replication and an attractive target for the development of new inhibitors. In the study reported here, two- and three-dimensional quantitative structure-activity relationship (2D/3D-QSAR) studies, applying hologram quantitative structure-activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) methods, respectively, were performed on a series of tricyclic phthalimide HIV-1 IN inhibitors. The best HQSAR model (q (2) = 0.802, r (2) = 0.972) was obtained using atoms, bonds, and connectivity as the fragment distinction, a fragment size of 2-5 atoms, hologram length of 61 bins, and six components. The best CoMFA model (q (2) = 0.748, r (2) = 0.974) was obtained with alignment of all atoms of the tricyclic phthalimide moiety (alignment II). The HQSAR contribution map identified that the carbonyl-hydroxy-aromatic nitrogen motif made a positive contribution to the activity of the compounds. Furthermore, CoMFA contour maps suggested that bulky groups in meta and para positions in the phenyl ring would increase the biological activity of this class. The conclusions of this work may lead to a better understanding of HIV-1 IN inhibition and contribute to the design of new and more potent derivatives.

  20. Quantitative analysis of ground penetrating radar data in the Mu Us Sandland

    NASA Astrophysics Data System (ADS)

    Fu, Tianyang; Tan, Lihua; Wu, Yongqiu; Wen, Yanglei; Li, Dawei; Duan, Jinlong

    2018-06-01

    Ground penetrating radar (GPR), which can reveal the sedimentary structure and development process of dunes, is widely used to evaluate aeolian landforms. The interpretations for GPR profiles are mostly based on qualitative descriptions of geometric features of the radar reflections. This research quantitatively analyzed the waveform parameter characteristics of different radar units by extracting the amplitude and time interval parameters of GPR data in the Mu Us Sandland in China, and then identified and interpreted different sedimentary structures. The results showed that different types of radar units had specific waveform parameter characteristics. The main waveform parameter characteristics of sand dune radar facies and sandstone radar facies included low amplitudes and wide ranges of time intervals, ranging from 0 to 0.25 and 4 to 33 ns respectively, and the mean amplitudes changed gradually with time intervals. The amplitude distribution curves of various sand dune radar facies were similar as unimodal distributions. The radar surfaces showed high amplitudes with time intervals concentrated in high-value areas, ranging from 0.08 to 0.61 and 9 to 34 ns respectively, and the mean amplitudes changed drastically with time intervals. The amplitude and time interval values of lacustrine radar facies were between that of sand dune radar facies and radar surfaces, ranging from 0.08 to 0.29 and 11 to 30 ns respectively, and the mean amplitude and time interval curve was approximately trapezoidal. The quantitative extraction and analysis of GPR reflections could help distinguish various radar units and provide evidence for identifying sedimentary structure in aeolian landforms.

  1. Stripline fast faraday cup for measuring GHz structure of ion beams

    DOEpatents

    Bogaty, John M.

    1992-01-01

    The Stripline Fast Faraday Cup is a device which is used to quantitatively and qualitatively measure gigahertz time structure characteristics of ion beams with energies up to at least 30 Mev per nucleon. A stripline geometry is employed in conjunction with an electrostatic screen and a Faraday cup to provide for analysis of the structural characteristics of an ion beam. The stripline geometry allows for a large reduction in the size of the instrument while the electrostatic screen permits measurements of the properties associated with low speed ion beams.

  2. Alternative difference analysis scheme combining R -space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions.R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure changemore » in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3spin crossover complex and yielded reliable distance change and excitation population.« less

  3. Alternative difference analysis scheme combining R-space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy.

    PubMed

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    2017-07-01

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.

  4. Application of phyto-indication and radiocesium indicative methods for microrelief mapping

    NASA Astrophysics Data System (ADS)

    Panidi, E.; Trofimetz, L.; Sokolova, J.

    2016-04-01

    Remote sensing technologies are widely used for production of Digital Elevation Models (DEMs), and geomorphometry techniques are valuable tools for DEM analysis. One of the broadly used applications of these technologies and techniques is relief mapping. In the simplest case, we can identify relief structures using DEM analysis, and produce a map or map series to show the relief condition. However, traditional techniques might fail when used for mapping microrelief structures (structures below ten meters in size). In this case high microrelief dynamics lead to technological and conceptual difficulties. Moreover, erosion of microrelief structures cannot be detected at the initial evolution stage using DEM modelling and analysis only. In our study, we investigate the possibilities and specific techniques for allocation of erosion microrelief structures, and mapping techniques for the microrelief derivatives (e.g. quantitative parameters of microrelief). Our toolset includes the analysis of spatial redistribution of the soil pollutants and phyto-indication analysis, which complement the common DEM modelling and geomorphometric analysis. We use field surveys produced at the test area, which is arable territory with high erosion risks. Our main conclusion at the current stage is that the indicative methods (i.e. radiocesium and phyto-indication methods) are effective for allocation of the erosion microrelief structures. Also, these methods need to be formalized for convenient use.

  5. Quantifying Golgi structure using EM: combining volume-SEM and stereology for higher throughput.

    PubMed

    Ferguson, Sophie; Steyer, Anna M; Mayhew, Terry M; Schwab, Yannick; Lucocq, John Milton

    2017-06-01

    Investigating organelles such as the Golgi complex depends increasingly on high-throughput quantitative morphological analyses from multiple experimental or genetic conditions. Light microscopy (LM) has been an effective tool for screening but fails to reveal fine details of Golgi structures such as vesicles, tubules and cisternae. Electron microscopy (EM) has sufficient resolution but traditional transmission EM (TEM) methods are slow and inefficient. Newer volume scanning EM (volume-SEM) methods now have the potential to speed up 3D analysis by automated sectioning and imaging. However, they produce large arrays of sections and/or images, which require labour-intensive 3D reconstruction for quantitation on limited cell numbers. Here, we show that the information storage, digital waste and workload involved in using volume-SEM can be reduced substantially using sampling-based stereology. Using the Golgi as an example, we describe how Golgi populations can be sensed quantitatively using single random slices and how accurate quantitative structural data on Golgi organelles of individual cells can be obtained using only 5-10 sections/images taken from a volume-SEM series (thereby sensing population parameters and cell-cell variability). The approach will be useful in techniques such as correlative LM and EM (CLEM) where small samples of cells are treated and where there may be variable responses. For Golgi study, we outline a series of stereological estimators that are suited to these analyses and suggest workflows, which have the potential to enhance the speed and relevance of data acquisition in volume-SEM.

  6. An analysis of fracture trace patterns in areas of flat-lying sedimentary rocks for the detection of buried geologic structure. [Kansas and Texas

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.

    1974-01-01

    Two study areas in a cratonic platform underlain by flat-lying sedimentary rocks were analyzed to determine if a quantitative relationship exists between fracture trace patterns and their frequency distributions and subsurface structural closures which might contain petroleum. Fracture trace lengths and frequency (number of fracture traces per unit area) were analyzed by trend surface analysis and length frequency distributions also were compared to a standard Gaussian distribution. Composite rose diagrams of fracture traces were analyzed using a multivariate analysis method which grouped or clustered the rose diagrams and their respective areas on the basis of the behavior of the rays of the rose diagram. Analysis indicates that the lengths of fracture traces are log-normally distributed according to the mapping technique used. Fracture trace frequency appeared higher on the flanks of active structures and lower around passive reef structures. Fracture trace log-mean lengths were shorter over several types of structures, perhaps due to increased fracturing and subsequent erosion. Analysis of rose diagrams using a multivariate technique indicated lithology as the primary control for the lower grouping levels. Groupings at higher levels indicated that areas overlying active structures may be isolated from their neighbors by this technique while passive structures showed no differences which could be isolated.

  7. Quantitative Methods in Psychology: Inevitable and Useless

    PubMed Central

    Toomela, Aaro

    2010-01-01

    Science begins with the question, what do I want to know? Science becomes science, however, only when this question is justified and the appropriate methodology is chosen for answering the research question. Research question should precede the other questions; methods should be chosen according to the research question and not vice versa. Modern quantitative psychology has accepted method as primary; research questions are adjusted to the methods. For understanding thinking in modern quantitative psychology, two epistemologies should be distinguished: structural-systemic that is based on Aristotelian thinking, and associative-quantitative that is based on Cartesian–Humean thinking. The first aims at understanding the structure that underlies the studied processes; the second looks for identification of cause–effect relationships between the events with no possible access to the understanding of the structures that underlie the processes. Quantitative methodology in particular as well as mathematical psychology in general, is useless for answering questions about structures and processes that underlie observed behaviors. Nevertheless, quantitative science is almost inevitable in a situation where the systemic-structural basis of behavior is not well understood; all sorts of applied decisions can be made on the basis of quantitative studies. In order to proceed, psychology should study structures; methodologically, constructive experiments should be added to observations and analytic experiments. PMID:21833199

  8. Quantitative methods in psychology: inevitable and useless.

    PubMed

    Toomela, Aaro

    2010-01-01

    Science begins with the question, what do I want to know? Science becomes science, however, only when this question is justified and the appropriate methodology is chosen for answering the research question. Research question should precede the other questions; methods should be chosen according to the research question and not vice versa. Modern quantitative psychology has accepted method as primary; research questions are adjusted to the methods. For understanding thinking in modern quantitative psychology, two epistemologies should be distinguished: structural-systemic that is based on Aristotelian thinking, and associative-quantitative that is based on Cartesian-Humean thinking. The first aims at understanding the structure that underlies the studied processes; the second looks for identification of cause-effect relationships between the events with no possible access to the understanding of the structures that underlie the processes. Quantitative methodology in particular as well as mathematical psychology in general, is useless for answering questions about structures and processes that underlie observed behaviors. Nevertheless, quantitative science is almost inevitable in a situation where the systemic-structural basis of behavior is not well understood; all sorts of applied decisions can be made on the basis of quantitative studies. In order to proceed, psychology should study structures; methodologically, constructive experiments should be added to observations and analytic experiments.

  9. Influence of sample preparation and reliability of automated numerical refocusing in stain-free analysis of dissected tissues with quantitative phase digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Lenz, Philipp; Bettenworth, Dominik; Krausewitz, Philipp; Domagk, Dirk; Ketelhut, Steffi

    2015-05-01

    Digital holographic microscopy (DHM) has been demonstrated to be a versatile tool for high resolution non-destructive quantitative phase imaging of surfaces and multi-modal minimally-invasive monitoring of living cell cultures in-vitro. DHM provides quantitative monitoring of physiological processes through functional imaging and structural analysis which, for example, gives new insight into signalling of cellular water permeability and cell morphology changes due to toxins and infections. Also the analysis of dissected tissues quantitative DHM phase contrast prospects application fields by stain-free imaging and the quantification of tissue density changes. We show that DHM allows imaging of different tissue layers with high contrast in unstained tissue sections. As the investigation of fixed samples represents a very important application field in pathology, we also analyzed the influence of the sample preparation. The retrieved data demonstrate that the quality of quantitative DHM phase images of dissected tissues depends strongly on the fixing method and common staining agents. As in DHM the reconstruction is performed numerically, multi-focus imaging is achieved from a single digital hologram. Thus, we evaluated the automated refocussing feature of DHM for application on different types of dissected tissues and revealed that on moderately stained samples highly reproducible holographic autofocussing can be achieved. Finally, it is demonstrated that alterations of the spatial refractive index distribution in murine and human tissue samples represent a reliable absolute parameter that is related of different degrees of inflammation in experimental colitis and Crohn's disease. This paves the way towards the usage of DHM in digital pathology for automated histological examinations and further studies to elucidate the translational potential of quantitative phase microscopy for the clinical management of patients, e.g., with inflammatory bowel disease.

  10. Extracting Metrics for Three-dimensional Root Systems: Volume and Surface Analysis from In-soil X-ray Computed Tomography Data.

    PubMed

    Suresh, Niraj; Stephens, Sean A; Adams, Lexor; Beck, Anthon N; McKinney, Adriana L; Varga, Tamas

    2016-04-26

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as processes with important implications to climate change and crop management. Quantitative size information on roots in their native environment is invaluable for studying root growth and environmental processes involving plants. X-ray computed tomography (XCT) has been demonstrated to be an effective tool for in situ root scanning and analysis. We aimed to develop a costless and efficient tool that approximates the surface and volume of the root regardless of its shape from three-dimensional (3D) tomography data. The root structure of a Prairie dropseed (Sporobolus heterolepis) specimen was imaged using XCT. The root was reconstructed, and the primary root structure was extracted from the data using a combination of licensed and open-source software. An isosurface polygonal mesh was then created for ease of analysis. We have developed the standalone application imeshJ, generated in MATLAB(1), to calculate root volume and surface area from the mesh. The outputs of imeshJ are surface area (in mm(2)) and the volume (in mm(3)). The process, utilizing a unique combination of tools from imaging to quantitative root analysis, is described. A combination of XCT and open-source software proved to be a powerful combination to noninvasively image plant root samples, segment root data, and extract quantitative information from the 3D data. This methodology of processing 3D data should be applicable to other material/sample systems where there is connectivity between components of similar X-ray attenuation and difficulties arise with segmentation.

  11. Meta-analysis of the technical performance of an imaging procedure: guidelines and statistical methodology.

    PubMed

    Huang, Erich P; Wang, Xiao-Feng; Choudhury, Kingshuk Roy; McShane, Lisa M; Gönen, Mithat; Ye, Jingjing; Buckler, Andrew J; Kinahan, Paul E; Reeves, Anthony P; Jackson, Edward F; Guimaraes, Alexander R; Zahlmann, Gudrun

    2015-02-01

    Medical imaging serves many roles in patient care and the drug approval process, including assessing treatment response and guiding treatment decisions. These roles often involve a quantitative imaging biomarker, an objectively measured characteristic of the underlying anatomic structure or biochemical process derived from medical images. Before a quantitative imaging biomarker is accepted for use in such roles, the imaging procedure to acquire it must undergo evaluation of its technical performance, which entails assessment of performance metrics such as repeatability and reproducibility of the quantitative imaging biomarker. Ideally, this evaluation will involve quantitative summaries of results from multiple studies to overcome limitations due to the typically small sample sizes of technical performance studies and/or to include a broader range of clinical settings and patient populations. This paper is a review of meta-analysis procedures for such an evaluation, including identification of suitable studies, statistical methodology to evaluate and summarize the performance metrics, and complete and transparent reporting of the results. This review addresses challenges typical of meta-analyses of technical performance, particularly small study sizes, which often causes violations of assumptions underlying standard meta-analysis techniques. Alternative approaches to address these difficulties are also presented; simulation studies indicate that they outperform standard techniques when some studies are small. The meta-analysis procedures presented are also applied to actual [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) test-retest repeatability data for illustrative purposes. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Meta-analysis of the technical performance of an imaging procedure: Guidelines and statistical methodology

    PubMed Central

    Huang, Erich P; Wang, Xiao-Feng; Choudhury, Kingshuk Roy; McShane, Lisa M; Gönen, Mithat; Ye, Jingjing; Buckler, Andrew J; Kinahan, Paul E; Reeves, Anthony P; Jackson, Edward F; Guimaraes, Alexander R; Zahlmann, Gudrun

    2017-01-01

    Medical imaging serves many roles in patient care and the drug approval process, including assessing treatment response and guiding treatment decisions. These roles often involve a quantitative imaging biomarker, an objectively measured characteristic of the underlying anatomic structure or biochemical process derived from medical images. Before a quantitative imaging biomarker is accepted for use in such roles, the imaging procedure to acquire it must undergo evaluation of its technical performance, which entails assessment of performance metrics such as repeatability and reproducibility of the quantitative imaging biomarker. Ideally, this evaluation will involve quantitative summaries of results from multiple studies to overcome limitations due to the typically small sample sizes of technical performance studies and/or to include a broader range of clinical settings and patient populations. This paper is a review of meta-analysis procedures for such an evaluation, including identification of suitable studies, statistical methodology to evaluate and summarize the performance metrics, and complete and transparent reporting of the results. This review addresses challenges typical of meta-analyses of technical performance, particularly small study sizes, which often causes violations of assumptions underlying standard meta-analysis techniques. Alternative approaches to address these difficulties are also presented; simulation studies indicate that they outperform standard techniques when some studies are small. The meta-analysis procedures presented are also applied to actual [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) test–retest repeatability data for illustrative purposes. PMID:24872353

  13. Analytical electron microscopy in mineralogy; exsolved phases in pyroxenes

    USGS Publications Warehouse

    Nord, G.L.

    1982-01-01

    Analytical scanning transmission electron microscopy has been successfully used to characterize the structure and composition of lamellar exsolution products in pyroxenes. At operating voltages of 100 and 200 keV, microanalytical techniques of x-ray energy analysis, convergent-beam electron diffraction, and lattice imaging have been used to chemically and structurally characterize exsolution lamellae only a few unit cells wide. Quantitative X-ray energy analysis using ratios of peak intensities has been adopted for the U.S. Geological Survey AEM in order to study the compositions of exsolved phases and changes in compositional profiles as a function of time and temperature. The quantitative analysis procedure involves 1) removal of instrument-induced background, 2) reduction of contamination, and 3) measurement of correction factors obtained from a wide range of standard compositions. The peak-ratio technique requires that the specimen thickness at the point of analysis be thin enough to make absorption corrections unnecessary (i.e., to satisfy the "thin-foil criteria"). In pyroxenes, the calculated "maximum thicknesses" range from 130 to 1400 nm for the ratios Mg/Si, Fe/Si, and Ca/Si; these "maximum thicknesses" have been contoured in pyroxene composition space as a guide during analysis. Analytical spatial resolutions of 50-100 nm have been achieved in AEM at 200 keV from the composition-profile studies, and analytical reproducibility in AEM from homogeneous pyroxene standards is ?? 1.5 mol% endmember. ?? 1982.

  14. Structural Transformations in Metallic Materials During Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Zasimchuk, E.; Turchak, T.; Baskova, A.; Chausov, N.; Hutsaylyuk, V.

    2017-03-01

    In this paper, the structure formation during the plastic deformation of polycrystalline nickel and aluminum based alloy 2024-T3 is investigated. The possibility of the relaxation and synergetic structure formation is examined. It is shown the deformation softening to be due to the crystallization of the amorphous structure of hydrodynamics flow channels (synergetic structure) HC as micrograins and their subsequent growth. The possible mechanism of micrograins' growth is proposed. The deformation processes change the phase composition of the multiphase alloy 2024-T3. It is shown by the quantitative analysis of the structures which were deformed in different regimes of the alloy samples. A method for increasing of the fatigue life through a dynamic pre-deformation is suggested.

  15. Textural states of a hot-worked MA2-1 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Serebryany, V. N.; Kochubei, A. Ya.; Kurtasov, S. F.; Mel'Nikov, K. E.

    2007-02-01

    Quantitative texture analysis is used to study texture formation in an MA2-1 magnesium alloy subjected to axisymmetric upsetting at temperatures of 250-450°C and strain rates of 10-4-100 -1. The deformed structure is examined by optical microscopy, and the results obtained are used to plot the structural-state diagram of the alloy after 50% upsetting. The experimental textures are compared with the textures calculated in terms of a thermoactivation model.

  16. Development and application of an instrument for analysis of bone structure on radiographs.

    PubMed

    Xu, S; Liu, S; Bao, K

    1997-01-01

    An instrument used for quantitative assessment of trabecular structure of radius on radiograph including trabecular number and trabecular width was developed using a microdensitometer and a single-chip microcomputer. The device is characterized by its high sensitivity, good reproducibility, convenience and economy. The results obtained with the instrument were significantly correlated to actual bone mineral content. This device can be used for the diagnosis of osteoporosis, fluorosis, rickets and bone damages caused by cadmium.

  17. Spin structure of electron subbands in (110)-grown quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nestoklon, M. O.; Tarasenko, S. A.; Jancu, J.-M.

    We present the theory of fine structure of electron states in symmetric and asymmetric zinc-blende-type quantum wells with the (110) crystallographic orientation. By combining the symmetry analysis, sp{sup 3}d{sup 5}s* tight-binding method, and envelope-function approach we obtain quantitative description of in-plane wave vector, well width and applied electric field dependencies of the zero-magnetic-field spin splitting of electron subbands and extract spin-orbit-coupling parameters.

  18. Phospholipid-derived fatty acids and quinones as markers for bacterial biomass and community structure in marine sediments.

    PubMed

    Kunihiro, Tadao; Veuger, Bart; Vasquez-Cardenas, Diana; Pozzato, Lara; Le Guitton, Marie; Moriya, Kazuyoshi; Kuwae, Michinobu; Omori, Koji; Boschker, Henricus T S; van Oevelen, Dick

    2014-01-01

    Phospholipid-derived fatty acids (PLFA) and respiratory quinones (RQ) are microbial compounds that have been utilized as biomarkers to quantify bacterial biomass and to characterize microbial community structure in sediments, waters, and soils. While PLFAs have been widely used as quantitative bacterial biomarkers in marine sediments, applications of quinone analysis in marine sediments are very limited. In this study, we investigated the relation between both groups of bacterial biomarkers in a broad range of marine sediments from the intertidal zone to the deep sea. We found a good log-log correlation between concentrations of bacterial PLFA and RQ over several orders of magnitude. This relationship is probably due to metabolic variation in quinone concentrations in bacterial cells in different environments, whereas PLFA concentrations are relatively stable under different conditions. We also found a good agreement in the community structure classifications based on the bacterial PLFAs and RQs. These results strengthen the application of both compounds as quantitative bacterial biomarkers. Moreover, the bacterial PLFA- and RQ profiles revealed a comparable dissimilarity pattern of the sampled sediments, but with a higher level of dissimilarity for the RQs. This means that the quinone method has a higher resolution for resolving differences in bacterial community composition. Combining PLFA and quinone analysis as a complementary method is a good strategy to yield higher resolving power in bacterial community structure.

  19. Potential use of combining the diffusion equation with the free Shrödinger equation to improve the Optical Coherence Tomography image analysis

    NASA Astrophysics Data System (ADS)

    Cabrera Fernandez, Delia; Salinas, Harry M.; Somfai, Gabor; Puliafito, Carmen A.

    2006-03-01

    Optical coherence tomography (OCT) is a rapidly emerging medical imaging technology. In ophthalmology, OCT is a powerful tool because it enables visualization of the cross sectional structure of the retina and anterior eye with higher resolutions than any other non-invasive imaging modality. Furthermore, OCT image information can be quantitatively analyzed, enabling objective assessment of features such as macular edema and diabetes retinopathy. We present specific improvements in the quantitative analysis of the OCT system, by combining the diffusion equation with the free Shrödinger equation. In such formulation, important features of the image can be extracted by extending the analysis from the real axis to the complex domain. Experimental results indicate that our proposed novel approach has good performance in speckle noise removal, enhancement and segmentation of the various cellular layers of the retina using the OCT system.

  20. Morphological analysis of dendrites and spines by hybridization of ridge detection with twin support vector machine.

    PubMed

    Wang, Shuihua; Chen, Mengmeng; Li, Yang; Shao, Ying; Zhang, Yudong; Du, Sidan; Wu, Jane

    2016-01-01

    Dendritic spines are described as neuronal protrusions. The morphology of dendritic spines and dendrites has a strong relationship to its function, as well as playing an important role in understanding brain function. Quantitative analysis of dendrites and dendritic spines is essential to an understanding of the formation and function of the nervous system. However, highly efficient tools for the quantitative analysis of dendrites and dendritic spines are currently undeveloped. In this paper we propose a novel three-step cascaded algorithm-RTSVM- which is composed of ridge detection as the curvature structure identifier for backbone extraction, boundary location based on differences in density, the Hu moment as features and Twin Support Vector Machine (TSVM) classifiers for spine classification. Our data demonstrates that this newly developed algorithm has performed better than other available techniques used to detect accuracy and false alarm rates. This algorithm will be used effectively in neuroscience research.

  1. Advanced thermally stable jet fuels. Technical progress report, January 1995--March 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schobert, H.H.; Eser, S.; Song, C.

    Quantitative structure-property relationships have been applied to study the thermal stability of pure hydrocarbons typical of jet fuel components. A simple method of chemical structure description in terms of Benson groups was tested in searching for structure-property relationships for the hydrocarbons tested experimentally in this program. Molecular connectivity as a structure-based approach to chemical structure-property relationship analysis was also tested. Further development of both the experimental data base and computational methods will be necessary. Thermal decomposition studies, using glass tube reactors, were extended to two additional model compounds: n-decane and n-dodecane. Efforts on refining the deposit growth measurement and characterizationmore » of suspended matter in stressed fuels have lead to improvements in the analysis of stressed fuels. Catalytic hydrogenation and dehydrogenation studies utilizing a molybdenum sulfide catalyst are also described.« less

  2. 3D Actin Network Centerline Extraction with Multiple Active Contours

    PubMed Central

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2013-01-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels. PMID:24316442

  3. Associative image analysis: a method for automated quantification of 3D multi-parameter images of brain tissue

    PubMed Central

    Bjornsson, Christopher S; Lin, Gang; Al-Kofahi, Yousef; Narayanaswamy, Arunachalam; Smith, Karen L; Shain, William; Roysam, Badrinath

    2009-01-01

    Brain structural complexity has confounded prior efforts to extract quantitative image-based measurements. We present a systematic ‘divide and conquer’ methodology for analyzing three-dimensional (3D) multi-parameter images of brain tissue to delineate and classify key structures, and compute quantitative associations among them. To demonstrate the method, thick (~100 μm) slices of rat brain tissue were labeled using 3 – 5 fluorescent signals, and imaged using spectral confocal microscopy and unmixing algorithms. Automated 3D segmentation and tracing algorithms were used to delineate cell nuclei, vasculature, and cell processes. From these segmentations, a set of 23 intrinsic and 8 associative image-based measurements was computed for each cell. These features were used to classify astrocytes, microglia, neurons, and endothelial cells. Associations among cells and between cells and vasculature were computed and represented as graphical networks to enable further analysis. The automated results were validated using a graphical interface that permits investigator inspection and corrective editing of each cell in 3D. Nuclear counting accuracy was >89%, and cell classification accuracy ranged from 81–92% depending on cell type. We present a software system named FARSIGHT implementing our methodology. Its output is a detailed XML file containing measurements that may be used for diverse quantitative hypothesis-driven and exploratory studies of the central nervous system. PMID:18294697

  4. [Self-perception of health care team leaders in Andalusia. A quantitative and qualitative study].

    PubMed

    García-Romera, I; Danet, A; March-Cerdà, J C

    To determine the perception and self-assessment on leadership among health care team leaders in Andalusia. Design: Exploratory descriptive study using quantitative and qualitative methodology, developed between 2013 and 2015, using a questionnaire and semi-structured interviews. Andalusia. All health managers from the Primary Care Management Units and Health Management Areas of the Departments of Paediatrics, Emergency and Internal Medicine, for the quantitative study. A purposive sample of 24 health managers was used for the qualitative study. Descriptive statistical study and bivariate analysis of comparison of means. Content analysis of the semi-structured interviews: Codification, category tree, and triangulation of results. The best self-assessment dimension relates to support, and the worst to considering oneself as a 'good leader'. The definition of a 'good leader' includes: Honesty, trust, and attitudes of good communication, closeness, appreciation, and reinforcement of the health team members. Different leadership styles were perceived. Main difficulties for leadership are related to the economic crisis and the management of personal conflicts. Health managers describe an adaptive leadership style, based on personal and professional support, and using communication as the main cohesive element for the team project. More studies on leaders' perspectives are important, in order to better understand their experiences, needs and expectations. Copyright © 2016 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Molecule kernels: a descriptor- and alignment-free quantitative structure-activity relationship approach.

    PubMed

    Mohr, Johannes A; Jain, Brijnesh J; Obermayer, Klaus

    2008-09-01

    Quantitative structure activity relationship (QSAR) analysis is traditionally based on extracting a set of molecular descriptors and using them to build a predictive model. In this work, we propose a QSAR approach based directly on the similarity between the 3D structures of a set of molecules measured by a so-called molecule kernel, which is independent of the spatial prealignment of the compounds. Predictors can be build using the molecule kernel in conjunction with the potential support vector machine (P-SVM), a recently proposed machine learning method for dyadic data. The resulting models make direct use of the structural similarities between the compounds in the test set and a subset of the training set and do not require an explicit descriptor construction. We evaluated the predictive performance of the proposed method on one classification and four regression QSAR datasets and compared its results to the results reported in the literature for several state-of-the-art descriptor-based and 3D QSAR approaches. In this comparison, the proposed molecule kernel method performed better than the other QSAR methods.

  6. An evaluation of information-theoretic methods for detecting structural microbial biosignatures.

    PubMed

    Wagstaff, Kiri L; Corsetti, Frank A

    2010-05-01

    The first observations of extraterrestrial environments will most likely be in the form of digital images. Given an image of a rock that contains layered structures, is it possible to determine whether the layers were created by life (biogenic)? While conclusive judgments about biogenicity are unlikely to be made solely on the basis of image features, an initial assessment of the importance of a given sample can inform decisions about follow-up searches for other types of possible biosignatures (e.g., isotopic or chemical analysis). In this study, we evaluated several quantitative measures that capture the degree of complexity in visible structures, in terms of compressibility (to detect order) and the entropy (spread) of their intensity distributions. Computing complexity inside a sliding analysis window yields a map of each of these features that indicates how they vary spatially across the sample. We conducted experiments on both biogenic and abiogenic terrestrial stromatolites and on laminated structures found on Mars. The degree to which each feature separated biogenic from abiogenic samples (separability) was assessed quantitatively. None of the techniques provided a consistent, statistically significant distinction between all biogenic and abiogenic samples. However, the PNG compression ratio provided the strongest distinction (2.80 in standard deviation units) and could inform future techniques. Increasing the analysis window size or the magnification level, or both, improved the separability of the samples. Finally, data from all four Mars samples plotted well outside the biogenic field suggested by the PNG analyses, although we caution against a direct comparison of terrestrial stromatolites and martian non-stromatolites.

  7. Quantitative analysis of structural variations in corpus callosum in adults with multiple system atrophy (MSA)

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Debanjali; Sinha, Neelam; Saini, Jitender

    2017-03-01

    Multiple system atrophy (MSA) is a rare, non-curable, progressive neurodegenerative disorder that affects nervous system and movement, poses a considerable diagnostic challenge to medical researchers. Corpus callosum (CC) being the largest white matter structure in brain, enabling inter-hemispheric communication, quantification of callosal atrophy may provide vital information at the earliest possible stages. The main objective is to identify the differences in CC structure for this disease, based on quantitative analysis on the pattern of callosal atrophy. We report results of quantification of structural changes in regional anatomical thickness, area and length of CC between patient-groups with MSA with respect to healthy controls. The method utilizes isolating and parcellating the mid-sagittal CC into 100 segments along the length - measuring the width of each segment. It also measures areas within geometrically defined five callosal compartments of the well-known Witelson, and Hofer-Frahma schemes. For quantification, statistical tests are performed on these different callosal measurements. From the statistical analysis, it is concluded that compared to healthy controls, width is reduced drastically throughout CC for MSA group and as well as changes in area and length are also significant for MSA. The study is further extended to check if any significant difference in thickness is found between the two variations of MSA, Parkinsonian MSA and Cerebellar MSA group, using the same methodology. However area and length of this two sub-MSA group, no substantial difference is obtained. The study is performed on twenty subjects for each control and MSA group, who had T1-weighted MRI.

  8. Integrating multiparametric prostate MRI into clinical practice

    PubMed Central

    2011-01-01

    Abstract Multifunctional magnetic resonance imaging (MRI) techniques are increasingly being used to address bottlenecks in prostate cancer patient management. These techniques yield qualitative, semi-quantitative and fully quantitative biomarkers that reflect on the underlying biological status of a tumour. If these techniques are to have a role in patient management, then standard methods of data acquisition, analysis and reporting have to be developed. Effective communication by the use of scoring systems, structured reporting and a graphical interface that matches prostate anatomy are key elements. Practical guidelines for integrating multiparametric MRI into clinical practice are presented. PMID:22187067

  9. The Use of Mouse Models of Breast Cancer and Quantitative Image Analysis to Evaluate Hormone Receptor Antigenicity after Microwave-assisted Formalin Fixation

    PubMed Central

    Engelberg, Jesse A.; Giberson, Richard T.; Young, Lawrence J.T.; Hubbard, Neil E.

    2014-01-01

    Microwave methods of fixation can dramatically shorten fixation times while preserving tissue structure; however, it remains unclear if adequate tissue antigenicity is preserved. To assess and validate antigenicity, robust quantitative methods and animal disease models are needed. We used two mouse mammary models of human breast cancer to evaluate microwave-assisted and standard 24-hr formalin fixation. The mouse models expressed four antigens prognostic for breast cancer outcome: estrogen receptor, progesterone receptor, Ki67, and human epidermal growth factor receptor 2. Using pathologist evaluation and novel methods of quantitative image analysis, we measured and compared the quality of antigen preservation, percentage of positive cells, and line plots of cell intensity. Visual evaluations by pathologists established that the amounts and patterns of staining were similar in tissues fixed by the different methods. The results of the quantitative image analysis provided a fine-grained evaluation, demonstrating that tissue antigenicity is preserved in tissues fixed using microwave methods. Evaluation of the results demonstrated that a 1-hr, 150-W fixation is better than a 45-min, 150-W fixation followed by a 15-min, 650-W fixation. The results demonstrated that microwave-assisted formalin fixation can standardize fixation times to 1 hr and produce immunohistochemistry that is in every way commensurate with longer conventional fixation methods. PMID:24682322

  10. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures.

    PubMed

    Lim, Issel Anne L; Faria, Andreia V; Li, Xu; Hsu, Johnny T C; Airan, Raag D; Mori, Susumu; van Zijl, Peter C M

    2013-11-15

    The purpose of this paper is to extend the single-subject Eve atlas from Johns Hopkins University, which currently contains diffusion tensor and T1-weighted anatomical maps, by including contrast based on quantitative susceptibility mapping. The new atlas combines a "deep gray matter parcellation map" (DGMPM) derived from a single-subject quantitative susceptibility map with the previously established "white matter parcellation map" (WMPM) from the same subject's T1-weighted and diffusion tensor imaging data into an MNI coordinate map named the "Everything Parcellation Map in Eve Space," also known as the "EvePM." It allows automated segmentation of gray matter and white matter structures. Quantitative susceptibility maps from five healthy male volunteers (30 to 33 years of age) were coregistered to the Eve Atlas with AIR and Large Deformation Diffeomorphic Metric Mapping (LDDMM), and the transformation matrices were applied to the EvePM to produce automated parcellation in subject space. Parcellation accuracy was measured with a kappa analysis for the left and right structures of six deep gray matter regions. For multi-orientation QSM images, the Kappa statistic was 0.85 between automated and manual segmentation, with the inter-rater reproducibility Kappa being 0.89 for the human raters, suggesting "almost perfect" agreement between all segmentation methods. Segmentation seemed slightly more difficult for human raters on single-orientation QSM images, with the Kappa statistic being 0.88 between automated and manual segmentation, and 0.85 and 0.86 between human raters. Overall, this atlas provides a time-efficient tool for automated coregistration and segmentation of quantitative susceptibility data to analyze many regions of interest. These data were used to establish a baseline for normal magnetic susceptibility measurements for over 60 brain structures of 30- to 33-year-old males. Correlating the average susceptibility with age-based iron concentrations in gray matter structures measured by Hallgren and Sourander (1958) allowed interpolation of the average iron concentration of several deep gray matter regions delineated in the EvePM. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures

    PubMed Central

    Lim, Issel Anne L.; Faria, Andreia V.; Li, Xu; Hsu, Johnny T.C.; Airan, Raag D.; Mori, Susumu; van Zijl, Peter C. M.

    2013-01-01

    The purpose of this paper is to extend the single-subject Eve atlas from Johns Hopkins University, which currently contains diffusion tensor and T1-weighted anatomical maps, by including contrast based on quantitative susceptibility mapping. The new atlas combines a “deep gray matter parcellation map” (DGMPM) derived from a single-subject quantitative susceptibility map with the previously established “white matter parcellation map” (WMPM) from the same subject’s T1-weighted and diffusion tensor imaging data into an MNI coordinate map named the “Everything Parcellation Map in Eve Space,” also known as the “EvePM.” It allows automated segmentation of gray matter and white matter structures. Quantitative susceptibility maps from five healthy male volunteers (30 to 33 years of age) were coregistered to the Eve Atlas with AIR and Large Deformation Diffeomorphic Metric Mapping (LDDMM), and the transformation matrices were applied to the EvePM to produce automated parcellation in subject space. Parcellation accuracy was measured with a kappa analysis for the left and right structures of six deep gray matter regions. For multi-orientation QSM images, the Kappa statistic was 0.85 between automated and manual segmentation, with the inter-rater reproducibility Kappa being 0.89 for the human raters, suggesting “almost perfect” agreement between all segmentation methods. Segmentation seemed slightly more difficult for human raters on single-orientation QSM images, with the Kappa statistic being 0.88 between automated and manual segmentation, and 0.85 and 0.86 between human raters. Overall, this atlas provides a time-efficient tool for automated coregistration and segmentation of quantitative susceptibility data to analyze many regions of interest. These data were used to establish a baseline for normal magnetic susceptibility measurements for over 60 brain structures of 30- to 33-year-old males. Correlating the average susceptibility with age-based iron concentrations in gray matter structures measured by Hallgren and Sourander (1958) allowed interpolation of the average iron concentration of several deep gray matter regions delineated in the EvePM. PMID:23769915

  12. [Quantitative structure-gas chromatographic retention relationship of polycyclic aromatic sulfur heterocycles using molecular electronegativity-distance vector].

    PubMed

    Li, Zhenghua; Cheng, Fansheng; Xia, Zhining

    2011-01-01

    The chemical structures of 114 polycyclic aromatic sulfur heterocycles (PASHs) have been studied by molecular electronegativity-distance vector (MEDV). The linear relationships between gas chromatographic retention index and the MEDV have been established by a multiple linear regression (MLR) model. The results of variable selection by stepwise multiple regression (SMR) and the powerful predictive abilities of the optimization model appraised by leave-one-out cross-validation showed that the optimization model with the correlation coefficient (R) of 0.994 7 and the cross-validated correlation coefficient (Rcv) of 0.994 0 possessed the best statistical quality. Furthermore, when the 114 PASHs compounds were divided into calibration and test sets in the ratio of 2:1, the statistical analysis showed our models possesses almost equal statistical quality, the very similar regression coefficients and the good robustness. The quantitative structure-retention relationship (QSRR) model established may provide a convenient and powerful method for predicting the gas chromatographic retention of PASHs.

  13. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2008-01-01

    An experimental and numerical investigation into the static and dynamic responses of shape memory alloy hybrid composite (SMAHC) beams is performed to provide quantitative validation of a recently commercialized numerical analysis/design tool for SMAHC structures. The SMAHC beam specimens consist of a composite matrix with embedded pre-strained SMA actuators, which act against the mechanical boundaries of the structure when thermally activated to adaptively stiffen the structure. Numerical results are produced from the numerical model as implemented into the commercial finite element code ABAQUS. A rigorous experimental investigation is undertaken to acquire high fidelity measurements including infrared thermography and projection moire interferometry for full-field temperature and displacement measurements, respectively. High fidelity numerical results are also obtained from the numerical model and include measured parameters, such as geometric imperfection and thermal load. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  14. Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales

    PubMed Central

    Hogstrom, L. J.; Guo, S. M.; Murugadoss, K.; Bathe, M.

    2016-01-01

    Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758

  15. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions.

    PubMed

    Akkus, Zeynettin; Galimzianova, Alfiia; Hoogi, Assaf; Rubin, Daniel L; Erickson, Bradley J

    2017-08-01

    Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.

  16. Three-dimensional quantitative structure-activity relationship studies on c-Src inhibitors based on different docking methods.

    PubMed

    Bairy, Santhosh Kumar; Suneel Kumar, B V S; Bhalla, Joseph Uday Tej; Pramod, A B; Ravikumar, Muttineni

    2009-04-01

    c-Src kinase play an important role in cell growth and differentiation and its inhibitors can be useful for the treatment of various diseases, including cancer, osteoporosis, and metastatic bone disease. Three dimensional quantitative structure-activity relationship (3D-QSAR) studies were carried out on quinazolin derivatives inhibiting c-Src kinase. Molecular field analysis (MFA) models with four different alignment techniques, namely, GLIDE, GOLD, LIGANDFIT and Least squares based methods were developed. glide based MFA model showed better results (Leave one out cross validation correlation coefficient r(2)(cv) = 0.923 and non-cross validation correlation coefficient r(2)= 0.958) when compared with other models. These results help us to understand the nature of descriptors required for activity of these compounds and thereby provide guidelines to design novel and potent c-Src kinase inhibitors.

  17. Impact and Penetration Simulations for Composite Wing-like Structures

    NASA Technical Reports Server (NTRS)

    Knight, Norman F.

    1998-01-01

    The goal of this research project was to develop methodologies for the analysis of wing-like structures subjected to impact loadings. Low-speed impact causing either no damage or only minimal damage and high-speed impact causing severe laminate damage and possible penetration of the structure were to be considered during this research effort. To address this goal, an assessment of current analytical tools for impact analysis was performed. Assessment of the analytical tools for impact and penetration simulations with regard to accuracy, modeling, and damage modeling was considered as well as robustness, efficient, and usage in a wing design environment. Following a qualitative assessment, selected quantitative evaluations will be performed using the leading simulation tools. Based on this assessment, future research thrusts for impact and penetration simulation of composite wing-like structures were identified.

  18. Optical holographic structural analysis of Kevlar rocket motor cases

    NASA Astrophysics Data System (ADS)

    Harris, W. J.

    1981-05-01

    The methodology of applying optical holography to evaluation of subscale Kevlar 49 composite pressure vessels is explored. The results and advantages of the holographic technique are discussed. The cases utilized were of similar design, but each had specific design features, the effects of which are reviewed. Burst testing results are presented in conjunction with the holographic fringe patterns obtained during progressive pressurization. Examples of quantitative data extracted by analysis of fringe fields are included.

  19. FERRET data analysis code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmittroth, F.

    1979-09-01

    A documentation of the FERRET data analysis code is given. The code provides a way to combine related measurements and calculations in a consistent evaluation. Basically a very general least-squares code, it is oriented towards problems frequently encountered in nuclear data and reactor physics. A strong emphasis is on the proper treatment of uncertainties and correlations and in providing quantitative uncertainty estimates. Documentation includes a review of the method, structure of the code, input formats, and examples.

  20. Analytical approaches to determination of total choline in foods and dietary supplements.

    PubMed

    Phillips, Melissa M

    2012-06-01

    Choline is a quaternary amine that is synthesized in the body or consumed through the diet. Choline is critical for cell membrane structure and function and in synthesis of the neurotransmitter acetylcholine. Although the human body produces this micronutrient, dietary supplementation of choline is necessary for good health. The major challenge in the analysis of choline in foods and dietary supplements is in the extraction and/or hydrolysis approach. In many products, choline is present as choline esters, which can be quantitated individually or treated with acid, base, or enzymes in order to release choline ions for analysis. A critical review of approaches based on extraction and quantitation of each choline ester as well as hydrolysis-based methods for determination of total choline in foods and dietary supplements is presented.

  1. Standard Operating Procedure for Surface Paint Sample Collection using a Modified Wood Drill Bit with a Variable Speed Portable Electric Drill

    EPA Science Inventory

    This standard operating procedure (SOP) describes a new, rapid, and relatively inexpensive way to remove a precise area of paint from the substrate of building structures in preparation for quantitative analysis. This method has been applied successfully in the laboratory, as we...

  2. Quantitative deformation measurements and analysis of the ferrite-austenite banded structure in a 2205 duplex stainless steel at 250 °C

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Hua

    2018-03-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11472187 and 11602166), the National Basic Research Program of China (Grant No. 2014CB046805), and the Natural Science Foundation of Tianjin, China (Grant No. 16JCYBJC40500).

  3. Whole genome structural analysis of Caribbean hair sheep reveals quantitative link to West African ancestry

    USDA-ARS?s Scientific Manuscript database

    Hair sheep of Caribbean origin have become an important part of the U.S. sheep industry. Lack of wool eliminates a number of health concerns and drastically reduces the cost of production. More importantly, Caribbean hair sheep demonstrate robust performance even in the presence of drug resistant ga...

  4. Investigation of antigen-antibody interactions of sulfonamides with a monoclonal antibody in a fluorescence polarization immunoassay using 3D-QSAR models

    USDA-ARS?s Scientific Manuscript database

    A three-dimensional quantitative structure-activity relationship (3D-QSAR) model of sulfonamide analogs binding a monoclonal antibody (MAbSMR) produced against sulfamerazine was carried out by Distance Comparison (DISCOtech), comparative molecular field analysis (CoMFA), and comparative molecular si...

  5. Day/Night Cycle: Mental Models of Primary School Children

    ERIC Educational Resources Information Center

    Chiras, Andreas

    2008-01-01

    The study investigated the mental models of primary school children related to the day/night cycle. Semi-structure interviews were conducted with 40 fourth-grade and 40 sixth-grade children. Qualitative and quantitative analysis of the data indicated that the majority of the children were classified as having geocentric models. The results also…

  6. Integration of different data gap filling techniques to facilitate assessment of polychlorinated biphenyls: A proof of principle case study (ASCCT meeting)

    EPA Science Inventory

    Data gap filling techniques are commonly used to predict hazard in the absence of empirical data. The most established techniques are read-across, trend analysis and quantitative structure-activity relationships (QSARs). Toxic equivalency factors (TEFs) are less frequently used d...

  7. Modeling Dynamic Functional Neuroimaging Data Using Structural Equation Modeling

    ERIC Educational Resources Information Center

    Price, Larry R.; Laird, Angela R.; Fox, Peter T.; Ingham, Roger J.

    2009-01-01

    The aims of this study were to present a method for developing a path analytic network model using data acquired from positron emission tomography. Regions of interest within the human brain were identified through quantitative activation likelihood estimation meta-analysis. Using this information, a "true" or population path model was then…

  8. The Architecture, Dynamics, and Development of Mental Processing: Greek, Chinese, or Universal?

    ERIC Educational Resources Information Center

    Demetriou, A.; Kui, Z.X.; Spanoudis, G.; Christou, C.; Kyriakides, L.; Platsidou, M.

    2005-01-01

    This study compared Greeks with Chinese, from 8 to 14 years of age, on measures of processing efficiency, working memory, and reasoning. All processes were addressed through three domains of relations: verbal/propositional, quantitative, and visuo/spatial. Structural equations modelling and rating scale analysis showed that the architecture and…

  9. A large scale joint analysis of flowering time reveals independent temperate adaptations in maize

    USDA-ARS?s Scientific Manuscript database

    Modulating days to flowering is a key mechanism in plants for adapting to new environments, and variation in days to flowering drives population structure by limiting mating. To elucidate the genetic architecture of flowering across maize, a quantitative trait, we mapped flowering in five global pop...

  10. Tools for understanding landscapes: combining large-scale surveys to characterize change. Chapter 9.

    Treesearch

    W. Keith Moser; Janine Bolliger; Don C. Bragg; Mark H. Hansen; Mark A. Hatfield; Timothy A. Nigh; Lisa A. Schulte

    2008-01-01

    All landscapes change continuously. Since change is perceived and interpreted through measures of scale, any quantitative analysis of landscapes must identify and describe the spatiotemporal mosaics shaped by large-scale structures and processes. This process is controlled by core influences, or "drivers," that shape the change and affect the outcome...

  11. Factors Facilitating Implicit Learning: The Case of the Sesotho Passive

    ERIC Educational Resources Information Center

    Kline, Melissa; Demuth, Katherine

    2010-01-01

    Researchers have long debated the mechanisms underlying the learning of syntactic structure. Of significant interest has been the fact that passive constructions appear to be learned earlier in Sesotho than English. This paper provides a comprehensive, quantitative analysis of the passive input Sesotho-speaking children hear, how it differs from…

  12. Quantitative analysis and prediction of G-quadruplex forming sequences in double-stranded DNA

    PubMed Central

    Kim, Minji; Kreig, Alex; Lee, Chun-Ying; Rube, H. Tomas; Calvert, Jacob; Song, Jun S.; Myong, Sua

    2016-01-01

    Abstract G-quadruplex (GQ) is a four-stranded DNA structure that can be formed in guanine-rich sequences. GQ structures have been proposed to regulate diverse biological processes including transcription, replication, translation and telomere maintenance. Recent studies have demonstrated the existence of GQ DNA in live mammalian cells and a significant number of potential GQ forming sequences in the human genome. We present a systematic and quantitative analysis of GQ folding propensity on a large set of 438 GQ forming sequences in double-stranded DNA by integrating fluorescence measurement, single-molecule imaging and computational modeling. We find that short minimum loop length and the thymine base are two main factors that lead to high GQ folding propensity. Linear and Gaussian process regression models further validate that the GQ folding potential can be predicted with high accuracy based on the loop length distribution and the nucleotide content of the loop sequences. Our study provides important new parameters that can inform the evaluation and classification of putative GQ sequences in the human genome. PMID:27095201

  13. Quantitative analysis of weak interactions by Lattice energy calculation, Hirshfeld surface and DFT studies of sulfamonomethoxine

    NASA Astrophysics Data System (ADS)

    Patel, Kinjal D.; Patel, Urmila H.

    2017-01-01

    Sulfamonomethoxine, 4-Amino-N-(6-methoxy-4-pyrimidinyl) benzenesulfonamide (C11H12N4O3S), is investigated by single crystal X-ray diffraction technique. Pair of N-H⋯N and C-H⋯O intermolecular interactions along with π···π interaction are responsible for the stability of the molecular packing of the structure. In order to understand the nature of the interactions and their quantitative contributions towards the crystal packing, the 3D Hirshfeld surface and 2D fingerprint plot analysis are carried out. PIXEL calculations are performed to determine the lattice energies correspond to intermolecular interactions in the crystal structure. Ab initio quantum chemical calculations of sulfamonomethoxine (SMM) have been performed by B3LYP method, using 6-31G** basis set with the help of Schrodinger software. The computed geometrical parameters are in good agreement with the experimental data. The Mulliken charge distribution, calculated using B3LYP method to confirm the presence of electron acceptor and electron donor atoms, responsible for intermolecular hydrogen bond interactions hence the molecular stability.

  14. Quantitative functional characterization of conserved molecular interactions in the active site of mannitol 2-dehydrogenase

    PubMed Central

    Lucas, James E; Siegel, Justin B

    2015-01-01

    Enzyme active site residues are often highly conserved, indicating a significant role in function. In this study we quantitate the functional contribution for all conserved molecular interactions occurring within a Michaelis complex for mannitol 2-dehydrogenase derived from Pseudomonas fluorescens (pfMDH). Through systematic mutagenesis of active site residues, we reveal that the molecular interactions in pfMDH mediated by highly conserved residues not directly involved in reaction chemistry can be as important to catalysis as those directly involved in the reaction chemistry. This quantitative analysis of the molecular interactions within the pfMDH active site provides direct insight into the functional role of each molecular interaction, several of which were unexpected based on canonical sequence conservation and structural analyses. PMID:25752240

  15. Use of a Deuterated Internal Standard with Pyrolysis-GC/MS Dimeric Marker Analysis to Quantify Tire Tread Particles in the Environment

    PubMed Central

    Unice, Kenneth M.; Kreider, Marisa L.; Panko, Julie M.

    2012-01-01

    Pyrolysis(pyr)-GC/MS analysis of characteristic thermal decomposition fragments has been previously used for qualitative fingerprinting of organic sources in environmental samples. A quantitative pyr-GC/MS method based on characteristic tire polymer pyrolysis products was developed for tread particle quantification in environmental matrices including soil, sediment, and air. The feasibility of quantitative pyr-GC/MS analysis of tread was confirmed in a method evaluation study using artificial soil spiked with known amounts of cryogenically generated tread. Tread concentration determined by blinded analyses was highly correlated (r2 ≥ 0.88) with the known tread spike concentration. Two critical refinements to the initial pyrolysis protocol were identified including use of an internal standard and quantification by the dimeric markers vinylcyclohexene and dipentene, which have good specificity for rubber polymer with no other appreciable environmental sources. A novel use of deuterated internal standards of similar polymeric structure was developed to correct the variable analyte recovery caused by sample size, matrix effects, and ion source variability. The resultant quantitative pyr-GC/MS protocol is reliable and transferable between laboratories. PMID:23202830

  16. Meta- and statistical analysis of single-case intervention research data: quantitative gifts and a wish list.

    PubMed

    Kratochwill, Thomas R; Levin, Joel R

    2014-04-01

    In this commentary, we add to the spirit of the articles appearing in the special series devoted to meta- and statistical analysis of single-case intervention-design data. Following a brief discussion of historical factors leading to our initial involvement in statistical analysis of such data, we discuss: (a) the value added by including statistical-analysis recommendations in the What Works Clearinghouse Standards for single-case intervention designs; (b) the importance of visual analysis in single-case intervention research, along with the distinctive role that could be played by single-case effect-size measures; and (c) the elevated internal validity and statistical-conclusion validity afforded by the incorporation of various forms of randomization into basic single-case design structures. For the future, we envision more widespread application of quantitative analyses, as critical adjuncts to visual analysis, in both primary single-case intervention research studies and literature reviews in the behavioral, educational, and health sciences. Copyright © 2014 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  17. Quantitative second-harmonic generation imaging to detect osteogenesis imperfecta in human skin samples

    NASA Astrophysics Data System (ADS)

    Adur, J.; Ferreira, A. E.; D'Souza-Li, L.; Pelegati, V. B.; de Thomaz, A. A.; Almeida, D. B.; Baratti, M. O.; Carvalho, H. F.; Cesar, C. L.

    2012-03-01

    Osteogenesis Imperfecta (OI) is a genetic disorder that leads to bone fractures due to mutations in the Col1A1 or Col1A2 genes that affect the primary structure of the collagen I chain with the ultimate outcome in collagen I fibrils that are either reduced in quantity or abnormally organized in the whole body. A quick test screening of the patients would largely reduce the sample number to be studied by the time consuming molecular genetics techniques. For this reason an assessment of the human skin collagen structure by Second Harmonic Generation (SHG) can be used as a screening technique to speed up the correlation of genetics/phenotype/OI types understanding. In the present work we have used quantitative second harmonic generation (SHG) imaging microscopy to investigate the collagen matrix organization of the OI human skin samples comparing with normal control patients. By comparing fibril collagen distribution and spatial organization, we calculated the anisotropy and texture patterns of this structural protein. The analysis of the anisotropy was performed by means of the two-dimensional Discrete Fourier Transform and image pattern analysis with Gray-Level Co-occurrence Matrix (GLCM). From these results, we show that statistically different results are obtained for the normal and disease states of OI.

  18. Design, synthesis, antiviral bioactivity and three-dimensional quantitative structure-activity relationship study of novel ferulic acid ester derivatives containing quinazoline moiety.

    PubMed

    Wu, Zengxue; Zhang, Jian; Chen, Jixiang; Pan, Jianke; Zhao, Lei; Liu, Dengyue; Zhang, Awei; Chen, Jin; Hu, Deyu; Song, Baoan

    2017-10-01

    Ferulic acid and quinazoline derivatives possess good antiviral activities. In order to develop novel compounds with high antiviral activities, a series of ferulic acid ester derivatives containing quinazoline were synthesized and evaluated for their antiviral activities. Bioassays indicated that some of the compounds exhibited good antiviral activities in vivo against tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). One of the compounds demonstrated significant curative and protective activities against TMV and CMV, with EC 50 values of 162.14, 114.61 and 255.49, 138.81 mg L -1 , respectively, better than those of ningnanmycin (324.51, 168.84 and 373.88, 272.70 mg L -1 ). The values of q 2 and r 2 for comparative molecular field analysis and comparative molecular similarity index analysis in the TMV (0.508, 0.663 and 0.992, 0.930) and CMV (0.530, 0.626 and 0.997, 0.981) models presented good predictive abilities. Some of the title compounds demonstrated good antiviral activities. Three-dimensional quantitative structure-activity relationship models revealed that the antiviral activities depend on steric and electrostatic properties. These results could provide significant structural insights for the design of highly active ferulic acid derivatives. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Quantitative sampling of conformational heterogeneity of a DNA hairpin using molecular dynamics simulations and ultrafast fluorescence spectroscopy

    PubMed Central

    Voltz, Karine; Léonard, Jérémie; Touceda, Patricia Tourón; Conyard, Jamie; Chaker, Ziyad; Dejaegere, Annick; Godet, Julien; Mély, Yves; Haacke, Stefan; Stote, Roland H.

    2016-01-01

    Molecular dynamics (MD) simulations and time resolved fluorescence (TRF) spectroscopy were combined to quantitatively describe the conformational landscape of the DNA primary binding sequence (PBS) of the HIV-1 genome, a short hairpin targeted by retroviral nucleocapsid proteins implicated in the viral reverse transcription. Three 2-aminopurine (2AP) labeled PBS constructs were studied. For each variant, the complete distribution of fluorescence lifetimes covering 5 orders of magnitude in timescale was measured and the populations of conformers experimentally observed to undergo static quenching were quantified. A binary quantification permitted the comparison of populations from experimental lifetime amplitudes to populations of aromatically stacked 2AP conformers obtained from simulation. Both populations agreed well, supporting the general assumption that quenching of 2AP fluorescence results from pi-stacking interactions with neighboring nucleobases and demonstrating the success of the proposed methodology for the combined analysis of TRF and MD data. Cluster analysis of the latter further identified predominant conformations that were consistent with the fluorescence decay times and amplitudes, providing a structure-based rationalization for the wide range of fluorescence lifetimes. Finally, the simulations provided evidence of local structural perturbations induced by 2AP. The approach presented is a general tool to investigate fine structural heterogeneity in nucleic acid and nucleoprotein assemblies. PMID:26896800

  20. From intuition to statistics in building subsurface structural models

    USGS Publications Warehouse

    Brandenburg, J.P.; Alpak, F.O.; Naruk, S.; Solum, J.

    2011-01-01

    Experts associated with the oil and gas exploration industry suggest that combining forward trishear models with stochastic global optimization algorithms allows a quantitative assessment of the uncertainty associated with a given structural model. The methodology is applied to incompletely imaged structures related to deepwater hydrocarbon reservoirs and results are compared to prior manual palinspastic restorations and borehole data. This methodology is also useful for extending structural interpretations into other areas of limited resolution, such as subsalt in addition to extrapolating existing data into seismic data gaps. This technique can be used for rapid reservoir appraisal and potentially have other applications for seismic processing, well planning, and borehole stability analysis.

  1. A software package to improve image quality and isolation of objects of interest for quantitative stereology studies of rat hepatocarcinogenesis.

    PubMed

    Xu, Yihua; Pitot, Henry C

    2006-03-01

    In the studies of quantitative stereology of rat hepatocarcinogenesis, we have used image analysis technology (automatic particle analysis) to obtain data such as liver tissue area, size and location of altered hepatic focal lesions (AHF), and nuclei counts. These data are then used for three-dimensional estimation of AHF occurrence and nuclear labeling index analysis. These are important parameters for quantitative studies of carcinogenesis, for screening and classifying carcinogens, and for risk estimation. To take such measurements, structures or cells of interest should be separated from the other components based on the difference of color and density. Common background problems seen on the captured sample image such as uneven light illumination or color shading can cause severe problems in the measurement. Two application programs (BK_Correction and Pixel_Separator) have been developed to solve these problems. With BK_Correction, common background problems such as incorrect color temperature setting, color shading, and uneven light illumination background, can be corrected. With Pixel_Separator different types of objects can be separated from each other in relation to their color, such as seen with different colors in immunohistochemically stained slides. The resultant images of such objects separated from other components are then ready for particle analysis. Objects that have the same darkness but different colors can be accurately differentiated in a grayscale image analysis system after application of these programs.

  2. Comparison of three‐dimensional analysis and stereological techniques for quantifying lithium‐ion battery electrode microstructures

    PubMed Central

    TAIWO, OLUWADAMILOLA O.; FINEGAN, DONAL P.; EASTWOOD, DAVID S.; FIFE, JULIE L.; BROWN, LEON D.; DARR, JAWWAD A.; LEE, PETER D.; BRETT, DANIEL J.L.

    2016-01-01

    Summary Lithium‐ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium‐ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3‐D imaging techniques, quantitative assessment of 3‐D microstructures from 2‐D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two‐dimensional (2‐D) data sets. In this study, stereological prediction and three‐dimensional (3‐D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium‐ion battery electrodes were imaged using synchrotron‐based X‐ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2‐D image sections generated from tomographic imaging, whereas direct 3‐D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2‐D image sections is bound to be associated with ambiguity and that volume‐based 3‐D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially‐dependent parameters, such as tortuosity and pore‐phase connectivity. PMID:26999804

  3. Comparison of three-dimensional analysis and stereological techniques for quantifying lithium-ion battery electrode microstructures.

    PubMed

    Taiwo, Oluwadamilola O; Finegan, Donal P; Eastwood, David S; Fife, Julie L; Brown, Leon D; Darr, Jawwad A; Lee, Peter D; Brett, Daniel J L; Shearing, Paul R

    2016-09-01

    Lithium-ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium-ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3-D imaging techniques, quantitative assessment of 3-D microstructures from 2-D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two-dimensional (2-D) data sets. In this study, stereological prediction and three-dimensional (3-D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium-ion battery electrodes were imaged using synchrotron-based X-ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2-D image sections generated from tomographic imaging, whereas direct 3-D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2-D image sections is bound to be associated with ambiguity and that volume-based 3-D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially-dependent parameters, such as tortuosity and pore-phase connectivity. © 2016 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  4. Characterizing ceramics and the interfacial adhesion to resin: I - The relationship of microstructure, composition, properties and fractography.

    PubMed

    Della Bona, Alvaro

    2005-03-01

    The appeal of ceramics as structural dental materials is based on their light weight, high hardness values, chemical inertness, and anticipated unique tribological characteristics. A major goal of current ceramic research and development is to produce tough, strong ceramics that can provide reliable performance in dental applications. Quantifying microstructural parameters is important to develop structure/property relationships. Quantitative microstructural analysis provides an association among the constitution, physical properties, and structural characteristics of materials. Structural reliability of dental ceramics is a major factor in the clinical success of ceramic restorations. Complex stress distributions are present in most practical conditions and strength data alone cannot be directly extrapolated to predict structural performance.

  5. Study of the structure of 3-D composites based on carbon nanotubes in bovine serum albumin matrix by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Ignatov, D.; Zhurbina, N.; Gerasimenko, A.

    2017-01-01

    3-D composites are widely used in tissue engineering. A comprehensive analysis by X-ray microtomography was conducted to study the structure of the 3-D composites. Comprehensive analysis of the structure of the 3-D composites consisted of scanning, image reconstruction of shadow projections, two-dimensional and three-dimensional visualization of the reconstructed images and quantitative analysis of the samples. Experimental samples of composites were formed by laser vaporization of the aqueous dispersion BSA and single-walled (SWCNTs) and multi-layer (MWCNTs) carbon nanotubes. The samples have a homogeneous structure over the entire volume, the percentage of porosity of 3-D composites based on SWCNTs and MWCNTs - 16.44%, 28.31%, respectively. An average pore diameter of 3-D composites based on SWCNTs and MWCNTs - 45 μm 93 μm. 3-D composites based on carbon nanotubes in bovine serum albumin matrix can be used in tissue engineering of bone and cartilage, providing cell proliferation and blood vessel sprouting.

  6. Studies of Single Biomolecules, DNA Conformational Dynamics, and Protein Binding

    DTIC Science & Technology

    2008-07-11

    Nucleotide Base pairs Hydrogen bonds FIG. 1: Ladder structure of DNA showing the Watson - Crick bonding of the bases A, T, G, and C which are suspended by a...protected against unwanted action of chemicals and proteins. The three-dimensional structure of DNA is the famed Watson - Crick double-helix, the equilibrium...quantitative analysis [88]. [1] A. Kornberg and T. A. Baker, DNA Replication (W. H. Freeman, New York, 1992). [2] J. D. Watson and F. H. C. Crick

  7. Scientific and Technological Principles of Development of New Cold-Resistant Arc-Steels (Steels for Arctic Applications)

    NASA Astrophysics Data System (ADS)

    Sych, O. V.; Khlusova, E. I.; Yashin, E. A.

    2017-12-01

    The paper presents the results of quantitative analysis of C, Mn, Ni and Cu content on strength and cold-resistance of rolled plates. Relations between the ferritic-bainitic structure morphology and anisotropy and steel performance characteristics have been established. Influence of thermal and deformation rolling patterns on steel structure has been studied. The steel chemical composition has been improved and precision thermomechanical processing conditions for production of cold-resistant Arc-steel plates have been developed.

  8. Electronic structure and microscopic model of CoNb2O6

    NASA Astrophysics Data System (ADS)

    Molla, Kaimujjaman; Rahaman, Badiur

    2018-05-01

    We present the first principle density functional calculations to figure out the underlying spin model of CoNb2O6. The first principles calculations define the main paths of superexchange interaction between Co spins in this compound. We discuss the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modeling based on analysis of the electronic structure of this system puts it in the interesting class of weakly couple geometrically frustrated isosceles triangular Ising antiferromagnet.

  9. Photogrammetry of the Human Brain: A Novel Method for Three-Dimensional Quantitative Exploration of the Structural Connectivity in Neurosurgery and Neurosciences.

    PubMed

    De Benedictis, Alessandro; Nocerino, Erica; Menna, Fabio; Remondino, Fabio; Barbareschi, Mattia; Rozzanigo, Umberto; Corsini, Francesco; Olivetti, Emanuele; Marras, Carlo Efisio; Chioffi, Franco; Avesani, Paolo; Sarubbo, Silvio

    2018-04-13

    Anatomic awareness of the structural connectivity of the brain is mandatory for neurosurgeons, to select the most effective approaches for brain resections. Although standard microdissection is a validated technique to investigate the different white matter (WM) pathways and to verify the results of tractography, the possibility of interactive exploration of the specimens and reliable acquisition of quantitative information has not been described. Photogrammetry is a well-established technique allowing an accurate metrology on highly defined three-dimensional (3D) models. The aim of this work is to propose the application of the photogrammetric technique for supporting the 3D exploration and the quantitative analysis on the cerebral WM connectivity. The main perisylvian pathways, including the superior longitudinal fascicle and the arcuate fascicle were exposed using the Klingler technique. The photogrammetric acquisition followed each dissection step. The point clouds were registered to a reference magnetic resonance image of the specimen. All the acquisitions were coregistered into an open-source model. We analyzed 5 steps, including the cortical surface, the short intergyral fibers, the indirect posterior and anterior superior longitudinal fascicle, and the arcuate fascicle. The coregistration between the magnetic resonance imaging mesh and the point clouds models was highly accurate. Multiple measures of distances between specific cortical landmarks and WM tracts were collected on the photogrammetric model. Photogrammetry allows an accurate 3D reproduction of WM anatomy and the acquisition of unlimited quantitative data directly on the real specimen during the postdissection analysis. These results open many new promising neuroscientific and educational perspectives and also optimize the quality of neurosurgical treatments. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. SDAR 1.0 a New Quantitative Toolkit for Analyze Stratigraphic Data

    NASA Astrophysics Data System (ADS)

    Ortiz, John; Moreno, Carlos; Cardenas, Andres; Jaramillo, Carlos

    2015-04-01

    Since the foundation of stratigraphy geoscientists have recognized that data obtained from stratigraphic columns (SC), two dimensional schemes recording descriptions of both geological and paleontological features (e.g., thickness of rock packages, grain size, fossil and lithological components, and sedimentary structures), are key elements for establishing reliable hypotheses about the distribution in space and time of rock sequences, and ancient sedimentary environmental and paleobiological dynamics. Despite the tremendous advances on the way geoscientists store, plot, and quantitatively analyze sedimentological and paleontological data (e.g., Macrostrat [http://www.macrostrat.org/], Paleobiology Database [http://www.paleodb.org/], respectively), there is still a lack of computational methodologies designed to quantitatively examine data from a highly detailed SCs. Moreover, frequently the stratigraphic information is plotted "manually" using vector graphics editors (e.g., Corel Draw, Illustrator), however, this information although store on a digital format, cannot be used readily for any quantitative analysis. Therefore, any attempt to examine the stratigraphic data in an analytical fashion necessarily takes further steps. Given these issues, we have developed the sofware 'Stratigraphic Data Analysis in R' (SDAR), which stores in a database all sedimentological, stratigraphic, and paleontological information collected from a SC, allowing users to generate high-quality graphic plots (including one or multiple features stored in the database). SDAR also encompasses quantitative analyses helping users to quantify stratigraphic information (e.g. grain size, sorting and rounding, proportion of sand/shale). Finally, given that the SDAR analysis module, has been written in the open-source high-level computer language "R graphics/statistics language" [R Development Core Team, 2014], it is already loaded with many of the crucial features required to accomplish basic and complex tasks of statistical analysis (i.e., R language provide more than hundred spatial libraries that allow users to explore various Geostatistics and spatial analysis). Consequently, SDAR allows a deeper exploration of the stratigraphic data collected in the field, it will allow the geoscientific community in the near future to develop complex analyses related with the distribution in space and time of rock sequences, such as lithofacial correlations, by a multivariate comparison between empirical SCs with quantitative lithofacial models established from modern sedimentary environments.

  11. Quantitation of Permethylated N-Glycans through Multiple-Reaction Monitoring (MRM) LC-MS/MS

    PubMed Central

    Zhou, Shiyue; Hu, Yunli; DeSantos-Garcia, Janie L.; Mechref, Yehia

    2015-01-01

    The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan structures was determined to be 30% while it was found to be 35% for either fucosylated or sialylated structures The optimum CE for mannose and complex type N-glycan structures was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan structures in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these structures was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitudes. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan structures enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples. PMID:25698222

  12. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Dennis Patrick; Jauregui, David Villegas; Daumueller, Andrew Nicholas

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old andmore » classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New Mexico State University with the expertise at Sandia National Laboratories in the emerging field of SHM.« less

  13. Assessment of and standardization for quantitative nondestructive test

    NASA Technical Reports Server (NTRS)

    Neuschaefer, R. W.; Beal, J. B.

    1972-01-01

    Present capabilities and limitations of nondestructive testing (NDT) as applied to aerospace structures during design, development, production, and operational phases are assessed. It will help determine what useful structural quantitative and qualitative data may be provided from raw materials to vehicle refurbishment. This assessment considers metal alloys systems and bonded composites presently applied in active NASA programs or strong contenders for future use. Quantitative and qualitative data has been summarized from recent literature, and in-house information, and presented along with a description of those structures or standards where the information was obtained. Examples, in tabular form, of NDT technique capabilities and limitations have been provided. NDT techniques discussed and assessed were radiography, ultrasonics, penetrants, thermal, acoustic, and electromagnetic. Quantitative data is sparse; therefore, obtaining statistically reliable flaw detection data must be strongly emphasized. The new requirements for reusable space vehicles have resulted in highly efficient design concepts operating in severe environments. This increases the need for quantitative NDT evaluation of selected structural components, the end item structure, and during refurbishment operations.

  14. Quantitative expression of protein heterogeneity: Response of amino acid side chains to their local environment.

    PubMed

    Bandyopadhyay, Debashree; Mehler, Ernest L

    2008-08-01

    A general method has been developed to characterize the hydrophobicity or hydrophilicity of the microenvironment (MENV), in which a given amino acid side chain is immersed, by calculating a quantitative property descriptor (QPD) based on the relative (to water) hydrophobicity of the MENV. Values of the QPD were calculated for a test set of 733 proteins to analyze the modulating effects on amino acid residue properties by the MENV in which they are imbedded. The QPD values and solvent accessibility were used to derive a partitioning of residues based on the MENV hydrophobicities. From this partitioning, a new hydrophobicity scale was developed, entirely in the context of protein structure, where amino acid residues are immersed in one or more "MENVpockets." Thus, the partitioning is based on the residues "sampling" a large number of "solvents" (MENVs) that represent a very large range of hydrophobicity values. It was found that the hydrophobicity of around 80% of amino acid side chains and their MENV are complementary to each other, but for about 20%, the MENV and their imbedded residue can be considered as mismatched. Many of these mismatches could be rationalized in terms of the structural stability of the protein and/or the involvement of the imbedded residue in function. The analysis also indicated a remarkable conservation of local environments around highly conserved active site residues that have similar functions across protein families, but where members have relatively low sequence homology. Thus, quantitative evaluation of this QPD is suggested, here, as a tool for structure-function prediction, analysis, and parameter development for the calculation of properties in proteins. (c) 2008 Wiley-Liss, Inc.

  15. The Evolution of 3D Microimaging Techniques in Geosciences

    NASA Astrophysics Data System (ADS)

    Sahagian, D.; Proussevitch, A.

    2009-05-01

    In the analysis of geomaterials, it is essential to be able to analyze internal structures on a quantitative basis. Techniques have evolved from rough qualitative methods to highly accurate quantitative methods coupled with 3-D numerical analysis. The earliest primitive method for "seeing'" what was inside a rock was multiple sectioning to produce a series of image slices. This technique typically completely destroyed the sample being analyzed. Another destructive method was developed to give more detailed quantitative information by forming plastic casts of internal voids in sedimentary and volcanic rocks. For this, void were filled with plastic and the rock dissolved away with HF to reveal plastic casts of internal vesicles. Later, new approaches to stereology were developed to extract 3D information from 2D cross-sectional images. This has long been possible for spheres because the probability distribution for cutting a sphere along any small circle is known analytically (greatest probability is near the equator). However, large numbers of objects are required for statistical validity, and geomaterials are seldom spherical, so crystals, vesicles, and other inclusions would need a more sophisticated approach. Consequently, probability distributions were developed using numerical techniques for rectangular solids and various ellipsoids so that stereological techniques could be applied to these. The "holy grail" has always been to obtain 3D quantitative images non-destructively. A key method is Computed X-ray Tomography (CXT), in which attenuation of X-rays is recorded as a function of angular position in a cylindrical sample, providing a 2D "slice" of the interior. When a series of these "slices" is stacked (in increments equivalent with the resolution of the X-ray to make cubic voxels), a 3D image results with quantitative information regarding internal structure, particle/void volumes, nearest neighbors, coordination numbers, preferred orientations, etc. CXT can be done at three basic levels of resolution, with "normal" x-rays providing tens of microns resolution, synchrotron sources providing single to few microns, and emerging XuM techniques providing a practical 300 nm and theoretical 60 nm. The main challenges in CXT imaging have been in segmentation, which delineates material boundaries, and object recognition (registration), in which the individual objects within a material are identified. The former is critical in quantifying object volume, while the latter is essential for preventing the false appearance of individual objects as a continuous structure. Additional, new techniques are now being developed to enhance resolution and provide more detailed analysis without the complex infrastructure needed for CXT. One such method is Laser Scanning Confocal Microscopy, in which a laser is reflected from individual interior surfaces of a fluorescing material, providing a series of sharp images of internal slices with quantitative information available, just as in x-ray tomography, after "z-stacking" of planes of pixels. Another novel approach is the use of Stereo Scanning Electron Microscopy to create digital elevation models of 3D surficial features such as partial bubble margins on the surfaces of fine volcanic ash particles. As other novel techniques emerge, new opportunities will be presented to the geological research community to obtain ever more detailed and accurate information regarding the interior structure of geomaterials.

  16. Studying Venus using a GIS database

    NASA Technical Reports Server (NTRS)

    Price, Maribeth; Suppe, John

    1993-01-01

    A Geographic Information System (GIS) can significantly enhance geological studies on Venus because it facilitates concurrent analysis of many sources of data, as demonstrated by our work on topographic and deformation characteristics of tesserae. We are creating a database of structures referenced to real-world coordinates to encourage the archival of Venusian studies in digital format and to foster quantitative analysis of many combinations of data. Contributions to this database from all aspects of Venusian science are welcome.

  17. Evidence from machines that learn and think like people.

    PubMed

    Forbus, Kenneth D; Gentner, Dedre

    2017-01-01

    We agree with Lake et al.'s trenchant analysis of deep learning systems, including that they are highly brittle and that they need vastly more examples than do people. We also agree that human cognition relies heavily on structured relational representations. However, we differ in our analysis of human cognitive processing. We argue that (1) analogical comparison processes are central to human cognition; and (2) intuitive physical knowledge is captured by qualitative representations, rather than quantitative simulations.

  18. Quantitative evaluation of the risk induced by dominant geomorphological processes on different land uses, based on GIS spatial analysis models

    NASA Astrophysics Data System (ADS)

    Ştefan, Bilaşco; Sanda, Roşca; Ioan, Fodorean; Iuliu, Vescan; Sorin, Filip; Dănuţ, Petrea

    2017-12-01

    Maramureş Land is mostly characterized by agricultural and forestry land use due to its specific configuration of topography and its specific pedoclimatic conditions. Taking into consideration the trend of the last century from the perspective of land management, a decrease in the surface of agricultural lands to the advantage of built-up and grass lands, as well as an accelerated decrease in the forest cover due to uncontrolled and irrational forest exploitation, has become obvious. The field analysis performed on the territory of Maramureş Land has highlighted a high frequency of two geomorphologic processes — landslides and soil erosion — which have a major negative impact on land use due to their rate of occurrence. The main aim of the present study is the GIS modeling of the two geomorphologic processes, determining a state of vulnerability (the USLE model for soil erosion and a quantitative model based on the morphometric characteristics of the territory, derived from the HG. 447/2003) and their integration in a complex model of cumulated vulnerability identification. The modeling of the risk exposure was performed using a quantitative approach based on models and equations of spatial analysis, which were developed with modeled raster data structures and primary vector data, through a matrix highlighting the correspondence between vulnerability and land use classes. The quantitative analysis of the risk was performed by taking into consideration the exposure classes as modeled databases and the land price as a primary alphanumeric database using spatial analysis techniques for each class by means of the attribute table. The spatial results highlight the territories with a high risk to present geomorphologic processes that have a high degree of occurrence and represent a useful tool in the process of spatial planning.

  19. Quantitative evaluation of the risk induced by dominant geomorphological processes on different land uses, based on GIS spatial analysis models

    NASA Astrophysics Data System (ADS)

    Ştefan, Bilaşco; Sanda, Roşca; Ioan, Fodorean; Iuliu, Vescan; Sorin, Filip; Dănuţ, Petrea

    2018-06-01

    Maramureş Land is mostly characterized by agricultural and forestry land use due to its specific configuration of topography and its specific pedoclimatic conditions. Taking into consideration the trend of the last century from the perspective of land management, a decrease in the surface of agricultural lands to the advantage of built-up and grass lands, as well as an accelerated decrease in the forest cover due to uncontrolled and irrational forest exploitation, has become obvious. The field analysis performed on the territory of Maramureş Land has highlighted a high frequency of two geomorphologic processes — landslides and soil erosion — which have a major negative impact on land use due to their rate of occurrence. The main aim of the present study is the GIS modeling of the two geomorphologic processes, determining a state of vulnerability (the USLE model for soil erosion and a quantitative model based on the morphometric characteristics of the territory, derived from the HG. 447/2003) and their integration in a complex model of cumulated vulnerability identification. The modeling of the risk exposure was performed using a quantitative approach based on models and equations of spatial analysis, which were developed with modeled raster data structures and primary vector data, through a matrix highlighting the correspondence between vulnerability and land use classes. The quantitative analysis of the risk was performed by taking into consideration the exposure classes as modeled databases and the land price as a primary alphanumeric database using spatial analysis techniques for each class by means of the attribute table. The spatial results highlight the territories with a high risk to present geomorphologic processes that have a high degree of occurrence and represent a useful tool in the process of spatial planning.

  20. Nonlinear Analysis of Time Series in Genome-Wide Linkage Disequilibrium Data

    NASA Astrophysics Data System (ADS)

    Hernández-Lemus, Enrique; Estrada-Gil, Jesús K.; Silva-Zolezzi, Irma; Fernández-López, J. Carlos; Hidalgo-Miranda, Alfredo; Jiménez-Sánchez, Gerardo

    2008-02-01

    The statistical study of large scale genomic data has turned out to be a very important tool in population genetics. Quantitative methods are essential to understand and implement association studies in the biomedical and health sciences. Nevertheless, the characterization of recently admixed populations has been an elusive problem due to the presence of a number of complex phenomena. For example, linkage disequilibrium structures are thought to be more complex than their non-recently admixed population counterparts, presenting the so-called ancestry blocks, admixed regions that are not yet smoothed by the effect of genetic recombination. In order to distinguish characteristic features for various populations we have implemented several methods, some of them borrowed or adapted from the analysis of nonlinear time series in statistical physics and quantitative physiology. We calculate the main fractal dimensions (Kolmogorov's capacity, information dimension and correlation dimension, usually named, D0, D1 and D2). We also have made detrended fluctuation analysis and information based similarity index calculations for the probability distribution of correlations of linkage disequilibrium coefficient of six recently admixed (mestizo) populations within the Mexican Genome Diversity Project [1] and for the non-recently admixed populations in the International HapMap Project [2]. Nonlinear correlations showed up as a consequence of internal structure within the haplotype distributions. The analysis of these correlations as well as the scope and limitations of these procedures within the biomedical sciences are discussed.

  1. Accurate airway centerline extraction based on topological thinning using graph-theoretic analysis.

    PubMed

    Bian, Zijian; Tan, Wenjun; Yang, Jinzhu; Liu, Jiren; Zhao, Dazhe

    2014-01-01

    The quantitative analysis of the airway tree is of critical importance in the CT-based diagnosis and treatment of popular pulmonary diseases. The extraction of airway centerline is a precursor to identify airway hierarchical structure, measure geometrical parameters, and guide visualized detection. Traditional methods suffer from extra branches and circles due to incomplete segmentation results, which induce false analysis in applications. This paper proposed an automatic and robust centerline extraction method for airway tree. First, the centerline is located based on the topological thinning method; border voxels are deleted symmetrically to preserve topological and geometrical properties iteratively. Second, the structural information is generated using graph-theoretic analysis. Then inaccurate circles are removed with a distance weighting strategy, and extra branches are pruned according to clinical anatomic knowledge. The centerline region without false appendices is eventually determined after the described phases. Experimental results show that the proposed method identifies more than 96% branches and keep consistency across different cases and achieves superior circle-free structure and centrality.

  2. On mining complex sequential data by means of FCA and pattern structures

    NASA Astrophysics Data System (ADS)

    Buzmakov, Aleksey; Egho, Elias; Jay, Nicolas; Kuznetsov, Sergei O.; Napoli, Amedeo; Raïssi, Chedy

    2016-02-01

    Nowadays data-sets are available in very complex and heterogeneous ways. Mining of such data collections is essential to support many real-world applications ranging from healthcare to marketing. In this work, we focus on the analysis of "complex" sequential data by means of interesting sequential patterns. We approach the problem using the elegant mathematical framework of formal concept analysis and its extension based on "pattern structures". Pattern structures are used for mining complex data (such as sequences or graphs) and are based on a subsumption operation, which in our case is defined with respect to the partial order on sequences. We show how pattern structures along with projections (i.e. a data reduction of sequential structures) are able to enumerate more meaningful patterns and increase the computing efficiency of the approach. Finally, we show the applicability of the presented method for discovering and analysing interesting patient patterns from a French healthcare data-set on cancer. The quantitative and qualitative results (with annotations and analysis from a physician) are reported in this use-case which is the main motivation for this work.

  3. Quantitative analysis of fracture surface by roughness and fractal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X.W.; Tian, J.F.; Kang, Y.

    1995-09-01

    In recent years there has been extensive research and great development in Quantitative Fractography, which acts as an integral part of fractographic analysis. A prominent technique for studying the fracture surface is based on fracture profile generation and the major means for characterizing the profile quantitatively are roughness and fractal methods. By this way, some quantitative indexes such as the roughness parameters R{sub L} for profile and R{sub S} for surface, fractal dimensions D{sub L} for profile and D{sub S} for surface can be measured. Given the relationships between the indexes and the mechanical properties of materials, it is possiblemore » to achieve the goal of protecting materials from fracture. But, as the case stands, the theory and experimental technology of quantitative fractography are still imperfect and remain to be studied further. Recently, Gokhale and Underwood et al have proposed an assumption-free method for estimating the surface roughness by vertically sectioning the fracture surface with sections at an angle of 120 deg with each other, which could be expressed as follows: R{sub S} = {ovr R{sub L}{center_dot}{Psi}} where {Psi} is the profile structure factor. This method is based on the classical sterological principles and verified with the aid of computer simulations for some ruled surfaces. The results are considered to be applicable to fracture surfaces with any arbitrary complexity and anisotropy. In order to extend the detail applications to this method in quantitative fractography, the authors made a study on roughness and fractal methods dependent on this method by performing quantitative measurements on some typical low-temperature impact fractures.« less

  4. Analysis of the bacterial community in aged and aging pit mud of Chinese Luzhou-flavour liquor by combined PCR-DGGE and quantitative PCR assay.

    PubMed

    Liang, Huipeng; Li, Wenfang; Luo, Qingchun; Liu, Chaolan; Wu, Zhengyun; Zhang, Wenxue

    2015-10-01

    The community structure of bacteria in aged and aging pit mud, which was judged according to their sensory and physicochemical characteristics, was analysed using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative real-time PCR (qPCR). The phyla Firmicutes, Actinobacteria, Proteobacteria, Synergistetes and Unclassified Bacteria were detected and the fermentative Firmicutes was predominant in both types of pit mud in the PCR-DGGE analysis. Among Firmicutes, Clostridiales was dominant in aged pit mud while Bacillales and Lactobacillales were dominant in aging pit mud. The diversity of bacterial communities in aged pit mud was higher than that in aging pit mud. In the qPCR analysis the abundance of Clostridium IV in aged pit mud was higher than that in aging pit mud and there were significant differences in the quantity of Clostridium IV between aged and aging pit mud of the same cellar (P < 0.05). There were some significant differences in the microbial community structure between aged and aging pit mud. The differences in the quantity of Clostridium IV might be involved in the distinction that the aged pit mud has a strong aroma while the aging pit mud does not. © 2014 Society of Chemical Industry.

  5. Functionalization of SBA-15 mesoporous silica by Cu-phosphonate units: Probing of synthesis route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskowski, Lukasz, E-mail: lukasz.laskowski@kik.pcz.pl; Czestochowa University of Technology, Institute of Physics, Al. Armii Krajowej 19, 42-201 Czestochowa; Laskowska, Magdalena, E-mail: magdalena.laskowska@onet.pl

    2014-12-15

    Mesoporous silica SBA-15 containing propyl-copper phosphonate units was investigated. The structure of mesoporous samples was tested by N{sub 2} isothermal sorption (BET and BHJ analysis), TEM microscopy and X-Ray scattering. Quantitative analysis EDX has given information about proportions between component atoms in the sample. Quantitative elemental analysis has been carried out to support EDX. To examine bounding between copper atoms and phosphonic units the Raman spectroscopy was carried out. As a support of Raman scattering, the theoretical calculations were made based on density functional theory, with the B3LYP method. By comparison of the calculated vibrational spectra of the molecule withmore » experimental results, distribution of the active units inside silica matrix has been determined. - Graphical abstract: The present study is devoted to mesoporous silica SBA-15 containing propyl-copper phosphonate units. The species were investigated to confirm of synthesis procedure correctness by the micro-Raman technique combined with DFT numerical simulations. Complementary research was carried out to test the structure of mesoporous samples. - Highlights: • SBA-15 silica functionalized with propyl-copper phosphonate units was synthesized. • Synthesis efficiency probed by Raman study supported with DFT simulations. • Homogenous distribution of active units was proved. • Synthesis route enables precise control of distance between copper ions.« less

  6. Developing descriptors to predict mechanical properties of nanotubes.

    PubMed

    Borders, Tammie L; Fonseca, Alexandre F; Zhang, Hengji; Cho, Kyeongjae; Rusinko, Andrew

    2013-04-22

    Descriptors and quantitative structure property relationships (QSPR) were investigated for mechanical property prediction of carbon nanotubes (CNTs). 78 molecular dynamics (MD) simulations were carried out, and 20 descriptors were calculated to build quantitative structure property relationships (QSPRs) for Young's modulus and Poisson's ratio in two separate analyses: vacancy only and vacancy plus methyl functionalization. In the first analysis, C(N2)/C(T) (number of non-sp2 hybridized carbons per the total carbons) and chiral angle were identified as critical descriptors for both Young's modulus and Poisson's ratio. Further analysis and literature findings indicate the effect of chiral angle is negligible at larger CNT radii for both properties. Raman spectroscopy can be used to measure C(N2)/C(T), providing a direct link between experimental and computational results. Poisson's ratio approaches two different limiting values as CNT radii increases: 0.23-0.25 for chiral and armchair CNTs and 0.10 for zigzag CNTs (surface defects <3%). In the second analysis, the critical descriptors were C(N2)/C(T), chiral angle, and M(N)/C(T) (number of methyl groups per total carbons). These results imply new types of defects can be represented as a new descriptor in QSPR models. Finally, results are qualified and quantified against experimental data.

  7. MAPPING TOXICANT-INDUCED NERVOUS SYSTEM DAMAGE WITH A CUPRIC SILVER STAIN: A QUANTITATIVE ANALYSIS OF NEURAL DEGENERATION INDUCED BY 3,4-METHYLENEDIOXYMETHAMPETHAMINE (MDMA)

    EPA Science Inventory

    The purpose of structural assessments in neurotoxicology is to provide a convincing picture of the location and extent of damage to the nervous system. ilver stains that selectively reveal neural degeneration hold particular promise in this regard. n this chapter we describe resu...

  8. Collaborative School Turnaround: A Study of the Impact of School Federations on Student Outcomes

    ERIC Educational Resources Information Center

    Chapman, Christopher; Muijs, Daniel

    2013-01-01

    School federations are groups of two or more schools operating under a single governance structure. The study reported in this article compared federations designed to raise performance in low-attaining schools against a matched sample of their non-federated counterparts. The findings are based on quantitative analysis of data collected in…

  9. Children's Structured Conceptualizations of Their Beliefs on the Causes of Learning Difficulties

    ERIC Educational Resources Information Center

    Nowicki, Elizabeth A.; Brown, Jason; Stepien, Magdalena

    2014-01-01

    Elementary school children between 9 and 12 years of age were interviewed on what they believed to be the causes of learning difficulties and were invited to take part in the analysis of the data. We achieved this with Trochim's concept mapping approach that combines qualitative and quantitative data analyses. Study results indicated that children…

  10. Understanding ponderosa pine forest-grassland vegetation dynamics at Fort Valley Experimental Forest using phytolith analysis

    Treesearch

    Becky K. Kerns; Margaret M. Moore; Stephen C. Hart

    2008-01-01

    In the last century, ponderosa pine forests in the Southwest have changed from more open park-like stands of older trees to denser stands of younger, small-diameter trees. Considerable information exists regarding ponderosa pine forest fire history and recent shifts in stand structure and composition, yet quantitative studies investigating understory reference...

  11. Application of the Probabilistic Dynamic Synthesis Method to the Analysis of a Realistic Structure

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ferri, Aldo A.

    1998-01-01

    The Probabilistic Dynamic Synthesis method is a new technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. A previous work verified the feasibility of the PDS method on a simple seven degree-of-freedom spring-mass system. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.

  12. The Impact of Social Structures on Deviant Behaviors: The Study of 402 High Risk Street Drug Users in Iran.

    PubMed

    Mehrabi, Maryam; Eskandarieh, Sharareh; Khodadost, Mahmoud; Sadeghi, Maneli; Nikfarjam, Ali; Hajebi, Ahmad

    2016-01-01

    This study is a sociological analysis of the three dimensions of social structure including institutional, relational, and embodied structures that have an impact on the individuals' deviant behaviors in the society. The authors used a mix method to analyze the qualitative and quantitative data of 402 high risk abandoned substance users in 2008 in Tehran, capital city of Iran. The leading reasons of substance use were categorized into four fundamental themes as follows: stress, deviant social networks, and low social capital and weak social support sources. In addition, the epidemiology model of regression analysis provides a brief explanation to assess the association between the demographical and etiological variables, and the drug users' deviant behaviors. In sum, substance use is discussed as a deviant behavior pattern which stems from a comorbidity of weak social structures.

  13. Structure of the alexithymic brain: A parametric coordinate-based meta-analysis.

    PubMed

    Xu, Pengfei; Opmeer, Esther M; van Tol, Marie-José; Goerlich, Katharina S; Aleman, André

    2018-04-01

    Alexithymia refers to deficiencies in identifying and expressing emotions. This might be related to changes in structural brain volumes, but its neuroanatomical basis remains uncertain as studies have shown heterogeneous findings. Therefore, we conducted a parametric coordinate-based meta-analysis. We identified seventeen structural neuroimaging studies (including a total of 2586 individuals with different levels of alexithymia) investigating the association between gray matter volume and alexithymia. Volumes of the left insula, left amygdala, orbital frontal cortex and striatum were consistently smaller in people with high levels of alexithymia. These areas are important for emotion perception and emotional experience. Smaller volumes in these areas might lead to deficiencies in appropriately identifying and expressing emotions. These findings provide the first quantitative integration of results pertaining to the structural neuroanatomical basis of alexithymia. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Low-frequency nondestructive analysis of cracks in multilayer structures using a scanning magnetic microscope

    NASA Astrophysics Data System (ADS)

    Adamo, M.; Nappi, C.; Sarnelli, E.

    2010-09-01

    The use of a scanning magnetic microscope (SMM) with a high temperature superconducting quantum interference device (SQUID) for quantitative measurements in eddy current nondestructive analysis (NDA) is presented. The SQUID has been used to detect the weak magnetic field variations around a small defect, close to a structural part generating an intensive magnetic field. The experimental data for a deep crack close to a rivet in a multilayer conducting plate have been taken in a RF-shielded environment and discussed in the light of the theoretical predictions. The results show that eddy current NDA can distinguish subsurface crack signals from wider structural signals, with defects located 10 mm below the surface. Moreover, in order to visualize the structure of the probing current when a circular induction coil is used, the simulation of eddy currents in a thick unflawed conducting plate has been carried out.

  15. [Quantitative surface analysis of Pt-Co, Cu-Au and Cu-Ag alloy films by XPS and AES].

    PubMed

    Li, Lian-Zhong; Zhuo, Shang-Jun; Shen, Ru-Xiang; Qian, Rong; Gao, Jie

    2013-11-01

    In order to improve the quantitative analysis accuracy of AES, We associated XPS with AES and studied the method to reduce the error of AES quantitative analysis, selected Pt-Co, Cu-Au and Cu-Ag binary alloy thin-films as the samples, used XPS to correct AES quantitative analysis results by changing the auger sensitivity factors to make their quantitative analysis results more similar. Then we verified the accuracy of the quantitative analysis of AES when using the revised sensitivity factors by other samples with different composition ratio, and the results showed that the corrected relative sensitivity factors can reduce the error in quantitative analysis of AES to less than 10%. Peak defining is difficult in the form of the integral spectrum of AES analysis since choosing the starting point and ending point when determining the characteristic auger peak intensity area with great uncertainty, and to make analysis easier, we also processed data in the form of the differential spectrum, made quantitative analysis on the basis of peak to peak height instead of peak area, corrected the relative sensitivity factors, and verified the accuracy of quantitative analysis by the other samples with different composition ratio. The result showed that the analytical error in quantitative analysis of AES reduced to less than 9%. It showed that the accuracy of AES quantitative analysis can be highly improved by the way of associating XPS with AES to correct the auger sensitivity factors since the matrix effects are taken into account. Good consistency was presented, proving the feasibility of this method.

  16. Evolution, Energy Landscapes and the Paradoxes of Protein Folding

    PubMed Central

    Wolynes, Peter G.

    2014-01-01

    Protein folding has been viewed as a difficult problem of molecular self-organization. The search problem involved in folding however has been simplified through the evolution of folding energy landscapes that are funneled. The funnel hypothesis can be quantified using energy landscape theory based on the minimal frustration principle. Strong quantitative predictions that follow from energy landscape theory have been widely confirmed both through laboratory folding experiments and from detailed simulations. Energy landscape ideas also have allowed successful protein structure prediction algorithms to be developed. The selection constraint of having funneled folding landscapes has left its imprint on the sequences of existing protein structural families. Quantitative analysis of co-evolution patterns allows us to infer the statistical characteristics of the folding landscape. These turn out to be consistent with what has been obtained from laboratory physicochemical folding experiments signalling a beautiful confluence of genomics and chemical physics. PMID:25530262

  17. QSAR study of anthranilic acid sulfonamides as inhibitors of methionine aminopeptidase-2 using LS-SVM and GRNN based on principal components.

    PubMed

    Shahlaei, Mohsen; Sabet, Razieh; Ziari, Maryam Bahman; Moeinifard, Behzad; Fassihi, Afshin; Karbakhsh, Reza

    2010-10-01

    Quantitative relationships between molecular structure and methionine aminopeptidase-2 inhibitory activity of a series of cytotoxic anthranilic acid sulfonamide derivatives were discovered. We have demonstrated the detailed application of two efficient nonlinear methods for evaluation of quantitative structure-activity relationships of the studied compounds. Components produced by principal component analysis as input of developed nonlinear models were used. The performance of the developed models namely PC-GRNN and PC-LS-SVM were tested by several validation methods. The resulted PC-LS-SVM model had a high statistical quality (R(2)=0.91 and R(CV)(2)=0.81) for predicting the cytotoxic activity of the compounds. Comparison between predictability of PC-GRNN and PC-LS-SVM indicates that later method has higher ability to predict the activity of the studied molecules. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  18. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  19. Analysis of defect structure in silicon. Silicon sheet growth development for the large area silicon sheet task of the Low-Cost Solar array Project

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Mena, M.; Plichta, M.; Smith, J. M.; Sellani, M. A.

    1982-01-01

    One hundred ninety-three silicon sheet samples, approximately 880 square centimeters, were analyzed for twin boundary density, dislocation pit density, and grain boundary length. One hundred fifteen of these samples were manufactured by a heat exchanger method, thirty-eight by edge defined film fed growth, twenty-three by the silicon on ceramics process, and ten by the dendritic web process. Seven solar cells were also step-etched to determine the internal defect distribution on these samples. Procedures were developed or the quantitative characterization of structural defects such as dislocation pits, precipitates, twin & grain boundaries using a QTM 720 quantitative image analyzing system interfaced with a PDP 11/03 mini computer. Characterization of the grain boundary length per unit area for polycrystalline samples was done by using the intercept method on an Olympus HBM Microscope.

  20. Large-visual-angle microstructure inspired from quantitative design of Morpho butterflies' lamellae deviation using the FDTD/PSO method.

    PubMed

    Wang, Wanlin; Zhang, Wang; Chen, Weixin; Gu, Jiajun; Liu, Qinglei; Deng, Tao; Zhang, Di

    2013-01-15

    The wide angular range of the treelike structure in Morpho butterfly scales was investigated by finite-difference time-domain (FDTD)/particle-swarm-optimization (PSO) analysis. Using the FDTD method, different parameters in the Morpho butterflies' treelike structure were studied and their contributions to the angular dependence were analyzed. Then a wide angular range was realized by the PSO method from quantitatively designing the lamellae deviation (Δy), which was a crucial parameter with angular range. The field map of the wide-range reflection in a large area was given to confirm the wide angular range. The tristimulus values and corresponding color coordinates for various viewing directions were calculated to confirm the blue color in different observation angles. The wide angular range realized by the FDTD/PSO method will assist us in understanding the scientific principles involved and also in designing artificial optical materials.

  1. Spin-polarized scanning tunneling microscopy with quantitative insights into magnetic probes

    NASA Astrophysics Data System (ADS)

    Phark, Soo-hyon; Sander, Dirk

    2017-04-01

    Spin-polarized scanning tunneling microscopy and spectroscopy (spin-STM/S) have been successfully applied to magnetic characterizations of individual nanostructures. Spin-STM/S is often performed in magnetic fields of up to some Tesla, which may strongly influence the tip state. In spite of the pivotal role of the tip in spin-STM/S, the contribution of the tip to the differential conductance d I/d V signal in an external field has rarely been investigated in detail. In this review, an advanced analysis of spin-STM/S data measured on magnetic nanoislands, which relies on a quantitative magnetic characterization of tips, is discussed. Taking advantage of the uniaxial out-of-plane magnetic anisotropy of Co bilayer nanoisland on Cu(111), in-field spin-STM on this system has enabled a quantitative determination, and thereby, a categorization of the magnetic states of the tips. The resulting in-depth and conclusive analysis of magnetic characterization of the tip opens new venues for a clear-cut sub-nanometer scale spin ordering and spin-dependent electronic structure of the non-collinear magnetic state in bilayer high Fe nanoislands on Cu(111).

  2. A novel image-based quantitative method for the characterization of NETosis

    PubMed Central

    Zhao, Wenpu; Fogg, Darin K.; Kaplan, Mariana J.

    2015-01-01

    NETosis is a newly recognized mechanism of programmed neutrophil death. It is characterized by a stepwise progression of chromatin decondensation, membrane rupture, and release of bactericidal DNA-based structures called neutrophil extracellular traps (NETs). Conventional ‘suicidal’ NETosis has been described in pathogenic models of systemic autoimmune disorders. Recent in vivo studies suggest that a process of ‘vital’ NETosis also exists, in which chromatin is condensed and membrane integrity is preserved. Techniques to assess ‘suicidal’ or ‘vital’ NET formation in a specific, quantitative, rapid and semiautomated way have been lacking, hindering the characterization of this process. Here we have developed a new method to simultaneously assess both ‘suicidal’ and ‘vital’ NETosis, using high-speed multi-spectral imaging coupled to morphometric image analysis, to quantify spontaneous NET formation observed ex-vivo or stimulus-induced NET formation triggered in vitro. Use of imaging flow cytometry allows automated, quantitative and rapid analysis of subcellular morphology and texture, and introduces the potential for further investigation using NETosis as a biomarker in pre-clinical and clinical studies. PMID:26003624

  3. T1, diffusion tensor, and quantitative magnetization transfer imaging of the hippocampus in an Alzheimer's disease mouse model.

    PubMed

    Whittaker, Heather T; Zhu, Shenghua; Di Curzio, Domenico L; Buist, Richard; Li, Xin-Min; Noy, Suzanna; Wiseman, Frances K; Thiessen, Jonathan D; Martin, Melanie

    2018-07-01

    Alzheimer's disease (AD) pathology causes microstructural changes in the brain. These changes, if quantified with magnetic resonance imaging (MRI), could be studied for use as an early biomarker for AD. The aim of our study was to determine if T 1 relaxation, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) metrics could reveal changes within the hippocampus and surrounding white matter structures in ex vivo transgenic mouse brains overexpressing human amyloid precursor protein with the Swedish mutation. Delineation of hippocampal cell layers using DTI color maps allows more detailed analysis of T 1 -weighted imaging, DTI, and qMTI metrics, compared with segmentation of gross anatomy based on relaxation images, and with analysis of DTI or qMTI metrics alone. These alterations are observed in the absence of robust intracellular Aβ accumulation or plaque deposition as revealed by histology. This work demonstrates that multiparametric quantitative MRI methods are useful for characterizing changes within the hippocampal substructures and surrounding white matter tracts of mouse models of AD. Copyright © 2018. Published by Elsevier Inc.

  4. Finite Element Analysis of Quantitative Percussion Diagnostics for Evaluating the Strength of Bonds Between Composite Laminates

    NASA Astrophysics Data System (ADS)

    Poveromo, Scott; Malcolm, Doug; Earthman, James

    Conventional nondestructive (NDT) techniques used to detect defects in composites are not able to determine intact bond integrity within a composite structure and are costly to use on large and complex shaped surfaces. To overcome current NDT limitations, a new technology was adopted based on quantitative percussion diagnostics (QPD) to better quantify bond quality in fiber reinforced composite materials. Results indicate that this technology is capable of detecting weak (`kiss') bonds between flat composite laminates. Specifically, the local value of the probe force determined from quantitative percussion testing was predicted to be significantly lower for a laminate that contained a `kiss' bond compared to that for a well-bonded sample, which is in agreement with experimental findings. Experimental results were compared to a finite element analysis (FEA) using MSC PATRAN/NASTRAN to understand the visco-elastic behavior of the laminates during percussion testing. The dynamic FEA models were used to directly predict changes in the probe force, as well as effective stress distributions across the bonded panels as a function of time.

  5. The relationship between structure and magnetic properties in ultra-fine grained/nanostructured FePd alloys

    NASA Astrophysics Data System (ADS)

    Okumura, Hideyuki

    In this study, the magnetic behavior including coercivity and the magnetic phase transition (ferromagnetic ↔ paramagnetic) and related phenomena were qualitatively and quantitatively investigated in ultra-fine grained/nanostructured FePd permanent magnet alloys, in relation to the microstructure and defect structure, and the results were compared with bulk FePd. Most of the alloy specimens investigated were in the form of epoxybonded magnets or isostatically-pressed pellets, formed from powders which were produced with high energy ball milling. Some results of thin films and ribbons produced with sputtering and melt-spinning, respectively, are also included in this thesis. Characterization of the materials was performed by using X-ray diffraction techniques with texture measurement, transmission electron microscopy with Lorentz microscopy, scanning electron microscopy with EDS analysis, optical microscopy and vibrating sample magnetometry. X-ray line broadening analysis was utilized for the quantitative characterization of the nanoscale microstructure, and it was found that the Cauchy-Gaussian profile assumption best describes the broadening data. Enhanced coercivities ˜10 times those of the bulk FePd obtained using conventional heat treatments were explained as the result of statistical (stochastic) unpinning of interaction domain walls out of the potential well at the grain boundary, and there is also an additional effect ascribed to an increase of the magnetocrystalline anisotropy, which is mainly due to the metastable c/a ratio of the nanostructured ordered phase and possibly to stress anisotropy. At the same time, there is also a decrease of the coercivity for smaller grain sizes because of the "magnetically soft" grain boundary phase. A semi-quantitative theoretical model is proposed, which includes the effect of exchange coupling between the ordered grains. The so-called Kronmuller analysis based on the wall pinning model was self-consistent, supporting the notion that wall pinning by grain boundary is the dominant mechanism controlling the coercivity in the nanostructured aggregates in which the magnetic structure is comprised of interaction domains. Furthermore, conventionally structure-insensitive, intrinsic properties such as the saturation magnetization and Curie temperature were found to become structure-sensitive in these materials. The results were semi-quantitatively explained by consideration of the extraordinary microstructure and defect structure involving the high and complex strain fields, metastable tetragonalities, nonequilibrium grain boundaries, extremely high surface-to-volume ratios and perturbed coordination spheres. The possible change in the atomic bond character particularly around grain boundaries is also briefly discussed. It seems that there is a significant fluctuation in exchange couplings at the grain boundary volume, causing the variation of the saturation magnetization, while for the variation of the Curie temperature the powder surface instead of the grain boundary is more important. A modified localized moment model and thus Hund's rules seem applicable to the FePd alloy systems, and the spin density fluctuations seem small in the FePd alloys.

  6. Quantitative Analysis of the Effective Functional Structure in Yeast Glycolysis

    PubMed Central

    De la Fuente, Ildefonso M.; Cortes, Jesus M.

    2012-01-01

    The understanding of the effective functionality that governs the enzymatic self-organized processes in cellular conditions is a crucial topic in the post-genomic era. In recent studies, Transfer Entropy has been proposed as a rigorous, robust and self-consistent method for the causal quantification of the functional information flow among nonlinear processes. Here, in order to quantify the functional connectivity for the glycolytic enzymes in dissipative conditions we have analyzed different catalytic patterns using the technique of Transfer Entropy. The data were obtained by means of a yeast glycolytic model formed by three delay differential equations where the enzymatic rate equations of the irreversible stages have been explicitly considered. These enzymatic activity functions were previously modeled and tested experimentally by other different groups. The results show the emergence of a new kind of dynamical functional structure, characterized by changing connectivity flows and a metabolic invariant that constrains the activity of the irreversible enzymes. In addition to the classical topological structure characterized by the specific location of enzymes, substrates, products and feedback-regulatory metabolites, an effective functional structure emerges in the modeled glycolytic system, which is dynamical and characterized by notable variations of the functional interactions. The dynamical structure also exhibits a metabolic invariant which constrains the functional attributes of the enzymes. Finally, in accordance with the classical biochemical studies, our numerical analysis reveals in a quantitative manner that the enzyme phosphofructokinase is the key-core of the metabolic system, behaving for all conditions as the main source of the effective causal flows in yeast glycolysis. PMID:22393350

  7. Quantitative learning strategies based on word networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yue-Tian-Yi; Jia, Zi-Yang; Tang, Yong; Xiong, Jason Jie; Zhang, Yi-Cheng

    2018-02-01

    Learning English requires a considerable effort, but the way that vocabulary is introduced in textbooks is not optimized for learning efficiency. With the increasing population of English learners, learning process optimization will have significant impact and improvement towards English learning and teaching. The recent developments of big data analysis and complex network science provide additional opportunities to design and further investigate the strategies in English learning. In this paper, quantitative English learning strategies based on word network and word usage information are proposed. The strategies integrate the words frequency with topological structural information. By analyzing the influence of connected learned words, the learning weights for the unlearned words and dynamically updating of the network are studied and analyzed. The results suggest that quantitative strategies significantly improve learning efficiency while maintaining effectiveness. Especially, the optimized-weight-first strategy and segmented strategies outperform other strategies. The results provide opportunities for researchers and practitioners to reconsider the way of English teaching and designing vocabularies quantitatively by balancing the efficiency and learning costs based on the word network.

  8. Spectral Domain Optical Coherence Tomography in Glaucoma: Qualitative and Quantitative Analysis of the Optic Nerve Head and Retinal Nerve Fiber Layer (An AOS Thesis)

    PubMed Central

    Chen, Teresa C.

    2009-01-01

    Purpose: To demonstrate that video-rate spectral domain optical coherence tomography (SDOCT) can qualitatively and quantitatively evaluate optic nerve head (ONH) and retinal nerve fiber layer (RNFL) glaucomatous structural changes. To correlate quantitative SDOCT parameters with disc photography and visual fields. Methods: SDOCT images from 4 glaucoma eyes (4 patients) with varying stages of open-angle glaucoma (ie, early, moderate, late) were qualitatively contrasted with 2 age-matched normal eyes (2 patients). Of 61 other consecutive patients recruited in an institutional setting, 53 eyes (33 patients) met inclusion/exclusion criteria for quantitative studies. Images were obtained using two experimental SDOCT systems, one utilizing a superluminescent diode and the other a titanium:sapphire laser source, with axial resolutions of about 6 μm and 3 μm, respectively. Results: Classic glaucomatous ONH and RNFL structural changes were seen in SDOCT images. An SDOCT reference plane 139 μm above the retinal pigment epithelium yielded cup-disc ratios that best correlated with masked physician disc photography cup-disc ratio assessments. The minimum distance band, a novel SDOCT neuroretinal rim parameter, showed good correlation with physician cup-disc ratio assessments, visual field mean deviation, and pattern standard deviation (P values range, .0003–.024). RNFL and retinal thickness maps correlated well with disc photography and visual field testing. Conclusions: To our knowledge, this thesis presents the first comprehensive qualitative and quantitative evaluation of SDOCT images of the ONH and RNFL in glaucoma. This pilot study provides basis for developing more automated quantitative SDOCT-specific glaucoma algorithms needed for future prospective multicenter national trials. PMID:20126502

  9. Comparing quantitative analysis on revealed comparative advantages of aquatic products trade of china and ASEAN based on 21st century maritime silk road

    NASA Astrophysics Data System (ADS)

    Luo, X. F.; Han, Y. H.; Li, Z. W.

    2017-11-01

    As the world’s leading aquaculture, aquatic production and trading country, China’s development of aquatic products trade with ASEAN is facing a historic opportunity in the favourable circumstances of construction of the 21st century Maritime Silk Road. In order to make guidance of the product selection and transformation for corresponding export enterprises, this article makes a quantitative analysis the Revealed Comparative Advantage of aquatic products trade from China and ASEAN respectively based on the HS classification and thoroughly compares the RCA indices. The comparison results show that the international competitiveness of aquatic products structures of China and ASEAN are quite different with few overlaps of strong competitive products, and there is a great gap between the two areas in many kinds of products.

  10. 2L-PCA: a two-level principal component analyzer for quantitative drug design and its applications.

    PubMed

    Du, Qi-Shi; Wang, Shu-Qing; Xie, Neng-Zhong; Wang, Qing-Yan; Huang, Ri-Bo; Chou, Kuo-Chen

    2017-09-19

    A two-level principal component predictor (2L-PCA) was proposed based on the principal component analysis (PCA) approach. It can be used to quantitatively analyze various compounds and peptides about their functions or potentials to become useful drugs. One level is for dealing with the physicochemical properties of drug molecules, while the other level is for dealing with their structural fragments. The predictor has the self-learning and feedback features to automatically improve its accuracy. It is anticipated that 2L-PCA will become a very useful tool for timely providing various useful clues during the process of drug development.

  11. Raman spectra and phase transitions in Rb{sub 2}KInF{sub 6} elpasolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krylov, A. S.; Krylova, S. N., E-mail: slanky@iph.krasn.ru; Vtyurin, A. N.

    2011-01-15

    The Raman spectra of Rb{sub 2}KInF{sub 6} elpasolite crystal have been studied in a wide temperature range, including two phase transitions: from the cubic phase to the tetragonal phase and then to the monoclinic phase. Several anomalies of internal modes of InF{sub 6} octahedra and low-frequency lattice vibrations, which are related to the structural changes at the transition points, have been found and quantitatively analyzed. The results of a quantitative analysis of the temperature dependences of the parameters of spectral lines are in good agreement with the thermodynamic data on the phase transitions.

  12. Translational PK/PD of Anti-Infective Therapeutics

    PubMed Central

    Rathi, Chetan; Lee, Richard E.; Meibohm, Bernd

    2016-01-01

    Translational PK/PD modeling has emerged as a critical technique for quantitative analysis of the relationship between dose, exposure and response of antibiotics. By combining model components for pharmacokinetics, bacterial growth kinetics and concentration-dependent drug effects, these models are able to quantitatively capture and simulate the complex interplay between antibiotic, bacterium and host organism. Fine-tuning of these basic model structures allows to further account for complicating factors such as resistance development, combination therapy, or host responses. With this tool set at hand, mechanism-based PK/PD modeling and simulation allows to develop optimal dosing regimens for novel and established antibiotics for maximum efficacy and minimal resistance development. PMID:27978987

  13. Development of Optimization method about Capital Structure and Senior-Sub Structure by considering Project-Risk

    NASA Astrophysics Data System (ADS)

    Kawamoto, Shigeru; Ikeda, Yuichi; Fukui, Chihiro; Tateshita, Fumihiko

    Private finance initiative is a business scheme that materializes social infrastructure and public services by utilizing private-sector resources. In this paper we propose a new method to optimize capital structure, which is the ratio of capital to debt, and senior-sub structure, which is the ratio of senior loan to subordinated loan, for private finance initiative. We make the quantitative analysis of a private finance initiative's project using the proposed method. We analyze trade-off structure between risk and return in the project, and optimize capital structure and senior-sub structure. The method we propose helps to improve financial stability of the project, and to make a fund raising plan that is expected to be reasonable for project sponsor and moneylender.

  14. Comprehensive and quantitative profiling of lipid species in human milk, cow milk and a phospholipid-enriched milk formula by GC and MS/MSALL.

    PubMed

    Sokol, Elena; Ulven, Trond; Færgeman, Nils J; Ejsing, Christer S

    2015-06-01

    Here we present a workflow for in-depth analysis of milk lipids that combines gas chromatography (GC) for fatty acid (FA) profiling and a shotgun lipidomics routine termed MS/MS ALL for structural characterization of molecular lipid species. To evaluate the performance of the workflow we performed a comparative lipid analysis of human milk, cow milk, and Lacprodan® PL-20, a phospholipid-enriched milk protein concentrate for infant formula. The GC analysis showed that human milk and Lacprodan have a similar FA profile with higher levels of unsaturated FAs as compared to cow milk. In-depth lipidomic analysis by MS/MS ALL revealed that each type of milk sample comprised distinct composition of molecular lipid species. Lipid class composition showed that the human and cow milk contain a higher proportion of triacylglycerols (TAGs) as compared to Lacprodan. Notably, the MS/MS ALL analysis demonstrated that the similar FA profile of human milk and Lacprodan determined by GC analysis is attributed to the composition of individual TAG species in human milk and glycerophospholipid species in Lacprodan. Moreover, the analysis of TAG molecules in Lacprodan and cow milk showed a high proportion of short-chain FAs that could not be monitored by GC analysis. The results presented here show that complementary GC and MS/MS ALL analysis is a powerful approach for characterization of molecular lipid species in milk and milk products. : Milk lipid analysis is routinely performed using gas chromatography. This method reports the total fatty acid composition of all milk lipids, but provides no structural or quantitative information about individual lipid molecules in milk or milk products. Here we present a workflow that integrates gas chromatography for fatty acid profiling and a shotgun lipidomics routine termed MS/MS ALL for structural analysis and quantification of molecular lipid species. We demonstrate the efficacy of this complementary workflow by a comparative analysis of molecular lipid species in human milk, cow milk, and a milk-based supplement used for infant formula.

  15. Comprehensive and quantitative profiling of lipid species in human milk, cow milk and a phospholipid-enriched milk formula by GC and MS/MSALL

    PubMed Central

    Sokol, Elena; Ulven, Trond; Færgeman, Nils J; Ejsing, Christer S

    2015-01-01

    Here we present a workflow for in-depth analysis of milk lipids that combines gas chromatography (GC) for fatty acid (FA) profiling and a shotgun lipidomics routine termed MS/MSALL for structural characterization of molecular lipid species. To evaluate the performance of the workflow we performed a comparative lipid analysis of human milk, cow milk, and Lacprodan® PL-20, a phospholipid-enriched milk protein concentrate for infant formula. The GC analysis showed that human milk and Lacprodan have a similar FA profile with higher levels of unsaturated FAs as compared to cow milk. In-depth lipidomic analysis by MS/MSALL revealed that each type of milk sample comprised distinct composition of molecular lipid species. Lipid class composition showed that the human and cow milk contain a higher proportion of triacylglycerols (TAGs) as compared to Lacprodan. Notably, the MS/MSALL analysis demonstrated that the similar FA profile of human milk and Lacprodan determined by GC analysis is attributed to the composition of individual TAG species in human milk and glycerophospholipid species in Lacprodan. Moreover, the analysis of TAG molecules in Lacprodan and cow milk showed a high proportion of short-chain FAs that could not be monitored by GC analysis. The results presented here show that complementary GC and MS/MSALL analysis is a powerful approach for characterization of molecular lipid species in milk and milk products. Practical applications : Milk lipid analysis is routinely performed using gas chromatography. This method reports the total fatty acid composition of all milk lipids, but provides no structural or quantitative information about individual lipid molecules in milk or milk products. Here we present a workflow that integrates gas chromatography for fatty acid profiling and a shotgun lipidomics routine termed MS/MSALL for structural analysis and quantification of molecular lipid species. We demonstrate the efficacy of this complementary workflow by a comparative analysis of molecular lipid species in human milk, cow milk, and a milk-based supplement used for infant formula. PMID:26089741

  16. 3D-QSAR study and design of 4-hydroxyamino α-pyranone carboxamide analogues as potential anti-HCV agents

    NASA Astrophysics Data System (ADS)

    Li, Wenlian; Xiao, Faqi; Zhou, Mingming; Jiang, Xuejin; Liu, Jun; Si, Hongzong; Xie, Meng; Ma, Xiuting; Duan, Yunbo; Zhai, Honglin

    2016-09-01

    The three dimensional-quantitative structure activity relationship (3D-QSAR) study was performed on a series of 4-hydroxyamino α-pyranone carboxamide analogues using comparative molecular similarity indices analysis (COMSIA). The purpose of the present study was to develop a satisfactory model providing a reliable prediction based on 4-hydroxyamino α-pyranone carboxamide analogues as anti-HCV (hepatitis C virus) inhibitors. The statistical results and the results of validation of this optimum COMSIA model were satisfactory. Furthermore, analysis of the contour maps helped to provide guidelines for finding structural requirement. Therefore, the satisfactory results from this study may provide useful guidelines for drug development of anti-HCV inhibitors.

  17. Analyzing Two-Phase Single-Case Data with Non-overlap and Mean Difference Indices: Illustration, Software Tools, and Alternatives.

    PubMed

    Manolov, Rumen; Losada, José L; Chacón-Moscoso, Salvador; Sanduvete-Chaves, Susana

    2016-01-01

    Two-phase single-case designs, including baseline evaluation followed by an intervention, represent the most clinically straightforward option for combining professional practice and research. However, unless they are part of a multiple-baseline schedule, such designs do not allow demonstrating a causal relation between the intervention and the behavior. Although the statistical options reviewed here cannot help overcoming this methodological limitation, we aim to make practitioners and applied researchers aware of the available appropriate options for extracting maximum information from the data. In the current paper, we suggest that the evaluation of behavioral change should include visual and quantitative analyses, complementing the substantive criteria regarding the practical importance of the behavioral change. Specifically, we emphasize the need to use structured criteria for visual analysis, such as the ones summarized in the What Works Clearinghouse Standards, especially if such criteria are complemented by visual aids, as illustrated here. For quantitative analysis, we focus on the non-overlap of all pairs and the slope and level change procedure, as they offer straightforward information and have shown reasonable performance. An illustration is provided of the use of these three pieces of information: visual, quantitative, and substantive. To make the use of visual and quantitative analysis feasible, open source software is referred to and demonstrated. In order to provide practitioners and applied researchers with a more complete guide, several analytical alternatives are commented on pointing out the situations (aims, data patterns) for which these are potentially useful.

  18. Analyzing Two-Phase Single-Case Data with Non-overlap and Mean Difference Indices: Illustration, Software Tools, and Alternatives

    PubMed Central

    Manolov, Rumen; Losada, José L.; Chacón-Moscoso, Salvador; Sanduvete-Chaves, Susana

    2016-01-01

    Two-phase single-case designs, including baseline evaluation followed by an intervention, represent the most clinically straightforward option for combining professional practice and research. However, unless they are part of a multiple-baseline schedule, such designs do not allow demonstrating a causal relation between the intervention and the behavior. Although the statistical options reviewed here cannot help overcoming this methodological limitation, we aim to make practitioners and applied researchers aware of the available appropriate options for extracting maximum information from the data. In the current paper, we suggest that the evaluation of behavioral change should include visual and quantitative analyses, complementing the substantive criteria regarding the practical importance of the behavioral change. Specifically, we emphasize the need to use structured criteria for visual analysis, such as the ones summarized in the What Works Clearinghouse Standards, especially if such criteria are complemented by visual aids, as illustrated here. For quantitative analysis, we focus on the non-overlap of all pairs and the slope and level change procedure, as they offer straightforward information and have shown reasonable performance. An illustration is provided of the use of these three pieces of information: visual, quantitative, and substantive. To make the use of visual and quantitative analysis feasible, open source software is referred to and demonstrated. In order to provide practitioners and applied researchers with a more complete guide, several analytical alternatives are commented on pointing out the situations (aims, data patterns) for which these are potentially useful. PMID:26834691

  19. Quantitative mutant analysis of viral quasispecies by chip-based matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry

    PubMed Central

    Amexis, Georgios; Oeth, Paul; Abel, Kenneth; Ivshina, Anna; Pelloquin, Francois; Cantor, Charles R.; Braun, Andreas; Chumakov, Konstantin

    2001-01-01

    RNA viruses exist as quasispecies, heterogeneous and dynamic mixtures of mutants having one or more consensus sequences. An adequate description of the genomic structure of such viral populations must include the consensus sequence(s) plus a quantitative assessment of sequence heterogeneities. For example, in quality control of live attenuated viral vaccines, the presence of even small quantities of mutants or revertants may indicate incomplete or unstable attenuation that may influence vaccine safety. Previously, we demonstrated the monitoring of oral poliovirus vaccine with the use of mutant analysis by PCR and restriction enzyme cleavage (MAPREC). In this report, we investigate genetic variation in live attenuated mumps virus vaccine by using both MAPREC and a platform (DNA MassArray) based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Mumps vaccines prepared from the Jeryl Lynn strain typically contain at least two distinct viral substrains, JL1 and JL2, which have been characterized by full length sequencing. We report the development of assays for characterizing sequence variants in these substrains and demonstrate their use in quantitative analysis of substrains and sequence variations in mixed virus cultures and mumps vaccines. The results obtained from both the MAPREC and MALDI-TOF methods showed excellent correlation. This suggests the potential utility of MALDI-TOF for routine quality control of live viral vaccines and for assessment of genetic stability and quantitative monitoring of genetic changes in other RNA viruses of clinical interest. PMID:11593021

  20. PREDICTING TOXICOLOGICAL ENDPOINTS OF CHEMICALS USING QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSARS)

    EPA Science Inventory

    Quantitative structure-activity relationships (QSARs) are being developed to predict the toxicological endpoints for untested chemicals similar in structure to chemicals that have known experimental toxicological data. Based on a very large number of predetermined descriptors, a...

  1. Automated fine structure image analysis method for discrimination of diabetic retinopathy stage using conjunctival microvasculature images

    PubMed Central

    Khansari, Maziyar M; O’Neill, William; Penn, Richard; Chau, Felix; Blair, Norman P; Shahidi, Mahnaz

    2016-01-01

    The conjunctiva is a densely vascularized mucus membrane covering the sclera of the eye with a unique advantage of accessibility for direct visualization and non-invasive imaging. The purpose of this study is to apply an automated quantitative method for discrimination of different stages of diabetic retinopathy (DR) using conjunctival microvasculature images. Fine structural analysis of conjunctival microvasculature images was performed by ordinary least square regression and Fisher linear discriminant analysis. Conjunctival images between groups of non-diabetic and diabetic subjects at different stages of DR were discriminated. The automated method’s discriminate rates were higher than those determined by human observers. The method allowed sensitive and rapid discrimination by assessment of conjunctival microvasculature images and can be potentially useful for DR screening and monitoring. PMID:27446692

  2. Raman structural study of melt-mixed blends of isotactic polypropylene with polyethylene of various densities

    NASA Astrophysics Data System (ADS)

    Prokhorov, K. A.; Nikolaeva, G. Yu; Sagitova, E. A.; Pashinin, P. P.; Guseva, M. A.; Shklyaruk, B. F.; Gerasin, V. A.

    2018-04-01

    We report a Raman structural study of melt-mixed blends of isotactic polypropylene with two grades of polyethylene: linear high-density and branched low-density polyethylenes. Raman methods, which had been suggested for the analysis of neat polyethylene and isotactic polypropylene, were modified in this study for quantitative analysis of polyethylene/polypropylene blends. We revealed the dependence of the degree of crystallinity and conformational composition of macromolecules in the blends on relative content of the blend components and preparation conditions (quenching or annealing). We suggested a simple Raman method for evaluation of the relative content of the components in polyethylene/polypropylene blends. The degree of crystallinity of our samples, evaluated by Raman spectroscopy, is in good agreement with the results of analysis by differential scanning calorimetry.

  3. Characterization of the Bm61 of the Bombyx mori nucleopolyhedrovirus.

    PubMed

    Shen, Hongxing; Chen, Keping; Yao, Qin; Zhou, Yang

    2009-07-01

    orf61 (bm61) of Bombyx mori Nucleopolyhedrovirus (BmNPV) is a highly conserved baculovirus gene, suggesting that it performs an important role in the virus life cycle whose function is unknown. In this study, we describe the characterization of bm61. Quantitative polymerase chain reaction (qPCR) and western blot analysis demonstrated that bm61 was expressed as a late gene. Immunofluorescence analysis by confocal microscopy showed that BM61 protein was localized on nuclear membrane and in intranuclear ring zone of infected cells. Structure localization of the BM61 in BV and ODV by western analysis demonstrated that BM61 was the protein of both BV and ODV. In addition, our data indicated that BM61 was a late structure protein localized in nucleus.

  4. Determination of Paleoseismic Ground Motions from Inversion of Block Failures in Masonry Structures

    NASA Astrophysics Data System (ADS)

    Yagoda-Biran, G.; Hatzor, Y. H.

    2010-12-01

    Accurate estimation of ground motion parameters such as expected peak ground acceleration (PGA), predominant frequency and duration of motion in seismically active regions, is crucial for hazard preparedness and sound engineering design. The best way to estimate quantitatively these parameters would be to investigate long term recorded data of past strong earthquakes in a studied region. In some regions of the world however recorded data are scarce due to lack of seismic network infrastructure, and in all regions the availability of recorded data is restricted to the late 19th century and onwards. Therefore, existing instrumental data are hardly representative of the true seismicity of a region. When recorded data are scarce or not available, alternative methods may be applied, for example adopting a quantitative paleoseismic approach. In this research we suggest the use of seismically damaged masonry structures as paleoseismic indicators. Visitors to archeological sites all over the world are often struck by structural failure features which seem to be "seismically driven", particularly when inspecting old masonry structures. While it is widely accepted that no other loading mechanism can explain the preserved damage, the actual driving mechanism remains enigmatic even now. In this research we wish to explore how such failures may be triggered by earthquake induced ground motions and use observed block displacements to determine the characteristic parameters of the paleoseismic earthquake motion, namely duration, frequency, and amplitude. This is performed utilizing a 3D, fully dynamic, numerical analysis performed with the Discontinuous Deformation Analysis (DDA) method. Several case studies are selected for 3D numerical analysis. First we study a simple structure in the old city of L'Aquila, Italy. L'Aquila was hit by an earthquake on April 6th, 2009, with over 300 casualties and many of its medieval buildings damaged. This case study is an excellent opportunity to validate our method, since in the case of L'Aquila, both the damaged structure and the ground motions are recorded. The 3D modeling of the structure is rather complicated, and is performed by first modeling the structure with CAD software and later "translating" the model to the numerical code used. In the future, several more case studies will be analyzed, such as Kedesh and Avdat in Israel, and in collaboration with Hugh and Bilham the Temple of Shiva at Pandrethan, Kashmir. Establishing a numerical 3D dynamic analysis for back analysis of stone displacement in masonry structures as a paleoseismic tool can provide much needed data on ground motion parameters in regions where instrumental data are scarce, or are completely absent.

  5. Variation Principles and Applications in the Study of Cell Structure and Aging

    NASA Technical Reports Server (NTRS)

    Economos, Angelos C.; Miquel, Jaime; Ballard, Ralph C.; Johnson, John E., Jr.

    1981-01-01

    In this report we have attempted to show that "some reality lies concealed in biological variation". This "reality" has its principles, laws, mechanisms, and rules, only a few of which we have sketched. A related idea we pursued was that important information may be lost in the process of ignoring frequency distributions of physiological variables (as is customary in experimental physiology and gerontology). We suggested that it may be advantageous to expand one's "statistical field of vision" beyond simple averages +/- standard deviations. Indeed, frequency distribution analysis may make visible some hidden information not evident from a simple qualitative analysis, particularly when the effect of some external factor or condition (e.g., aging, dietary chemicals) is being investigated. This was clearly illustrated by the application of distribution analysis in the study of variation in mouse liver cellular and fine structure, and may be true of fine structural studies in general. In living systems, structure and function interact in a dynamic way; they are "inseparable," unlike in technological systems or machines. Changes in fine structure therefore reflect changes in function. If such changes do not exceed a certain physiologic range, a quantitative analysis of structure will provide valuable information on quantitative changes in function that may not be possible or easy to measure directly. Because there is a large inherent variation in fine structure of cells in a given organ of an individual and among individuals, changes in fine structure can be analyzed only by studying frequency distribution curves of various structural characteristics (dimensions). Simple averages +/- S.D. do not in general reveal all information on the effect of a certain factor, because often this effect is not uniform; on the contrary, this will be apparent from distribution analysis because the form of the curves will be affected. We have also attempted to show in this chapter that similar general statistical principles and mechanisms may be operative in biological and technological systems. Despite the common belief that most biological and technological characteristics of interest have a symmetric bell-shaped (normal or Gaussian) distribution, we have shown that more often than not, distributions tend to be asymmetric and often resemble a so-called log-normal distribution. We saw that at least three general mechanisms may be operative, i.e., nonadditivity of influencing factors, competition among individuals for a common resource, and existence of an "optimum" value for a studied characteristic; more such mechanisms could exist.

  6. Quantitative Analysis of TDLUs using Adaptive Morphological Shape Techniques

    PubMed Central

    Rosebrock, Adrian; Caban, Jesus J.; Figueroa, Jonine; Gierach, Gretchen; Linville, Laura; Hewitt, Stephen; Sherman, Mark

    2014-01-01

    Within the complex branching system of the breast, terminal duct lobular units (TDLUs) are the anatomical location where most cancer originates. With aging, TDLUs undergo physiological involution, reflected in a loss of structural components (acini) and a reduction in total number. Data suggest that women undergoing benign breast biopsies that do not show age appropriate involution are at increased risk of developing breast cancer. To date, TDLU assessments have generally been made by qualitative visual assessment, rather than by objective quantitative analysis. This paper introduces a technique to automatically estimate a set of quantitative measurements and use those variables to more objectively describe and classify TDLUs. To validate the accuracy of our system, we compared the computer-based morphological properties of 51 TDLUs in breast tissues donated for research by volunteers in the Susan G. Komen Tissue Bank and compared results to those of a pathologist, demonstrating 70% agreement. Secondly, in order to show that our method is applicable to a wider range of datasets, we analyzed 52 TDLUs from biopsies performed for clinical indications in the National Cancer Institute’s Breast Radiology Evaluation and Study of Tissues (BREAST) Stamp Project and obtained 82% correlation with visual assessment. Lastly, we demonstrate the ability to uncover novel measures when researching the structural properties of the acini by applying machine learning and clustering techniques. Through our study we found that while the number of acini per TDLU increases exponentially with the TDLU diameter, the average elongation and roundness remain constant. PMID:25722829

  7. Qualitative and quantitative assessment of collagen and elastin in annulus fibrosus of the physiologic and scoliotic intervertebral discs.

    PubMed

    Kobielarz, Magdalena; Szotek, Sylwia; Głowacki, Maciej; Dawidowicz, Joanna; Pezowicz, Celina

    2016-09-01

    The biophysical properties of the annulus fibrosus of the intervertebral disc are determined by collagen and elastin fibres. The progression of scoliosis is accompanied by a number of pathological changes concerning these structural proteins. This is a major cause of dysfunction of the intervertebral disc. The object of the study were annulus fibrosus samples excised from intervertebral discs of healthy subjects and patients treated surgically for scoliosis in the thoracolumbar or lumbar spine. The research material was subjected to structural analysis by light microscopy and quantitative analysis of the content of collagen types I, II, III and IV as well as elastin by immunoenzymatic test (ELISA). A statistical analysis was conducted to assess the impact of the sampling site (Mann-Whitney test, α=0.05) and scoliosis (Wilcoxon matched pairs test, α=0.05) on the obtained results. The microscopic studies conducted on scoliotic annulus fibrosus showed a significant architectural distortion of collagen and elastin fibres. Quantitative biochemical assays demonstrated region-dependent distribution of only collagen types I and II in the case of healthy intervertebral discs whereas in the case of scoliotic discs region-dependent distribution concerned all examined proteins of the extracellular matrix. Comparison of scoliotic and healthy annulus fibrosus revealed a significant decrease in the content of collagen type I and elastin as well as a slight increase in the proportion of collagen types III and IV. The content of collagen type II did not differ significantly between both groups. The observed anomalies are a manifestation of degenerative changes affecting annulus fibrosus of the intervertebral disc in patients suffering from scoliosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Using databases in medical education research: AMEE Guide No. 77.

    PubMed

    Cleland, Jennifer; Scott, Neil; Harrild, Kirsten; Moffat, Mandy

    2013-05-01

    This AMEE Guide offers an introduction to the use of databases in medical education research. It is intended for those who are contemplating conducting research in medical education but are new to the field. The Guide is structured around the process of planning your research so that data collection, management and analysis are appropriate for the research question. Throughout we consider contextual possibilities and constraints to educational research using databases, such as the resources available, and provide concrete examples of medical education research to illustrate many points. The first section of the Guide explains the difference between different types of data and classifying data, and addresses the rationale for research using databases in medical education. We explain the difference between qualitative research and qualitative data, the difference between categorical and quantitative data, and the difference types of data which fall into these categories. The Guide reviews the strengths and weaknesses of qualitative and quantitative research. The next section is structured around how to work with quantitative and qualitative databases and provides guidance on the many practicalities of setting up a database. This includes how to organise your database, including anonymising data and coding, as well as preparing and describing your data so it is ready for analysis. The critical matter of the ethics of using databases in medical educational research, including using routinely collected data versus data collected for research purposes, and issues of confidentiality, is discussed. Core to the Guide is drawing out the similarities and differences in working with different types of data and different types of databases. Future AMEE Guides in the research series will address statistical analysis of data in more detail.

  9. Theme trends and knowledge structure on choroidal neovascularization: a quantitative and co-word analysis.

    PubMed

    Zhao, Fangkun; Shi, Bei; Liu, Ruixin; Zhou, Wenkai; Shi, Dong; Zhang, Jinsong

    2018-04-03

    The distribution pattern and knowledge structure of choroidal neovascularization (CNV) was surveyed based on literatures in PubMed. Published scientific papers about CNV were retrieved from Jan 1st, 2012 to May 31st, 2017. Extracted MeSH terms were analyzed quantitatively by using Bibliographic Item Co-Occurrence Matrix Builder (BICOMB) and high-frequency MeSH terms were identified. Hierarchical cluster analysis was conducted by SPSS 19.0 according to the MeSH term-source article matrix. High-frequency MeSH terms co-occurrence matrix was constructed to support strategic diagram and social network analysis (SNA). According to the searching strategy, all together 2366 papers were included, and the number of annual papers changed slightly from Jan 1st, 2012 to May 31st, 2017. Among all the extracted MeSH terms, 44 high-frequency MeSH terms were identified and hotspots were clustered into 6 categories. In the strategic diagram, clinical drug therapy, pathology and diagnosis related researches of CNV were well developed. In contrast, the metabolism, etiology, complications, prevention and control of CNV in animal models, and genetics related researches of CNV were relatively immature, which offers potential research space for future study. As for the SNA result, the position status of each component was described by the centrality values. The studies on CNV are relatively divergent and the 6 research categories concluded from this study could reflect the publication trends on CNV to some extent. By providing a quantitative bibliometric research across a 5-year span, it could help to depict an overall command of the latest topics and provide some hints for researchers when launching new projects.

  10. Dual color fluorescence quantitative detection of specific single-stranded DNA with molecular beacons and nucleic acid dye SYBR Green I.

    PubMed

    Xiang, Dong-Shan; Zhou, Guo-Hua; Luo, Ming; Ji, Xing-Hu; He, Zhi-Ke

    2012-08-21

    We have developed a dual color fluorescence quantitative detection method for specific single-stranded DNA with molecular beacons (MBs) and nucleic acid dye SYBR Green I by synchronous scanning fluorescence spectrometry. It is demonstrated by a reverse-transcription oligonucleotide sequence (target DNA, 33 bases) of RNA fragment of human immunodeficiency virus (HIV) as a model system. In the absence of target DNA, the MBs are in the stem-closed state, the fluorescence of 5-carboxy-X-rhodamine (ROX) is quenched by black hole quencher-2 (BHQ-2), and the interaction between SYBR Green I and the MBs is very weak. At this time the fluorescence signals of ROX and SYBR Green I are all very weak. In the presence of target DNA, MBs hybridize with target DNA and form a double-strand structure, the fluorophore ROX is separated from the quencher BHQ-2, and the fluorescence of ROX recovers. At the same time, SYBR Green I binds to hybridized dsDNA, whose fluorescence intensity is significantly enhanced. Thus, dual color fluorescence quantitative detection for the target DNA can be realized by synchronous scanning fluorescence spectrometry. In this strategy, the fluorescence signal of SYBR Green I is far larger than that of ROX, so the quantitative analysis of target DNA with the fluorescence intensity of SYBR Green I can significantly improve the detection sensitivity. In addition, the false-positive signals of MBs do not affect the fluorescence signals of nucleic acid dye SYBR Green I. Thereby, in the analysis of complex samples, quantitative analysis of target DNA with SYBR Green I can avoid the false-positive signals of MBs and improve the detection accuracy.

  11. Coupled Analysis of In Vitro and Histology Tissue Samples to Quantify Structure-Function Relationship

    PubMed Central

    Acar, Evrim; Plopper, George E.; Yener, Bülent

    2012-01-01

    The structure/function relationship is fundamental to our understanding of biological systems at all levels, and drives most, if not all, techniques for detecting, diagnosing, and treating disease. However, at the tissue level of biological complexity we encounter a gap in the structure/function relationship: having accumulated an extraordinary amount of detailed information about biological tissues at the cellular and subcellular level, we cannot assemble it in a way that explains the correspondingly complex biological functions these structures perform. To help close this information gap we define here several quantitative temperospatial features that link tissue structure to its corresponding biological function. Both histological images of human tissue samples and fluorescence images of three-dimensional cultures of human cells are used to compare the accuracy of in vitro culture models with their corresponding human tissues. To the best of our knowledge, there is no prior work on a quantitative comparison of histology and in vitro samples. Features are calculated from graph theoretical representations of tissue structures and the data are analyzed in the form of matrices and higher-order tensors using matrix and tensor factorization methods, with a goal of differentiating between cancerous and healthy states of brain, breast, and bone tissues. We also show that our techniques can differentiate between the structural organization of native tissues and their corresponding in vitro engineered cell culture models. PMID:22479315

  12. Arterial extracellular matrix: a mechanobiological study of the contributions and interactions of elastin and collagen.

    PubMed

    Chow, Ming-Jay; Turcotte, Raphaël; Lin, Charles P; Zhang, Yanhang

    2014-06-17

    The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. qPIPSA: Relating enzymatic kinetic parameters and interaction fields

    PubMed Central

    Gabdoulline, Razif R; Stein, Matthias; Wade, Rebecca C

    2007-01-01

    Background The simulation of metabolic networks in quantitative systems biology requires the assignment of enzymatic kinetic parameters. Experimentally determined values are often not available and therefore computational methods to estimate these parameters are needed. It is possible to use the three-dimensional structure of an enzyme to perform simulations of a reaction and derive kinetic parameters. However, this is computationally demanding and requires detailed knowledge of the enzyme mechanism. We have therefore sought to develop a general, simple and computationally efficient procedure to relate protein structural information to enzymatic kinetic parameters that allows consistency between the kinetic and structural information to be checked and estimation of kinetic constants for structurally and mechanistically similar enzymes. Results We describe qPIPSA: quantitative Protein Interaction Property Similarity Analysis. In this analysis, molecular interaction fields, for example, electrostatic potentials, are computed from the enzyme structures. Differences in molecular interaction fields between enzymes are then related to the ratios of their kinetic parameters. This procedure can be used to estimate unknown kinetic parameters when enzyme structural information is available and kinetic parameters have been measured for related enzymes or were obtained under different conditions. The detailed interaction of the enzyme with substrate or cofactors is not modeled and is assumed to be similar for all the proteins compared. The protein structure modeling protocol employed ensures that differences between models reflect genuine differences between the protein sequences, rather than random fluctuations in protein structure. Conclusion Provided that the experimental conditions and the protein structural models refer to the same protein state or conformation, correlations between interaction fields and kinetic parameters can be established for sets of related enzymes. Outliers may arise due to variation in the importance of different contributions to the kinetic parameters, such as protein stability and conformational changes. The qPIPSA approach can assist in the validation as well as estimation of kinetic parameters, and provide insights into enzyme mechanism. PMID:17919319

  14. Comparative quantitative study of astrocytes and capillary distribution in optic nerve laminar regions.

    PubMed

    Balaratnasingam, Chandrakumar; Kang, Min H; Yu, Paula; Chan, Geoffrey; Morgan, William H; Cringle, Stephen J; Yu, Dao-Yi

    2014-04-01

    Retinal ganglion cell (RGC) axonal structure and function in the optic nerve head (ONH) is predominantly supported by astrocytes and capillaries. There is good experimental evidence to demonstrate that RGC axons are perturbed in a non-uniform manner following ONH injury and it is likely that the pattern of RGC axonal modification bears some correlation with the quantitative properties of astrocytes and capillaries within laminar compartments. Although there have been some excellent topographic studies concerning glial and microvascular networks in the ONH our knowledge regarding the quantitative properties of these structures are limited. This report is an in-depth quantitative, structural analysis of astrocytes and capillaries in the pre laminar, lamina cribrosa and post laminar compartments of the ONH. 49 optic nerves from human (n = 10), pig (n = 12), horse (n = 6), rat (n = 11) and rabbit (n = 10) eyes are studied. Immunohistochemical and high-magnification confocal microscopy techniques are used to co-localise astrocytes, capillaries and nuclei in the mid-portion of the optic nerve. Quantitative methodology is used to determine the area occupied by astrocyte processes, microglia processes, nuclei density and the area occupied by capillaries in each laminar compartment. Comparisons are made within and between species. Relationships between ONH histomorphometry and astrocyte-capillary constitution are also explored. This study demonstrates that there are significant differences in the quantitative properties of capillaries and astrocytes between the laminar compartments of the human ONH. Astrocyte processes occupied the greatest area in the lamina cribrosa compartment of the human ONH implicating it as an area of great metabolic demands. Microglia were found to occupy only a small proportion of tissue in the rat, rabbit and pig optic nerve suggesting that the astrocyte is the predominant glia cell type in the optic nerve. This study also demonstrates that there is significant uniformity, with respect to astrocyte and capillary constitution, in the post laminar region of species with an unmyelinated anterior optic nerve. This implicates an important role served by oligodendrocytes and myelin in governing the structural characteristics of the post laminar optic nerve. Finally, this study demonstrates that eyes with similar lamina cribrosa structure do not necessarily share an identical cellular constitution with respect to astrocytes. The quantitative properties of astrocytes in the pre laminar and lamina cribrosa regions of the rat, which has a rudimentary lamina cribrosa with only a few collagenous beams, shared more similarities to the human eye than the pig or horse. The quantitative properties of astrocytes and capillaries in the laminar compartments of the ONH provide a basis for understanding the pathogenic mechanisms that are involved in diseases such as glaucoma and ischemic optic neuropathy. The findings in this study also provide valuable information about the distinct advantages of different animal models for studying human optic nerve diseases. Utilisation of structural data provided in this report together with emerging in vivo technology may potentially permit the early identification of RGC axonal injury by quantifying changes in ONH capillaries and astrocytes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. TIPdb-3D: the three-dimensional structure database of phytochemicals from Taiwan indigenous plants

    PubMed Central

    Tung, Chun-Wei; Lin, Ying-Chi; Chang, Hsun-Shuo; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng

    2014-01-01

    The rich indigenous and endemic plants in Taiwan serve as a resourceful bank for biologically active phytochemicals. Based on our TIPdb database curating bioactive phytochemicals from Taiwan indigenous plants, this study presents a three-dimensional (3D) chemical structure database named TIPdb-3D to support the discovery of novel pharmacologically active compounds. The Merck Molecular Force Field (MMFF94) was used to generate 3D structures of phytochemicals in TIPdb. The 3D structures could facilitate the analysis of 3D quantitative structure–activity relationship, the exploration of chemical space and the identification of potential pharmacologically active compounds using protein–ligand docking. Database URL: http://cwtung.kmu.edu.tw/tipdb. PMID:24930145

  16. Development of a Probabilistic Tsunami Hazard Analysis in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toshiaki Sakai; Tomoyoshi Takeda; Hiroshi Soraoka

    2006-07-01

    It is meaningful for tsunami assessment to evaluate phenomena beyond the design basis as well as seismic design. Because once we set the design basis tsunami height, we still have possibilities tsunami height may exceeds the determined design tsunami height due to uncertainties regarding the tsunami phenomena. Probabilistic tsunami risk assessment consists of estimating for tsunami hazard and fragility of structures and executing system analysis. In this report, we apply a method for probabilistic tsunami hazard analysis (PTHA). We introduce a logic tree approach to estimate tsunami hazard curves (relationships between tsunami height and probability of excess) and present anmore » example for Japan. Examples of tsunami hazard curves are illustrated, and uncertainty in the tsunami hazard is displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves. The result of PTHA will be used for quantitative assessment of the tsunami risk for important facilities located on coastal area. Tsunami hazard curves are the reasonable input data for structures and system analysis. However the evaluation method for estimating fragility of structures and the procedure of system analysis is now being developed. (authors)« less

  17. TIPdb-3D: the three-dimensional structure database of phytochemicals from Taiwan indigenous plants.

    PubMed

    Tung, Chun-Wei; Lin, Ying-Chi; Chang, Hsun-Shuo; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng

    2014-01-01

    The rich indigenous and endemic plants in Taiwan serve as a resourceful bank for biologically active phytochemicals. Based on our TIPdb database curating bioactive phytochemicals from Taiwan indigenous plants, this study presents a three-dimensional (3D) chemical structure database named TIPdb-3D to support the discovery of novel pharmacologically active compounds. The Merck Molecular Force Field (MMFF94) was used to generate 3D structures of phytochemicals in TIPdb. The 3D structures could facilitate the analysis of 3D quantitative structure-activity relationship, the exploration of chemical space and the identification of potential pharmacologically active compounds using protein-ligand docking. Database URL: http://cwtung.kmu.edu.tw/tipdb. © The Author(s) 2014. Published by Oxford University Press.

  18. Quantitative Analysis Tools and Digital Phantoms for Deformable Image Registration Quality Assurance.

    PubMed

    Kim, Haksoo; Park, Samuel B; Monroe, James I; Traughber, Bryan J; Zheng, Yiran; Lo, Simon S; Yao, Min; Mansur, David; Ellis, Rodney; Machtay, Mitchell; Sohn, Jason W

    2015-08-01

    This article proposes quantitative analysis tools and digital phantoms to quantify intrinsic errors of deformable image registration (DIR) systems and establish quality assurance (QA) procedures for clinical use of DIR systems utilizing local and global error analysis methods with clinically realistic digital image phantoms. Landmark-based image registration verifications are suitable only for images with significant feature points. To address this shortfall, we adapted a deformation vector field (DVF) comparison approach with new analysis techniques to quantify the results. Digital image phantoms are derived from data sets of actual patient images (a reference image set, R, a test image set, T). Image sets from the same patient taken at different times are registered with deformable methods producing a reference DVFref. Applying DVFref to the original reference image deforms T into a new image R'. The data set, R', T, and DVFref, is from a realistic truth set and therefore can be used to analyze any DIR system and expose intrinsic errors by comparing DVFref and DVFtest. For quantitative error analysis, calculating and delineating differences between DVFs, 2 methods were used, (1) a local error analysis tool that displays deformation error magnitudes with color mapping on each image slice and (2) a global error analysis tool that calculates a deformation error histogram, which describes a cumulative probability function of errors for each anatomical structure. Three digital image phantoms were generated from three patients with a head and neck, a lung and a liver cancer. The DIR QA was evaluated using the case with head and neck. © The Author(s) 2014.

  19. A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis.

    PubMed

    Afantitis, Antreas; Melagraki, Georgia; Sarimveis, Haralambos; Koutentis, Panayiotis A; Markopoulos, John; Igglessi-Markopoulou, Olga

    2006-08-01

    A quantitative-structure activity relationship was obtained by applying Multiple Linear Regression Analysis to a series of 80 1-[2-hydroxyethoxy-methyl]-6-(phenylthio) thymine (HEPT) derivatives with significant anti-HIV activity. For the selection of the best among 37 different descriptors, the Elimination Selection Stepwise Regression Method (ES-SWR) was utilized. The resulting QSAR model (R (2) (CV) = 0.8160; S (PRESS) = 0.5680) proved to be very accurate both in training and predictive stages.

  20. General Platform for Systematic Quantitative Evaluation of Small-Molecule Permeability in Bacteria

    PubMed Central

    2015-01-01

    The chemical features that impact small-molecule permeability across bacterial membranes are poorly understood, and the resulting lack of tools to predict permeability presents a major obstacle to the discovery and development of novel antibiotics. Antibacterials are known to have vastly different structural and physicochemical properties compared to nonantiinfective drugs, as illustrated herein by principal component analysis (PCA). To understand how these properties influence bacterial permeability, we have developed a systematic approach to evaluate the penetration of diverse compounds into bacteria with distinct cellular envelopes. Intracellular compound accumulation is quantitated using LC-MS/MS, then PCA and Pearson pairwise correlations are used to identify structural and physicochemical parameters that correlate with accumulation. An initial study using 10 sulfonyladenosines in Escherichia coli, Bacillus subtilis, and Mycobacterium smegmatis has identified nonobvious correlations between chemical structure and permeability that differ among the various bacteria. Effects of cotreatment with efflux pump inhibitors were also investigated. This sets the stage for use of this platform in larger prospective analyses of diverse chemotypes to identify global relationships between chemical structure and bacterial permeability that would enable the development of predictive tools to accelerate antibiotic drug discovery. PMID:25198656

  1. A study to ascertain the effect of structured student tutorial support on student stress, self-esteem and coping.

    PubMed

    Gammon, John; Morgan-Samuel, Heulwen

    2005-05-01

    The overall aim of this intervention study was to investigate, and measure quantitatively, the psychological effects of structured student tutorial support, on undergraduate students' level of stress, self-esteem and cognitive coping. A quantitative research approach was adopted using a quasi-experimental design (post-test only, non-equivalent control group design) in order to ascertain whether there were any significant differences between the experimental conditions (n=25) and a control group (n=25). The independent variable was structured student tutorial support and the dependent variables were student stress, self-esteem and cognitive coping. A total of 50 subjects were randomly assigned to either the experimental or control group. Quantitative data were collected using: the Student Nurse Stress Index (Jones, M.C., Johnston, D.W., 1997a. The derivation of a 22 item Student Nurse Stress Index, using exploratory, confirmatory and multi-sample confirmatory factor analytic techniques. In: Paper Presented at the Annual Nursing Research Conference, 18-20th April, University of Wales, Swansea; Jones, M. C. Johnston, D.W., 1999. Derivation of a brief Student Nurse Stress Index. Work and Stress 13(2), 162-181), the Self Esteem Scale (Rosenberg, M., 1965. Society and the Adolesent Self Image. Princeton University Press, Princeton, NJ) and a Linear Analogue Coping Scale (Gammon, J., 1998. Analysis of the stressful effects of hospitalisation and source isolation on coping and psychological constructs. International Journal of Nursing Practice 4(2), 84-97). The methods of data analysis were the application of the t-test and descriptive statistics. The results indicated a significantly lower level of stress in the experimental group (t=-3.85, p=0.001) and a significantly higher self esteem (t=4.11, p=0.001). Results also suggested that students who were provided with structured tutorial support perceived they coped more effectively with their studies (t=4.65, p=0.001). The study concluded that structured tutorial support was an influential variable in reducing student stress, promoting self-esteem and facilitating more effective coping, suggests further interventional research is needed to evaluate this further.

  2. Discrimination and Measurements of Three Flavonols with Similar Structure Using Terahertz Spectroscopy and Chemometrics

    NASA Astrophysics Data System (ADS)

    Yan, Ling; Liu, Changhong; Qu, Hao; Liu, Wei; Zhang, Yan; Yang, Jianbo; Zheng, Lei

    2018-03-01

    Terahertz (THz) technique, a recently developed spectral method, has been researched and used for the rapid discrimination and measurements of food compositions due to its low-energy and non-ionizing characteristics. In this study, THz spectroscopy combined with chemometrics has been utilized for qualitative and quantitative analysis of myricetin, quercetin, and kaempferol with concentrations of 0.025, 0.05, and 0.1 mg/mL. The qualitative discrimination was achieved by KNN, ELM, and RF models with the spectra pre-treatments. An excellent discrimination (100% CCR in the prediction set) could be achieved using the RF model. Furthermore, the quantitative analyses were performed by partial least square regression (PLSR) and least squares support vector machine (LS-SVM). Comparing to the PLSR models, the LS-SVM yielded better results with low RMSEP (0.0044, 0.0039, and 0.0048), higher Rp (0.9601, 0.9688, and 0.9359), and higher RPD (8.6272, 9.6333, and 7.9083) for myricetin, quercetin, and kaempferol, respectively. Our results demonstrate that THz spectroscopy technique is a powerful tool for identification of three flavonols with similar chemical structures and quantitative determination of their concentrations.

  3. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles.

    PubMed

    Hu, Li; Tian, Xiaorui; Huang, Yingzhou; Fang, Liang; Fang, Yurui

    2016-02-14

    Plasmonic chirality has drawn much attention because of tunable circular dichroism (CD) and the enhancement for chiral molecule signals. Although various mechanisms have been proposed to explain the plasmonic CD, a quantitative explanation like the ab initio mechanism for chiral molecules, is still unavailable. In this study, a mechanism similar to the mechanisms associated with chiral molecules was analyzed. The giant extrinsic circular dichroism of a plasmonic splitting rectangle ring was quantitatively investigated from a theoretical standpoint. The interplay of the electric and magnetic modes of the meta-structure is proposed to explain the giant CD. We analyzed the interplay using both an analytical coupled electric-magnetic dipole model and a finite element method model. The surface charge distributions showed that the circular current yielded by the splitting rectangle ring causes the ring to behave like a magneton at some resonant modes, which then interact with the electric modes, resulting in a mixing of the two types of modes. The strong interplay of the two mode types is primarily responsible for the giant CD. The analysis of the chiral near-field of the structure shows potential applications for chiral molecule sensing.

  4. Development and application of SINE multilocus and quantitative genetic markers to study oilseed rape (Brassica napus L.) crops.

    PubMed

    Allnutt, T R; Roper, K; Henry, C

    2008-01-23

    A genetic marker system based on the S1 Short Interspersed Elements (SINEs) in the important commercial crop, oilseed rape ( Brassica napus L.) has been developed. SINEs provided a successful multilocus, dominant marker system that was capable of clearly delineating winter- and spring-type crop varieties. Sixteen of 20 varieties tested showed unique profiles from the 17 polymorphic SINE markers generated. The 3' or 5' flank region of nine SINE markers were cloned, and DNA was sequenced. In addition, one putative pre-transposition SINE allele was cloned and sequenced. Two SINE flanking sequences were used to design real-time PCR assays. These quantitative SINE assays were applied to study the genetic structure of eight fields of oilseed rape crops. Studied fields were more genetically diverse than expected for the chosen loci (mean H T = 0.23). The spatial distribution of SINE marker frequencies was highly structured in some fields, suggesting locations of volunteer impurities within the crop. In one case, the assay identified a mislabeling of the crop variety. SINE markers were a useful tool for crop genetics, phylogenetics, variety identification, and purity analysis. The use and further application of quantitative, real-time PCR markers are discussed.

  5. Mechanism of variable structural colour in the neon tetra: quantitative evaluation of the Venetian blind model.

    PubMed

    Yoshioka, S; Matsuhana, B; Tanaka, S; Inouye, Y; Oshima, N; Kinoshita, S

    2011-01-06

    The structural colour of the neon tetra is distinguishable from those of, e.g., butterfly wings and bird feathers, because it can change in response to the light intensity of the surrounding environment. This fact clearly indicates the variability of the colour-producing microstructures. It has been known that an iridophore of the neon tetra contains a few stacks of periodically arranged light-reflecting platelets, which can cause multilayer optical interference phenomena. As a mechanism of the colour variability, the Venetian blind model has been proposed, in which the light-reflecting platelets are assumed to be tilted during colour change, resulting in a variation in the spacing between the platelets. In order to quantitatively evaluate the validity of this model, we have performed a detailed optical study of a single stack of platelets inside an iridophore. In particular, we have prepared a new optical system that can simultaneously measure both the spectrum and direction of the reflected light, which are expected to be closely related to each other in the Venetian blind model. The experimental results and detailed analysis are found to quantitatively verify the model.

  6. Integrated identification, qualification and quantification strategy for pharmacokinetic profile study of Guizhi Fuling capsule in healthy volunteers

    PubMed Central

    Zhong, Yun-Xi; Jin, Xiao-Liang; Gu, Shi-Yin; Peng, Ying; Zhang, Ke-Rong; Ou-Yang, Bing-Chen; Wang, Yu; Xiao, Wei; Wang, Zhen-Zhong; Aa, Ji-Ye; Wang, Guang-Ji; Sun, Jian-Guo

    2016-01-01

    Guizhi Fuling capsule (GZFL), a traditional Chinese medicine formulation, is widely used in China to relieve pain from dysmenorrhea and is now in a Phase II clinical trial in the USA. Due to the low exposure of the five main medicative ingredients (amygdalin, cinnamic acid, gallic acid, paeoniflorin and paeonol) of GZFL in human, a strategy was built to qualitatively and quantitatively identify the possible metabolites of GZFL and to describe the pharmacokinetic profiles of GZFL in human. In this strategy, LC-Q-TOF/MS was used to identify and structurally elucidate the possible metabolites of GZFL in vivo; and a time-based metabolite-confirming step (TBMCs) was used to confirm uncertain metabolites. The simultaneously quantitation results by LC-MS/MS showed low exposure of the five medicative ingredients. According to the strategy we built, a total of 36 metabolites were found and structurally elucidated. The simultaneously semi-quantitative analysis by LC-MS/MS showed that obvious time-concentration curves could be established for 12 of the metabolites, and most of them showed a relatively higher exposure. This study provides a better understanding of the metabolic processes of GZFL in human. PMID:27527657

  7. Integrated identification, qualification and quantification strategy for pharmacokinetic profile study of Guizhi Fuling capsule in healthy volunteers.

    PubMed

    Zhong, Yun-Xi; Jin, Xiao-Liang; Gu, Shi-Yin; Peng, Ying; Zhang, Ke-Rong; Ou-Yang, Bing-Chen; Wang, Yu; Xiao, Wei; Wang, Zhen-Zhong; Aa, Ji-Ye; Wang, Guang-Ji; Sun, Jian-Guo

    2016-08-16

    Guizhi Fuling capsule (GZFL), a traditional Chinese medicine formulation, is widely used in China to relieve pain from dysmenorrhea and is now in a Phase II clinical trial in the USA. Due to the low exposure of the five main medicative ingredients (amygdalin, cinnamic acid, gallic acid, paeoniflorin and paeonol) of GZFL in human, a strategy was built to qualitatively and quantitatively identify the possible metabolites of GZFL and to describe the pharmacokinetic profiles of GZFL in human. In this strategy, LC-Q-TOF/MS was used to identify and structurally elucidate the possible metabolites of GZFL in vivo; and a time-based metabolite-confirming step (TBMCs) was used to confirm uncertain metabolites. The simultaneously quantitation results by LC-MS/MS showed low exposure of the five medicative ingredients. According to the strategy we built, a total of 36 metabolites were found and structurally elucidated. The simultaneously semi-quantitative analysis by LC-MS/MS showed that obvious time-concentration curves could be established for 12 of the metabolites, and most of them showed a relatively higher exposure. This study provides a better understanding of the metabolic processes of GZFL in human.

  8. Causal Loop Analysis of coastal geomorphological systems

    NASA Astrophysics Data System (ADS)

    Payo, Andres; Hall, Jim W.; French, Jon; Sutherland, James; van Maanen, Barend; Nicholls, Robert J.; Reeve, Dominic E.

    2016-03-01

    As geomorphologists embrace ever more sophisticated theoretical frameworks that shift from simple notions of evolution towards single steady equilibria to recognise the possibility of multiple response pathways and outcomes, morphodynamic modellers are facing the problem of how to keep track of an ever-greater number of system feedbacks. Within coastal geomorphology, capturing these feedbacks is critically important, especially as the focus of activity shifts from reductionist models founded on sediment transport fundamentals to more synthesist ones intended to resolve emergent behaviours at decadal to centennial scales. This paper addresses the challenge of mapping the feedback structure of processes controlling geomorphic system behaviour with reference to illustrative applications of Causal Loop Analysis at two study cases: (1) the erosion-accretion behaviour of graded (mixed) sediment beds, and (2) the local alongshore sediment fluxes of sand-rich shorelines. These case study examples are chosen on account of their central role in the quantitative modelling of geomorphological futures and as they illustrate different types of causation. Causal loop diagrams, a form of directed graph, are used to distil the feedback structure to reveal, in advance of more quantitative modelling, multi-response pathways and multiple outcomes. In the case of graded sediment bed, up to three different outcomes (no response, and two disequilibrium states) can be derived from a simple qualitative stability analysis. For the sand-rich local shoreline behaviour case, two fundamentally different responses of the shoreline (diffusive and anti-diffusive), triggered by small changes of the shoreline cross-shore position, can be inferred purely through analysis of the causal pathways. Explicit depiction of feedback-structure diagrams is beneficial when developing numerical models to explore coastal morphological futures. By explicitly mapping the feedbacks included and neglected within a model, the modeller can readily assess if critical feedback loops are included.

  9. Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation*

    PubMed Central

    Rea, Matthew; Jiang, Tingting; Eleazer, Rebekah; Eckstein, Meredith; Marshall, Alan G.; Fondufe-Mittendorf, Yvonne N.

    2016-01-01

    Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2B variants as cells undergo arsenic-mediated epithelial to mesenchymal transition. We used electron capture dissociation-based top-down tandem mass spectrometry analysis validated with quantitative reverse transcription real-time polymerase chain reaction to identify changes in the expression levels of H2B variants in inorganic arsenic-mediated epithelial-mesenchymal transition. We identified changes in the expression levels of specific histone H2B variants in two cell types, which are dependent on dose and length of exposure of inorganic arsenic. In particular, we found increases in H2B variants H2B1H/1K/1C/1J/1O and H2B2E/2F, and significant decreases in H2B1N/1D/1B as cells undergo inorganic arsenic-mediated epithelial-mesenchymal transition. The analysis of these histone variants provides a first step toward an understanding of the functional significance of the diversity of histone structures, especially in inorganic arsenic-mediated gene expression and carcinogenesis. PMID:27169413

  10. Three-Dimensional Structure Analysis and Percolation Properties of a Barrier Marine Coating

    PubMed Central

    Chen, Bo; Guizar-Sicairos, Manuel; Xiong, Gang; Shemilt, Laura; Diaz, Ana; Nutter, John; Burdet, Nicolas; Huo, Suguo; Mancuso, Joel; Monteith, Alexander; Vergeer, Frank; Burgess, Andrew; Robinson, Ian

    2013-01-01

    Artificially structured coatings are widely employed to minimize materials deterioration and corrosion, the annual direct cost of which is over 3% of the gross domestic product (GDP) for industrial countries. Manufacturing higher performance anticorrosive coatings is one of the most efficient approaches to reduce this loss. However, three-dimensional (3D) structure of coatings, which determines their performance, has not been investigated in detail. Here we present a quantitative nano-scale analysis of the 3D spatial structure of an anticorrosive aluminium epoxy barrier marine coating obtained by serial block-face scanning electron microscopy (SBFSEM) and ptychographic X-ray computed tomography (PXCT). We then use finite element simulations to demonstrate how percolation through this actual 3D structure impedes ion diffusion in the composite materials. We found the aluminium flakes align within 15° of the coating surface in the material, causing the perpendicular diffusion resistance of the coating to be substantially higher than the pure epoxy. PMID:23378910

  11. Fourier analysis of human soft tissue facial shape: sex differences in normal adults.

    PubMed Central

    Ferrario, V F; Sforza, C; Schmitz, J H; Miani, A; Taroni, G

    1995-01-01

    Sexual dimorphism in human facial form involves both size and shape variations of the soft tissue structures. These variations are conventionally appreciated using linear and angular measurements, as well as ratios, taken from photographs or radiographs. Unfortunately this metric approach provides adequate quantitative information about size only, eluding the problems of shape definition. Mathematical methods such as the Fourier series allow a correct quantitative analysis of shape and of its changes. A method for the reconstruction of outlines starting from selected landmarks and for their Fourier analysis has been developed, and applied to analyse sex differences in shape of the soft tissue facial contour in a group of healthy young adults. When standardised for size, no sex differences were found between both cosine and sine coefficients of the Fourier series expansion. This shape similarity was largely overwhelmed by the very evident size differences and it could be measured only using the proper mathematical methods. PMID:8586558

  12. General description and understanding of the nonlinear dynamics of mode-locked fiber lasers.

    PubMed

    Wei, Huai; Li, Bin; Shi, Wei; Zhu, Xiushan; Norwood, Robert A; Peyghambarian, Nasser; Jian, Shuisheng

    2017-05-02

    As a type of nonlinear system with complexity, mode-locked fiber lasers are known for their complex behaviour. It is a challenging task to understand the fundamental physics behind such complex behaviour, and a unified description for the nonlinear behaviour and the systematic and quantitative analysis of the underlying mechanisms of these lasers have not been developed. Here, we present a complexity science-based theoretical framework for understanding the behaviour of mode-locked fiber lasers by going beyond reductionism. This hierarchically structured framework provides a model with variable dimensionality, resulting in a simple view that can be used to systematically describe complex states. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems and presents a new method for quantitative analysis of these nonlinear phenomena. These findings pave the way for dynamics analysis and system designs of mode-locked fiber lasers. We expect that this paradigm will also enable potential applications in diverse research fields related to complex nonlinear phenomena.

  13. Quantitative analysis of intra-Golgi transport shows intercisternal exchange for all cargo

    PubMed Central

    Dmitrieff, Serge; Rao, Madan; Sens, Pierre

    2013-01-01

    The mechanisms controlling the transport of proteins through the Golgi stack of mammalian and plant cells is the subject of intense debate, with two models, cisternal progression and intercisternal exchange, emerging as major contenders. A variety of transport experiments have claimed support for each of these models. We reevaluate these experiments using a single quantitative coarse-grained framework of intra-Golgi transport that accounts for both transport models and their many variants. Our analysis makes a definitive case for the existence of intercisternal exchange both for small membrane proteins and large protein complexes––this implies that membrane structures larger than the typical protein-coated vesicles must be involved in transport. Notwithstanding, we find that current observations on protein transport cannot rule out cisternal progression as contributing significantly to the transport process. To discriminate between the different models of intra-Golgi transport, we suggest experiments and an analysis based on our extended theoretical framework that compare the dynamics of transiting and resident proteins. PMID:24019488

  14. Systematic exploration of essential yeast gene function with temperature-sensitive mutants

    PubMed Central

    Li, Zhijian; Vizeacoumar, Franco J; Bahr, Sondra; Li, Jingjing; Warringer, Jonas; Vizeacoumar, Frederick S; Min, Renqiang; VanderSluis, Benjamin; Bellay, Jeremy; DeVit, Michael; Fleming, James A; Stephens, Andrew; Haase, Julian; Lin, Zhen-Yuan; Baryshnikova, Anastasia; Lu, Hong; Yan, Zhun; Jin, Ke; Barker, Sarah; Datti, Alessandro; Giaever, Guri; Nislow, Corey; Bulawa, Chris; Myers, Chad L; Costanzo, Michael; Gingras, Anne-Claude; Zhang, Zhaolei; Blomberg, Anders; Bloom, Kerry; Andrews, Brenda; Boone, Charles

    2012-01-01

    Conditional temperature-sensitive (ts) mutations are valuable reagents for studying essential genes in the yeast Saccharomyces cerevisiae. We constructed 787 ts strains, covering 497 (~45%) of the 1,101 essential yeast genes, with ~30% of the genes represented by multiple alleles. All of the alleles are integrated into their native genomic locus in the S288C common reference strain and are linked to a kanMX selectable marker, allowing further genetic manipulation by synthetic genetic array (SGA)–based, high-throughput methods. We show two such manipulations: barcoding of 440 strains, which enables chemical-genetic suppression analysis, and the construction of arrays of strains carrying different fluorescent markers of subcellular structure, which enables quantitative analysis of phenotypes using high-content screening. Quantitative analysis of a GFP-tubulin marker identified roles for cohesin and condensin genes in spindle disassembly. This mutant collection should facilitate a wide range of systematic studies aimed at understanding the functions of essential genes. PMID:21441928

  15. Development of an enzyme-linked immunosorbent assay for the detection of dicamba.

    PubMed

    Clegg, B S; Stephenson, G R; Hall, J C

    2001-05-01

    A competitive indirect enzyme-linked immunosorbent assay (CI-ELISA) was developed to quantitate the herbicide dicamba (3,6-dichloro-2-methoxybenzoic acid) in water. The CI-ELISA has a detection limit of 2.3 microg L(-1) and a linear working range of 10--10000 microg L(-1) with an IC(50) value of 195 microg L(-1). The dicamba polyclonal antisera did not cross-react with a number of other herbicides tested but did cross-react with a dicamba metabolite, 5-hydroxydicamba, and structurally related chlorobenzoic acids. The assay was used to estimate quantitatively dicamba concentrations in water samples. Water samples were analyzed directly, and no sample preparation was required. To improve detection limits, a C(18) (reversed phase) column concentration step was devised prior to analysis, and the detection limits were increased by at least by 10-fold. After the sample preconcentration, the detection limit, IC(50), and linear working range were 0.23, 19.5, and 5-200 microg L(-1), respectively. The CI-ELISA estimations in water correlated well with those from gas chromatography-mass spectrometry (GC-MS) analysis (r(2) = 0.9991). This assay contributes to reducing laboratory costs associated with the conventional GC-MS residue analysis techniques for the quantitation of dicamba in water.

  16. Kinetic analyses of vasculogenesis inform mechanistic studies

    PubMed Central

    Winfree, Seth; Chu, Chenghao; Tu, Wanzhu; Blue, Emily K.; Gohn, Cassandra R.; Dunn, Kenneth W.

    2017-01-01

    Vasculogenesis is a complex process by which endothelial stem and progenitor cells undergo de novo vessel formation. Quantitative assessment of vasculogenesis is a central readout of endothelial progenitor cell functionality. However, current assays lack kinetic measurements. To address this issue, new approaches were developed to quantitatively assess in vitro endothelial colony-forming cell (ECFC) network formation in real time. Eight parameters of network structure were quantified using novel Kinetic Analysis of Vasculogenesis (KAV) software. KAV assessment of structure complexity identified two phases of network formation. This observation guided the development of additional vasculogenic readouts. A tissue cytometry approach was established to quantify the frequency and localization of dividing ECFCs. Additionally, Fiji TrackMate was used to quantify ECFC displacement and speed at the single-cell level during network formation. These novel approaches were then implemented to identify how intrauterine exposure to maternal diabetes mellitus (DM) impairs fetal ECFC vasculogenesis. Fetal ECFCs exposed to maternal DM form fewer initial network structures, which are not stable over time. Correlation analyses demonstrated that ECFC samples with greater division in branches form fewer closed network structures. Additionally, reductions in average ECFC movement over time decrease structural connectivity. Identification of these novel phenotypes utilizing the newly established methodologies provides evidence for the cellular mechanisms contributing to aberrant ECFC vasculogenesis. PMID:28100488

  17. Experimental and QSAR study on the surface activities of alkyl imidazoline surfactants

    NASA Astrophysics Data System (ADS)

    Kong, Xiangjun; Qian, Chengduo; Fan, Weiyu; Liang, Zupei

    2018-03-01

    15 alkyl imidazoline surfactants with different structures were synthesized and their critical micelle concentration (CMC) and surface tension under the CMC (σcmc) in aqueous solution were measured at 298 K. 54 kinds of molecular structure descriptors were selected as independent variables and the quantitative structure-activity relationship (QSAR) between surface activities of alkyl imidazoline and molecular structure were built through the genetic function approximation (GFA) method. Experimental results showed that the maximum surface excess of alkyl imidazoline molecules at the gas-liquid interface increased and the area occupied by each surfactant molecule and the free energies of micellization ΔGm decreased with increasing carbon number (NC) of the hydrophobic chain or decreasing hydrophilicity of counterions, which resulted in a CMC and σcmc decrease, while the log CMC and NC had a linear relationship and a negative correlation. The GFA-QSAR model, which was generated by a training set composed of 13 kinds of alkyl imidazoline though GFA method regression analysis, was highly correlated with predicted values and experimental values of the CMC. The correlation coefficient R was 0.9991, which means high prediction accuracy. The prediction error of 2 kinds of alkyl imidazoline CMCs in the Validation Set that quantitatively analyzed the influence of the alkyl imidazoline molecular structure on the CMC was less than 4%.

  18. a Study of the Synchrotron Laue Method for Quantitative Crystal Structure Analysis.

    NASA Astrophysics Data System (ADS)

    Gomez de Anderez, Dora M.

    1990-01-01

    Available from UMI in association with The British Library. Quantitative crystal structure analyses have been carried out on small molecule crystals using synchrotron radiation and the Laue method. A variety of single crystal structure determinations and associated refinements are used and compared with the monochromatic analyses. The new molecular structure of 7-amino-5-bromo -4-methyl-2-oxo-1,2,3,4-tetrahidro-1, 6 -naphthyridine-8-carbonitrile (C_{10 }H_9ON_4 Br.H_2O) has been determined, first using monochromatic Mo Kalpha radiation and a four-circle diffractometer, then using synchrotron Laue diffraction photography. The structure refinements showed a R-factor of 4.97 and 14.0% for the Mo Kalpha and Laue data respectively. The molecular structure of (S)-2-chloro-2-fluoro-N-((S)-1-phenylethyl) ethanamide, (C_{10}H _{11}ClFNO), has been determined using the same crystal throughout for X-ray monochromatic analyses (Mo Kalpha and Cu K alpha) followed by synchrotron Laue data collection. The Laue and monochromatic data compare favourably. The R -factors (on F) were 6.23, 6.45 and 8.19% for the Mo K alpha, Cu Kalpha and Laue data sets respectively. The molecular structure of 3-(5-hydroxy-3-methyl-1-phenylpyrazol-4-yl)-1,3-diphenyl -prop- 2-en-1-one, (C_{25 }H_{20}N _2O_2) has been determined using the synchrotron Laue method. The results compare very well with Mo Kalpha monochromatic data. The R-factors (on F) were 4.60 and 5.29% for Mo Kalpha and Laue analysis respectively. The Laue method is assessed in locating the 20 hydrogen atoms in this structure. The structure analysis of the benzil compound ((C_6H_5 O.CO_2)) is carried out using the synchrotron Laue method firstly at room temperature and secondly at low temperature -114 ^circC. The structure shows an R-factor (on F) of 13.06% and 6.85% for each data set respectively. The synchrotron Laue method was used to collect data for ergocalciferol (Vitamin D_2). The same crystal was also used to record oscillation data with the synchrotron radiation monochromatic beam. A new molecular structure of (Dinitrato-(N,N ^'-dimethylethylene-diamine)copper(II)) has been determined using Mo Kalpha radiation on a four circle diffractometer. The refinement resulted in an R-factor (on F) of 4.06%.

  19. Invited Article: Relation between electric and magnetic field structures and their proton-beam images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kugland, N. L.; Ryutov, D. D.; Plechaty, C.

    2012-10-15

    Proton imaging is commonly used to reveal the electric and magnetic fields that are found in high energy density plasmas. Presented here is an analysis of this technique that is directed towards developing additional insight into the underlying physics. This approach considers: formation of images in the limits of weak and strong intensity variations; caustic formation and structure; image inversion to obtain line-integrated field characteristics; direct relations between images and electric or magnetic field structures in a plasma; imaging of sharp features such as Debye sheaths and shocks. Limitations on spatial and temporal resolution are assessed, and similarities with opticalmore » shadowgraphy are noted. Synthetic proton images are presented to illustrate the analysis. These results will be useful for quantitatively analyzing experimental proton imaging data and verifying numerical codes.« less

  20. Reproducibility and quantitation of amplicon sequencing-based detection

    PubMed Central

    Zhou, Jizhong; Wu, Liyou; Deng, Ye; Zhi, Xiaoyang; Jiang, Yi-Huei; Tu, Qichao; Xie, Jianping; Van Nostrand, Joy D; He, Zhili; Yang, Yunfeng

    2011-01-01

    To determine the reproducibility and quantitation of the amplicon sequencing-based detection approach for analyzing microbial community structure, a total of 24 microbial communities from a long-term global change experimental site were examined. Genomic DNA obtained from each community was used to amplify 16S rRNA genes with two or three barcode tags as technical replicates in the presence of a small quantity (0.1% wt/wt) of genomic DNA from Shewanella oneidensis MR-1 as the control. The technical reproducibility of the amplicon sequencing-based detection approach is quite low, with an average operational taxonomic unit (OTU) overlap of 17.2%±2.3% between two technical replicates, and 8.2%±2.3% among three technical replicates, which is most likely due to problems associated with random sampling processes. Such variations in technical replicates could have substantial effects on estimating β-diversity but less on α-diversity. A high variation was also observed in the control across different samples (for example, 66.7-fold for the forward primer), suggesting that the amplicon sequencing-based detection approach could not be quantitative. In addition, various strategies were examined to improve the comparability of amplicon sequencing data, such as increasing biological replicates, and removing singleton sequences and less-representative OTUs across biological replicates. Finally, as expected, various statistical analyses with preprocessed experimental data revealed clear differences in the composition and structure of microbial communities between warming and non-warming, or between clipping and non-clipping. Taken together, these results suggest that amplicon sequencing-based detection is useful in analyzing microbial community structure even though it is not reproducible and quantitative. However, great caution should be taken in experimental design and data interpretation when the amplicon sequencing-based detection approach is used for quantitative analysis of the β-diversity of microbial communities. PMID:21346791

  1. From striving to thriving: systems thinking, strategy, and the performance of safety net hospitals.

    PubMed

    Clark, Jonathan; Singer, Sara; Kane, Nancy; Valentine, Melissa

    2013-01-01

    Safety net hospitals (SNH) have, on average, experienced declining financial margins and faced an elevated risk of closure over the past decade. Despite these challenges, not all SNHs are weakening and some are prospering. These higher-performing SNHs provide substantial care to safety net populations and produce sustainable financial returns. Drawing on the alternative structural positioning and resource-based views, we explore strategic management as a source of performance differences across SNHs. We employ a mixed-method design, blending quantitative and qualitative data and analysis. We measure financial performance using hospital operating margin and quantitatively evaluate its relationship with a limited set of well-defined structural positions. We further evaluate these structures and also explore the internal resources of SNHs based on nine in-depth case studies developed from site visits and extensive interviews. Quantitative results suggest that structural positions alone are not related to performance. Comparative case studies suggest that higher-performing SNH differ in four respects: (1) coordinating patient flow across the care continuum, (2) engaging in partnerships with other providers, (3) managing scope of services, and (4) investing in human capital. On the basis of these findings, we propose a model of strategic action related to systems thinking--the ability to see wholes and interrelationships rather than individual parts alone. Our exploratory findings suggest the need to move beyond generic strategies alone and acknowledge the importance of underlying managerial capabilities. Specifically, our findings suggest that effective strategy is a function of both the internal resources (e.g., managers' systems-thinking capability) and structural positions (e.g., partnerships) of organizations. From this perspective, framing resources and positioning as distinct alternatives misses the nuances of how strategic advantage is actually achieved.

  2. Application of Particle Image Velocimetry and Reference Image Topography to jet shock cells using the hydraulic analogy

    NASA Astrophysics Data System (ADS)

    Kumar, Vaibhav; Ng, Ivan; Sheard, Gregory J.; Brocher, Eric; Hourigan, Kerry; Fouras, Andreas

    2011-08-01

    This paper examines the shock cell structure, vorticity and velocity field at the exit of an underexpanded jet nozzle using a hydraulic analogy and the Reference Image Topography technique. Understanding the flow in this region is important for the mitigation of screech, an aeroacoustic problem harmful to aircraft structures. Experiments are conducted on a water table, allowing detailed quantitative investigation of this important flow regime at a greatly reduced expense. Conventional Particle Image Velocimetry is employed to determine the velocity and vorticity fields of the nozzle exit region. Applying Reference Image Topography, the wavy water surface is reconstructed and when combined with the hydraulic analogy, provides a pressure map of the region. With this approach subtraction of surfaces is used to highlight the unsteady regions of the flow, which is not as convenient or quantitative with conventional Schlieren techniques. This allows a detailed analysis of the shock cell structures and their interaction with flow instabilities in the shear layer that are the underlying cause of jet screech.

  3. Isolating long-wavelength fluctuation from structural relaxation in two-dimensional glass: cage-relative displacement

    NASA Astrophysics Data System (ADS)

    Shiba, Hayato; Keim, Peter; Kawasaki, Takeshi

    2018-03-01

    It has recently been revealed that long-wavelength fluctuation exists in two-dimensional (2D) glassy systems, having the same origin as that given by the Mermin-Wagner theorem for 2D crystalline solids. In this paper, we discuss how to characterise quantitatively the long-wavelength fluctuation in a molecular dynamics simulation of a lightly supercooled liquid. We employ the cage-relative mean-square displacement (MSD), defined on relative displacement to its cage, to quantitatively separate the long-wavelength fluctuation from the original MSD. For increasing system size the amplitude of acoustic long wavelength fluctuations not only increases but shifts to later times causing a crossover with structural relaxation of caging particles. We further analyse the dynamic correlation length using the cage-relative quantities. It grows as the structural relaxation becomes slower with decreasing temperature, uncovering an overestimation by the four-point correlation function due to the long-wavelength fluctuation. These findings motivate the usage of cage-relative MSD as a starting point for analysis of 2D glassy dynamics.

  4. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy

    PubMed Central

    Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.

    2017-01-01

    Sub-diffraction resolution imaging has played a pivotal role in biological research by visualizing key, but previously unresolvable, sub-cellular structures. Unfortunately, applications of far-field sub-diffraction resolution are currently divided between fluorescent and coherent-diffraction regimes, and a multimodal sub-diffraction technique that bridges this gap has not yet been demonstrated. Here we report that structured illumination (SI) allows multimodal sub-diffraction imaging of both coherent quantitative-phase (QP) and fluorescence. Due to SI’s conventionally fluorescent applications, we first demonstrate the principle of SI-enabled three-dimensional (3D) QP sub-diffraction imaging with calibration microspheres. Image analysis confirmed enhanced lateral and axial resolutions over diffraction-limited QP imaging, and established striking parallels between coherent SI and conventional optical diffraction tomography. We next introduce an optical system utilizing SI to achieve 3D sub-diffraction, multimodal QP/fluorescent visualization of A549 biological cells fluorescently tagged for F-actin. Our results suggest that SI has a unique utility in studying biological phenomena with significant molecular, biophysical, and biochemical components. PMID:28663887

  5. "A Passion to Mold Young People": A Mixed-Methods Study of Iowa Community College Athletics Coaches' Profile Characteristics

    ERIC Educational Resources Information Center

    Kollasch, Korey

    2017-01-01

    This study focused on building a profile of characteristics of community college (CC) athletics coaches in Iowa and on exploring the possible relationships among these characteristics. Using a mixed-method research design that incorporates SPSS quantitative analysis of a survey and seven semi-structured interviews, the research data draws a…

  6. Differential reliability : probabilistic engineering applied to wood members in bending-tension

    Treesearch

    Stanley K. Suddarth; Frank E. Woeste; William L. Galligan

    1978-01-01

    Reliability analysis is a mathematical technique for appraising the design and materials of engineered structures to provide a quantitative estimate of probability of failure. Two or more cases which are similar in all respects but one may be analyzed by this method; the contrast between the probabilities of failure for these cases allows strong analytical focus on the...

  7. Quantitative Analysis of the Shape of the Corpus Callosum in Patients with Autism and Comparison Individuals

    ERIC Educational Resources Information Center

    Casanova, Manuel F.; El-Baz, Ayman; Elnakib, Ahmed; Switala, Andrew E.; Williams, Emily L.; Williams, Diane L.; Minshew, Nancy J.; Conturo, Thomas E.

    2011-01-01

    Multiple studies suggest that the corpus callosum in patients with autism is reduced in size. This study attempts to elucidate the nature of this morphometric abnormality by analyzing the shape of this structure in 17 high-functioning patients with autism and an equal number of comparison participants matched for age, sex, IQ, and handedness. The…

  8. The Influences of LuxX in "Escherichia Coli" Biofilm Formation and Improving Teacher Quality through the Bio-Bus Program

    ERIC Educational Resources Information Center

    Robbins, Chandan Morris

    2012-01-01

    The objectives of this work are: (1) to agarose-stabilize fragile biofilms for quantitative structure analysis; (2) to understand the influences of LuxS on biofilm formation; (3) to improve teacher quality by preparing Georgia's middle school science teachers to integrate inquiry-based, hands-on research modules in the classroom. Quantitative…

  9. Model Analysis and Model Creation: Capturing the Task-Model Structure of Quantitative Item Domains. Research Report. ETS RR-06-11

    ERIC Educational Resources Information Center

    Deane, Paul; Graf, Edith Aurora; Higgins, Derrick; Futagi, Yoko; Lawless, René

    2006-01-01

    This study focuses on the relationship between item modeling and evidence-centered design (ECD); it considers how an appropriately generalized item modeling software tool can support systematic identification and exploitation of task-model variables, and then examines the feasibility of this goal, using linear-equation items as a test case. The…

  10. Criteria of Career Success among Chinese Employees: Developing a Multidimensional Scale with Qualitative and Quantitative Approaches

    ERIC Educational Resources Information Center

    Zhou, Wenxia; Sun, Jianmin; Guan, Yanjun; Li, Yuhui; Pan, Jingzhou

    2013-01-01

    The current research aimed to develop a multidimensional measure on the criteria of career success in a Chinese context. Items on the criteria of career success were obtained using a qualitative approach among 30 Chinese employees; exploratory factor analysis was conducted to select items and determine the factor structure among a new sample of…

  11. Understanding ponderosa pine forest-grassland vegetation dynamics at Fort Valley Experimental Forest using phytolith analysis (P-53)

    Treesearch

    Becky K. Kerns; Margaret M. Moore; Stephen C. Hart

    2008-01-01

    In the last century, ponderosa pine forests in the Southwest have changed from more open park-like stands of older trees to denser stands of younger, smalldiameter trees. Considerable information exists regarding ponderosa pine forest fire history and recent shifts in stand structure and composition, yet quantitative studies investigating understory reference...

  12. Surface complexation and precipitate geometry for aqueous Zn(II) sorption on ferrihydrite: II. XANES analysis and simulation

    USGS Publications Warehouse

    Waychunas, G.A.; Fuller, C.C.; Davis, J.A.; Rehr, J.J.

    2003-01-01

    X-ray absorption near-edge spectroscopy (XANES) analysis of sorption complexes has the advantages of high sensitivity (10- to 20-fold greater than extended X-ray absorption fine structure [EXAFS] analysis) and relative ease and speed of data collection (because of the short k-space range). It is thus a potentially powerful tool for characterization of environmentally significant surface complexes and precipitates at very low surface coverages. However, quantitative analysis has been limited largely to "fingerprint" comparison with model spectra because of the difficulty of obtaining accurate multiple-scattering amplitudes for small clusters with high confidence. In the present work, calculations of the XANES for 50- to 200-atom clusters of structure from Zn model compounds using the full multiple-scattering code Feff 8.0 accurately replicate experimental spectra and display features characteristic of specific first-neighbor anion coordination geometry and second-neighbor cation geometry and number. Analogous calculations of the XANES for small molecular clusters indicative of precipitation and sorption geometries for aqueous Zn on ferrihydrite, and suggested by EXAFS analysis, are in good agreement with observed spectral trends with sample composition, with Zn-oxygen coordination and with changes in second-neighbor cation coordination as a function of sorption coverage. Empirical analysis of experimental XANES features further verifies the validity of the calculations. The findings agree well with a complete EXAFS analysis previously reported for the same sample set, namely, that octahedrally coordinated aqueous Zn2+ species sorb as a tetrahedral complex on ferrihydrite with varying local geometry depending on sorption density. At significantly higher densities but below those at which Zn hydroxide is expected to precipitate, a mainly octahedral coordinated Zn2+ precipitate is observed. An analysis of the multiple scattering paths contributing to the XANES demonstrates the importance of scattering paths involving the anion sublattice. We also describe the specific advantages of complementary quantitative XANES and EXAFS analysis and estimate limits on the extent of structural information obtainable from XANES analysis. ?? 2003 Elsevier Science Ltd.

  13. Evaluation of thresholding techniques for segmenting scaffold images in tissue engineering

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Srinivasan; Yaszemski, Michael J.; Robb, Richard A.

    2004-05-01

    Tissue engineering attempts to address the ever widening gap between the demand and supply of organ and tissue transplants using natural and biomimetic scaffolds. The regeneration of specific tissues aided by synthetic materials is dependent on the structural and morphometric properties of the scaffold. These properties can be derived non-destructively using quantitative analysis of high resolution microCT scans of scaffolds. Thresholding of the scanned images into polymeric and porous phase is central to the outcome of the subsequent structural and morphometric analysis. Visual thresholding of scaffolds produced using stochastic processes is inaccurate. Depending on the algorithmic assumptions made, automatic thresholding might also be inaccurate. Hence there is a need to analyze the performance of different techniques and propose alternate ones, if needed. This paper provides a quantitative comparison of different thresholding techniques for segmenting scaffold images. The thresholding algorithms examined include those that exploit spatial information, locally adaptive characteristics, histogram entropy information, histogram shape information, and clustering of gray-level information. The performance of different techniques was evaluated using established criteria, including misclassification error, edge mismatch, relative foreground error, and region non-uniformity. Algorithms that exploit local image characteristics seem to perform much better than those using global information.

  14. Monitoring temporal microstructural variations of skeletal muscle tissues by multispectral Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2017-02-01

    Mueller matrix polarimetry is a powerful tool for detecting microscopic structures, therefore can be used to monitor physiological changes of tissue samples. Meanwhile, spectral features of scattered light can also provide abundant microstructural information of tissues. In this paper, we take the 2D multispectral backscattering Mueller matrix images of bovine skeletal muscle tissues, and analyze their temporal variation behavior using multispectral Mueller matrix parameters. The 2D images of the Mueller matrix elements are reduced to the multispectral frequency distribution histograms (mFDHs) to reveal the dominant structural features of the muscle samples more clearly. For quantitative analysis, the multispectral Mueller matrix transformation (MMT) parameters are calculated to characterize the microstructural variations during the rigor mortis and proteolysis processes of the skeletal muscle tissue samples. The experimental results indicate that the multispectral MMT parameters can be used to judge different physiological stages for bovine skeletal muscle tissues in 24 hours, and combining with the multispectral technique, the Mueller matrix polarimetry and FDH analysis can monitor the microstructural variation features of skeletal muscle samples. The techniques may be used for quick assessment and quantitative monitoring of meat qualities in food industry.

  15. A Ligand-observed Mass Spectrometry Approach Integrated into the Fragment Based Lead Discovery Pipeline

    PubMed Central

    Chen, Xin; Qin, Shanshan; Chen, Shuai; Li, Jinlong; Li, Lixin; Wang, Zhongling; Wang, Quan; Lin, Jianping; Yang, Cheng; Shui, Wenqing

    2015-01-01

    In fragment-based lead discovery (FBLD), a cascade combining multiple orthogonal technologies is required for reliable detection and characterization of fragment binding to the target. Given the limitations of the mainstream screening techniques, we presented a ligand-observed mass spectrometry approach to expand the toolkits and increase the flexibility of building a FBLD pipeline especially for tough targets. In this study, this approach was integrated into a FBLD program targeting the HCV RNA polymerase NS5B. Our ligand-observed mass spectrometry analysis resulted in the discovery of 10 hits from a 384-member fragment library through two independent screens of complex cocktails and a follow-up validation assay. Moreover, this MS-based approach enabled quantitative measurement of weak binding affinities of fragments which was in general consistent with SPR analysis. Five out of the ten hits were then successfully translated to X-ray structures of fragment-bound complexes to lay a foundation for structure-based inhibitor design. With distinctive strengths in terms of high capacity and speed, minimal method development, easy sample preparation, low material consumption and quantitative capability, this MS-based assay is anticipated to be a valuable addition to the repertoire of current fragment screening techniques. PMID:25666181

  16. Significance of the gate voltage-dependent mobility in the electrical characterization of organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Jong Beom; Lee, Dong Ryeol

    2018-04-01

    We studied the effect of the addition of free hole- and electron-rich organic molecules to organic semiconductors (OSCs) in organic field effect transistors (OFETs) on the gate voltage-dependent mobility. The drain current versus gate voltage characteristics were quantitatively analyzed using an OFET mobility model of power law behavior based on hopping transport in an OSC. This analysis distinguished the threshold voltage shifts, depending on the materials and structures of the OFET device, and properly estimated the hopping transport of the charge carriers induced by the gate bias within the OSC from the power law exponent parameter. The addition of pentacene or C60 molecules to a one-monolayer pentacene-based OFET shifted the threshold voltages negatively or positively, respectively, due to the structural changes that occurred in the OFET device. On the other hand, the power law parameters revealed that the addition of charge carriers of the same or opposite polarity enhanced or hindered hopping transport, respectively. This study revealed the need for a quantitative analysis of the gate voltage-dependent mobility while distinguishing this effect from the threshold voltage effect in order to understand OSC hopping transport in OFETs.

  17. Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis.

    PubMed

    Canela, Núria; Herrero, Pol; Mariné, Sílvia; Nadal, Pedro; Ras, Maria Rosa; Rodríguez, Miguel Ángel; Arola, Lluís

    2016-01-08

    In recent years, sphingolipidomics has emerged as an interesting omic science that encompasses the study of the full sphingolipidome characterization, content, structure and activity in cells, tissues or organisms. Like other omics, it has the potential to impact biomarker discovery, drug development and systems biology knowledge. Concretely, dietary food sphingolipids have gained considerable importance due to their extensively reported bioactivity. Because of the complexity of this lipid family and their diversity among foods, powerful analytical methodologies are needed for their study. The analytical tools developed in the past have been improved with the enormous advances made in recent years in mass spectrometry (MS) and chromatography, which allow the convenient and sensitive identification and quantitation of sphingolipid classes and form the basis of current sphingolipidomics methodologies. In addition, novel hyphenated nuclear magnetic resonance (NMR) strategies, new ionization strategies, and MS imaging are outlined as promising technologies to shape the future of sphingolipid analyses. This review traces the analytical methods of sphingolipidomics in food analysis concerning sample extraction, chromatographic separation, the identification and quantification of sphingolipids by MS and their structural elucidation by NMR. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Nondestructive evaluation using dipole model analysis with a scan type magnetic camera

    NASA Astrophysics Data System (ADS)

    Lee, Jinyi; Hwang, Jiseong

    2005-12-01

    Large structures such as nuclear power, thermal power, chemical and petroleum refining plants are drawing interest with regard to the economic aspect of extending component life in respect to the poor environment created by high pressure, high temperature, and fatigue, securing safety from corrosion and exceeding their designated life span. Therefore, technology that accurately calculates and predicts degradation and defects of aging materials is extremely important. Among different methods available, nondestructive testing using magnetic methods is effective in predicting and evaluating defects on the surface of or surrounding ferromagnetic structures. It is important to estimate the distribution of magnetic field intensity for applicable magnetic methods relating to industrial nondestructive evaluation. A magnetic camera provides distribution of a quantitative magnetic field with a homogeneous lift-off and spatial resolution. It is possible to interpret the distribution of magnetic field when the dipole model was introduced. This study proposed an algorithm for nondestructive evaluation using dipole model analysis with a scan type magnetic camera. The numerical and experimental considerations of the quantitative evaluation of several sizes and shapes of cracks using magnetic field images of the magnetic camera were examined.

  19. Quantitative structure-activity relationship study of P2X7 receptor inhibitors using combination of principal component analysis and artificial intelligence methods.

    PubMed

    Ahmadi, Mehdi; Shahlaei, Mohsen

    2015-01-01

    P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure-activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7-7-1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure-activity relationship model suggested is robust and satisfactory.

  20. CBCT-based bone quality assessment: are Hounsfield units applicable?

    PubMed Central

    Jacobs, R; Singer, S R; Mupparapu, M

    2015-01-01

    CBCT is a widely applied imaging modality in dentistry. It enables the visualization of high-contrast structures of the oral region (bone, teeth, air cavities) at a high resolution. CBCT is now commonly used for the assessment of bone quality, primarily for pre-operative implant planning. Traditionally, bone quality parameters and classifications were primarily based on bone density, which could be estimated through the use of Hounsfield units derived from multidetector CT (MDCT) data sets. However, there are crucial differences between MDCT and CBCT, which complicates the use of quantitative gray values (GVs) for the latter. From experimental as well as clinical research, it can be seen that great variability of GVs can exist on CBCT images owing to various reasons that are inherently associated with this technique (i.e. the limited field size, relatively high amount of scattered radiation and limitations of currently applied reconstruction algorithms). Although attempts have been made to correct for GV variability, it can be postulated that the quantitative use of GVs in CBCT should be generally avoided at this time. In addition, recent research and clinical findings have shifted the paradigm of bone quality from a density-based analysis to a structural evaluation of the bone. The ever-improving image quality of CBCT allows it to display trabecular bone patterns, indicating that it may be possible to apply structural analysis methods that are commonly used in micro-CT and histology. PMID:25315442

Top