Science.gov

Sample records for quantitative structure-property relationship

  1. Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides.

    PubMed

    Goodarzi, Mohammad; Coelho, Leandro dos Santos; Honarparvar, Bahareh; Ortiz, Erlinda V; Duchowicz, Pablo R

    2016-06-01

    The application of molecular descriptors in describing Quantitative Structure Property Relationships (QSPR) for the estimation of vapor pressure (VP) of pesticides is of ongoing interest. In this study, QSPR models were developed using multiple linear regression (MLR) methods to predict the vapor pressure values of 162 pesticides. Several feature selection methods, namely the replacement method (RM), genetic algorithms (GA), stepwise regression (SR) and forward selection (FS), were used to select the most relevant molecular descriptors from a pool of variables. The optimum subset of molecular descriptors was used to build a QSPR model to estimate the vapor pressures of the selected pesticides. The Replacement Method improved the predictive ability of vapor pressures and was more reliable for the feature selection of these selected pesticides. The results provided satisfactory MLR models that had a satisfactory predictive ability, and will be important for predicting vapor pressure values for compounds with unknown values. This study may open new opportunities for designing and developing new pesticide.

  2. Linear and nonlinear quantitative structure-property relationship modelling of skin permeability.

    PubMed

    Khajeh, A; Modarress, H

    2014-01-01

    In this work, quantitative structure-property relationship (QSPR) models were developed to estimate skin permeability based on theoretically derived molecular descriptors and a diverse set of experimental data. The newly developed method combining modified particle swarm optimization (MPSO) and multiple linear regression (MLR) was used to select important descriptors and develop the linear model using a training set of 225 compounds. The adaptive neuro-fuzzy inference system (ANFIS) was used as an efficient nonlinear method to correlate the selected descriptors with experimental skin permeability data (log Kp). The linear and nonlinear models were assessed by internal and external validation. The obtained models with three descriptors show good predictive ability for the test set, with coefficients of determination for the MPSO-MLR and ANFIS models equal to 0.874 and 0.890, respectively. The QSPR study suggests that hydrophobicity (encoded as log P) is the most important factor in transdermal penetration. PMID:24090175

  3. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.

    PubMed

    Dearden, John C

    2003-08-01

    Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

  4. Boiling points of halogenated aliphatic compounds: a quantitative structure-property relationship for prediction and validation.

    PubMed

    Oberg, Tomas

    2004-01-01

    Halogenated aliphatic compounds have many technical uses, but substances within this group are also ubiquitous environmental pollutants that can affect the ozone layer and contribute to global warming. The establishment of quantitative structure-property relationships is of interest not only to fill in gaps in the available database but also to validate experimental data already acquired. The three-dimensional structures of 240 compounds were modeled with molecular mechanics prior to the generation of empirical descriptors. Two bilinear projection methods, principal component analysis (PCA) and partial-least-squares regression (PLSR), were used to identify outliers. PLSR was subsequently used to build a multivariate calibration model by extracting the latent variables that describe most of the covariation between the molecular structure and the boiling point. Boiling points were also estimated with an extension of the group contribution method of Stein and Brown.

  5. Development of quantitative structure property relationships for predicting the melting point of energetic materials.

    PubMed

    Morrill, Jason A; Byrd, Edward F C

    2015-11-01

    The accurate prediction of the melting temperature of organic compounds is a significant problem that has eluded researchers for many years. The most common approach used to develop predictive models entails the derivation of quantitative structure-property relationships (QSPRs), which are multivariate linear relationships between calculated quantities that are descriptors of molecular or electronic features and a property of interest. In this report the derivation of QSPRs to predict melting temperatures of energetic materials based on descriptors calculated using the AM1 semiempirical quantum mechanical method are described. In total, the melting points and experimental crystal structures of 148 energetic materials were analyzed. Principal components analysis was performed in order to assess the relative importance and roles of the descriptors in our QSPR models. Also described are the results of k means cluster analysis, performed in order to identify natural groupings within our study set of structures. The QSPR models resulting from these analyses gave training set R(2) values of 0.6085 (RMSE = ± 15.7 °C) and 0.7468 (RMSE = ± 13.2 °C). The test sets for these clusters had R(2) values of 0.9428 (RMSE = ± 7.0 °C) and 0.8974 (RMSE = ± 8.8 °C), respectively. These models are among the best melting point QSPRs yet published for energetic materials.

  6. Interactions of Indole Derivatives with β-Cyclodextrin: A Quantitative Structure-Property Relationship Study

    PubMed Central

    Šoškić, Milan; Porobić, Ivana

    2016-01-01

    Retention factors for 31 indole derivatives, most of them with auxin activity, were determined by high-performance liquid chromatography, using bonded β-cyclodextrin as a stationary phase. A three-parameter QSPR (quantitative structure-property relationship) model, based on physico-chemical and structural descriptors was derived, which accounted for about 98% variations in the retention factors. The model suggests that the indole nucleus occupies the relatively apolar cavity of β-cyclodextrin while the carboxyl group of the indole -3-carboxylic acids makes hydrogen bonds with the hydroxyl groups of β-cyclodextrin. The length and flexibility of the side chain containing carboxyl group strongly affect the binding of these compounds to β-cyclodextrin. Non-acidic derivatives, unlike the indole-3-carboxylic acids, are poorly retained on the column. A reasonably well correlation was found between the retention factors of the indole-3-acetic acids and their relative binding affinities for human serum albumin, a carrier protein in the blood plasma. A less satisfactory correlation was obtained when the retention factors of the indole derivatives were compared with their affinities for auxin-binding protein 1, a plant auxin receptor. PMID:27124734

  7. Quantitative structure-property relationship modeling of remote liposome loading of drugs.

    PubMed

    Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2012-06-10

    Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a data set including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and 5-fold external validation. The external prediction accuracy for binary models was as high as 91-96%; for continuous models the mean coefficient R(2) for regression between predicted versus observed values was 0.76-0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments.

  8. Quantitative structure-property relationship modeling of remote liposome loading of drugs.

    PubMed

    Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2012-06-10

    Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a data set including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and 5-fold external validation. The external prediction accuracy for binary models was as high as 91-96%; for continuous models the mean coefficient R(2) for regression between predicted versus observed values was 0.76-0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. PMID:22154932

  9. Predicting total organic halide formation from drinking water chlorination using quantitative structure-property relationships.

    PubMed

    Luilo, G B; Cabaniss, S E

    2011-10-01

    Chlorinating water which contains dissolved organic matter (DOM) produces disinfection byproducts, the majority of unknown structure. Hence, the total organic halide (TOX) measurement is used as a surrogate for toxic disinfection byproducts. This work derives a robust quantitative structure-property relationship (QSPR) for predicting the TOX formation potential of model compounds. Literature data for 49 compounds were used to train the QSPR in moles of chlorine per mole of compound (Cp) (mol-Cl/mol-Cp). The resulting QSPR has four descriptors, calibration [Formula: see text] of 0.72 and standard deviation of estimation of 0.43 mol-Cl/mol-Cp. Internal and external validation indicate that the QSPR has good predictive power and low bias (‰<‰1%). Applying this QSPR to predict TOX formation by DOM surrogates - tannic acid, two model fulvic acids and two agent-based model assemblages - gave a predicted TOX range of 136-184 µg-Cl/mg-C, consistent with experimental data for DOM, which ranged from 78 to 192 µg-Cl/mg-C. However, the limited structural variation in the training data may limit QSPR applicability; studies of more sulfur-containing compounds, heterocyclic compounds and high molecular weight compounds could lead to a more widely applicable QSPR.

  10. Quantitative Structure-Property Relationship (QSPR) Modeling of Drug-Loaded Polymeric Micelles via Genetic Function Approximation

    PubMed Central

    Lin, Wenjing; Chen, Quan; Guo, Xindong; Qian, Yu; Zhang, Lijuan

    2015-01-01

    Self-assembled nano-micelles of amphiphilic polymers represent a novel anticancer drug delivery system. However, their full clinical utilization remains challenging because the quantitative structure-property relationship (QSPR) between the polymer structure and the efficacy of micelles as a drug carrier is poorly understood. Here, we developed a series of QSPR models to account for the drug loading capacity of polymeric micelles using the genetic function approximation (GFA) algorithm. These models were further evaluated by internal and external validation and a Y-randomization test in terms of stability and generalization, yielding an optimization model that is applicable to an expanded materials regime. As confirmed by experimental data, the relationship between microstructure and drug loading capacity can be well-simulated, suggesting that our models are readily applicable to the quantitative evaluation of the drug-loading capacity of polymeric micelles. Our work may offer a pathway to the design of formulation experiments. PMID:25780923

  11. Determination of Quantitative Structure-Property Relationships of Solvent Resistance of Polycarbonate Copolymers Using a Resonant Multisensor System

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Wroczynski, Ronald J.; McCloskey, Patrick J.; Morris, William G.

    In sensor and microfluidic applications, the need is to have an adequate solvent resistance of polymers to prevent degradation of the substrate surface upon deposition of sensor formilations, to prevent contamination of the solvent-containing sensor formulations or contamination of organic liquid reactions in microfluidic channels. Unfortunately, no comprehensive quantitative reference solubility data of unstressed copolymers is available to date. In this study, we evaluate solvent-resistance of several polycarbonate copolymers prepared from the reaction of hydroquinone (HQ), resorcinol (RS), and bisphenol A (BPA). Our high-throughput polymer evaluation approach permitted the construction of detailed solvent-resistance maps, the development of quantitative structure-property relationships for BPA-HQ-RS copolymers and provided new knowledge for the further development of the polymeric sensor and microfluidic components.

  12. Quantitative structure-property relationship studies on amino acid conjugates of jasmonic acid as defense signaling molecules.

    PubMed

    Li, Zu-Guang; Chen, Ke-Xian; Xie, Hai-Ying; Gao, Jian-Rong

    2009-06-01

    Jasmonates and related compounds, including amino acid conjugates of jasmonic acid, have regulatory functions in the signaling pathway for plant developmental processes and responses to the complex equilibrium of biotic and abiotic stress. But the molecular details of the signaling mechanism are still poorly understood. Statistically significant quantitative structure-property relationship models (r(2) > 0.990) constructed by genetic function approximation and molecular field analysis were generated for the purpose of deriving structural requirements for lipophilicity of amino acid conjugates of jasmonic acid. The best models derived in the present study provide some valuable academic information in terms of the 2/3D-descriptors influencing the lipophilicity, which may contribute to further understanding the mechanism of exogenous application of jasmonates in their signaling pathway and designing novel analogs of jasmonic acid as ecological pesticides.

  13. Quantitative Structure-Property Relationship Modeling of Electronic Properties of Graphene Using Atomic Radial Distribution Function Scores.

    PubMed

    Fernandez, Michael; Shi, Hongqing; Barnard, Amanda S

    2015-12-28

    The intrinsic relationships between nanoscale features and electronic properties of nanomaterials remain poorly investigated. In this work, electronic properties of 622 computationally optimized graphene structures were mapped to their structures using partial-least-squares regression and radial distributions function (RDF) scores. Quantitative structure-property relationship (QSPR) models were calibrated with 70% of a virtual data set of 622 passivated and nonpassivated graphenes, and we predicted the properties of the remaining 30% of the structures. The analysis of the optimum QSPR models revealed that the most relevant RDF scores appear at interatomic distances in the range of 2.0 to 10.0 Å for the energy of the Fermi level and the electron affinity, while the electronic band gap and the ionization potential correlate to RDF scores in a wider range from 3.0 to 30.0 Å. The predictions were more accurate for the energy of the Fermi level and the ionization potential, with more than 83% of explained data variance, while the electron affinity exhibits a value of ∼80% and the energy of the band gap a lower 70%. QSPR models have tremendous potential to rapidly identify hypothetical nanomaterials with desired electronic properties that could be experimentally prepared in the near future.

  14. Excited States and photodebromination of selected polybrominated diphenyl ethers: computational and quantitative structure--property relationship studies.

    PubMed

    Luo, Jin; Hu, Jiwei; Wei, Xionghui; Li, Lingyun; Huang, Xianfei

    2015-01-01

    This paper presents a density functional theory (DFT)/time-dependent DFT (TD-DFT) study on the lowest lying singlet and triplet excited states of 20 selected polybrominateddiphenyl ether (PBDE) congeners, with the solvation effect included in the calculations using the polarized continuum model (PCM). The results obtained showed that for most of the brominated diphenyl ether (BDE) congeners, the lowest singlet excited state was initiated by the electron transfer from HOMO to LUMO, involving a π-σ* excitation. In triplet excited states, structure of the BDE congeners differed notably from that of the BDE ground states with one of the specific C-Br bonds bending off the aromatic plane. In addition, the partial least squares regression (PLSR), principal component analysis-multiple linear regression analysis (PCA-MLR), and back propagation artificial neural network (BP-ANN) approaches were employed for a quantitative structure-property relationship (QSPR) study. Based on the previously reported kinetic data for the debromination by ultraviolet (UV) and sunlight, obtained QSPR models exhibited a reasonable evaluation of the photodebromination reactivity even when the BDE congeners had same degree of bromination, albeit different patterns of bromination. PMID:25569092

  15. Quantitative structure-property relationship analysis for the retention index of fragrance-like compounds on a polar stationary phase.

    PubMed

    Rojas, Cristian; Duchowicz, Pablo R; Tripaldi, Piercosimo; Pis Diez, Reinaldo

    2015-11-27

    A quantitative structure-property relationship (QSPR) was developed for modeling the retention index of 1184 flavor and fragrance compounds measured using a Carbowax 20M glass capillary gas chromatography column. The 4885 molecular descriptors were calculated using Dragon software, and then were simultaneously analyzed through multivariable linear regression analysis using the replacement method (RM) variable subset selection technique. We proceeded in three steps, the first one by considering all descriptor blocks, the second one by excluding conformational descriptor blocks, and the last one by analyzing only 3D-descriptor families. The models were validated through an external test set of compounds. Cross-validation methods such as leave-one-out and leave-many-out were applied, together with Y-randomization and applicability domain analysis. The developed model was used to estimate the I of a set of 22 molecules. The results clearly suggest that 3D-descriptors do not offer relevant information for modeling the retention index, while a topological index such as the Randić-like index from reciprocal squared distance matrix has a high relevance for this purpose. PMID:26521096

  16. Quantitative structure-property relationship analysis for the retention index of fragrance-like compounds on a polar stationary phase.

    PubMed

    Rojas, Cristian; Duchowicz, Pablo R; Tripaldi, Piercosimo; Pis Diez, Reinaldo

    2015-11-27

    A quantitative structure-property relationship (QSPR) was developed for modeling the retention index of 1184 flavor and fragrance compounds measured using a Carbowax 20M glass capillary gas chromatography column. The 4885 molecular descriptors were calculated using Dragon software, and then were simultaneously analyzed through multivariable linear regression analysis using the replacement method (RM) variable subset selection technique. We proceeded in three steps, the first one by considering all descriptor blocks, the second one by excluding conformational descriptor blocks, and the last one by analyzing only 3D-descriptor families. The models were validated through an external test set of compounds. Cross-validation methods such as leave-one-out and leave-many-out were applied, together with Y-randomization and applicability domain analysis. The developed model was used to estimate the I of a set of 22 molecules. The results clearly suggest that 3D-descriptors do not offer relevant information for modeling the retention index, while a topological index such as the Randić-like index from reciprocal squared distance matrix has a high relevance for this purpose.

  17. On the Development and Use of Large Chemical Similarity Networks, Informatics Best Practices and Novel Chemical Descriptors towards Materials Quantitative Structure Property Relationships

    ERIC Educational Resources Information Center

    Krein, Michael

    2011-01-01

    After decades of development and use in a variety of application areas, Quantitative Structure Property Relationships (QSPRs) and related descriptor-based statistical learning methods have achieved a level of infamy due to their misuse. The field is rife with past examples of overtrained models, overoptimistic performance assessment, and outright…

  18. Specific catalysis of asparaginyl deamidation by carboxylic acids: kinetic, thermodynamic, and quantitative structure-property relationship analyses.

    PubMed

    Connolly, Brian D; Tran, Benjamin; Moore, Jamie M R; Sharma, Vikas K; Kosky, Andrew

    2014-04-01

    Asparaginyl (Asn) deamidation could lead to altered potency, safety, and/or pharmacokinetics of therapeutic protein drugs. In this study, we investigated the effects of several different carboxylic acids on Asn deamidation rates using an IgG1 monoclonal antibody (mAb1*) and a model hexapeptide (peptide1) with the sequence YGKNGG. Thermodynamic analyses of the kinetics data revealed that higher deamidation rates are associated with predominantly more negative ΔS and, to a lesser extent, more positive ΔH. The observed differences in deamidation rates were attributed to the unique ability of each type of carboxylic acid to stabilize the energetically unfavorable transition-state conformations required for imide formation. Quantitative structure property relationship (QSPR) analysis using kinetic data demonstrated that molecular descriptors encoding for the geometric spatial distribution of atomic properties on various carboxylic acids are effective determinants for the deamidation reaction. Specifically, the number of O-O and O-H atom pairs on carboxyl and hydroxyl groups with interatomic distances of 4-5 Å on a carboxylic acid buffer appears to determine the rate of deamidation. Collectively, the results from structural and thermodynamic analyses indicate that carboxylic acids presumably form multiple hydrogen bonds and charge-charge interactions with the relevant deamidation site and provide alignment between the reactive atoms on the side chain and backbone. We propose that carboxylic acids catalyze deamidation by stabilizing a specific, energetically unfavorable transition-state conformation of l-asparaginyl intermediate II that readily facilitates bond formation between the γ-carbonyl carbon and the deprotonated backbone nitrogen for cyclic imide formation.

  19. Predicting equilibrium vapour pressure isotope effects by using artificial neural networks or multi-linear regression - A quantitative structure property relationship approach.

    PubMed

    Parinet, Julien; Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gerald; Höhener, Patrick

    2015-09-01

    We aim at predicting the effect of structure and isotopic substitutions on the equilibrium vapour pressure isotope effect of various organic compounds (alcohols, acids, alkanes, alkenes and aromatics) at intermediate temperatures. We attempt to explore quantitative structure property relationships by using artificial neural networks (ANN); the multi-layer perceptron (MLP) and compare the performances of it with multi-linear regression (MLR). These approaches are based on the relationship between the molecular structure (organic chain, polar functions, type of functions, type of isotope involved) of the organic compounds, and their equilibrium vapour pressure. A data set of 130 equilibrium vapour pressure isotope effects was used: 112 were used in the training set and the remaining 18 were used for the test/validation dataset. Two sets of descriptors were tested, a set with all the descriptors: number of(12)C, (13)C, (16)O, (18)O, (1)H, (2)H, OH functions, OD functions, CO functions, Connolly Solvent Accessible Surface Area (CSA) and temperature and a reduced set of descriptors. The dependent variable (the output) is the natural logarithm of the ratios of vapour pressures (ln R), expressed as light/heavy as in classical literature. Since the database is rather small, the leave-one-out procedure was used to validate both models. Considering higher determination coefficients and lower error values, it is concluded that the multi-layer perceptron provided better results compared to multi-linear regression. The stepwise regression procedure is a useful tool to reduce the number of descriptors. To our knowledge, a Quantitative Structure Property Relationship (QSPR) approach for isotopic studies is novel.

  20. Predicting equilibrium vapour pressure isotope effects by using artificial neural networks or multi-linear regression - A quantitative structure property relationship approach.

    PubMed

    Parinet, Julien; Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gerald; Höhener, Patrick

    2015-09-01

    We aim at predicting the effect of structure and isotopic substitutions on the equilibrium vapour pressure isotope effect of various organic compounds (alcohols, acids, alkanes, alkenes and aromatics) at intermediate temperatures. We attempt to explore quantitative structure property relationships by using artificial neural networks (ANN); the multi-layer perceptron (MLP) and compare the performances of it with multi-linear regression (MLR). These approaches are based on the relationship between the molecular structure (organic chain, polar functions, type of functions, type of isotope involved) of the organic compounds, and their equilibrium vapour pressure. A data set of 130 equilibrium vapour pressure isotope effects was used: 112 were used in the training set and the remaining 18 were used for the test/validation dataset. Two sets of descriptors were tested, a set with all the descriptors: number of(12)C, (13)C, (16)O, (18)O, (1)H, (2)H, OH functions, OD functions, CO functions, Connolly Solvent Accessible Surface Area (CSA) and temperature and a reduced set of descriptors. The dependent variable (the output) is the natural logarithm of the ratios of vapour pressures (ln R), expressed as light/heavy as in classical literature. Since the database is rather small, the leave-one-out procedure was used to validate both models. Considering higher determination coefficients and lower error values, it is concluded that the multi-layer perceptron provided better results compared to multi-linear regression. The stepwise regression procedure is a useful tool to reduce the number of descriptors. To our knowledge, a Quantitative Structure Property Relationship (QSPR) approach for isotopic studies is novel. PMID:25559176

  1. A quantitative structure- property relationship of gas chromatographic/mass spectrometric retention data of 85 volatile organic compounds as air pollutant materials by multivariate methods

    PubMed Central

    2012-01-01

    A quantitative structure-property relationship (QSPR) study is suggested for the prediction of retention times of volatile organic compounds. Various kinds of molecular descriptors were calculated to represent the molecular structure of compounds. Modeling of retention times of these compounds as a function of the theoretically derived descriptors was established by multiple linear regression (MLR) and artificial neural network (ANN). The stepwise regression was used for the selection of the variables which gives the best-fitted models. After variable selection ANN, MLR methods were used with leave-one-out cross validation for building the regression models. The prediction results are in very good agreement with the experimental values. MLR as the linear regression method shows good ability in the prediction of the retention times of the prediction set. This provided a new and effective method for predicting the chromatography retention index for the volatile organic compounds. PMID:22594439

  2. Structure-Property Relationship of CaO-MgO-SiO2 Slag: Quantitative Analysis of Raman Spectra

    NASA Astrophysics Data System (ADS)

    Park, Joo Hyun

    2013-08-01

    The quantitative structural information such as the relative abundance of silicate discrete anions (Q n units) and the concentration of three types of oxygens, viz. free-, bridging- and nonbridging oxygen can be obtained from micro-Raman spectra of the quenched CaO-SiO2-MgO glass samples. Various transport properties such as viscosity, density, and electrical conductivity can be expected as a simple linear function of "ln (Q3/Q2)," indicating that these physical properties are strongly dependent on a degree of polymerization of silicate melts. The methodology outlined in the current study can be extended to predict the physicochemical properties of silicate melts in ferrous and non-ferrous metallurgical processes.

  3. Quantitative Structure-Property Relationship (QSPR) Models for a Local Quantum Descriptor: Investigation of the 4- and 3-Substituted-Cinnamic Acid Esterification.

    PubMed

    Rodrigues-Santos, Cláudio E; Echevarria, Aurea; Sant'Anna, Carlos M R; Bitencourt, Thiago B; Nascimento, Maria G; Bauerfeldt, Glauco F

    2015-09-22

    In this work, the theoretical description of the 4- and 3-substituted-cinnamic acid esterification with different electron donating and electron withdrawing groups was performed at the B3LYP and M06-2X levels, as a two-step process: the O-protonation and the nucleophile attack by ethanol. In parallel, an experimental work devoted to the synthesis and characterization of the substituted-cinnamate esters has also been performed. In order to quantify the substituents effects, quantitative structure-property relationship (QSPR) models based on the atomic charges, Fukui functions and the Frontier Effective-for-Reaction Molecular Orbitals (FERMO) energies were investigated. In fact, the Fukui functions, ƒ⁺C and ƒ(-)O, indicated poor correlations for each individual step, and in contrast with the general literature, the O-protonation step is affected both by the FERMO energies and the O-charges of the carbonyl group. Since the process was shown to not be totally described by either charge- or frontier-orbitals, it is proposed to be frontier-charge-miscere controlled. Moreover, the observed trend for the experimental reaction yields suggests that the electron withdrawing groups favor the reaction and the same was observed for Step 2, which can thus be pointed out as the determining step.

  4. Using quantitative structural property relationships, chemical fate models, and the chemical partitioning space to investigate the potential for long range transport and bioaccumulation of complex halogenated chemical mixtures.

    PubMed

    Gawor, Anya; Wania, Frank

    2013-09-01

    Some substances are mixtures of very large number of constituents which vary widely in their properties, and thus also in terms of their environmental fate and the hazard that they may pose to humans and the environment. Examples of such substances include industrial chemicals such as the chlorinated paraffins, technical pesticides such as toxaphene, and unintended combustion side products, such as mixed halogenated dibenzo-p-dioxins and dibenzofurans. Here we describe a simple graphical superposition method that could precede a more detailed hazard assessment for such substances. First, partitioning and degradation properties for each individual constituent of a mixture are estimated with high-throughput quantitative structure-property relationships. Placed in a chemical partitioning space, i.e. a coordinate system defined by two partitioning coefficients, the mixtures appear as 'clouds'. When model-derived hazard assessment metrics, such as the potential for bioaccumulation and long range transport, are superimposed on these clouds, the resulting maps identify the constituents with the highest value for a particular parameter and thus potentially the greatest hazard. The maps also indicate transparently how the potential for long range transport and bioaccumulation is dependent on structural attributes, such as chain length, and the degree and type of halogenation. In contrast to previous approaches, in which the mixture is represented by a single set of properties or those of a few selected constituents, the whole range of environmental fate behaviors displayed by the constituents of a mixture are being considered. The approach is illustrated with three sets of chemical substances.

  5. Quantitative structure-property relationships modeling to predict in vitro and in vivo binding of drugs to the bile sequestrant, colesevelam (Welchol).

    PubMed

    Walker, Joseph R; Brown, Karen; Rohatagi, Shashank; Bathala, Mohinder S; Xu, Chao; Wickremasingha, Prachi K; Salazar, Daniel E; Mager, Donald E

    2009-10-01

    Quantitative structure-property relationship (QSPR) models were developed to correlate physicochemical properties of structurally unrelated drugs with extent of in vitro binding to colesevelam, and predicted values were compared with drug exposure changes in vivo following coadministration. The binding of 17 drugs to colesevelam was determined by an in vitro dissolution drug-binding assay. Data from several clinical studies in healthy volunteers to support administration of colesevelam in diabetic patients were also collected along with existing in vivo literature data and compared with in vitro results. Steric, electronic, and hydrophobic descriptors were calculated for test compounds, and univariate and partial least squares regression approaches were used to derive QSPR models to evaluate which of the molecular descriptors correlated best with in vitro binding. A quadrant analysis evaluated the correlation between predicted/actual in vitro binding results and the in vivo data. The in vitro binding assay exhibited high sensitivity, identifying those compounds with a low probability of producing relevant in vivo drug interactions. Drug lipophilicity was identified as the primary determinant of in vitro binding to colesevelam by the final univariate and partial least squares models (R(2) = 0.69 and 0.98; Q(2) = 0.48 and 0.59). The in vitro assay and in silico models represent predictive tools that may allow investigators to conduct only informative clinical drug interaction studies with colesevelam.

  6. A new quantitative structure-property relationship model to predict bioconcentration factors of polychlorinated biphenyls (PCBs) in fishes using E-state index and topological descriptors.

    PubMed

    de Melo, Eduardo Borges

    2012-01-01

    A quantitative structure-property relationship (QSPR) study for predicting the logarithm of bioconcentration factors (LogBCF) of polychlorinated biphenyls (PCBs) is presented in this work. For this, the descriptors were obtained using only the Simplified Molecular Input Line Entry System (SMILES) strings in the free web server Parameter Client. The model was built using the Partial Least Squares (PLS) regression method. The best model presented five descriptors (one E-state index and four topological descriptors) and a high quality for fit, internal, and external predictions. The leave-N-out (LNO) cross validation and the y-randomization test showed the model is robust and has no shown chance correlation. With a second test set, the model was compared to other models and presented a root mean square error (RMSE) very close to the best model. The mechanistic interpretation was corroborated by other works in the literature and by the descriptors' theory. Thus, the results meet the five Organization for Economic Co-operation and Development (OECD) principles for validation of QSA(P)R models, and it is expected the model can effectively predict the BCF values in fishes of the PCB congeners without highly reliable experimental BCF. PMID:21959189

  7. Notes on quantitative structure-property relationships (QSPR), part 3: density functions origin shift as a source of quantum QSPR algorithms in molecular spaces.

    PubMed

    Carbó-Dorca, Ramon

    2013-04-01

    A general algorithm implementing a useful variant of quantum quantitative structure-property relationships (QQSPR) theory is described. Based on quantum similarity framework and previous theoretical developments on the subject, the present QQSPR procedure relies on the possibility to perform geometrical origin shifts over molecular density function sets. In this way, molecular collections attached to known properties can be easily used over other quantum mechanically well-described molecular structures for the estimation of their unknown property values. The proposed procedure takes quantum mechanical expectation value as provider of causal relation background and overcomes the dimensionality paradox, which haunts classical descriptor space QSPR. Also, contrarily to classical procedures, which are also attached to heavy statistical gear, the present QQSPR approach might use a geometrical assessment only or just some simple statistical outline or both. From an applied point of view, several easily reachable computational levels can be set up. A Fortran 95 program: QQSPR-n is described with two versions, which might be downloaded from a dedicated web site. Various practical examples are provided, yielding excellent results. Finally, it is also shown that an equivalent molecular space classical QSPR formalism can be easily developed. PMID:23238931

  8. Modeling of a short-path distillation process to remove persistent organic pollutants in fish oil based on process parameters and quantitative structure properties relationships.

    PubMed

    Oterhals, Age; Kvamme, Bjørn; Berntssen, Marc H G

    2010-06-01

    A factorial experimental design based on temperature, feed rate and addition of "working fluid" (WF; fatty acid ethyl esters) was used to model a short-path distillation process applied for removal of persistent organic pollutants (POPs) in fish oil. Decontamination effect was assessed by measuring the level of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DL-PCBs) and polybrominated diphenylethers (PBDEs). The average reduction in chemical concentration of the individual PCDD, PCDF, DL-PCB and PBDE congeners was linearly dependent on the number of chlorine or bromine substitutions within each homologue group. DL-PCB and PBDE congeners could also be separated based on ortho-substitution. The quantitative structure properties relationships (QSPR) were combined with process parameters to establish response surface models for each homologue congener group based on partial least squares regression (PLSR). Cross validated predictive ability of the models was in the 4-9% range. Generally high temperature, low feed rate and WF addition improved the decontamination efficiency. The WHO-PCDD/F-PCB-TEQ level could be reduced by up to 98% based on the best experimental settings with residual concentration considerably below present maximum permitted levels in European food and feed legislations.

  9. High-throughput determination of quantitative structure-property relationships using a resonant multisensor system: solvent resistance of bisphenol a polycarbonate copolymers.

    PubMed

    Potyrailo, Radislav A; McCloskey, Patrick J; Wroczynski, Ronald J; Morris, William G

    2006-05-01

    Polymers are important materials for sensor, microfluidic, and other demanding applications. High-throughput screening methodology has been applied for the evaluation of the solvent resistance of a family of polycarbonate copolymers prepared from the reaction of bisphenol A (BPA), hydroquinone (HQ), and resorcinol (RS) in different solvents of practical importance, such as chloroform, tetrahydrofuran (THF), and methyl ethyl ketone (MEK). We employed a 24-channel acoustic-wave sensor system that provided previously unavailable capabilities for parallel evaluation of polymer solvent resistance. This high-throughput polymer evaluation approach assisted in construction of detailed solvent-resistance maps of polycarbonate copolymers and in determination of quantitative structure-property relationships. The best absolute solvent resistance of all studied copolymers was achieved in MEK, followed by chloroform and THF. A D-optimal mixture design was employed to explore the relationship between the copolymer compositions and their solvent resistance. The applied special cubic model for each solvent took into account the primary mixture terms such as BPA, HQ, and RS; binary interaction terms such as BPA-HQ, BPA-RS, and HQ-RS; and a ternary interaction term BPA-HQ-RS. A combination of the normal distribution of the model residuals and the very high values of adjusted R2 (0.97-0.99) demonstrated a good quality of the model. At a HQ concentration of 40 mol %, the solvent resistance was the highest for all tested solvents, and different concentrations of BPA (40 and 60 mol %) and RS (0 and 20 mol %) did not affect the solvent resistance. Without HQ, solvent resistance was decreasing with an increase of RS and decrease of BPA. Overall, with an increase of HQ concentration from 0 to 40 mol %, the solvent resistance of BPA-HQ-RS copolymers was improved by up to 3 times in THF, by 21 times in chloroform, and by 32 times in MEK.

  10. On the Development and Use of Large Chemical Similarity Networks, Informatics Best Practices and Novel Chemical Descriptors Towards Materials Quantitative Structure Property Relationships

    NASA Astrophysics Data System (ADS)

    Krein, Michael

    After decades of development and use in a variety of application areas, Quantitative Structure Property Relationships (QSPRs) and related descriptor-based statistical learning methods have achieved a level of infamy due to their misuse. The field is rife with past examples of overtrained models, overoptimistic performance assessment, and outright cheating in the form of explicitly removing data to fit models. These actions do not serve the community well, nor are they beneficial to future predictions based on established models. In practice, in order to select combinations of descriptors and machine learning methods that might work best, one must consider the nature and size of the training and test datasets, be aware of existing hypotheses about the data, and resist the temptation to bias structure representation and modeling to explicitly fit the hypotheses. The definition and application of these best practices is important for obtaining actionable modeling outcomes, and for setting user expectations of modeling accuracy when predicting the endpoint values of unknowns. A wide variety of statistical learning approaches, descriptor types, and model validation strategies are explored herein, with the goals of helping end users understand the factors involved in creating and using QSPR models effectively, and to better understand relationships within the data, especially by looking at the problem space from multiple perspectives. Molecular relationships are commonly envisioned in a continuous high-dimensional space of numerical descriptors, referred to as chemistry space. Descriptor and similarity metric choice influence the partitioning of this space into regions corresponding to local structural similarity. These regions, known as domains of applicability, are most likely to be successfully modeled by a QSPR. In Chapter 2, the network topology and scaling relationships of several chemistry spaces are thoroughly investigated. Chemistry spaces studied include the

  11. Structure Property Relationships of Carboxylic Acid Isosteres.

    PubMed

    Lassalas, Pierrik; Gay, Bryant; Lasfargeas, Caroline; James, Michael J; Tran, Van; Vijayendran, Krishna G; Brunden, Kurt R; Kozlowski, Marisa C; Thomas, Craig J; Smith, Amos B; Huryn, Donna M; Ballatore, Carlo

    2016-04-14

    The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physicochemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure-property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group.

  12. A Quantitative Structure-Property Relationship (QSPR) Study of Aliphatic Alcohols by the Method of Dividing the Molecular Structure into Substructure

    PubMed Central

    Liu, Fengping; Cao, Chenzhong; Cheng, Bin

    2011-01-01

    A quantitative structure–property relationship (QSPR) analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP), n-octanol–water partition coefficient (lg POW), water solubility (lg W) and the chromatographic retention indices (RI) on different polar stationary phases. In order to investigate the quantitative structure–property relationship of aliphatic alcohols, the molecular structure ROH is divided into two parts, R and OH to generate structural parameter. It was proposed that the property is affected by three main factors for aliphatic alcohols, alkyl group R, substituted group OH, and interaction between R and OH. On the basis of the polarizability effect index (PEI), previously developed by Cao, the novel molecular polarizability effect index (MPEI) combined with odd-even index (OEI), the sum eigenvalues of bond-connecting matrix (SX1CH) previously developed in our team, were used to predict the property of aliphatic alcohols. The sets of molecular descriptors were derived directly from the structure of the compounds based on graph theory. QSPR models were generated using only calculated descriptors and multiple linear regression techniques. These QSPR models showed high values of multiple correlation coefficient (R > 0.99) and Fisher-ratio statistics. The leave-one-out cross-validation demonstrated the final models to be statistically significant and reliable. PMID:21731451

  13. Structure Property Relationships of Biobased Epoxy Resins

    NASA Astrophysics Data System (ADS)

    Maiorana, Anthony Surraht

    The thesis is about the synthesis, characterization, development, and application of epoxy resins derived from sustainable feedstocks such as lingo-cellulose, plant oils, and other non-food feedstocks. The thesis can be divided into two main topics 1) the synthesis and structure property relationship investigation of new biobased epoxy resin families and 2) mixing epoxy resins with reactive diluents, nanoparticles, toughening agents, and understanding co-curing reactions, filler/matrix interactions, and cured epoxy resin thermomechanical, viscoelastic, and dielectric properties. The thesis seeks to bridge the gap between new epoxy resin development, application for composites and advanced materials, processing and manufacturing, and end of life of thermoset polymers. The structures of uncured epoxy resins are characterized through traditional small molecule techniques such as nuclear magnetic resonance, high resolution mass spectrometry, and infrared spectroscopy. The structure of epoxy resin monomers are further understood through the process of curing the resins and cured resins' properties through rheology, chemorheology, dynamic mechanical analysis, tensile testing, fracture toughness, differential scanning calorimetry, scanning electron microscopy, thermogravimetric analysis, and notched izod impact testing. It was found that diphenolate esters are viable alternatives to bisphenol A and that the structure of the ester side chain can have signifi-cant effects on monomer viscosity. The structure of the cured diphenolate based epoxy resins also influence glass transition temperature and dielectric properties. Incorporation of reactive diluents and flexible resins can lower viscosity, extend gel time, and enable processing of high filler content composites and increase fracture toughness. Incorpora-tion of high elastic modulus nanoparticles such as graphene can provide increases in physical properties such as elastic modulus and fracture toughness. The synthesis

  14. Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA).

    PubMed

    Redmond, Haley; Thompson, Jonathan E

    2011-04-21

    In this work we describe and evaluate a simple scheme by which the refractive index (λ = 589 nm) of non-absorbing components common to secondary organic aerosols (SOA) may be predicted from molecular formula and density (g cm(-3)). The QSPR approach described is based on three parameters linked to refractive index-molecular polarizability, the ratio of mass density to molecular weight, and degree of unsaturation. After computing these quantities for a training set of 111 compounds common to atmospheric aerosols, multi-linear regression analysis was conducted to establish a quantitative relationship between the parameters and accepted value of refractive index. The resulting quantitative relationship can often estimate refractive index to ±0.01 when averaged across a variety of compound classes. A notable exception is for alcohols for which the model consistently underestimates refractive index. Homogenous internal mixtures can conceivably be addressed through use of either the volume or mole fraction mixing rules commonly used in the aerosol community. Predicted refractive indices reconstructed from chemical composition data presented in the literature generally agree with previous reports of SOA refractive index. Additionally, the predicted refractive indices lie near measured values we report for λ = 532 nm for SOA generated from vapors of α-pinene (R.I. 1.49-1.51) and toluene (R.I. 1.49-1.50). We envision the QSPR method may find use in reconstructing optical scattering of organic aerosols if mass composition data is known. Alternatively, the method described could be incorporated into in models of organic aerosol formation/phase partitioning to better constrain organic aerosol optical properties.

  15. Structure Property Relationships of Carboxylic Acid Isosteres

    PubMed Central

    2016-01-01

    The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physicochemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure–property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group. PMID:26967507

  16. Structure-Property Relationships of Bismaleimides

    NASA Technical Reports Server (NTRS)

    Tenteris-Noebe, Anita D.

    1997-01-01

    The purpose of this research was to control and systematically vary the network topology of bismaleimides through cure temperature and chemistry (addition of various coreactants) and subsequently attempt to determine structure-mechanical property relationships. Characterization of the bismaleimide structures by dielectric, rheological, and thermal analyses, and density measurements was subsequently correlated with mechanical properties such as modulus, yield strength, fracture energy, and stress relaxation. The model material used in this investigation was 4,4'-BismaleiMidodIphenyl methane (BMI). BMI was coreacted with either 4,4'-Methylene Dianiline (MDA), o,o'-diallyl bisphenol A (DABA) from Ciba Geigy, or Diamino Diphenyl Sulfone (DDS). Three cure paths were employed: a low- temperature cure of 140 C where chain extension should predominate, a high-temperature cure of 220 C where both chain extension and crosslinking should occur simultaneously, and a low-temperature (140 C) cure followed immediately by a high-temperature (220 C) cure where the chain extension reaction or amine addition precedes BMI homopolymerization or crosslinking. Samples of cured and postcured PMR-15 were also tested to determine the effects of postcuring on the mechanical properties. The low-temperature cure condition of BMI/MDA exhibited the highest modulus values for a given mole fraction of BMI with the modulus decreasing with decreasing concentration of BMI. The higher elastic modulus is the result of steric hindrance by unreacted BMI molecules in the glassy state. The moduli values for the high- and low/high-temperature cure conditions of BMI/MDA decreased as the amount of diamine increased. All the moduli values mimic the yield strength and density trends. For the high-temperature cure condition, the room- temperature modulus remained constant with decreasing mole fraction of BMT for the BMI/DABA and BMI/DDS systems. Postcuring PMR-15 increases the modulus over that of the cured

  17. Structure-property Relationships for Methyl-terminated Alkyl Self-assembled Monolayers

    SciTech Connect

    F DelRio; D Rampulla; C Jaye; G Stan; R Gates; D Fischer; R Cook

    2011-12-31

    Structure-property relationships for methyl-terminated alkyl self-assembled monolayers (SAMs) are developed using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and atomic force microscopy (AFM). NEXAFS C K-edge spectra are used to compute the dichroic ratio, which provides a quantitative measure of the molecular structure. AFM data are analyzed with an elastic adhesive contact model, modified by a first-order elastic perturbation method to include substrate effects, to extract the monolayer mechanical properties. Using this approach, the measured mechanical properties are not influenced by the substrate, which allows universal structure-property relationships to be developed for methyl-terminated alkyl SAMs.

  18. Structure/property relationships in multipass GMA welding of beryllium.

    SciTech Connect

    Hochanadel, P. W.; Hults, W. L.; Thoma, D. J.; Dave, V. R.; Kelly, A. M.; Pappin, P. A.; Cola, M. J.; Burgardt, P.

    2001-01-01

    Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

  19. Structure property relationships of carbonaceous films grown under ion enhancement

    SciTech Connect

    Weissmantel, C.; Ackermann, E.; Bewilogua, K.; Hecht, G.; Kupfer, H.; Rau, B.

    1986-11-01

    Based on our own results and in comparison with data published by other groups the structure property relationships of carbon and carbon/metal films prepared by sputtering and deposition of partially ionized species are discussed. Films grown by ion beam sputtering are dark brownish and amorphous with a small fraction of microcrystals. However, a transition to transparent and insulating layers can be effected by ion bombardment. C/Me coatings, where Me stands for Ti or Sn, were obtained by magnetron sputtering of composite targets. The films proved to be amorphous up to metal concentrations of more than 10 at. %, but metal and carbide crystals grow upon annealing. Measurements of the hardness, the electrical conductivity, and the contact behavior in dependence on the composition provided interesting information. For carbon films prepared by deposition of partially ionized benzene species it has been found that the properties depend characteristically on the ion energy; typical ''diamondlike'' i-C films are obtained by applying a bias voltage from 1--3 keV. The thermal stability of the amorphous coatings is discussed in conjunction with their electrical conductivity. Summarizing extensive structure investigations, a structure model based on tetrahedrally interlinked carbon rings is proposed. Composites of the type i-C/Me (Me: Al, Ti, Cr), which were prepared by simultaneous metal evaporation, exhibit a wide range of structure property relations.

  20. Structure-Property Relationships of Solids in Pharmaceutical Processing

    NASA Astrophysics Data System (ADS)

    Chattoraj, Sayantan

    Pharmaceutical development and manufacturing of solid dosage forms is witnessing a seismic shift in the recent years. In contrast to the earlier days when drug development was empirical, now there is a significant emphasis on a more scientific and structured development process, primarily driven by the Quality-by-Design (QbD) initiatives of US Food and Drug Administration (US-FDA). Central to such an approach is the enhanced understanding of solid materials using the concept of Materials Science Tetrahedron (MST) that probes the interplay between four elements, viz., the structure, properties, processing, and performance of materials. In this thesis work, we have investigated the relationships between the structure and those properties of pharmaceutical solids that influence their processing behavior. In all cases, we have used material-sparing approaches to facilitate property assessment using very small sample size of materials, which is a pre-requisite in the early stages of drug development when the availability of materials, drugs in particular, is limited. The influence of solid structure, either at the molecular or bulk powder levels, on crystal plasticity and powder compaction, powder flow, and solid-state amorphization during milling, has been investigated in this study. Through such a systematic evaluation, we have captured the involvement of structure-property correlations within a wide spectrum of relevant processing behaviors of pharmaceutical solids. Such a holistic analysis will be beneficial for addressing both regulatory and scientific issues in drug development.

  1. Bio-related noble metal nanoparticle structure property relationships

    NASA Astrophysics Data System (ADS)

    Leonard, Donovan Nicholas

    Structure property relationships of noble metal nanoparticles (NPs) can be drastically different than bulk properties of the same metals. This research study used state-of-the-art analytical electron microscopy and scanned probe microscopy to determine material properties on the nanoscale of bio-related Au and Pd NPs. Recently, it has been demonstrated the self-assembly of Au NPs on functionalized silica surfaces creates a conductive surface. Determination of the aggregate morphology responsible for electron conduction was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In addition, changes in the electrical properties of the substrates after low temperature (<350°C) annealing was also studied. It was found that coalescence and densification of the Au NP aggregates disrupted the interconnected network which subsequently created a loss of conductivity. Investigation of bio-related Au/SiO2 core-shell NPs determined why published experimental results showed the sol-gel silica shell improved, by almost an order of magnitude, the detection efficiency of a DNA detection assay. Novel 360° rotation scanning TEM (STEM) imaging allowed study of individual NP surface morphology and internal structure. Electron energy loss spectroscopy (EELS) spectrum imaging determined optoelectronic properties and chemical composition of the silica shell used to encapsulate Au NPs. Results indicated the sol-gel deposited SiO2 had a band gap energy of ˜8.9eV, bulk plasmon-peak energy of ˜25.5eV and chemical composition of stoichiometric SiO2. Lastly, an attempt to elicit structure property relationships of novel RNA mediated Pd hexagon NPs was performed. Selected area electron diffraction (SAD), low voltage scanning transmission electron microscopy (LV-STEM), electron energy loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) were chosen for characterization of atomic ordering, chemical composition and optoelectronic properties of the novel

  2. Oxide Thermoelectric Materials: A Structure-Property Relationship

    NASA Astrophysics Data System (ADS)

    Nag, Abanti; Shubha, V.

    2014-04-01

    Recent demand for thermoelectric materials for power harvesting from automobile and industrial waste heat requires oxide materials because of their potential advantages over intermetallic alloys in terms of chemical and thermal stability at high temperatures. Achievement of thermoelectric figure of merit equivalent to unity ( ZT ≈ 1) for transition-metal oxides necessitates a second look at the fundamental theory on the basis of the structure-property relationship giving rise to electron correlation accompanied by spin fluctuation. Promising transition-metal oxides based on wide-bandgap semiconductors, perovskite and layered oxides have been studied as potential candidate n- and p-type materials. This paper reviews the correlation between the crystal structure and thermoelectric properties of transition-metal oxides. The crystal-site-dependent electronic configuration and spin degeneracy to control the thermopower and electron-phonon interaction leading to polaron hopping to control electrical conductivity is discussed. Crystal structure tailoring leading to phonon scattering at interfaces and nanograin domains to achieve low thermal conductivity is also highlighted.

  3. Structure-property relationships in polymers for dielectric capacitors

    NASA Astrophysics Data System (ADS)

    Gupta, Sahil

    Effective energy storage is a key challenge of the 21st century that has fueled research in the area of energy storage devices. In this dissertation, structure-property relationships have been evaluated for polymers that might be suitable for storing energy in high-energy density, high-temperature capacitors. Firstly, hydroxyl-modified polypropylenes (PPOH) were synthesized by copolymerization of the propylene and undecenyloxytrimethylsilane monomers. The presence of H-bonding in PPOH copolymers increased their glass-transition temperature. Steric hindrance by the comonomer reduced the PP crystal growth rate and crystal size, resulting in a melting point depression. The comonomer was restricted outside the crystalline domains leaving the alpha-monoclinic crystal structure of PP unaffected, but increasing the fold-surface free energy. Crystallization was slower for PPOH copolymers than PP, but exhibited a skewed bell curve as a function of hydroxyl concentration. H-bonding persisted even at melt temperatures up to 250°C resulting in a higher elasticity and viscosity for PPOH copolymers. Secondly, sulfonated poly(ether ether ketone) (HSPEEK) was synthesized by sulfonating PEEK with sulfuric acid, and further neutralized with Zn to obtain ZnSPEEK. The thermal and dielectric properties of SPEEK were compared with PEEK. The glass-transition increased and melting point were high enough to enable the use of polymer at 180°C. The incorporation of sulfonic groups in PEEK increased the dielectric constant. HSPEEK had a higher dielectric constant than ZnSPEEK due to higher dipolar mobility, but the dielectric loss was also higher for HSPEEK due to electrode polarization and DC conduction. These results were consistent with our observations from sulfonated polystyrene (HSPS), which was used as a >model&lang' polymer. Lastly, commercial poly(4-methyl-1-pentene) (P4MP) was characterized to check its viability as a high-temperature polymer dielectric. Thermal stability up to

  4. Structure-property relationships in graphene/polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad Z.

    Graphene's unique combination of excellent electrical, thermal, and mechanical properties can provide multi-functional reinforcement for polymer nanocomposites. However, poor dispersion of graphene in non-polar polyolefins limits its applications as a universal filler. Thus, the overall goal of this thesis was to improve graphene's dispersion in graphene/polyolefin nanocomposites and develop processing-structure-property relationships. A new polymer matrix was synthesized by blending polyethylene (PE) with oxidized polyethylene (OPE). Inclusion of OPE in PE produced miscible blends, but the miscibility decreased with increasing OPE loading. Meanwhile, the Young's modulus of blends increased with increasing OPE concentration, attributed to decreased long period order in PE and increased crystallinity. In addition, the miscibility of OPE in PE substantially reduced the viscosity of blends. Using thermally reduced graphene (TRG) produced by simultaneous thermal exfoliation and reduction of graphite oxide, electrically conductive nanocomposites were manufactured by incorporating TRG in PE/OPE blends via solution blending. The rheological and electrical percolations decreased substantially to 0.3 and 0.13 vol% of TRG in PE/OPE/TRG nanocomposites compared to 1.0 and 0.3 vol% in PE/TRG nanocomposites. Improved dispersion of TRG in blends was attributed to increased TRG/polymer interactions, leading to high aspect ratio of the dispersed TRG. A universal Brownian dispersion mechanism for graphene was concluded similar to that of carbon nanotubes, following the Doi-Edwards theory. Furthermore, the improved dispersion of TRG correlated with the formation of surface fractals in PE/OPE/TRG nanocomposites, whereas the poor dispersion of TRG in PE led to the formation of only mass fractals. Moreover, graphene and carbon black (CB) were combined as a synergic filler for manufacturing electrically conductive PE nanocomposites. Smaller fractals were observed at lower CB

  5. Structure-property relationships of multiferroic materials: A nano perspective

    NASA Astrophysics Data System (ADS)

    Bai, Feiming

    The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb 2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT

  6. Structure-property relationships in major ampullate spider silk as deduced from polarized FTIR spectroscopy.

    PubMed

    Papadopoulos, P; Sölter, J; Kremer, F

    2007-10-01

    Polarized Fourier Transform Infrared (FTIR) spectroscopy is employed to study structure-property relationships in major ampullate spider silk being exposed to an external mechanical strain. From the measured infrared dichroism of aminoacid-residue - specific bands the molecular order parameter, the frequency width at half-maximum (FWHM) and the spectral position of the absorption maximum are determined in dependence on the external strain. For the highly ordered alanine-rich beta sheets a change in the vibrational potential is found for macroscopic strains as low as a few percent. It can be quantitatively described by a quantum-mechanical approach in which the mechanical strain is treated as a weak external perturbation. The immediate microscopic response to the external field proves that beta -sheeted crystals are tightly interconnected by pre-stretched chains as suggested recently (Y. Liu et al., Nat. Mater. 4, 901 (2005)).

  7. Structure-property relationships of flexible polyurethane foams

    NASA Astrophysics Data System (ADS)

    Aneja, Ashish

    This study examined several features of flexible polyurethane foams from a structure-property perspective. A major part of this dissertation addresses the issue of connectivity of the urea phase and its influence on mechanical and viscoelastic properties of flexible polyurethane foams and their plaque counterparts. Lithium salts (LiCl and LiBr) were used as additives to systematically alter the phase separation behavior, and hence the connectivity of the urea phase at different scale lengths. Macro connectivity, or the association of the large scale urea rich aggregates typically observed in flexible polyurethane foams was assessed using SAXS, TEM, and AFM. These techniques showed that including a lithium salt in the foam formulation suppressed the formation of the urea aggregates and thus led to a loss in the macro level connectivity of the urea phase. WAXS and FTIR were used to demonstrate that addition of LiCl or LiBr systematically disrupted the local ordering of the hard segments within the microdomains, i.e., it led to a reduction of micro level connectivity or the regularity in segmental packing of the urea phase. Based on these observations, the interaction of the lithium salt was thought to predominantly occur with the urea hard segments, and this hypothesis was confirmed using quantum mechanical calculations. Another feature of this research investigated model trisegmented polyurethanes based on monofunctional polyols, or "monos", with water-extended toluene diisocyanate (TDI) based hard segments. The formulations of the monol materials were maintained similar to those of flexible polyurethane foams with the exceptions that the conventional polyol was substituted by an oligomeric monofunctional polyether of ca. 1000 g/mol molecular weight. Plaques formed from these model systems were shown to be solid materials even at their relatively low molecular weights of 3000 g/mol and less, AFM phase images, for the first time, revealed the ability of the hard

  8. Incoloy 908 database report: On process -- structure -- property relationship

    SciTech Connect

    Toma, L.S.; Hwang, I.S.; Steeves, M.M.

    1993-05-01

    Incoloy 908 is a nickel-iron base superalloy with a coefficient of expansion (COE) and mechanical properties that have been optimized for use in Nb{sub 3}Sn superconducting magnets. It has been proposed for use as a conduit material for the International Thermonuclear Experimental Reactor (ITER) magnets. The relationship between manufacturing processes, microstructures and mechanical properties of Incoloy 908 are characterized in support of the magnet fabrication and quality control. This report presents microhardness, microstructure, and yield and ultimate tensile strengths as functions of thermomechanical process variables including heat treatment, annealing and cold work for laboratory prepared Incoloy 908 specimens. Empirical correlations have been developed for the microhardness at room temperature and tensile strength at room temperature and at 4K. These results may be used for manufacturing quality control or for design.

  9. An Investigation of College Chemistry Students' Understanding of Structure-Property Relationships

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Corley, Leah M.; Underwood, Sonia M.

    2013-01-01

    The connection between the molecular-level structure of a substance and its macroscopic properties is a fundamental concept in chemistry. Students in college-level general and organic chemistry courses were interviewed to investigate how they used structure-property relationships to predict properties such as melting and boiling points. Although…

  10. Processing-structure-property relationships of carbon nanotube and nanoplatelet enabled piezoresistive sensors

    NASA Astrophysics Data System (ADS)

    Luo, Sida

    Individual carbon nanotubes (CNTs) possess excellent piezoresistive performance, which is manifested by the significant electrical resistance change when subject to mechanical deformation. In comparison to individual CNTs, the CNT thin films, formed by a random assembly of individual tubes or bundles, show much lower piezoresistive sensitivity. Given the progress made to date in developing CNT ensemble based-piezoresistive sensors, the related piezoresistive mechanism(s) are still not well understood. The crucial step to obtain a better understanding of this issue is to study the effects of CNT structure in the dispersion on the piezoresistivity of CNT ensemble based-piezoresistive sensors. To reach this goal, my Ph.D. research first focuses on establishing the processing-structure-property relationship of SWCNT thin film piezoresistive sensors. The key accomplishment contains: 1) developing the combined preparative ultracentrifuge method (PUM) and dynamic light scattering (DLS) method to quantitatively characterized SWCNT particle size in dispersions under various sonication conditions; 2) designing combined ultrasonication and microfluidization processing protocol for high throughput and large-scale production of high quality SWCNT dispersions; 3) fabricating varied SWCNT thin film piezoresistive sensors through spray coating technique and immersion-drying post-treatment; and 4) investigating the effect of microstructures of SWCNTs on piezoresistivity of SWCNT thin film sensors. This experimental methodology for quantitative and systematic investigation of the processing-structure-property relationships provides a means for the performance optimization of CNT ensemble based piezoresistive sensors. As a start to understand the piezoresistive mechanism, the second focus of my Ph.D. research is studying charge transport behaviors in SWCNT thin films. It was found that the temperature-dependent sheet resistance of SWCNT thin films could be explained by a 3D variable

  11. Grain boundary plane orientation fundamental zones and structure-property relationships

    DOE PAGES

    Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.

    2015-10-26

    Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to themore » strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries.« less

  12. Grain boundary plane orientation fundamental zones and structure-property relationships

    SciTech Connect

    Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.

    2015-10-26

    Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to the strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries.

  13. Grain Boundary Plane Orientation Fundamental Zones and Structure-Property Relationships

    PubMed Central

    Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.

    2015-01-01

    Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to the strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries. PMID:26498715

  14. Structure-property relationships of electron-beam-irradiated monomeric and polymeric systems

    SciTech Connect

    Kim, Ha Chul.

    1989-01-01

    Structure-property relationships were investigated for electron beam (EB) irradiated monomeric and polymeric systems. The objectives were to study the feasibility of preparing systems of potential application, and to characterize these systems in terms of structure-property behavior. In this thesis, the basic theories on radiation chemistry were first reviewed. Next, five different studies on the application of EB radiation were discussed. In the first study on the surface modification of the methacyclic acid derivative of the glycidyl ether of bis-phenol A(bis-GMA) substrates, considerable changes in wetting characteristics were observed using functionalized poly(dimethyl siloxane) (PDMS) oligomers as surface modifiers. The second subject was utilized to cross-linked caprolactone-allyl glycidyl ether(CL-AGE) copolymers. EB radiation was utilized to crosslink these materials at various temperatures both above and below the crystalline melting point. In the third study, models of time-temperature-energy(TTE) diagrams in an idealized EB radiation curing system were developed to help provide a conceptual understanding of the TTE relationship. The fourth study focused on the effects of EB irradiation on the mechanical and thermal properties of poly(phenylene sulfide). In the fifth study, two systems(symmetric and asymmetric) based on the controlled distribution of bis-GMA within a crosslinked nitrile rubber(NBR) network were prepared utilizing EB irradiation.

  15. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    PubMed Central

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-01-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established. PMID:26862010

  16. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    NASA Astrophysics Data System (ADS)

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-02-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established.

  17. Structure-property relationships in self-assembling peptide hydrogels, homopolypeptides and polysaccharides

    NASA Astrophysics Data System (ADS)

    Hule, Rohan A.

    The main objective of this dissertation is to investigate quantitative structure-property relationships in a variety of molecular systems including de novo designed peptides, peptide amphiphiles, polysaccharides and high molecular weight polypeptides. Peptide molecules consisting of 20 amino acids were designed to undergo thermally triggered intramolecular folding into asymmetric beta-hairpins and intermolecular self-assembly via a strand swapping mechanism into physically crosslinked fibrillar hydrogels. The self-assembly mechanism was confirmed by multiple characterization techniques such as circular dichroism and FITR spectroscopy, atomic force and transmission electron microscopy and small angle neutron scattering. Three distinct fibrillar nanostructures, i.e. non-twisted, twisted and laminated were produced, depending on the degree of strand asymmetry and peptide registry. Differences in the fibrillar morphology have a direct consequence on the mechanical properties of the hydrogels, with the laminated hydrogels exhibiting a significantly higher elastic modulus as compared to the twisted or non-twisted fibrillar hydrogels. SANS and cryo-TEM data reveal that the self-assembled fibrils form networks that are fractal in nature. Models employed to elucidate the fractal behavior can relate changes in the correlation lengths, low q (network), and high q (fibrillar) fractal exponents to the distinct fibrillar nanomorphology. The fractal dimension of the networks varies significantly, from a mass to a surface fractal and can be directly related to the local fibrillar morphology and changes in the peptide concentration. Transitions in the fractal behavior seen in the high q regime can be attributed to self-assembly kinetics. An identical model can be used to establish a direct correlation between the bulk properties and changes in both, the network density and underlying morphology, of a modified peptide-based hydrogel. As in the case of asymmetric peptides, changes in

  18. Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy.

    PubMed

    d'Ischia, Marco; Napolitano, Alessandra; Ball, Vincent; Chen, Chun-Teh; Buehler, Markus J

    2014-12-16

    CONSPECTUS: Polydopamine (PDA), a black insoluble biopolymer produced by autoxidation of the catecholamine neurotransmitter dopamine (DA), and synthetic eumelanin polymers modeled to the black functional pigments of human skin, hair, and eyes have burst into the scene of materials science as versatile bioinspired functional systems for a very broad range of applications. PDA is characterized by extraordinary adhesion properties providing efficient and universal surface coating for diverse settings that include drug delivery, microfluidic systems, and water-treatment devices. Synthetic eumelanins from dopa or 5,6-dihydroxyindoles are the focus of increasing interest as UV-absorbing agents, antioxidants, free radical scavengers, and water-dependent hybrid electronic-ionic semiconductors. Because of their peculiar physicochemical properties, eumelanins and PDA hold considerable promise in nanomedicine and bioelectronics, as they are biocompatible, biodegradable, and exhibit suitable mechanical properties for integration with biological tissues. Despite considerable similarities, very few attempts have so far been made to provide an integrated unifying perspective of these two fields of technology-oriented chemical research, and progress toward application has been based more on empirical approaches than on a solid conceptual framework of structure-property relationships. The present Account is an attempt to fill this gap. Following a vis-à-vis of PDA and eumelanin chemistries, it provides an overall view of the various levels of chemical disorder in both systems and draws simple correlations with physicochemical properties based on experimental and computational approaches. The potential of large-scale simulations to capture the macroproperties of eumelanin-like materials and their hierarchical structures, to predict the physicochemical properties of new melanin-inspired materials, to understand the structure-property-function relationships of these materials from

  19. Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy.

    PubMed

    d'Ischia, Marco; Napolitano, Alessandra; Ball, Vincent; Chen, Chun-Teh; Buehler, Markus J

    2014-12-16

    CONSPECTUS: Polydopamine (PDA), a black insoluble biopolymer produced by autoxidation of the catecholamine neurotransmitter dopamine (DA), and synthetic eumelanin polymers modeled to the black functional pigments of human skin, hair, and eyes have burst into the scene of materials science as versatile bioinspired functional systems for a very broad range of applications. PDA is characterized by extraordinary adhesion properties providing efficient and universal surface coating for diverse settings that include drug delivery, microfluidic systems, and water-treatment devices. Synthetic eumelanins from dopa or 5,6-dihydroxyindoles are the focus of increasing interest as UV-absorbing agents, antioxidants, free radical scavengers, and water-dependent hybrid electronic-ionic semiconductors. Because of their peculiar physicochemical properties, eumelanins and PDA hold considerable promise in nanomedicine and bioelectronics, as they are biocompatible, biodegradable, and exhibit suitable mechanical properties for integration with biological tissues. Despite considerable similarities, very few attempts have so far been made to provide an integrated unifying perspective of these two fields of technology-oriented chemical research, and progress toward application has been based more on empirical approaches than on a solid conceptual framework of structure-property relationships. The present Account is an attempt to fill this gap. Following a vis-à-vis of PDA and eumelanin chemistries, it provides an overall view of the various levels of chemical disorder in both systems and draws simple correlations with physicochemical properties based on experimental and computational approaches. The potential of large-scale simulations to capture the macroproperties of eumelanin-like materials and their hierarchical structures, to predict the physicochemical properties of new melanin-inspired materials, to understand the structure-property-function relationships of these materials from

  20. Structure-property relationships of anionic permselective membranes. [Fe/Cr redox storage batteries

    SciTech Connect

    Arnold, C. Jr.

    1983-01-01

    Anionic exchange membranes are used in Fe/Cr redox storage batteries to separate the anolyte from the catholyte and provide electrical continuity. Membranes with lower area resistivity, higher selectivity and reduced susceptibility toward fouling are required to improve the efficiency and lifetime of these batteries. In order to develop improved membrane, a better understanding of the relationships between these properties and such structural parameters as degree of crosslinking, ion exchange capacity and porosity were needed. The primary objective of this work was to define the structure-property relationships of anionic permselective membranes. A secondary goal was to develop empirical models which can be used to predict membrane performance. This kind of information should be useful for the development of improved membranes. To accomplish these goals a factorial study was carried out with model membranes. These membranes were designed in such a way that all three structural parameters could be varied independently. In this paper it will be shown how this approach not only provided models which could be used to predict membrane performance, but also how one of the model membrane exhibited better properties than state-of-the-art membranes.

  1. Localized surface plasmon resonance induced structure-property relationships of metal nanostructures

    NASA Astrophysics Data System (ADS)

    Vilayurganapathy, Subramanian

    The confluence of nanotechnology and plasmonics has led to new and interesting phenomena. The industrial need for fast, efficient and miniature devices which constantly push the boundaries on device performance tap into the happy marriage between these diverse fields. Designing devices for real life application that give superior performance when compared with existing ones are enabled by a better understanding of their structure-property relationships. Among all the design constraints, without doubt, the shape and size of the nanostructure along with the dielectric medium surrounding it has the maximum influence on the response and thereby the performance of the device. Hence a careful study of the above mentioned parameters is of utmost importance in designing efficient devices. In this dissertation, we synthesize and study the optical properties of nanostructures of different shapes and size. In particular, we estimated the plasmonic near field enhancement via surface-enhanced Raman scattering (SERS) and 2-photon Photoemission electron microscopy (2P-PEEM). We synthesized the nanostructures using four different techniques. One synthesis technique, the thermal growth method was employed to grow interesting Ag and Au nanostructures on Si. The absence of toxic chemicals during nanostructure synthesis via the thermal growth technique opens up myriad possibilities for applications in the fields of biomedical science, bioengineering, drug delivery among others along with the huge advantage of being environment friendly. The other three synthesis techniques (ion implantation, Electrodeposition and FIB lithography) were chosen with the specific goal of designing novel plasmonic metal, metal hybrid nanostructures as photocathode materials in next generation light sources. The synthesis techniques for these novel nanostructures were dictated by the requirement of high quantum efficiency, robustness under constant irradiation and coherent unidirectional electron emission

  2. Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers.

    PubMed

    Lei, Ting; Wang, Jie-Yu; Pei, Jian

    2014-04-15

    Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using

  3. An investigation of structure-property relationships in several categories of proton exchange membranes

    NASA Astrophysics Data System (ADS)

    Rodgers, Marianne Phelan

    The chemical and structural features of proton exchange membranes (PEMs) are related to their fuel cell relevant properties. The objective of this work is to understand structure-property relationships in PEMs through the fabrication and characterization of several classes of membranes. Incorporation of linear and angled monomers into the main chain of a polyimide permitted investigation of the effect of kinked versus linear polymers on membrane properties. The conductivity of angled sulfonated polyimide membranes is greater than those prepared from linear polymers, but water uptakes are lower. These differences are attributed to increased entanglements of angled polymers, which limit the degree of swelling and lead to increased proton concentration. Polyelectrolytes were incorporated into reinforcing materials to study the effect of incorporating and confining polyelectrolytes in the pores of reinforcing materials. The employment of reinforcing materials reduces conductivity, mobility, and permeance due to decreased ionomer content and connectivity of the ionomer. However, membranes are stronger and thinner, which compensates for these losses in terms of lower resistance and increased dimensional stability. Incorporating zirconium hydrogen phosphate (ZrP) and silicon dioxide (SiO2) into NafionRTM membranes permitted investigation of their effect on membrane properties. Data for NafionRTM/ZrP membranes support the theory that ZrP disrupts cohesive forces in Nafion RTM, causing it to absorb more water. The increased water content of the membranes does not result in increased conductivity because there is a concurrent decrease in proton concentration and mobility due to poorly conducting ZrP disrupting the conduction pathway and increased water content diluting protons and separating proton conduction sites. The decreasing density of the NafionRTM/SiO2 composite membranes with increasing SiO2 content and the increased dimensional stability of the membranes increasing

  4. Structure/property relationships in polymer membranes for water purification and energy applications

    NASA Astrophysics Data System (ADS)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  5. Structure-property relationships of small bandgap conjugated polymers for solar cells.

    PubMed

    Hellström, Stefan; Zhang, Fengling; Inganäs, Olle; Andersson, Mats R

    2009-12-01

    Conjugated polymers as electron donors in solar cells based on donor/acceptor combinations are of great interest, partly due to the possibility of converting solar light with a low materials budget. Six small bandgap polymers with optical bandgap ranging from 1.0-1.9 eV are presented in this paper. All polymers utilize an electron donor-acceptor-donor (DAD) segment in the polymer backbone, creating a partial charge-transfer, to decrease the bandgap. The design, synthesis and the optical characteristics as well as the solar cell characteristics of the polymers are discussed. The positions of the energy levels of the conjugated polymer relative to the electron acceptor are of significant importance and determine not only the driving force for exciton dissociation but also the maximum open-circuit voltage. This work also focuses on investigating the redox behavior of the described conjugated polymers and electron acceptors using square wave voltammetry. Comparing the electrochemical data gives important information of the structure-property relationships of the polymers.

  6. Structure-property relationships of photoresponsive inhibitors of the kinesin motor.

    PubMed

    Amrutha, Ammathnadu S; Kumar, K R Sunil; Matsuo, Kazuya; Tamaoki, Nobuyuki

    2016-07-26

    Recently we demonstrated the photoregulation of the activity of kinesin-1 using an azobenzene-tethered peptide (azo-peptide: Azo-Ile-Pro-Lys-Ala-Ile-Gln-Ala-Ser-His-Gly-Arg-OH). To understand the mechanism behind this photoswitchable inhibition, here we studied the structure-property relationships of a range of azo-peptides through systematic variations in the structures of the peptide and azobenzene units. The vital peptide sequence for kinesin inhibition-mediated through electrostatic, hydrophobic and C-Hπ interactions-was the same as that for the self-inhibition of kinesin. We also identified substituents on the azobenzene capable of enhancing the photoswitchability of inhibition. As a result, we developed a new inhibitor featuring a relatively short peptide unit (-Arg-Ile-Pro-Lys-Ala-Ile-Arg-OH) and an azobenzene unit bearing a para-OMe group. In the trans form of its azobenzene unit, this finely tuned inhibitor stopped the kinesin-driven gliding motility of microtubules completely at a relatively low concentration, yet allowed gliding motility with a relatively high velocity in the cis form obtained after UV irradiation. PMID:27270305

  7. Relationships between physical and structural properties of intramuscular connective tissue and toughness of raw pork.

    PubMed

    Nishimura, Takanori; Fang, Suhong; Wakamatsu, Jun-ichi; Takahashi, Koui

    2009-02-01

    We studied the relationships between the shear-force value and physical and structural properties of the intramuscular connective tissue (IMCT) in six classes of porcine skeletal muscle to elucidate the contribution of IMCT to toughness of raw pork. The shear-force value of raw pork correlated significantly with that of the IMCT model prepared from each class of skeletal muscle (P < 0.05). The correlation suggested that the variable toughness of pork was caused by the mechanical strength of the endomysium and perimysium. The thickness of the secondary perimysium correlated significantly with the shear-force value of raw pork (P < 0.05) and with that of the IMCT model (P < 0.05). The shear-force value of raw pork correlated significantly with the total amount of collagen (P < 0.05) but not with the heat-solubility of collagen. We concluded therefore that the thickness of the secondary perimysium determines the mechanical strength of IMCT and contributes to toughness in raw pork.

  8. Probing structure-property relationships in perpendicularly magnetized Fe/Cu(001) using MXLD and XPD

    SciTech Connect

    Cummins, T.R.; Waddill, G.D.; Goodman, K.W.

    1997-04-01

    Magnetic X-ray Linear Dichroism (MXLD) in Photoelectron Spectroscopy and X-Ray Photoelectron Diffraction (XPD) of the Fe 3p core level have been used to probe the magnetic structure-property relationships of perpendicularly magnetized Fe/Cu(001), in an element-specific fashion. A strong MEXLD effect was observed in the high resolution photoelectron spectroscopy of the Fe 3p at {open_quotes}normal{close_quotes} emission and was used to follow the loss of perpendicular ferromagnetic ordering as the temperature was raised toward room temperature. In parallel with this, {open_quotes}Forward Focussing{close_quotes} in XPD was used as a direct measure of geometric structure in the overlayer. These results and the implications of their correlation will be discussed. Additionally, an investigation of the effect of Mn doping of the Fe/Cu(001) will be described. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  9. Processing-Structure-Property Relationships in Laser-Annealed PbSe Nanocrystal Thin Films.

    PubMed

    Treml, Benjamin E; Robbins, Andrew B; Whitham, Kevin; Smilgies, Detlef-M; Thompson, Michael O; Hanrath, Tobias

    2015-01-01

    As nanocrystal (NC) synthesis techniques and device architectures advance, it becomes increasingly apparent that new ways of connecting NCs with each other and their external environment are required to realize their considerable potential. Enhancing inter-NC coupling by thermal annealing has been a long-standing challenge. Conventional thermal annealing approaches are limited by the challenge of annealing the NC at sufficiently high temperatures to remove surface-bound ligands while at the same time limiting the thermal budget to prevent large-scale aggregation. Here we investigate nonequilibrium laser annealing of NC thin films that enables separation of the kinetic and thermodynamic aspects of nanocrystal fusion. We show that laser annealing of NC assemblies on nano- to microsecond time scales can transform initially isolated NCs in a thin film into an interconnected structure in which proximate dots "just touch". We investigate both pulsed laser annealing and laser spike annealing and show that both annealing methods can produce "confined-but-connected" nanocrystal films. We develop a thermal transport model to rationalize the differences in resulting film morphologies. Finally we show that the insights gained from study of nanocrystal mono- and bilayers can be extended to three-dimensional NC films. The basic processing-structure-property relationships established in this work provide guidance to future advances in creating functional thin films in which constituent NCs can purposefully interact.

  10. Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak.

    PubMed

    Lee, Nayeon; Horstemeyer, M F; Rhee, Hongjoo; Nabors, Ben; Liao, Jun; Williams, Lakiesha N

    2014-07-01

    We experimentally studied beaks of the red-bellied woodpecker to elucidate the hierarchical multiscale structure-property relationships. At the macroscale, the beak comprises three structural layers: an outer rhamphotheca layer (keratin sheath), a middle foam layer and an inner bony layer. The area fraction of each layer changes along the length of the beak giving rise to a varying constitutive behaviour similar to functionally graded materials. At the microscale, the rhamphotheca comprises keratin scales that are placed in an overlapping pattern; the middle foam layer has a porous structure; and the bony layer has a big centre cavity. At the nanoscale, a wavy gap between the keratin scales similar to a suture line was evidenced in the rhamphotheca; the middle foam layer joins two dissimilar materials; and mineralized collagen fibres were revealed in the inner bony layer. The nano- and micro-indentation tests revealed that the hardness (associated with the strength, modulus and stiffness) of the rhamphotheca layer (approx. 470 MPa for nano and approx. 320 MPa for micro) was two to three times less than that of the bony layer (approx. 1200 MPa for nano and approx. 630 MPa for micro). When compared to other birds (chicken, finch and toucan), the woodpecker's beak has more elongated keratin scales that can slide over each other thus admitting dissipation via shearing; has much less porosity in the bony layer thus strengthening the beak and focusing the stress wave; and has a wavy suture that admits local shearing at the nanoscale. The analysis of the woodpeckers' beaks provides some understanding of biological structural materials' mechanisms for energy absorption. PMID:24812053

  11. Quantitative relationships in delphinid neocortex

    PubMed Central

    Mortensen, Heidi S.; Pakkenberg, Bente; Dam, Maria; Dietz, Rune; Sonne, Christian; Mikkelsen, Bjarni; Eriksen, Nina

    2014-01-01

    Possessing large brains and complex behavioral patterns, cetaceans are believed to be highly intelligent. Their brains, which are the largest in the Animal Kingdom and have enormous gyrification compared with terrestrial mammals, have long been of scientific interest. Few studies, however, report total number of brain cells in cetaceans, and even fewer have used unbiased counting methods. In this study, using stereological methods, we estimated the total number of cells in the neocortex of the long-finned pilot whale (Globicephala melas) brain. For the first time, we show that a species of dolphin has more neocortical neurons than any mammal studied to date including humans. These cell numbers are compared across various mammals with different brain sizes, and the function of possessing many neurons is discussed. We found that the long-finned pilot whale neocortex has approximately 37.2 × 109 neurons, which is almost twice as many as humans, and 127 × 109 glial cells. Thus, the absolute number of neurons in the human neocortex is not correlated with the superior cognitive abilities of humans (at least compared to cetaceans) as has previously been hypothesized. However, as neuron density in long-finned pilot whales is lower than that in humans, their higher cell number appears to be due to their larger brain. Accordingly, our findings make an important contribution to the ongoing debate over quantitative relationships in the mammalian brain. PMID:25505387

  12. Processing-structure-property relationships in uni- and biaxially stretched binary and ternary blends

    NASA Astrophysics Data System (ADS)

    Zhou, Xixian

    Processing-structure-property relationships in uni and biaxially stretched PVDF/PMMA binary blends and PEN/PEI/PEEK ternary blends were investigated using a variety of characterization techniques that probe the structure at different levels. PVDF is a fast crystallizing polymer. It can form amorphous blends with PMMA which is fairly easy to process in their rubbery region. At the stretching temperature up to Tg + 10 ˜ 15sp°C, the blends with PVDF fraction more than 55 exhibit yielding due to the presence of the crystalline superstructure yet stress crystallizable films. The yielding and associated neck formation gradually disappear for the blends containing less than 55 wt%. The thickness uniformity and surface smoothness of the produced films are improved in these films upon stretching particularly when the influence of stress hardening is present. This causes self leveling in the films. At the lower stretch ratios (ca. lambdasbMD\\ ≤ 3x), 55/45 blend shows no crystallinity and crystalline orientation. Beyond this point, very highly oriented crystalline domains emerge. This is as a result of dilution effect at such compositions where the entanglement density of the PVDF chains is reduced thereby increasing efficiency of orientation that resembles crystallization from dilute solutions except in this case the solvent is the PMMA phase. Stretching converts the crystalline phase from alpha to beta in 85/15 and 70/30 wt% blends, while in 55/15 blend the crystalline regions are exclusively in beta form. A combination of four point diagrams with "lozenge" shape appears in SAXS patterns. A structure model has been proposed based on the three-phase morphology and SAXS theory. In this study, we concentrated on the biaxial stretching behavior of PEN rich and PEI rich crystallizable PEN/PEI/PEEK ternary blends. The main objective was to increase the glass transition temperature of the blends containing large fraction of PEN while maintaining strain induced

  13. The Structure-property Relationships of D-π-A BODIPY Dyes for Dye-sensitized Solar Cells.

    PubMed

    Mao, Mao; Song, Qin-Hua

    2016-04-01

    BODIPY dyes have attracted considerable attention as potential photosensitizers in dye-sensitized solar cells (DSSCs) owing to their excellent optical properties and facile structural modification. This account focuses on recent advances in the molecular design of D-π-A BODIPY dyes for applications in DSSCs. Special attention has been paid to the structure-property relationships of D-π-A BODIPY dyes for DSSCs. The developmental process in the modified position at the BODIPY core with a donor/acceptor is described. The devices based on 2,6-modified BODIPY dyes exhibit better photovoltaic performance over other modified BODIPY dyes. Meanwhile, the research reveals the correlation of molecular structures (various donor chromophores, extended units, molecular frameworks, and long alkyl groups) with their photophysical and electrochemical properties and relates it to their performance in DSSCs. The structure-property relationships give valuable information and guidelines for designing new D-π-A BODIPY dyes for DSSCs. PMID:26846846

  14. The Structure-property Relationships of D-π-A BODIPY Dyes for Dye-sensitized Solar Cells.

    PubMed

    Mao, Mao; Song, Qin-Hua

    2016-04-01

    BODIPY dyes have attracted considerable attention as potential photosensitizers in dye-sensitized solar cells (DSSCs) owing to their excellent optical properties and facile structural modification. This account focuses on recent advances in the molecular design of D-π-A BODIPY dyes for applications in DSSCs. Special attention has been paid to the structure-property relationships of D-π-A BODIPY dyes for DSSCs. The developmental process in the modified position at the BODIPY core with a donor/acceptor is described. The devices based on 2,6-modified BODIPY dyes exhibit better photovoltaic performance over other modified BODIPY dyes. Meanwhile, the research reveals the correlation of molecular structures (various donor chromophores, extended units, molecular frameworks, and long alkyl groups) with their photophysical and electrochemical properties and relates it to their performance in DSSCs. The structure-property relationships give valuable information and guidelines for designing new D-π-A BODIPY dyes for DSSCs.

  15. Land-use and land-management change: relationships with earthworm and fungi communities and soil structural properties

    PubMed Central

    2013-01-01

    Background Change in land use and management can impact massively on soil ecosystems. Ecosystem engineers and other functional biodiversity in soils can be influenced directly by such change and this in turn can affect key soil functions. Here, we employ meta-analysis to provide a quantitative assessment of the effects of changes in land use and land management across a range of successional/extensification transitions (conventional arable → no or reduced tillage → grassland → wooded land) on community metrics for two functionally important soil taxa, earthworms and fungi. An analysis of the relationships between community change and soil structural properties was also included. Results Meta-analysis highlighted a consistent trend of increased earthworm and fungal community abundances and complexity following transitions to lower intensity and later successional land uses. The greatest changes were seen for early stage transitions, such as introduction of reduced tillage regimes and conversion to grassland from arable land. Not all changes, however, result in positive effects on the assessed community metrics. For example, whether woodland conversion positively or negatively affects community size and complexity depends on woodland type and, potentially, the changes in soil properties, such as pH, that may occur during conversion. Alterations in soil communities tended to facilitate subsequent changes in soil structure and hydrology. For example, increasing earthworm abundances and functional group composition were shown to be positively correlated with water infiltration rate (dependent on tillage regime and habitat characteristics); while positive changes in fungal biomass measures were positively associated with soil microaggregate stability. Conclusions These findings raise the potential to manage landscapes to increase ecosystem service provision from soil biota in relation to regulation of soil structure and water flow. PMID:24289220

  16. Structure-property-performance relationships of new high temperature relaxors for capacitor applications

    NASA Astrophysics Data System (ADS)

    Stringer, Craig J.

    temperature (Tf) of ˜150°C. Static and in-situ transmission electron microscopy investigations of the BS-PMN-PT compositions demonstrated a frustrated microstructure of nanometer scale regions and were used to establish structure-property relationships with different electric field and thermal histories. A comparative study of the key relaxor parameters, EA, T f, and TD was tabulated with previously investigated relaxor ferroelectrics. These parameters were found to scale relative to other lead-based perovskite relaxor ferroelectric compounds and solid solutions, with the BS-PMN-PT ternary system exhibiting the highest temperature behavior. Finally, to demonstrate one possible application area for these materials, multilayer ceramic capacitor devices were designed for operation at 300°C and up to 10 kHz. The voltage saturation was found to be extremely encouraging at 300°C with observed changes in capacitance (˜3%) on the application of 10 kV/cm. The insulation resistivity followed an Arrhenius behavior and at 300°C was ˜1010 O-cm. Weibull statistics were used to estimate a characteristic breakdown field at 300°C for the BS-PMN-PT multilayer capacitors of ˜40 kV/cm. Current-voltage measurements were performed to voltages up to breakdown and exhibited Ohmic behavior, indicating intrinsically controlled conduction. Highly accelerated life time tests were performed on BS-PMN-PT capacitors. It was observed that silver migration from termination electrodes caused premature failure at elevated temperature.

  17. Structure-property relationships in halogenbenzoic acids: Thermodynamics of sublimation, fusion, vaporization and solubility.

    PubMed

    Zherikova, Kseniya V; Svetlov, Aleksey A; Kuratieva, Natalia V; Verevkin, Sergey P

    2016-10-01

    Temperature dependences of vapor pressures for 2-, 3-, and 4-bromobenzoic acid, as well as for five isomeric bromo-methylbenzoic acids were studied by the transpiration method. Melting temperatures and enthalpies of fusion for all isomeric bromo-methylbenzoic acids and 4-bromobenzoic acid were measured with a DSC. The molar enthalpies of sublimation and vaporization were derived. These data together with results available in the literature were collected and checked for internal consistency using a group-additivity procedure and results from X-ray structural diffraction studies. Specific (hydrogen bonding) interactions in the liquid and in the crystal phase of halogenbenzoic acids were quantified based on experimental values of vaporization and sublimation enthalpies. Structure-property correlations of solubilities of halogenobenzoic acids with sublimation pressures and sublimation enthalpies were developed and solubilities of bromo-benzoic acids were estimated. These new results resolve much of the ambiguity in the available thermochemical and solubility data on bromobenzoic acids. The approach based on structure property correlations can be applied for the assessment of water solubility of sparingly soluble drugs. PMID:27424058

  18. Dicyanobenzene and dicyanopyrazine derived X-shaped charge-transfer chromophores: comparative and structure-property relationship study.

    PubMed

    Dokládalová, L; Bureš, F; Kuznik, W; Kityk, I V; Wojciechowski, A; Mikysek, T; Almonasy, N; Ramaiyan, M; Padělková, Z; Kulhánek, J; Ludwig, M

    2014-08-01

    A series of novel X-shaped push-pull compounds based on benzene-1,2-dicarbonitrile has been designed, synthesized and further investigated by X-ray analysis, electrochemistry, absorption and emission spectra, SHG experiment and quantum-chemical calculations. The obtained data were compared with those for isolobal 5,6-disubstituted pyrazine-2,3-dicarbonitriles. Structure-property relationships were elucidated. The extension, composition and planarization of the π-linker used as well as the electron-withdrawing ability of both dicyano-substituted acceptor units affect the linear and nonlinear properties of the target charge-transfer chromophores most significantly.

  19. Structure-property relationships in isotactic poly(propylene)/ethylene propylene rubber/montmorillonite nanocomposites.

    PubMed

    Causin, Valerio; Marega, Carla; Marigo, Antonio; Ferraro, Giuseppe; Ferrara, Angelo; Selleri, Roberta

    2008-04-01

    Nanocomposites based on isotactic polypropylene/ethylene propylene rubber (iPP/EPR) were prepared adding different amounts of montmorillonite and maleated polypropylene. The structure and morphology of the samples were characterized by small angle X-ray scattering, wide angle X-ray diffraction, electronic and optical microscopy and differential scanning calorimetry, iPP showed a polymorphic behavior. Clay disrupted the ordered crystallization of iPP and had a key role in shaping the distribution of iPP and EPR phases: larger filler contents brought about smaller, less coalesced and more homogeneous rubber domains. Clay distributed itself only in the continuous phase and not in the rubber domains. Tactoids persisted on the surface of the sample, while delamination proceeded to a greater degree in the bulk of the materials. Melt flow rate, impact strength, flexural and tensile properties, were also measured and a structure-property correlation was sought. Clay produced its most significant effect on physical-mechanical properties by controlling the size of rubber domains in the heterophasic matrix. This allowed to obtain nanocomposites with increased stiffness and impact strength, a remarkable achievement for polymer layered-silica nanocomposites that usually suffer the drawback of being stiffer than the unfilled matrix, but at the same time with a lower resistance to impact. A beneficial effect of clay on thermal stability was also observed. PMID:18572583

  20. Structure-Property Relationships of Polymer Brushes in Restricted Geometries and their Utilization as Ultra-Low Lubricants

    SciTech Connect

    Kuhl, Tonya Lynn; Faller, Roland

    2015-09-28

    Though polymer films are widely used to modify or tailor the physical, chemical and mechanical properties of interfaces in both solid and liquid systems, the rational design of interface- or surface-active polymer modifiers has been hampered by a lack of information about the behavior and structure-property relationships of this class of molecules. This is especially true for systems in which the role of the polymer is to modify the interaction between two solid surfaces in intimate contact and under load, to cause them to be mechanically coupled (e.g. to promote adhesion and wetting) or to minimize their interaction (e.g. lubrication, colloidal stabilization, etc.). Detailed structural information on these systems has largely been precluded by the many difficulties and challenges associated with direct experimental measurements of polymer structure in these geometries. As a result, many practitioners have been forced to employ indirect measurements or rely wholly on theoretical modeling. This has resulted in an incomplete understanding of the structure-property relationships, which are relied upon for the rational design of improved polymer modifiers. Over the course of this current research program, we made direct measurements of the structure of polymers at the interface between two solid surfaces under confinement and elucidated the fundamental physics behind these phenomena using atomistic and coarse grained simulations. The research has potential to lead to new lubricants and wear reducing agents to improve efficiency.

  1. Uniaxial Extensional Behavior of A--B--A Thermoplastic Elastomers: Structure-Properties Relationship and Modeling

    NASA Astrophysics Data System (ADS)

    Martinetti, Luca

    examined at temperatures where the A domains are glassy. Characteristic length scales and tube model parameters were determined, and the role of the glassy A domains on the entangled rubbery B network was assessed. Thermo-rheological complexity, observed near and below Tg,A, was attributed to augmented motional freedom of the B block ends at the corresponding A/B interfaces, in harmony with the theoretical treatment of thermo-rheological complexity for two-phase materials developed by Fesko and Tschoegl. When the magnitude of the steepness index was taken into account, the shift behavior was analogous to the response measured for pure B melts. Building upon the procedure proposed by Ferry and co-workers for entangled and unfilled polymer melts, a new method was developed to extract the matrix monomeric friction coefficient zeta0 from the linear response behavior of a filled system in the rubber-glass transition region, and to estimate the size of Gaussian submolecules. Stress relaxation beyond the path equilibration time was found qualitatively and quantitatively compatible with dynamically undiluted arm retraction dynamics of entangled dangling structures (originating either from a fraction of triblock chains having one end residing outside A domains or from diblock impurities). By employing tube models and rubber elasticity theories, suitably modified to account for microphase-segregation, the linear elastic behavior across the rubbery plateau and up to the entanglement time was modeled, and a simple analytical expression relating the Langley trapping factor with the fraction of entangled and unentangled dangling structures of the material was obtained. The critical-gel-like behavior typical of A--B--A TPEs at service temperatures approaching Tg,A was analyzed in terms of a power-law distribution of relaxation times derived from the wedge distribution, shown to be equivalent to Chambon--Winter's critical gel model and to the mechanical behavior of a fractional element. A

  2. Structure-property relationships in multilayered polymeric system and olefinic block copolymers

    NASA Astrophysics Data System (ADS)

    Khariwala, Devang

    Chapter 1. The effect of tie-layer thickness on delamination behavior of polypropylene/tie-layer/Nylon-6 multilayers is examined in this study. Various maleated polypropylene resins were compared for their effectiveness as tie-layers. Delamination failure occurred cohesively in all the multilayer systems. Two adhesion regimes were defined based on the change in slope of the linear relationship between the delamination toughness and the tie-layer thickness. The measured delamination toughness of the various tie-layers was quantitatively correlated to the damage zone length formed at the crack tip. In addition, the effect of tie-layer thickness on the multilayer tensile properties was correlated with the delamination behavior. The fracture strain of the multilayers decreased with decreasing tie-layer thickness. Examination of the prefracture damage mechanism of stretched multilayers revealed good correlation with the delamination toughness of the tie-layers. In thick tie-layers (>2microm) the delamination toughness of the tie-layers was large enough to prevent delamination of multilayers when they were stretched. In the thin tie-layers (<2microm) the delamination toughness of all the tie-layers is low and consequently delamination led to premature fracture in stretched multilayers. Chapter 2. The kinetics of interdiffusion in the layer multiplying coextrusion process was studied between the miscible Nylon-6 and EVOH pair. The interdiffusion was followed by studying multilayer films of alternating Nylon-6 and EVOH layers that were coextruded with increasing number of layers. The AFM confirmed that the layers interdiffused with increasing number of layers and were forced to a homogeneous blend after several multiplications. The oxygen permeability of Nylon-6/EVOH multilayers was strongly affected by the amount of interdiffusion. The symmetry of the multilayers made it possible to model the composition profile through the layer thickness by application of Fick's law of

  3. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.

    PubMed

    Gorski, Christopher A; Klüpfel, Laura E; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2013-01-01

    Structural Fe in clay minerals is an important redox-active species in many pristine and contaminated environments as well as in engineered systems. Understanding the extent and kinetics of redox reactions involving Fe-bearing clay minerals has been challenging due to the inability to relate structural Fe(2+)/Fe(total) fractions to fundamental redox properties, such as reduction potentials (EH). Here, we overcame this challenge by using mediated electrochemical reduction (MER) and oxidation (MEO) to characterize the fraction of redox-active structural Fe (Fe(2+)/Fe(total)) in smectites over a wide range of applied EH-values (-0.6 V to +0.6 V). We examined Fe(2+)/Fe(total )- EH relationships of four natural Fe-bearing smectites (SWy-2, SWa-1, NAu-1, NAu-2) in their native, reduced, and reoxidized states and compared our measurements with spectroscopic observations and a suite of mineralogical properties. All smectites exhibited unique Fe(2+)/Fe(total) - EH relationships, were redox active over wide EH ranges, and underwent irreversible electron transfer induced structural changes that were observable with X-ray absorption spectroscopy. Variations among the smectite Fe(2+)/Fe(total) - EH relationships correlated well with both bulk and molecular-scale properties, including Fe(total) content, layer charge, and quadrupole splitting values, suggesting that multiple structural parameters determined the redox properties of smectites. The Fe(2+)/Fe(total) - EH relationships developed for these four commonly studied clay minerals may be applied to future studies interested in relating the extent of structural Fe reduction or oxidation to EH-values.

  4. A Summative Report on Exploring Quantitative Relationships

    ERIC Educational Resources Information Center

    Carl, Minette; Goldberg, Robert; Waxman, Jerry

    2004-01-01

    During the years 2000-2003, a course on Exploring Quantitative Relationships (EQR) was created at Queens College under the support of the U.S. Department of Education Fund for the Improvement of Post-Secondary Education (DOE-FIPSE Grant No. P116B000772). Exploratory in nature, the course goals were to acquaint liberal arts students with…

  5. Structure-property relationships of carboxymethyl hydroxypropyl guar gum in water and a hyperentanglement parameter.

    PubMed

    Szopinski, Daniel; Kulicke, Werner-Michael; Luinstra, Gerrit A

    2015-03-30

    The viscoelastic properties of carboxymethyl hydroxypropyl guar gum (CMHPG) in aqueous solution were determined as function of concentration and of molecular weight, using SEC/MALLS/dRI and viscometry. The chain is more rigid as in native guar as was deduced from the molecular parameter in dilute solution. Superstructures are formed in moderately concentrated solutions as is shown from the comparison of steady state shear and small amplitude oscillatory shear (SAOS) experiments. The shear rate dependent viscosity of CMHPG can satisfactorily be described by the Carreau-Yasuda model with the rheological parameters (η0, λ0, n, b) obtained from the evaluation of viscosity data. A quantitative hyperentanglement parameter is introduced to account for the differences in responses in shear and SAOS experiments. PMID:25563956

  6. Understanding nanocellulose chirality and structure-properties relationship at the single fibril level

    NASA Astrophysics Data System (ADS)

    Usov, Ivan; Nyström, Gustav; Adamcik, Jozef; Handschin, Stephan; Schütz, Christina; Fall, Andreas; Bergström, Lennart; Mezzenga, Raffaele

    2015-06-01

    Nanocellulose fibrils are ubiquitous in nature and nanotechnologies but their mesoscopic structural assembly is not yet fully understood. Here we study the structural features of rod-like cellulose nanoparticles on a single particle level, by applying statistical polymer physics concepts on electron and atomic force microscopy images, and we assess their physical properties via quantitative nanomechanical mapping. We show evidence of right-handed chirality, observed on both bundles and on single fibrils. Statistical analysis of contours from microscopy images shows a non-Gaussian kink angle distribution. This is inconsistent with a structure consisting of alternating amorphous and crystalline domains along the contour and supports process-induced kink formation. The intrinsic mechanical properties of nanocellulose are extracted from nanoindentation and persistence length method for transversal and longitudinal directions, respectively. The structural analysis is pushed to the level of single cellulose polymer chains, and their smallest associated unit with a proposed 2 × 2 chain-packing arrangement.

  7. New ganglio-tripod amphiphiles (TPAs) for membrane protein solubilization and stabilization: implications for detergent structure-property relationships.

    PubMed

    Chae, Pil Seok; Bae, Hyoung Eun; Ehsan, Muhammad; Hussain, Hazrat; Kim, Jin Woong

    2014-11-14

    Detergents are widely used for membrane protein research; however, membrane proteins encapsulated in micelles formed by conventional detergents tend to undergo structural degradation, necessitating the development of new agents with enhanced efficacy. Here we prepared several hydrophobic variants of ganglio-tripod amphiphiles (TPAs) derived from previously reported TPAs and evaluated for a multi-subunit, pigment protein superassembly. In this study, TPA-16 was found to be most efficient in protein solubilization while TPA-15 proved most favourable in long-term protein stability. The current study combined with previous TPA studies enabled us to elaborate on a few detergent structure-property relationships that could provide useful guidelines for novel amphiphile design.

  8. Comparative studies on rigid π linker-based organic dyes: structure-property relationships and photovoltaic performance.

    PubMed

    Li, Hairong; Koh, Teck Ming; Hao, Yan; Zhou, Feng; Abe, Yuichiro; Su, Haibin; Hagfeldt, Anders; Grimsdale, Andrew C

    2014-12-01

    A series of six structurally correlated donor-π bridge-acceptor organic dyes were designed, synthesized, and applied as sensitizers in dye-sensitized solar cells. Using the most widely studied donor (triarylamine) and cyclopenta[1,2-b:5,4-b']dithiophene or cyclopenta[1,2-b:5,4-b']dithiophene[2',1':4,5]thieno[2,3-d]thiophene as π spacers, their structure-property relationships were investigated in depth by photophysical techniques and theoretical calculations. It was found that the photovoltaic performance of these dyes largely depends on their electronic structures, which requires synergistic interaction between donors and acceptors. Increasing the electron richness of the donor or the elongation of π-conjugated bridges does not necessarily lead to higher performance. Rather, it is essential to rationally design the dyes by balancing their light-harvesting capability with achieving suitable energy levels to guarantee unimpeded charge separation and transport.

  9. Study of Chemistry and Structure-Property Relationship on Tunable Plasmonic Nanostructures

    NASA Astrophysics Data System (ADS)

    Jing, Hao

    In this dissertation, the rational design and controllable fabrication of an array of novel plasmonic nanostructures with geometrically tunable optical properties are demonstrated, including metal-semiconductor hybrid hetero-nanoparticles, bimetallic noble metal nanoparticles and hollow nanostructures (nanobox and nanocage). Firstly, I have developed a robust wet chemistry approach to the geometry control of Ag-Cu2O core-shell nanoparticles through epitaxial growth of Cu2O nanoshells on the surfaces of various Ag nanostructures, such as quasi-spherical nanoparticles, nanocubes, and nanocuboids. Precise control over the core and the shell geometries enables me to develop detailed, quantitative understanding of how the Cu2O nanoshells introduce interesting modifications to the resonance frequencies and the extinction spectral line shapes of multiple plasmon modes of the Ag cores. Secondly, I present a detailed and systematic study of the controlled overgrowth of Pd on Au nanorods. The overgrowth of Pd nanoshells with fine-controlled dimensions and architectures on single-crystalline Au nanorods through seed-mediated growth protocol in the presence of various surfactants is investigated. Thirdly, I have demonstrated that creation of high-index facets on subwavelength metallic nanoparticles provides a unique approach to the integration of desired plasmonic and catalytic properties on the same nanoparticle. Through site-selective surface etching of metallic nanocuboids whose surfaces are dominated by low-index facets, I have controllably fabricated nanorice and nanodumbbell particles, which exhibit drastically enhanced catalytic activities arising from the catalytically active high index facets abundant on the particle surfaces. And the nanorice and nanodumbbell particles also possess appealing tunable plasmonic properties that allow us to gain quantitative insights into nanoparticle-catalyzed reactions with unprecedented sensitivity and detail through time

  10. Processing, structure, property and performance relationships for the thermal spray of the internal surface of aluminum cylinders

    NASA Astrophysics Data System (ADS)

    Cook, David James

    The increased need for automotive weight reduction has necessitated the use of aluminum for engine blocks. Conventional aluminum alloys cannot survive the constant wear from a piston ring reciprocating on the surface. However, a wear resistant thermal spray coating can be applied on the internal surface of the cylinder bore, which has significant advantages over other available options. Thermal spray is a well-established process for depositing molten, semi-molten, or solid particles onto a substrate to form a protective coating. For this application, the two main challenges were obtaining good wear resistance, and achieving good adhesion. To design a system capable of producing a well-adhered, wear resistant coating for this high volume application it is necessary to identify the overall processing, structure, properties, and performance relationships. The results will demonstrate that very important relationships exist among particle characteristics, substrate conditions, and the properties of the final coating. However, it is the scientific studies to understand some of the process physics in these relationships that allow recognition of the critical processing conditions that need to be controlled to ensure a consistent, reliable thermal spray coating. In this investigation, it will be shown that the critical microstructural aspect of the coating that produced the required tribological properties was the presence of wuestite (FeO). It was found that by using a low carbon steel material with compressed air atomizing gas, it was possible to create an Fe/FeO structure that exhibited excellent tribological properties. This study will also show that traditional thermal spray surface preparation techniques were not ideal for this application, therefore a novel alternative approach was developed. The application of a flux to the aluminum surface prior to thermal spray promotes excellent bond strengths to non-roughened aluminum. Analysis will show that this flux strips

  11. Composition-structure-property relationships of commercial polyurethane foams for mattresses

    NASA Astrophysics Data System (ADS)

    Scarfato, P.; Di Maio, L.; D'Arienzo, L.; Rinaldi, S.; Incarnato, L.

    2015-12-01

    Three commercial flexible polyurethane foams used for mattress have been submitted to chemical-physical analyses, water vapor permeability and compression mechanical tests, in order to understand the relationships among their composition, structure, and some functional properties of interest for bedding applications. The results demonstrated that all the three foams have open cell morphology and similar cell structure, with average cell diameters ranging from 430 to 510 micron and wide cell size distribution. As a consequence, they also show comparable water vapor transport behavior. On the contrary, their mechanical response, in terms of hysteresis loss, surface firmness and resistance to bottoming out, was found strongly dependent on their chemical structure and molecular mobility, as inferred from infrared spectroscopy analysis.

  12. S09 Symposium KK, Structure-Property Relationships in Biomineralized and Biomimetic Composites

    SciTech Connect

    David Kisailus; Lara Estroff; Himadri S. Gupta; William J. Landis; Pablo D. Zavattieri

    2010-06-07

    The technical presentations and discussions at this symposium disseminated and assessed current research and defined future directions in biomaterials research, with a focus on structure-function relationships in biological and biomimetic composites. The invited and contributed talks covered a diverse range of topics from fundamental biology, physics, chemistry, and materials science to potential applications in developing areas such as light-weight composites, multifunctional and smart materials, biomedical engineering, and nanoscaled sensors. The invited speakers were chosen to create a stimulating program with a mixture of established and junior faculty, industrial and academic researchers, and American and international experts in the field. This symposium served as an excellent introduction to the area for younger scientists (graduate students and post-doctoral researchers). Direct interactions between participants also helped to promote potential future collaborations involving multiple disciplines and institutions.

  13. Processing-structure-property relationships in ultrafine grain and nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Koch, C. C.

    2009-01-01

    This paper will review selected aspects of the processingstructureproperty relationships in ultrafine grained (ufg- grain sizes 100 to 500 nm) and nanocrystalline (nc- grain sizes < 100 nm) materials. Of the various processing methods to obtain fine grain size materials, the two that have provided bulk artifactfree samples are electrodeposition and severe plastic deformation. The processing methods and important variables will be described for these techniques. Since the stability of the nanocrystalline microstructure is important for both processing (e.g. consolidation of powders) and elevated temperature mechanical property studies, the stability of nanocrystalline grain sizes as influenced by solute additions will be discussed. While hardness and strength usually increase with decreasing grain size, ductility is typically poor. There are now, however, a number of examples of nanocrystalline materials which combine high strength with good ductility. An example from the author's laboratory on nanocrystalline Cu with optimized mechanical properties will be presented.

  14. Structure-Property Relationships in Atomic-Scale Junctions: Histograms and Beyond.

    PubMed

    Hybertsen, Mark S; Venkataraman, Latha

    2016-03-15

    Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure-function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, the scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics. Such link groups (amines, methylsuflides, pyridines, etc.) maintain a stable lone pair configuration that selectively bonds to specific, undercoordinated transition metal atoms available following rupture of a metal point contact in the STM-BJ experiments. This basic chemical principle rationalizes the observation of highly reproducible conductance signatures. Subsequently, the method has been extended to probe a variety of physical phenomena ranging from basic I-V characteristics to more complex properties such as thermopower and electrochemical response. By adapting the technique to a conducting cantilever atomic force microscope (AFM-BJ), simultaneous measurement of the mechanical characteristics of nanoscale junctions as they

  15. Structure-Property Relationships in Atomic-Scale Junctions: Histograms and Beyond.

    PubMed

    Hybertsen, Mark S; Venkataraman, Latha

    2016-03-15

    Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure-function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, the scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics. Such link groups (amines, methylsuflides, pyridines, etc.) maintain a stable lone pair configuration that selectively bonds to specific, undercoordinated transition metal atoms available following rupture of a metal point contact in the STM-BJ experiments. This basic chemical principle rationalizes the observation of highly reproducible conductance signatures. Subsequently, the method has been extended to probe a variety of physical phenomena ranging from basic I-V characteristics to more complex properties such as thermopower and electrochemical response. By adapting the technique to a conducting cantilever atomic force microscope (AFM-BJ), simultaneous measurement of the mechanical characteristics of nanoscale junctions as they

  16. Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships.

    PubMed

    Beese, Allison M; Wei, Xiaoding; Sarkar, Sourangsu; Ramachandramoorthy, Rajaprakash; Roenbeck, Michael R; Moravsky, Alexander; Ford, Matthew; Yavari, Fazel; Keane, Denis T; Loutfy, Raouf O; Nguyen, SonBinh T; Espinosa, Horacio D

    2014-11-25

    Studies of carbon nanotube (CNT) based composites have been unable to translate the extraordinary load-bearing capabilities of individual CNTs to macroscale composites such as yarns. A key challenge lies in the lack of understanding of how properties of filaments and interfaces across yarn hierarchical levels govern the properties of macroscale yarns. To provide insight required to enable the development of superior CNT yarns, we investigate the fabrication-structure-mechanical property relationships among CNT yarns prepared by different techniques and employ a Monte Carlo based model to predict upper bounds on their mechanical properties. We study the correlations between different levels of alignment and porosity and yarn strengths up to 2.4 GPa. The uniqueness of this experimentally informed modeling approach is the model's ability to predict when filament rupture or interface sliding dominates yarn failure based on constituent mechanical properties and structural organization observed experimentally. By capturing this transition and predicting the yarn strengths that could be obtained under ideal fabrication conditions, the model provides critical insights to guide future efforts to improve the mechanical performance of CNT yarn systems. This multifaceted study provides a new perspective on CNT yarn design that can serve as a foundation for the development of future composites that effectively exploit the superior mechanical performance of CNTs. PMID:25353651

  17. Structure-property relationship for cellular accumulation of macrolones in human polymorphonuclear leukocytes (PMNs).

    PubMed

    Munić Kos, Vesna; Koštrun, Sanja; Fajdetić, Andrea; Bosnar, Martina; Kelnerić, Željko; Stepanić, Višnja; Eraković Haber, Vesna

    2013-05-13

    Macrolones are a new class of antimicrobial compounds consisting of a macrolide scaffold linked to a 4-quinolone-3-carboxylic acid moiety via C(4″) position of a macrolide. As macrolides are known to possess favorable pharmacokinetic properties by accumulating in inflammatory cells, in this study we determined the intensity of accumulation in human polymorphonuclear leukocytes (PMNs) of 57 compounds of the macrolone class and analyzed the relationship between the molecular structure and this cellular pharmacokinetic property. Accumulation of macrolones ranged from 0 to 5.5-fold higher than the standard macrolide azithromycin. Distinct structural features in all three considered molecule parts: the macrolide scaffold, quinolone moiety and the linker, affect cellular accumulation. Interestingly, while the parent macrolide, azithromycin, accumulates approximately 3-fold more than clarithromycin, among macrolones all clarithromycin derivatives accumulated in PMNs significantly more than their azithromycin counterparts. Modeling cellular accumulation of macrolones with simple molecular descriptors, as well as with the measured octanol-water distribution coefficient, revealed that the number of hydrogen bond donors and secondary amide groups negatively contribute to macrolone accumulation, while lipophilicity makes a positive contribution.

  18. Structure-property relationships of curved aromatic materials from first principles.

    PubMed

    Zoppi, Laura; Martin-Samos, Layla; Baldridge, Kim K

    2014-11-18

    CONSPECTUS: Considerable effort in the past decade has been extended toward achieving computationally affordable theoretical methods for accurate prediction of the structure and properties of materials. Theoretical predictions of solids began decades ago, but only recently have solid-state quantum techniques become sufficiently reliable to be routinely chosen for investigation of solids as quantum chemistry techniques are for isolated molecules. Of great interest are ab initio predictive theories for solids that can provide atomic scale insights into properties of bulk materials, interfaces, and nanostructures. Adaption of the quantum chemical framework is challenging in that no single theory exists that provides prediction of all observables for every material type. However, through a combination of interdisciplinary efforts, a richly textured and substantive portfolio of methods is developing, which promise quantitative predictions of materials and device properties as well as associated performance analysis. Particularly relevant for device applications are organic semiconductors (OSC), with electrical conductivity between that of insulators and that of metals. Semiconducting small molecules, such as aromatic hydrocarbons, tend to have high polarizabilities, small band-gaps, and delocalized π electrons that support mobile charge carriers. Most importantly, the special nature of optical excitations in the form of a bound electron-hole pairs (excitons) holds significant promise for use in devices, such as organic light emitting diodes (OLEDs), organic photovoltaics (OPVs), and molecular nanojunctions. Added morphological features, such as curvature in aromatic hydrocarbon structure, can further confine the electronic states in one or more directions leading to additional physical phenomena in materials. Such structures offer exploration of a wealth of phenomenology as a function of their environment, particularly due to the ability to tune their electronic

  19. Structure-property relationships of curved aromatic materials from first principles.

    PubMed

    Zoppi, Laura; Martin-Samos, Layla; Baldridge, Kim K

    2014-11-18

    CONSPECTUS: Considerable effort in the past decade has been extended toward achieving computationally affordable theoretical methods for accurate prediction of the structure and properties of materials. Theoretical predictions of solids began decades ago, but only recently have solid-state quantum techniques become sufficiently reliable to be routinely chosen for investigation of solids as quantum chemistry techniques are for isolated molecules. Of great interest are ab initio predictive theories for solids that can provide atomic scale insights into properties of bulk materials, interfaces, and nanostructures. Adaption of the quantum chemical framework is challenging in that no single theory exists that provides prediction of all observables for every material type. However, through a combination of interdisciplinary efforts, a richly textured and substantive portfolio of methods is developing, which promise quantitative predictions of materials and device properties as well as associated performance analysis. Particularly relevant for device applications are organic semiconductors (OSC), with electrical conductivity between that of insulators and that of metals. Semiconducting small molecules, such as aromatic hydrocarbons, tend to have high polarizabilities, small band-gaps, and delocalized π electrons that support mobile charge carriers. Most importantly, the special nature of optical excitations in the form of a bound electron-hole pairs (excitons) holds significant promise for use in devices, such as organic light emitting diodes (OLEDs), organic photovoltaics (OPVs), and molecular nanojunctions. Added morphological features, such as curvature in aromatic hydrocarbon structure, can further confine the electronic states in one or more directions leading to additional physical phenomena in materials. Such structures offer exploration of a wealth of phenomenology as a function of their environment, particularly due to the ability to tune their electronic

  20. Structure-property relationships of dissimilar friction stir welded aluminum alloys

    NASA Astrophysics Data System (ADS)

    Quinones, Rogie Irwin Rodriguez

    In this work, the relationship between microstructure and mechanical properties of dissimilar friction stir welded AA6061-to-AA7050 aluminum alloys were evaluated. Experimental results from this study revealed that static strength increased with the tool rotational speed and was correlated with the material intermixing. Fully-reversed low cycle fatigue experimental results showed an increase in the strain hardening properties as well as the number of cycles-to-failure as the tool rotational speed was increased. Furthermore, under both static and cyclic loading, fracture of the joint was dominated by the AA6061 alloy side of the weld. In addition, inspection of the fatigue surfaces revealed that cracks initiated from intermetallic particles located near the surface. In order to determine the corrosion resistance of the dissimilar joint, corrosion defects were produced on the crown surface of the weld by static immersion in 3.5% NaCl for various exposure times. Results revealed localized corrosion damage in the thermo-mechanically affected and heat affected zones. Results demonstrated a decrease in the fatigue life, with evidence of crack initiation at the corrosion defects; however, the fatigue life was nearly independent of the exposure time. This can be attributed to total fatigue life dominated by incubation time. Furthermore, two types of failure were observed: fatigue crack initiation in the AA6061 side at high strain amplitudes (>0.3%); and fatigue crack initiation in the AA7050 side at low strain amplitudes (<0.2%). Lastly, a microstructure-sensitive model based on a multi-stage fatigue damage concept was extended to the dissimilar friction stir welded joints in order to capture the crack initiation and propagation in as-welded and pre-corroded conditions. Good correlation between experimental fatigue results and the model was achieved based on the variation in the initial defect size, microstructure, and mechanical properties of the dissimilar friction stir

  1. Organic Materials for Electro-Optic and Optoelectronic Applications: Understanding Structure -- Property Relationships

    NASA Astrophysics Data System (ADS)

    Kosilkin, Ilya V.

    Organic materials are promising candidates for application to electro-optics (EO) due to such advantages as tunable properties, ease of processability and the possibility of chip-scale integration. To achieve EO activity on a bulk level, noncentrosymmetric alignment of chromophores is required. However, modern chromophores with high first-order molecular hyperpolarizability have large ground state dipole moments that oppose acentric order, diminishing EO performance. To address this, a better understanding of the relationship between molecular structure and bulk EO activity is required. In Chapter 2, the effects of functionalization of the benchmark chromophore YLD-124 on poling efficiency were studied. Substituents with different electronic nature and different sizes at the middle six-membered ring were explored. Attachment of a t-butylphenoxy group resulted in a 40% increase of the poling efficiency r33/Ep as well as significantly enhanced photostability. Unexpected optical properties of the functionalized chromophores in media with different polarities are explained in terms of electronic effects and aggregation. In Chapter 3, the synthesis of two chromophores with oblate shape is reported based on computational predictions that oblate spheroids with dipole moments formed short range linear stacks. These chromophores are potential candidates for application to a new type of nanophotonic device in which only several molecular layers of EO active material are required. An alternative approach for creating bulk acentricity upon crystallization is discussed in Chapter 4. A functionalization of two chromophores with acentric structure was performed in order to reduce the melting temperature of the parent materials. It was found that such a molecular arrangement is sensitive to the nature of the functionalization of the parent chromophores. Finally, the performance of novel polymerizable ionic liquids (PIL) as electrolytes for optoelectronic applications in polymeric

  2. Structure-Property Relationships in Lithium, Silver, and Cesium Uranyl Borates

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Stritzinger, Jared T.; Liu, Guokui; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2010-11-09

    Four new uranyl borates, Li[UO{sub 2}B{sub 5}O{sub 9}]·H{sub 2}O (LiUBO-1), Ag[(UO{sub 2})B{sub 5}O{sub 8}(OH){sub 2}] (AgUBO-1), α-Cs[(UO{sub 2}){sub 2}B{sub 11}O{sub 16}(OH){sub 6}] (CsUBO-1), and β-Cs[(UO{sub 2}){sub 2}B{sub 11}O{sub 16}(OH){sub 6}] (CsUBO-2) were synthesized via the reaction of uranyl nitrate with a large excess of molten boric acid in the presence of lithium, silver, or cesium nitrate. These compounds share a common structural motif consisting of a linear uranyl, UO{sub 2}{sup 2+}, cation surrounded by BO{sub 3} triangles and BO{sub 4} tetrahedra to create an UO{sub 8} hexagonal bipyramidal environment around uranium. The borate anions bridge between uranyl units to create sheets. Additional BO{sub 3} triangles extend from the polyborate layers, and are directed approximately perpendicular to the sheets. In Li[(UO{sub 2})B{sub 5}O{sub 9}]·H{sub 2}O, the additional BO{sub 3} triangles connect these sheets together to form a three-dimensional framework structure. Li[UO{sub 2})B{sub 5}O{sub 9}]·H{sub 2}O and β-Cs[(UO{sub 2}){sub 2}B{sub 11}O{sub 16}(OH){sub 6}] adopt noncentrosymmetric structures, while Ag[(UO{sub 2})B{sub 5}O{sub 8}(OH){sub 2}] and α-Cs[(UO{sub 2}){sub 2}B{sub 11}O{sub 16}(OH){sub 6}] are centrosymmetric. Li[(UO{sub 2})B{sub 5}O{sub 9}]·H{sub 2}O, which can be obtained as pure phase, displays second-harmonic generation of 532 nm light from 1064 nm light. Topological relationships of all actinyl borates are developed.

  3. Quantitative structure-chromatographic retention relationships

    SciTech Connect

    Kaliszan, R.

    1987-01-01

    This book provides a wide-ranging overview of quantitative structure-retention relationships (QSRR). It brings together a great deal of information that previously was scattered in various parts of the literature. Although the book covers a lot of material, it provides the reader with sufficient background to read the related literature. In addition to QSRR, the book covers some topics related to quantitative structure-activity relationships (QSAR), where activity refers to biological activity. Overall, the book is well written and easy to understand. It would have been helpful to the reader if the chapter numbers had been included in the running heads. The book is divided by subject into 12 chapters, each with references. Works published through 1985 are included; hence, some recent literature is not covered. However, the book is heavily referenced, and each reference has the full title of the work as well as source and author information.

  4. Composition-structure-property relationships for non-classical ionomer cements formulated with zinc-boron germanium-based glasses.

    PubMed

    Zhang, Xiaofang; Werner-Zwanziger, Ulrike; Boyd, Daniel

    2015-04-01

    Non-classical ionomer glasses like those based on zinc-boron-germanium glasses are of special interest in a variety of medical applications owning to their unique combination of properties and potential therapeutic efficacy. These features may be of particular benefit with respect to the utilization of glass ionomer cements for minimally invasive dental applications such as the atruamatic restorative treatment, but also for expanded clinical applications in orthopedics and oral-maxillofacial surgery. A unique system of zinc-boron-germanium-based glasses (10 compositions in total) has been designed using a Design of Mixtures methodology. In the first instance, ionomer glasses were examined via differential thermal analysis, X-ray diffraction, and (11)B MAS NMR spectroscopy to establish fundamental composition - structure-property relationships for the unique system. Secondly, cements were synthesized based on each glass and handling characteristics (working time, Wt, and setting time, St) and compression strength were quantified to facilitate the development of both experimental and mathematical composition-structure-property relationships for the new ionomer cements. The novel glass ionomer cements were found to provide Wt, St, and compression strength in the range of 48-132 s, 206-602 s, and 16-36 MPa, respectively, depending on the ZnO/GeO2 mol fraction of the glass phase. A lower ZnO mol fraction in the glass phase provides higher glass transition temperature, higher N4 rate, and in combination with careful modulation of GeO2 mol fraction in the glass phase provides a unique approach to extending the Wt and St of glass ionomer cement without compromising (in fact enhancing) compression strength. The data presented in this work provide valuable information for the formulation of alternative glass ionomer cements for applications within and beyond the dental clinic, especially where conventional approaches to modulating working time and strength exhibit co

  5. Quantitative structure-property relationships for chemical functional use and weight fractions in consumer articles

    EPA Science Inventory

    Chemical functional use -- the functional role a chemical plays in processes or products -- may be a useful heuristic for predicting human exposure potential in that it comprises information about the compound's likely physical properties and the product formulations or articles ...

  6. Quantitative structure-property relationships of potentially bioactive fluoro phospho-silicate glasses.

    PubMed

    Lusvardi, G; Malavasi, G; Tarsitano, F; Menabue, L; Menziani, M C; Pedone, A

    2009-07-30

    In this work, the glass transition temperature and chemical durability of bioactive phospho-silicate glasses were experimentally determined and correlated to the structural descriptor Fnet derived from classical molecular dynamics simulations. The replacement of CaF2 for Na2O in the parent glass 45S5 enhances both chemical durability and density, while the replacement of CaF2 for CaO lowers chemical durability. The proposed descriptor, Fnet, provides satisfactorily correlations with glass transition temperature and chemical durability over a wide range of compositions.

  7. Supramolecular Dimerization and [2 + 2] Photocycloaddition Reactions of Crown Ether Styryl Dyes Containing a Tethered Ammonium Group: Structure-Property Relationships.

    PubMed

    Ushakov, Evgeny N; Vedernikov, Artem I; Lobova, Natalia A; Dmitrieva, Svetlana N; Kuz'mina, Lyudmila G; Moiseeva, Anna A; Howard, Judith A K; Alfimov, Michael V; Gromov, Sergey P

    2015-12-31

    Molecular self-assembly is an effective strategy for controlling the [2 + 2] photocycloaddition reaction of olefins. The geometrical properties of supramolecular assemblies are proven to have a critical effect on the efficiency and selectivity of this photoreaction both in the solid state and in solution, but the role of other factors remains poorly understood. Convenient supramolecular systems to study the structure-property relationships are pseudocyclic dimers spontaneously formed by styryl dyes containing a crown ether moiety and a remote ammonium group. New dyes of this type were synthesized to investigate the effects of structural and electronic factors on the quantitative characteristics of supramolecular dimerization and [2 + 2] photocycloaddition in solution. Variable structural parameters for the styryl dyes were the size and structure of macrocyclic moiety, the nature of heteroaromatic residue, and the length of the ammonioalkyl group attached to this residue. Quantum chemical calculations of the pseudocyclic dimers were performed in order to interpret the relationships between the structure of the ammonium dyes and the efficiency of the supramolecular photoreaction. One of the dimeric complexes was obtained in the crystalline state and studied by X-ray diffraction. The results obtained demonstrate that the photocycloaddition in the pseudocyclic dimers can be dramatically affected by the electronic structure of the styryl moieties, as dependent on the electron-donating ability of the substituents on the benzene ring, and by the conformational flexibility of the pseudocycle, which determines the mobility of the olefinic bonds. The significance of electronic factors is highlighted by the fact that the photocycloaddition quantum yield in geometrically similar dimeric structures varies from ≤10(-4) to 0.38. The latter value is unusually high for olefins in solution. PMID:26650887

  8. Supramolecular Dimerization and [2 + 2] Photocycloaddition Reactions of Crown Ether Styryl Dyes Containing a Tethered Ammonium Group: Structure-Property Relationships.

    PubMed

    Ushakov, Evgeny N; Vedernikov, Artem I; Lobova, Natalia A; Dmitrieva, Svetlana N; Kuz'mina, Lyudmila G; Moiseeva, Anna A; Howard, Judith A K; Alfimov, Michael V; Gromov, Sergey P

    2015-12-31

    Molecular self-assembly is an effective strategy for controlling the [2 + 2] photocycloaddition reaction of olefins. The geometrical properties of supramolecular assemblies are proven to have a critical effect on the efficiency and selectivity of this photoreaction both in the solid state and in solution, but the role of other factors remains poorly understood. Convenient supramolecular systems to study the structure-property relationships are pseudocyclic dimers spontaneously formed by styryl dyes containing a crown ether moiety and a remote ammonium group. New dyes of this type were synthesized to investigate the effects of structural and electronic factors on the quantitative characteristics of supramolecular dimerization and [2 + 2] photocycloaddition in solution. Variable structural parameters for the styryl dyes were the size and structure of macrocyclic moiety, the nature of heteroaromatic residue, and the length of the ammonioalkyl group attached to this residue. Quantum chemical calculations of the pseudocyclic dimers were performed in order to interpret the relationships between the structure of the ammonium dyes and the efficiency of the supramolecular photoreaction. One of the dimeric complexes was obtained in the crystalline state and studied by X-ray diffraction. The results obtained demonstrate that the photocycloaddition in the pseudocyclic dimers can be dramatically affected by the electronic structure of the styryl moieties, as dependent on the electron-donating ability of the substituents on the benzene ring, and by the conformational flexibility of the pseudocycle, which determines the mobility of the olefinic bonds. The significance of electronic factors is highlighted by the fact that the photocycloaddition quantum yield in geometrically similar dimeric structures varies from ≤10(-4) to 0.38. The latter value is unusually high for olefins in solution.

  9. A novel approach to study the structure-property relationships and applications in living systems of modular Cu2+ fluorescent probes

    NASA Astrophysics Data System (ADS)

    She, Mengyao; Yang, Zheng; Hao, Likai; Wang, Zhaohui; Luo, Tianyou; Obst, Martin; Liu, Ping; Shen, Yehua; Zhang, Shengyong; Li, Jianli

    2016-08-01

    A series of Cu2+ probe which contains 9 probes have been synthesized and established. All the probes were synthesized using Rhodamine B as the fluorophore, conjugated to various differently substituted cinnamyl aldehyde with C=N Schiff base structural motif as their core moiety. The structure-property relationships of these probes have been investigated. The change of optical properties, caused by different electronic effect and steric effect of the recognition group, has been analyzed systematically. DFT calculation simulation of the Ring-Close and Ring-Open form of all the probes have been employed to illuminate, summarize and confirm these correlations between optical properties and molecular structures. In addition, biological experiment demonstrated that all the probes have a high potential for both sensitive and selective detection, mapping of adsorbed Cu2+ both in vivo and environmental microbial systems. This approach provides a significant strategy for studying structure-property relationships and guiding the synthesis of probes with various optical properties.

  10. Elucidation of the structure-property relationship of p-type organic semiconductors through rapid library construction via a one-pot, Suzuki-Miyaura coupling reaction.

    PubMed

    Fuse, Shinichiro; Matsumura, Keisuke; Wakamiya, Atsushi; Masui, Hisashi; Tanaka, Hiroshi; Yoshikawa, Susumu; Takahashi, Takashi

    2014-09-01

    The elucidation of the structure-property relationship is an important issue in the development of organic electronics. Combinatorial synthesis and the evaluation of systematically modified compounds is a powerful tool in the work of elucidating structure-property relationships. In this manuscript, D-π-A structure, 32 p-type organic semiconductors were rapidly synthesized via a one-pot, Suzuki-Miyaura coupling with subsequent Knoevenagel condensation. Evaluation of the solubility and photovoltaic properties of the prepared compounds revealed that the measured solubility was strongly correlated with the solubility parameter (SP), as reported by Fedors. In addition, the SPs were correlated with the Jsc of thin-film organic solar cells prepared using synthesized compounds. Among the evaluated photovoltaic properties of the solar cells, Jsc and Voc had strong correlations with the photoconversion efficiency (PCE).

  11. Synthesis, growth, vibrational spectral investigations and structure-property relationship of an organic NLO crystal: 3,4-Dimethoxy chalcone

    NASA Astrophysics Data System (ADS)

    Alen, S.; Sajan, D.; Joseph, Lynnette; Chaitanya, K.; Shettigar, Venkataraya; Jothy, V. Bena

    2015-09-01

    3,4-Dimethoxy chalcone, a nonlinear optical material, was synthesized and noncentro symmetric single crystals were grown in solution by slow evaporation technique. Thermal analysis such as DSC revealed a good thermal stability of 3,4-dimethoxy chalcone. The FT-IR and FT-Raman spectral studies were carried out to investigate the structural properties of the title compound. The molecular orbitals and natural bond analysis of this material were calculated by Density Functional Theory calculations. The second harmonic conversion efficiency was determined using the Kurtz powder technique, which is 8 times that of urea.

  12. Flavonoids promoting HaCaT migration: I. Hologram quantitative structure-activity relationships.

    PubMed

    Cho, Moonjae; Yoon, Hyuk; Park, Mijoo; Kim, Young Hwa; Lim, Yoongho

    2014-03-15

    Cell migration plays an important role in multicellular development and preservation. Because wound healing requires cell migration, compounds promoting cell migration can be used for wound repair therapy. Several plant-derived polyphenols are known to promote cell migration, which improves wound healing. Previous studies of flavonoids on cell lines have focused on their inhibitory effects and not on wound healing. In addition, studies of flavonoids on wound healing have been performed using mixtures. In this study, individual flavonoids were used for cellular migration measurements. Relationships between the cell migration effects of flavonoids and their structural properties have never been reported. Here, we investigated the migration of keratinocytes caused by 100 flavonoids and examined their relationships using hologram quantitative structure-activity relationships. The structural conditions responsible for efficient cell migration on keratinocyte cell lines determined from the current study will facilitate the design of flavonoids with improved activity.

  13. A novel approach to study the structure-property relationships and applications in living systems of modular Cu(2+) fluorescent probes.

    PubMed

    She, Mengyao; Yang, Zheng; Hao, Likai; Wang, Zhaohui; Luo, Tianyou; Obst, Martin; Liu, Ping; Shen, Yehua; Zhang, Shengyong; Li, Jianli

    2016-01-01

    A series of Cu(2+) probe which contains 9 probes have been synthesized and established. All the probes were synthesized using Rhodamine B as the fluorophore, conjugated to various differently substituted cinnamyl aldehyde with C=N Schiff base structural motif as their core moiety. The structure-property relationships of these probes have been investigated. The change of optical properties, caused by different electronic effect and steric effect of the recognition group, has been analyzed systematically. DFT calculation simulation of the Ring-Close and Ring-Open form of all the probes have been employed to illuminate, summarize and confirm these correlations between optical properties and molecular structures. In addition, biological experiment demonstrated that all the probes have a high potential for both sensitive and selective detection, mapping of adsorbed Cu(2+) both in vivo and environmental microbial systems. This approach provides a significant strategy for studying structure-property relationships and guiding the synthesis of probes with various optical properties. PMID:27485974

  14. A novel approach to study the structure-property relationships and applications in living systems of modular Cu2+ fluorescent probes

    PubMed Central

    She, Mengyao; Yang, Zheng; Hao, Likai; Wang, Zhaohui; Luo, Tianyou; Obst, Martin; Liu, Ping; Shen, Yehua; Zhang, Shengyong; Li, Jianli

    2016-01-01

    A series of Cu2+ probe which contains 9 probes have been synthesized and established. All the probes were synthesized using Rhodamine B as the fluorophore, conjugated to various differently substituted cinnamyl aldehyde with C=N Schiff base structural motif as their core moiety. The structure-property relationships of these probes have been investigated. The change of optical properties, caused by different electronic effect and steric effect of the recognition group, has been analyzed systematically. DFT calculation simulation of the Ring-Close and Ring-Open form of all the probes have been employed to illuminate, summarize and confirm these correlations between optical properties and molecular structures. In addition, biological experiment demonstrated that all the probes have a high potential for both sensitive and selective detection, mapping of adsorbed Cu2+ both in vivo and environmental microbial systems. This approach provides a significant strategy for studying structure-property relationships and guiding the synthesis of probes with various optical properties. PMID:27485974

  15. Approximate quantitative relationships for rotating magnetic field current drive

    NASA Astrophysics Data System (ADS)

    Hugrass, W. N.; Ohnishi, M.

    1999-08-01

    A simplified model for the rotating magnetic field (RMF) current drive in an infinitely long cylindrical plasma is used to obtain approximate relationships between the fluid flow velocities, collisionality and degree of nonlinearity. These approximate relationships provide simple quantitative estimates for the basic conditions required for the RMF current drive technique to be applied successfully. In particular, the condition required for the motion of the ion fluid not to be flux-preserving, is evaluated quantitatively for the first time.

  16. Research on the relationship between the structural properties of bedding layer in spring mattress and sleep quality.

    PubMed

    Shen, Liming; Chen, Yu-xia; Guo, Yong; Zhong, ShiLu; Fang, Fei; Zhao, Jing; Hu, Tian-Yi

    2012-01-01

    Mattress, as a sleep platform, its types and physical properties has an important effect on sleep quality and rest efficiency. In this paper, by subjective evaluations, analysis of sleeping behaviors and tests of depth of sleep, the relationship between characteristics of the bedding materials, the structure of mattress, sleep quality and sleep behaviors were studied. The results showed that: (1) Characteristics of the bedding materials and structure of spring mattress had a remarkable effect on sleep behaviors and sleep quality. An optimum combination of the bedding materials, the structure of mattress and its core could improve the overall comfort of mattress, thereby improving the depth of sleep and sleep quality. (2) Sleep behaviors had a close relationship with sleeping postures and sleep habits. The characteristics of sleep behaviors vary from person to person.

  17. Chemical Modification of Graphene Oxide through Diazonium Chemistry and Its Influence on the Structure-Property Relationships of Graphene Oxide-Iron Oxide Nanocomposites.

    PubMed

    Rebuttini, Valentina; Fazio, Enza; Santangelo, Saveria; Neri, Fortunato; Caputo, Gianvito; Martin, Cédric; Brousse, Thierry; Favier, Frédéric; Pinna, Nicola

    2015-08-24

    4-Carboxyphenyl groups are covalently grafted onto graphene oxide via diazonium chemistry for studying their role on the adsorption of iron oxide nanoparticles. The nanoparticles are deposited via a novel phase-transfer approach involving specific interactions at the interface between two immiscible solvents. The increased density and the homogeneous distribution of surface carboxyl moieties enable the preparation of a nanocomposite with improved iron oxide distribution and loading. Structure-properties relationships are investigated by analysing the electrochemical properties of the nanocomposites, which are regarded as promising active materials for application in supercapacitors. It is demonstrated that the nature of the interactions between the components similarly affects the overall electrochemical performances of the nanocomposites and the structure of the materials.

  18. Probing Carrier Transport and Structure-Property Relationship of Highly Ordered Organic Semiconductors at the Two-Dimensional Limit.

    PubMed

    Zhang, Yuhan; Qiao, Jingsi; Gao, Si; Hu, Fengrui; He, Daowei; Wu, Bing; Yang, Ziyi; Xu, Bingchen; Li, Yun; Shi, Yi; Ji, Wei; Wang, Peng; Wang, Xiaoyong; Xiao, Min; Xu, Hangxun; Xu, Jian-Bin; Wang, Xinran

    2016-01-01

    One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ∼3  nm. Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.

  19. QSAR in Chromatography: Quantitative Structure-Retention Relationships (QSRRs)

    NASA Astrophysics Data System (ADS)

    Kaliszan, Roman; Bączek, Tomasz

    To predict a given physicochemical or biological property, the relationships can be identified between the chemical structure and the desired property. Ideally these relationships should be described in reliable quantitative terms. To obtain statistically significant relationships, one needs relatively large series of property parameters. Chromatography is a unique method which can provide a great amount of quantitatively precise, reproducible, and comparable retention data for large sets of structurally diversified compounds (analytes). On the other hand, chemometrics is recognized as a valuable tool for accomplishing a variety of tasks in a chromatography laboratory. Chemometrics facilitates the interpretation of large sets of complex chromatographic and structural data. Among various chemometric methods, multiple regression analysis is most often performed to process retention data and to extract chemical information on analytes. And the methodology of quantitative structure-(chromatographic) retention relationships (QSRRs) is mainly based on multiple regression analysis. QSRR can be a valuable source of knowledge on both the nature of analytes and of the macromolecules forming the stationary phases. Therefore, quantitative structure-retention relationships have been considered as a model approach to establish strategy and methods of property predictions.

  20. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.

    PubMed

    Ivanciuc, Ovidiu

    2013-06-01

    Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance. PMID:23701000

  1. Quantitative structure-activity relationships for fluoroelastomer/chlorofluorocarbon systems

    SciTech Connect

    Paciorek, K.J.L.; Masuda, S.R.; Nakahara, J.H. ); Snyder, C.E. Jr.; Warner, W.M. )

    1991-12-01

    This paper reports on swell, tensile, and modulus data that were determined for a fluoroelastomer after exposure to a series of chlorofluorocarbon model fluids. Quantitative structure-activity relationships (QSAR) were developed for the swell as a function of the number of carbons and chlorines and for tensile strength as a function of carbon number and chlorine positions in the chlorofluorocarbons.

  2. Quantitative structure-activity relationship (QSAR) for insecticides: development of predictive in vivo insecticide activity models.

    PubMed

    Naik, P K; Singh, T; Singh, H

    2009-07-01

    Quantitative structure-activity relationship (QSAR) analyses were performed independently on data sets belonging to two groups of insecticides, namely the organophosphates and carbamates. Several types of descriptors including topological, spatial, thermodynamic, information content, lead likeness and E-state indices were used to derive quantitative relationships between insecticide activities and structural properties of chemicals. A systematic search approach based on missing value, zero value, simple correlation and multi-collinearity tests as well as the use of a genetic algorithm allowed the optimal selection of the descriptors used to generate the models. The QSAR models developed for both organophosphate and carbamate groups revealed good predictability with r(2) values of 0.949 and 0.838 as well as [image omitted] values of 0.890 and 0.765, respectively. In addition, a linear correlation was observed between the predicted and experimental LD(50) values for the test set data with r(2) of 0.871 and 0.788 for both the organophosphate and carbamate groups, indicating that the prediction accuracy of the QSAR models was acceptable. The models were also tested successfully from external validation criteria. QSAR models developed in this study should help further design of novel potent insecticides.

  3. Synthesis and Structure-Property Relationships in (h6-Arene)Cr(CO)3 Chemistry: From Guided Experiments to Discovery Research

    NASA Astrophysics Data System (ADS)

    Hunter, Allen D.; Bianconi, Larry J.; Dimuzio, Steven J.; Braho, Dianne L.

    1998-07-01

    (h6-Arene)Cr(CO)3 complexes are only moderately air sensitive and can easily and inexpensively be prepared from most of the arenes already found in organic stockrooms. Since instructors can have each student prepare a different complex, they are ideal targets for student directed "discovery research" lab projects. Teams of students can compare how their syntheses and the physical, spectroscopic, and electrochemical properties of their products vary as a function of the arenes structures. The resulting empirical structure/property correlations can then be rationalized in terms of various bonding models. A discussion of (h6-arene)Cr(CO)3 chemistry suitable for student handouts is included along with suggestions for extending this experiment to create multi-step organic and inorganic synthesis projects. In addition, generic procedures for the syntheses using relatively simple glassware, example reaction procedures at both micro and conventional scales, practical hints for carrying out the syntheses, a discussion of substituent effects on arene suitability, lists of required equipment, and diagrams of the assembled glassware are included. Characterization data for over five dozen (h6-Arene)Cr(CO)3 complexes are tabulated. These data are particularly suitable for use as lecture, examination, and/or problem set examples in discussions of the relationships between structure, bonding, spectroscopy, electrochemistry, and reactivity in organometallic chemistry.

  4. Ultrafast optical nonlinearities and figures of merit in acceptor-substituted 3,4,5-trimethoxy chalcone derivatives: Structure-property relationships

    NASA Astrophysics Data System (ADS)

    Gu, Bing; Ji, Wei; Patil, P. S.; Dharmaprakash, S. M.

    2008-05-01

    By performing both Z-scan and transient transmission measurements with 130 fs laser pulses in the near infrared region, we investigated structure-property relationships for χ(3) in acceptor-substituted 3,4,5-trimethoxy chalcone derivatives. We determined all nonlinear parameters, including two-photon absorption (2PA) cross section, 2PA-induced excited-state absorption (ESA) cross section, microscopic second-order hyperpolarizability, and lifetime of the excited state in these molecules. We found that the microscopic second-order hyperpolarizability γR and 2PA cross section σ2PA in chalcone derivatives increase as the acceptor strength of the molecules increases, which demonstrates an enhancement in optical nonlinearities by simple structural variations. We evaluated the one-photon, two-photon, and effective three-photon figures of merit for acetone solutions of chalcone derivatives at irradiance of 100 GW/cm2. Furthermore, we observed optical limiting behavior in these compounds, which result from both 2PA and 2PA-assisted ESA. These results indicated that chalcone derivatives are a promising candidate for applications on nonlinear photonic devices.

  5. A novel algorithm for QSAR (quantitative structure-activity relationships)

    SciTech Connect

    Carter, S. ); Nikolic, S.; Trinajstic, N. )

    1989-01-01

    A novel approach to quantitative structure-activity relationships (QSAR) is proposed. It is based on the molecular descriptor named the stereo-identification (SID) number. The applicability of this approach to QSAR studies is tested on aquatic toxicities of phenols against fathead minnows (Phimephales promelas). Our approach reproduced successfully the bioactivities of phenols and is superior to the Hall-Kier model based on Randic's connectivity index.

  6. (Quantitative structure-activity relationships in environmental toxicology)

    SciTech Connect

    Turner, J.E.

    1990-10-04

    The traveler attended the Fourth International Workshop on QSAR (Quantitative Structure-Activity Relationships) in Environmental Toxicology. He was an author or co-author on one platform and two poster presentations. The subject of the workshop offers a framework for analyzing and predicting the fate of chemical pollutants in organisms and the environment. QSAR is highly relevant to the ORNL program on the physicochemical characterization of chemical pollutants for health protection.

  7. Structure-property relationships in an Al matrix Ca nanofilamentary composite conductor with potential application in high-voltage power transmission

    NASA Astrophysics Data System (ADS)

    Tian, Liang

    This study investigated the processing-structure-properties relationships in an Al/Ca composites using both experiments and modeling/simulation. A particular focus of the project was understanding how the strength and electrical conductivity of the composite are related to its microstructure in the hope that a conducting material with light weight, high strength, and high electrical conductivity can be developed to produce overhead high-voltage power transmission cables. The current power transmission cables (e.g., Aluminum Conductor Steel Reinforced (ACSR)) have acceptable performance for high-voltage AC transmission, but are less well suited for high-voltage DC transmission due to the poorly conducting core materials that support the cable weight. This Al/Ca composite was produced by powder metallurgy and severe plastic deformation by extrusion and swaging. The fine Ca metal powders have been produced by centrifugal atomization with rotating liquid oil quench bath, and a detailed study about the atomization process and powder characteristics has been conducted. The microstructure of Al/Ca composite was characterized by electron microscopy. Microstructure changes at elevated temperature were characterized by thermal analysis and indirect resistivity tests. The strength and electrical conductivity were measured by tensile tests and four-point probe resistivity tests. Predicting the strength and electrical conductivity of the composite was done by micro-mechanics-based analytical modeling. Microstructure evolution was studied by mesoscale-thermodynamics-based phase field modeling and a preliminary atomistic molecular dynamics simulation. The application prospects of this composite was studied by an economic analysis. This study suggests that the Al/Ca (20 vol. %) composite shows promise for use as overhead power transmission cables. Further studies are needed to measure the corrosion resistance, fatigue properties and energized field performance of this composite.

  8. Quantitative Structure – Property Relationship Modeling of Remote Liposome Loading Of Drugs

    PubMed Central

    Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2012-01-01

    Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a dataset including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and five-fold external validation. The external prediction accuracy for binary models was as high as 91–96%; for continuous models the mean coefficient R2 for regression between predicted versus observed values was 0.76–0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. PMID:22154932

  9. Quantitative Structure-Antifungal Activity Relationships for cinnamate derivatives.

    PubMed

    Saavedra, Laura M; Ruiz, Diego; Romanelli, Gustavo P; Duchowicz, Pablo R

    2015-12-01

    Quantitative Structure-Activity Relationships (QSAR) are established with the aim of analyzing the fungicidal activities of a set of 27 active cinnamate derivatives. The exploration of more than a thousand of constitutional, topological, geometrical and electronic molecular descriptors, which are calculated with Dragon software, leads to predictions of the growth inhibition on Pythium sp and Corticium rolfsii fungi species, in close agreement to the experimental values extracted from the literature. A set containing 21 new structurally related cinnamate compounds is prepared. The developed QSAR models are applied to predict the unknown fungicidal activity of this set, showing that cinnamates like 38, 28 and 42 are expected to be highly active for Pythium sp, while this is also predicted for 28 and 34 in C. rolfsii. PMID:26410195

  10. A Quantitative review of relationships between Ecosystem services

    NASA Astrophysics Data System (ADS)

    Lee, H.; Lautenbach, S.

    2014-12-01

    Each decision in natural resources management can generate trade-offs with respect to the provisioning of ecosystem services (ES). If the increase of one ES happens directly or indirectly at the cost of another ES, an attempt to maximize the provision of a single ES will lead to suboptimal results. However, decisions in natural resources management are often made without considering such trade-offs, despite their crucial role toward supporting better decision-making. The research on trade-offs between ES has gained some attention in the scientific community. However, a synthesis on existing knowledge and knowledge gaps is missing so far. We aim at closing that gap by a quantitative review of recent literature on trade-offs of ES. We looked at the pairs of ES that have been studied in ~100 case studies that report on trade-offs between ES. If a case study analyzed more than one ES pair, we looked at all pairwise combinations. We categorized relationships between these pairs of ES into the categories "trade-off", "synergy" or "no-effect". Most pairs of ES had a clear association with one category: the majority of case studies that studied a specific pair of ES identified the same category of relationship between the two ES. Pairs of regulating services were typically synergetic in relationship, whereas provisioning services and regulating services typically showed a trade-off. However, for several pairs of ES we were not able to identify a dominate category of relationship. Our hypothesis is that this relates to either the scale of the analysis, the land system where the analysis took place or the method used to quantify the relationship. The number of case studies for each pair of ES was spread unevenly. This hinders the support for a conclusive statement drawn for the pairs. Our results showed further that the method used to identify the relationship between services had a strong effect on the direction of the effect. This suggests that researchers should consider

  11. The effects of high energy electron beam irradiation in air on accelerated aging and on the structure property relationships of low density polyethylene

    NASA Astrophysics Data System (ADS)

    Murray, Kieran A.; Kennedy, James E.; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L.

    2013-02-01

    The response of low density polyethylene (LDPE) to high energy electron beam irradiation in air (10 MeV) between 25 and 400 kGy was examined and compared to non-irradiated polyethylene in terms of the mechanical and structural properties. To quantify the degree of crosslinking, swelling studies were performed and from this it was observed that the crosslink density increased as the irradiation dose increased. Furthermore, a reduction was observed in the numerical data for molar mass between adjacent crosslinks and the number of monomeric units between adjacent crosslinks as the irradiation dose was conducted incrementally. Accelerated aging provided evidence that radicals became trapped in the polymer matrix of LDPE and this in turn initiated further reactions to transpire as time elapsed, leading to additional alteration in the structural properties. Fourier transform infrared spectroscopy (FTIR) was implemented to provide insight into this. This technique established that the aging process had increased the oxidative degradation products due to oxygen permeation into the polymer and double bonds within the material. Mechanical testing revealed an increase in the tensile strength and a decrease in the elongation at break. Accelerated aging caused additional modifications to occur in the mechanical properties which are further elucidated throughout this study. Dynamic frequency sweeps investigated the effects of irradiation on the structural properties of LDPE. The effect of varying the irradiation dose concentration was apparent as this controlled the level of crosslinking within the material. Maxwell and Kelvin or Voigt models were employed in this analytical technique to define the reaction procedure of the frequency sweep test with regards to non-crosslinked and crosslinked LDPE.

  12. Relationship between electrical admittivity and quantitative histopathology in human prostate

    NASA Astrophysics Data System (ADS)

    Halter, Ryan; Milone, Michael; Schned, Alan; Heaney, John

    2010-04-01

    Passive bioelectrical properties have been demonstrated to provide sufficient contrast for use in differentiating benign from malignant tissue in a number of different organs including breast, prostate, cervix, bladder, and skin. The underlying microscopic anatomy responsible for these measured differences has been primarily speculative in the past. In this study we recorded electrical conductivity and permittivity spectra (100 Hz - 100 kHz) from 464 three mm diameter circular prostate samples. Each of these tissue specimens were stained with hematoxylin and eosin, processed onto microscopy slides, and digitized using optical microscopy. We used digital imaging processing tools to extract quantitative morphological features including total number of glands, average and total glandular lumen size, shape characteristics of the luminal spaces, and average and total glandular perimeter lengths. Correlative analysis was performed to assess the relationships between the tissue architectural features and the precisely co-registered electrical properties. We report on the findings from this analysis. This statistical assessment aims to provide a valuable piece of new information to help formulate a better understanding of the precise influence morphological architecture has on the flow of current through tissue.

  13. Determining cleanup levels in bioremediation: Quantitative structure activity relationship techniques

    SciTech Connect

    Arulgnanendran, V.R.J.; Nirmalakhandan, N.

    1995-12-31

    An important feature in the process of planning and initiating bioremediation is the quantification of the toxicity of either an individual chemical or a group of chemicals when multiple chemicals are involved. A laboratory protocol was developed to test the toxicity of single chemicals and mixtures of organic chemicals in a soil medium. Portions of these chemicals are used as a training set to develop Quantitative Structure Activity Relationship (QSAR) models. These predictive models are tested using the chemicals in the testing set, i.e., the remaining chemicals. Moreover mixtures with 10 contaminants in each mixture are tested experimentally to determine joint toxicity for mixtures of chemicals. Using the concepts of Toxic Units, Additivity Index, and Mixture Toxicity Index, the laboratory results are tested for additive, synergistic, or antagonistic effects of the contaminants. These concepts are further validated on mixtures containing eight chemicals that are tested in the laboratory. In addition to the use of the predictive models in evaluating cleanup levels for hazardous waste locations, they are useful to predict microbial toxicity in soils of new chemicals from a congeneric group acting by the same mode of toxicity. These models are applicable when the contaminants act singly or jointly in a mixture.

  14. Quantitative structure-activity relationships for organophosphates binding to acetylcholinesterase.

    PubMed

    Ruark, Christopher D; Hack, C Eric; Robinson, Peter J; Anderson, Paul E; Gearhart, Jeffery M

    2013-02-01

    Organophosphates are a group of pesticides and chemical warfare nerve agents that inhibit acetylcholinesterase, the enzyme responsible for hydrolysis of the excitatory neurotransmitter acetylcholine. Numerous structural variants exist for this chemical class, and data regarding their toxicity can be difficult to obtain in a timely fashion. At the same time, their use as pesticides and military weapons is widespread, which presents a major concern and challenge in evaluating human toxicity. To address this concern, a quantitative structure-activity relationship (QSAR) was developed to predict pentavalent organophosphate oxon human acetylcholinesterase bimolecular rate constants. A database of 278 three-dimensional structures and their bimolecular rates was developed from 15 peer-reviewed publications. A database of simplified molecular input line entry notations and their respective acetylcholinesterase bimolecular rate constants are listed in Supplementary Material, Table I. The database was quite diverse, spanning 7 log units of activity. In order to describe their structure, 675 molecular descriptors were calculated using AMPAC 8.0 and CODESSA 2.7.10. Orthogonal projection to latent structures regression, bootstrap leave-random-many-out cross-validation and y-randomization were used to develop an externally validated consensus QSAR model. The domain of applicability was assessed by the William's plot. Six external compounds were outside the warning leverage indicating potential model extrapolation. A number of compounds had residuals >2 or <-2, indicating potential outliers or activity cliffs. The results show that the HOMO-LUMO energy gap contributed most significantly to the binding affinity. A mean training R (2) of 0.80, a mean test set R (2) of 0.76 and a consensus external test set R (2) of 0.66 were achieved using the QSAR. The training and external test set RMSE values were found to be 0.76 and 0.88. The results suggest that this QSAR model can be used in

  15. Misconceived Relationships between Logical Positivism and Quantitative Research: An Analysis in the Framework of Ian Hacking.

    ERIC Educational Resources Information Center

    Yu, Chong Ho

    Although quantitative research methodology is widely applied by psychological researchers, there is a common misconception that quantitative research is based on logical positivism. This paper examines the relationship between quantitative research and eight major notions of logical positivism: (1) verification; (2) pro-observation; (3)…

  16. Thermodynamics of the hydrogen bonding of nitrogen-containing cyclic and aromatic compounds with proton donors: The structure-property relationship

    NASA Astrophysics Data System (ADS)

    Rakipov, I. T.; Varfolomeev, M. A.; Kirgizov, A. Yu.; Solomonov, B. N.

    2014-12-01

    Enthalpies of dissolution are measured at infinite dilution of nitrogen-containing cyclic (pyrrolidine, piperidine) and aromatic compounds (aniline, N-methylaniline, N,N-dimethylaniline, N-methylimidazole, pyridine, 2-, 3-, 4-methylpyridine, pyrrole, N-methylpyrrole) in chloroform and dichloromethane, and vice versa ( T = 298.15 K). The enthalpies of hydrogen bonds in the above systems are calculated. Relationships between resulting thermochemical data and the structure of nitrogen-containing cyclic and aromatic compounds are explored.

  17. A review of the structure-property relationships in lead-free piezoelectric (1-x)Na0.5Bi0.5TiO3-(x)BaTiO3

    NASA Astrophysics Data System (ADS)

    McQuade, Ryan R.; Dolgos, Michelle R.

    2016-10-01

    Piezoelectric materials are increasingly being investigated for energy harvesting applications where (1-x)Na0.5Bi0.5TiO3-(x)BaTiO3 (NBT-BT) is an important lead-free piezoelectric material with potential to be used as an actuator in energy harvesting devices. Much effort has been put into modifying NBT-BT to tune the properties for specific applications, but there is currently no consensus regarding the structure-property relationships in this material, making targeted, rational design a major challenge. In this review, we will summarize the current body of knowledge of NBT-BT and discuss contradicting studies, unresolved problems, and future directions in the field.

  18. Structure-Property Relationships in CO2-philic (Co)polymers: Phase Behavior, Self-Assembly, and Stabilization of Water/CO2 Emulsions.

    PubMed

    Girard, Etienne; Tassaing, Thierry; Marty, Jean-Daniel; Destarac, Mathias

    2016-04-13

    This Review provides comprehensive guidelines for the design of CO2-philic copolymers through an exhaustive and precise coverage of factors governing the solubility of different classes of polymers. Starting from computational calculations describing the interactions of CO2 with various functionalities, we describe the phase behavior in sc-CO2 of the main families of polymers reported in literature. The self-assembly of amphiphilic copolymers of controlled architecture in supercritical carbon dioxide and their use as stabilizers for water/carbon dioxide emulsions then are covered. The relationships between the structure of such materials and their behavior in solutions and at interfaces are systematically underlined throughout these sections.

  19. PREDICTING TOXICOLOGICAL ENDPOINTS OF CHEMICALS USING QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS (QSARS)

    EPA Science Inventory

    Quantitative structure-activity relationships (QSARs) are being developed to predict the toxicological endpoints for untested chemicals similar in structure to chemicals that have known experimental toxicological data. Based on a very large number of predetermined descriptors, a...

  20. Quantitative Structure--Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Background: Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. Objective: In this study, a combinatorial QSAR approach has been employed for the creation of robust and predictive models of acute toxi...

  1. Quantitative Measurement of Sociometric Relationships through Multidimensional Scaling.

    ERIC Educational Resources Information Center

    Hollweg, C. Lewis; And Others

    An analysis of group social relationships through an interpersonal perception point of view is presented. Each member of a group is asked to make a judgment concerning the social distance between each pair of members in the group. The Carroll and Chang scaling model, called Individual Differences Scaling (INDSCAL), which assumes that individuals…

  2. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts.

    PubMed

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-05-01

    observed enhancement of the catalytic activity of PtxRu100-x alloy NPs at x ∼ 50. Implications of so-established relationships between the atomic structure and catalytic activity of Pt-Ru alloy NPs on efforts aimed at improving further the latter by tuning-up the former are discussed and the usefulness of detailed NP structure studies to advancing science and technology of metallic NPs - exemplified.

  3. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts

    NASA Astrophysics Data System (ADS)

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-04-01

    observed enhancement of the catalytic activity of PtxRu100-x alloy NPs at x ~ 50. Implications of so-established relationships between the atomic structure and catalytic activity of Pt-Ru alloy NPs on efforts aimed at improving further the latter by tuning-up the former are discussed and the usefulness of detailed NP structure studies to advancing science and technology of metallic NPs - exemplified.An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic

  4. Quantitative relationship of sick building syndrome symptoms with ventilation rates

    SciTech Connect

    Fisk, William J.; Mirer, Anna G.; Mendell, Mark J.

    2009-01-01

    Data from published studies were combined and analyzed to develop best-fit equations and curves quantifying the change in sick building syndrome (SBS) symptom prevalence in office workers with ventilation rate. For each study, slopes were calculated, representing the fractional change in SBS symptom prevalence per unit change in ventilation rate per person. Values of ventilation rate, associated with each value of slope, were also calculated. Linear regression equations were fitted to the resulting data points, after weighting by study size. Integration of the slope-ventilation rate equations yielded curves of relative SBS symptom prevalence versus ventilation rate. Based on these analyses, as the ventilation rate drops from 10 to 5 L/s-person, relative SBS symptom prevalence increases approximately 23percent (12percent to 32percent), and as ventilation rate increases from 10 to 25 L/s-person, relative prevalence decreases approximately 29percent (15percent to 42percent). Variations in SBS symptom types, building features, and outdoor air quality may cause the relationship ofSBS symptom prevalence with ventilation rate in specific situations to differ from the average relationship predicted in this paper.

  5. Improving quantitative structure-activity relationships through multiobjective optimization.

    PubMed

    Nicolotti, Orazio; Giangreco, Ilenia; Miscioscia, Teresa Fabiola; Carotti, Angelo

    2009-10-01

    A multiobjective optimization algorithm was proposed for the automated integration of structure- and ligand-based molecular design. Driven by a genetic algorithm, the herein proposed approach enabled the detection of a number of trade-off QSAR models accounting simultaneously for two independent objectives. The first was biased toward best regressions among docking scores and biological affinities; the second minimized the atom displacements from a properly established crystal-based binding topology. Based on the concept of dominance, 3D QSAR equivalent models profiled the Pareto frontier and were, thus, designated as nondominated solutions of the search space. K-means clustering was, then, operated to select a representative subset of the available trade-off models. These were effectively subjected to GRID/GOLPE analyses for quantitatively featuring molecular determinants of ligand binding affinity. More specifically, it was demonstrated that a) diverse binding conformations occurred on the basis of the ligand ability to profitably contact different part of protein binding site; b) enzyme selectivity was better approached and interpreted by combining diverse equivalent models; and c) trade-off models were successful and even better than docking virtual screening, in retrieving at high sensitivity active hits from a large pool of chemically similar decoys. The approach was tested on a large series, very well-known to QSAR practitioners, of 3-amidinophenylalanine inhibitors of thrombin and trypsin, two serine proteases having rather different biological actions despite a high sequence similarity. PMID:19785453

  6. Quantitative structure-activity relationships for evaluating the influence of sorbate structure on sorption of organic compounds by soil

    SciTech Connect

    Hu, Q.; Wang, X.; Brusseau, M.L.

    1995-07-01

    The purpose of this work was to investigate the effect of sorbate structure, by using the quantitative structure-activity relationship (QSAR) approach, on sorption of organic compounds by two soils with different amounts of organic matter. Miscible displacement experiments were performed with several organic contaminants representing six classes of nonpolar, nonionizable organic chemicals, including chlorinated aliphatics, chlorobenzenes, polycyclic aromatic hydrocarbons (PAHs), n-alkylbenzenes, methylated benzenes, and polychlorinated biphenyls (PCBs). The breakthrough curves were analyzed by using a bicontinuum model where in sorption is assumed to be instantaneous for a fraction of the sorbent and rate limited for the remainder. The QSAR approach was used to investigate the dependency of both equilibrium and nonequilibrium sorption coefficients on topological descriptor representing structural properties of the solutes. For both equilibrium and nonequilibrium parameters, the first-order valence molecular connectivity ({sup 1}{chi}{sup v}) was found to be the best topological descriptor. Most of the rate-limited sorption behavior could be explained by accounting for the size and structure of the solute molecule, as indicated by the good correlation between the rate coefficient and {sup 1}{chi}{sup v}. This supports the contention that rate-limited sorption in these systems is controlled by a physical diffusion mechanism, consistent with the polymer diffusion model. Based on this model, the calculated diffusion-length ratios for the Borden and Mt. Lemmon soils, which have a large difference in organic-matter contents, compare favorably to the values determined from the measured rate data.

  7. Using three-dimensional quantitative structure-activity relationships to examine estrogen receptor binding affinities of polychlorinated hydroxybiphenyls

    SciTech Connect

    Waller, C.L.; Minor, D.L.; McKinney, J.D.

    1995-07-01

    Certain phenyl-substituted hydrocarbons of environmental concern have the potential to disrupt the endocrine system of animals, apparently in association with their estrogenic properties. Competition with natural estrogens for the estrogen receptor is a possible mechanism by which such effects could occur. We used comparative molecular field analysis (CoMFA), a three-dimensional quantitative structure-activity relationship (QSAR) paradigm, to examine the underlying structural properties of ortho-chlorinated hydroxybiphenyl analogs known to bind to the estrogen receptor. The cross-validated and conventional statistical results indicate a high degree of internal predictability for the molecules included in the training data set. In addition to the phenolic (A) ring system, conformational restriction of the overall structure appears to play an important role in estrogen receptor binding affinity. Hydrophobic character as assessed using hydropathic interaction fields also contributes in a positive way to binding affinity. The CoMFA-derived QSARs may be useful in examining the estrogenic activity of a wider range of phenyl-substituted hydrocarbons of environmental concern. 37 refs., 2 figs., 2 tabs.

  8. Applying quantitative structure-activity relationship (QSAR) methodology for modeling postmortem redistribution of benzodiazepines and tricyclic antidepressants.

    PubMed

    Giaginis, Constantinos; Tsantili-Kakoulidou, Anna; Theocharis, Stamatios

    2014-06-01

    Postmortem redistribution (PMR) constitutes a multifaceted process, which complicates the interpretation of drug concentrations by forensic toxicologists. The present study aimed to apply quantitative structure-activity relationship (QSAR) analysis for modeling PMR data of structurally related drugs, 10 benzodiazepines and 10 tricyclic antidepressants. For benzodiazepines, an adequate QSAR model was obtained (R(2) = 0.98, Q(2) = 0.88, RMSEE = 0.12), in which energy, ionization and molecular size exerted significant impact. For tricyclic antidepressants, an adequate QSAR model with slightly inferior statistics (R(2) = 0.95, Q(2) = 0.87, RMSEE = 0.29) was established after exclusion of maprotiline, in which energy parameters, basicity character and lipophilicity exerted significant contribution. Thus, QSAR analysis could be used as a complementary tool to provide an informative illustration of the contributing molecular, physicochemical and structural properties in PMR process. However, the complexity, non-static and time-dependent nature of PMR endpoints raises serious concerns whether QSAR methodology could predict the degree of redistribution, highlighting the need for animal-derived PMR data.

  9. Heterogeneous fenton degradation of azo dyes catalyzed by modified polyacrylonitrile fiber fe complexes: QSPR (quantitative structure peorperty relationship) study.

    PubMed

    Li, Bing; Dong, Yongchun; Ding, Zhizhong

    2013-07-01

    The amidoximated polyacrylonitrile (PAN) fiber Fe complexes were prepared and used as the heterogeneous Fenton catalysts for the degradation of 28 anionic water soluble azo dyes in water under visible irradiation. The multiple linear regression (MLR) method was employed to develop the quantitative structure property relationship (QSPR) model equations for the decoloration and mineralization of azo dyes. Moreover, the predictive ability of the QSPR model equations was assessed using Leave-one-out (LOO) and cross-validation (CV) methods. Additionally, the effect of Fe content of catalyst and the sodium chloride in water on QSPR model equations were also investigated. The results indicated that the heterogeneous photo-Fenton degradation of the azo dyes with different structures was conducted in the presence of the amidoximated PAN fiber Fe complex. The QSPR model equations for the dye decoloration and mineralization were successfully developed using MLR technique. MW/S (molecular weight divided by the number of sulphonate groups) and NN=N (the number of azo linkage) are considered as the most important determining factor for the dye degradation and mineralization, and there is a significant negative correlation between MW/S or NN=N and degradation percentage or total organic carbon (TOC) removal. Moreover, LOO and CV analysis suggested that the obtained QSPR model equations have the better prediction ability. The variation in Fe content of catalyst and the addition of sodium chloride did not alter the nature of the QSPR model equations. PMID:24218861

  10. Excited States and Photodebromination of Selected Polybrominated Diphenyl Ethers: Computational and Quantitative Structure—Property Relationship Studies

    PubMed Central

    Luo, Jin; Hu, Jiwei; Wei, Xionghui; Li, Lingyun; Huang, Xianfei

    2015-01-01

    This paper presents a density functional theory (DFT)/time-dependent DFT (TD-DFT) study on the lowest lying singlet and triplet excited states of 20 selected polybrominateddiphenyl ether (PBDE) congeners, with the solvation effect included in the calculations using the polarized continuum model (PCM). The results obtained showed that for most of the brominated diphenyl ether (BDE) congeners, the lowest singlet excited state was initiated by the electron transfer from HOMO to LUMO, involving a π–σ* excitation. In triplet excited states, structure of the BDE congeners differed notably from that of the BDE ground states with one of the specific C–Br bonds bending off the aromatic plane. In addition, the partial least squares regression (PLSR), principal component analysis-multiple linear regression analysis (PCA-MLR), and back propagation artificial neural network (BP-ANN) approaches were employed for a quantitative structure-property relationship (QSPR) study. Based on the previously reported kinetic data for the debromination by ultraviolet (UV) and sunlight, obtained QSPR models exhibited a reasonable evaluation of the photodebromination reactivity even when the BDE congeners had same degree of bromination, albeit different patterns of bromination. PMID:25569092

  11. glass chemistry: structure-property relationships

    NASA Astrophysics Data System (ADS)

    Smedskjaer, Morten M.; Youngman, Randall E.; Mauro, John C.

    2014-08-01

    Pyrex® glass was one of the first commercial boroaluminosilicate glass compositions, selected in 1915 from thousands of compositions due to its ability to sustain mechanical and thermal shock. While the microscopic structure of Pyrex® glass has recently been investigated, the microscopic origins of its macroscopic properties are not well understood, i.e., the atomic scale foundation of the original empirical invention of Pyrex® glass has yet to be established. In this work, we have tackled this problem by investigating the effects of varying Si/Al and Na/B ratios on the boron and aluminum speciation and a range of physical and rheological properties in the Pyrex® glass family. We show that the canonical Pyrex® boroaluminosilicate composition is indeed optimal for attaining relatively high values of glass transition temperature and elastic moduli and a low coefficient of thermal expansion, while simultaneously maintaining a high glass-forming ability.

  12. Structure-property relationships of carbon aerogels

    SciTech Connect

    Pekala, R.W.; Alviso, C.T.; Kong, F.M.

    1993-12-01

    Of the organic reactions in sol-gel polymerizations, the most studied reaction is the aqueous polycondensation of resorcinol with formaldehyde; the resulting crosslinked gels are supercritically dried from CO{sub 2} to give resorcinol-formaldehyde (RF) aerogels. These aerogels can be pyrolyzed to form vitreous carbon monoliths with black color, high porosity, ultrafine cell/pore size, high surface area, and interconnected particles of the organic precursor. The structure and properties of the carbon aerogels depend on R/C (resorcinol/catalyst) ratio of starting solution, pyrolysis temperature, and chemical activation. Each variable is discussed. Carbon aerogels provide an almost ideal electrode material (in double-layer capacitors) owing to low electrical resistivity (<40 mohm-cm), controllable pore size distribution (5--500 {angstrom}), and high volumetric surface areas ({approximately}500 m{sup 2}/cm{sup 3}).

  13. THREE-DIMENSIONAL QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIP (3D-QSPR) MODELS FOR PREDICTION OF THERMODYNAMIC PROPERTIES OF POLYCHLORINATED BIPHENYLS (PCBS): ENTHALPY OF VAPORIZATION. (R826133)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. THREE-DIMENSIONAL QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIP (3D-QSPR) MODELS FOR PREDICTION OF THERMODYNAMIC PROPERTIES OF POLYCHLORINATED BIPHENYLS (PCBS): ENTHALPY OF SUBLIMATION. (R826133)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. Elucidating the structure-property relationships of donor-π-acceptor dyes for dye-sensitized solar cells (DSSCs) through rapid library synthesis by a one-pot procedure.

    PubMed

    Fuse, Shinichiro; Sugiyama, Sakae; Maitani, Masato M; Wada, Yuji; Ogomi, Yuhei; Hayase, Shuzi; Katoh, Ryuzi; Kaiho, Tatsuo; Takahashi, Takashi

    2014-08-18

    The creation of organic dyes with excellent high power conversion efficiency (PCE) is important for the further improvement of dye-sensitized solar cells. We wish to describe the rapid synthesis of a 112-membered donor-π-acceptor dye library by a one-pot procedure, evaluation of PCEs, and elucidation of structure-property relationships. No obvious correlations between ε, and the η were observed, whereas the HOMO and LUMO levels of the dyes were critical for η. The dyes with a more positive E(HOMO), and with an E(LUMO)<-0.80 V, exerted higher PCEs. The proper driving forces were crucial for a high J(sc), and it was the most important parameter for a high η. The above criteria of E(HOMO) and E(LUMO) should be useful for creating high PCE dyes; nevertheless, that was not sufficient for identifying the best combination of donor, π, and acceptor blocks. Combinatorial synthesis and evaluation was important for identifying the best dye.

  16. Quantitative determination based on the differences between spectra-temperature relationships.

    PubMed

    Li, Zhe; Zhou, Mei; Luo, Yongshun; Li, Gang; Lin, Ling

    2016-08-01

    In the Near-infrared (NIR) spectral measurement it is not always possible to keep the experimental conditions constant. The fluctuations in external variables, such as temperature, will result in a nonlinear shift and a broadening of the spectral bands. In this study, the temperature-induced spectral variation coefficient (TSVC) was obtained by using loading space standardization (LSS). The relationship between TSVC and normalized squared temperature was quantitatively analyzed and applied to the quantitative determination of the compositions in mixtures. NIR spectra of peanut-soy-corn oil mixtures measured at seven temperatures were analyzed. It was found that, the relationship between TSVC and normalized squared temperature can be established by using LSS. Furthermore, the quantitative determination of the compositions in a mixture can be achieved by using the difference between the relationships, i.e., the slope of the relationship. The calibration curves between slope and composition volume are found to be reliable with the correlation coefficients (R(2)) as high as 0.9992. Quantitative determination by the calibration curves were also validated. Therefore, the method can be an effective tool for investigating the effect of temperature and quantitatively analysis. PMID:27216655

  17. Quantitative structure-sorption relationships of pesticides used in the sugarcane industry in the northern coastal area of Paraíba State, Brazil.

    PubMed

    da S Soares, Gabriela C; de M e Silva, Luana; de A Farias, Carlos H; Scotti, Luciana; Scotti, Marcus T

    2014-03-01

    Sorption coefficients (K(oc)) are useful in the prediction of whether a pesticide will remain dissolved in solution or will become adsorbed onto soil particles after its application. Measuring this process experimentally is difficult, expensive and time-consuming. Hence, much effort has been directed toward estimating K(oc) through statistical modelling. In this study, we investigated the physicochemical properties of pesticides employed by a local sugarcane company, in the northern coastal plain of Paraíba state in Brazil, by using several molecular descriptors, among them, GRid INdependent Descriptors (GRIND). Quantitative assessment of the structure-property relationship (QSPR) model indicated that size, shape, octanol-water coefficient, solubility and the balance between hydrophilic and lipophilic regions, are all relevant to K(oc) values.

  18. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  19. Quantitative structure activity relationships of some pyridine derivatives as corrosion inhibitors of steel in acidic medium.

    PubMed

    El Ashry, El Sayed H; El Nemr, Ahmed; Ragab, Safaa

    2012-03-01

    Quantum chemical calculations using the density functional theory (B3LYP/6-31G DFT) and semi-empirical AM1 methods were performed on ten pyridine derivatives used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. Quantum chemical parameters such as total negative charge (TNC) on the molecule, energy of highest occupied molecular orbital (E (HOMO)), energy of lowest unoccupied molecular orbital (E (LUMO)) and dipole moment (μ) as well as linear solvation energy terms, molecular volume (Vi) and dipolar-polarization (π) were correlated to corrosion inhibition efficiency of ten pyridine derivatives. A possible correlation between corrosion inhibition efficiencies and structural properties was searched to reduce the number of compounds to be selected for testing from a library of compounds. It was found that theoretical data support the experimental results. The results were used to predict the corrosion inhibition of 24 related pyridine derivatives.

  20. Using quantitative structure-activity relationship modeling to quantitatively predict the developmental toxicity of halogenated azole compounds.

    PubMed

    Craig, Evisabel A; Wang, Nina Ching; Zhao, Q Jay

    2014-07-01

    Developmental toxicity is a relevant endpoint for the comprehensive assessment of human health risk from chemical exposure. However, animal developmental toxicity data remain unavailable for many environmental contaminants due to the complexity and cost of these types of analyses. Here we describe an approach that uses quantitative structure-activity relationship modeling as an alternative methodology to fill data gaps in the developmental toxicity profile of certain halogenated compounds. Chemical information was obtained and curated using the OECD Quantitative Structure-Activity Relationship Toolbox, version 3.0. Data from 35 curated compounds were analyzed via linear regression to build the predictive model, which has an R(2) of 0.79 and a Q(2) of 0.77. The applicability domain (AD) was defined by chemical category and structural similarity. Seven halogenated chemicals that fit the AD but are not part of the training set were employed for external validation purposes. Our model predicted lowest observed adverse effect level values with a maximal threefold deviation from the observed experimental values for all chemicals that fit the AD. The good predictability of our model suggests that this method may be applicable to the analysis of qualifying compounds whenever developmental toxicity information is lacking or incomplete for risk assessment considerations.

  1. A Quantitative Study of the Relationship between Leadership Practice and Strategic Intentions to Use Cloud Computing

    ERIC Educational Resources Information Center

    Castillo, Alan F.

    2014-01-01

    The purpose of this quantitative correlational cross-sectional research study was to examine a theoretical model consisting of leadership practice, attitudes of business process outsourcing, and strategic intentions of leaders to use cloud computing and to examine the relationships between each of the variables respectively. This study…

  2. Structure-property relationship of extended π-conjugation of ancillary ligands with and without an electron donor of heteroleptic Ru(II) bipyridyl complexes for high efficiency dye-sensitized solar cells.

    PubMed

    Hussain, Maqbool; El-Shafei, Ahmed; Islam, Ashraful; Han, Liyuan

    2013-06-01

    Two new heteroleptic Ru(II) bipyridyl complexes MH06 and MH11 were designed, synthesized and characterized for DSSCs. While the ancillary ligand of MH06 was molecularly engineered with a strong electron donating group coupled with an extended π-conjugated system, the ancillary ligand of MH11 contained a longer π-conjugated system only. Molecular modeling, photophysical, and photovoltaic properties were compared under the same experimental conditions against the benchmark N719. In an effort to understand the structure-property relationship, their photovoltaic and photoelectrochemical properties including Jsc, Voc, ground and excited state oxidation potentials, UV-Vis absorption, and molar extinction coefficients were studied. The UV-Vis results showed intense MLCT absorption peaks of MH06 and MH11 in the visible region with a red shift of 12 and 18 nm, respectively, with significantly higher molar extinction coefficients compared to N719. Tetrabutylammonium (TBA) substituted MH11-TBA demonstrated the most efficient IPCE of over 90% in the plateau region covering the entire visible spectrum and extending into the near IR region (ca. 890 nm), which showed a solar-to-power conversion efficiency (η) of 10.06%, significantly higher than that of the benchmark N719 dye (9.32%). The superior performance in terms of the IPCE and Jsc of MH11 can be attributed to the bulky and highly hydrophobic nature of the pyrene-based ancillary ligand, which behaves as a shielding barrier for hole-transport recombination between TiO2 and the electrolyte. In addition, the IMPS results showed that the contribution of dyes to the conduction band shift of the TiO2 level is almost similar, regardless of different substitutions on the bipy-moiety. This implies that the open-circuit photovoltage (Voc) increases with reduced charge recombination in the presence of a thick layer of tetrabutyl ammonium ions (TBA) of the dye anchored on the surface of TiO2.

  3. Use of Quasi-SMILES and Monte Carlo Optimization to Develop Quantitative Feature Property/Activity Relationships (QFPR/QFAR) for Nanomaterials.

    PubMed

    Toropov, Andrey A; Rallo, Robert; Toropova, Alla P

    2015-01-01

    The CORAL software (http://www.insilico.eu/coral) has been used to develop quantitative feature-property/activity relationships (QFPRs/QFARs) for the prediction of endpoints related to different categories of nanomaterials. In contrast to previous models built up by using CORAL from a representation of the molecular structure by using simplified molecular input-line entry system (SMILES), the current QFPR/QFARs are based on an integrated representation of acting conditions (i.e., a combination of physicochemical and/or biochemical factors) of nanomaterials via the so-called quasi-SMILES notation. In contrast to traditional quantitative structure - property / activity relationships (QSPRs/QSARs), the new models are able to provide new insight on the conditions of acting of substances (e.g., chemicals and nanomaterials) independently of their molecular structure. The development and validation of the QFPR/QFAR models was carried out following the OECD principles. The statistical quality of models developed from quasi-SMILES is acceptable, with values for the determination coefficient in the range of 0.70 to 0.85 for various endpoints of environmental and human health relevance. Perspectives of the QFPR/QFAR and their interaction and overlapping with traditional QSPR/QSAR are also discussed. PMID:25961527

  4. Molecular-Level Control of Ciclopirox Olamine Release from Poly(ethylene oxide)-Based Mucoadhesive Buccal Films: Exploration of Structure-Property Relationships with Solid-State NMR.

    PubMed

    Urbanova, Martina; Gajdosova, Marketa; Steinhart, Miloš; Vetchy, David; Brus, Jiri

    2016-05-01

    polymorphic form, Form I, which exhibited reduced dissolution kinetics. The bioavailability of CPX olamine formulated as PEO-based MBFs can thus be effectively controlled by inducing the complete dispersion and/or microsegregation and nanocrystallization of CPX olamine in the polymer matrix. Solid-state NMR spectroscopy is an efficient tool for exploring structure-property relationships in these complex pharmaceutical solids. PMID:27019088

  5. Synthesis, biological activity, and quantitative structure-activity relationship study of azanaphthalimide and arylnaphthalimide derivatives.

    PubMed

    Braña, Miguel F; Gradillas, Ana; Gómez, Angel; Acero, Nuria; Llinares, Francisco; Muñoz-Mingarro, Dolores; Abradelo, Cristina; Rey-Stolle, Fernanda; Yuste, Mercedes; Campos, Joaquín; Gallo, Miguel A; Espinosa, Antonio

    2004-04-22

    A series of quinoline derivatives as aza analogues of the naphthalene chromophore and a series of "nonfused" tricyclic aromatic systems, in particular 5-arylquinolines and 5- or 6-aryl and heteroaryl naphthalene systems, were synthesized and evaluated for growth-inhibitory properties in several human cell lines. The analysis of quantitative structure-antitumor activity relationships for the growth-inhibitory properties is also reported. Findings suggest that these compounds may not express their cytotoxicity via interaction on DNA. PMID:15084122

  6. Quantitative structure-activity relationships and docking studies of calcitonin gene-related peptide antagonists.

    PubMed

    Kyani, Anahita; Mehrabian, Mohadeseh; Jenssen, Håvard

    2012-02-01

    Defining the role of calcitonin gene-related peptide in migraine pathogenesis could lead to the application of calcitonin gene-related peptide antagonists as novel migraine therapeutics. In this work, quantitative structure-activity relationship modeling of biological activities of a large range of calcitonin gene-related peptide antagonists was performed using a panel of physicochemical descriptors. The computational studies evaluated different variable selection techniques and demonstrated shuffling stepwise multiple linear regression to be superior over genetic algorithm-multiple linear regression. The linear quantitative structure-activity relationship model revealed better statistical parameters of cross-validation in comparison with the non-linear support vector regression technique. Implementing only five peptide descriptors into this linear quantitative structure-activity relationship model resulted in an extremely robust and highly predictive model with calibration, leave-one-out and leave-20-out validation R(2) of 0.9194, 0.9103, and 0.9214, respectively. We performed docking of the most potent calcitonin gene-related peptide antagonists with the calcitonin gene-related peptide receptor and demonstrated that peptide antagonists act by blocking access to the peptide-binding cleft. We also demonstrated the direct contact of residues 28-37 of the calcitonin gene-related peptide antagonists with the receptor. These results are in agreement with the conclusions drawn from the quantitative structure-activity relationship model, indicating that both electrostatic and steric factors should be taken into account when designing novel calcitonin gene-related peptide antagonists. PMID:21974743

  7. Quantitative structure-antifungal activity relationships of some benzohydrazides against Botrytis cinerea.

    PubMed

    Reino, José L; Saiz-Urra, Liane; Hernandez-Galan, Rosario; Aran, Vicente J; Hitchcock, Peter B; Hanson, James R; Gonzalez, Maykel Perez; Collado, Isidro G

    2007-06-27

    Fourteen benzohydrazides have been synthesized and evaluated for their in vitro antifungal activity against the phytopathogenic fungus Botrytis cinerea. The best antifungal activity was observed for the N',N'-dibenzylbenzohydrazides 3b-d and for the N-aminoisoindoline-derived benzohydrazide 5. A quantitative structure-activity relationship (QSAR) study has been developed using a topological substructural molecular design (TOPS-MODE) approach to interpret the antifungal activity of these synthetic compounds. The model described 98.3% of the experimental variance, with a standard deviation of 4.02. The influence of an ortho substituent on the conformation of the benzohydrazides was investigated by X-ray crystallography and supported by QSAR study. Several aspects of the structure-activity relationships are discussed in terms of the contribution of different bonds to the antifungal activity, thereby making the relationships between structure and biological activity more transparent.

  8. Quantitative structure-toxicity relationship (QSTR) studies on the organophosphate insecticides.

    PubMed

    Can, Alper

    2014-11-01

    Organophosphate insecticides are the most commonly used pesticides in the world. In this study, quantitative structure-toxicity relationship (QSTR) models were derived for estimating the acute oral toxicity of organophosphate insecticides to male rats. The 20 chemicals of the training set and the seven compounds of the external testing set were described by means of using descriptors. Descriptors for lipophilicity, polarity and molecular geometry, as well as quantum chemical descriptors for energy were calculated. Model development to predict toxicity of organophosphate insecticides in different matrices was carried out using multiple linear regression. The model was validated internally and externally. In the present study, QSTR model was used for the first time to understand the inherent relationships between the organophosphate insecticide molecules and their toxicity behavior. Such studies provide mechanistic insight about structure-toxicity relationship and help in the design of less toxic insecticides.

  9. Exponential mapping of quantitative trait loci governing allometric relationships in organisms.

    PubMed

    Ma, Chang-Xing; Casella, George; Littell, Ramon C; Khuri, André I; Wu, Rongling

    2003-10-01

    Allometric scaling relationships or quarter-power rules, as a universal biological law, can be viewed as having some genetic component, and the particular genes (or quantitative trait loci, QTL) underlying these allometric relationships can be mapped using molecular markers. We develop a mathematical and statistical model for mapping allometric QTL on the basis of nonlinear power functions using Taylor's approximation theory. Simulation studies indicate that the QTL position and effect can be estimated using our model, but the estimation precision can be improved from the higher- over lower-order approximation when the sample size used and gene effects are small. The application of our approach in a real example from forest trees leads to successful detection of a QTL governing the allometric relationship between 3rd-year stem height and 3rd-year stem biomass. It is expected that our model will have broad implications for genetic, evolutionary, biomedical and breeding research.

  10. Trophic relationships in an estuarine environment: A quantitative fatty acid analysis signature approach

    NASA Astrophysics Data System (ADS)

    Magnone, Larisa; Bessonart, Martin; Gadea, Juan; Salhi, María

    2015-12-01

    In order to better understand the functioning of aquatic environments, it is necessary to obtain accurate diet estimations in food webs. Their description should incorporate information about energy flow and the relative importance of trophic pathways. Fatty acids have been extensively used in qualitative studies on trophic relationships in food webs. Recently a new method to estimate quantitatively single predator diet has been developed. In this study, a model of aquatic food web through quantitative fatty acid signature analysis was generated to identify the trophic interactions among the species in the Rocha Lagoon. The biological sampling over two consecutive annual periods was comprehensive enough to identify all functional groups in the aquatic food web (except birds and mammals). Heleobia australis seemed to play a central role in this estuarine ecosystem. As both, a grazer and a prey to several other species, probably H. australis is transferring a great amount of energy to upper trophic levels. Most of the species at Rocha Lagoon have a wide range of prey items in their diet reflecting a complex food web, which is characteristic of extremely dynamic environment as estuarine ecosystems. QFASA is a model in tracing and quantitative estimate trophic pathways among species in an estuarine food web. The results obtained in the present work are a valuable contribution in the understanding of trophic relationships in Rocha Lagoon.

  11. Quantitative genetic models for describing simultaneous and recursive relationships between phenotypes.

    PubMed Central

    Gianola, Daniel; Sorensen, Daniel

    2004-01-01

    Multivariate models are of great importance in theoretical and applied quantitative genetics. We extend quantitative genetic theory to accommodate situations in which there is linear feedback or recursiveness between the phenotypes involved in a multivariate system, assuming an infinitesimal, additive, model of inheritance. It is shown that structural parameters defining a simultaneous or recursive system have a bearing on the interpretation of quantitative genetic parameter estimates (e.g., heritability, offspring-parent regression, genetic correlation) when such features are ignored. Matrix representations are given for treating a plethora of feedback-recursive situations. The likelihood function is derived, assuming multivariate normality, and results from econometric theory for parameter identification are adapted to a quantitative genetic setting. A Bayesian treatment with a Markov chain Monte Carlo implementation is suggested for inference and developed. When the system is fully recursive, all conditional posterior distributions are in closed form, so Gibbs sampling is straightforward. If there is feedback, a Metropolis step may be embedded for sampling the structural parameters, since their conditional distributions are unknown. Extensions of the model to discrete random variables and to nonlinear relationships between phenotypes are discussed. PMID:15280252

  12. Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells.

    PubMed

    Kar, Supratik; Gajewicz, Agnieszka; Puzyn, Tomasz; Roy, Kunal

    2014-06-01

    As experimental evaluation of the safety of nanoparticles (NPs) is expensive and time-consuming, computational approaches have been found to be an efficient alternative for predicting the potential toxicity of new NPs before mass production. In this background, we have developed here a regression-based nano quantitative structure-activity relationship (nano-QSAR) model to establish statistically significant relationships between the measured cellular uptakes of 109 magnetofluorescent NPs in pancreatic cancer cells with their physical, chemical, and structural properties encoded within easily computable, interpretable and reproducible descriptors. The developed model was rigorously validated internally as well as externally with the application of the principles of Organization for Economic Cooperation and Development (OECD). The test for domain of applicability was also carried out for checking reliability of the predictions. Important fragments contributing to higher/lower cellular uptake of NPs were identified through critical analysis and interpretation of the developed model. Considering all these identified structural attributes, one can choose or design safe, economical and suitable surface modifiers for NPs. The presented approach provides rich information in the context of virtual screening of relevant NP libraries.

  13. Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells.

    PubMed

    Kar, Supratik; Gajewicz, Agnieszka; Puzyn, Tomasz; Roy, Kunal

    2014-06-01

    As experimental evaluation of the safety of nanoparticles (NPs) is expensive and time-consuming, computational approaches have been found to be an efficient alternative for predicting the potential toxicity of new NPs before mass production. In this background, we have developed here a regression-based nano quantitative structure-activity relationship (nano-QSAR) model to establish statistically significant relationships between the measured cellular uptakes of 109 magnetofluorescent NPs in pancreatic cancer cells with their physical, chemical, and structural properties encoded within easily computable, interpretable and reproducible descriptors. The developed model was rigorously validated internally as well as externally with the application of the principles of Organization for Economic Cooperation and Development (OECD). The test for domain of applicability was also carried out for checking reliability of the predictions. Important fragments contributing to higher/lower cellular uptake of NPs were identified through critical analysis and interpretation of the developed model. Considering all these identified structural attributes, one can choose or design safe, economical and suitable surface modifiers for NPs. The presented approach provides rich information in the context of virtual screening of relevant NP libraries. PMID:24412539

  14. Quantitative analysis of saltwater-freshwater relationships in groundwater systems-A historical perspective

    USGS Publications Warehouse

    Reilly, T.E.; Goodman, A.S.

    1985-01-01

    Although much progress has been made toward the mathematical description of saltwater-freshwater relationships in groundwater systems since the late 19th century, the advective and dispersive mechanisms involved are still incompletely understood. This article documents the major historical advances in this subject and summarizes the major direction of current studies. From the time of Badon Ghyben and Herzberg, it has been recognized that density is important in mathematically describing saltwater-freshwater systems. Other mechanisms, such as hydrodynamic dispersion, were identified later and are still not fully understood. Quantitative analysis of a saltwater-freshwater system attempts to mathematically describe the physical system and the important mechanisms using reasonable simplifications and assumptions. This paper, in developing the history of quantitative analysis discusses many of these simplifications and assumptions and their effect on describing and understanding the phenomenon. ?? 1985.

  15. A computational quantitative structure-activity relationship study of carbamate anticonvulsants using quantum pharmacological methods.

    PubMed

    Knight, J L; Weaver, D F

    1998-10-01

    A pattern recognition quantitative structure-activity relationship (QSAR) study has been performed to determine the molecular features of carbamate anticonvulsants which influence biological activity. Although carbamates, such as felbamate, have been used to treat epilepsy, their mechanisms of efficacy and toxicity are not completely understood. Quantum and classical mechanics calculations have been exploited to describe 46 carbamate drugs. Employing a principal component analysis and multiple linear regression calculations, five crucial structural descriptors were identified which directly relate to the bioactivity of the carbamate family. With the resulting mathematical model, the biological activity of carbamate analogues can be predicted with 85-90% accuracy.

  16. Curating and Preparing High-Throughput Screening Data for Quantitative Structure-Activity Relationship Modeling.

    PubMed

    Kim, Marlene T; Wang, Wenyi; Sedykh, Alexander; Zhu, Hao

    2016-01-01

    Publicly available bioassay data often contains errors. Curating massive bioassay data, especially high-throughput screening (HTS) data, for Quantitative Structure-Activity Relationship (QSAR) modeling requires the assistance of automated data curation tools. Using automated data curation tools are beneficial to users, especially ones without prior computer skills, because many platforms have been developed and optimized based on standardized requirements. As a result, the users do not need to extensively configure the curation tool prior to the application procedure. In this chapter, a freely available automatic tool to curate and prepare HTS data for QSAR modeling purposes will be described.

  17. The current status and future applicability of quantitative structure-activity relationships (QSARs) in predicting toxicity.

    PubMed

    Cronin, Mark T D

    2002-12-01

    The current status of quantitative structure-activity relationships (QSARs) in predicting toxicity is assessed. Widespread use of these methods to predict toxicity from chemical structure is possible, both by industry to develop new compounds, and also by regulatory agencies. The current use of QSARs is restricted by the lack of suitable toxicity data available for modelling, the suitability of simplistic modelling approaches for the prediction of certain endpoints, and the poor definition and utilisation of the applicability domain of models. Suggestions to resolve these issues are made.

  18. Curating and Preparing High-Throughput Screening Data for Quantitative Structure-Activity Relationship Modeling.

    PubMed

    Kim, Marlene T; Wang, Wenyi; Sedykh, Alexander; Zhu, Hao

    2016-01-01

    Publicly available bioassay data often contains errors. Curating massive bioassay data, especially high-throughput screening (HTS) data, for Quantitative Structure-Activity Relationship (QSAR) modeling requires the assistance of automated data curation tools. Using automated data curation tools are beneficial to users, especially ones without prior computer skills, because many platforms have been developed and optimized based on standardized requirements. As a result, the users do not need to extensively configure the curation tool prior to the application procedure. In this chapter, a freely available automatic tool to curate and prepare HTS data for QSAR modeling purposes will be described. PMID:27518634

  19. Structure-activity relationships: quantitative techniques for predicting the behavior of chemicals in the ecosystem

    SciTech Connect

    Nirmalakhandan, N.; Speece, R.E.

    1988-06-01

    Quantitative Structure-Activity Relationships (QSARs) are used increasingly to screen and predict the toxicity and the fate of chemicals released into the environment. The impetus to use QSAR methods in this area has been the large number of synthetic chemicals introduced into the ecosystem via intensive agriculture and industrialization. Because of the costly and time-consuming nature of environmental fate testing, QSARs have been effectively used to screen large classes of chemical compounds and flag those that appear to warrant more thorough testing.

  20. Structural properties of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Méndez-Alcaraz, J. M.; Chávez-Páez, M.; D'Aguanno, B.; Klein, R.

    1995-02-01

    Structural properties of three- and two-dimensional colloids composed by hard spheres and/or by Yukawa particles, which can have different diameters and charges, are studied by solving the Ornstein-Zernike equation, together with Percus-Yevick, hypernetted chain and Rogers-Young approximations. From the partial radial distribution functions gij( r) the partial structure factors Sij( k) are determined, and with them the compressibility structure factor Sx( k), the measured structure factor SM( k) and the Bhatia-Thornton structure factors SNN( k), SNQ( k) and SQQ( k). As an effect of diameter and/or charge polydispersity on the structure of binary mixtures, the position and height of the main peak of SM( k), and its value at k = 0, change non-monotonously with the composition. In the case of binary mixtures of hard and Yukawa spheres the structure is given by two different scales. A liquid-solid phase transition induced by a change in the dimensionality was found for monodisperse systems.

  1. Toxicity challenges in environmental chemicals: Prediction of human plasma protein binding through quantitative structure-activity relationship (QSAR) models

    EPA Science Inventory

    The present study explores the merit of utilizing available pharmaceutical data to construct a quantitative structure-activity relationship (QSAR) for prediction of the fraction of a chemical unbound to plasma protein (Fub) in environmentally relevant compounds. Independent model...

  2. ESTIMATION OF MICROBIAL REDUCTIVE TRANSFORMATION RATES FOR CHLORINATED BENZENES AND PHENOLS USING A QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP APPROACH

    EPA Science Inventory

    A set of literature data was used to derive several quantitative structure-activity relationships (QSARs) to predict the rate constants for the microbial reductive dehalogenation of chlorinated aromatics. Dechlorination rate constants for 25 chloroaromatics were corrected for th...

  3. Structure-Property Relations in Nonferrous Metals

    NASA Astrophysics Data System (ADS)

    Russell, Alan; Loong Lee, Kok

    2005-05-01

    A long-awaited text that fills the void in non-ferrous metallurgy literature While most undergraduate metallurgy textbooks focus on iron, the most commercially important metallic element, Structure-Property Relations in Nonferrous Metals is a comprehensive textbook covering the remaining eighty-two nonferrous metals. Designed to be readily accessible to materials engineering students at all academic levels, the text describes the relationships between the atomic-, crystal-, and micro-structures of nonferrous metals, and such physical behaviors as strength, ductility, electrical conductivity, and corrosion. In order to capture and retain students' interest, the authors maintain a strong focus on practical application. Each chapter supplements fundamental concepts with engaging examples from actual engineering case studies and industrial projects, directly relating content to real-world application. Part One describes the general concepts of crystal- and micro-structures and the implications of these structures for the mechanical, thermal, and electronic properties of nonferrous metals, intermetallic compounds, and metal matrix composites. Chapters focus on such relevant topics as: Point, line, and planar defects and their effects on a material's properties

  4. Dislocations and strengthening mechanisms Fracture and fatigue Strain rate effects and creep Deviations from classic crystallinity Processing methods Composites and intermetallic compounds Part Two builds on Part One by exploring how the concepts presented define the properties of a particular metallic element and its alloys, and how these properties contribute to the engineering uses of each nonferrous metal. An accompanying ftp site contains homework problems, appendices, bibliographies, and tables of data indicating the nations producing metallic elements and the quantities produced. Structure-Property Relations in Nonferrous Metals is a valuable reference for both students in

  5. Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus *

    PubMed Central

    Zhang, Hui; Zhang, Lu; Peng, Li-juan; Dong, Xiao-wu; Wu, Di; Wu, Vivian Chi-Hua; Feng, Feng-qin

    2012-01-01

    Fatty acids and derivatives (FADs) are resources for natural antimicrobials. In order to screen for additional potent antimicrobial agents, the antimicrobial activities of FADs against Staphylococcus aureus were examined using a microplate assay. Monoglycerides of fatty acids were the most potent class of fatty acids, among which monotridecanoin possessed the most potent antimicrobial activity. The conventional quantitative structure-activity relationship (QSAR) and comparative molecular field analysis (CoMFA) were performed to establish two statistically reliable models (conventional QSAR: R 2=0.942, Q 2 LOO=0.910; CoMFA: R 2=0.979, Q 2=0.588, respectively). Improved forecasting can be achieved by the combination of these two models that provide a good insight into the structure-activity relationships of the FADs and that may be useful to design new FADs as antimicrobial agents. PMID:22302421

  6. Prediction of activated carbon adsorption capacities for organic vapors using quantitative structure-activity relationship methods

    SciTech Connect

    Nirmalakhandan, N.N. ); Speece, R.E. )

    1993-08-01

    Quantitative structure-activity relationship (QSAR) methods were used to develop models to estimate and predict activated carbon adsorption capacities for organic vapors. Literature isothermal data from two sources for 22 organic contaminants on six different carbons were merged to form a training set of 75 data points. Two different QSAR approaches were evaluated: the molecular connectivity approach and the linear solvation energy relationship approach. The QSAR model developed in this study using the molecular connectivity approach was able to fit the experimental data with r = 0.96 and standard error of 0.09. The utility of the model was demonstrated by using predicted k values to calculate adsorption capacities of 12 chemicals on two different carbons and comparing them with experimentally determined values. 9 refs., 1 fig., 3 tabs.

  7. Quantitative characterization of processing-microstructure-properties relationships in pressure die-cast magnesium alloys

    NASA Astrophysics Data System (ADS)

    Lee, Soon Gi

    The central goal of this research is to quantitatively characterize the relationships between processing, microstructure, and mechanical properties of important high-pressure die-cast (HPDC) Mg-alloys. For this purpose, a new digital image processing technique for automatic detection and segmentation of gas and shrinkage pores in the cast microstructure is developed and it is applied to quantitatively characterize the effects of HPDC process parameters on the size distribution and spatial arrangement of porosity. To get better insights into detailed geometry and distribution of porosity and other microstructural features, an efficient and unbiased montage based serial sectioning technique is applied for reconstruction of three-dimensional microstructures. The quantitative microstructural data have been correlated to the HPDC process parameters and the mechanical properties. The analysis has led to hypothesis of formation of new type of shrinkage porosity called, "gas induced shrinkage porosity" that has been substantiated via simple heat transfer simulations. The presence of inverse surface macrosegregation has been also shown for the first time in the HPDC Mg-alloys. An image analysis based technique has been proposed for simulations of realistic virtual microstructures that have realistic complex pore morphologies. These virtual microstructures can be implemented in the object oriented finite elements framework to model the variability in the fracture sensitive mechanical properties of the HPDC alloys.

  8. Studying the relationship between redox and cell growth using quantitative phase imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sridharan, Shamira; Leslie, Matthew T.; Bapst, Natalya; Smith, John; Gaskins, H. Rex; Popescu, Gabriel

    2016-03-01

    Quantitative phase imaging has been used in the past to study the dry mass of cells and study cell growth under various treatment conditions. However, the relationship between cellular redox and growth rates has not yet been studied in this context. This study employed the recombinant Glrx-roGFP2 redox biosensor targeted to the mitochondrial matrix or cytosolic compartments of A549 lung epithelial carcinoma cells. The Glrx-roGFP2s biosensor consists of a modified GFP protein containing internal cysteine residues sensitive to the local redox environment. The formation/dissolution of sulfide bridges contorts the internal chromophore, dictating corresponding changes in florescence emission that provide direct measures of the local redox potential. Combining 2-channel florescent imaging of the redox sensor with quantitative phase imaging allowed observation of redox homeostasis alongside measurements of cellular mass during full cycles of cellular division. The results indicate that mitochondrial redox showed a stronger inverse correlation with cell growth than cytoplasmic redox states; although redox changes are restricted to a 5% range. We are now studying the relationship between mitochondrial redox and cell growth in an isogenic series of breast cell lines built upon the MCF-10A genetic background that vary both in malignancy and metastatic potential.

  9. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential.

    PubMed

    Winkler, David A; Mombelli, Enrico; Pietroiusti, Antonio; Tran, Lang; Worth, Andrew; Fadeel, Bengt; McCall, Maxine J

    2013-11-01

    The potential (eco)toxicological hazard posed by engineered nanoparticles is a major scientific and societal concern since several industrial sectors (e.g. electronics, biomedicine, and cosmetics) are exploiting the innovative properties of nanostructures resulting in their large-scale production. Many consumer products contain nanomaterials and, given their complex life-cycle, it is essential to anticipate their (eco)toxicological properties in a fast and inexpensive way in order to mitigate adverse effects on human health and the environment. In this context, the application of the structure-toxicity paradigm to nanomaterials represents a promising approach. Indeed, according to this paradigm, it is possible to predict toxicological effects induced by chemicals on the basis of their structural similarity with chemicals for which toxicological endpoints have been previously measured. These structure-toxicity relationships can be quantitative or qualitative in nature and they can predict toxicological effects directly from the physicochemical properties of the entities (e.g. nanoparticles) of interest. Therefore, this approach can aid in prioritizing resources in toxicological investigations while reducing the ethical and monetary costs that are related to animal testing. The purpose of this review is to provide a summary of recent key advances in the field of QSAR modelling of nanomaterial toxicity, to identify the major gaps in research required to accelerate the use of quantitative structure-activity relationship (QSAR) methods, and to provide a roadmap for future research needed to achieve QSAR models useful for regulatory purposes. PMID:23165187

  10. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential.

    PubMed

    Winkler, David A; Mombelli, Enrico; Pietroiusti, Antonio; Tran, Lang; Worth, Andrew; Fadeel, Bengt; McCall, Maxine J

    2013-11-01

    The potential (eco)toxicological hazard posed by engineered nanoparticles is a major scientific and societal concern since several industrial sectors (e.g. electronics, biomedicine, and cosmetics) are exploiting the innovative properties of nanostructures resulting in their large-scale production. Many consumer products contain nanomaterials and, given their complex life-cycle, it is essential to anticipate their (eco)toxicological properties in a fast and inexpensive way in order to mitigate adverse effects on human health and the environment. In this context, the application of the structure-toxicity paradigm to nanomaterials represents a promising approach. Indeed, according to this paradigm, it is possible to predict toxicological effects induced by chemicals on the basis of their structural similarity with chemicals for which toxicological endpoints have been previously measured. These structure-toxicity relationships can be quantitative or qualitative in nature and they can predict toxicological effects directly from the physicochemical properties of the entities (e.g. nanoparticles) of interest. Therefore, this approach can aid in prioritizing resources in toxicological investigations while reducing the ethical and monetary costs that are related to animal testing. The purpose of this review is to provide a summary of recent key advances in the field of QSAR modelling of nanomaterial toxicity, to identify the major gaps in research required to accelerate the use of quantitative structure-activity relationship (QSAR) methods, and to provide a roadmap for future research needed to achieve QSAR models useful for regulatory purposes.

  11. Parametric modeling for quantitative analysis of pulmonary structure to function relationships

    NASA Astrophysics Data System (ADS)

    Haider, Clifton R.; Bartholmai, Brian J.; Holmes, David R., III; Camp, Jon J.; Robb, Richard A.

    2005-04-01

    While lung anatomy is well understood, pulmonary structure-to-function relationships such as the complex elastic deformation of the lung during respiration are less well documented. Current methods for studying lung anatomy include conventional chest radiography, high-resolution computed tomography (CT scan) and magnetic resonance imaging with polarized gases (MRI scan). Pulmonary physiology can be studied using spirometry or V/Q nuclear medicine tests (V/Q scan). V/Q scanning and MRI scans may demonstrate global and regional function. However, each of these individual imaging methods lacks the ability to provide high-resolution anatomic detail, associated pulmonary mechanics and functional variability of the entire respiratory cycle. Specifically, spirometry provides only a one-dimensional gross estimate of pulmonary function, and V/Q scans have poor spatial resolution, reducing its potential for regional assessment of structure-to-function relationships. We have developed a method which utilizes standard clinical CT scanning to provide data for computation of dynamic anatomic parametric models of the lung during respiration which correlates high-resolution anatomy to underlying physiology. The lungs are segmented from both inspiration and expiration three-dimensional (3D) data sets and transformed into a geometric description of the surface of the lung. Parametric mapping of lung surface deformation then provides a visual and quantitative description of the mechanical properties of the lung. Any alteration in lung mechanics is manifest by alterations in normal deformation of the lung wall. The method produces a high-resolution anatomic and functional composite picture from sparse temporal-spatial methods which quantitatively illustrates detailed anatomic structure to pulmonary function relationships impossible for translational methods to provide.

  12. A quantitative assessment of the relationship between precipitation deficits and air temperature variations

    NASA Astrophysics Data System (ADS)

    He, B.; Wang, H. L.; Wang, Q. F.; Di, Z. H.

    2015-06-01

    Previous studies have reported precipitation deficits related to temperature extremes. However, how and to what extent precipitation deficits affect surface air temperatures is still poorly understood. In this study, the relationship between precipitation deficits and surface temperatures was examined in China from 1960 to 2012 based on monthly temperature and precipitation records from 565 stations. Significant negative correlations were identified in each season, with the strongest relationships in the summer, indicating that higher temperatures usually accompanied water-deficient conditions and lower temperatures usually accompanied wet conditions. The examination of the correlations based on 30 year moving windows suggested that the interaction between the two variables has declined over the past three decades. Further investigation indicated a higher impact of extreme dry conditions on temperature than that of extreme wet conditions. In addition, a new simple index (Dry Temperature Index, DTI) was developed and used to quantitatively describe the relationship between water deficits and air temperature variations. We tested and compared the DTI in the coldest month (January) and the hottest month (July) of the year, station by station. In both months, the number of stations with a DThighI ≥ 50% was greater than those with a DThighI < 50%, indicating that a greater proportion of higher temperatures occurred during dry conditions. Based on the results, we conclude that water deficits in China are usually correlated to high temperatures but not to low temperatures.

  13. Quantitative structure-activity relationship correlation between molecular structure and the Rayleigh enantiomeric enrichment factor.

    PubMed

    Jammer, S; Rizkov, D; Gelman, F; Lev, O

    2015-08-01

    It was recently demonstrated that under environmentally relevant conditions the Rayleigh equation is valid to describe the enantiomeric enrichment - conversion relationship, yielding a proportional constant called the enantiomeric enrichment factor, εER. In the present study we demonstrate a quantitative structure-activity relationship model (QSAR) that describes well the dependence of εER on molecular structure. The enantiomeric enrichment factor can be predicted by the linear Hansch model, which correlates biological activity with physicochemical properties. Enantioselective hydrolysis of sixteen derivatives of 2-(phenoxy)propionate (PPMs) have been analyzed during enzymatic degradation by lipases from Pseudomonas fluorescens (PFL), Pseudomonas cepacia (PCL), and Candida rugosa (CRL). In all cases the QSAR relationships were significant with R(2) values of 0.90-0.93, and showed high predictive abilities with internal and external validations providing QLOO(2) values of 0.85-0.87 and QExt(2) values of 0.8-0.91. Moreover, it is demonstrated that this model enables differentiation between enzymes with different binding site shapes. The enantioselectivity of PFL and PCL was dictated by electronic properties, whereas the enantioselectivity of CRL was determined by lipophilicity and steric factors. The predictive ability of the QSAR model demonstrated in the present study may serve as a helpful tool in environmental studies, assisting in source tracking of unstudied chiral compounds belonging to a well-studied homologous series.

  14. Quantitative relationships between watershed-scale stressors and estuarine condition for mid-Atlantic region

    SciTech Connect

    Paul, J.F.; Hale, S.S.; Comeleo, R.L.; Copeland, J.; August, P.V.

    1995-12-31

    A pilot project has been conducted that developed quantitative relationships between watershed-scale (landscape) stressors and sediment contamination for sub-estuaries within Chesapeake Bay. The landscape stressors, land use patterns (derived from classified, contemporary satellite imagery) and point source pollution, were spatially analyzed for each individual watershed of 25 sub-estuaries using a geographic information system. Sediment contamination data for the sub-estuaries, available from the Environmental Monitoring and Assessment Program (EMAP), were statistically reduced to one principal component for the metals and organics. Non-parametric statistical techniques were used to develop empirical relationships between sediment contamination and developed land (positive), herbaceous land (negative) and point source loadings (positive). These analyses have been extended to (1) include approximately 80 subestuaries across the mid-Atlantic region for which EMAP data were available, and (2) relate landscape stressors with estuarine condition. The measure of estuarine condition was an index of benthic quality developed by EMAP. The only available land use data set for the entire mid-Atlantic region was from US Geological Survey Land Use Data Analysis database, which is of 1970s vintage. Because of the dramatic differences in spatial area of the sub-estuaries in the mid-Atlantic region, adjustments for differing hydrologic regimes had to be factored into the analysis. Results indicate that it is possible to develop relationships between watershed-scale stressors and estuarine condition across large geographic regions.

  15. Establishing a quantitative functional relationship between capillary pressure, saturation and interfacial area. 1997 annual progress report

    SciTech Connect

    Montemagno, C.D.

    1997-01-01

    'There is a fundamental knowledge gap associated with the in situ remediation of non-aqueous phase pollutants. Currently it is not possible to accurately determine the interfacial surface area of non-aqueous contaminants. As a result it is impossible to (1) accurately establish the health and environmental risk associated with the pollution: (2) precisely quantify and evaluate the potential efficacy of various in situ treatment technologies; and (3) conduct reliable performance assessments of the applied remediation technology during and after the clean-up. The global goal of this investigation is to try to remedy these shortcomings through the development of a formalized functional relationship between interfacial area (a), phase saturation (S) and capillary pressure (P). The development of this relationship will allow the direct determination of the fluid-fluid interfacial area from field measurements. Quantitative knowledge of the surface area of the non-aqueous phase pollutant facilitates accurate predictions of both the rate of dissolution and the contact area available for treatment. In addition. if saturation and capillary pressure measurements are made during the remediation process. both the spatial and temporal effectiveness of the remediation technology can be quantified. This information can then be used to optimize the restoration program. The project objective will be achieved through an integrated and focused research program that is comprised of theoretical computational and experimental efforts. These efforts are organized into a framework of four tasks: (1) improve on newly developed laboratory techniques to quantify and directly measure the functional relationship between phase interfacial area (a), saturation (S) and capillary pressure (P). (2) Develop new computational algorithms in conjunction with laboratory measurements to predict P, S and a. (3) Test existing theory and develop new theory to describe the relationship between P, S and a at

  16. New Quantitative Structure-Activity Relationship Models Improve Predictability of Ames Mutagenicity for Aromatic Azo Compounds.

    PubMed

    Manganelli, Serena; Benfenati, Emilio; Manganaro, Alberto; Kulkarni, Sunil; Barton-Maclaren, Tara S; Honma, Masamitsu

    2016-10-01

    Existing Quantitative Structure-Activity Relationship (QSAR) models have limited predictive capabilities for aromatic azo compounds. In this study, 2 new models were built to predict Ames mutagenicity of this class of compounds. The first one made use of descriptors based on simplified molecular input-line entry system (SMILES), calculated with the CORAL software. The second model was based on the k-nearest neighbors algorithm. The statistical quality of the predictions from single models was satisfactory. The performance further improved when the predictions from these models were combined. The prediction results from other QSAR models for mutagenicity were also evaluated. Most of the existing models were found to be good at finding toxic compounds but resulted in many false positive predictions. The 2 new models specific for this class of compounds avoid this problem thanks to a larger set of related compounds as training set and improved algorithms.

  17. Quantitative structure-activity relationship of antifungal activity of rosin derivatives.

    PubMed

    Wang, Hui; Nguyen, Thi Thanh Hien; Li, Shujun; Liang, Tao; Zhang, Yuanyuan; Li, Jian

    2015-01-15

    To develop new rosin-based wood preservatives with good antifungal activity, 24 rosin derivatives were synthesized, bioassay tested with Trametes versicolor and Gloeophyllum trabeum, and subjected to analysis of their quantitative structure-activity relationships (QSAR). A QSAR analysis using Ampac 9.2.1 and Codessa 2.7.16 software built two QSAR models of antifungal ratio for T. versicolor and G. trabeum with values of R(2)=0.9740 and 0.9692, respectively. Based on the models, tri-N-(3-hydroabietoxy-2-hydroxy) propyl-triethyl ammonium chloride was designed and the bioassay test result proved its better inhibitory effect against the two selected fungi as expected.

  18. Design, synthesis and exploring the quantitative structure-activity relationship of some antioxidant flavonoid analogues.

    PubMed

    Das, Sreeparna; Mitra, Indrani; Batuta, Shaikh; Niharul Alam, Md; Roy, Kunal; Begum, Naznin Ara

    2014-11-01

    A series of flavonoid analogues were synthesized and screened for the in vitro antioxidant activity through their ability to quench 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical. The activity of these compounds, measured in comparison to the well-known standard antioxidants (29-32), their precursors (38-42) and other bioactive moieties (38-42) resembling partially the flavone skeleton was analyzed further to develop Quantitative Structure-Activity Relationship (QSAR) models using the Genetic Function Approximation (GFA) technique. Based on the essential structural requirements predicted by the QSAR models, some analogues were designed, synthesized and tested for activity. The predicted and experimental activities of these compounds were well correlated. Flavone analogue 20 was found to be the most potent antioxidant.

  19. Quantitative structure-activity relationships of imidazolium oximes as nerve agent antidotes

    SciTech Connect

    Musallam, H.A.; Foye, W.O.; Hansch, C.; Harris, R.N.; Engle, R.R.

    1993-05-13

    Organophosphorus-containing pesticides and chemical warfare agents are potent inhibitors of synaptic acetylcholinesterase, a key regulator of cholinergic neurotransmission. These nerve agents have for many years constituted a serious threat to military personnel. These threats stimulated considerable efforts to develop effective medical countermeasures. Several potential drugs have been found recently which are capable of protecting animals from lethal levels of nerve agents. A recent U. S. Army Medical Research and Development Command drug development project synthesized a large number of imidazolium oximes. These compounds were found to possess strong antidotal activity against one of the most lethal nerve agents, soman. The Army's approach, like most conventional drug discovery approaches, depended primarily on the trial and error method. This research was carried out to determine if these potential nerve agent antidotes could have been discovered through the use of Quantitative Structure Activity-Relationships (QSAR) technique.

  20. Simplifying complex QSAR's (quantitative structure-activity relationships) in toxicity studies with multivariate statistics

    SciTech Connect

    Niemi, G.J.; McKim, J.M.

    1988-07-01

    During the past several decades many quantitative structure-activity relationships (QSAR's) have been derived from relatively small data sets of chemicals in a homologous series and selected empirical observations. An alternative approach is to analyze large data sets consisting of heterogeneous groups of chemicals and to explore QSAR's among these chemicals for generalized patterns of chemical behavior. The use of exploratory multivariate statistical techniques for simplifying complex QSAR problems is demonstrated through the use of research data on biodegradation and mode of toxic action. In these examples, a large number of explanatory variables were examined to explore which variables might best explain whether a chemical biodegrades or whether a toxic response by an organism can be used to identify a mode of toxic action. In both cases, the procedures reduced the number of potential explanatory variables and generated hypotheses about biodegradation and mode of toxic action for future research without explicitly testing an existing hypothesis.

  21. A quantitative structure-activity relationship approach for assessing toxicity of mixture of organic compounds.

    PubMed

    Chang, C M; Ou, Y H; Liu, T-C; Lu, S-Y; Wang, M-K

    2016-06-01

    Four types of reactivity indices were employed to construct quantitative structure-activity relationships for the assessment of toxicity of organic chemical mixtures. Results of analysis indicated that the maximum positive charge of the hydrogen atom and the inverse of the apolar surface area are the most important descriptors for the toxicity of mixture of benzene and its derivatives to Vibrio fischeri. The toxicity of mixture of aromatic compounds to green alga Scenedesmus obliquus is mainly affected by the electron flow and electrostatic interactions. The electron-acceptance chemical potential and the maximum positive charge of the hydrogen atom are found to be the most important descriptors for the joint toxicity of aromatic compounds.

  1. Quantitative structure-activity relationships of selective antagonists of glucagon receptor using QuaSAR descriptors.

    PubMed

    Manoj Kumar, Palanivelu; Karthikeyan, Chandrabose; Hari Narayana Moorthy, Narayana Subbiah; Trivedi, Piyush

    2006-11-01

    In the present paper, quantitative structure activity relationship (QSAR) approach was applied to understand the affinity and selectivity of a novel series of triaryl imidazole derivatives towards glucagon receptor. Statistically significant and highly predictive QSARs were derived for glucagon receptor inhibition by triaryl imidazoles using QuaSAR descriptors of molecular operating environment (MOE) employing computer-assisted multiple regression procedure. The generated QSAR models revealed that factors related to hydrophobicity, molecular shape and geometry predominantly influences glucagon receptor binding affinity of the triaryl imidazoles indicating the relevance of shape specific steric interactions between the molecule and the receptor. Further, QSAR models formulated for selective inhibition of glucagon receptor over p38 mitogen activated protein (MAP) kinase of the compounds in the series highlights that the same structural features, which influence the glucagon receptor affinity, also contribute to their selective inhibition.

  2. Quantitative structure-retention relationship study of tetrazolium salts on alumina support.

    PubMed

    Cserháti, T; Kosa, A; Balogh, S

    1998-01-01

    The retention of 7 monotetrazolium and 9 ditetrazolium salts was determined on alumina and reversed-phase (RP) alumina layers using n-hexane-2-propanol and water-2-propanol mixtures as eluents. The retention capacity and the specific surface area of solutes in contact with the stationary phases were calculated. Quantitative structure-retention relationship calculations indicated that the retention capacity of solutes on RP alumina layers depended not only on the molecular hydrophobicity but also on the hydrogen-donor and acceptor properties. Specific surface areas were related to the electronic and steric parameters of the solutes. Calculations suggested that the retention on both alumina and RP alumina layers is of mixed character, hydrophobic, electronic and steric parameters are equally involved in the retention.

  3. Quantitative structure-activity relationship of antifungal activity of rosin derivatives.

    PubMed

    Wang, Hui; Nguyen, Thi Thanh Hien; Li, Shujun; Liang, Tao; Zhang, Yuanyuan; Li, Jian

    2015-01-15

    To develop new rosin-based wood preservatives with good antifungal activity, 24 rosin derivatives were synthesized, bioassay tested with Trametes versicolor and Gloeophyllum trabeum, and subjected to analysis of their quantitative structure-activity relationships (QSAR). A QSAR analysis using Ampac 9.2.1 and Codessa 2.7.16 software built two QSAR models of antifungal ratio for T. versicolor and G. trabeum with values of R(2)=0.9740 and 0.9692, respectively. Based on the models, tri-N-(3-hydroabietoxy-2-hydroxy) propyl-triethyl ammonium chloride was designed and the bioassay test result proved its better inhibitory effect against the two selected fungi as expected. PMID:25466709

  4. New Quantitative Structure-Activity Relationship Models Improve Predictability of Ames Mutagenicity for Aromatic Azo Compounds.

    PubMed

    Manganelli, Serena; Benfenati, Emilio; Manganaro, Alberto; Kulkarni, Sunil; Barton-Maclaren, Tara S; Honma, Masamitsu

    2016-10-01

    Existing Quantitative Structure-Activity Relationship (QSAR) models have limited predictive capabilities for aromatic azo compounds. In this study, 2 new models were built to predict Ames mutagenicity of this class of compounds. The first one made use of descriptors based on simplified molecular input-line entry system (SMILES), calculated with the CORAL software. The second model was based on the k-nearest neighbors algorithm. The statistical quality of the predictions from single models was satisfactory. The performance further improved when the predictions from these models were combined. The prediction results from other QSAR models for mutagenicity were also evaluated. Most of the existing models were found to be good at finding toxic compounds but resulted in many false positive predictions. The 2 new models specific for this class of compounds avoid this problem thanks to a larger set of related compounds as training set and improved algorithms. PMID:27413112

  5. The 18th European symposium on quantitative structure-activity relationships.

    PubMed

    Tsantili-Kakoulidou, Anna; Agrafiotis, Dimitris K

    2011-04-01

    The 18th European Symposium on Quantitative Structure-Activity Relationships (QSAR) took place in Rhodes, Greece, on 19 - 24 September 2010. It was organized by the Hellenic Society of Medicinal Chemistry and the Cheminformatics and QSAR Society, and co-sponsored by the European Federation of Medicinal Chemistry. The conference was thematically dedicated to discovery informatics and drug design and addressed the impact of informatics in all its variants (chemoinformatics, bioinformatics, pharmacoinformatics) on drug discovery in the broader context of biological complexity. The latest scientific and technological advances in QSAR as tools for the discovery of new, safer and more efficacious drugs were discussed during the meeting. This paper highlights the most important outcomes of the symposium, commenting briefly on some of the key presentations.

  6. Quantitative relationships between the parameters of thermal degradation of polyvinyl chloride and the loss of properties

    NASA Astrophysics Data System (ADS)

    Deshmukh, Susheel Ramesh

    Thermal degradation of polyvinyl chloride (PVC) has been extensively studied by a host of eminent researchers, both in terms of its mechanism, and effects. Arrhenius-type relationships have been proposed to correlate the loss of hydrogen chloride (HCl) with temperature and duration of thermal degradation. However, the rate of dehydrochlorination, does not always correlate with the loss of polymer properties. The purpose of this research was to obtain quantitative relationships between the parameters of thermal degradation of PVC, and the loss of mechanical, thermal, and optical properties of the polymer. The parameters of thermal degradation considered in this study were temperature, and heating time. The affected properties considered in this study were color, tensile strength, Izod impact strength, flexural modulus, and heat deflection temperature at 264 psi. Test specimens of PVC containing 1, 3, and 5 phr of dibutyltin bis (isooctyl thioglycolate) and barium-cadmium stearate were prepared. The rigid specimens for mechanical, and thermal testing were prepared by dry blending, extrusion and injection molding, whereas the specimens for optical testing were formulated as plastisols. These test specimens were subjected to five gradually increasing temperatures; 350, 360, 370, 375, and 380sp°F for five different heating times; 30, 60, 120, 240, and 480 minutes. The selected test properties were determined in appropriate tests before and after degradation. 'Percentage property retention' was defined as the ratio of the value of the test property after a given heating time (post-degradation) to the original value of the test property (pre-degradation). The lowest percentage retention value of the test property acceptable for service purposes was assumed as 66% for mechanical properties. The lowest heat deflection temperature acceptable for service purposes was assumed to be 120sp°F. The highest Gardner color number acceptable for service purposes was assumed to be 12

  7. Quantitative Structure-Cytotoxic Activity Relationship 1-(Benzoyloxy)urea and Its Derivative.

    PubMed

    Hardjono, Suko; Siswodihardjo, Siswandono; Pramono, Purwanto; Darmanto, Win

    2016-01-01

    Drug development is originally carried out on a trial and error basis and it is cost-prohibitive. To minimize the trial and error risks, drug design is needed. One of the compound development processes to get a new drug is by designing a structure modification of the mother compound whose activities are recognized. A substitution of the mother compounds alters the physicochemical properties: lipophilic, electronic and steric properties. In Indonesia, one of medical treatments to cure cancer is through chemotherapy and hydroxyurea. Some derivatives, phenylthiourea, phenylurea, benzoylurea, thiourea and benzoylphenylurea, have been found to be anticancer drug candidates. To predict the activity of the drug compound before it is synthesized, the in-silico test is required. From the test, Rerank Score which is the energy of interaction between the receptor and the ligand molecule is then obtained. Hydroxyurea derivatives were synthesized by modifying Schotten-Baumann's method by the addition of benzoyl group and its homologs resulted in the increase of lipophilic, electronic and steric properties, and cytotoxic activity. Synthesized compounds were 1-(benzoyloxy)urea and its derivatives. Structure characterization was obtained by the spectrum of UV, IR, H NMR, C NMR and Mass Spectrometer. Anticancer activity was carried out using MTT method on HeLa cells. The Quantitative Structure-Cytotoxic Activity Relationships of 1-(benzoyloxy)urea compound and its derivatives was calculated using SPSS. The chemical structure was described, namely: ClogP, π, σ, RS, CMR and Es; while, the cytotoxic activity was indicated by log (1 / IC50). The results show that the best equation of Quantitative Structure-Cytotoxic Activity Relationships (QSAR) of 1- (benzoyloxy)urea compound and its derivatives is Log 1/IC50 = - 0.205 (+ 0.068) σ - 0.051 (+ 0.022) Es - 1.911 (+ 0.020). PMID:27222144

  8. Quantitative Relationships between Photosynthetic, Nitrogen Fixing, and Fermentative H2 Metabolism in a Photosynthetic Microbial Mat

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Albert, Daniel B.; Bebout, Brad M.; Turk, Kendra A.; DesMarais, David J.

    2004-01-01

    The ultimate potential of any microbial ecosystem to contribute chemically to its environment - and therefore, to impact planetary biogeochemistry or to generate recognizable biosignatures - depends not only on the individual metabolic capabilities of constituent organisms, but also on how those capabilities are expressed through interactions with neighboring organisms. This is particularly important for microbial mats, which compress an extremely broad range of metabolic potential into a small and dynamic system. H2 participates in many of these metabolic processes, including the major elemental cycling processes of photosynthesis, nitrogen fixation, sulfate reduction, and fermentation, and may therefore serve as a mediator of microbial interactions within the mat system. Collectively, the requirements of energy, electron transfer, and biomass element stoichiometry suggest quantitative relationships among the major element cycling processes, as regards H2 metabolism We determined experimentally the major contributions to 32 cycling in hypersaline microbial mats from Baja California, Mexico, and compared them to predicted relationships. Fermentation under dark, anoxic conditions is quantitatively the most important mechanism of H2 production, consistent with expectations for non-heterocystous mats such as those under study. Up to 16% of reducing equivalents fixed by photosynthesis during the day may be released by this mechanism. The direct contribution of nitrogen fixation to H2 production is small in comparison, but this process may indirectly stimulate substantial H2 generation, by requiring higher rates of fermentation. Sulfate reduction, aerobic consumption, diffusive and ebulitive loss, and possibly H2-based photoreduction of CO2 serve as the principal H2 sinks. Collectively, these processes interact to create an orders-of-magnitude daily variation in H2 concentrations and fluxes, and thereby in the oxidation-reduction potential that is imposed on microbial

  9. The Relationship between Gray Matter Quantitative MRI and Disability in Secondary Progressive Multiple Sclerosis

    PubMed Central

    Gracien, René-Maxime; Jurcoane, Alina; Wagner, Marlies; Reitz, Sarah C.; Mayer, Christoph; Volz, Steffen; Hof, Stephanie-Michelle; Fleischer, Vinzenz; Droby, Amgad; Steinmetz, Helmuth; Zipp, Frauke; Hattingen, Elke; Deichmann, Ralf; Klein, Johannes C.

    2016-01-01

    Purpose In secondary progressive Multiple Sclerosis (SPMS), global neurodegeneration as a driver of disability gains importance in comparison to focal inflammatory processes. However, clinical MRI does not visualize changes of tissue composition outside MS lesions. This quantitative MRI (qMRI) study investigated cortical and deep gray matter (GM) proton density (PD) values and T1 relaxation times to explore their potential to assess neuronal damage and its relationship to clinical disability in SPMS. Materials and Methods 11 SPMS patients underwent quantitative T1 and PD mapping. Parameter values across the cerebral cortex and deep GM structures were compared with 11 healthy controls, and correlation with disability was investigated for regions exhibiting significant group differences. Results PD was increased in the whole GM, cerebral cortex, thalamus, putamen and pallidum. PD correlated with disability in the whole GM, cerebral cortex, putamen and pallidum. T1 relaxation time was prolonged and correlated with disability in the whole GM and cerebral cortex. Conclusion Our study suggests that the qMRI parameters GM PD (which likely indicates replacement of neural tissue with water) and cortical T1 (which reflects cortical damage including and beyond increased water content) are promising qMRI candidates for the assessment of disease status, and are related to disability in SPMS. PMID:27513853

  10. Quantitative structure-activity relationship for toxicity of ionic liquids to Daphnia magna: aromaticity vs. lipophilicity.

    PubMed

    Roy, Kunal; Das, Rudra Narayan; Popelier, Paul L A

    2014-10-01

    Water solubility of ionic liquids (ILs) allows their dispersion into aquatic systems and raises concerns on their pollutant potential. Again, lipophilicity can contribute to the toxicity of ILs due to increased ability of the compounds to cross lipoidal bio-membranes. In the present work, we have performed statistical model development for toxicity of a set of ionic liquids to Daphnia magna, a widely accepted model organism for toxicity testing, using computed lipophilicity, atom-type fragment, quantum topological molecular similarity (QTMS) and extended topochemical atom (ETA) descriptors. The models have been developed and validated in accordance with the Organization for Economic Co-operation and Development (OECD) guidelines for quantitative structure-activity relationships (QSARs). The best partial least squares (PLS) model outperforms the previously reported multiple linear regression (MLR) model in statistical quality and predictive ability (R(2)=0.955, Q(2)=0.917, Rpred(2)=0.848). In this work, the ETA descriptors show importance of branching and aromaticity while the QTMS descriptor ellipticity efficiently shows which compounds are influential in the data set, with reference to the model. While obvious importance of lipophilicity is evident from the models, the best model clearly shows the importance of aromaticity suggesting that more lipophilic ILs with less toxicity may be designed by avoiding aromaticity, nitrogen atoms and increasing branching in the cationic structure. The developed quantitative models are in consonance with the recent hypothesis of importance of aromaticity for toxicity of ILs.

  11. A quantitative structure-activity relationship model for radical scavenging activity of flavonoids.

    PubMed

    Om, A; Kim, J H

    2008-03-01

    A quantitative structure-activity relationship (QSAR) study has been carried out for a training set of 29 flavonoids to correlate and predict the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity (RSA) values obtained from published data. Genetic algorithm and multiple linear regression were employed to select the descriptors and to generate the best prediction model that relates the structural features to the RSA activities using (1) three-dimensional (3D) Dragon (TALETE srl, Milan, Italy) descriptors and (2) semi-empirical descriptor calculations. The predictivity of the models was estimated by cross-validation with the leave-one-out method. The result showed that a significant improvement of the statistical indices was obtained by deleting outliers. Based on the data for the compounds used in this study, our results suggest a QSAR model of RSA that is based on the following descriptors: 3D-Morse, WHIM, and GETAWAY. Therefore, satisfactory relationships between RSA and the semi-empirical descriptors were found, demonstrating that the energy of the highest occupied molecular orbital, total energy, and energy of heat of formation contributed more significantly than all other descriptors.

  12. Quantitative analysis of anatomical relationship between cavernous segment internal carotid artery and pituitary macroadenoma

    PubMed Central

    Lin, Bon-Jour; Chung, Tzu-Tsao; Lin, Meng-Chi; Lin, Chin; Hueng, Dueng-Yuan; Chen, Yuan-Hao; Hsia, Chung-Ching; Ju, Da-Tong; Ma, Hsin-I; Liu, Ming-Ying; Tang, Chi-Tun

    2016-01-01

    Abstract Cavernous segment internal carotid artery (CSICA) injury during endoscopic transsphenoidal surgery for pituitary tumor is rare but fatal. The aim of this study is to investigate anatomical relationship between pituitary macroadenoma and corresponding CSICA using quantitative means with a sense to improve safety of surgery. In this retrospective study, a total of 98 patients with nonfunctioning pituitary macroadenomas undergoing endoscopic transsphenoidal surgeries were enrolled from 2005 to 2014. Intercarotid distances between bilateral CSICAs were measured in the 4 coronal levels, namely optic strut, convexity of carotid prominence, median sella turcica, and dorsum sellae. Parasellar extension was graded and recorded by Knosp–Steiner classification. Our findings indicated a linear relationship between size of pituitary macroadenoma and intercarotid distance over CSICA. The correlation was absent in pituitary macroadenoma with Knosp–Steiner grade 4 parasellar extension. Bigger pituitary macroadenoma makes more lateral deviation of CSICA. While facing larger tumor, sufficient bony graft is indicated for increasing surgical field, working area and operative safety. PMID:27741111

  13. Quantitative structure-activity relationships for toxicity of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata.

    PubMed

    Hsieh, Shih-Hung; Hsu, Chih-Hsiung; Tsai, Din-Yu; Chen, Chung-Yuan

    2006-11-01

    This study presents data for 27 nonpolar narcotic compounds regarding toxicity to Pseudokirchneriella subcapitata as evaluated using a closed-system algal toxicity test with an exposure time of 48 h. Two test endpoints, dissolved oxygen production and algal growth rate, were used to assess the toxicity of nonpolar narcotic chemicals on algae. Hydrophobicity (1-octanol-water partition coefficient [K(OW)]) provided satisfactory descriptions for the toxicity of nonpolar narcotic compounds, and quantitative structure-activity relationships based on log K(OW) were established. The relative sensitivity of various aquatic organisms to nonpolar chemicals was as follows: P. subcapitata > Vibriofischeri > or = Nitrosomonas sp. > fathead minnow > Daphnia magna > polytox > activated sludge. In addition, linear relationships were found between the toxicity observed in P. subcapitata and other aquatic organisms, except in the case of Nitrosomonas sp. Therefore, for nonpolar toxicants, the closed-system technique applied in the present study can be an ideal surrogate for other tests, such as fathead minnow and D. magna, that are either time-consuming or labor-intensive. However, because the current toxicity database is based primarily on the conventional batch tests, it cannot provide adequate assessment regarding the effects of various organic toxicants. Therefore, more extensive research is needed to revise the database for the toxicity of organic compounds on phytoplankton using the closed-system technique.

  14. Synthesis, biological activities, and quantitative structure-activity relationship (QSAR) study of novel camptothecin analogues.

    PubMed

    Wu, Dan; Zhang, Shao-Yong; Liu, Ying-Qian; Wu, Xiao-Bing; Zhu, Gao-Xiang; Zhang, Yan; Wei, Wei; Liu, Huan-Xiang; Chen, An-Liang

    2015-05-13

    In continuation of our program aimed at the development of natural product-based pesticidal agents, three series of novel camptothecin derivatives were designed, synthesized, and evaluated for their biological activities against T. Cinnabarinus, B. brassicae, and B. xylophilus. All of the derivatives showed good-to-excellent activity against three insect species tested, with LC50 values ranging from 0.00761 to 0.35496 mmol/L. Remarkably, all of the compounds were more potent than CPT against T. Cinnabarinus, and compounds 4d and 4c displayed superior activity (LC50 0.00761 mmol/L and 0.00942 mmol/L, respectively) compared with CPT (LC50 0.19719 mmol/L) against T. Cinnabarinus. Based on the observed bioactivities, preliminary structure-activity relationship (SAR) correlations were also discussed. Furthermore, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) was built. The model gave statistically significant results with the cross-validated q2 values of 0.580 and correlation coefficient r2 of 0.991 and  of 0.993. The QSAR analysis indicated that the size of the substituents play an important in the activity of 7-modified camptothecin derivatives. These findings will pave the way for further design, structural optimization, and development of camptothecin-derived compounds as pesticidal agents.

  15. Quantitative structure-activity relationships for chemical toxicity to environmental bacteria

    SciTech Connect

    Blum, D.J.; Speece, R.E. )

    1991-10-01

    Quantitative structure-activity relationships (QSARs) were developed for nonreactive chemical toxicity to each of four groups of bacteria of importance in environmental engineering: aerobic heterotrophs, methanogens, Nitrosomonas, and Microtox. The QSARs were based on chemicals covering a range of structures and including important environmental pollutants (i.e., chlorinated and other substituted benzenes, phenols, and aliphatic hydrocarbons). QSARs were developed for each chemical class and for combinations of chemical classes. Three QSAR methods (groups of chemical describing parameters) were evaluated for their accuracy and ease of use: log P, linear solvation energy relationships (LSER), and molecular connectivity. Successful QSARs were found for each group of bacteria and by each method, with correlation coefficients (adjusted r2) between 0.79 and 0.95. LSER QSARs incorporated the widest range of chemicals with the greatest accuracy. Log P and molecular connectivity QSARs are easier to use because their parameters are readily available. Outliers from the QSARs likely due to reactive toxicity included acryls, low pKa compounds, and aldehydes. Nitro compounds and chlorinated aliphatic hydrocarbons and alcohols showed enhanced toxicity to the methanogens only. Chemicals with low IC50 concentrations (log IC50 mumol/liter less than 1.5) were often outliers for Nitrosomonas. QSARs were validated statistically and with literature data. A suggested method is provided for use of the QSARs.

  16. Proceedings of the third international workshop on quantitative structure-activity relationships in environmental toxicology

    SciTech Connect

    Turner, J.E.; England, M.W.; Schultz, T.W.; Kwaak, N.J.

    1988-06-01

    The 3rd International Workshop on Quantitative Structure-Activity Relationships (QSAR) in Environmental Toxicology (QSAR-88) was organized to facilitate the exchange of ideas between experts in different areas working in QSAR. Invited participants were selected to provide a mixture of representatives from biology, chemistry, and statistics as well as industry, government, and academia. The theme for QSAR-88 was ''Interrelationships of QSAR and Mechanisms of Toxic Actions.'' The program was divided into four sessions of invited talks on statistics, molecular descriptors, fish QSARs, and non-fish QSARs and a poster session. These Proceedings contain the text of the 16 invited technical papers and descriptions of the 16 contributed poster presentations. In addition, we include a summary of the Workshop prepared by Dr. Kaiser. The use of structure-activity relationships to elucidate trends in toxicology has been documented for more than a century. However, it is only over the past fifteen years that the modern tools, initially developed for experimental drug design, have been brought to bear on the problem of environmental contamination. The very nature of the field has, from the start, required the collaboration of experts from several scientific disciplines.

  17. Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method.

    PubMed

    Zhao, Yongsheng; Zhao, Jihong; Huang, Ying; Zhou, Qing; Zhang, Xiangping; Zhang, Suojiang

    2014-08-15

    A comprehensive database on toxicity of ionic liquids (ILs) is established. The database includes over 4000 pieces of data. Based on the database, the relationship between IL's structure and its toxicity has been analyzed qualitatively. Furthermore, Quantitative Structure-Activity relationships (QSAR) model is conducted to predict the toxicities (EC50 values) of various ILs toward the Leukemia rat cell line IPC-81. Four parameters selected by the heuristic method (HM) are used to perform the studies of multiple linear regression (MLR) and support vector machine (SVM). The squared correlation coefficient (R(2)) and the root mean square error (RMSE) of training sets by two QSAR models are 0.918 and 0.959, 0.258 and 0.179, respectively. The prediction R(2) and RMSE of QSAR test sets by MLR model are 0.892 and 0.329, by SVM model are 0.958 and 0.234, respectively. The nonlinear model developed by SVM algorithm is much outperformed MLR, which indicates that SVM model is more reliable in the prediction of toxicity of ILs. This study shows that increasing the relative number of O atoms of molecules leads to decrease in the toxicity of ILs.

  18. Development and validation of a quantitative structure-activity relationship for chronic narcosis to fish.

    PubMed

    Claeys, Lieve; Iaccino, Federica; Janssen, Colin R; Van Sprang, Patrick; Verdonck, Frederik

    2013-10-01

    Vertebrate testing under the European Union's regulation on Registration, Evaluation, Authorisation and Restriction of Chemical substances (REACH) is discouraged, and the use of alternative nontesting approaches such as quantitative structure-activity relationships (QSARs) is encouraged. However, robust QSARs predicting chronic ecotoxicity of organic compounds to fish are not available. The Ecological Structure Activity Relationships (ECOSAR) Class Program is a computerized predictive system that estimates the acute and chronic toxicity of organic compounds for several chemical classes based on their log octanol-water partition coefficient (K(OW)). For those chemical classes for which chronic training data sets are lacking, acute to chronic ratios are used to predict chronic toxicity to aquatic organisms. Although ECOSAR reaches a high score against the Organisation for Economic Co-operation and Development (OECD) principles for QSAR validation, the chronic QSARs in ECOSAR are not fully compliant with OECD criteria in the framework of REACH or CLP (classification, labeling, and packaging) regulation. The objective of the present study was to develop a chronic ecotoxicity QSAR for fish for compounds acting via nonpolar and polar narcosis. These QSARs were built using a database of quality screened toxicity values, considering only chronic exposure durations and relevant end points. After statistical multivariate diagnostic analysis, literature-based, mechanistically relevant descriptors were selected to develop a multivariate regression model. Finally, these QSARs were tested for their acceptance for regulatory purposes and were found to be compliant with the OECD principles for the validation of a QSAR.

  19. Quantitative causal-comparative relationship between interactive whiteboard instruction and student science proficiency

    NASA Astrophysics Data System (ADS)

    Danelczyk, Ewa Krystyna

    The purpose of this quantitative causal-comparative study was to investigate the relationship between the instructional effects of the interactive whiteboard and students' proficiency levels in eighth-grade science as evidenced by the state FCAT scores. A total of 46 eighth-grade science teachers in a South Florida public school district completed a survey via the Internet. Data were analyzed using descriptive statistics, t tests, Pearson's product moment correlation, and Spearman's rank order correlation. Results revealed a significant difference in mean between eighth-grade students' proficiency percentages reported by participating teachers and the statewide results for the years 2008-2012 (p < .0005), with the exception of results reported in the year 2010 (p > .05). The significant results were not found between use of the interactive whiteboard for science instruction and students' science proficiency levels as evidenced by FCAT (p > .05), and teachers' professional experience and students' proficiency levels (p > .05). The recommendation from the current study is to continue research pertaining to instructional effectiveness of the interactive whiteboard in relationship to standardized tests because existing findings on similar topics are contradictory. There is a need for more empirical evidence on the long-term impact of the interactive whiteboard on students' achievement in science.

  20. Structure-property evolution during polymer crystallization

    NASA Astrophysics Data System (ADS)

    Arora, Deepak

    The main theme of this research is to understand the structure-property evolution during crystallization of a semicrystalline thermoplastic polymer. A combination of techniques including rheology, small angle light scattering, differential scanning calorimetry and optical microscopy are applied to follow the mechanical and optical properties along with crystallinity and the morphology. Isothermal crystallization experiments on isotactic poly-1-butene at early stages of spherulite growth provide quantitative information about nucleation density, volume fraction of spherulites and their crystallinity, and the mechanism of connecting into a sample spanning structure. Optical microscopy near the fluid-to-solid transition suggests that the transition, as determined by time-resolved mechanical spectroscopy, is not caused by packing/jamming of spherulites but by the formation of a percolating network structure. The effect of strain, Weissenberg number (We ) and specific mechanical work (w) on rate of crystallization (nucleation followed by growth) and on growth of anisotropy was studied for shear-induced crystallization of isotactic poly-1-butene. The samples were sheared for a finite strain at the beginning of the experiment and then crystallized without further flow (Janeschitz-Kriegl protocol). Strain requirements to attain steady state/leveling off of the rate of crystallization were found to be much larger than the strain needed to achieve steady state of flow. The large strain and We>1 criteria were also observed for morphological transition from spherulitic growth to oriented growth. An apparatus for small angle light scattering (SALS) and light transmission measurements under shear was built and tested at the University of Massachusetts Amherst. As a new development, the polarization direction can be rotated by a liquid crystal polarization rotator (LCPR) with a short response time of 20 ms. The experiments were controlled and analyzed with a LabVIEW(TM) based

  1. Structural Properties of Mismatched Alloys

    NASA Astrophysics Data System (ADS)

    Mousseau, Normand

    The problem of understanding the local structure of disordered alloys has been around for a long time. In this thesis, I look more specifically at the effect of size-mismatch disorder in binary alloys under many forms: metallic and semiconductor alloys, bulk and surfaces, two and three dimensional systems. I have studied the limitations of a central-force model (CFM) and an embedded-atom potential (EAM) in describing the local structure of binary metallic alloys composed of Ag, Au, Cu, Ni, Pd, or Pt. Although an analytical model developed using the CFM explains qualitatively well the experimental and numerical results, in many cases, it is important to add electronic density effects through a more sophisticated potential like EAM in order to agree quantitatively with experiment. I have also looked at amorphous and crystalline silicon-germanium alloys. It turns out that the effect of size-mismatch is the same on a crystalline and an amorphous lattice. In the latter case, it can be seen as a perturbation of the much larger disorder due to the amorphisation process. However, the analytical predictions differ, for both the crystalline and amorphous alloys, from the experimental results. If one is to believe the data, there is only one possible explanation for this inconsistency: large amounts of hydrogen are present in the samples used for the measurements. Since the data analysis of EXAFS results is not always straightforward, I have proposed some experiments that could shed light on this problem. One of these experiments would be to look at the (111) surface of a Si-Ge alloy with a scanning tunneling microscope. I also present in this thesis the theoretical predictions for the height distribution at the surface as well as some more general structural information about the relaxation in the network as one goes away from the surface. Finally, I have studied the effect of size -mismatch in a purely two dimensional lattice, looking for mismatch-driven phase transitions

  2. Genetic programming based quantitative structure-retention relationships for the prediction of Kovats retention indices.

    PubMed

    Goel, Purva; Bapat, Sanket; Vyas, Renu; Tambe, Amruta; Tambe, Sanjeev S

    2015-11-13

    The development of quantitative structure-retention relationships (QSRR) aims at constructing an appropriate linear/nonlinear model for the prediction of the retention behavior (such as Kovats retention index) of a solute on a chromatographic column. Commonly, multi-linear regression and artificial neural networks are used in the QSRR development in the gas chromatography (GC). In this study, an artificial intelligence based data-driven modeling formalism, namely genetic programming (GP), has been introduced for the development of quantitative structure based models predicting Kovats retention indices (KRI). The novelty of the GP formalism is that given an example dataset, it searches and optimizes both the form (structure) and the parameters of an appropriate linear/nonlinear data-fitting model. Thus, it is not necessary to pre-specify the form of the data-fitting model in the GP-based modeling. These models are also less complex, simple to understand, and easy to deploy. The effectiveness of GP in constructing QSRRs has been demonstrated by developing models predicting KRIs of light hydrocarbons (case study-I) and adamantane derivatives (case study-II). In each case study, two-, three- and four-descriptor models have been developed using the KRI data available in the literature. The results of these studies clearly indicate that the GP-based models possess an excellent KRI prediction accuracy and generalization capability. Specifically, the best performing four-descriptor models in both the case studies have yielded high (>0.9) values of the coefficient of determination (R(2)) and low values of root mean squared error (RMSE) and mean absolute percent error (MAPE) for training, test and validation set data. The characteristic feature of this study is that it introduces a practical and an effective GP-based method for developing QSRRs in gas chromatography that can be gainfully utilized for developing other types of data-driven models in chromatography science

  3. Quantitative Structure Activity Relationship for Inhibition of Human Organic Cation/Carnitine Transporter (OCTN2)

    PubMed Central

    Diao, Lei; Ekins, Sean; Polli, James E.

    2010-01-01

    Organic cation/carnitine transporter (OCTN2; SLC22A5) is an important transporter for L-carnitine homeostasis, but can be inhibited by drugs, which may cause L-carnitine deficiency and possibly other OCTN2-mediated drug-drug interactions. One objective was to develop a quantitative structure–activity relationship (QSAR) of OCTN2 inhibitors, in order to predict and identify other potential OCTN2 inhibitors and infer potential clinical interactions. A second objective was to assess two high renal clearance drugs that interact with OCTN2 in vitro (cetirizine and cephaloridine) for possible OCTN2-mediated drug-drug interactions. Using previously generated in vitro data of 22 drugs, a 3D quantitative pharmacophore model and a Bayesian machine learning model were developed. The four pharmacophore features include two hydrophobic groups, one hydrogen-bond acceptor, and one positive ionizable center. The Bayesian machine learning model was developed using simple interpretable descriptors and function class fingerprints of maximum diameter 6 (FCFP_6). An external test set of 27 molecules, including 15 newly identified OCTN2 inhibitors, and a literature test set of 22 molecules were used to validate both models. The computational models afforded good capability to identify structurally diverse OCTN2 inhibitors, providing a valuable tool to predict new inhibitors efficiently. Inhibition results confirmed our previously observed association between rhabdomyolysis and Cmax/Ki ratio. The two high renal clearance drugs cetirizine and cephaloridine were found not to be OCTN2 substrates and their diminished elimination by other drugs is concluded not to be mediated by OCTN2. PMID:20831193

  4. Genetic programming based quantitative structure-retention relationships for the prediction of Kovats retention indices.

    PubMed

    Goel, Purva; Bapat, Sanket; Vyas, Renu; Tambe, Amruta; Tambe, Sanjeev S

    2015-11-13

    The development of quantitative structure-retention relationships (QSRR) aims at constructing an appropriate linear/nonlinear model for the prediction of the retention behavior (such as Kovats retention index) of a solute on a chromatographic column. Commonly, multi-linear regression and artificial neural networks are used in the QSRR development in the gas chromatography (GC). In this study, an artificial intelligence based data-driven modeling formalism, namely genetic programming (GP), has been introduced for the development of quantitative structure based models predicting Kovats retention indices (KRI). The novelty of the GP formalism is that given an example dataset, it searches and optimizes both the form (structure) and the parameters of an appropriate linear/nonlinear data-fitting model. Thus, it is not necessary to pre-specify the form of the data-fitting model in the GP-based modeling. These models are also less complex, simple to understand, and easy to deploy. The effectiveness of GP in constructing QSRRs has been demonstrated by developing models predicting KRIs of light hydrocarbons (case study-I) and adamantane derivatives (case study-II). In each case study, two-, three- and four-descriptor models have been developed using the KRI data available in the literature. The results of these studies clearly indicate that the GP-based models possess an excellent KRI prediction accuracy and generalization capability. Specifically, the best performing four-descriptor models in both the case studies have yielded high (>0.9) values of the coefficient of determination (R(2)) and low values of root mean squared error (RMSE) and mean absolute percent error (MAPE) for training, test and validation set data. The characteristic feature of this study is that it introduces a practical and an effective GP-based method for developing QSRRs in gas chromatography that can be gainfully utilized for developing other types of data-driven models in chromatography science.

  5. Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds

    SciTech Connect

    Helguera, Aliuska Morales Cordeiro, M. Natalia D.S.; Perez, Miguel Angel Cabrera; Combes, Robert D.; Gonzalez, Maykel Perez

    2008-09-01

    In this work, Quantitative Structure-Activity Relationship (QSAR) modelling was used as a tool for predicting the carcinogenic potency of a set of 39 nitroso-compounds, which have been bioassayed in male rats by using the oral route of administration. The optimum QSAR model provided evidence of good fit and performance of predicitivity from training set. It was able to account for about 84% of the variance in the experimental activity and exhibited high values of the determination coefficients of cross validations, leave one out and bootstrapping (q{sup 2}{sub LOO} = 78.53 and q{sup 2}{sub Boot} = 74.97). Such a model was based on spectral moments weighted with Gasteiger-Marsilli atomic charges, polarizability and hydrophobicity, as well as with Abraham indexes, specifically the summation solute hydrogen bond basicity and the combined dipolarity/polarizability. This is the first study to have explored the possibility of combining Abraham solute descriptors with spectral moments. A reasonable interpretation of these molecular descriptors from a toxicological point of view was achieved by means of taking into account bond contributions. The set of relationships so derived revealed the importance of the length of the alkyl chains for determining carcinogenic potential of the chemicals analysed, and were able to explain the difference between mono-substituted and di-substituted nitrosoureas as well as to discriminate between isomeric structures with hydroxyl-alkyl and alkyl substituents in different positions. Moreover, they allowed the recognition of structural alerts in classical structures of two potent nitrosamines, consistent with their biotransformation. These results indicate that this new approach has the potential for improving carcinogenicity predictions based on the identification of structural alerts.

  6. Localized heuristic inverse quantitative structure activity relationship with bulk descriptors using numerical gradients.

    PubMed

    Stålring, Jonna; Almeida, Pedro R; Carlsson, Lars; Helgee Ahlberg, Ernst; Hasselgren, Catrin; Boyer, Scott

    2013-08-26

    State-of-the-art quantitative structure-activity relationship (QSAR) models are often based on nonlinear machine learning algorithms, which are difficult to interpret. From a pharmaceutical perspective, QSARs are used to enhance the chemical design process. Ultimately, they should not only provide a prediction but also contribute to a mechanistic understanding and guide modifications to the chemical structure, promoting compounds with desirable biological activity profiles. Global ranking of descriptor importance and inverse QSAR have been used for these purposes. This paper introduces localized heuristic inverse QSAR, which provides an assessment of the relative ability of the descriptors to influence the biological response in an area localized around the predicted compound. The method is based on numerical gradients with parameters optimized using data sets sampled from analytical functions. The heuristic character of the method reduces the computational requirements and makes it applicable not only to fragment based methods but also to QSARs based on bulk descriptors. The application of the method is illustrated on congeneric QSAR data sets, and it is shown that the predicted influential descriptors can be used to guide structural modifications that affect the biological response in the desired direction. The method is implemented into the AZOrange Open Source QSAR package. The current implementation of localized heuristic inverse QSAR is a step toward a generally applicable method for elucidating the structure activity relationship specifically for a congeneric region of chemical space when using QSARs based on bulk properties. Consequently, this method could contribute to accelerating the chemical design process in pharmaceutical projects, as well as provide information that could enhance the mechanistic understanding for individual scaffolds.

  7. Consensus Genome-Wide Expression Quantitative Trait Loci and Their Relationship with Human Complex Trait Disease.

    PubMed

    Yu, Chen-Hsin; Pal, Lipika R; Moult, John

    2016-07-01

    Most of the risk loci identified from genome-wide association (GWA) studies do not provide direct information on the biological basis of a disease or on the underlying mechanisms. Recent expression quantitative trait locus (eQTL) association studies have provided information on genetic factors associated with gene expression variation. These eQTLs might contribute to phenotype diversity and disease susceptibility, but interpretation is handicapped by low reproducibility of the expression results. To address this issue, we have generated a set of consensus eQTLs by integrating publicly available data for specific human populations and cell types. Overall, we find over 4000 genes that are involved in high-confidence eQTL relationships. To elucidate the role that eQTLs play in human common diseases, we matched the high-confidence eQTLs to a set of 335 disease risk loci identified from the Wellcome Trust Case Control Consortium GWA study and follow-up studies for 7 human complex trait diseases-bipolar disorder (BD), coronary artery disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthritis (RA), type 1 diabetes (T1D), and type 2 diabetes (T2D). The results show that the data are consistent with ∼50% of these disease loci arising from an underlying expression change mechanism. PMID:27428252

  8. Deep neural nets as a method for quantitative structure-activity relationships.

    PubMed

    Ma, Junshui; Sheridan, Robert P; Liaw, Andy; Dahl, George E; Svetnik, Vladimir

    2015-02-23

    Neural networks were widely used for quantitative structure-activity relationships (QSAR) in the 1990s. Because of various practical issues (e.g., slow on large problems, difficult to train, prone to overfitting, etc.), they were superseded by more robust methods like support vector machine (SVM) and random forest (RF), which arose in the early 2000s. The last 10 years has witnessed a revival of neural networks in the machine learning community thanks to new methods for preventing overfitting, more efficient training algorithms, and advancements in computer hardware. In particular, deep neural nets (DNNs), i.e. neural nets with more than one hidden layer, have found great successes in many applications, such as computer vision and natural language processing. Here we show that DNNs can routinely make better prospective predictions than RF on a set of large diverse QSAR data sets that are taken from Merck's drug discovery effort. The number of adjustable parameters needed for DNNs is fairly large, but our results show that it is not necessary to optimize them for individual data sets, and a single set of recommended parameters can achieve better performance than RF for most of the data sets we studied. The usefulness of the parameters is demonstrated on additional data sets not used in the calibration. Although training DNNs is still computationally intensive, using graphical processing units (GPUs) can make this issue manageable.

  9. Deep neural nets as a method for quantitative structure-activity relationships.

    PubMed

    Ma, Junshui; Sheridan, Robert P; Liaw, Andy; Dahl, George E; Svetnik, Vladimir

    2015-02-23

    Neural networks were widely used for quantitative structure-activity relationships (QSAR) in the 1990s. Because of various practical issues (e.g., slow on large problems, difficult to train, prone to overfitting, etc.), they were superseded by more robust methods like support vector machine (SVM) and random forest (RF), which arose in the early 2000s. The last 10 years has witnessed a revival of neural networks in the machine learning community thanks to new methods for preventing overfitting, more efficient training algorithms, and advancements in computer hardware. In particular, deep neural nets (DNNs), i.e. neural nets with more than one hidden layer, have found great successes in many applications, such as computer vision and natural language processing. Here we show that DNNs can routinely make better prospective predictions than RF on a set of large diverse QSAR data sets that are taken from Merck's drug discovery effort. The number of adjustable parameters needed for DNNs is fairly large, but our results show that it is not necessary to optimize them for individual data sets, and a single set of recommended parameters can achieve better performance than RF for most of the data sets we studied. The usefulness of the parameters is demonstrated on additional data sets not used in the calibration. Although training DNNs is still computationally intensive, using graphical processing units (GPUs) can make this issue manageable. PMID:25635324

  10. Antiproliferative Pt(IV) complexes: synthesis, biological activity, and quantitative structure-activity relationship modeling.

    PubMed

    Gramatica, Paola; Papa, Ester; Luini, Mara; Monti, Elena; Gariboldi, Marzia B; Ravera, Mauro; Gabano, Elisabetta; Gaviglio, Luca; Osella, Domenico

    2010-09-01

    Several Pt(IV) complexes of the general formula [Pt(L)2(L')2(L'')2] [axial ligands L are Cl-, RCOO-, or OH-; equatorial ligands L' are two am(m)ine or one diamine; and equatorial ligands L'' are Cl- or glycolato] were rationally designed and synthesized in the attempt to develop a predictive quantitative structure-activity relationship (QSAR) model. Numerous theoretical molecular descriptors were used alongside physicochemical data (i.e., reduction peak potential, Ep, and partition coefficient, log Po/w) to obtain a validated QSAR between in vitro cytotoxicity (half maximal inhibitory concentrations, IC50, on A2780 ovarian and HCT116 colon carcinoma cell lines) and some features of Pt(IV) complexes. In the resulting best models, a lipophilic descriptor (log Po/w or the number of secondary sp3 carbon atoms) plus an electronic descriptor (Ep, the number of oxygen atoms, or the topological polar surface area expressed as the N,O polar contribution) is necessary for modeling, supporting the general finding that the biological behavior of Pt(IV) complexes can be rationalized on the basis of their cellular uptake, the Pt(IV)-->Pt(II) reduction, and the structure of the corresponding Pt(II) metabolites. Novel compounds were synthesized on the basis of their predicted cytotoxicity in the preliminary QSAR model, and were experimentally tested. A final QSAR model, based solely on theoretical molecular descriptors to ensure its general applicability, is proposed.

  11. Arsenate (As V) in water: quantitative sensitivity relationships among biomarker, ecotoxicity and genotoxicity endpoints.

    PubMed

    Silva, Valéria C; Almeida, Sônia M; Resgalla, Charrid; Masfaraud, Jean-François; Cotelle, Sylvie; Radetski, Claudemir M

    2013-06-01

    It is useful to test ecotoxicity and genotoxicity endpoints in the environmental impact assessment. Here, we compare and discuss ecotoxicity and genotoxicity effects in organisms in response to exposure to arsenate (As V) in solution. Eco(geno)toxicity responses in Aliivibrio fischeri, Lytechinus variegatus, Daphnia magna, Skeletonema costatum and Vicia faba were analyzed by assessing different endpoints: biomass growth, peroxidase activity, mitotic index, micronucleus frequency, and lethality in accordance with the international protocols. Quantitative sensitivity relationships (QSR) between these endpoints were established in order to rank endpoint sensitivity. The results for the QSR values based on the lowest observed effect concentration (LOEC) ratios varied from 2 (for ratio of root peroxidase activity to leaf peroxidase activity) to 2286 (for ratio of higher plant biomass growth to root peroxidase activity). The QSR values allowed the following sensitivity ranking to be established: higher plant enzymatic activity>daphnids≈echinoderms>bacteria≈algae>higher plant biomass growth. The LOEC values for the mitotic index and micronucleus frequency (LOEC=0.25mgAsL(-1)) were similar to the lowest LOEC values observed in aquatic organisms. This approach to the QSR of different endpoints could form the basis for monitoring and predicting early effects of pollutants before they give rise to significant changes in natural community structures. PMID:23597676

  12. Quantitative structure-activity relationships and ecological risk assessment: an overview of predictive aquatic toxicology research.

    PubMed

    Bradbury, S P

    1995-09-01

    In the field of aquatic toxicology, quantitative structure-activity relationships (QSARs) have developed as scientifically credible tools for predicting the toxicity of chemicals when little or no empirical data are available. A fundamental understanding of toxicological principles has been considered an important component to the acceptance and application of QSAR approaches as biologically relevant in ecological risk assessments. As a consequence, there has been an evolution of QSAR development and application from that of a chemical-class perspective to one that is more consistent with assumptions regarding modes of toxic action. In this review, techniques to assess modes of toxic action from chemical structure are discussed, with consideration that toxicodynamic knowledge bases must be clearly defined with regard to exposure regimes, biological models/endpoints and compounds that adequately span the diversity of chemicals anticipated for future applications. With such knowledge bases, classification systems, including rule-based expert systems, have been established for use in predictive aquatic toxicology applications. The establishment of QSAR techniques that are based on an understanding of toxic mechanisms is needed to provide a link to physiologically based toxicokinetic and toxicodynamic models, which can provide the means to extrapolate adverse effects across species and exposure regimes. PMID:7570660

  13. Quantitative structure-activity relationships and the prediction of MHC supermotifs.

    PubMed

    Doytchinova, Irini A; Guan, Pingping; Flower, Darren R

    2004-12-01

    The underlying assumption in quantitative structure-activity relationship (QSAR) methodology is that related chemical structures exhibit related biological activities. We review here two QSAR methods in terms of their applicability for human MHC supermotif definition. Supermotifs are motifs that characterise binding to more than one allele. Supermotif definition is the initial in silico step of epitope-based vaccine design. The first QSAR method we review here--the additive method--is based on the assumption that the binding affinity of a peptide depends on contributions from both amino acids and the interactions between them. The second method is a 3D-QSAR method: comparative molecular similarity indices analysis (CoMSIA). Both methods were applied to 771 peptides binding to 9 HLA alleles. Five of the alleles (A*0201, A*0202, A*0203, A*0206 and A*6802) belong to the HLA-A2 superfamily and the other four (A*0301, A*1101, A*3101 and A*6801) to the HLA-A3 superfamily. For each superfamily, supermotifs defined by the two QSAR methods agree closely and are supported by many experimental data. PMID:15542370

  14. [Construction of the quantitative structure retention relationship of cefdinir related substances].

    PubMed

    Wang, Chen; Li, Jin; Feng, Yan-chun; Liu, Ying; Hu, Chang-qin

    2015-09-01

    The molecular descriptors of impurities with known structure in cefdinir were calculated, selected and associated with the chromatographic retention behavior to establish a model. This quantitative structure retention relationships (QSRR) model for the related substances of cefdinir was established under specific chromatographic condition and verified by other impurities. 12 molecular descriptors were used to establish the QSRR model, F_AFRBWF, Blbn_J, SsCH3, SssCH2, SsNH2, SssNH, SssS, SHdCH2, EEM_AFc, EEM_AFpl, EEM_XFpl and Pi_MaxQ. The relativity between true values and predictions in QSRR of cefdinir is R2 = 0.9836 (n = 18), ΔRRT is no more than 0.154, as 10.17% in RRT. The results indicate that the QSRR model for the related substances of cefdinir can be used to evaluate the analysis methods for related substances and predict the chromatographic behavior of new impurities, which will provide a new way for the evaluation of the effectiveness for drug quality control. PMID:26757554

  15. Quantitative structure-activity relationship models of chemical transformations from matched pairs analyses.

    PubMed

    Beck, Jeremy M; Springer, Clayton

    2014-04-28

    The concepts of activity cliffs and matched molecular pairs (MMP) are recent paradigms for analysis of data sets to identify structural changes that may be used to modify the potency of lead molecules in drug discovery projects. Analysis of MMPs was recently demonstrated as a feasible technique for quantitative structure-activity relationship (QSAR) modeling of prospective compounds. Although within a small data set, the lack of matched pairs, and the lack of knowledge about specific chemical transformations limit prospective applications. Here we present an alternative technique that determines pairwise descriptors for each matched pair and then uses a QSAR model to estimate the activity change associated with a chemical transformation. The descriptors effectively group similar transformations and incorporate information about the transformation and its local environment. Use of a transformation QSAR model allows one to estimate the activity change for novel transformations and therefore returns predictions for a larger fraction of test set compounds. Application of the proposed methodology to four public data sets results in increased model performance over a benchmark random forest and direct application of chemical transformations using QSAR-by-matched molecular pairs analysis (QSAR-by-MMPA).

  16. Improving quantitative structure-activity relationship models using Artificial Neural Networks trained with dropout.

    PubMed

    Mendenhall, Jeffrey; Meiler, Jens

    2016-02-01

    Dropout is an Artificial Neural Network (ANN) training technique that has been shown to improve ANN performance across canonical machine learning (ML) datasets. Quantitative Structure Activity Relationship (QSAR) datasets used to relate chemical structure to biological activity in Ligand-Based Computer-Aided Drug Discovery pose unique challenges for ML techniques, such as heavily biased dataset composition, and relatively large number of descriptors relative to the number of actives. To test the hypothesis that dropout also improves QSAR ANNs, we conduct a benchmark on nine large QSAR datasets. Use of dropout improved both enrichment false positive rate and log-scaled area under the receiver-operating characteristic curve (logAUC) by 22-46 % over conventional ANN implementations. Optimal dropout rates are found to be a function of the signal-to-noise ratio of the descriptor set, and relatively independent of the dataset. Dropout ANNs with 2D and 3D autocorrelation descriptors outperform conventional ANNs as well as optimized fingerprint similarity search methods.

  17. Blood-brain barrier permeability mechanisms in view of quantitative structure-activity relationships (QSAR).

    PubMed

    Bujak, Renata; Struck-Lewicka, Wiktoria; Kaliszan, Michał; Kaliszan, Roman; Markuszewski, Michał J

    2015-04-10

    The goal of the present paper was to develop a quantitative structure-activity relationship (QSAR) method using a simple statistical approach, such as multiple linear regression (MLR) for predicting the blood-brain barrier (BBB) permeability of chemical compounds. The "best" MLR models, comprised logP and either molecular mass (M) or isolated atomic energy (E(isol)), tested on a structurally diverse set of 66 compounds, is characterized the by correlation coefficients (R) around 0.8. The obtained models were validated using leave-one-out (LOO) cross-validation technique and the correlation coefficient of leave-one-out- R(LOO)(2) (Q(2)) was at least 0.6. Analysis of a case from legal medicine demonstrated informative value of our QSAR model. To best authors' knowledge the present study is a first application of the developed QSAR models of BBB permeability to case from the legal medicine. Our data indicate that molecular energy-related descriptors, in combination with the well-known descriptors of lipophilicity may have a supportive value in predicting blood-brain distribution, which is of utmost importance in drug development and toxicological studies.

  18. Quantitative Structure--Activity Relationship (QSAR) for the Oxidation of Trace Organic Contaminants by Sulfate Radical.

    PubMed

    Xiao, Ruiyang; Ye, Tiantian; Wei, Zongsu; Luo, Shuang; Yang, Zhihui; Spinney, Richard

    2015-11-17

    The sulfate radical anion (SO4•–) based oxidation of trace organic contaminants (TrOCs) has recently received great attention due to its high reactivity and low selectivity. In this study, a meta-analysis was conducted to better understand the role of functional groups on the reactivity between SO4•– and TrOCs. The results indicate that compounds in which electron transfer and addition channels dominate tend to exhibit a faster second-order rate constants (kSO4•–) than that of H–atom abstraction, corroborating the SO4•– reactivity and mechanisms observed in the individual studies. Then, a quantitative structure activity relationship (QSAR) model was developed using a sequential approach with constitutional, geometrical, electrostatic, and quantum chemical descriptors. Two descriptors, ELUMO and EHOMO energy gap (ELUMO–EHOMO) and the ratio of oxygen atoms to carbon atoms (#O:C), were found to mechanistically and statistically affect kSO4•– to a great extent with the standardized QSAR model: ln kSO4•– = 26.8–3.97 × #O:C – 0.746 × (ELUMO–EHOMO). In addition, the correlation analysis indicates that there is no dominant reaction channel for SO4•– reactions with various structurally diverse compounds. Our QSAR model provides a robust predictive tool for estimating emerging micropollutants removal using SO4•– during wastewater treatment processes.

  19. Docking and quantitative structure-activity relationship of oxadiazole derivates as inhibitors of GSK3β.

    PubMed

    Quesada-Romero, Luisa; Caballero, Julio

    2014-02-01

    The binding modes of 42 oxadiazole derivates inside glycogen synthase kinase 3 beta (GSK3β were determined using docking experiments; thus, the preferred active conformations of these inhibitors are proposed. We found that these compounds adopt a scorpion-shaped conformation and they accept a hydrogen bond (HB) from the residue Val135 of the GSK3β ATP-binding site hinge region. In addition, quantitative structure-activity relationship (QSAR) models were constructed to explain the trend of the GSK3β inhibitory activities for the studied compounds. In a first approach, three-dimensional (3D) vectors were calculated using docking conformations and, by using multiple-linear regression, we assessed that GETAWAY vectors were able to describe the reported biological activities. In other QSAR approach, SMILES-based optimal descriptors were calculated. The best model included three-SMILES elements SSSβ leading to the identification of key molecular features that contribute to a high GSK3β inhibitory activity.

  20. Quantitative structure-activity relationships for weak acid respiratory uncouplers to Vibrio fisheri

    SciTech Connect

    Schultz, T.W.; Cronin, M.T.D.

    1997-02-01

    Acute toxicity values of 16 organic compounds thought to elicit their response via the weak acid respiratory uncoupling mechanism of toxic action were secured from the literature. Regression analysis of toxicities revealed that a measured 5-min V. fisheri potency value can be used as a surrogate for the 30-min value. Regression analysis of toxicity versus hydrophobicity, measured as the 1-octanol/water partition coefficient (log K{sub ow}), was used to formulate a quantitative structure-activity relationship (QSAR). The equation log pT{sub 30}{sup {minus}1} = 0.489(log K{sub ow}) + 0.126 was found to be a highly predictive model. This V. fisheri QSAR is statistically similar to QSARs generated from weak acid uncoupler potency data for Pimephales promelas survivability and Tetrahymena pyriformis population growth impairment. This work, therefore, suggests that the weak acid respiratory uncoupling mechanism of toxic action is present in V. fisheri, and as such is not restricted to mitochondria-containing organisms.

  1. Some methods of obtaining quantitative structure-activity relationships for quantities of environmental interest

    SciTech Connect

    Charton, M.

    1985-09-01

    Methods are described for obtaining quantitative structure-activity relationships (QSAR) for the estimation of quantities of environmental interest. Toxicities of alkylamines and of alkyl alkanoates are well correlated by the alkyl bioactivity branching equation (ABB). Narcotic activities of 1,1-disubstituted ethylenes are correlated by the intermolecular forces bioactivity (IMF) equation. When the data set has a limited number of substituents in equivalent positions the group number (GN) equation, derivable from the IMF equation, can be used for correlation. It has been successfully applied to aqueous solubilities, 1-octanol-water partition coefficients, and bioaccumulation factors and ecological magnifications for organochlorine compounds. A combination of the omega method for combining data sets for different organisms with the GN equation has been used to correlate toxicities of organochlorine insecticides in two species of fish. Toxicities of carbamates have been correlated by a combination of the zeta method and the IMFB equation. The ABB and the GN equations are particularly useful in that they generally do not require parameter tables, and that the parameters they use are error-free. The methods presented here, as shown by the examples given, should make it possible to establish a collection of QSAR for toxicities, bioaccumulation factors, aqueous solubilities, partition coefficients, and other properties of sets of compounds of environmental interest. 29 references.

  2. Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds

    SciTech Connect

    Helguera, Aliuska Morales; Gonzalez, Maykel Perez . E-mail: mpgonzalez76@yahoo.es; Cordeiro, Maria Natalia D.S.; Perez, Miguel Angel Cabrera

    2007-06-01

    Prevention of environmentally induced cancers is a major health problem of which solutions depend on the rapid and accurate screening of potential chemical hazards. Lately, theoretical approaches such as the one proposed here - Quantitative Structure-Activity Relationship (QSAR) - are increasingly used for assessing the risks of environmental chemicals, since they can markedly reduce costs, avoid animal testing, and speed up policy decisions. This paper reports a QSAR study based on the Topological Substructural Molecular Design (TOPS-MODE) approach, aiming at predicting the rodent carcinogenicity of a set of nitroso-compounds selected from the Carcinogenic Potency Data Base (CPDB). The set comprises nitrosoureas (14 chemicals), N-nitrosamines (18 chemicals) C-nitroso-compounds (1 chemical), nitrosourethane (1 chemical) and nitrosoguanidine (1 chemical), which have been bioassayed in male rat using gavage as the route of administration. Here we are especially concerned in gathering the role of both parameters on the carcinogenic activity of this family of compounds. First, the regression model was derived, upon removal of one identified nitrosamine outlier, and was able to account for more than 84% of the variance in the experimental activity. Second, the TOPS-MODE approach afforded the bond contributions - expressed as fragment contributions to the carcinogenic activity - that can be interpreted and provide tools for better understanding the mechanisms of carcinogenesis. Finally, and most importantly, we demonstrate the potentialities of this approach towards the recognition of structural alerts for carcinogenicity predictions.

  3. Development of quantitative interspecies toxicity relationship modeling of chemicals to fish.

    PubMed

    Fatemi, M H; Mousa Shahroudi, E; Amini, Z

    2015-09-01

    In this work, quantitative interspecies-toxicity relationship methodologies were used to improve the prediction power of interspecies toxicity model. The most relevant descriptors selected by stepwise multiple linear regressions and toxicity of chemical to Daphnia magna were used to predict the toxicities of chemicals to fish. Modeling methods that were used for developing linear and nonlinear models were multiple linear regression (MLR), random forest (RF), artificial neural network (ANN) and support vector machine (SVM). The obtained results indicate the superiority of SVM model over other models. Robustness and reliability of the constructed SVM model were evaluated by using the leave-one-out cross-validation method (Q(2)=0.69, SPRESS=0.822) and Y-randomization test (R(2)=0.268 for 30 trail). Furthermore, the chemical applicability domains of these models were determined via leverage approach. The developed SVM model was used for the prediction of toxicity of 46 compounds that their experimental toxicities to a fish were not being reported earlier from their toxicities to D. magna and relevant molecular descriptors.

  4. Assessing the toxic effects of ethylene glycol ethers using Quantitative Structure Toxicity Relationship models

    SciTech Connect

    Ruiz, Patricia; Mumtaz, Moiz; Gombar, Vijay

    2011-07-15

    Experimental determination of toxicity profiles consumes a great deal of time, money, and other resources. Consequently, businesses, societies, and regulators strive for reliable alternatives such as Quantitative Structure Toxicity Relationship (QSTR) models to fill gaps in toxicity profiles of compounds of concern to human health. The use of glycol ethers and their health effects have recently attracted the attention of international organizations such as the World Health Organization (WHO). The board members of Concise International Chemical Assessment Documents (CICAD) recently identified inadequate testing as well as gaps in toxicity profiles of ethylene glycol mono-n-alkyl ethers (EGEs). The CICAD board requested the ATSDR Computational Toxicology and Methods Development Laboratory to conduct QSTR assessments of certain specific toxicity endpoints for these chemicals. In order to evaluate the potential health effects of EGEs, CICAD proposed a critical QSTR analysis of the mutagenicity, carcinogenicity, and developmental effects of EGEs and other selected chemicals. We report here results of the application of QSTRs to assess rodent carcinogenicity, mutagenicity, and developmental toxicity of four EGEs: 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol and their metabolites. Neither mutagenicity nor carcinogenicity is indicated for the parent compounds, but these compounds are predicted to be developmental toxicants. The predicted toxicity effects were subjected to reverse QSTR (rQSTR) analysis to identify structural attributes that may be the main drivers of the developmental toxicity potential of these compounds.

  5. Interpretable, probability-based confidence metric for continuous quantitative structure-activity relationship models.

    PubMed

    Keefer, Christopher E; Kauffman, Gregory W; Gupta, Rishi Raj

    2013-02-25

    A great deal of research has gone into the development of robust confidence in prediction and applicability domain (AD) measures for quantitative structure-activity relationship (QSAR) models in recent years. Much of the attention has historically focused on structural similarity, which can be defined in many forms and flavors. A concept that is frequently overlooked in the realm of the QSAR applicability domain is how the local activity landscape plays a role in how accurate a prediction is or is not. In this work, we describe an approach that pairs information about both the chemical similarity and activity landscape of a test compound's neighborhood into a single calculated confidence value. We also present an approach for converting this value into an interpretable confidence metric that has a simple and informative meaning across data sets. The approach will be introduced to the reader in the context of models built upon four diverse literature data sets. The steps we will outline include the definition of similarity used to determine nearest neighbors (NN), how we incorporate the NN activity landscape with a similarity-weighted root-mean-square distance (wRMSD) value, and how that value is then calibrated to generate an intuitive confidence metric for prospective application. Finally, we will illustrate the prospective performance of the approach on five proprietary models whose predictions and confidence metrics have been tracked for more than a year.

  6. Docking and quantitative structure-activity relationship of oxadiazole derivates as inhibitors of GSK3β.

    PubMed

    Quesada-Romero, Luisa; Caballero, Julio

    2014-02-01

    The binding modes of 42 oxadiazole derivates inside glycogen synthase kinase 3 beta (GSK3β were determined using docking experiments; thus, the preferred active conformations of these inhibitors are proposed. We found that these compounds adopt a scorpion-shaped conformation and they accept a hydrogen bond (HB) from the residue Val135 of the GSK3β ATP-binding site hinge region. In addition, quantitative structure-activity relationship (QSAR) models were constructed to explain the trend of the GSK3β inhibitory activities for the studied compounds. In a first approach, three-dimensional (3D) vectors were calculated using docking conformations and, by using multiple-linear regression, we assessed that GETAWAY vectors were able to describe the reported biological activities. In other QSAR approach, SMILES-based optimal descriptors were calculated. The best model included three-SMILES elements SSSβ leading to the identification of key molecular features that contribute to a high GSK3β inhibitory activity. PMID:24081608

  7. Utilization of quantitative structure-activity relationships (QSARs) in risk assessment: Alkylphenols

    SciTech Connect

    Beck, B.D.; Toole, A.P.; Callahan, B.G.; Siddhanti, S.K. )

    1991-12-01

    Alkylphenols are a class of environmentally pervasive compounds, found both in natural (e.g., crude oils) and in anthropogenic (e.g., wood tar, coal gasification waste) materials. Despite the frequent environmental occurrence of these chemicals, there is a limited toxicity database on alkylphenols. The authors have therefore developed a 'toxicity equivalence approach' for alkylphenols which is based on their ability to inhibit, in a specific manner, the enzyme cyclooxygenase. Enzyme-inhibiting ability for individual alkylphenols can be estimated based on the quantitative structure-activity relationship developed by Dewhirst (1980) and is a function of the free hydroxyl group, electron-donating ring substituents, and hydrophobic aromatic ring substituents. The authors evaluated the toxicological significance of cyclooxygenase inhibition by comparison of the inhibitory capacity of alkylphenols with the inhibitory capacity of acetylsalicylic acid, or aspirin, a compound whose low-level effects are due to cyclooxygenase inhibition. Since nearly complete absorption for alkylphenols and aspirin is predicted, based on estimates of hydrophobicity and fraction of charged molecules at gastrointestinal pHs, risks from alkylphenols can be expressed directly in terms of 'milligram aspirin equivalence,' without correction for absorption differences. They recommend this method for assessing risks of mixtures of alkylphenols, especially for those compounds with no chronic toxicity data.38 references.

  8. The Relationship between Shyness and Internet Addiction: A Quantitative Study on Middle and Post Secondary School Students

    ERIC Educational Resources Information Center

    Hollingsworth, W. Craig

    2005-01-01

    This small scale quantitative study looks into the relationship between shyness and internet addiction in middle school students. This study has been conducted on the belief that shyness is a possible predictor of Internet Addiction. To prove this hypothesis a questionnaire was created and distributed to 53 middle school students and 159 post…

  9. Three dimensional quantitative structure-activity relationships of sulfonamides binding monoclonal antibody by comparative molecular field analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The three-dimensional quantitative structure-activity relationship (3D-QSAR) model of sulfonamide analogs, binding a monoclonal antibody (MabSMR) produced against sulfamerazine was carried out by comparative molecular field analysis (CoMFA). The affinities of MabSMR, expressed as Log10IC50, for 17 ...

  10. Quantitative structure-activity relationship modeling of juvenile hormone mimetic compounds for Culex pipiens larvae, with a discussion of descriptor-thinning methods.

    PubMed

    Basak, Subhash C; Natarajan, Ramanathan; Mills, Denise; Hawkins, Douglas M; Kraker, Jessica J

    2006-01-01

    method reiterates the fact that QSAR or quantitative structure-property relationship (QSPR) models can be developed for a diverse set of compounds using properly parametrized and diverse sets of descriptors, of course, with the selection of the appropriate statistical tools.

  11. Quantitative Structure Activity Relationship Models for the Antioxidant Activity of Polysaccharides

    PubMed Central

    Nie, Kaiying; Wang, Zhaojing

    2016-01-01

    In this study, quantitative structure activity relationship (QSAR) models for the antioxidant activity of polysaccharides were developed with 50% effective concentration (EC50) as the dependent variable. To establish optimum QSAR models, multiple linear regressions (MLR), support vector machines (SVM) and artificial neural networks (ANN) were used, and 11 molecular descriptors were selected. The optimum QSAR model for predicting EC50 of DPPH-scavenging activity consisted of four major descriptors. MLR model gave EC50 = 0.033Ara-0.041GalA-0.03GlcA-0.025PC+0.484, and MLR fitted the training set with R = 0.807. ANN model gave the improvement of training set (R = 0.96, RMSE = 0.018) and test set (R = 0.933, RMSE = 0.055) which indicated that it was more accurately than SVM and MLR models for predicting the DPPH-scavenging activity of polysaccharides. 67 compounds were used for predicting EC50 of the hydroxyl radicals scavenging activity of polysaccharides. MLR model gave EC50 = 0.12PC+0.083Fuc+0.013Rha-0.02UA+0.372. A comparison of results from models indicated that ANN model (R = 0.944, RMSE = 0.119) was also the best one for predicting the hydroxyl radicals scavenging activity of polysaccharides. MLR and ANN models showed that Ara and GalA appeared critical in determining EC50 of DPPH-scavenging activity, and Fuc, Rha, uronic acid and protein content had a great effect on the hydroxyl radicals scavenging activity of polysaccharides. The antioxidant activity of polysaccharide usually was high in MW range of 4000–100000, and the antioxidant activity could be affected simultaneously by other polysaccharide properties, such as uronic acid and Ara. PMID:27685320

  12. Predicting anti-androgenic activity of bisphenols using molecular docking and quantitative structure-activity relationships.

    PubMed

    Yang, Xianhai; Liu, Huihui; Yang, Qian; Liu, Jining; Chen, Jingwen; Shi, Lili

    2016-11-01

    Both in vivo and in vitro assay indicated that bisphenols can inhibit the androgen receptor. However, the underlying antagonistic mechanism is unclear. In this study, molecular docking was employed to probe the interaction mechanism between bisphenols and human androgen receptor (hAR). The binding pattern of ligands in hAR crystal structures was also analyzed. Results show that hydrogen bonding and hydrophobic interactions are the dominant interactions between the ligands and hAR. The critical amino acid residues involved in forming hydrogen bonding between bisphenols and hAR is Asn 705 and Gln 711. Furthermore, appropriate molecular structural descriptors were selected to characterize the non-bonded interactions. Stepwise multiple linear regressions (MLR) analysis was employed to develop quantitative structure-activity relationship (QSAR) models for predicting the anti-androgenic activity of bisphenols. Based on the QSAR development and validation guideline issued by OECD, the goodness-of-fit, robustness and predictive ability of constructed QSAR model were assessed. The model application domain was characterized by the Euclidean distance and Williams plot. The mechanisms of the constructed model were also interpreted based on the selected molecular descriptors i.e. the number of hydroxyl groups (nROH), the most positive values of the molecular surface potential (Vs,max) and the lowest unoccupied molecular orbital energy (ELUMO). Finally, based on the model developed, the data gap for other twenty-six bisphenols on their anti-androgenic activity was filled. The predicted results indicated that the anti-androgenic activity of seven bisphenols was higher than that of bisphenol A. PMID:27561732

  13. Quantitative structure-activity relationships for organophosphates binding to trypsin and chymotrypsin.

    PubMed

    Ruark, Christopher D; Hack, C Eric; Robinson, Peter J; Gearhart, Jeffery M

    2011-01-01

    Organophosphate (OP) nerve agents such as sarin, soman, tabun, and O-ethyl S-[2-(diisopropylamino) ethyl] methylphosphonothioate (VX) do not react solely with acetylcholinesterase (AChE). Evidence suggests that cholinergic-independent pathways over a wide range are also targeted, including serine proteases. These proteases comprise nearly one-third of all known proteases and play major roles in synaptic plasticity, learning, memory, neuroprotection, wound healing, cell signaling, inflammation, blood coagulation, and protein processing. Inhibition of these proteases by OP was found to exert a wide range of noncholinergic effects depending on the type of OP, the dose, and the duration of exposure. Consequently, in order to understand these differences, in silico biologically based dose-response and quantitative structure-activity relationship (QSAR) methodologies need to be integrated. Here, QSAR were used to predict OP bimolecular rate constants for trypsin and α-chymotrypsin. A heuristic regression of over 500 topological/constitutional, geometric, thermodynamic, electrostatic, and quantum mechanical descriptors, using the software Ampac 8.0 and Codessa 2.51 (SemiChem, Inc., Shawnee, KS), was developed to obtain statistically verified equations for the models. General models, using all data subsets, resulted in R(2) values of .94 and .92 and leave-one-out Q(2) values of 0.9 and 0.87 for trypsin and α-chymotrypsin. To validate the general model, training sets were split into independent subsets for test set evaluation. A y-randomization procedure, used to estimate chance correlation, was performed 10,000 times, resulting in mean R(2) values of .24 and .3 for trypsin and α-chymotrypsin. The results show that these models are highly predictive and capable of delineating the complex mechanism of action between OP and serine proteases, and ultimately, by applying this approach to other OP enzyme reactions such as AChE, facilitate the development of biologically based

  14. Polychlorinated biphenyls: correlation between in vivo and in vitro quantitative structure-activity relationships (QSARs)

    SciTech Connect

    Leece, B.; Denomme, M.A.; Towner, R.; Li, S.M.A.; Safe, S.

    1985-01-01

    The in vivo quantitative structure-activity relationships (QSARs) for several polychlorinated biphenyls (PCBs) were determined in the immature male Wistar rat. The ED25 and ED50 values for hepatic microsomal aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin O-deethylase (EROD) induction as well as for body weight loss and for thymic atrophy were determined for nine PCB congeners and 4'-bromo-2,3,4,5-tetrachlorobiphenyl. The most active compounds were the coplanar PCB congeners, 3,3',4,4',5-penta- and 3,3',4,4',5,5'-hexachlorobiphenyl; for example, their ED50 values for body weight loss were 3.25 and 15.1 ..mu..mol/kg, respectively. The in vivo toxicity of the coplanar PCB, 3,3',4,4'-tetrachlorobiphenyl, was significantly lower (ED50 for body weight loss = 730 ..mu..mol/kg) than the values observed for the more highly chlorinated homologs, and this was consistent with the more rapid metabolism of the lower chlorinated congener. The dose-response biologic and toxic effects of several mono-ortho-chloro-substituted analogs of the coplanar PCBs, including 2,3,4,4',5-, 2,3,3',4,4'-, 2',3,4,4',5- and 2,3',4,4',5-penta-, 2,3,3',4,4',5- and 2,3,3',4,4',5-hexachlorobiphenyl were also determined, and members of this group of compounds were all less toxic than 3,3',4,4',5-penta and 3,3',4,4',5,5'-hexachlorobiphenyl. There was a good rank order correlation between the in vivo QSAR data and the in vitro QSAR data and the in vitro QSARs for PCBs that were developed from their relative receptor binding affinities and potencies as inducers of AHH and EROD in rat hepatoma H-4-II E cells in culture.

  15. Design and prediction of new acetylcholinesterase inhibitor via quantitative structure activity relationship of huprines derivatives.

    PubMed

    Zhang, Shuqun; Hou, Bo; Yang, Huaiyu; Zuo, Zhili

    2016-05-01

    Acetylcholinesterase (AChE) is an important enzyme in the pathogenesis of Alzheimer's disease (AD). Comparative quantitative structure-activity relationship (QSAR) analyses on some huprines inhibitors against AChE were carried out using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR) methods. Three highly predictive QSAR models were constructed successfully based on the training set. The CoMFA, CoMSIA, and HQSAR models have values of r (2) = 0.988, q (2) = 0.757, ONC = 6; r (2) = 0.966, q (2) = 0.645, ONC = 5; and r (2) = 0.957, q (2) = 0.736, ONC = 6. The predictabilities were validated using an external test sets, and the predictive r (2) values obtained by the three models were 0.984, 0.973, and 0.783, respectively. The analysis was performed by combining the CoMFA and CoMSIA field distributions with the active sites of the AChE to further understand the vital interactions between huprines and the protease. On the basis of the QSAR study, 14 new potent molecules have been designed and six of them are predicted to be more active than the best active compound 24 described in the literature. The final QSAR models could be helpful in design and development of novel active AChE inhibitors.

  16. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment.

    PubMed

    Lee, Yunho; von Gunten, Urs

    2012-12-01

    Various oxidants such as chlorine, chlorine dioxide, ferrate(VI), ozone, and hydroxyl radicals can be applied for eliminating organic micropollutant by oxidative transformation during water treatment in systems such as drinking water, wastewater, and water reuse. Over the last decades, many second-order rate constants (k) have been determined for the reaction of these oxidants with model compounds and micropollutants. Good correlations (quantitative structure-activity relationships or QSARs) are often found between the k-values for an oxidation reaction of closely related compounds (i.e. having a common organic functional group) and substituent descriptor variables such as Hammett or Taft sigma constants. In this study, we developed QSARs for the oxidation of organic and some inorganic compounds and organic micropollutants transformation during oxidative water treatment. A number of 18 QSARs were developed based on overall 412 k-values for the reaction of chlorine, chlorine dioxide, ferrate, and ozone with organic compounds containing electron-rich moieties such as phenols, anilines, olefins, and amines. On average, 303 out of 412 (74%) k-values were predicted by these QSARs within a factor of 1/3-3 compared to the measured values. For HO(·) reactions, some principles and estimation methods of k-values (e.g. the Group Contribution Method) are discussed. The developed QSARs and the Group Contribution Method could be used to predict the k-values for various emerging organic micropollutants. As a demonstration, 39 out of 45 (87%) predicted k-values were found within a factor 1/3-3 compared to the measured values for the selected emerging micropollutants. Finally, it is discussed how the uncertainty in the predicted k-values using the QSARs affects the accuracy of prediction for micropollutant elimination during oxidative water treatment. PMID:22939392

  17. Quantitative Structure--Activity Relationship (QSAR) for the Oxidation of Trace Organic Contaminants by Sulfate Radical.

    PubMed

    Xiao, Ruiyang; Ye, Tiantian; Wei, Zongsu; Luo, Shuang; Yang, Zhihui; Spinney, Richard

    2015-11-17

    The sulfate radical anion (SO4•–) based oxidation of trace organic contaminants (TrOCs) has recently received great attention due to its high reactivity and low selectivity. In this study, a meta-analysis was conducted to better understand the role of functional groups on the reactivity between SO4•– and TrOCs. The results indicate that compounds in which electron transfer and addition channels dominate tend to exhibit a faster second-order rate constants (kSO4•–) than that of H–atom abstraction, corroborating the SO4•– reactivity and mechanisms observed in the individual studies. Then, a quantitative structure activity relationship (QSAR) model was developed using a sequential approach with constitutional, geometrical, electrostatic, and quantum chemical descriptors. Two descriptors, ELUMO and EHOMO energy gap (ELUMO–EHOMO) and the ratio of oxygen atoms to carbon atoms (#O:C), were found to mechanistically and statistically affect kSO4•– to a great extent with the standardized QSAR model: ln kSO4•– = 26.8–3.97 × #O:C – 0.746 × (ELUMO–EHOMO). In addition, the correlation analysis indicates that there is no dominant reaction channel for SO4•– reactions with various structurally diverse compounds. Our QSAR model provides a robust predictive tool for estimating emerging micropollutants removal using SO4•– during wastewater treatment processes. PMID:26451961

  18. [Quantitative relationship of renal blood flow with size and density of glomeruli in rat postnatal ontogenesis].

    PubMed

    Shyyrapaĭ, U V; Belichenko, V M; Shoshenko, K A; Aĭzman, R I

    2012-01-01

    The aim of the study was to find the quantitative relationship of postnatal changes in the glomeruli anatomic structure with the blood flow in kidneys. Kidney development was studied in 4-, 12-, 30-, and 65-day-old Wistar rats. Diameters of glomerulus (Dgl, microm), afferent and efferent arterioles (Daf and Def), and the glomeruli density (Ngl, mm(-3)) were measured posthumously. Volumes of one ((see text of symbol))V gl, microm3) and all glomeruli (see text for symbol)(sigma(see text for symbol)Vgl, mm3/cm3) and the glomeruli arterioles lumen (Saf and Sef, microm2) were calculated. The renal specific blood flow (SBF per unit of kidney weight, KW) was measured by the laser-Doppler flowmeter (in perfusion units, p.u.) under sodium barbamyl narcosis. We have found that, during postnatal growth, glomeruli morphological parameters vary according to the equations: Dgl = 7.1 (see text for symbol) KW0.41, (see text for symbol)V gl = 187 (see text for symbol) KW1.23, Ngl = 5309 (see text for symbol) KW-0.63 (KW, mg and for one kidney), Saf = 1.1 (see text for symbol)V gl 0.35, and Sef = 6.3 (see text for symbol) V gl 0.14. The renal SBF in 4-, 12-, and 65-day-old rats increases according to SBF = 6.7 (see text for symbol) (sigma( see text for symbol)V gl)0.98. The renal SBF calculated per unit of glomeruli volume varies a little with age.

  19. Validation of Quantitative Structure-Activity Relationship (QSAR) Model for Photosensitizer Activity Prediction

    PubMed Central

    Frimayanti, Neni; Yam, Mun Li; Lee, Hong Boon; Othman, Rozana; Zain, Sharifuddin M.; Rahman, Noorsaadah Abd.

    2011-01-01

    Photodynamic therapy is a relatively new treatment method for cancer which utilizes a combination of oxygen, a photosensitizer and light to generate reactive singlet oxygen that eradicates tumors via direct cell-killing, vasculature damage and engagement of the immune system. Most of photosensitizers that are in clinical and pre-clinical assessments, or those that are already approved for clinical use, are mainly based on cyclic tetrapyrroles. In an attempt to discover new effective photosensitizers, we report the use of the quantitative structure-activity relationship (QSAR) method to develop a model that could correlate the structural features of cyclic tetrapyrrole-based compounds with their photodynamic therapy (PDT) activity. In this study, a set of 36 porphyrin derivatives was used in the model development where 24 of these compounds were in the training set and the remaining 12 compounds were in the test set. The development of the QSAR model involved the use of the multiple linear regression analysis (MLRA) method. Based on the method, r2 value, r2 (CV) value and r2 prediction value of 0.87, 0.71 and 0.70 were obtained. The QSAR model was also employed to predict the experimental compounds in an external test set. This external test set comprises 20 porphyrin-based compounds with experimental IC50 values ranging from 0.39 μM to 7.04 μM. Thus the model showed good correlative and predictive ability, with a predictive correlation coefficient (r2 prediction for external test set) of 0.52. The developed QSAR model was used to discover some compounds as new lead photosensitizers from this external test set. PMID:22272096

  20. Structure-property relationships based on Hammett constants in cyclometalated iridium(III) complexes: their application to the design of a fluorine-free FIrPic-like emitter.

    PubMed

    Frey, Julien; Curchod, Basile F E; Scopelliti, Rosario; Tavernelli, Ivano; Rothlisberger, Ursula; Nazeeruddin, Mohammad K; Baranoff, Etienne

    2014-04-21

    While phosphorescent cyclometalated iridium(iii) complexes have been widely studied, only correlations between oxidation potential EOX and Hammett constant σ, and between the redox gap (ΔEREDOX = EOX-ERED) and emission or absorption wavelength (λabs, λem) have been reported. We present now a quantitative model based on Hammett parameters that rationalizes the effect of the substituents on the properties of cyclometalated iridium(iii) complexes. This simple model allows predicting the apparent redox potentials as well as the electrochemical gap of homoleptic complexes based on phenylpyridine ligands with good accuracy. In particular, the model accounts for the unequal effect of the substituents on both the HOMO and the LUMO energy levels. Consequently, the model is used to anticipate the emission maxima of the corresponding complexes with improved reliability. We demonstrate in a series of phenylpyridine emitters that electron-donating groups can effectively replace electron-withdrawing substituents on the orthometallated phenyl to induce a blue shift of the emission. This result is in contrast with the common approach that uses fluorine to blue shift the emission maximum. Finally, as a proof of concept, we used electron-donating substituents to design a new fluorine-free complex, referred to as EB343, matching the various properties, namely oxidation and reduction potentials, electrochemical gap and emission profile, of the standard sky-blue emitter FIrPic. PMID:24345847

  1. A quantitative analysis of the relationship between habitual energy expenditure, fitness and the metabolic cardiovascular syndrome.

    PubMed

    Wareham, N J; Hennings, S J; Byrne, C D; Hales, C N; Prentice, A M; Day, N E

    1998-09-01

    Previous epidemiological studies have suggested an association between low levels of physical activity, fitness and the metabolic cardiovascular syndrome. However, many studies have used subjective non-quantitative questionnaire-based methods for assessing physical activity which do not distinguish between the different dimensions of this complex exposure, and in which measurement error in the exposure has not been estimated. These deficiencies in the measurement of this exposure complicate the interpretation of the results of epidemiological studies, and consequently make it difficult to design appropriate interventions and to estimate the expected benefit which would result from intervention. In particular, it is unclear whether public health advice should be to increase total energy expenditure, or to attempt to raise fitness by recommending periods of vigorous activity. To separate the effects of fitness and total energy expenditure in the aetiology of the metabolic cardiovascular syndrome, we measured the physical activity level (PAL), defined as total energy expenditure: BMR, and fitness (maximum O2 consumption (VO2max per kg), measured in a sub-maximal test) in a cross-sectional population-based study of 162 adults aged 30-40 years. Heart-rate monitoring with individual calibration was used to measure total energy expenditure using the HRFlex method (Ceesay et al. 1989) which has been validated previously against doubly-labelled water and whole-body calorimetry. The relationship between a single measure of PAL, VO2max per kg and the usual or habitual level for each exposure was measured in a sub-study of twenty-two subjects who undertook four repeated measures over the course of 1 year. This study design allows the reliability coefficient to be computed, which is used to adjust the observed associations for measurement error in the exposure. Twelve men (16.4%) and sixteen women (18.0%) were defined as having one or more features of the metabolic

  2. Quantitative structure-activity relationship of the curcumin-related compounds using various regression methods

    NASA Astrophysics Data System (ADS)

    Khazaei, Ardeshir; Sarmasti, Negin; Seyf, Jaber Yousefi

    2016-03-01

    Quantitative structure activity relationship were used to study a series of curcumin-related compounds with inhibitory effect on prostate cancer PC-3 cells, pancreas cancer Panc-1 cells, and colon cancer HT-29 cells. Sphere exclusion method was used to split data set in two categories of train and test set. Multiple linear regression, principal component regression and partial least squares were used as the regression methods. In other hand, to investigate the effect of feature selection methods, stepwise, Genetic algorithm, and simulated annealing were used. In two cases (PC-3 cells and Panc-1 cells), the best models were generated by a combination of multiple linear regression and stepwise (PC-3 cells: r2 = 0.86, q2 = 0.82, pred_r2 = 0.93, and r2m (test) = 0.43, Panc-1 cells: r2 = 0.85, q2 = 0.80, pred_r2 = 0.71, and r2m (test) = 0.68). For the HT-29 cells, principal component regression with stepwise (r2 = 0.69, q2 = 0.62, pred_r2 = 0.54, and r2m (test) = 0.41) is the best method. The QSAR study reveals descriptors which have crucial role in the inhibitory property of curcumin-like compounds. 6ChainCount, T_C_C_1, and T_O_O_7 are the most important descriptors that have the greatest effect. With a specific end goal to design and optimization of novel efficient curcumin-related compounds it is useful to introduce heteroatoms such as nitrogen, oxygen, and sulfur atoms in the chemical structure (reduce the contribution of T_C_C_1 descriptor) and increase the contribution of 6ChainCount and T_O_O_7 descriptors. Models can be useful in the better design of some novel curcumin-related compounds that can be used in the treatment of prostate, pancreas, and colon cancers.

  3. Quantitative structure-activity relationship of the curcumin-related compounds using various regression methods

    NASA Astrophysics Data System (ADS)

    Khazaei, Ardeshir; Sarmasti, Negin; Seyf, Jaber Yousefi

    2016-03-01

    Quantitative structure activity relationship were used to study a series of curcumin-related compounds with inhibitory effect on prostate cancer PC-3 cells, pancreas cancer Panc-1 cells, and colon cancer HT-29 cells. Sphere exclusion method was used to split data set in two categories of train and test set. Multiple linear regression, principal component regression and partial least squares were used as the regression methods. In other hand, to investigate the effect of feature selection methods, stepwise, Genetic algorithm, and simulated annealing were used. In two cases (PC-3 cells and Panc-1 cells), the best models were generated by a combination of multiple linear regression and stepwise (PC-3 cells: r2 = 0.86, q2 = 0.82, pred_r2 = 0.93, and r2m (test) = 0.43, Panc-1 cells: r2 = 0.85, q2 = 0.80, pred_r2 = 0.71, and r2m (test) = 0.68). For the HT-29 cells, principal component regression with stepwise (r2 = 0.69, q2 = 0.62, pred_r2 = 0.54, and r2m (test) = 0.41) is the best method. The QSAR study reveals descriptors which have crucial role in the inhibitory property of curcumin-like compounds. 6ChainCount, T_C_C_1, and T_O_O_7 are the most important descriptors that have the greatest effect. With a specific end goal to design and optimization of novel efficient curcumin-related compounds it is useful to introduce heteroatoms such as nitrogen, oxygen, and sulfur atoms in the chemical structure (reduce the contribution of T_C_C_1 descriptor) and increase the contribution of 6ChainCount and T_O_O_7 descriptors. Models can be useful in the better design of some novel curcumin-related compounds that can be used in the treatment of prostate, pancreas, and colon cancers.

  4. The relationship between international trade and non-nutritional health outcomes: A systematic review of quantitative studies.

    PubMed

    Burns, Darren K; Jones, Andrew P; Suhrcke, Marc

    2016-03-01

    Markets throughout the world have been reducing barriers to international trade and investment in recent years. The resulting increases in levels of international trade and investment have subsequently generated research interest into the potential population health impact. We present a systematic review of quantitative studies investigating the relationship between international trade, foreign direct investment and non-nutritional health outcomes. Articles were systematically collected from the SCOPUS, PubMed, EconLit and Web of Science databases. Due to the heterogeneous nature of the evidence considered, the 16 included articles were subdivided into individual level data analyses, selected country analyses and international panel analyses. Articles were then quality assessed using a tool developed as part of the project. Nine of the studies were assessed to be high quality, six as medium quality, and one as low quality. The evidence from the quantitative literature suggests that overall, there appears to be a beneficial association between international trade and population health. There was also evidence of the importance of foreign direct investment, yet a lack of research considering the direction of causality. Taken together, quantitative research into the relationship between trade and non-nutritional health indicates trade to be beneficial, yet this body of research is still in its infancy. Future quantitative studies based on this foundation will provide a stronger basis on which to inform relevant national and international institutions about the health consequences of trade policies. PMID:26820112

  5. The relationship between international trade and non-nutritional health outcomes: A systematic review of quantitative studies.

    PubMed

    Burns, Darren K; Jones, Andrew P; Suhrcke, Marc

    2016-03-01

    Markets throughout the world have been reducing barriers to international trade and investment in recent years. The resulting increases in levels of international trade and investment have subsequently generated research interest into the potential population health impact. We present a systematic review of quantitative studies investigating the relationship between international trade, foreign direct investment and non-nutritional health outcomes. Articles were systematically collected from the SCOPUS, PubMed, EconLit and Web of Science databases. Due to the heterogeneous nature of the evidence considered, the 16 included articles were subdivided into individual level data analyses, selected country analyses and international panel analyses. Articles were then quality assessed using a tool developed as part of the project. Nine of the studies were assessed to be high quality, six as medium quality, and one as low quality. The evidence from the quantitative literature suggests that overall, there appears to be a beneficial association between international trade and population health. There was also evidence of the importance of foreign direct investment, yet a lack of research considering the direction of causality. Taken together, quantitative research into the relationship between trade and non-nutritional health indicates trade to be beneficial, yet this body of research is still in its infancy. Future quantitative studies based on this foundation will provide a stronger basis on which to inform relevant national and international institutions about the health consequences of trade policies.

  6. Finite Element Estimation of Meteorite Structural Properties

    NASA Technical Reports Server (NTRS)

    Hart, Kenneth Arthur

    2015-01-01

    The goal of the project titled Asteroid Threat Assessment at NASA Ames Research Center is to develop risk assessment tools. The expertise in atmospheric entry in the Entry Systems and Technology Division is being used to describe the complex physics of meteor breakup in the atmosphere. The breakup of a meteor is dependent on its structural properties, including homogeneity of the material. The present work describes an 11-week effort in which a literature survey was carried for structural properties of meteoritic material. In addition, the effect of scale on homogeneity isotropy was studied using a Monte Carlo approach in Nastran. The properties were then in a static structural response simulation of an irregularly-shape meteor (138-scale version of Asteroid Itokawa). Finally, an early plan was developed for doctoral research work at Georgia Tech. in the structural failure fragmentation of meteors.

  7. Quantitative structure-activity relationship (QSAR) study of a series of benzimidazole derivatives as inhibitors of Saccharomyces cerevisiae.

    PubMed

    Podunavac-Kuzmanović, Sonja O; Cvetković, Dragoljub D; Jevrić, Lidija R; Uzelac, Natasa J

    2013-01-01

    A quantitative structure activity relationship (QSAR) has been carried out on a series of benzimidazole derivatives to identify the structural requirements for their inhibitory activity against yeast Saccharomyces cerevisiae. A multiple linear regression (MLR) procedure was used to model the relationships between various physicochemical, steric, electronic, and structural molecular descriptors and antifungal activity of benzimidazole derivatives. The QSAR expressions were generated using a training set of 16 compounds and the predictive ability of the resulting models was evaluated against a test set of 8 compounds. The best QSAR models were further validated by leave one out technique as well as by the calculation of statistical parameters for the established theoretical models. Therefore, satisfactory relationships between antifungal activity and molecular descriptors were found. QSAR analysis reveals that lipophilicity descriptor (logP), dipole moment (DM) and surface area grid (SAG) govern the inhibitory activity of compounds studied against Saccharomyces cerevisiae.

  8. Aquatic toxicity of acrylates and methacrylates: quantitative structure-activity relationships based on Kow and LC50

    SciTech Connect

    Reinert, K.H.

    1987-12-01

    Recent EPA scrutiny of acrylate and methacrylate monomers has resulted in restrictive consent orders and Significant New Use Rules under the Toxic Substances Control Act, based on structure-activity relationships using mouse skin painting studies. The concern is centered on human health issues regarding worker and consumer exposure. Environmental issues, such as aquatic toxicity, are still of concern. Understanding the relationships and environmental risks to aquatic organisms may improve the understanding of the potential risks to human health. This study evaluates the quantitative structure-activity relationships from measured log Kow's and log LC50's for Pimephales promelas (fathead minnow) and Carassius auratus (goldfish). Scientific support of the current regulations is also addressed. Two monomer classes were designated: acrylates and methacrylates. Spearman rank correlation and linear regression were run. Based on this study, an ecotoxicological difference exists between acrylates and methacrylates. Regulatory activities and scientific study should reflect this difference.

  9. Parent-Caregiver Relationships among Beginning Caregivers in Canada: A Quantitative Study

    ERIC Educational Resources Information Center

    Cantin, Gilles; Plante, Isabelle; Coutu, Sylvain; Brunson, Liesette

    2012-01-01

    Despite the importance of establishing meaningful parent-caregiver relationships, little is known about these dyadic relationships among beginning caregivers, who often feel insufficiently prepared to build successful alliances with parents. The present study examined the congruence between parents' and beginning caregivers' perceptions of their…

  10. Quantitative Evaluation of a First Year Seminar Program: Relationships to Persistence and Academic Success

    ERIC Educational Resources Information Center

    Jenkins-Guarnieri, Michael A.; Horne, Melissa M.; Wallis, Aaron L.; Rings, Jeffrey A.; Vaughan, Angela L.

    2015-01-01

    In the present study, we conducted a quantitative evaluation of a novel First Year Seminar (FYS) program with a coordinated curriculum implemented at a public, four-year university to assess its potential role in undergraduate student persistence decisions and academic success. Participants were 2,188 first-year students, 342 of whom completed the…

  11. Structural Properties of the Native Ligamentum Teres

    PubMed Central

    Philippon, Marc J.; Rasmussen, Matthew T.; Turnbull, Travis Lee; Trindade, Christiano A.C.; Hamming, Mark G.; Ellman, Michael B.; Harris, Matthew; LaPrade, Robert F.; Wijdicks, Coen A.

    2014-01-01

    Background: A majority of studies investigating the role of the ligamentum teres (LT) have focused primarily on anatomical and histological descriptions. To date, however, the structural properties of the LT have yet to be fully elucidated. Purpose: To investigate the structural properties of the native LT in a human cadaveric model. Study Design: Descriptive laboratory study. Methods: A total of 12 human cadaveric hemipelvises (mean age, 53.6 years; range, 34-63 years) were dissected free of all extra-articular soft tissues to isolate the LT and its acetabular and femoral attachments. A dynamic tensile testing machine distracted each femur in line with the fibers of the LT at a displacement-controlled rate of 0.5 mm/s. The anatomic dimensions, structural properties, and modes of failure were recorded. Results: The LT achieved a mean yield load of 75 N and ultimate failure load of 204 N. The LT had mean lengths of 38.0 and 53.0 mm at its yield and failure points, respectively. The most common (75% of specimens) mechanism of failure was tearing at the fovea capitis. On average, the LT had a linear stiffness of 16 N/mm and elastic modulus of 9.24 MPa. The mean initial length and cross-sectional area were 32 mm and 59 mm2, respectively. Conclusion: The human LT had a mean ultimate failure load of 204 N. Therefore, the results of this investigation, combined with recent biomechanical and outcomes studies, suggest that special consideration should be given to preserving the structural and corresponding biomechanical integrity of the LT during surgical intervention. Clinical Relevance: The LT may be more important as a static stabilizer of the hip joint than previously recognized. Further studies are recommended to investigate the appropriate indications to perform surgical repair or reconstruction of the LT for preservation of hip stability and function. PMID:26535290

  12. Structure-Property Relationships in Sulfonated Pentablock Copolymers

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hong; Willis, Carl; Winey, Karen I.

    2011-03-01

    Membranes of pentablock copolymers consisting of poly(tert-butyl styrene) (TBS), hydrogenated polyisoprene (HI), and partially sulfonated poly(styrene-ran-styrene sulfonate) (SS) were studied using small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The TBS-HI-SS-HI-TBS pentablock copolymer in solution forms spherical micelles with a core of SS and a corona of solvated HI and TBS. The spherical micelles in solution compact as the solvent evaporates and some of SS cores merge to form interconnected SS microdomains without substantially changing their shape. The number of connections increases with the volume fraction of the SS block, which increases with sulfonation level. The structure does not have long-range order, because strong ionic interactions prevent extensive rearrangement. The morphologies of the sulfonated pentablock copolymers will be correlated with their transport properties.

  13. Structure Property Relationships in Imidazole-based Deep Eutectic Mixtures

    NASA Astrophysics Data System (ADS)

    Terheggen, Logan; Cosby, Tyler; Sangoro, Joshua

    2015-03-01

    Deep eutectic mixtures of levulinic acid with a systematic series of imidazoles are measured by broadband dielectric spectroscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy to investigate the impact of steric interactions on charge transport and structural dynamics. An enhancement of dc conductivity is found in each of the imidazoles upon the addition of levulinic acid. However, the extent of increase is dependent upon the alkyl substitution on the imidazole ring. These results highlight the importance of molecular structure on hydrogen bonding and charge transport in deep eutectic mixtures.

  14. Processing-structure-properties relationships in PLA nanocomposite films

    NASA Astrophysics Data System (ADS)

    Di Maio, L.; Scarfato, P.; Garofalo, E.; Galdi, M. R.; D'Arienzo, L.; Incarnato, L.

    2014-05-01

    This work deals on the possibility to improve performances of PLA-based nanocomposite films, for packaging applications, through conveniently tuning materials and processing conditions in melt compounding technology. In particular, two types of polylactic acid and different types of filler selected from montmorillonites and bentonites families were used to prepare the hybrid systems by using a twin-screw extruder. The effect of biaxial drawing on morphology and properties of the nanocomposites, produced by film blowing, was investigated.

  15. Structure-property-processing relationships in Kevlar fibers

    SciTech Connect

    Lacks, D.J.

    1996-12-31

    Molecular simulations are carried out to elucidate the differences in the properties of the commercial fibers Kevlar 29, Kevlar 49 and Kevlar 149, which are manufactured under different processing conditions, and are composed of poly(p-phenylene teraphthalamide) (PPTA). In going from Kevlar 29 to Kevlar 49 to Kevlar 149, the axial Young`s modulus increases significantly and the torsion modulus decreases significantly, while the compressive strength stays roughly the same. Previous investigators have shown that the increase in the Young`s modulus arises from increased axial orientation. The present paper addresses the torsion modulus and compressive strength of the fibers.

  16. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    SciTech Connect

    Chen, Jingguan

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  17. Structure property relationships for the nonlinear optical response of fullerenes

    NASA Astrophysics Data System (ADS)

    Rustagi, Kailash C.; Ramaniah, Lavanya M.; Nair, Selvakumar V.

    1994-11-01

    We present a phenomenological theory of nonlinear optical response of fullerenes. An empirical tight-binding model is used in conjunction with a classical electromagnetic picture for the screening. Since in bulk media such a picture of screening corresponds to the self- consistent field approach, the only additional approximation involved in our approach is the neglect of nonlocality. We obtain reliable estimates for the linear and nonlinear susceptibilities of C60, C70, C76 and other pure carbon fullerenes and also substituted fullerenes. The relatively large values of (beta) that we obtain for C76 and substituted fullerenes appear promising for the development of fullerene-based nonlinear optical materials. Our phenomenological picture of screening provides a good understanding of the linear absorption spectra of higher fullerenes and predicts that a comparison of the one-photon and multi-photon spectra will provide an insight into screening effects in these systems.

  18. Structure-Property Relationships of Architectural Coatings by Neutron Methods

    NASA Astrophysics Data System (ADS)

    Nakatani, Alan

    2015-03-01

    Architectural coatings formulations are multi-component mixtures containing latex polymer binder, pigment, rheology modifiers, surfactants, and colorants. In order to achieve the desired flow properties for these formulations, measures of the underlying structure of the components as a function of shear rate and the impact of formulation variables on the structure is necessary. We have conducted detailed measurements to understand the evolution under shear of local microstructure and larger scale mesostructure in model architectural coatings formulations by small angle neutron scattering (SANS) and ultra small angle neutron scattering (USANS), respectively. The SANS results show an adsorbed layer of rheology modifier molecules exist on the surface of the latex particles. However, the additional hydrodynamic volume occupied by the adsorbed surface layer is insufficient to account for the observed viscosity by standard hard sphere suspension models (Krieger-Dougherty). The USANS results show the presence of latex aggregates, which are fractal in nature. These fractal aggregates are the primary structures responsible for coatings formulation viscosity. Based on these results, a new model for the viscosity of coatings formulations has been developed, which is capable of reproducing the observed viscosity behavior.

  19. Cement-aggregate compatibility and structure property relationships including modelling

    SciTech Connect

    Jennings, H.M.; Xi, Y.

    1993-07-15

    The role of aggregate, and its interface with cement paste, is discussed with a view toward establishing models that relate structure to properties. Both short (nm) and long (mm) range structure must be considered. The short range structure of the interface depends not only on the physical distribution of the various phases, but also on moisture content and reactivity of aggregate. Changes that occur on drying, i.e. shrinkage, may alter the structure which, in turn, feeds back to alter further drying and shrinkage. The interaction is dynamic, even without further hydration of cement paste, and the dynamic characteristic must be considered in order to fully understand and model its contribution to properties. Microstructure and properties are two subjects which have been pursued somewhat separately. This review discusses both disciplines with a view toward finding common research goals in the future. Finally, comment is made on possible chemical reactions which may occur between aggregate and cement paste.

  20. NASA Intellectual Property Negotiation Practices and their Relationship to Quantitative Measures of Technology Transfer

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.

    1997-01-01

    In the current political climate NASA must be able to show reliable measures demonstrating successful technology transfer. The currently available quantitative data of intellectual property technology transfer efforts portray a less than successful performance. In this paper, the use of only quantitative values for measurement of technology transfer is shown to undervalue the effort. In addition, NASA's current policy in negotiating intellectual property rights results in undervalued royalty rates. NASA has maintained that it's position of providing public good precludes it from negotiating fair market value for its technology and instead has negotiated for reasonable cost in order to recover processing fees. This measurement issue is examined and recommendations made which include a new policy regarding the intellectual property rights negotiation, and two measures to supplement the intellectual property measures.

  1. THREE-DIMENSIONAL QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIP (3D-QSPR) MODELS FOR PREDICTION OF THERMODYNAMIC PROPERTIES OF POLYCHLORINATED BIPHENYLS (PCBS): ENTHALPIES OF FUSION AND THEIR APPLICATION TO ESTIMATES OF ENTHALPIES OF SUBLIMATION AND AQUEOUS SOLUBILITIES. (R826133)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Quantitative structure-activity relationship modeling on in vitro endocrine effects and metabolic stability involving 26 selected brominated flame retardants.

    PubMed

    Harju, Mikael; Hamers, Timo; Kamstra, Jorke H; Sonneveld, Edwin; Boon, Jan P; Tysklind, Mats; Andersson, Patrik L

    2007-04-01

    In this work, quantitative structure-activity relationships (QSARs) were developed to aid human and environmental risk assessment processes for brominated flame retardants (BFRs). Brominated flame retardants, such as the high-production-volume chemicals polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A, and hexabromocyclododecane, have been identified as potential endocrine disruptors. Quantitative structure-activity relationship models were built based on the in vitro potencies of 26 selected BFRs. The in vitro assays included interactions with, for example, androgen, progesterone, estrogen, and dioxin (aryl hydrocarbon) receptor, plus competition with thyroxine for its plasma carrier protein (transthyretin), inhibition of estradiol sulfation via sulfotransferase, and finally, rate of metabolization. The QSAR modeling, a number of physicochemical parameters were calculated describing the electronic, lipophilic, and structural characteristics of the molecules. These include frontier molecular orbitals, molecular charges, polarities, log octanol/water partitioning coefficient, and two- and three-dimensional molecularproperties. Experimental properties were included and measured for PBDEs, such as their individual ultraviolet spectra (200-320 nm) and retention times on three different high-performance liquid chromatography columns and one nonpolar gas chromatography column. Quantitative structure-activity relationship models based on androgen antagonism and metabolic degradation rates generally gave similar results, suggesting that lower-brominated PBDEs with bromine substitutions in ortho positions and bromine-free meta- and para positions had the highest potencies and metabolic degradation rates. Predictions made for the constituents of the technical flame retardant Bromkal 70-5DE found BDE 17 to be a potent androgen antagonist and BDE 66, which is a relevant PBDE in environmental samples, to be only a weak antagonist.

  3. [Studies on enzymic browning of potatoes (Solanum tuberosum). II. The quantitative relationship between browning and its causative factors (author's transl)].

    PubMed

    Matheis, G; Belitz, H D

    1977-03-21

    Ten potato varieties, with different rates of browning, were analyzed quantitatively for phenoloxidase, tyrosine, chlorogenic acid, caffeic acid, and for reducing substances (ascorbic acid). The rate of tyrosine turnover was calculated from the data. The fact that the further reactions of the primary oxidation products leading to browning only take place after complete oxidation of the reducing substances, was taken into account. This leads to the same classification of the varieties as does visual observation of the rate of discolouration. Thus a clear relationship between browning and potato constituents is demonstrated. PMID:404776

  4. Quantitative structure-activity relationship modeling of polycyclic aromatic hydrocarbon mutagenicity by classification methods based on holistic theoretical molecular descriptors.

    PubMed

    Gramatica, Paola; Papa, Ester; Marrocchi, Assunta; Minuti, Lucio; Taticchi, Aldo

    2007-03-01

    Various polycyclic aromatic hydrocarbons (PAHs), ubiquitous environmental pollutants, are recognized mutagens and carcinogens. A homogeneous set of mutagenicity data (TA98 and TA100,+S9) for 32 benzocyclopentaphenanthrenes/chrysenes was modeled by the quantitative structure-activity relationship classification methods k-nearest neighbor and classification and regression tree, using theoretical holistic molecular descriptors. Genetic algorithm provided the selection of the best subset of variables for modeling mutagenicity. The models were validated by leave-one-out and leave-50%-out approaches and have good performance, with sensitivity and specificity ranges of 90-100%. Mutagenicity assessment for these PAHs requires only a few theoretical descriptors of their molecular structure.

  5. Obscure phenomena in statistical analysis of quantitative structure-activity relationships. Part 1: Multicollinearity of physicochemical descriptors.

    PubMed

    Mager, P P; Rothe, H

    1990-10-01

    Multicollinearity of physicochemical descriptors leads to serious consequences in quantitative structure-activity relationship (QSAR) analysis, such as incorrect estimators and test statistics of regression coefficients of the ordinary least-squares (OLS) model applied usually to QSARs. Beside the diagnosis of the known simple collinearity, principal component regression analysis (PCRA) also allows the diagnosis of various types of multicollinearity. Only if the absolute values of PCRA estimators are order statistics that decrease monotonically, the effects of multicollinearity can be circumvented. Otherwise, obscure phenomena may be observed, such as good data recognition but low predictive model power of a QSAR model.

  6. Structural properties of prokaryotic promoter regions correlate with functional features.

    PubMed

    Meysman, Pieter; Collado-Vides, Julio; Morett, Enrique; Viola, Roberto; Engelen, Kristof; Laukens, Kris

    2014-01-01

    The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties.

  7. The law of effect and avoidance: a quantitative relationship between response rate and shock-frequency reduction1

    PubMed Central

    De Villiers, Peter A.

    1974-01-01

    Two experiments were conducted to investigate the quantitative relationship between response rate and reinforcement frequency in single and multiple variable-interval avoidance schedules. Responses cancelled delivery of shocks that were scheduled by variable-interval schedules. When shock-frequency reduction was taken as the measure of reinforcement, the relationship between response rate and reinforcement frequency on single variable-interval avoidance schedules was accurately described by Herrnstein's (1970) equation for responding on single variable-interval schedules of positive reinforcement. On multiple variable-interval avoidance schedules with brief components, asymptotic relative response rate matched relative shock-frequency reduction. The results suggest that many interactions between response rates and shock-frequency reduction in avoidance can be understood within the framework of the generalized matching relation, as applied by Herrnstein (1970) to positive reinforcement. PMID:16811740

  8. Benzimidazole-Based Quinazolines: In Vitro Evaluation, Quantitative Structure-Activity Relationship, and Molecular Modeling as Aurora Kinase Inhibitors.

    PubMed

    Sharma, Alka; Luxami, Vijay; Saxena, Sanjai; Paul, Kamaldeep

    2016-03-01

    A series of benzimidazole-based quinazoline derivatives with different substitutions of primary and secondary amines at the C2 position (1-12) were evaluated for their Aurora kinase inhibitory activities. All compounds except for 3 and 6 showed good activity against Aurora kinase inhibitors, with IC50 values in the range of 0.035-0.532 μM. The ligand efficiency (LE) of the compounds with Aurora A kinase was also determined. The structure-activity relationship and the quantitative structure-activity relationship revealed that the Aurora inhibitory activities of these derivatives primarily depend on the different substitutions of the amine present at the C2 position of the quinazoline core. Molecular docking studies in the active binding site also provided theoretical support for the experimental biological data acquired. The current study identifies a novel class of Aurora kinase inhibitors, which can further be used for the treatment of cancer.

  9. Structure-guided unravelling: Phenolic hydroxyls contribute to reduction of acrylamide using multiplex quantitative structure-activity relationship modelling.

    PubMed

    Zhang, Yu; Huang, Mengmeng; Wang, Qiao; Cheng, Jun

    2016-05-15

    We reported a structure-activity relationship study on unravelling phenolic hydroxyls instead of alcoholic hydroxyls contribute to the reduction of acrylamide formation by flavonoids. The dose-dependent study shows a close correlation between the number of phenolic hydroxyls of flavonoids and their reduction effects. In view of positions of hydroxyls, the 3',4'(ortho)-dihydroxyls in B cycle, 3-hydroxyl or hydroxyls of 3-gallate in C cycle, and 5,7(meta)-dihydroxyls in A cycle of flavonoid structures play an important role in the reduction of acrylamide. Flavone C-glycosides are more effective at reducing the formation of acrylamide than flavone O-glycosides when sharing the same aglycone. The current multiplex quantitative structure-activity relationship (QSAR) equations effectively predict the inhibitory rates of acrylamide using selected chemometric parameters (R(2): 0.835-0.938). This pioneer study opens a broad understanding on the chemoprevention of acrylamide contaminants on a structural basis.

  10. Effective structural properties in polycrystalline graphene

    NASA Astrophysics Data System (ADS)

    Hossain, Zubaer

    This talk will discuss effective structural properties in polycrystalline graphene under the presence of atomic scale heterogeneity. Polycrystallinity is ubiquitous in solids, but theories describing their effective behavior remain limited, particularly when heterogeneity is present in the form of nonuniform deformation or composition. Over the decades, exploration of the effective transport and strength properties of heterogeneous systems has been carried out mostly with random distribution of grains or regular periodic structures under various approximations, in translating the underlying physics into a single representative volume element. Although heterogeneity can play a critical role in modulating the basic behavior of low-dimensional materials, it is difficult to capture the local characteristics accurately by these approximations. Taking polycrystalline graphene as an example material, we study the effective structural properties (such as Young's Modulus, Poisson's ratio and Toughness) by using a combination of density functional theory and molecular dynamic simulations. We identify the key mechanisms that govern their effective behavior and exploit the understanding to engineer the behavior by doping with a carefully selected choice of chemical elements.

  11. Structural properties of small rhodium clusters

    NASA Astrophysics Data System (ADS)

    Soon, Yee Yeen; Lim, Thong Leng; Yoon, Tiem Leong

    2015-04-01

    We report a systematic study of the structural properties of rhodium clusters at the atomistic level. A novel global-minimum search algorithm, known as parallel tempering multicanonical basin hopping plus genetic algorithm (PTMBHGA), is used to obtain the geometrical structures with lowest minima at the semi-empirical level where Gupta potential is used to describe the atomic interaction among the rhodium atoms. These structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA). The structures are optimized for different spin multiplicities. The ones with lowest energies will be taken as ground-state structures. In most cases, we observe only minor changes in the geometry and bond length of the clusters as a result of DFT-level re-optimization. Only in some limited cases, the initial geometries obtained from the PTMBHGA are modified by the re-optimization. The variation of structural properties, such as ground-state geometry, symmetry and binding energy, with respect to the cluster size is studied and agreed well with other results available in the literature.

  12. Structural properties of small rhodium clusters

    SciTech Connect

    Soon, Yee Yeen; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    We report a systematic study of the structural properties of rhodium clusters at the atomistic level. A novel global-minimum search algorithm, known as parallel tempering multicanonical basin hopping plus genetic algorithm (PTMBHGA), is used to obtain the geometrical structures with lowest minima at the semi-empirical level where Gupta potential is used to describe the atomic interaction among the rhodium atoms. These structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA). The structures are optimized for different spin multiplicities. The ones with lowest energies will be taken as ground-state structures. In most cases, we observe only minor changes in the geometry and bond length of the clusters as a result of DFT-level re-optimization. Only in some limited cases, the initial geometries obtained from the PTMBHGA are modified by the re-optimization. The variation of structural properties, such as ground-state geometry, symmetry and binding energy, with respect to the cluster size is studied and agreed well with other results available in the literature.

  13. A Quantitative Study on the Relationship between Teachers' Technology Perceptions and Math Proficiency

    ERIC Educational Resources Information Center

    Wooldridge, Vernon William

    2009-01-01

    Increases in instructional technology investments in recent years have been discrepant with anticipated gains in math proficiency levels. Past researchers have attempted to explain the relationship between available educational technology and teacher-perceived benefits of technology-assisted instruction as a predictor of effective integration…

  14. The Relationship of Employee Status to Organizational Culture and Organizational Effectiveness: A Quantitative Analysis

    ERIC Educational Resources Information Center

    Deem, Jackie W.; DeLotell, Pam J.; Kelly, Kathryn

    2015-01-01

    Purpose: This study investigates the relationship between employment status (full time (FT)/part time (PT)), organizational culture and institutional effectiveness in higher education. The purpose of this paper is to answer the question, "Does the growing population of PT faculty preclude effective cultures from developing and, accordingly,…

  15. A Quantitative Review of the Relationship between Person-Organization Fit and Behavioral Outcomes

    ERIC Educational Resources Information Center

    Hoffman, Brian J.; Woehr, David J.

    2006-01-01

    This paper extends the meta-analysis of Verquer, Beehr, and Wagner by providing a meta-analytic review of the relationship between person-organization fit (PO fit) and behavioral criteria (job performance, organizational citizenship behaviors, and turnover). Results indicate that PO fit is weakly to moderately related to each of these outcome…

  16. Qualitative and quantitative structure-activity relationship modelling for predicting blood-brain barrier permeability of structurally diverse chemicals.

    PubMed

    Gupta, S; Basant, N; Singh, K P

    2015-01-01

    In this study, structure-activity relationship (SAR) models have been established for qualitative and quantitative prediction of the blood-brain barrier (BBB) permeability of chemicals. The structural diversity of the chemicals and nonlinear structure in the data were tested. The predictive and generalization ability of the developed SAR models were tested through internal and external validation procedures. In complete data, the QSAR models rendered ternary classification accuracy of >98.15%, while the quantitative SAR models yielded correlation (r(2)) of >0.926 between the measured and the predicted BBB permeability values with the mean squared error (MSE) <0.045. The proposed models were also applied to an external new in vitro data and yielded classification accuracy of >82.7% and r(2) > 0.905 (MSE < 0.019). The sensitivity analysis revealed that topological polar surface area (TPSA) has the highest effect in qualitative and quantitative models for predicting the BBB permeability of chemicals. Moreover, these models showed predictive performance superior to those reported earlier in the literature. This demonstrates the appropriateness of the developed SAR models to reliably predict the BBB permeability of new chemicals, which can be used for initial screening of the molecules in the drug development process.

  17. Novel Uses of In Vitro Data to Develop Quantitative Biological Activity Relationship Models for in Vivo Carcinogenicity Prediction.

    PubMed

    Pradeep, Prachi; Povinelli, Richard J; Merrill, Stephen J; Bozdag, Serdar; Sem, Daniel S

    2015-04-01

    The availability of large in vitro datasets enables better insight into the mode of action of chemicals and better identification of potential mechanism(s) of toxicity. Several studies have shown that not all in vitro assays can contribute as equal predictors of in vivo carcinogenicity for development of hybrid Quantitative Structure Activity Relationship (QSAR) models. We propose two novel approaches for the use of mechanistically relevant in vitro assay data in the identification of relevant biological descriptors and development of Quantitative Biological Activity Relationship (QBAR) models for carcinogenicity prediction. We demonstrate that in vitro assay data can be used to develop QBAR models for in vivo carcinogenicity prediction via two case studies corroborated with firm scientific rationale. The case studies demonstrate the similarities between QBAR and QSAR modeling in: (i) the selection of relevant descriptors to be used in the machine learning algorithm, and (ii) the development of a computational model that maps chemical or biological descriptors to a toxic endpoint. The results of both the case studies show: (i) improved accuracy and sensitivity which is especially desirable under regulatory requirements, and (ii) overall adherence with the OECD/REACH guidelines. Such mechanism based models can be used along with QSAR models for prediction of mechanistically complex toxic endpoints.

  18. Research of dose-effect relationship parameters of percutaneous microwave ablation for uterine leiomyomas--a quantitative study.

    PubMed

    Xia, Ma; Jing, Zhang; Zhi-yu, Han; Yu, Yang; Yan-li, Hao; Chang-tao, Xu; Rui-fang, Xu; Bing-song, Zhang; Bao-wei, Dong

    2014-01-01

    Eighty eight patients with 91 uterine leiomyomas who underwent ultrasound-guided percutaneous microwave ablation (PMWA) treatment were prospectively included in the study in order to study the dose-effect relationship parameters (DERP) of PMWA for uterine leiomyomas and its relationship with T2-weighted MR imaging (T2WI). Based on the signal intensity of T2WI, uterine leiomyomas were classified as hypointense, isointense, and hyperintense. During ablation, leiomyomas were treated with quantitative microwave ablation (QMWA) energy of 50 w × 300 s or 60 w × 300 s. After QMWA, contrast-enhanced ultrasound (CEUS) was performed to evaluate DERP. No matter under 50 w × 300 s or 60 w × 300 s, quantitative microwave ablation volume (QMAV) of hyperintense leiomyoma was smaller than that of hypointense and isointense leiomyoma (P<0.016). For hypointense and isointense leiomyoma, QMAV of 60 w × 300 s was larger than that of 50 w × 300 s (P<0.05). DERPs obtained by T2WI can be used to guide the treatment of uterine leiomyoma by PMWA. PMID:25267154

  19. Quantitative assessment of the relationships among ecological, morphological and aesthetic values in a river rehabilitation initiative.

    PubMed

    McCormick, Ashlee; Fisher, Karen; Brierley, Gary

    2015-04-15

    Promoting community support in rehabilitation efforts through incorporation of aesthetic considerations is an important component of environmental management. This research utilised a small-scale survey methodology to explore relationships among the ecological and morphological goals of scientists and the aesthetic goals of the public using the Twin Streams Catchment, Auckland, New Zealand, as a case study. Analyses using a linear model and a generalised linear mixed model showed statistically significant relationships between perceived naturalness of landscapes and their aesthetic ratings, and among ratings of perceived naturalness and ecological integrity and morphological condition. Expert measures of health and the aesthetic evaluations of the public were well aligned, indicating public preferences for landscapes of high ecological integrity with good morphological condition. Further analysis revealed participants used 'cues to care' to rate naturalness. This suggests that environmental education endeavours could further align values with these cues in efforts to enhance approaches to landscape sustainability.

  20. The emotional coaching model: quantitative and qualitative research into relationships, communication and decisions in physical and sports rehabilitation

    PubMed Central

    RESPIZZI, STEFANO; COVELLI, ELISABETTA

    2015-01-01

    The emotional coaching model uses quantitative and qualitative elements to demonstrate some assumptions relevant to new methods of treatment in physical rehabilitation, considering emotional, cognitive and behavioral aspects in patients, whether or not they are sportsmen. Through quantitative tools (Tampa Kinesiophobia Scale, Emotional Interview Test, Previous Re-Injury Test, and reports on test scores) and qualitative tools (training contracts and relationships of emotional alliance or “contagion”), we investigate initial assumptions regarding: the presence of a cognitive and emotional mental state of impasse in patients at the beginning of the rehabilitation pathway; the curative value of the emotional alliance or “emotional contagion” relationship between healthcare provider and patient; the link between the patient’s pathology and type of contact with his own body and emotions; analysis of the psychosocial variables for the prediction of possible cases of re-injury for patients who have undergone or are afraid to undergo reconstruction of the anterior cruciate ligament (ACL). Although this approach is still in the experimental stage, the scores of the administered tests show the possibility of integrating quantitative and qualitative tools to investigate and develop a patient’s physical, mental and emotional resources during the course of his rehabilitation. Furthermore, it seems possible to identify many elements characterizing patients likely to undergo episodes of re-injury or to withdraw totally from sporting activity. In particular, such patients are competitive athletes, who fear or have previously undergone ACL reconstruction. The theories referred to (the transactional analysis theory, self-determination theory) and the tools used demonstrate the usefulness of continuing this research in order to build a shared coaching model treatment aimed at all patients, sportspeople or otherwise, which is not only physical but also emotional, cognitive

  1. The emotional coaching model: quantitative and qualitative research into relationships, communication and decisions in physical and sports rehabilitation.

    PubMed

    Respizzi, Stefano; Covelli, Elisabetta

    2015-01-01

    The emotional coaching model uses quantitative and qualitative elements to demonstrate some assumptions relevant to new methods of treatment in physical rehabilitation, considering emotional, cognitive and behavioral aspects in patients, whether or not they are sportsmen. Through quantitative tools (Tampa Kinesiophobia Scale, Emotional Interview Test, Previous Re-Injury Test, and reports on test scores) and qualitative tools (training contracts and relationships of emotional alliance or "contagion"), we investigate initial assumptions regarding: the presence of a cognitive and emotional mental state of impasse in patients at the beginning of the rehabilitation pathway; the curative value of the emotional alliance or "emotional contagion" relationship between healthcare provider and patient; the link between the patient's pathology and type of contact with his own body and emotions; analysis of the psychosocial variables for the prediction of possible cases of re-injury for patients who have undergone or are afraid to undergo reconstruction of the anterior cruciate ligament (ACL). Although this approach is still in the experimental stage, the scores of the administered tests show the possibility of integrating quantitative and qualitative tools to investigate and develop a patient's physical, mental and emotional resources during the course of his rehabilitation. Furthermore, it seems possible to identify many elements characterizing patients likely to undergo episodes of re-injury or to withdraw totally from sporting activity. In particular, such patients are competitive athletes, who fear or have previously undergone ACL reconstruction. The theories referred to (the transactional analysis theory, self-determination theory) and the tools used demonstrate the usefulness of continuing this research in order to build a shared coaching model treatment aimed at all patients, sportspeople or otherwise, which is not only physical but also emotional, cognitive and

  2. Quantitative relationship between silica exposure and lung cancer mortality in German uranium miners, 1946–2003

    PubMed Central

    Sogl, M; Taeger, D; Pallapies, D; Brüning, T; Dufey, F; Schnelzer, M; Straif, K; Walsh, L; Kreuzer, M

    2012-01-01

    Background: In 1996 and 2009, the International Agency for Research on Cancer classified silica as carcinogenic to humans. The exposure–response relationship between silica and lung cancer risk, however, is still debated. Data from the German uranium miner cohort study were used to further investigate this relationship. Methods: The cohort includes 58 677 workers with individual information on occupational exposure to crystalline silica in mg m−3-years and the potential confounders radon and arsenic based on a detailed job-exposure matrix. In the follow-up period 1946–2003, 2995 miners died from lung cancer. Internal Poisson regression with stratification by age and calendar year was used to estimate the excess relative risk (ERR) per dust-year. Several models including linear, linear quadratic and spline functions were applied. Detailed adjustment for cumulative radon and arsenic exposure was performed. Results: A piecewise linear spline function with a knot at 10 mg m−3-years provided the best model fit. After full adjustment for radon and arsenic no increase in risk <10 mg m−3-years was observed. Fixing the parameter estimate of the ERR in this range at 0 provided the best model fit with an ERR of 0.061 (95% confidence interval: 0.039, 0.083) >10 mg m−3-years. Conclusion: The study confirms a positive exposure–response relationship between silica and lung cancer, particularly for high exposures. PMID:22929885

  3. Relationships between quantitative spinal cord MRI and retinal layers in multiple sclerosis

    PubMed Central

    Sotirchos, Elias S.; Saidha, Shiv; Whetstone, Anna; Chen, Min; Newsome, Scott D.; Zackowski, Kathy; Balcer, Laura J.; Frohman, Elliot; Prince, Jerry; Diener-West, Marie; Reich, Daniel S.

    2015-01-01

    Objective: To assess relationships between spinal cord MRI (SC-MRI) and retinal measures, and to evaluate whether these measures independently relate to clinical disability in multiple sclerosis (MS). Methods: One hundred two patients with MS and 11 healthy controls underwent 3-tesla brain and cervical SC-MRI, which included standard T1- and T2-based sequences and diffusion-tensor and magnetization-transfer imaging, and optical coherence tomography with automated segmentation. Clinical assessments included visual acuity (VA), Expanded Disability Status Scale, MS functional composite, vibration sensation threshold, and hip-flexion strength. Regions of interest circumscribing SC cross-sections at C3-4 were used to obtain cross-sectional area (CSA), fractional anisotropy (FA), perpendicular diffusivity (λ⊥), and magnetization transfer ratio. Multivariable regression assessed group differences and SC, retinal, and clinical relationships. Results: In MS, there were correlations between SC-CSA, SC-FA, SC-λ⊥, and peripapillary retinal nerve fiber layer (pRNFL) (p = 0.01, p = 0.002, p = 0.001, respectively) after adjusting for age, sex, prior optic neuritis, and brain atrophy. In multivariable clinical models, when SC-CSA, pRNFL, and brain atrophy were included simultaneously, SC-CSA and pRNFL retained independent relationships with low-contrast VA (p = 0.04, p = 0.002, respectively), high-contrast VA (p = 0.06, p = 0.008), and vibration sensation threshold (p = 0.01, p = 0.05). SC-CSA alone retained independent relationships with Expanded Disability Status Scale (p = 0.001), hip-flexion strength (p = 0.001), and MS functional composite (p = 0.004). Conclusions: In this cross-sectional study of patients with MS, correlations exist between SC-MRI and retinal layers, and both exhibit independent relationships with clinical dysfunction. These findings suggest that the SC and optic nerve reflect ongoing global pathologic processes that supplement measures of whole

  4. Quantitative analysis of bottlenose dolphin movement patterns and their relationship with foraging.

    PubMed

    Bailey, Helen; Thompson, Paul

    2006-03-01

    1. Broad-scale telemetry studies have greatly improved our understanding of the ranging patterns and habitat-use of many large vertebrates. However, there often remains considerable uncertainty over the function of different areas or the factors influencing habitat selection. Further insights into these processes can be obtained through analyses of finer scale movement patterns. For example, search behaviour may be modified in response to prey distribution and abundance. 2. In this study, quantitative analysis techniques are applied to the movements of bottlenose dolphins, recorded from land using a theodolite, to increase our understanding of their foraging strategies. Movements were modelled as a correlated random walk (CRW) and a biased random walk (BRW) to identify movement types and using a first-passage time (FPT) approach, which quantifies the time allocated to different areas and identifies the location and spatial scale of intensive search effort. 3. Only a quarter of the tracks were classed as CRW movement. Turning angle and directionality appeared to be key factors in determining the type of movement adopted. A high degree of overlap in search effort between separate movement paths indicated that there were small key sites (0.3 km radius) within the study area (4 km(2)). Foraging behaviour occurred mainly within these intensive search areas, indicating that they were feeding sites. 4. This approach provides a quantitative method of identifying important foraging areas and their spatial scale. Such techniques could be applied to movement paths for a variety of species derived from telemetry studies and increase our understanding of their foraging strategies.

  5. A NON-LINEAR STRUCTURE-PROPERTY MODEL FOR OCTANOL-WATER PARTITION COEFFICIENT

    PubMed Central

    Yerramsetty, Krishna M.; Neely, Brian J.; Gasem, Khaled A. M.

    2012-01-01

    Octanol-water partition coefficient (Kow) is an important thermodynamic property used to characterize the partitioning of solutes between an aqueous and organic phase and has importance in such areas as pharmacology, pharmacokinetics, pharmacodynamics, chemical production and environmental toxicology. We present a non-linear quantitative structure-property relationship model for determining Kow values of new molecules in silico. A total of 823 descriptors were generated for 11,308 molecules whose Kow values are reported in the PhysProp dataset by Syracuse Research. Optimum network architecture and its associated inputs were identified using a wrapper-based feature selection algorithm that combines differential evolution and artificial neural networks. A network architecture of 50-33-35-1 resulted in the least root-mean squared error (RMSE) in the training set. Further, to improve on single-network predictions, a neural network ensemble was developed by combining five networks that have the same architecture and inputs but differ in layer weights. The ensemble predicted the Kow values with RMSE of 0.28 and 0.38 for the training set and internal validation set, respectively. The ensemble performed reasonably well on an external dataset when compared with other popular Kow models in the literature. PMID:23185102

  6. Quantitative structure-activity/ecotoxicity relationships (QSAR/QEcoSAR) of a series of phosphonates.

    PubMed

    Petrescu, Alina-Maria; Putz, Mihai V; Ilia, Gheorghe

    2015-11-01

    In this paper the structure-toxicity relationship studies were performed for a series of 60 phosphonates. The toxicity of the compounds was determined by two ways: by quantifying the measured toxicity values, Mlog(1/MRIC50) collected by literature, for rodents species; second by using EcoSAR software version 1.11, for calculating the toxicity for fish species, considered as dependent variables and they were related to structural features obtained by molecular and quantum mechanics calculations. The QSAR/QEcoSAR was validated by multiple linear regression (MLR), although the purpose of this work was not to validate the model proposed, but rather to test the influence of structural parameters of the proposed model QSAR/QEcoSAR. The obtained models showed that the toxicity of phosphonates was influenced by steric and molecular geometry which cause inhibition of cholinesterase activity.

  7. Relationship between Quantitative CT Metrics and Health Status and Bode in COPD

    PubMed Central

    Martinez, Carlos H.; Chen, Ya-Hong; Westgate, Phillip M.; Liu, Lyrica X.; Murray, Susan; Curtis, Jeffrey L.; Make, Barry J.; Kazerooni, Ella A.; Lynch, David A.; Marchetti, Nathaniel; Washko, George R.; Martinez, Fernando J.; Han, MeiLan K.

    2013-01-01

    Background The value of quantitative computed tomography (QCT) to identify chronic obstructive pulmonary disease (COPD) phenotypes is increasingly appreciated. We hypothesized that QCT-defined emphysema and airway abnormalities relate to St. George's Respiratory Questionnaire (SGRQ) and BODE. Methods 1,200 COPDGene subjects meeting GOLD criteria for COPD with QCT analysis were included. Total lung emphysema was measured using density mask technique with a -950 HU threshold. An automated program measured mean wall thickness (WT), wall area percent (WA%) and pi10 in six segmental bronchi. Separate multivariate analyses examined the relative influence of airway measures and emphysema on SGRQ and BODE. Results In separate models predicting SGRQ score, a one unit standard deviation (SD) increase in each airway measure predicted higher SGRQ scores (for WT, 1.90 points higher, p=0.002; for WA%, 1.52 points higher, p=0.02; for pi10, 2.83 points higher p<0.001). The comparable increase in SGRQ for a one unit SD increase in percent emphysema in these models was relatively weaker, significant only in the pi10 model (for percent emphysema, 1.45 points higher, p=0.01). In separate models predicting BODE, a one unit SD increase in each airway measure predicted higher BODE scores (for WT, 1.07 fold increase, p<0.001; for WA%, 1.20 fold increase, p<0.001; for pi10, 1.16 fold increase, p<0.001). In these models, emphysema more strongly influenced BODE (range 1.24-1.26 fold increase, p<0.001). Conclusion Emphysema and airway disease both relate to clinically important parameters. The relative influence of airway disease is greater for SGRQ; the relative influence of emphysema is greater for BODE. PMID:22514236

  8. Quantitative structure-activity relationship studies of a series of sulfa drugs as inhibitors of Pneumocystis carinii dihydropteroate synthetase.

    PubMed

    Johnson, T; Khan, I A; Avery, M A; Grant, J; Meshnick, S R

    1998-06-01

    Sulfone and sulfanilamide sulfa drugs have been shown to inhibit dihydropteroate synthetase (DHPS) isolated from Pneumocystis carinii. In order to develop a pharmacophoric model for this inhibition, quantitative structure-activity relationships (QSAR) for sulfa drugs active against DHPS have been studied. Accurate 50% inhibitory concentrations were collected for 44 analogs, and other parameters, such as partition coefficients and molar refractivity, were calculated. Conventional multiple regression analysis of these data did not provide acceptable QSAR. However, three-dimensional QSAR provided by comparative molecular field analysis did give excellent results. Upon removal of poorly correlated analogs, a data set of 36 analogs, all having a common NHSO2 group, provided a cross-validated r2 value of 0.699 and conventional r2 value of 0.964. The resulting pharmacophore model should be useful for understanding and predicting the binding of DHPS by new sulfa drugs.

  9. Semisynthesis and quantitative structure-activity relationship (QSAR) study of some cholesterol-based hydrazone derivatives as insecticidal agents.

    PubMed

    Yang, Chun; Shao, Yonghua; Zhi, Xiaoyan; Huan, Qu; Yu, Xiang; Yao, Xiaojun; Xu, Hui

    2013-09-01

    In continuation of our program aimed at the discovery and development of natural-product-based insecticidal agents, four series of novel cholesterol-based hydrazone derivatives were synthesized, and their insecticidal activity was tested against the pre-third-instar larvae of oriental armyworm, Mythimna separata (Walker) in vivo at 1mg/mL. All the derivatives showed the better insecticidal activity than their precursor cholesterol. Quantitative structure-activity relationship (QSAR) model demonstrated that six descriptors such as RDF085v, Mor06u, Mor11u, Dv, HATS0v and H-046, are likely to influence the insecticidal activity of these compounds. Among them, two important ones are the Mor06u and RDF085v.

  10. Topological study on the toxicity of ionic liquids on Vibrio fischeri by the quantitative structure-activity relationship method.

    PubMed

    Yan, Fangyou; Shang, Qiaoyan; Xia, Shuqian; Wang, Qiang; Ma, Peisheng

    2015-04-01

    As environmentally friendly solvents, ionic liquids (ILs) are unlikely to act as air contaminants or inhalation toxins resulting from their negligible vapor pressure and excellent thermal stability. However, they can be potential water contaminants because of their considerable solubility in water; therefore, a proper toxicological assessment of ILs is essential. The environmental fate of ILs is studied by quantitative structure-activity relationship (QSAR) method. A multiple linear regression (MLR) model is obtained by topological method using toxicity data of 157 ILs on Vibrio fischeri, which are composed of 74 cations and 22 anions. The topological index developed in our research group is used for predicting the V. fischeri toxicity for the first time. The MLR model is precise for estimating LogEC50 of ILs on V. fischeri with square of correlation coefficient (R(2)) = 0.908 and the average absolute error (AAE) = 0.278.

  11. Chromanyl-isoxazolidines as Antibacterial agents: Synthesis, Biological Evaluation, Quantitative Structure Activity Relationship, and Molecular Docking Studies.

    PubMed

    Singh, Gagandeep; Sharma, Anuradha; Kaur, Harpreet; Ishar, Mohan Paul S

    2016-02-01

    Regio- and stereoselective 1,3-dipolar cycloadditions of C-(chrom-4-one-3-yl)-N-phenylnitrones (N) with different mono-substituted, disubstituted, and cyclic dipolarophiles were carried out to obtain substituted N-phenyl-3'-(chrom-4-one-3-yl)-isoxazolidines (1-40). All the synthesized compounds were assayed for their in vitro antibacterial activity and display significant inhibitory potential; in particular, compound 32 exhibited good inhibitory activity against Salmonella typhymurium-1 & Salmonella typhymurium-2 with minimum inhibitory concentration value of 1.56 μg/mL and also showed good potential against methicillin-resistant Staphylococcus aureus with minimum inhibitory concentration 3.12 μg/mL. Quantitative structure activity relationship investigations with stepwise multiple linear regression analysis and docking simulation studies have been performed for validation of the observed antibacterial potential of the investigated compounds for determination of the most important parameters regulating antibacterial activities.

  12. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    SciTech Connect

    Sadat Hayatshahi, Sayyed Hamed; Khajeh, Khosro

    2005-12-16

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k {sub i} values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, the previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%.

  13. Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors

    PubMed Central

    2013-01-01

    Background In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Results Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. Conclusions A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation. PMID:24171724

  14. Quantitative radiation dose-response relationships for normal tissues in man - I. Gustatory tissues response during photon and neutron radiotherapy

    SciTech Connect

    Mossman, K.L.

    1982-08-01

    Quantitative radiation dose-response curves for normal gustatory tissue in man were studied. Taste function, expressed as taste loss, was evaluated in 84 patients who were given either photon or neutron radiotherapy for tumors in the head and neck region. Patients were treated to average tumor doses of 6600 cGy (photon) or 2200 cGy intervals for photon patients and 320-cGy intervals for neutron patients during radiotherapy. The dose-response curves for photons and neutrons were analyzed by fitting a four-parameter logistic equation to the data. Photon and neutron curves differed principally in their relative position along the dose axis. Comparison of the dose-response curves were made by determination of RBE. At 320 cGy, the lowest neutron dose at which taste measurements were made, RBE = 5.7. If this RBE is correct, then the therapeutic gain factor may be equal to or less than 1, indicating no biological advantage in using neutrons over photons for this normal tissue. These studies suggest measurements of taste function and evaluation of dose-response relationships may also be useful in quantitatively evaluating the efficacy of chemical modifiers of radiation response such as hypoxic cell radiosensitizers and radioprotectors.

  15. Designing quantitative structure activity relationships to predict specific toxic endpoints for polybrominated diphenyl ethers in mammalian cells.

    PubMed

    Rawat, S; Bruce, E D

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are known as effective flame retardants and have vast industrial application in products like plastics, building materials and textiles. They are found to be structurally similar to thyroid hormones that are responsible for regulating metabolism in the body. Structural similarity with the hormones poses a threat to human health because, once in the system, PBDEs have the potential to affect thyroid hormone transport and metabolism. This study was aimed at designing quantitative structure-activity relationship (QSAR) models for predicting toxic endpoints, namely cell viability and apoptosis, elicited by PBDEs in mammalian cells. Cell viability was evaluated quantitatively using a general cytotoxicity bioassay using Janus Green dye and apoptosis was evaluated using a caspase assay. This study has thus modelled the overall cytotoxic influence of PBDEs at an early and a late endpoint by the Genetic Function Approximation method. This research was a twofold process including running in vitro bioassays to collect data on the toxic endpoints and modeling the evaluated endpoints using QSARs. Cell viability and apoptosis responses for Hep G2 cells exposed to PBDEs were successfully modelled with an r(2) of 0.97 and 0.94, respectively. PMID:24738916

  16. A Combined Quantitative Structure-Activity Relationship Research of Quinolinone Derivatives as Androgen Receptor Antagonists.

    PubMed

    Wang, Yuwei; Bai, Fang; Cao, Hong; Li, Jiazhong; Liu, Huanxiang; Gramatica, Paola

    2015-01-01

    Antiandrogens bicalutamide, flutamide and enzalutamide etc. have been used in clinical trials to treat prostate cancer by binding to and antagonizing androgen receptor (AR). Although initially effective, the drug resistance problem will emerge eventually, which results in a high medical need for novel AR antagonist exploitation. Here in this work, to facilitate the rational design of novel AR antagonists, we studied the structure-activity relationships of a series of 2-quinolinone derivatives and investigated the structural requirements for their antiandrogenic activities. Different modeling methods, including 2D MLR, 3D CoMFA and CoMSIA, were implemented to evolve QSAR models. All these models, thoroughly validated, demonstrated satisfactory results especially for the good predictive abilities. The contour maps from 3D CoMFA and CoMSIA models provide visualized explanation of key structural characteristics relevant to the antiandrogenic activities, which is summarized to a position-specific conclusion at the end. The obtained results from this research are practically useful for rational design and screening of promising chemicals with high antiandrogenic activities.

  17. Hologram quantitative structure activity relationship, docking, and molecular dynamics studies of inhibitors for CXCR4.

    PubMed

    Zhang, Chongqian; Du, Chunmiao; Feng, Zhiwei; Zhu, Jingyu; Li, Youyong

    2015-02-01

    CXCR4 plays a crucial role as a co-receptor with CCR5 for HIV-1 anchoring to mammalian cell membrane and is implicated in cancer metastasis and inflammation. In the current work, we study the relationship of structure and activity of AMD11070 derivatives and other inhibitors of CXCR4 using HQSAR, docking and molecular dynamics (MD) simulations. We obtain an HQSAR model (q(2) = 0.779), and the HQSAR result illustrates that AMD11070 shows a high antiretroviral activity. As HQSAR only provides 2D information, we perform docking and MD to study the interaction of It1t, AMD3100, and AMD3465 with CXCR4. Our results illustrate that the binding are affected by two crucial residues Asp97 and Glu288. The butyl amine moiety of AMD11070 contributes to its high antiretroviral activity. Without a butyl amine moiety, (2,7a-Dihydro-1H-benzoimidazol-2-ylmethyl)-methyl-(5,6,7,8-tetrahydro-quinolin-8-yl)-amine (compound 5a) shows low antiretroviral activity. Our results provide structural details about the interactions between the inhibitors and CXCR4, which are useful for rational drug design of CXCR4.

  18. Structural Properties of Green Tea Catechins.

    PubMed

    Botten, Dominic; Fugallo, Giorgia; Fraternali, Franca; Molteni, Carla

    2015-10-01

    Green tea catechins are polyphenols which are believed to provide health benefits; they are marketed as health supplements and are studied for their potential effects on a variety of medical conditions. However, their mechanisms of action and interaction with the environment at the molecular level are still not well-understood. Here, by means of atomistic simulations, we explore the structural properties of four green tea catechins, in the gas phase and water solution: specifically, (-)-epigallocatechin-3-gallate, which is the most abundant, (-)-epicatechin-3-gallate, (-)-epigallocatechin-3-O-(3-O-methyl)-gallate, and (-)-epigallocatechin. We characterize the free energy conformational landscapes of these catechins at ambient conditions, as a function of the torsional degrees of freedom of the pholyphenolic rings, determining the stable conformers and their connections. We show that these free energy landscapes are only subtly influenced by the interactions with the solvent and by the structural details of the polyphenolic rings. However, the number and position of the hydroxyl groups (or their sustituents) and the presence/absence of the galloyl moiety have significant impact on the selected catechin solvation shells and hydrogen bond capabilities, which are ultimately linked to their ability to interact with and affect the biological environment. PMID:26369298

  19. High-pressure structural properties of tetramethylsilane

    NASA Astrophysics Data System (ADS)

    Zhen-Xing, Qin; Xiao-Jia, Chen

    2016-02-01

    High-pressure structural properties of tetramethylsilane are investigated by synchrotron powder x-ray diffraction at pressures up to 31.1 GPa and room temperature. A phase with the space group of Pnma is found to appear at 4.2 GPa. Upon compression, the compound transforms to two following phases: the phase with space groups of P21/c at 9.9 GPa and the phase with P2/m at 18.2 GPa successively via a transitional phase. The unique structural character of P21/c supports the phase stability of tetramethylsilane without possible decomposition upon heavy compression. The appearance of the P2/m phase suggests the possible realization of metallization for this material at higher pressure. Project supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project from Ministry of Education of China (Grant No. 708070), the Fundamental Research Funds for the Central Universities, South China University of Technology (Grant No. 2014ZZ0069), the National Natural Science Foundation of China (Grant No. 51502189), and the Doctoral Project of Taiyuan University of Science and Technology, China (Grant No. 20132010).

  20. The Relationship between Serum Vitamin D Levels and Spinal Fusion Success: A Quantitative Analysis

    PubMed Central

    Metzger, Melodie F.; Kanim, Linda E.; Zhao, Li; Robinson, Samuel T.; Delamarter, Rick B.

    2015-01-01

    Study Design An in vivo dosing study of vitamin D in a rat posterolateral spinal fusion model with autogenous bone grafting. Rats randomized to four levels of Vitamin D adjusted rat chow, longitudinal serum validation, surgeons/observers blinded to dietary conditions, and rats followed prospectively for fusion endpoint. Objective To assess the impact of dietary and serum levels of Vitamin D on fusion success, consolidation of fusion mass, and biomechanical stiffness after posterolateral spinal fusion procedure. Summary of Background Data Metabolic risk factors, including vitamin D insufficiency, are often overlooked by spine surgeons. Currently there are no published data on the causal effect of insufficient or deficient vitamin D levels on the success of establishing solid bony union after a spinal fusion procedure. Methods 50 rats were randomized to four experimentally controlled rat chow diets: normal control, vitamin D-deficient, vitamin-D insufficient, and a non-toxic high dose of vitamin D, four weeks prior to surgery and maintained post-surgery until sacrifice. Serum levels of 25(OH)D were determined at surgery and sacrifice using radioimmunoassay. Posterolateral fusion surgery with tail autograft was performed. Rats were sacrificed 12 weeks post-operatively and fusion was evaluated via manual palpation, high resolution radiographs, μCT, and biomechanical testing. Results Serum 25(OH)D and calcium levels were significantly correlated with vitamin-D adjusted chow (p<0.001). There was a dose dependent relationship between vitamin D adjusted chow and manual palpation fusion with greatest differences found in measures of radiographic density between high and deficient vitamin D (p<0.05). Adequate levels of vitamin D (high and normal control) yielded stiffer fusion than inadequate levels (insufficient and deficient) (p<0.05). Conclusions Manual palpation fusion rates increased with supplementation of dietary vitamin D. Biomechanical stiffness, bone volume and

  1. Quantitative and temporal relationships of egg production and sound production by black drum Pogonias cromis.

    PubMed

    Locascio, J V; Burghart, S; Mann, D A

    2012-09-01

    The timing and levels of black drum Pogonias cromis sound production and egg production were compared in an estuarine canal basin of Cape Coral in south-west Florida. Surface plankton samples were collected hourly from 1800 to 0400 on two consecutive nights while continuous acoustic recordings were made simultaneously at five locations in the canal basin. Five pairs of nights were sampled during a part of the spawning season from late January to early April 2006. Pogonias cromis sound production and egg production occurred on all evenings that samples were collected; however, both the timing and levels of sound production were negatively associated with those of egg production. Egg production estimates ranged from a low of 4·8 eggs m(-3) in February to a high of 2889·2 eggs m(-3) in April. Conversely, maximum nightly sound pressure levels (SPL) ranged from a low of 89·5 dB in April to a high of 131·9 dB (re: 1 µPa) in February. The temporal centre of sound production was relatively stable among all nights sampled but spawning occurred earlier in the day as the season progressed and exhibited a strong, positive association with increased water temperature. The negative relationship between the levels of sound production and egg production was unexpected given the usefulness of sound production as a proxy for reproduction on a seasonal basis and may possibly be explained by differences in the spawning potential of the female population in the study area on nights sampled. Egg mortality rates increased throughout the season and were positively associated with densities of hydrozoans and ctenophores. PMID:22957862

  2. A Quantitative Test for the Spatial Relationship Between Aftershock Distributions and Mainshock Rupture Properties

    NASA Astrophysics Data System (ADS)

    Woessner, J.; Ripperger, J.; Mai, M. P.; Wiemer, S.

    2004-12-01

    Correlating the properties of the mainshock rupture with the location of corresponding aftershocks may provide insight into the relationship between mainshock-induced static stress changes and aftershock occurrence. In this study, we develop a rigorous statistical test to quantify the spatial pattern of aftershock locations with the corresponding distributions of coseismic slip and stress-drop. Well-located aftershock hypocenters are projected onto the mainshock fault plane and coseismic slip and stress drop values are interpolated to their respective location. The null hypothesis H0 for the applied test statistic is: Aftershock hypocenters are randomly distributed on the mainshock fault plane and are not correlated with mainshock properties. Because we want to maintain spatial earthquake clustering as one of the important observed features of seismicity, we synthesize slip distributions using a random spatial field model from which we then compute the respective stress-drop distributions. For each simulation of earthquake slip, we compute the test statistic for the slip and stress-drop distribution, testing whether or not an apparent correlation between mainshock properties and aftershock locations exists. Uncertainties in the aftershock locations are accounted for by simulating a thousand catalogues for which we randomize the location of the aftershocks within their given location error bounds. We then determine the number of aftershocks in low-slip or negative stress-drop regions for simulated slip distributions, and compare those to the measurements obtained for finite-source slip inversions. We apply the test to crustal earthquakes in California and Japan. If possible, we use different source models and earthquake catalogues with varying accuracy to investigate the dependence of the test results on, for example, the location uncertainties of aftershocks. Contrary to the visual impression, we find that for some strike-slip earthquakes or segments of the

  3. Inverse relationship between photon flux densities and nanotesla magnetic fields over cell aggregates: Quantitative evidence for energetic conservation.

    PubMed

    Persinger, Michael A; Dotta, Blake T; Karbowski, Lukasz M; Murugan, Nirosha J

    2015-01-01

    The quantitative relationship between local changes in magnetic fields and photon emissions within ∼2 mm of aggregates of 10(5)-10(6) cells was explored experimentally. The vertical component of the earth's magnetic field as measured by different magnetometers was ∼15 nT higher when plates of cells removed from incubation were measured compared to plates containing only medium. Additional experiments indicated an inverse relationship over the first ∼45 min between changes in photon counts (∼10(-12) W·m(-2)) following removal from incubation and similar changes in magnetic field intensity. Calculations indicated that the energy within the aqueous volume containing the cells was equivalent for that associated with the flux densities of the magnetic fields and the photon emissions. For every approximately 1 nT increase in magnetic field intensity value there was a decrease of ∼2 photons (equivalent of 10(-18) J). These results complement correlation studies and suggest there may be a conservation of energy between expression as magnetic fields that are subtracted or added to the adjacent geomagnetic field and reciprocal changes in photon emissions when aggregates of cells within a specific volume of medium (water) adapt to new environments. PMID:26005634

  4. Quantitative structure-activity relationships and mixture toxicity of organic chemicals in Photobacterium phosphoreum: the Microtox test

    SciTech Connect

    Hermens, J.; Busser, F.; Leeuwangh, P.; Musch, A.

    1985-02-01

    Quantitative structure-activity relationships were calculated for the inhibition of bioluminescence of Photobacterium phosphoreum by 22 nonreactive organic chemicals. The inhibition was measured using the Microtox test and correlated with the partition coefficient between n-octanol and water (Poct), molar refractivity (MR), and molar volume (MW/d). At log Poct less than 1 and greater than 3, deviations from linearity were observed. Introduction of MR and MW/d improved the quality of the relationships. The influences of MR or MW/d may be related with an interaction of the tested chemicals to the enzyme system which produces the light emission. The sensitivity of the Microtox test to the 22 tested compounds is comparable to a 14-day acute mortality test with guppies for chemicals with log Poct less than 4. The inhibition of bioluminescence by a mixture of the tested compounds was slightly less than was expected in case of concentration addition. The Microtox test can give a good estimate of the total aspecific minimum toxicity of polluted waters. When rather lipophilic compounds or pollutants with more specific modes of action are present, this test will underestimate the toxicity to other aquatic life.

  5. Genetic relationship between lodging and lodging components in barley (Hordeum vulgare) based on unconditional and conditional quantitative trait locus analyses.

    PubMed

    Chen, W Y; Liu, Z M; Deng, G B; Pan, Z F; Liang, J J; Zeng, X Q; Tashi, N M; Long, H; Yu, M Q

    2014-03-17

    Lodging (LD) is a major constraint limiting the yield and forage quality of barley. Detailed analyses of LD component (LDC) traits were conducted using 246 F2 plants generated from a cross between cultivars ZQ320 and 1277. Genetic relationships between LD and LDC were evaluated by unconditional and conditional quantitative trait locus (QTL) mapping with 117 simple sequence repeat markers. Ultimately, 53 unconditional QTL related to LD were identified on seven barley chromosomes. Up to 15 QTL accounted for over 10% of the phenotypic variation, and up to 20 QTL for culm strength were detected. Six QTL with pleiotropic effects showing significant negative correlations with LD were found between markers Bmag353 and GBM1482 on chromosome 4H. These alleles and alleles of QTL for wall thickness, culm strength, plant height, and plant weight originated from ZQ320. Conditional mapping identified 96 additional QTL for LD. Conditional QTL analysis demonstrated that plant height, plant height center of gravity, and length of the sixth internode had the greatest contribution to LD, whereas culm strength and length of the fourth internode, and culm strength of the second internode were the key factors for LD-resistant. Therefore, lodging resistance in barley can be improved based on selection of alleles affecting culm strength, wall thickness, plant height, and plant weight. The conditional QTL mapping method can be used to evaluate possible genetic relationships between LD and LDC while efficiently and precisely determining counteracting QTL, which will help in understanding the genetic basis of LD in barley.

  6. Quantitative structure-activity relationships for polychlorinated hydroxybiphenyl estrogen receptor binding affinity: An assessment of conformer flexibility

    SciTech Connect

    Bradbury, S.P.; Ankley, G.T.; Mekenyan, O.G.

    1996-11-01

    A diverse group of xenobiotics has a high binding affinity to the estrogen receptor (ER), suggesting that it can accommodate large variability in ligand structure. Relationships between xenobiotic surface, binding affinity, and estrogenic response have been suggested to be dependent on the conformational structures of the ligands. To explore the influence of conformational flexibility on ER binding affinity, a quantitative structure-activity relationship (QSAR) study was undertaken with estradiol, diethylstilbestrol, and a set of polychlorinated hydroxybiphenyls (PCHBs) of environmental concern. Although the low-energy minima of the PCHB congeners suggested that interconversions among conformers were likely, the electronic parameters associated with the conformer geometries for a specific PCHB congener could vary significantly. The results of the QSAR analysis suggested that among the PCHBs studied, the most polarizable conformers (lower absolute volume polarizability values) were most closely associated with ER binding affinity. Across the set of polarizable conformers, which did not include the low-energy gas-phase conformers, the electron donating properties of the hydroxy moiety and the aromatic component of the estradiol A ring analogue in the PCHBs were found to be correlated with higher ER binding affinity.

  7. Quantitative structure-activity relationship study on BTK inhibitors by modified multivariate adaptive regression spline and CoMSIA methods.

    PubMed

    Xu, A; Zhang, Y; Ran, T; Liu, H; Lu, S; Xu, J; Xiong, X; Jiang, Y; Lu, T; Chen, Y

    2015-01-01

    Bruton's tyrosine kinase (BTK) plays a crucial role in B-cell activation and development, and has emerged as a new molecular target for the treatment of autoimmune diseases and B-cell malignancies. In this study, two- and three-dimensional quantitative structure-activity relationship (2D and 3D-QSAR) analyses were performed on a series of pyridine and pyrimidine-based BTK inhibitors by means of genetic algorithm optimized multivariate adaptive regression spline (GA-MARS) and comparative molecular similarity index analysis (CoMSIA) methods. Here, we propose a modified MARS algorithm to develop 2D-QSAR models. The top ranked models showed satisfactory statistical results (2D-QSAR: Q(2) = 0.884, r(2) = 0.929, r(2)pred = 0.878; 3D-QSAR: q(2) = 0.616, r(2) = 0.987, r(2)pred = 0.905). Key descriptors selected by 2D-QSAR were in good agreement with the conclusions of 3D-QSAR, and the 3D-CoMSIA contour maps facilitated interpretation of the structure-activity relationship. A new molecular database was generated by molecular fragment replacement (MFR) and further evaluated with GA-MARS and CoMSIA prediction. Twenty-five pyridine and pyrimidine derivatives as novel potential BTK inhibitors were finally selected for further study. These results also demonstrated that our method can be a very efficient tool for the discovery of novel potent BTK inhibitors.

  8. Inverse relationship between photon flux densities and nanotesla magnetic fields over cell aggregates: Quantitative evidence for energetic conservation

    PubMed Central

    Persinger, Michael A.; Dotta, Blake T.; Karbowski, Lukasz M.; Murugan, Nirosha J.

    2015-01-01

    The quantitative relationship between local changes in magnetic fields and photon emissions within ∼2 mm of aggregates of 105–106 cells was explored experimentally. The vertical component of the earth’s magnetic field as measured by different magnetometers was ∼15 nT higher when plates of cells removed from incubation were measured compared to plates containing only medium. Additional experiments indicated an inverse relationship over the first ∼45 min between changes in photon counts (∼10−12 W·m−2) following removal from incubation and similar changes in magnetic field intensity. Calculations indicated that the energy within the aqueous volume containing the cells was equivalent for that associated with the flux densities of the magnetic fields and the photon emissions. For every approximately 1 nT increase in magnetic field intensity value there was a decrease of ∼2 photons (equivalent of 10−18 J). These results complement correlation studies and suggest there may be a conservation of energy between expression as magnetic fields that are subtracted or added to the adjacent geomagnetic field and reciprocal changes in photon emissions when aggregates of cells within a specific volume of medium (water) adapt to new environments. PMID:26005634

  9. Quantitative relationship between the octanol/water partition coefficient and the diffusion limitation of the exchange between adipose and blood

    PubMed Central

    2010-01-01

    Background The goal of physiologically based pharmacokinetics (PBPK) is to predict drug kinetics from an understanding of the organ/blood exchange. The standard approach is to assume that the organ is "flow limited" which means that the venous blood leaving the organ equilibrates with the well-stirred tissue compartment. Although this assumption is valid for most solutes, it has been shown to be incorrect for several very highly fat soluble compounds which appear to be "diffusion limited". This paper describes the physical basis of this adipose diffusion limitation and its quantitative dependence on the blood/water (Kbld-wat) and octanol/water (Kow) partition coefficient. Methods Experimental measurements of the time dependent rat blood and adipose concentration following either intravenous or oral input were used to estimate the "apparent" adipose perfusion rate (FA) assuming that the tissue is flow limited. It is shown that the ratio of FA to the anatomic perfusion rate (F) provides a measure of the diffusion limitation. A quantitative relationship between this diffusion limitation and Kbld-wat and Kow is derived. This analysis was applied to previously published data, including the Oberg et. al. measurements of the rat plasma and adipose tissue concentration following an oral dose of a mixture of 13 different polychlorinated biphenyls. Results Solutes become diffusion limited at values of log Kow greater than about 5.6, with the adipose-blood exchange rate reduced by a factor of about 30 for a solute with a log Kow of 7.36. Quantitatively, a plot of FA/F versus Kow is well described assuming an adipose permeability-surface area product (PS) of 750/min. This PS corresponds to a 0.14 micron aqueous layer separating the well-stirred blood from the adipose lipid. This is approximately equal to the thickness of the rat adipose capillary endothelium. Conclusions These results can be used to quantitate the adipose-blood diffusion limitation as a function of Kow. This

  10. Toxicity of substituted anilines to Pseudokirchneriella subcapitata and quantitative structure-activity relationship analysis for polar narcotics.

    PubMed

    Chen, Chung-Yuan; Ko, Chia-Wen; Lee, Po-I

    2007-06-01

    This study evaluated the toxic effects of substituted anilines on Pseudokirchneriella subcapitata with the use of a closed algal toxicity testing technique with no headspace. Two response endpoints (i.e., dissolved oxygen production [DO] and algal growth rate) were used to evaluate the toxicity of anilines. Both DO and growth rate endpoints revealed similar sensitivity to the effects of anilines. However, trichloroanilines showed stronger inhibitory effects on microalgal photosynthetic reactions than that on algal growth. For various aquatic organisms, the relative sensitivity relationship for anilines is Daphnia magna > luminescent bacteria (Microtox) > or = Pocelia reticulata > or = Pseudokirchneriella subcapitata > or = fathead minnow > Tetrahymena pyriformis. The susceptibility of P. subcapitata to anilines is similar to fish, but P. subcapitata is apparently less sensitive than the water flea. The lack of correlation between the toxicity revealed by different aquatic organisms (microalgae, D. magna, luminescent bacteria, and P. reticulata) suggests that anilines might have different metabolic routes in these organisms. Both hydrogen bonding donor capacity (the lowest unoccupied molecular orbital energy, Elumo) and hydrophobicity (1-octanol:water partition coefficient, Kow) were found to provide satisfactory descriptions for the toxicity of polar narcotics (substituted anilines and chlorophenols). Quantitative structure-activity relationships (QSARs) based on Elumo, log Kow, or both values were established with r2 values varying from 0.75 to 0.92. The predictive power for the QSAR models were found to be satisfactory through leave-one-out cross-validation. Such relationships could provide useful information for the estimation of toxicity for other polar narcotic compounds.

  11. Structural Properties of Amorphous Indium-Based Oxides

    NASA Astrophysics Data System (ADS)

    Khanal, Rabi; Medvedeva, Julia

    2014-03-01

    Amorphous transparent conducting and semiconducting oxides exhibit similar or even superior properties to those observed in their crystalline counterparts. To understand how the structural properties change upon amorphization and how chemical composition affects the local and long-range structure of the amorphous oxides, we employ first-principles molecular dynamics to generate amorphous In-X-O with X =Zn, Ga, Sn, Ge, Y, or Sc, and compare their local structure features to those obtained for amorphous and crystalline indium oxide. The results reveal that the short-range structure of the Metal-O polyhedra is generally preserved in the amorphous oxides; however, different metals (In and X) show quantitatively or qualitatively different behavior. Some of the metals retain their natural distances and/or coordination; while others allow for a highly distorted environment and thus favor ``defect'' formation under variable oxygen conditions. At the same time, we find that the presence of X increases both the average In-O coordination and the number of the 6-coordinated In atoms as compared to those in IO. The improved In coordination may be responsible for the observed reduction in the carrier concentration as the substitution level in In-X-O increases.

  12. Predicting Skin Permeability from Complex Chemical Mixtures: Dependency of Quantitative Structure Permeation Relationships on Biology of Skin Model Used

    PubMed Central

    Riviere, Jim E.; Brooks, James D.

    2011-01-01

    Dermal absorption of topically applied chemicals usually occurs from complex chemical mixtures; yet, most attempts to quantitate dermal permeability use data collected from single chemical exposure in aqueous solutions. The focus of this research was to develop quantitative structure permeation relationships (QSPR) for predicting chemical absorption from mixtures through skin using two levels of in vitro porcine skin biological systems. A total of 16 diverse chemicals were applied in 384 treatment mixture combinations in flow-through diffusion cells and 20 chemicals in 119 treatment combinations in isolated perfused porcine skin. Penetrating chemical flux into perfusate from diffusion cells was analyzed to estimate a normalized dermal absorptive flux, operationally an apparent permeability coefficient, and total perfusate area under the curve from perfused skin studies. These data were then fit to a modified dermal QSPR model of Abraham and Martin including a sixth term to account for mixture interactions based on physical chemical properties of the mixture components. Goodness of fit was assessed using correlation coefficients (r2), internal and external validation metrics (qLOO2, qL25%2, qEXT2), and applicable chemical domain determinations. The best QSPR equations selected for each experimental biological system had r2 values of 0.69–0.73, improving fits over the base equation without the mixture effects. Different mixture factors were needed for each model system. Significantly, the model of Abraham and Martin could also be reduced to four terms in each system; however, different terms could be deleted for each of the two biological systems. These findings suggest that a QSPR model for estimating percutaneous absorption as a function of chemical mixture composition is possible and that the nature of the QSPR model selected is dependent upon the biological level of the in vitro test system used, both findings having significant implications when dermal

  13. Relationships between regional economic sectors and water use in a water-scarce area in China: A quantitative analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weiping; Gao, Lei; Liu, Pin; Hailu, Atakelty

    2014-07-01

    Northern China has been facing severe water scarcity as a result of vigorous economic growth, population expansion and changing lifestyles. A typical case is Shandong province whose water resources per capita is approximately only a sixth of the national average and a twentieth of the global average. It is useful to assess the implications of the province’s growth and trade patterns for water use and water conservation strategies. This study quantitatively analyses relationships between regional economic sectors and water use in Shandong using an input-output model for virtual water resources. The changes in key indicators for 1997-2007 are tracked and the effects of water-saving policies on these changes are examined. The results highlight the benefits of applying a virtual water trade analysis on a water-scarce region where water resources exhibit highly heterogeneous temporal and geographical distributions. The net export of virtual water in Shandong was initially large, but this declined over the years and the province has recently become a net importer. Between 1997 and 2002, water use in most sectors increased due to rapid urbanisation and industrialisation. Since then, water use in all Shandong economic sectors exhibit a downward trend despite continued increases in goods and services net exports, a trend which can be attributed to the vigorous implementation of water-saving policies and measures, especially water use quotas. Economic sectors consume water directly and indirectly and understanding the pattern of virtual water trade implied by sectoral relationships is important for managing water scarcity problems. This study fills the knowledge gap in the existing literature created by the lack of case studies that dynamically assess virtual water trade and analyse the effects of water-saving policies and measures. The study draws policy recommendations that are relevant for future water planning in Shandong and other regions in northern China.

  14. Oxidative toxicity of perfluorinated chemicals in green mussel and bioaccumulation factor dependent quantitative structure-activity relationship.

    PubMed

    Liu, Changhui; Chang, Victor W C; Gin, Karina Y H

    2014-10-01

    Concerns regarding perfluorinated chemicals (PFCs) have risen in recent years because of their ubiquitous presence and high persistency. However, data on the environmental impacts of PFCs on marine organisms are very limited. Oxidative toxicity has been suggested to be one of the major toxic pathways for PFCs to induce adverse effects on organisms. To investigate PFC-induced oxidative stress and oxidative toxicity, a series of antioxidant enzyme activities and oxidative damage biomarkers were examined to assess the adverse effects of the following 4 commonly detected compounds: perfluoro-octanesulfonate, perfluoro-ocanoic acid, perfluorononanoic acid, and perfluorodecanoic acid, on green mussel (Perna viridis). Quantitative structure-activity relationship (QSAR) models were also established. The results showed that all the tested PFCs are able to induce antioxidant response and oxidative damage on green mussels in a dose-dependent manner. At low exposure levels (0 µg/L-100 µg/L), activation of antioxidant enzymes (catalase [CAT] and superoxide dismutase [SOD]) was observed, which is an adaptive response to the excessive reactive oxygen species induced by PFCs, while at high exposure levels (100 µg/L-10 000 µg/L), PFCs were found to inhibit some enzyme activity (glutathione S-transferase and SOD) where the organism's ability to respond in an adaptive manner was compromised. The oxidative stress under high PFC exposure concentration also led to lipid and DNA damage. PFC-induced oxidative toxicity was found to be correlated with the bioaccumulation potential of PFCs. Based on this relationship, QSAR models were established using the bioaccumulation factor (BAF) as the molecular descriptor for the first time. Compared with previous octanol-water partition coefficient-dependent QSAR models, the BAF-dependent QSAR model is more suitable for the impact assessment of PFCs and thus provides a more accurate description of the toxic behavior of these compounds.

  15. Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches.

    PubMed

    Gupta, Shikha; Basant, Nikita; Mohan, Dinesh; Singh, Kunwar P

    2016-07-01

    The persistence and the removal of organic chemicals from the atmosphere are largely determined by their reactions with the OH radical and O3. Experimental determinations of the kinetic rate constants of OH and O3 with a large number of chemicals are tedious and resource intensive and development of computational approaches has widely been advocated. Recently, ensemble machine learning (EML) methods have emerged as unbiased tools to establish relationship between independent and dependent variables having a nonlinear dependence. In this study, EML-based, temperature-dependent quantitative structure-reactivity relationship (QSRR) models have been developed for predicting the kinetic rate constants for OH (kOH) and O3 (kO3) reactions with diverse chemicals. Structural diversity of chemicals was evaluated using a Tanimoto similarity index. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation performed employing statistical checks. In test data, the EML QSRR models yielded correlation (R (2)) of ≥0.91 between the measured and the predicted reactivities. The applicability domains of the constructed models were determined using methods based on descriptors range, Euclidean distance, leverage, and standardization approaches. The prediction accuracies for the higher reactivity compounds were relatively better than those of the low reactivity compounds. Proposed EML QSRR models performed well and outperformed the previous reports. The proposed QSRR models can make predictions of rate constants at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards OH radical and O3 in the atmosphere.

  16. Molecular descriptor subset selection in theoretical peptide quantitative structure-retention relationship model development using nature-inspired optimization algorithms.

    PubMed

    Žuvela, Petar; Liu, J Jay; Macur, Katarzyna; Bączek, Tomasz

    2015-10-01

    In this work, performance of five nature-inspired optimization algorithms, genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC), firefly algorithm (FA), and flower pollination algorithm (FPA), was compared in molecular descriptor selection for development of quantitative structure-retention relationship (QSRR) models for 83 peptides that originate from eight model proteins. The matrix with 423 descriptors was used as input, and QSRR models based on selected descriptors were built using partial least squares (PLS), whereas root mean square error of prediction (RMSEP) was used as a fitness function for their selection. Three performance criteria, prediction accuracy, computational cost, and the number of selected descriptors, were used to evaluate the developed QSRR models. The results show that all five variable selection methods outperform interval PLS (iPLS), sparse PLS (sPLS), and the full PLS model, whereas GA is superior because of its lowest computational cost and higher accuracy (RMSEP of 5.534%) with a smaller number of variables (nine descriptors). The GA-QSRR model was validated initially through Y-randomization. In addition, it was successfully validated with an external testing set out of 102 peptides originating from Bacillus subtilis proteomes (RMSEP of 22.030%). Its applicability domain was defined, from which it was evident that the developed GA-QSRR exhibited strong robustness. All the sources of the model's error were identified, thus allowing for further application of the developed methodology in proteomics.

  17. Ecosystem services provided by agroecosystems: a qualitative and quantitative assessment of this relationship in the Pampa region, Argentina.

    PubMed

    Rositano, Florencia; Ferraro, Diego Omar

    2014-03-01

    The development of an analytical framework relating agricultural conditions and ecosystem services (ES) provision could be very useful for developing land-use systems which sustain natural resources for future use. According to this, a conceptual network was developed, based on literature review and expert knowledge, about the functional relationships between agricultural management and ES provision in the Pampa region (Argentina). We selected eight ES to develop this conceptual network: (1) carbon (C) balance, (2) nitrogen (N) balance, (3) groundwater contamination control, (4) soil water balance, (5) soil structural maintenance, (6) N2O emission control, (7) regulation of biotic adversities, and (8) biodiversity maintenance. This conceptual network revealed a high degree of interdependence among ES provided by Pampean agroecosystems, finding two trade-offs, and two synergies among them. Then, we analyzed the conceptual network structure, and found that both environmental and management variables influenced ES provision. Finally, we selected four ES to parameterize and quantify along 10 growing seasons (2000/2001-2009/2010) through a probabilistic methodology called Bayesian Networks. Only N balance was negatively impacted by agricultural management; while C balance, groundwater contamination control, and N2O emission control were not. Outcomes of our work emphasize the idea that qualitative and quantitative methodologies should be implemented together to assess ES provision in Pampean agroecosystems, as well as in other agricultural systems.

  18. A quantitative structure-activity relationship to predict efficacy of granular activated carbon adsorption to control emerging contaminants.

    PubMed

    Kennicutt, A R; Morkowchuk, L; Krein, M; Breneman, C M; Kilduff, J E

    2016-08-01

    A quantitative structure-activity relationship was developed to predict the efficacy of carbon adsorption as a control technology for endocrine-disrupting compounds, pharmaceuticals, and components of personal care products, as a tool for water quality professionals to protect public health. Here, we expand previous work to investigate a broad spectrum of molecular descriptors including subdivided surface areas, adjacency and distance matrix descriptors, electrostatic partial charges, potential energy descriptors, conformation-dependent charge descriptors, and Transferable Atom Equivalent (TAE) descriptors that characterize the regional electronic properties of molecules. We compare the efficacy of linear (Partial Least Squares) and non-linear (Support Vector Machine) machine learning methods to describe a broad chemical space and produce a user-friendly model. We employ cross-validation, y-scrambling, and external validation for quality control. The recommended Support Vector Machine model trained on 95 compounds having 23 descriptors offered a good balance between good performance statistics, low error, and low probability of over-fitting while describing a wide range of chemical features. The cross-validated model using a log-uptake (qe) response calculated at an aqueous equilibrium concentration (Ce) of 1 μM described the training dataset with an r(2) of 0.932, had a cross-validated r(2) of 0.833, and an average residual of 0.14 log units. PMID:27586364

  19. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction.

    PubMed

    Hamadache, Mabrouk; Benkortbi, Othmane; Hanini, Salah; Amrane, Abdeltif; Khaouane, Latifa; Si Moussa, Cherif

    2016-02-13

    Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q(2)ext and the root mean square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides.

  20. Estimating the Potential Toxicity of Chemicals Associated with Hydraulic Fracturing Operations Using Quantitative Structure-Activity Relationship Modeling.

    PubMed

    Yost, Erin E; Stanek, John; DeWoskin, Robert S; Burgoon, Lyle D

    2016-07-19

    The United States Environmental Protection Agency (EPA) identified 1173 chemicals associated with hydraulic fracturing fluids, flowback, or produced water, of which 1026 (87%) lack chronic oral toxicity values for human health assessments. To facilitate the ranking and prioritization of chemicals that lack toxicity values, it may be useful to employ toxicity estimates from quantitative structure-activity relationship (QSAR) models. Here we describe an approach for applying the results of a QSAR model from the TOPKAT program suite, which provides estimates of the rat chronic oral lowest-observed-adverse-effect level (LOAEL). Of the 1173 chemicals, TOPKAT was able to generate LOAEL estimates for 515 (44%). To address the uncertainty associated with these estimates, we assigned qualitative confidence scores (high, medium, or low) to each TOPKAT LOAEL estimate, and found 481 to be high-confidence. For 48 chemicals that had both a high-confidence TOPKAT LOAEL estimate and a chronic oral reference dose from EPA's Integrated Risk Information System (IRIS) database, Spearman rank correlation identified 68% agreement between the two values (permutation p-value =1 × 10(-11)). These results provide support for the use of TOPKAT LOAEL estimates in identifying and prioritizing potentially hazardous chemicals. High-confidence TOPKAT LOAEL estimates were available for 389 of 1026 hydraulic fracturing-related chemicals that lack chronic oral RfVs and OSFs from EPA-identified sources, including a subset of chemicals that are frequently used in hydraulic fracturing fluids. PMID:27172125

  1. Development of quantitative structure activity relationship (QSAR) model for disinfection byproduct (DBP) research: A review of methods and resources.

    PubMed

    Chen, Baiyang; Zhang, Tian; Bond, Tom; Gan, Yiqun

    2015-12-15

    Quantitative structure-activity relationship (QSAR) models are tools for linking chemical activities with molecular structures and compositions. Due to the concern about the proliferating number of disinfection byproducts (DBPs) in water and the associated financial and technical burden, researchers have recently begun to develop QSAR models to investigate the toxicity, formation, property, and removal of DBPs. However, there are no standard procedures or best practices regarding how to develop QSAR models, which potentially limit their wide acceptance. In order to facilitate more frequent use of QSAR models in future DBP research, this article reviews the processes required for QSAR model development, summarizes recent trends in QSAR-DBP studies, and shares some important resources for QSAR development (e.g., free databases and QSAR programs). The paper follows the four steps of QSAR model development, i.e., data collection, descriptor filtration, algorithm selection, and model validation; and finishes by highlighting several research needs. Because QSAR models may have an important role in progressing our understanding of DBP issues, it is hoped that this paper will encourage their future use for this application.

  2. Kinetics and Quantitative Structure—Activity Relationship Study on the Degradation Reaction from Perfluorooctanoic Acid to Trifluoroacetic Acid

    PubMed Central

    Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Zhang, Xue; Niu, Junfeng

    2014-01-01

    Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA) has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure–activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure–activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure–activity model shows, the bond length and energy of C1–C2 (RC1–C2 and EC1–C2) are positively correlated to rate constants, while the volume (V), the energy difference between EHOMO and ELUMO (ΔE), and the net atomic charges on atom C2 (QC2) are negatively correlated. PMID:25196516

  3. Quantitative relationships between structure and cytotoxic activity of flavonoid derivatives. An application of Hirshfeld surface derived descriptors.

    PubMed

    Kupcewicz, Bogumiła; Małecka, Magdalena; Zapadka, Mariusz; Krajewska, Urszula; Rozalski, Marek; Budzisz, Elzbieta

    2016-07-15

    Quantitative relationships between the structure and cytotoxic activity of series flavonoid derivatives were examined. The first regression-based model, developed for 18 flavanone-2-pyrazoline hybrids, involved two interpretable descriptors: a Mor04v and partial atomic charge. The second model, developed for structurally diverse set of compounds, was based on descriptors derived from Hirshfeld surface analysis. This model suggests that cytotoxic activity of compounds can be successfully predicted based on a fraction of H⋯H contacts and a fraction of interactions involving a halogen atom. For non-halogen derivatives, the data reveal that cytotoxic activity is inversely proportional to the percentage of O⋯H and N⋯H close contacts to Hirshfeld surface, while directly proportional to the percentage of H⋯H interactions. Chlorine (1k) and bromine (1l) derivatives of compounds, containing flavanone fused with N-methyl-2-pyrazoline, exhibited high cytotoxic potential against HL-60 cancer cell line (IC50<10μM). The cytotoxicity of 1k and 1l towards normal cells (HUVEC) was 10 and 25-fold lower, respectively. PMID:27234147

  4. Quantitative relationships between structure and cytotoxic activity of flavonoid derivatives. An application of Hirshfeld surface derived descriptors.

    PubMed

    Kupcewicz, Bogumiła; Małecka, Magdalena; Zapadka, Mariusz; Krajewska, Urszula; Rozalski, Marek; Budzisz, Elzbieta

    2016-07-15

    Quantitative relationships between the structure and cytotoxic activity of series flavonoid derivatives were examined. The first regression-based model, developed for 18 flavanone-2-pyrazoline hybrids, involved two interpretable descriptors: a Mor04v and partial atomic charge. The second model, developed for structurally diverse set of compounds, was based on descriptors derived from Hirshfeld surface analysis. This model suggests that cytotoxic activity of compounds can be successfully predicted based on a fraction of H⋯H contacts and a fraction of interactions involving a halogen atom. For non-halogen derivatives, the data reveal that cytotoxic activity is inversely proportional to the percentage of O⋯H and N⋯H close contacts to Hirshfeld surface, while directly proportional to the percentage of H⋯H interactions. Chlorine (1k) and bromine (1l) derivatives of compounds, containing flavanone fused with N-methyl-2-pyrazoline, exhibited high cytotoxic potential against HL-60 cancer cell line (IC50<10μM). The cytotoxicity of 1k and 1l towards normal cells (HUVEC) was 10 and 25-fold lower, respectively.

  5. Quantitative structure-activity relationship modelling of oral acute toxicity and cytotoxic activity of fragrance materials in rodents.

    PubMed

    Papa, E; Luini, M; Gramatica, P

    2009-10-01

    Fragrance materials are used as ingredients in many consumer and personal care products. The wide and daily use of these substances, as well as their mainly uncontrolled discharge through domestic sewage, make fragrance materials both potential indoor and outdoor air pollutants which are also connected to possible toxic effects on humans (asthma, allergies, headaches). Unfortunately, little is known about the environmental fate and toxicity of these substances. However, the use of alternative, predictive approaches, such as quantitative structure-activity relationships (QSARs), can help in filling the data gap and in the characterization of the environmental and toxicological profile of these substances. In the proposed study, ordinary least squares regression-based QSAR models were developed for three toxicological endpoints: mouse oral LD(50), inhibition of NADH-oxidase (EC(50) NADH-Ox) and the effect on mitochondrial membrane potential (EC(50) DeltaPsim). Theoretical molecular descriptors were calculated by using DRAGON software, and the best QSAR models were developed according to the principles defined by the Organization for Economic Co-operation and Development.

  6. Quantitative Relationship of Soil Texture with the Observed Population Density Reduction of Heterodera glycines after Annual Corn Rotation in Nebraska.

    PubMed

    Pérez-Hernández, Oscar; Giesler, Loren J

    2014-06-01

    Soil texture has been commonly associated with the population density of Heterodera glycines (soybean cyst nematode: SCN), but such an association has been mainly described in terms of textural classes. In this study, multivariate analysis and a generalized linear modeling approach were used to elucidate the quantitative relationship of soil texture with the observed SCN population density reduction after annual corn rotation in Nebraska. Forty-five commercial production fields were sampled in 2009, 2010, and 2011 and SCN population density (eggs/100 cm(3) of soil) for each field was determined before (Pi) and after (Pf) annual corn rotation from ten 3 × 3-m sampling grids. Principal components analysis revealed that, compared with silt and clay, sand had a stronger association with SCN Pi and Pf. Cluster analysis using the average linkage method and confirmed through 1,000 bootstrap simulations identified two groups: one corresponding to predominant silt-and-clay fields and other to sand-predominant fields. This grouping suggested that SCN relative percent population decline was higher in the sandy than in the silt-and-clay predominant group. However, when groups were compared for their SCN population density reduction using Pf as the response, Pi as a covariate, and incorporating the year and field variability, a negative binomial generalized linear model indicated that the SCN population density reduction was not statistically different between the sand-predominant field group and the silt-and-clay predominant group. PMID:24987160

  7. Overview of data and conceptual approaches for derivation of quantitative structure-activity relationships for ecotoxicological effects of organic chemicals.

    PubMed

    Bradbury, Steven P; Russom, Christine L; Ankley, Gerald T; Schultz, T Wayne; Walker, John D

    2003-08-01

    The use of quantitative structure-activity relationships (QSARs) in assessing potential toxic effects of organic chemicals on aquatic organisms continues to evolve as computational efficiency and toxicological understanding advance. With the ever-increasing production of new chemicals, and the need to optimize resources to assess thousands of existing chemicals in commerce, regulatory agencies have turned to QSARs as essential tools to help prioritize tiered risk assessments when empirical data are not available to evaluate toxicological effects. Progress in designing scientifically credible QSARs is intimately associated with the development of empirically derived databases of well-defined and quantified toxicity endpoints, which are based on a strategic evaluation of diverse sets of chemical structures, modes of toxic action, and species. This review provides a brief overview of four databases created for the purpose of developing QSARs for estimating toxicity of chemicals to aquatic organisms. The evolution of QSARs based initially on general chemical classification schemes, to models founded on modes of toxic action that range from nonspecific partitioning into hydrophobic cellular membranes to receptor-mediated mechanisms is summarized. Finally, an overview of expert systems that integrate chemical-specific mode of action classification and associated QSAR selection for estimating potential toxicological effects of organic chemicals is presented. PMID:12924578

  8. Chemical toxicity to environmental bacteria: Quantitative structure activity relationships and interspecies correlations and comparisons (Volumes I and II)

    SciTech Connect

    Blum, D.J.W.

    1989-01-01

    Toxicity data were collected for four groups of bacteria and a fish. These data were collected for four groups of bacteria and a fish. These data were used to compare and correlate the toxicities to different organisms, and to develop Quantitative Structure Activity Relationships (QSARs) correlating chemical structure with toxicity. Chemical toxicity to aerobic heterotrophic bacteria, Nitrosomonas, and methanogens were measured using serum bottle techniques in order to determine the concentration of chemical which caused 50% inhibition in microorganism's activity. Toxicity to Photobacteria phosphoreum (Microtox bacteria) and fathead minnows was also tested or data collected from the literature. Toxicants included chlorinated and other substituted benzenes and phenols, chlorinated alkanes, and a variety of additional compounds covering a range of chemical structures. Data were obtained for 50 to 130 chemicals per species. The sensitivity of the organism fell into two groups with Microtox bacteria, Nitrosomonas, and fathead minnows showing significantly greater sensitivity than aerobic heterotrophs and methanogens. Highly successful interspecies correlations were found between Microtox and each of the other species.

  9. Estimating the Potential Toxicity of Chemicals Associated with Hydraulic Fracturing Operations Using Quantitative Structure-Activity Relationship Modeling.

    PubMed

    Yost, Erin E; Stanek, John; DeWoskin, Robert S; Burgoon, Lyle D

    2016-07-19

    The United States Environmental Protection Agency (EPA) identified 1173 chemicals associated with hydraulic fracturing fluids, flowback, or produced water, of which 1026 (87%) lack chronic oral toxicity values for human health assessments. To facilitate the ranking and prioritization of chemicals that lack toxicity values, it may be useful to employ toxicity estimates from quantitative structure-activity relationship (QSAR) models. Here we describe an approach for applying the results of a QSAR model from the TOPKAT program suite, which provides estimates of the rat chronic oral lowest-observed-adverse-effect level (LOAEL). Of the 1173 chemicals, TOPKAT was able to generate LOAEL estimates for 515 (44%). To address the uncertainty associated with these estimates, we assigned qualitative confidence scores (high, medium, or low) to each TOPKAT LOAEL estimate, and found 481 to be high-confidence. For 48 chemicals that had both a high-confidence TOPKAT LOAEL estimate and a chronic oral reference dose from EPA's Integrated Risk Information System (IRIS) database, Spearman rank correlation identified 68% agreement between the two values (permutation p-value =1 × 10(-11)). These results provide support for the use of TOPKAT LOAEL estimates in identifying and prioritizing potentially hazardous chemicals. High-confidence TOPKAT LOAEL estimates were available for 389 of 1026 hydraulic fracturing-related chemicals that lack chronic oral RfVs and OSFs from EPA-identified sources, including a subset of chemicals that are frequently used in hydraulic fracturing fluids.

  10. Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model.

    PubMed

    Paulke, Alexander; Proschak, Ewgenij; Sommer, Kai; Achenbach, Janosch; Wunder, Cora; Toennes, Stefan W

    2016-03-14

    The number of new synthetic psychoactive compounds increase steadily. Among the group of these psychoactive compounds, the synthetic cannabinoids (SCBs) are most popular and serve as a substitute of herbal cannabis. More than 600 of these substances already exist. For some SCBs the in vitro cannabinoid receptor 1 (CB1) affinity is known, but for the majority it is unknown. A quantitative structure-activity relationship (QSAR) model was developed, which allows the determination of the SCBs affinity to CB1 (expressed as binding constant (Ki)) without reference substances. The chemically advance template search descriptor was used for vector representation of the compound structures. The similarity between two molecules was calculated using the Feature-Pair Distribution Similarity. The Ki values were calculated using the Inverse Distance Weighting method. The prediction model was validated using a cross validation procedure. The predicted Ki values of some new SCBs were in a range between 20 (considerably higher affinity to CB1 than THC) to 468 (considerably lower affinity to CB1 than THC). The present QSAR model can serve as a simple, fast and cheap tool to get a first hint of the biological activity of new synthetic cannabinoids or of other new psychoactive compounds.

  11. Quantitative structure-activity relationship analysis of substituted arylazo pyridone dyes in photocatalytic system: Experimental and theoretical study.

    PubMed

    Dostanić, J; Lončarević, D; Zlatar, M; Vlahović, F; Jovanović, D M

    2016-10-01

    A series of arylazo pyridone dyes was synthesized by changing the type of the substituent group in the diazo moiety, ranging from strong electron-donating to strong electron-withdrawing groups. The structural and electronic properties of the investigated dyes was calculated at the M062X/6-31+G(d,p) level of theory. The observed good linear correlations between atomic charges and Hammett σp constants provided a basis to discuss the transmission of electronic substituent effects through a dye framework. The reactivity of synthesized dyes was tested through their decolorization efficiency in TiO2 photocatalytic system (Degussa P-25). Quantitative structure-activity relationship analysis revealed a strong correlation between reactivity of investigated dyes and Hammett substituent constants. The reaction was facilitated by electron-withdrawing groups, and retarded by electron-donating ones. Quantum mechanical calculations was used in order to describe the mechanism of the photocatalytic oxidation reactions of investigated dyes and interpret their reactivities within the framework of the Density Functional Theory (DFT). According to DFT based reactivity descriptors, i.e. Fukui functions and local softness, the active site moves from azo nitrogen atom linked to benzene ring to pyridone carbon atom linked to azo bond, going from dyes with electron-donating groups to dyes with electron-withdrawing groups.

  12. A quantitative structure-activity relationship to predict efficacy of granular activated carbon adsorption to control emerging contaminants.

    PubMed

    Kennicutt, A R; Morkowchuk, L; Krein, M; Breneman, C M; Kilduff, J E

    2016-08-01

    A quantitative structure-activity relationship was developed to predict the efficacy of carbon adsorption as a control technology for endocrine-disrupting compounds, pharmaceuticals, and components of personal care products, as a tool for water quality professionals to protect public health. Here, we expand previous work to investigate a broad spectrum of molecular descriptors including subdivided surface areas, adjacency and distance matrix descriptors, electrostatic partial charges, potential energy descriptors, conformation-dependent charge descriptors, and Transferable Atom Equivalent (TAE) descriptors that characterize the regional electronic properties of molecules. We compare the efficacy of linear (Partial Least Squares) and non-linear (Support Vector Machine) machine learning methods to describe a broad chemical space and produce a user-friendly model. We employ cross-validation, y-scrambling, and external validation for quality control. The recommended Support Vector Machine model trained on 95 compounds having 23 descriptors offered a good balance between good performance statistics, low error, and low probability of over-fitting while describing a wide range of chemical features. The cross-validated model using a log-uptake (qe) response calculated at an aqueous equilibrium concentration (Ce) of 1 μM described the training dataset with an r(2) of 0.932, had a cross-validated r(2) of 0.833, and an average residual of 0.14 log units.

  13. Kinetics and quantitative structure-activity relationship study on the degradation reaction from perfluorooctanoic acid to trifluoroacetic acid.

    PubMed

    Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Zhang, Xue; Niu, Junfeng

    2014-08-14

    Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA) has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure-activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure-activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure-activity model shows, the bond length and energy of C1-C2 (RC1-C2 and EC1-C2) are positively correlated to rate constants, while the volume (V), the energy difference between EHOMO and ELUMO (ΔE), and the net atomic charges on atom C2 (QC2) are negatively correlated.

  14. Quantitative structure-activity relationship model for the fetal-maternal blood concentration ratio of chemicals in humans.

    PubMed

    Takaku, Tomoyuki; Nagahori, Hirohisa; Sogame, Yoshihisa; Takagi, Tatsuya

    2015-01-01

    A quantitative structure-activity relationship (QSAR) model of the fetal-maternal blood concentration ratio (F/M ratio) of chemicals was developed to predict the placental transfer in humans. Data on F/M ratio of 55 compounds found in the literature were separated into training (75%, 41 compounds) and testing sets (25%, 14 compounds). The training sets were then subjected to multiple linear regression analysis using the descriptors of molecular weight (MW), topological polar surface area (TopoPSA), and maximum E-state of hydrogen atom (Hmax). Multiple linear regression analysis and a cross-validation showed a relatively high adjusted coefficient of determination (Ra(2)) (0.73) and cross-validated coefficient of determination (Q(2)) (0.71), after removing three outliers. In the external validation, R(2) for external validation (R(2)pred) was calculated to be 0.51. These results suggested that the QSAR model developed in this study can be considered reliable in terms of its robustness and predictive performance. Since it is difficult to examine the F/M ratio in humans experimentally, this QSAR model for prediction of the placental transfer of chemicals in humans could be useful in risk assessment of chemicals in humans.

  15. Quantitative response relationships between degradation rates and functional genes during the degradation of beta-cypermethrin in soil.

    PubMed

    Yang, Zhong-Hua; Ji, Guo-Dong

    2015-12-15

    In the present study, the degradation mechanisms of beta-cypermethrin and its metabolites in soil were explored through the quantitative response relationships between the degradation rates and related functional genes. We found that the degradation rate of beta-cypermethrin was rapid in unsterilized soil but not in sterilized soil, which indicated that the degradation process is microbially based. Moreover, three metabolites (3-phenoxybenzoic acid, phenol and protocatechuic acid) were detected during the degradation process and used to identify the degradation pathway and functional genes related to the degradation process. The key rate-limiting functional genes were pytH and pobA, and the relative contributions of these genes to the degradation process were examined with a path analysis. The path analysis revealed that the genes pobA and pytH had the greatest direct effects on the degradation of beta-cypermethrin (pobA), alpha-cypermethrin (pobA), theta-cypermethrin (pytH) and 3-phenoxybenzoic acid (pytH).

  16. Quantitative Relationship of Soil Texture with the Observed Population Density Reduction of Heterodera glycines after Annual Corn Rotation in Nebraska.

    PubMed

    Pérez-Hernández, Oscar; Giesler, Loren J

    2014-06-01

    Soil texture has been commonly associated with the population density of Heterodera glycines (soybean cyst nematode: SCN), but such an association has been mainly described in terms of textural classes. In this study, multivariate analysis and a generalized linear modeling approach were used to elucidate the quantitative relationship of soil texture with the observed SCN population density reduction after annual corn rotation in Nebraska. Forty-five commercial production fields were sampled in 2009, 2010, and 2011 and SCN population density (eggs/100 cm(3) of soil) for each field was determined before (Pi) and after (Pf) annual corn rotation from ten 3 × 3-m sampling grids. Principal components analysis revealed that, compared with silt and clay, sand had a stronger association with SCN Pi and Pf. Cluster analysis using the average linkage method and confirmed through 1,000 bootstrap simulations identified two groups: one corresponding to predominant silt-and-clay fields and other to sand-predominant fields. This grouping suggested that SCN relative percent population decline was higher in the sandy than in the silt-and-clay predominant group. However, when groups were compared for their SCN population density reduction using Pf as the response, Pi as a covariate, and incorporating the year and field variability, a negative binomial generalized linear model indicated that the SCN population density reduction was not statistically different between the sand-predominant field group and the silt-and-clay predominant group.

  17. Quantitative Genome-Wide Genetic Interaction Screens Reveal Global Epistatic Relationships of Protein Complexes in Escherichia coli

    PubMed Central

    Kumar, Ashwani; Stewart, Geordie; Samanfar, Bahram; Aoki, Hiroyuki; Wagih, Omar; Vlasblom, James; Phanse, Sadhna; Lad, Krunal; Yeou Hsiung Yu, Angela; Graham, Christopher; Jin, Ke; Brown, Eric; Golshani, Ashkan; Kim, Philip; Moreno-Hagelsieb, Gabriel; Greenblatt, Jack; Houry, Walid A.; Parkinson, John; Emili, Andrew

    2014-01-01

    Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI) screens can provide insights into the biological role(s) of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems. PMID:24586182

  18. Prediction of anticancer property of bowsellic acid derivatives by quantitative structure activity relationship analysis and molecular docking study

    PubMed Central

    Satpathy, Raghunath; Guru, R. K.; Behera, R.; Nayak, B.

    2015-01-01

    Context: Boswellic acid consists of a series of pentacyclic triterpene molecules that are produced by the plant Boswellia serrata. The potential applications of Bowsellic acid for treatment of cancer have been focused here. Aims: To predict the property of the bowsellic acid derivatives as anticancer compounds by various computational approaches. Materials and Methods: In this work, all total 65 derivatives of bowsellic acids from the PubChem database were considered for the study. After energy minimization of the ligands various types of molecular descriptors were computed and corresponding two-dimensional quantitative structure activity relationship (QSAR) models were obtained by taking Andrews coefficient as the dependent variable. Statistical Analysis Used: Different types of comparative analysis were used for QSAR study are multiple linear regression, partial least squares, support vector machines and artificial neural network. Results: From the study geometrical descriptors shows the highest correlation coefficient, which indicates the binding factor of the compound. To evaluate the anticancer property molecular docking study of six selected ligands based on Andrews affinity were performed with nuclear factor-kappa protein kinase (Protein Data Bank ID 4G3D), which is an established therapeutic target for cancers. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound. Conclusions: Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound. PMID:25709332

  19. Ecotoxicity quantitative structure-activity relationships for alcohol ethoxylate mixtures based on substance-specific toxicity predictions.

    PubMed

    Boeije, G M; Cano, M L; Marshall, S J; Belanger, S E; Van Compernolle, R; Dorn, P B; Gümbel, H; Toy, R; Wind, T

    2006-05-01

    Traditionally, ecotoxicity quantitative structure-activity relationships (QSARs) for alcohol ethoxylate (AE) surfactants have been developed by assigning the measured ecotoxicity for commercial products to the average structures (alkyl chain length and ethoxylate chain length) of these materials. Acute Daphnia magna toxicity tests for binary mixtures indicate that mixtures are more toxic than the individual AE substances corresponding with their average structures (due to the nonlinear relation of toxicity with structure). Consequently, the ecotoxicity value (expressed as effects concentration) attributed to the average structures that are used to develop the existing QSARs is expected to be too low. A new QSAR technique for complex substances, which interprets the mixture toxicity with regard to the "ethoxymers" distribution (i.e., the individual AE components) rather than the average structure, was developed. This new technique was then applied to develop new AE ecotoxicity QSARs for invertebrates, fish, and mesocosms. Despite the higher complexity, the fit and accuracy of the new QSARs are at least as good as those for the existing QSARs based on the same data set. As expected from typical ethoxymer distributions of commercial AEs, the new QSAR generally predicts less toxicity than the QSARs based on average structure. PMID:16256196

  20. Quantitative Structure-Activity Relationships Study on the Rate Constants of Polychlorinated Dibenzo-p-Dioxins with OH Radical

    PubMed Central

    Qi, Chuansong; Zhang, Chenxi; Sun, Xiaomin

    2015-01-01

    The OH-initiated reaction rate constants (kOH) are of great importance to measure atmospheric behaviors of polychlorinated dibenzo-p-dioxins (PCDDs) in the environment. The rate constants of 75 PCDDs with the OH radical at 298.15 K have been calculated using high level molecular orbital theory, and the rate constants (kα, kβ, kγ and kOH) were further analyzed by the quantitative structure-activity relationships (QSAR) study. According to the QSAR models, the relations between rate constants and the numbers and positions of Cl atoms, the energy of the highest occupied molecular orbital (EHOMO), the energy of the lowest unoccupied molecular orbital (ELUMO), the difference ΔEHOMO-LUMO between EHOMO and ELUMO, and the dipole of oxidizing agents (D) were discussed. It was found that EHOMO is the main factor in the kOH. The number of Cl atoms is more effective than the number of relative position of these Cl atoms in the kOH. The kOH decreases with the increase of the substitute number of Cl atoms. PMID:26274950

  1. Parental Involvement and Student Motivation: A Quantitative Study of the Relationship between Student Goal Orientation and Student Perceptions of Parental Involvement among 5th Grade Students

    ERIC Educational Resources Information Center

    Mendoza, Christine Daryabigi

    2012-01-01

    The purpose of this study was to examine a possible relationship between student perceptions of parental involvement and student goal orientation for an ethnically diverse fifth grade elementary population from high-poverty schools. This study was quantitative in nature and employed the Patterns of Adaptive Learning Scales (PALS) to assess the…

  2. Structural development of benzhydrol-type 1'-acetoxychavicol acetate (ACA) analogs as human leukemia cell-growth inhibitors based on quantitative structure-activity relationship (QSAR) analysis.

    PubMed

    Misawa, Takashi; Aoyama, Hiroshi; Furuyama, Taniyuki; Dodo, Kosuke; Sagawa, Morihiko; Miyachi, Hiroyuki; Kizaki, Masahiro; Hashimoto, Yuichi

    2008-10-01

    Benzhydrol-type analogs of 1'-acetoxychavicol acetate (ACA) were developed as inhibitors of human leukemia HL-60 cell growth based on quantitative structure-activity relationship (QSAR) analysis. An analog containing an anthracenyl moiety (8) was a potent inhibitor with the IC(50) value of 0.12 microM.

  3. Structure-property study of keto-ether polyimides

    NASA Technical Reports Server (NTRS)

    Dezern, James F.; Croall, Catharine I.

    1991-01-01

    As part of an on-going effort to develop an understanding of how changes in the chemical structure affect polymer properties, an empirical study was performed on polyimides containing only ether and/or carbonyl connecting groups in the polymer backbone. During the past two decades the structure-property relationships in linear aromatic polyimides have been extensively investigated. More recently, work has been performed to study the effect of isomeric attachment of keto-ether polyimides on properties such as glass transition temperature and solubility. However, little work has been reported on the relation of polyimide structure to mechanical properties. The purpose of this study was to determine the effect of structural changes in the backbone of keto-ether polyimides on their mechanical properties, specifically, unoriented thin film tensile properties. This study was conducted in two stages. The purpose of the initial stage was to examine the physical and mechanical properties of a representative group (four) of polyimide systems to determine the optimum solvent and cure cycle requirements. These optimum conditions were then utilized in the second stage to prepare films of keto-ether polyimides which were evaluated for mechanical and physical properties. All of the polyimides were prepared using isomers of oxydianiline (ODA) and diaminobenzophenone (DABP) in combination with 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic anhydride (ODPA).

  4. Novel aliphatic lipid-based diesters for use in lubricant formulations: Structure property investigations

    NASA Astrophysics Data System (ADS)

    Raghunanan, Latchmi Cindy

    Structure-property relationships are increasingly valued for the identification of specifically engineered materials with properties optimized for targeted application(s). In this work, linear and branched diesters for use in lubricant formulations are prepared from lipid-based oleochemicals and their structure-property relationships reported. It is shown that the branched diesters possess exceptional physical property profiles, including suppression of crystallization, and are superior alternatives for use in lubricant formulations. For the linear aliphatic diesters, both high and low temperature properties were predictable functions of total chain length, and both were differently influenced by the fatty acid versus diol chain length. Symmetry did not influence either, although thermal stability decreased and thermal transition temperatures increased with increasing saturation. All of the linear diesters demonstrated Newtonian flow behaviour. Viscosity was also predictable as a function of total chain length; any microstructural features due to structural effects were superseded by mass effects.

  5. Parabolic quantitative structure-activity relationships and photodynamic therapy: application of a three-compartment model with clearance to the in vivo quantitative structure-activity relationships of a congeneric series of pyropheophorbide derivatives used as photosensitizers for photodynamic therapy.

    PubMed

    Potter, W R; Henderson, B W; Bellnier, D A; Pandey, R K; Vaughan, L A; Weishaupt, K R; Dougherty, T J

    1999-11-01

    An open three-compartment pharmacokinetic model was applied to the in vivo quantitative structure-activity relationship (QSAR) data of a homologous series of pyropheophorbide photosensitizers for photodynamic therapy (PDT). The physical model was a lipid compartment sandwiched between two identical aqueous compartments. The first compartment was assumed to clear irreversibly at a rate K0. The measured octanol-water partition coefficients, P(i) (where i is the number of carbons in the alkyl chain) and the clearance rate K0 determined the clearance kinetics of the drugs. Solving the coupled differential equations of the three-compartment model produced clearance kinetics for each of the sensitizers in each of the compartments. The third compartment was found to contain the target of PDT. This series of compounds is quite lipophilic. Therefore these drugs are found mainly in the second compartment. The drug level in the third compartment represents a small fraction of the tissue level and is thus not accessible to direct measurement by extraction. The second compartment of the model accurately predicted the clearance from the serum of mice of the hexyl ether of pyropheophorbide a, one member of this series of compounds. The diffusion and clearance rate constants were those found by fitting the pharmacokinetics of the third compartment to the QSAR data. This result validated the magnitude and mechanistic significance of the rate constants used to model the QSAR data. The PDT response to dose theory was applied to the kinetic behavior of the target compartment drug concentration. This produced a pharmacokinetic-based function connecting PDT response to dose as a function of time postinjection. This mechanistic dose-response function was fitted to published, single time point QSAR data for the pheophorbides. As a result, the PDT target threshold dose together with the predicted QSAR as a function of time postinjection was found.

  6. Structural Properties of Defects in Glassy Liquids.

    PubMed

    Cubuk, Ekin D; Schoenholz, Samuel S; Kaxiras, Efthimios; Liu, Andrea J

    2016-07-01

    At zero temperature a disordered solid corresponds to a local minimum in the energy landscape. As the temperature is raised or the system is driven with a mechanical load, the system explores different minima via dynamical events in which particles rearrange their relative positions. We have shown recently that the dynamics of particle rearrangements are strongly correlated with a structural quantity associated with each particle, "softness", which we can identify using supervised machine learning. Particles of a given softness have a well-defined energy scale that governs local rearrangements; because of this property, softness greatly simplifies our understanding of glassy dynamics. Here we investigate the correlation of softness with other commonly used structural quantities, such as coordination number and local potential energy. We show that although softness strongly correlates with these properties, its predictive power for rearrangement dynamics is much higher. We introduce a useful metric for quantifying the quality of structural quantities as predictors of dynamics. We hope that, in the future, authors introducing new structural measures of dynamics will compare their proposals quantitatively to softness using this metric. We also show how softness correlations give insight into rearrangements. Finally, we explore the physical meaning of softness using unsupervised dimensionality reduction and reduced curve-fitting models, and show that softness can be recast in a form that is amenable to analytical treatment.

  7. Three dimensional quantitative structure-toxicity relationship modeling and prediction of acute toxicity for organic contaminants to algae.

    PubMed

    Jin, Xiangqin; Jin, Minghao; Sheng, Lianxi

    2014-08-01

    Although numerous chemicals have been identified to have significant toxicological effect on aquatic organisms, there is still lack of a reliable, high-throughput approach to evaluate, screen and monitor the presence of organic contaminants in aquatic system. In the current study, we proposed a synthetic pipeline to automatically model and predict the acute toxicity of chemicals to algae. In the procedure, a new alignment-free three dimensional (3D) structure characterization method was described and, with this method, several 3D-quantitative structure-toxicity relationship (3D-QSTR) models were developed, from which two were found to exhibit strong internal fitting ability and high external predictive power. The best model was established by Gaussian process (GP), which was further employed to perform extrapolation on a random compound library consisting of 1014 virtually generated substituted benzenes. It was found that (i) substitution number can only exert slight influence on chemical׳s toxicity, but low-substituted benzenes seem to have higher toxicity than those of high-substituted entities, and (ii) benzenes substituted by nitro group and halogens exhibit high acute toxicity as compared to other substituents such as methyl and carboxyl groups. Subsequently, several promising candidates suggested by computational prediction were assayed by using a standard algal growth inhibition test. Consequently, four substituted benzenes, namely 2,3-dinitrophenol, 2-chloro-4-nitroaniline, 1,2,3-trinitrobenzene and 3-bromophenol, were determined to have high acute toxicity to Scenedesmus obliquus, with their EC50 values of 2.5±0.8, 10.5±2.1, 1.4±0.2 and 42.7±5.4μmol/L, respectively. PMID:24960624

  8. Development of acute toxicity quantitative structure activity relationships (QSAR) and their use in linear alkylbenzene sulfonate species sensitivity distributions.

    PubMed

    Belanger, Scott E; Brill, Jessica L; Rawlings, Jane M; Price, Brad B

    2016-07-01

    Linear Alkylbenzene Sulfonate (LAS) is high tonnage and widely dispersed anionic surfactant used by the consumer products sector. A range of homologous structures are used in laundry applications that differ primarily on the length of the hydrophobic alkyl chain. This research summarizes the development of a set of acute toxicity QSARs (Quantitative Structure Activity Relationships) for fathead minnows (Pimephales promelas) and daphnids (Daphnia magna, Ceriodaphnia dubia) using accepted test guideline approaches. A series of studies on pure chain length LAS from C10 to C14 were used to develop the QSARs and the robustness of the QSARs was tested by evaluation of two technical mixtures of differing compositions. All QSARs were high quality (R(2) were 0.965-0.997, p < 0.0001). Toxicity normalization employing QSARs is used to interpret a broader array of tests on LAS chain length materials to a diverse group of test organisms with the objective of developing Species Sensitivity Distributions (SSDs) for various chain lengths of interest. Mixtures include environmental distributions measured from exposure monitoring surveys of wastewater effluents, various commercial mixtures, or specific chain lengths. SSD 5th percentile hazardous concentrations (HC5s) ranged from 0.129 to 0.254 mg/L for wastewater effluents containing an average of 11.26-12 alkyl carbons. The SSDs are considered highly robust given the breadth of species (n = 19), use of most sensitive endpoints from true chronic studies and the quality of the underlying statistical properties of the SSD itself. The data continue to indicate a low hazard to the environment relative to expected environmental concentrations.

  9. Assessment of quantitative structure-activity relationship of toxicity prediction models for Korean chemical substance control legislation

    PubMed Central

    Kim, Kwang-Yon; Shin, Seong Eun; No, Kyoung Tai

    2015-01-01

    Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used

  10. Synthesis and quantitative structure activity relationship (QSAR) of arylidene (benzimidazol-1-yl)acetohydrazones as potential antibacterial agents.

    PubMed

    El-Kilany, Yeldez; Nahas, Nariman M; Al-Ghamdi, Mariam A; Badawy, Mohamed E I; El Ashry, El Sayed H

    2015-01-01

    Ethyl (benzimidazol-1-yl)acetate was subjected to hydrazinolysis with hydrazine hydrate to give (benzimidazol-1-yl)acetohydrazide. The latter was reacted with various aromatic aldehydes to give the respective arylidene (1H-benzimidazol-1-yl)acetohydrazones. Solutions of the prepared hydrazones were found to contain two geometric isomers. Similarly (2-methyl-benzimidazol-1-yl)acetohydrazide was reacted with various aldehydes to give the corresponding hydrazones. The antibacterial activity was evaluated in vitro by minimum inhibitory concentration (MIC) against Agrobacterium tumefaciens (A. tumefaciens), Erwinia carotovora (E. carotovora), Corynebacterium fascians (C. fascians) and Pseudomonas solanacearum (P. solanacearum). MIC result demonstrated that salicylaldehyde(1H-benzimidazol-1-yl)acetohydrazone (4) was the most active compound (MIC = 20, 35, 25 and 30 mg/L against A. tumefaciens, C. fascians, E. carotovora and P. solanacearum, respectively). Quantitative structure activity relationship (QSAR) investigation using Hansch analysis was applied to find out the correlation between antibacterial activity and physicochemical properties. Various physicochemical descriptors and experimentally determined MIC values for different microorganisms were used as independent and dependent variables, respectively. pMICs of the compounds exhibited good correlation (r = 0.983, 0.914, 0.960 and 0.958 for A. tumefaciens, C. fascians, E. carotovora and P. solanacearum, respectively) with the prediction made by the model. QSAR study revealed that the hydrophobic parameter (ClogP), the aqueous solubility (LogS), calculated molar refractivity, topological polar surface area and hydrogen bond acceptor were found to have overall significant correlation with antibacterial activity. The statistical results of training set, correlation coefficient (r and r (2)), the ratio between regression and residual variances (f, Fisher's statistic), the standard error of estimates and

  11. Comparison of the applicability domain of a quantitative structure-activity relationship for estrogenicity with a large chemical inventory.

    PubMed

    Netzeva, Tatiana I; Gallegos Saliner, Ana; Worth, Andrew P

    2006-05-01

    The aim of the present study was to illustrate that it is possible and relatively straightforward to compare the domain of applicability of a quantitative structure-activity relationship (QSAR) model in terms of its physicochemical descriptors with a large inventory of chemicals. A training set of 105 chemicals with data for relative estrogenic gene activation, obtained in a recombinant yeast assay, was used to develop the QSAR. A binary classification model for predicting active versus inactive chemicals was developed using classification tree analysis and two descriptors with a clear physicochemical meaning (octanol-water partition coefficient, or log Kow, and the number of hydrogen bond donors, or n(Hdon)). The model demonstrated a high overall accuracy (90.5%), with a sensitivity of 95.9% and a specificity of 78.1%. The robustness of the model was evaluated using the leave-many-out cross-validation technique, whereas the predictivity was assessed using an artificial external test set composed of 12 compounds. The domain of the QSAR training set was compared with the chemical space covered by the European Inventory of Existing Commercial Chemical Substances (EINECS), as incorporated in the CDB-EC software, in the log Kow / n(Hdon) plane. The results showed that the training set and, therefore, the applicability domain of the QSAR model covers a small part of the physicochemical domain of the inventory, even though a simple method for defining the applicability domain (ranges in the descriptor space) was used. However, a large number of compounds are located within the narrow descriptor window.

  12. Development of acute toxicity quantitative structure activity relationships (QSAR) and their use in linear alkylbenzene sulfonate species sensitivity distributions.

    PubMed

    Belanger, Scott E; Brill, Jessica L; Rawlings, Jane M; Price, Brad B

    2016-07-01

    Linear Alkylbenzene Sulfonate (LAS) is high tonnage and widely dispersed anionic surfactant used by the consumer products sector. A range of homologous structures are used in laundry applications that differ primarily on the length of the hydrophobic alkyl chain. This research summarizes the development of a set of acute toxicity QSARs (Quantitative Structure Activity Relationships) for fathead minnows (Pimephales promelas) and daphnids (Daphnia magna, Ceriodaphnia dubia) using accepted test guideline approaches. A series of studies on pure chain length LAS from C10 to C14 were used to develop the QSARs and the robustness of the QSARs was tested by evaluation of two technical mixtures of differing compositions. All QSARs were high quality (R(2) were 0.965-0.997, p < 0.0001). Toxicity normalization employing QSARs is used to interpret a broader array of tests on LAS chain length materials to a diverse group of test organisms with the objective of developing Species Sensitivity Distributions (SSDs) for various chain lengths of interest. Mixtures include environmental distributions measured from exposure monitoring surveys of wastewater effluents, various commercial mixtures, or specific chain lengths. SSD 5th percentile hazardous concentrations (HC5s) ranged from 0.129 to 0.254 mg/L for wastewater effluents containing an average of 11.26-12 alkyl carbons. The SSDs are considered highly robust given the breadth of species (n = 19), use of most sensitive endpoints from true chronic studies and the quality of the underlying statistical properties of the SSD itself. The data continue to indicate a low hazard to the environment relative to expected environmental concentrations. PMID:27105149

  13. A novel quantitative structure-activity relationship model for prediction of biomagnification factor of some organochlorine pollutants.

    PubMed

    Fatemi, Mohammad Hossein; Baher, Elham

    2009-08-01

    The biomagnification factor (BMF) is an important property for toxicology and environmental chemistry. In this work, quantitative structure-activity relationship (QSAR) models were used for the prediction of BMF for a data set including 30 polychlorinated biphenyls and 12 organochlorine pollutants. This set was divided into training and prediction sets. The result of diversity test reveals that the structure of the training and test sets can represent those of the whole ones. After calculation and screening of a large number of molecular descriptors, the methods of stepwise multiple linear regression and genetic algorithm (GA) were used for the selection of most important and significant descriptors which were related to BMF. Then multiple linear regression and artificial neural network (ANN) techniques were applied as linear and non-linear feature mapping techniques, respectively. By comparison between statistical parameters of these methods it was concluded that an ANN model, which used GA selected descriptors, was superior over constructed models. Descriptors which were used by this model are: topographic electronic index, complementary information content, XY shadow/XY rectangle and difference between partial positively and negatively charge surface area. The standard errors for training and test sets of this model are 0.03 and 0.20, respectively. The degree of importance of each descriptor was evaluated by sensitivity analysis approach for the nonlinear model. A good results (Q (2) = 0.97 and SPRESS = 0.084) is obtained by applying cross-validation test that indicating the validation of descriptors in the obtained model in prediction of BMF for these compounds. PMID:19219557

  14. Modeling liver-related adverse effects of drugs using knearest neighbor quantitative structure-activity relationship method.

    PubMed

    Rodgers, Amie D; Zhu, Hao; Fourches, Denis; Rusyn, Ivan; Tropsha, Alexander

    2010-04-19

    Adverse effects of drugs (AEDs) continue to be a major cause of drug withdrawals in both development and postmarketing. While liver-related AEDs are a major concern for drug safety, there are few in silico models for predicting human liver toxicity for drug candidates. We have applied the quantitative structure-activity relationship (QSAR) approach to model liver AEDs. In this study, we aimed to construct a QSAR model capable of binary classification (active vs inactive) of drugs for liver AEDs based on chemical structure. To build QSAR models, we have employed an FDA spontaneous reporting database of human liver AEDs (elevations in activity of serum liver enzymes), which contains data on approximately 500 approved drugs. Approximately 200 compounds with wide clinical data coverage, structural similarity, and balanced (40/60) active/inactive ratios were selected for modeling and divided into multiple training/test and external validation sets. QSAR models were developed using the k nearest neighbor method and validated using external data sets. Models with high sensitivity (>73%) and specificity (>94%) for the prediction of liver AEDs in external validation sets were developed. To test applicability of the models, three chemical databases (World Drug Index, Prestwick Chemical Library, and Biowisdom Liver Intelligence Module) were screened in silico, and the validity of predictions was determined, where possible, by comparing model-based classification with assertions in publicly available literature. Validated QSAR models of liver AEDs based on the data from the FDA spontaneous reporting system can be employed as sensitive and specific predictors of AEDs in preclinical screening of drug candidates for potential hepatotoxicity in humans. PMID:20192250

  15. Rational Quantitative Structure-Activity Relationship (RQSAR) Screen for PXR and CAR Isoform-Specific Nuclear Receptor Ligands

    PubMed Central

    Dring, Ann M.; Anderson, Linnea E.; Qamar, Saima; Stoner, Matthew A.

    2010-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related orphan nuclear receptor proteins that share several ligands and target overlapping sets of genes involved in homeostasis and all phases of drug metabolism. CAR and PXR are involved in the development of certain diseases, including diabetes, metabolic syndrome and obesity. Ligand screens for these receptors so far have typically focused on steroid hormone analogs with pharmacophore-based approaches, only to find relatively few new hits. Multiple CAR isoforms have been detected in human liver, with the most abundant being the constitutively active reference, CAR1, and the ligand-dependent isoform CAR3. It has been assumed that any compound that binds CAR1 should also activate CAR3, and so CAR3 can be used as a ligand-activated surrogate for CAR1 studies. The possibility of CAR3-specific ligands has not, so far, been addressed. To investigate the differences between CAR1, CAR3 and PXR, and to look for more CAR ligands that may be of use in quantitative structure-activity relationship (QSAR) studies, we performed a luciferase transactivation assay screen of 60 mostly non-steroid compounds. Known active compounds with different core chemistries were chosen as starting points and structural variants were rationally selected for screening. Distinct differences in agonist versus inverse agonist/antagonist effects were seen in 49 compounds that had some ligand effect on at least one receptor and 18 that had effects on all three receptors; eight were CAR1 ligands only, three were CAR3 only ligands and four affected PXR only. This work provides evidence for new CAR ligands, some of which have CAR3-specific effects, and provides observational data on CAR and PXR ligands with which to inform in silico strategies. Compounds that demonstrated unique activity on any one receptor are potentially valuable diagnostic tools for the investigation of in vivo molecular targets. PMID:20869355

  16. Quantitative structure-activity relationship study of antioxidative peptide by using different sets of amino acids descriptors

    NASA Astrophysics Data System (ADS)

    Li, Yao-Wang; Li, Bo; He, Jiguo; Qian, Ping

    2011-07-01

    A database consisting of 214 tripeptides which contain either His or Tyr residue was applied to study quantitative structure-activity relationships (QSAR) of antioxidative tripeptides. Partial Least-Squares Regression analysis (PLSR) was conducted using parameters individually of each amino acid descriptor, including Divided Physico-chemical Property Scores (DPPS), Hydrophobic, Electronic, Steric, and Hydrogen (HESH), Vectors of Hydrophobic, Steric, and Electronic properties (VHSE), Molecular Surface-Weighted Holistic Invariant Molecular (MS-WHIM), isotropic surface area-electronic charge index (ISA-ECI) and Z-scale, to describe antioxidative tripeptides as X-variables and antioxidant activities measured with ferric thiocyanate methods were as Y-variable. After elimination of outliers by Hotelling's T 2 method and residual analysis, six significant models were obtained describing the entire data set. According to cumulative squared multiple correlation coefficients ( R2), cumulative cross-validation coefficients ( Q2) and relative standard deviation for calibration set (RSD c), the qualities of models using DPPS, HESH, ISA-ECI, and VHSE descriptors are better ( R2 > 0.6, Q2 > 0.5, RSD c < 0.39) than that of models using MS-WHIM and Z-scale descriptors ( R2 < 0.6, Q2 < 0.5, RSD c > 0.44). Furthermore, the predictive ability of models using DPPS descriptor is best among the six descriptors systems (cumulative multiple correlation coefficient for predict set ( Rext2) > 0.7). It was concluded that the DPPS is better to describe the amino acid of antioxidative tripeptides. The results of DPPS descriptor reveal that the importance of the center amino acid and the N-terminal amino acid are far more than the importance of the C-terminal amino acid for antioxidative tripeptides. The hydrophobic (positively to activity) and electronic (negatively to activity) properties of the N-terminal amino acid are suggested to play the most important significance to activity, followed

  17. Designing Anti-Influenza Aptamers: Novel Quantitative Structure Activity Relationship Approach Gives Insights into Aptamer – Virus Interaction

    PubMed Central

    Musafia, Boaz; Oren-Banaroya, Rony; Noiman, Silvia

    2014-01-01

    This study describes the development of aptamers as a therapy against influenza virus infection. Aptamers are oligonucleotides (like ssDNA or RNA) that are capable of binding to a variety of molecular targets with high affinity and specificity. We have studied the ssDNA aptamer BV02, which was designed to inhibit influenza infection by targeting the hemagglutinin viral protein, a protein that facilitates the first stage of the virus’ infection. While testing other aptamers and during lead optimization, we realized that the dominant characteristics that determine the aptamer’s binding to the influenza virus may not necessarily be sequence-specific, as with other known aptamers, but rather depend on general 2D structural motifs. We adopted QSAR (quantitative structure activity relationship) tool and developed computational algorithm that correlate six calculated structural and physicochemical properties to the aptamers’ binding affinity to the virus. The QSAR study provided us with a predictive tool of the binding potential of an aptamer to the influenza virus. The correlation between the calculated and actual binding was R2 = 0.702 for the training set, and R2 = 0.66 for the independent test set. Moreover, in the test set the model’s sensitivity was 89%, and the specificity was 87%, in selecting aptamers with enhanced viral binding. The most important properties that positively correlated with the aptamer’s binding were the aptamer length, 2D-loops and repeating sequences of C nucleotides. Based on the structure-activity study, we have managed to produce aptamers having viral affinity that was more than 20 times higher than that of the original BV02 aptamer. Further testing of influenza infection in cell culture and animal models yielded aptamers with 10 to 15 times greater anti-viral activity than the BV02 aptamer. Our insights concerning the mechanism of action and the structural and physicochemical properties that govern the interaction with the

  18. An in vivo quantitative structure-activity relationship for a congeneric series of pyropheophorbide derivatives as photosensitizers for photodynamic therapy.

    PubMed

    Henderson, B W; Bellnier, D A; Greco, W R; Sharma, A; Pandey, R K; Vaughan, L A; Weishaupt, K R; Dougherty, T J

    1997-09-15

    An in vivo quantitative structure-activity relationship (QSAR) study was carried out on a congeneric series of pyropheophorbide photosensitizers to identify structural features critical for their antitumor activity in photodynamic therapy (PDT). The structural elements evaluated in this study include the length and shape (alkyl, alkenyl, cyclic, and secondary analogs) of the ether side chain. C3H mice, harboring the radiation-induced fibrosarcoma tumor model, were used to study three biological response endpoints: tumor growth delay, tumor cell lethality, and vascular perfusion. All three endpoints revealed highly similar QSAR patterns that constituted a function of the alkyl ether chain length and drug lipophilicity, which is defined as the log of the octanol:water partition coefficient (log P). When the illumination of tumor, tumor cells, or cutaneous vasculature occurred 24 h after sensitizer administration, activities were minimal with analogs of log P < or = 5, increased dramatically between log P of 5-6, and peaked between log P of 5.6-6.6. Activities declined gradually with higher log P. The lack of activity of the least-lipophilic analogs was explained in large part by their poor biodistribution characteristics, which yielded negligible tumor and plasma drug levels at the time of treatment with light. The progressively lower potencies of the most lipophilic analogs cannot be explained through the overall tumor and plasma pharmacokinetics of photosensitizer because tumor and plasma concentrations progressively increased with lipophilicity. When compensated for differences in tumor photosensitizer concentration, the 1-hexyl derivative (optimal lipophilicity) was 5-fold more potent than the 1-dodecyl derivative (more lipophilic) and 3-fold more potent than the 1-pentyl analog (less lipophilic), indicating that, in addition to the overall tumor pharmacokinetics, pharmacodynamic factors may influence PDT activity. Drug lipophilicity was highly predictive for

  19. Water solubility of selected C9-C18 alkanes using a slow-stir technique: Comparison to structure - property models.

    PubMed

    Letinski, Daniel J; Parkerton, Thomas F; Redman, Aaron D; Connelly, Martin J; Peterson, Brian

    2016-05-01

    Aqueous solubility is a fundamental physical-chemical substance property that strongly influences the distribution, fate and effects of chemicals upon release into the environment. Experimental water solubility was determined for 18 selected C9-C18 normal, branched and cyclic alkanes. A slow-stir technique was applied to obviate emulsion formation, which historically has resulted in significant overestimation of the aqueous solubility of such hydrophobic liquid compounds. Sensitive GC-MS based methods coupled with contemporary sample extraction techniques were employed to enable reproducible analysis of low parts-per billion aqueous concentrations. Water solubility measurements for most of the compounds investigated, are reported for the first time expanding available data for branched and cyclic alkanes. Measured water solubilities spanned four orders of magnitude ranging from 0.3 μg/L to 250 μg/L. Good agreement was observed for selected alkanes tested in this work and reported in earlier literature demonstrating the robustness of the slow-stir water solubility technique. Comparisons of measured alkane water solubilities were also made with those predicted by commonly used quantitative structure-property relationship models (e.g. SPARC, EPIWIN, ACD/Labs). Correlations are also presented between alkane measured water solubilities and molecular size parameters (e.g. molar volume, solvent accessible molar volume) affirming a mechanistic description of empirical aqueous solubility results and prediction previously reported for a more limited set of alkanes. PMID:26924078

  20. Reduced short term memory in congenital adrenal hyperplasia (CAH) and its relationship to spatial and quantitative performance.

    PubMed

    Collaer, Marcia L; Hindmarsh, Peter C; Pasterski, Vickie; Fane, Briony A; Hines, Melissa

    2016-02-01

    Girls and women with classical congenital adrenal hyperplasia (CAH) experience elevated androgens prenatally and show increased male-typical development for certain behaviors. Further, individuals with CAH receive glucocorticoid (GC) treatment postnatally, and this GC treatment could have negative cognitive consequences. We investigated two alternative hypotheses, that: (a) early androgen exposure in females with CAH masculinizes (improves) spatial perception and quantitative abilities at which males typically outperform females, or (b) CAH is associated with performance decrements in these domains, perhaps due to reduced short-term-memory (STM). Adolescent and adult individuals with CAH (40 female and 29 male) were compared with relative controls (29 female and 30 male) on spatial perception and quantitative abilities as well as on Digit Span (DS) to assess STM and on Vocabulary to assess general intelligence. Females with CAH did not perform better (more male-typical) on spatial perception or quantitative abilities than control females, failing to support the hypothesis of cognitive masculinization. Rather, in the sample as a whole individuals with CAH scored lower on spatial perception (p ≤ .009), a quantitative composite (p ≤ .036), and DS (p ≤ .001), despite no differences in general intelligence. Separate analyses of adolescent and adult participants suggested the spatial and quantitative effects might be present only in adult patients with CAH; however, reduced DS performance was found in patients with CAH regardless of age group. Separate regression analyses showed that DS predicted both spatial perception and quantitative performance (both p ≤ .001), when age, sex, and diagnosis status were controlled. Thus, reduced STM in CAH patients versus controls may have more general cognitive consequences, potentially reducing spatial perception and quantitative skills. Although hyponatremia or other aspects of salt-wasting crises or additional hormone

  1. Receptor binding profiles and quantitative structure-affinity relationships of some 5-substituted-N,N-diallyltryptamines.

    PubMed

    Cozzi, Nicholas V; Daley, Paul F

    2016-02-01

    N,N-Diallyltryptamine (DALT) and 5-methoxy-N,N-diallyltryptamine (5-MeO-DALT) are two tryptamines synthesized and tested by Alexander Shulgin. In self-experiments, 5-MeO-DALT was reported to be psychoactive in the 12-20mg range, while the unsubstituted compound DALT had few discernible effects in the 42-80 mg range. Recently, 5-MeO-DALT has been used in nonmedical settings for its psychoactive effects, but these effects have been poorly characterized and little is known of its pharmacological properties. We extended the work of Shulgin by synthesizing additional 5-substituted-DALTs. We then compared them to DALT and 5-MeO-DALT for their binding affinities at 45 cloned receptors and transporter proteins. Based on in vitro binding affinity, we identified 27 potential receptor targets for the 5-substituted-DALT compounds. Five of the DALT compounds had affinity in the 10-80 nM range for serotonin 5-HT1A and 5-HT2B receptors, while the affinity of DALT itself at 5-HT1A receptors was slightly lower at 100 nM. Among the 5-HT2 subtypes, the weakest affinity was at 5-HT2A receptors, spanning 250-730 nM. Five of the DALT compounds had affinity in the 50-400 nM range for serotonin 5-HT1D, 5-HT6, and 5-HT7 receptors; again, it was the unsubstituted DALT that had the weakest affinity at all three subtypes. The test drugs had even weaker affinity for 5-HT1B, 5-HT1E, and 5-HT5A subtypes and little or no affinity for the 5-HT3 subtype. These compounds also had generally nanomolar affinities for adrenergic α2A, α2B, and α2C receptors, sigma receptors σ1 and σ2, histamine H1 receptors, and norepinephrine and serotonin uptake transporters. They also bound to other targets in the nanomolar-to-low micromolar range. Based on these binding results, it is likely that multiple serotonin receptors, as well as several nonserotonergic sites are important for the psychoactive effects of DALT drugs. To learn whether any quantitative structure-affinity relationships existed, we evaluated

  2. Effect of wet grinding on structural properties of ball clay

    SciTech Connect

    Purohit, A. Chander, S.; Dhaka, M. S.; Hameed, A.; Singh, P.; Nehra, S. P.

    2015-05-15

    In this paper, the effect of wet grinding on structural properties of ball clay is undertaken. The wet grinding treatment was performed employing ball and vibro mills for different time spells of 2, 4, 8 and 16 hours. The structural properties were carried out using X-ray diffraction (XRD). The structure of ground samples is found to be simple cubic. The crystallographic parameters are calculated and slight change in lattice constant, inter planner spacing and particle size is observed with grinding treatment. The results are in agreement with the available literature.

  3. Quantitative structure activity relationship model for predicting the depletion percentage of skin allergic chemical substances of glutathione.

    PubMed

    Si, Hongzong; Wang, Tao; Zhang, Kejun; Duan, Yun-Bo; Yuan, Shuping; Fu, Aiping; Hu, Zhide

    2007-05-22

    A quantitative model was developed to predict the depletion percentage of glutathione (DPG) compounds by gene expression programming (GEP). Each kind of compound was represented by several calculated structural descriptors involving constitutional, topological, geometrical, electrostatic and quantum-chemical features of compounds. The GEP method produced a nonlinear and five-descriptor quantitative model with a mean error and a correlation coefficient of 10.52 and 0.94 for the training set, 22.80 and 0.85 for the test set, respectively. It is shown that the GEP predicted results are in good agreement with experimental ones, better than those of the heuristic method.

  4. Improvement of radar quantitative precipitation estimation based on real-time adjustments to Z-R relationships and inverse distance weighting correction schemes

    NASA Astrophysics Data System (ADS)

    Wang, Gaili; Liu, Liping; Ding, Yuanyuan

    2012-05-01

    The errors in radar quantitative precipitation estimations consist not only of systematic biases caused by random noises but also spatially nonuniform biases in radar rainfall at individual rain-gauge stations. In this study, a real-time adjustment to the radar reflectivity-rainfall rates ( Z-R) relationship scheme and the gauge-corrected, radar-based, estimation scheme with inverse distance weighting interpolation was developed. Based on the characteristics of the two schemes, the two-step correction technique of radar quantitative precipitation estimation is proposed. To minimize the errors between radar quantitative precipitation estimations and rain gauge observations, a real-time adjustment to the Z-R relationship scheme is used to remove systematic bias on the time-domain. The gauge-corrected, radar-based, estimation scheme is then used to eliminate non-uniform errors in space. Based on radar data and rain gauge observations near the Huaihe River, the two-step correction technique was evaluated using two heavy-precipitation events. The results show that the proposed scheme improved not only in the underestimation of rainfall but also reduced the root-mean-square error and the mean relative error of radar-rain gauge pairs.

  5. Structure Properties of Ternary Hydrides Ni3AlHx

    NASA Astrophysics Data System (ADS)

    Pan, Yi-wei; Zhang, Wen-qing; Chen, Nan-xian

    1996-09-01

    The structure properties of the ternary hydrides Ni3AlHx are studied by use of the interatomic pair potentials obtained from the first principles electronic structure calculation and Chen-Mobius 3-dimensional lattice inversion method. The heat of formation and volume expansion of the hydrogenized systems are investigated.

  6. Perspective: Composition-structure-property mapping in high-throughput experiments: Turning data into knowledge

    NASA Astrophysics Data System (ADS)

    Hattrick-Simpers, Jason R.; Gregoire, John M.; Kusne, A. Gilad

    2016-05-01

    With their ability to rapidly elucidate composition-structure-property relationships, high-throughput experimental studies have revolutionized how materials are discovered, optimized, and commercialized. It is now possible to synthesize and characterize high-throughput libraries that systematically address thousands of individual cuts of fabrication parameter space. An unresolved issue remains transforming structural characterization data into phase mappings. This difficulty is related to the complex information present in diffraction and spectroscopic data and its variation with composition and processing. We review the field of automated phase diagram attribution and discuss the impact that emerging computational approaches will have in the generation of phase diagrams and beyond.

  7. Cyclotide Structure–Activity Relationships: Qualitative and Quantitative Approaches Linking Cytotoxic and Anthelmintic Activity to the Clustering of Physicochemical Forces

    PubMed Central

    Park, Sungkyu; Strömstedt, Adam A.; Göransson, Ulf

    2014-01-01

    Cyclotides are a family of plant-derived proteins that are characterized by a cyclic backbone and a knotted disulfide topology. Their cyclic cystine knot (CCK) motif makes them exceptionally resistant to thermal, chemical, and enzymatic degradation. Cyclotides exert much of their biological activity via interactions with cell membranes. In this work, we qualitatively and quantitatively analyze the cytotoxic and anthelmintic membrane activities of cyclotides. The qualitative and quantitative models describe the potency of cyclotides using four simple physicochemical terms relevant to membrane contact. Specifically, surface areas of the cyclotides representing lipophilic and hydrogen bond donating properties were quantified and their distribution across the molecular surface was determined. The resulting quantitative structure-activity relation (QSAR) models suggest that the activity of the cyclotides is proportional to their lipophilic and positively charged surface areas, provided that the distribution of these surfaces is asymmetric. In addition, we qualitatively analyzed the physicochemical differences between the various cyclotide subfamilies and their effects on the cyclotides' orientation on the membrane and membrane activity. PMID:24682019

  8. Random sampling or 'random' model in skin flux measurements? [Commentary on "Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships"].

    PubMed

    Poda, G I; Landsittel, D P; Brumbaugh, K; Sharp, D S; Frasch, H F; Demchuk, E

    2001-10-01

    Transdermal therapy receives increasing attention as an attractive alternative to traditional drug delivery. Unfortunately the exact algorithm of transdermal permeation that could guide medicinal chemists towards delivery optimization at an early stage of the drug design process still remains to be decoded. This paper discusses some major hurdles on the way to full understanding of Quantitative Structure-Activity Relationships (QSAR) of skin permeation. From the statistical perspective, a recently published combined data set is found to be inappropriate with respect to the distribution of major molecular descriptors, and therefore should be approached cautiously as a source for QSAR model training and in modelling of occupational and environmental skin exposures.

  9. Comparison between 5,10,15,20-tetraaryl- and 5,15-diarylporphyrins as photosensitizers: synthesis, photodynamic activity, and quantitative structure-activity relationship modeling.

    PubMed

    Banfi, Stefano; Caruso, Enrico; Buccafurni, Loredana; Murano, Roberto; Monti, Elena; Gariboldi, Marzia; Papa, Ester; Gramatica, Paola

    2006-06-01

    The synthesis of a panel of seven nonsymmetric 5,10,15,20-tetraarylporphyrins, 13 symmetric and nonsymmetric 5,15-diarylporphyrins, and one 5,15-diarylchlorin is described. In vitro photodynamic activities on HCT116 human colon adenocarcinoma cells were evaluated by standard cytotoxicity assays. A predictive quantitative structure-activity relationship (QSAR) regression model, based on theoretical holistic molecular descriptors, of a series of 34 tetrapyrrolic photosensitizers (PSs), including the 24 compounds synthesized in this work, was developed to describe the relationship between structural features and photodynamic activity. The present study demonstrates that structural features significantly influence the photodynamic activity of tetrapyrrolic derivatives: diaryl compounds were more active with respect to the tetraarylporphyrins, and among the diaryl derivatives, hydroxy-substituted compounds were more effective than the corresponding methoxy-substituted ones. Furthermore, three monoarylporphyrins, isolated as byproducts during diarylporphyrin synthesis, were considered for both photodynamic and QSAR studies; surprisingly they were found to be particularly active photosensitizers.

  10. Augmented multivariate image analysis applied to quantitative structure-activity relationship modeling of the phytotoxicities of benzoxazinone herbicides and related compounds on problematic weeds.

    PubMed

    Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson

    2013-09-11

    Two of major weeds affecting cereal crops worldwide are Avena fatua L. (wild oat) and Lolium rigidum Gaud. (rigid ryegrass). Thus, development of new herbicides against these weeds is required; in line with this, benzoxazinones, their degradation products, and analogues have been shown to be important allelochemicals and natural herbicides. Despite earlier structure-activity studies demonstrating that hydrophobicity (log P) of aminophenoxazines correlates to phytotoxicity, our findings for a series of benzoxazinone derivatives do not show any relationship between phytotoxicity and log P nor with other two usual molecular descriptors. On the other hand, a quantitative structure-activity relationship (QSAR) analysis based on molecular graphs representing structural shape, atomic sizes, and colors to encode other atomic properties performed very accurately for the prediction of phytotoxicities of these compounds against wild oat and rigid ryegrass. Therefore, these QSAR models can be used to estimate the phytotoxicity of new congeners of benzoxazinone herbicides toward A. fatua L. and L. rigidum Gaud.

  11. Why are there race/ethnic differences in adult body mass index–adiposity relationships? A quantitative critical review

    PubMed Central

    Heymsfield, S. B.; Peterson, C. M.; Thomas, D. M.; Heo, M.; Schuna, J. M.

    2016-01-01

    Summary Body mass index (BMI) is now the most widely used measure of adiposity on a global scale. Nevertheless, intense discussion centers on the appropriateness of BMI as a phenotypic marker of adiposity across populations differing in race and ethnicity. BMI-adiposity relations appear to vary significantly across race/ethnic groups, but a collective critical analysis of these effects establishing their magnitude and underlying body shape/composition basis is lacking. Accordingly, we systematically review the magnitude of these race-ethnic differences across non-Hispanic (NH) white, NH black and Mexican American adults, their anatomic body composition basis and potential biologically linked mechanisms, using both earlier publications and new analyses from the US National Health and Nutrition Examination Survey. Our collective observations provide a new framework for critically evaluating the quantitative relations between BMI and adiposity across groups differing in race and ethnicity; reveal new insights into BMI as a measure of adiposity across the adult age-span; identify knowledge gaps that can form the basis of future research and create a quantitative foundation for developing BMI-related public health recommendations. PMID:26663309

  12. Using metal-ligand binding characteristics to predict metal toxicity: quantitative ion character-activity relationships (QICARs).

    PubMed Central

    Newman, M C; McCloskey, J T; Tatara, C P

    1998-01-01

    Ecological risk assessment can be enhanced with predictive models for metal toxicity. Modelings of published data were done under the simplifying assumption that intermetal trends in toxicity reflect relative metal-ligand complex stabilities. This idea has been invoked successfully since 1904 but has yet to be applied widely in quantitative ecotoxicology. Intermetal trends in toxicity were successfully modeled with ion characteristics reflecting metal binding to ligands for a wide range of effects. Most models were useful for predictive purposes based on an F-ratio criterion and cross-validation, but anomalous predictions did occur if speciation was ignored. In general, models for metals with the same valence (i.e., divalent metals) were better than those combining mono-, di-, and trivalent metals. The softness parameter (sigma p) and the absolute value of the log of the first hydrolysis constant ([symbol: see text] log KOH [symbol: see text]) were especially useful in model construction. Also, delta E0 contributed substantially to several of the two-variable models. In contrast, quantitative attempts to predict metal interactions in binary mixtures based on metal-ligand complex stabilities were not successful. PMID:9860900

  13. A predictive quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons to Daphnia magna with the use of factors for photosensitization and photomodification.

    PubMed

    Lampi, Mark A; Gurska, Jolanta; Huang, Xiao-Dong; Dixon, D George; Greenberg, Bruce M

    2007-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants that readily absorb environmentally relevant solar ultraviolet radiation. On absorption of a photon, photoinduced toxicity of PAHs is manifested through photosensitization and photomodification. Both of these processes occur under environmentally relevant levels of actinic radiation. An empirical quantitative structure-activity relationship model previously developed was explanatory of photoinduced toxicity of 16 PAHs in Lemna gibba (duckweed). This model was found to be predictive of toxicity to Vibrio fischeri. The L. gibba quantitative structure-activity relationship showed that a photosensitization factor and a photomodification factor could be combined to describe photoinduced toxicity. To further examine this model, we assessed whether it could be applied to Daphnia magna (water flea), a key bioindicator species in aquatic ecosystems. Toxicity was assessed as median effective concentration and median effective time for immobility. As with L. gibba and V. fischeri, neither the photosensitization factor nor the photomodification factor alone correlated to toxicity in D. magna. However, a photosensitization factor modified for D. magna exhibited a correlation to toxicity (r2 = 0.86), which was modestly improved when summed with a modified photomodification factor (r2 = 0.92). The greatest correlation was observed with median effective concentration data. This research provides evidence that models incorporating factors for photosensitization and photomodification have interspecies applicability. PMID:17373503

  14. A predictive quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons to Daphnia magna with the use of factors for photosensitization and photomodification.

    PubMed

    Lampi, Mark A; Gurska, Jolanta; Huang, Xiao-Dong; Dixon, D George; Greenberg, Bruce M

    2007-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants that readily absorb environmentally relevant solar ultraviolet radiation. On absorption of a photon, photoinduced toxicity of PAHs is manifested through photosensitization and photomodification. Both of these processes occur under environmentally relevant levels of actinic radiation. An empirical quantitative structure-activity relationship model previously developed was explanatory of photoinduced toxicity of 16 PAHs in Lemna gibba (duckweed). This model was found to be predictive of toxicity to Vibrio fischeri. The L. gibba quantitative structure-activity relationship showed that a photosensitization factor and a photomodification factor could be combined to describe photoinduced toxicity. To further examine this model, we assessed whether it could be applied to Daphnia magna (water flea), a key bioindicator species in aquatic ecosystems. Toxicity was assessed as median effective concentration and median effective time for immobility. As with L. gibba and V. fischeri, neither the photosensitization factor nor the photomodification factor alone correlated to toxicity in D. magna. However, a photosensitization factor modified for D. magna exhibited a correlation to toxicity (r2 = 0.86), which was modestly improved when summed with a modified photomodification factor (r2 = 0.92). The greatest correlation was observed with median effective concentration data. This research provides evidence that models incorporating factors for photosensitization and photomodification have interspecies applicability.

  15. Structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) for inhibitor design.

    PubMed

    Du, Qi-Shi; Gao, Jing; Wei, Yu-Tuo; Du, Li-Qin; Wang, Shu-Qing; Huang, Ri-Bo

    2012-04-23

    The inhibitions of enzymes (proteins) are determined by the binding interactions between ligands and targeting proteins. However, traditional QSAR (quantitative structure-activity relationship) is a one-side technique, only considering the structures and physicochemical properties of inhibitors. In this study, the structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) is presented, in which the structural information of host protein is involved in the QSAR calculations. The SB-MP-3D-QSAR actually is a combinational method of docking approach and QSAR technique. Multiple docking calculations are performed first between the host protein and ligand molecules in a training set. In the targeting protein, the functional residues are selected, which make the major contribution to the binding free energy. The binding free energy between ligand and targeting protein is the summation of multiple potential energies, including van der Waals energy, electrostatic energy, hydrophobic energy, and hydrogen-bond energy, and may include nonthermodynamic factors. In the foundational QSAR equation, two sets of weighting coefficients {aj} and {bp} are assigned to the potential energy terms and to the functional residues, respectively. The two coefficient sets are solved by using iterative double least-squares (IDLS) technique in the training set. Then, the two sets of weighting coefficients are used to predict the bioactivities of inquired ligands. In an application example, the new developed method obtained much better results than that of docking calculations.

  16. Quantitative relationships between microstructures and electrochemical properties in Si core-SiOx shell nanoparticles for Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Lee, Jeongeun; Koo, Jeongboon; Jang, Boyun; Kim, Sungsoo

    2016-10-01

    Nanoparticles having four different ratios of crystalline silicon (Si) cores and amorphous SiOx shells were synthesized by using a microwave-generated plasma. Their microstructures were analyzed to find quantitative relationships with electrochemical properties. By measuring XRD, SEM, HR-TEM, and Raman spectra of four samples with different core-shell microstructures, the quantitative fractions of crystalline Si core and amorphous SiOx shell in the nanoparticles were calculated. Also, electrochemical properties of the nanoparticles were measured and compared with the calculated fractions. The electrochemical properties such as the initial reversible capacity, the initial coulombic efficiency, and the capacity retention exhibited tendencies remarkably similar to those implied by the calculated fractions. Analysis of each sample's dQ/dV profile also gave us good evidence of understandable relationships between the fractions and electrochemical properties. Details of calculating the fractions from microstructural data are given, with suitable consideration having been given to the fact that several assumptions could lead to errors during the analysis. The approach introduced in this research offers a good means of analysis with which to further the optimal design of nanoparticle microstructure for Li-ion battery anodes.

  17. Relationships

    ERIC Educational Resources Information Center

    Circle, David

    2006-01-01

    The author of this brief article asserts that one of the keys to being successful--whether one is a music teacher, a college professor, a business owner, a doctor, a lawyer, or in any other career--is his or her relationship with people. Music educators are in the people business. They do not make a tangible product. Instead, they provide a…

  18. Quantitative study of the relationships among proteolysis, lipid oxidation, structure and texture throughout the dry-cured ham process.

    PubMed

    Harkouss, Rami; Astruc, Thierry; Lebert, André; Gatellier, Philippe; Loison, Olivier; Safa, Hassan; Portanguen, Stéphane; Parafita, Emilie; Mirade, Pierre-Sylvain

    2015-01-01

    Temperature, salt and water contents are key processing factors in dry-cured ham production. They affect how proteolysis, lipid oxidation, structure and texture evolve, and thus determine the sensory properties and final quality of dry-cured ham. The aim of this study was to quantify the interrelationships and the time course of (i) proteolysis, (ii) lipid oxidation, (iii) five textural parameters: hardness, fragility, cohesiveness, springiness and adhesiveness and (iv) four structural parameters: fibre numbers, extracellular spaces, cross section area, and connective tissue area, during the dry-cured ham process. Applying multiple polynomial regression enabled us to build phenomenological models relating proteolysis, salt and water contents to certain textural and structural parameters investigated. A linear relationship between lipid oxidation and proteolysis was also established. All of these models and relationships, once combined with salt penetration, water migration and heat transfer models, can be used to dynamically simulate all of these phenomena throughout dry-cured ham manufacturing.

  19. Quantitative Use of Fluorescent In Situ Hybridization To Examine Relationships between Mycolic Acid-Containing Actinomycetes and Foaming in Activated Sludge Plants

    PubMed Central

    Davenport, Russell J.; Curtis, Thomas P.; Goodfellow, Michael; Stainsby, Fiona M.; Bingley, Marc

    2000-01-01

    The formation of viscous foams on aeration basins and secondary clarifiers of activated sludge plants is a common and widespread problem. Foam formation is often attributed to the presence of mycolic acid-containing actinomycetes (mycolata). In order to examine the relationship between the number of mycolata and foam, we developed a group-specific probe targeting the 16S rRNA of the mycolata, a protocol to permeabilize mycolata, and a statistically robust quantification method. Statistical analyses showed that a lipase-based permeabilization method was quantitatively superior to previously described methods (P << 0.05). When mixed liquor and foam samples were examined, most of the mycolata present were rods or cocci, although filamentous mycolata were also observed. A nested analysis of variance showed that virtually all of the measured variance occurred between fields of view and not between samples. On this basis we determined that as few as five fields of view could be used to give a statistically meaningful sample. Quantitative fluorescent in situ hybridization (FISH) was used to examine the relationship between foaming and the concentration of mycolata in a 20-m3 completely mixed activated sludge plant. Foaming occurred when the number of mycolata exceeded a certain threshold value. Baffling of the plant affected foaming without affecting the number of mycolata. We tentatively estimated that the threshold foaming concentration of mycolata was about 2 × 106 cells ml−1 or 4 × 1012 cells m−2. We concluded that quantitative use of FISH is feasible and that quantification is a prerequisite for rational investigation of foaming in activated sludge. PMID:10698786

  20. Investigation and application of quantitative relationship between sp energy levels of Bi{sup 3+} ion and host lattice

    SciTech Connect

    Wang Lili; Sun Qiang; Liu Qingzhi; Shi Jinsheng

    2012-07-15

    Information on {sup 1}S{sub 0}-{sup 3}P{sub 1} (A band) and {sup 1}S{sub 0}-{sup 1}P{sub 1} (C band) transition energy of Bi{sup 3+} ion in dozens of different compounds has been gathered and analyzed. With the use of the dielectric theory of the chemical bond for complex crystals, relationships between A and C absorption band and environmental factor h{sub e} were established: E{sub A}=2.972+6.206exp (-h{sub e}/0.551); E{sub C}=3.236+10.924exp (-h{sub e}/0.644). For Bi{sup 3+} doped hosts with known structure and refractive index, it is possible to predict Bi{sup 3+} energy level position with an good accuracy of typically {+-}0.51 eV using the two relationships. Moreover, a direct relationship between A and C band was deduced: E{sub C}=3.236+2.290(E{sub A}-2.972){sup 0.856}. Thus a very simple method to predict C band position was proposed. This work will be of great help to understand spectroscopy of Bi{sup 3+} and will be useful for developing new PDP, LED and mercury-free fluorescent lamp phosphors. - Graphical abstract: This figure shows relationship between positions of A band and C band of Bi{sup 3+} ion and environmental factor h{sub e} of host. It establishes the relation between macroscopical spectroscopy of Bi{sup 3+} ion and microcosmic structure of the hosts. Highlights: Black-Right-Pointing-Pointer Relationships between A, C absorption band and environmental factor h{sub e} were established. Black-Right-Pointing-Pointer A direct relation between A and C band was deduced and an easier method to predict C band was given. Black-Right-Pointing-Pointer Positions of C band of Bi{sup 3+} ion in some compounds were predicted using our formula.

  1. Quantitative structure-activity relationships of insecticides and plant growth regulators: comparative studies toward understanding the molecular mechanism of action.

    PubMed Central

    Iwamura, H; Nishimura, K; Fujita, T

    1985-01-01

    Emphasis was put on the comparative quantitative structure-activity approaches to the exploration of action mechanisms of structurally different classes of compounds showing the same type of activity as well as those of the same type of compounds having different actions. Examples were selected from studies performed on insecticides and plant growth regulators, i.e., neurotoxic carbamates, phosphates, pyrethroids and DDT analogs, insect juvenile hormone mimics, and cytokinin agonistic and antagonistic compounds. Similarities and dissimilarities in structures required to elicit activity between compounds classes were revealed in terms of physicochemical parameters, provoking further exploration and evoking insights into the molecular mechanisms of action which may lead to the development of new structures having better qualities. PMID:3905379

  2. A quantitative analysis of the relationship between an online homework system and student achievement in pre-calculus

    NASA Astrophysics Data System (ADS)

    Babaali, Parisa; Gonzalez, Lidia

    2015-07-01

    Supporting student success in entry-level mathematics courses at the undergraduate level has and continues to be a challenge. Recently we have seen an increased reliance on technological supports including software to supplement more traditional in-class instruction. In this paper, we explore the effects on student performance of the use of a computer software program to supplement instruction in an entry-level mathematics course at the undergraduate level, specifically, a pre-calculus course. Relying on data from multiple sections of the course over various semesters, we compare student performance in those classes utilizing the software against those in which it was not used. Quantitative analysis of the data then leads us to conclusions about the effectiveness of the software as well as recommendations for future iterations of the course and others like it.

  3. Quantitative model of cellulite: three-dimensional skin surface topography, biophysical characterization, and relationship to human perception.

    PubMed

    Smalls, Lola K; Lee, Caroline Y; Whitestone, Jennifer; Kitzmiller, W John; Wickett, R Randall; Visscher, Marty O

    2005-01-01

    Gynoid lipodystrophy (cellulite) is the irregular, dimpled skin surface of the thighs, abdomen, and buttocks in 85% of post-adolescent women. The distinctive surface morphology is believed to result when subcutaneous adipose tissue protrudes into the lower reticular dermis, thereby creating irregularities at the surface. The biomechanical properties of epidermal and dermal tissue may also influence severity. Cellulite-affected thigh sites were measured in 51 females with varying degrees of cellulite, in 11 non-cellulite controls, and in 10 male controls. A non-contact high-resolution three-dimensional laser surface scanner was used to quantify the skin surface morphology and determine specific roughness values. The scans were evaluated by experts and naive judges (n=62). Body composition was evaluated via dual-energy x-ray absorptiometry; dermal thickness and the dermal-subcutaneous junction were evaluated via high-resolution 3D ultrasound and surface photography under compression. Biomechanical properties were also measured. The roughness parameters Svm (mean depth of the lowest valleys) and Sdr (ratio between the roughness surface area and the area of the xy plane) were highly correlated to the expert image grades and, therefore, designated as the quantitative measures of cellulite severity. The strength of the correlations among naive grades, expert grades, and roughness values confirmed that the data quantitatively evaluate the human perception of cellulite. Cellulite severity was correlated to BMI, thigh circumference, percent thigh fat, architecture of the dermal-subcutaneous border (ultrasound surface area, red-band SD from compressed images), compliance, and stiffness (negative correlation). Cellulite severity was predicted by the percent fat and the area of the dermal-subcutaneous border. The biomechanical properties did not significantly contribute to the prediction. Comparison of the parameters for females and males further suggest that percent thigh fat

  4. Validity of semi-quantitative scale for brain MRI in unilateral cerebral palsy due to periventricular white matter lesions: Relationship with hand sensorimotor function and structural connectivity

    PubMed Central

    Fiori, Simona; Guzzetta, Andrea; Pannek, Kerstin; Ware, Robert S.; Rossi, Giuseppe; Klingels, Katrijn; Feys, Hilde; Coulthard, Alan; Cioni, Giovanni; Rose, Stephen; Boyd, Roslyn N.

    2015-01-01

    Aim To provide first evidence of construct validity of a semi-quantitative scale for brain structural MRI (sqMRI scale) in children with unilateral cerebral palsy (UCP) secondary to periventricular white matter (PWM) lesions, by examining the relationship with hand sensorimotor function and whole brain structural connectivity. Methods Cross-sectional study of 50 children with UCP due to PWM lesions using 3 T (MRI), diffusion MRI and assessment of hand sensorimotor function. We explored the relationship of lobar, hemispheric and global scores on the sqMRI scale, with fractional anisotropy (FA), as a measure of brain white matter microstructure, and with hand sensorimotor measures (Assisting Hand Assessment, AHA; Jebsen–Taylor Test for Hand Function, JTTHF; Melbourne Assessment of Unilateral Upper Limb Function, MUUL; stereognosis; 2-point discrimination). Results Lobar and hemispheric scores on the sqMRI scale contralateral to the clinical side of hemiplegia correlated with sensorimotor paretic hand function measures and FA of a number of brain structural connections, including connections of brain areas involved in motor control (postcentral, precentral and paracentral gyri in the parietal lobe). More severe lesions correlated with lower sensorimotor performance, with the posterior limb of internal capsule score being the strongest contributor to impaired hand function. Conclusion The sqMRI scale demonstrates first evidence of construct validity against impaired motor and sensory function measures and brain structural connectivity in a cohort of children with UCP due to PWM lesions. More severe lesions correlated with poorer paretic hand sensorimotor function and impaired structural connectivity in the hemisphere contralateral to the clinical side of hemiplegia. The quantitative structural MRI scoring may be a useful clinical tool for studying brain structure–function relationships but requires further validation in other populations of CP. PMID:26106533

  5. Mass Spectrometry Based Identification of Geometric Isomers during Metabolic Stability Study of a New Cytotoxic Sulfonamide Derivatives Supported by Quantitative Structure-Retention Relationships

    PubMed Central

    Belka, Mariusz; Hewelt-Belka, Weronika; Sławiński, Jarosław; Bączek, Tomasz

    2014-01-01

    A set of 15 new sulphonamide derivatives, presenting antitumor activity have been subjected to a metabolic stability study. The results showed that besides products of biotransformation, some additional peaks occurred in chromatograms. Tandem mass spectrometry revealed the same mass and fragmentation pathway, suggesting that geometric isomerization occurred. Thus, to support this hypothesis, quantitative structure-retention relationships were applied. Human liver microsomes were used as an in vitro model of metabolism. The biotransformation reactions were tracked by liquid chromatography assay and additionally, fragmentation mass spectra were recorded. In silico molecular modeling at a semi-empirical level was conducted as a starting point for molecular descriptor calculations. A quantitative structure-retention relationship model was built applying multiple linear regression based on selected three-dimensional descriptors. The studied compounds revealed high metabolic stability, with a tendency to form hydroxylated biotransformation products. However, significant chemical instability in conditions simulating human body fluids was noticed. According to literature and MS data geometrical isomerization was suggested. The developed in sillico model was able to describe the relationship between the geometry of isomer pairs and their chromatographic retention properties, thus it supported the hypothesis that the observed pairs of peaks are most likely geometric isomers. However, extensive structural investigations are needed to fully identify isomers’ geometry. An effort to describe MS fragmentation pathways of novel chemical structures is often not enough to propose structures of potent metabolites and products of other chemical reactions that can be observed in compound solutions at early drug discovery studies. The results indicate that the relatively non-expensive and not time- and labor-consuming in sillico approach could be a good supportive tool assisting the

  6. Relationship between preferences for decisional control and illness information among women with breast cancer: a quantitative and qualitative analysis.

    PubMed

    Hack, T F; Degner, L F; Dyck, D G

    1994-07-01

    This study examined relationships between cancer patients' preferences for involvement in making treatment decisions and preferences for information about diagnosis, treatment, side effects, and prognosis. Participants were 35 women with stage I and II breast cancer recruited from two medical oncology and radiation oncology clinics. Following administration of card sort measures of preference for involvement in treatment decision making and information needs, a semi-structured interview was conducted to provide patients with an opportunity to elaborate on their role preferences and health care experiences. Results showed that patients who desired an active role in treatment decision making also desired detailed information. This relationship was not as clear for passive patients. Relative to passive patients, active patients desired significantly more detailed explanations of their diagnosis, treatment alternatives, and treatment procedures. Active patients also preferred that their physicians use the words 'cancer' or 'malignancy' when referring to their illness while passive patients preferred that their physicians use a eupheumism. Further research is needed to critically detail the advantages and disadvantages of the active and passive roles and their impact on disease progression and psychological well-being.

  7. Relationship between N2O Fluxes from an Almond Soil and Denitrifying Bacterial Populations Estimated by Quantitative PCR

    NASA Astrophysics Data System (ADS)

    Matiasek, M.; Suddick, E. C.; Smart, D. R.; Scow, K. M.

    2008-12-01

    Cultivated soils emit substantial quantities of nitrous oxide (N2O), a greenhouse gas with almost 300 times the radiative forcing potential of CO2. Agriculture-related activities generate from 6 to 35 Tg N2O-N per year, or about 60 to 70% of global production. The microbial processes of nitrification, denitrification and nitrifier denitrification are major biogenic sources of N2O to the atmosphere from soils. Denitrification is considered the major source of N2O especially when soils are wet. The microbial N transformations that produce N2O depend primarily on nitrogen (N) fertilizer, with water content, available carbon and soil temperature being secondary controllers. Despite the fact that microbial processes are responsible for N2O emissions, very little is known about the numbers or types of populations involved. The objective of this study was to relate changes in denitrifying population densities, using quantitative PCR (qPCR) of functional genes, to N2O emissions in a fertilized almond orchard. Quantitative PCR targeted three specific genes involved in denitrification: nirS, nirK and nosZ. Copy numbers of the genes were related back to population densities and the portion of organisms likely to produce nitrous oxide. The study site, a 21.7 acre almond orchard fitted with micro-sprinklers, was fertigated (irrigated and fertilized simultaneously) with 50 lbs/acre sodium nitrate in late March 2008, then irrigated weekly. Immediately after the initial fertigation, fluxes of N2O and CO2, moisture content, inorganic N and denitrification gene copy numbers were measured 6 times over 24 days. Despite the fact that N2O emissions increased following fertigation, there was no consistent increase in any of the targeted genes. The genes nirK and nirS ranged from 0.4-1.4 × 107 and 0.4-1.4 × 108, whereas nosZ ranged from 2-8 × 106 copy numbers per g soil, respectively. Considerable variation, compounded by the small sample sizes used for DNA analysis, made it difficult

  8. Further evaluation of quantitative structure--activity relationship models for the prediction of the skin sensitization potency of selected fragrance allergens.

    PubMed

    Patlewicz, Grace Y; Basketter, David A; Pease, Camilla K Smith; Wilson, Karen; Wright, Zoe M; Roberts, David W; Bernard, Guillaume; Arnau, Elena Giménez; Lepoittevin, Jean-Pierre

    2004-02-01

    Fragrance substances represent a very diverse group of chemicals; a proportion of them are associated with the ability to cause allergic reactions in the skin. Efforts to find substitute materials are hindered by the need to undertake animal testing for determining both skin sensitization hazard and potency. One strategy to avoid such testing is through an understanding of the relationships between chemical structure and skin sensitization, so-called structure-activity relationships. In recent work, we evaluated 2 groups of fragrance chemicals -- saturated aldehydes and alpha,beta-unsaturated aldehydes. Simple quantitative structure-activity relationship (QSAR) models relating the EC3 values [derived from the local lymph node assay (LLNA)] to physicochemical properties were developed for both sets of aldehydes. In the current study, we evaluated an additional group of carbonyl-containing compounds to test the predictive power of the developed QSARs and to extend their scope. The QSAR models were used to predict EC3 values of 10 newly selected compounds. Local lymph node assay data generated for these compounds demonstrated that the original QSARs were fairly accurate, but still required improvement. Development of these QSAR models has provided us with a better understanding of the potential mechanisms of action for aldehydes, and hence how to avoid or limit allergy. Knowledge generated from this work is being incorporated into new/improved rules for sensitization in the expert toxicity prediction system, deductive estimation of risk from existing knowledge (DEREK).

  9. Quantitative structure-permeability relationships at various pH values for acidic and basic drugs and drug-like compounds.

    PubMed

    Oja, M; Maran, U

    2015-01-01

    Absorption in gastrointestinal tract compartments varies and is largely influenced by pH. Therefore, considering pH in studies and analyses of membrane permeability provides an opportunity to gain a better understanding of the behaviour of compounds and to obtain good permeability estimates for prediction purposes. This study concentrates on relationships between the chemical structure and membrane permeability of acidic and basic drugs and drug-like compounds. The membrane permeability of 36 acidic and 61 basic compounds was measured using the parallel artificial membrane permeability assay (PAMPA) at pH 3, 5, 7.4 and 9. Descriptive and/or predictive single-parameter quantitative structure-permeability relationships were derived for all pH values. For acidic compounds, membrane permeability is mainly influenced by hydrogen bond donor properties, as revealed by models with r(2) > 0.8 for pH 3 and pH 5. For basic compounds, the best (r(2) > 0.7) structure-permeability relationships are obtained with the octanol-water distribution coefficient for pH 7.4 and pH 9, indicating the importance of partition properties. In addition to the validation set, the prediction quality of the developed models was tested with folic acid and astemizole, showing good matches between experimental and calculated membrane permeabilities at key pHs. Selected QSAR models are available at the QsarDB repository ( http://dx.doi.org/10.15152/QDB.166 ). PMID:26383235

  10. Quantitative radiation dose-response relationships for normal tissues in man. II. Response of the salivary glands during radiotherapy

    SciTech Connect

    Mossman, K.L.

    1983-08-01

    A quantitative dose-response curve for salivary gland function in patients during radiotherapy is presented. Salivary-function data used in this study were obtained from four previously published reports. All patients were treated with /sup 60/Co teletherapy to the head and neck using conventional treatment techniques. Salivary dysfunction was determined at specific dose levels by comparing salivary flow rates before therapy with flow rates at specific dose intervals during radiotherapy up to a total dose of 6000 cGy. Fifty percent salivary dysfunction occurred after 1000 cGy and eighty percent dysfunction was observed by the end of the therapy course (6000 cGy). The salivary-function curve was also compared to the previously published dose-response curve for taste function. Comparisons of the two curves indicate that salivary dysfunction precedes taste loss and that the shapes of the dose-response curves are different. A new term, tissue tolerance ratio, defined as the ratio of responses of two tissues given the same radiation dose, was used to make the comparisons between gustatory and salivary gland tissue effects. Measurements of salivary gland function and analysis of dose-response curves may be useful in evaluating chemical modifiers of radiation response.

  11. Quantitative radiation dose-response relationships for normal tissues in man. II. Response of the salivary glands during radiotherapy

    SciTech Connect

    Mossman, K.L.

    1983-08-01

    A quantitative dose-response curve for salivary gland function in patients during radiotherapy is presented. Salivary-function data used in this study were obtained from four previously published reports. All patients were treated wih /sup 60/Co teletherapy to the head and neck using conventional treatment techniques. Salivary dysfunction was determined at specific dose levels by comparing salivary flow rates before therapy with flow rates at specific dose intervals during radiotherapy up to a total dose of 6000 cGy. Fifty percent salivary dysfunction occurred after 1000 cGy and eighty percent dysfunction was observed by the end of the therapy course (6000 cGy). The salivary-function curve was also compared to the previously published dose-response curve for taste function. Comparisons of the two curves indicate that salivary dysfunction precedes taste loss and that the shapes of the dose-response curves are different. A new term, tissue tolerance ratio, defined as the ratio of responses of two tissues given the same radiation dose, was used to make the comparisons between gustatory and salivary gland tissue effects. Measurements of salivary gland function and analysis of dose-response curves may be useful in evaluating chemical modifiers of radiation response.

  12. Relationship between Peeled Internal Limiting Membrane Area and Anatomic Outcomes following Macular Hole Surgery: A Quantitative Analysis.

    PubMed

    Goker, Yasin Sakir; Koc, Mustafa; Yuksel, Kemal; Yazici, Ahmet Taylan; Demir, Abdulvahit; Gunes, Hasan; Ozpinar, Yavuz

    2016-01-01

    Purpose. To quantitatively evaluate the effects of peeled internal limiting membrane (ILM) area and anatomic outcomes following macular hole surgery using spectral domain optical coherence tomography (SD-OCT). Methods. Forty-one eyes in 37 consecutive patients with idiopathic, Gass stage 3-4 macular hole (MH) were enrolled in this retrospective comparative study. All patients were divided into 2 groups according to anatomic success or failure. Basal MH diameter, peeled ILM area, and MH height were calculated using SD-OCT. Other prognostic parameters, including age, stage, preoperative BCVA, and symptom duration were also assessed. Results. Thirty-two cases were classified as anatomic success, and 9 cases were classified as anatomic failure. Peeled ILM area was significantly wider and MH basal diameter was significantly less in the anatomic success group (p = 0.024 and 0.032, resp.). Other parameters did not demonstrate statistical significance. Conclusion. The findings of the present study show that the peeled ILM area can affect the anatomic outcomes of MH surgery. PMID:27413544

  13. Relationship between Peeled Internal Limiting Membrane Area and Anatomic Outcomes following Macular Hole Surgery: A Quantitative Analysis

    PubMed Central

    Goker, Yasin Sakir; Koc, Mustafa; Yuksel, Kemal; Yazici, Ahmet Taylan; Gunes, Hasan; Ozpinar, Yavuz

    2016-01-01

    Purpose. To quantitatively evaluate the effects of peeled internal limiting membrane (ILM) area and anatomic outcomes following macular hole surgery using spectral domain optical coherence tomography (SD-OCT). Methods. Forty-one eyes in 37 consecutive patients with idiopathic, Gass stage 3-4 macular hole (MH) were enrolled in this retrospective comparative study. All patients were divided into 2 groups according to anatomic success or failure. Basal MH diameter, peeled ILM area, and MH height were calculated using SD-OCT. Other prognostic parameters, including age, stage, preoperative BCVA, and symptom duration were also assessed. Results. Thirty-two cases were classified as anatomic success, and 9 cases were classified as anatomic failure. Peeled ILM area was significantly wider and MH basal diameter was significantly less in the anatomic success group (p = 0.024 and 0.032, resp.). Other parameters did not demonstrate statistical significance. Conclusion. The findings of the present study show that the peeled ILM area can affect the anatomic outcomes of MH surgery. PMID:27413544

  14. Density Functional Study of the structural properties in Tamoxifen

    NASA Astrophysics Data System (ADS)

    de Coss-Martinez, Romeo; Tapia, Jorge A.; Quijano-Quiñones, Ramiro F.; Canto, Gabriel I.

    2013-03-01

    Using the density functional theory, we have studied the structural properties of Tamoxifen. The calculations were performed with two methodological approaches, which were implemented in SIESTA and Spartan codes. For SIESTA, we considerate a linear combination of atomic orbitals method, using pseudopotentials and the van der Waals approximation for the exchange-correlation potential. Here we analyzed and compared the atomic structure between our results and other theoretical study. We found differences in the bond lengths between the results, that could be attributed to code approaches in each one. This work was supported under Grant FOMIX 2011-09 N: 170297 of Ph.D. A. Tapia.

  15. Structural properties of amorphous silicon produced by electron irradiation

    SciTech Connect

    Yamasaki, J.; Takeda, S.

    1999-07-01

    The structural properties of the amorphous Si (a-Si), which was created from crystalline silicon by 2 MeV electron irradiation at low temperatures about 25 K, are examined in detail by means of transmission electron microscopy and transmission electron diffraction. The peak positions in the radial distribution function (RDF) of the a-Si correspond well to those of a-Si fabricated by other techniques. The electron-irradiation-induced a-Si returns to crystalline Si after annealing at 550 C.

  16. Determination of HART I Blade Structural Properties by Laboratory Testing

    NASA Technical Reports Server (NTRS)

    Jung, Sung N.; Lau, Benton H.

    2012-01-01

    The structural properties of higher harmonic Aeroacoustic Rotor Test (HART I) blades were measured using the original set of blades tested in the German-dutch wind tunnel (DNW) in 1994. the measurements include bending and torsion stiffness, geometric offsets, and mass and inertia properties of the blade. the measured properties were compared to the estimated values obtained initially from the blade manufacturer. The previously estimated blade properties showed consistently higher stiffness, up to 30 percent for the flap bending in the blade inboard root section.

  17. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis. [quantitative structure-activity relationship, complete neglect of differential overlap

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of cationic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR-primeP(O)X, where R and R-prime are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrolysis rate constant.

  18. Use of quantitative shape-activity relationships to model the photoinduced toxicity of polycyclic aromatic hydrocarbons: Electron density shape features accurately predict toxicity

    SciTech Connect

    Mezey, P.G.; Zimpel, Z.; Warburton, P.; Walker, P.D.; Irvine, D.G.; Huang, X.D.; Dixon, D.G.; Greenberg, B.M.

    1998-07-01

    The quantitative shape-activity relationship (QShAR) methodology, based on accurate three-dimensional electron densities and detailed shape analysis methods, has been applied to a Lemna gibba photoinduced toxicity data set of 16 polycyclic aromatic hydrocarbon (PAH) molecules. In the first phase of the studies, a shape fragment QShAR database of PAHs was developed. The results provide a very good match to toxicity based on a combination of the local shape features of single rings in comparison to the central ring of anthracene and a more global shape feature involving larger molecular fragments. The local shape feature appears as a descriptor of the susceptibility of PAHs to photomodification and the global shape feature is probably related to photosensitization activity.

  19. Three-dimensional quantitative structure-activity relationship study on anti-cancer activity of 3,4-dihydroquinazoline derivatives against human lung cancer A549 cells

    NASA Astrophysics Data System (ADS)

    Cho, Sehyeon; Choi, Min Ji; Kim, Minju; Lee, Sunhoe; Lee, Jinsung; Lee, Seok Joon; Cho, Haelim; Lee, Kyung-Tae; Lee, Jae Yeol

    2015-03-01

    A series of 3,4-dihydroquinazoline derivatives with anti-cancer activities against human lung cancer A549 cells were subjected to three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using the comparative molecular similarity indices analysis (CoMSIA) approaches. The most potent compound, 1 was used to align the molecules. As a result, the best prediction was obtained with CoMSIA combined the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields (q2 = 0.720, r2 = 0.897). This model was validated by an external test set of 6 compounds giving satisfactory predictive r2 value of 0.923 as well as the scrambling stability test. This model would guide the design of potent 3,4-dihydroquinazoline derivatives as anti-cancer agent for the treatment of human lung cancer.

  20. Using quantitative structure activity relationship models to predict an appropriate solvent system from a common solvent system family for countercurrent chromatography separation.

    PubMed

    Marsden-Jones, Siân; Colclough, Nicola; Garrard, Ian; Sumner, Neil; Ignatova, Svetlana

    2015-06-12

    Countercurrent chromatography (CCC) is a form of liquid-liquid chromatography. It works by running one immiscible solvent (mobile phase) over another solvent (stationary phase) being held in a CCC column using centrifugal force. The concentration of compound in each phase is characterised by the partition coefficient (Kd), which is the concentration in the stationary phase divided by the concentration in the mobile phase. When Kd is between approximately 0.2 and 2, it is most likely that optimal separation will be achieved. Having the Kd in this range allows the compound enough time in the column to be separated without resulting in a broad peak and long run time. In this paper we report the development of quantitative structure activity relationship (QSAR) models to predict logKd. The QSAR models use only the molecule's 2D structure to predict the molecular property logKd.

  1. Synthesis and quantitative structure-activity relationship (QSAR) analysis of some novel oxadiazolo[3,4-d]pyrimidine nucleosides derivatives as antiviral agents.

    PubMed

    Xu, Xiaojuan; Wang, Jun; Yao, Qizheng

    2015-01-15

    We have synthesized a series of 4H,6H-[1,2,5]oxadiazolo[3,4-d]pyrimidine-5,7-dione 1-oxide nucleoside and their anti-vesicular stomatitis virus (VSV) activities in Wish cell were also investigated in vitro. It was found that most compounds showed obvious anti-VSV activities and compound 9 with ribofuranoside improved the anti-VSV activity by approximately 10 times and 18 times compared to didanosine (DDI) and acyclovir, respectively. A quantitative structure-activity relationship (QSAR) study of these compounds as well as previous reported oxadiazolo[3,4-d]pyrimidine nucleoside derivatives indicated that compounds with high activity should have small values of logP(o/w), vsurf_G and a large logS value. These findings and results provide a base for further investigations.

  2. Novel phenolic inhibitors of the sarco/endoplasmic reticulum calcium ATPase: identification and characterization by quantitative structure-activity relationship modeling and virtual screening.

    PubMed

    Paula, Stefan; Hofmann, Emily; Burden, John; Stanton, David T

    2015-02-01

    Inhibitors of the sarco/endoplasmic reticulum calcium ATPase (SERCA) are valuable research tools and hold promise as a new generation of anti-prostate cancer agents. Based on previously determined potencies of phenolic SERCA inhibitors, we created quantitative structure-activity relationship (QSAR) models using three independent development strategies. The obtained QSAR models facilitated virtual screens of several commercial compound collections for novel inhibitors. Sixteen compounds were subsequently evaluated in SERCA activity inhibition assays and 11 showed detectable potencies in the micro- to millimolar range. The experimental results were then incorporated into a comprehensive master QSAR model, whose physical interpretation by partial least squares analysis revealed that properly positioned substituents at the central phenyl ring capable of forming hydrogen bonds and of undergoing hydrophobic interactions were prerequisites for effective SERCA inhibition. The established SAR was in good agreement with findings from previous structural studies, even though it was obtained independently using standard QSAR methodologies.

  3. Inhibition of /sup 125/I-labeled ristocetin binding to Micrococcus luteus cells by the peptides related to bacterial cell wall mucopeptide precursors: quantitative structure-activity relationships

    SciTech Connect

    Kim, K.H.; Martin, Y.; Otis, E.; Mao, J.

    1989-01-01

    Quantitative structure-activity relationships (QSAR) of N-Ac amino acids, N-Ac dipeptides, and N-Ac tripeptides in inhibition of /sup 125/I-labeled ristocetin binding to Micrococcus luteus cell wall have been developed to probe the details of the binding between ristocetin and N-acetylated peptides. The correlation equations indicate that (1) the binding is stronger for peptides in which the side chain of the C-terminal amino acid has a large molar refractivity (MR) value, (2) the binding is weaker for peptides with polar than for those with nonpolar C-terminal side chains, (3) the N-terminal amino acid in N-Ac dipeptides contributes 12 times that of the C-terminal amino acid to binding affinity, and (4) the interactions between ristocetin and the N-terminal amino acid of N-acetyl tripeptides appear to be much weaker than those with the first two amino acids.

  4. Synthesis, quantitative structure-activity relationship and biological evaluation of 1,3,4-oxadiazole derivatives possessing diphenylamine moiety as potential anticancer agents.

    PubMed

    Abdel Rahman, Doaa Ezzat

    2013-01-01

    Synthesis of 2,5-disubstituted-1,3,4-oxadiazole (2a-c), 3-substituted aminomethyl-5-substituted-1,3,4-oxadiazole-2(3H)-thione (4a-m) and 2-substituted thio-5-substituted-1,3,4-oxadiazole (5a, b) had been described. All the synthesized derivatives were screened for anticancer activity against HT29 and MCF7 cancer cell lines using Sulfo-Rodamine B (SRB) standard method. Most of the tested compounds exploited potent antiproliferative activity against HT29 cancer cell line rather than MCF7 cancer cell line. Compounds 2a-c, 4f and 5a exhibited potent cytotoxicity (IC(50) 1.3-2.0 µM) and selectivity against HT29 cancer cell line. Quantitative structure-activity relationship (QSAR) study was applied to find a correlation between the experimental antiproliferative activities of the newly synthesized oxadiazole derivatives with their physicochemical parameter and topological index.

  5. Relationship Between Ebola Virus Real-Time Quantitative Polymerase Chain Reaction–Based Threshold Cycle Value and Virus Isolation From Human Plasma

    PubMed Central

    Spengler, Jessica R.; McElroy, Anita K.; Harmon, Jessica R.; Ströher, Ute; Nichol, Stuart T.; Spiropoulou, Christina F.

    2015-01-01

    We performed a longitudinal analysis of plasma samples obtained from 4 patients with Ebola virus (EBOV) disease (EVD) to determine the relationship between the real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR)–based threshold cycle (Ct) value and the presence of infectious EBOV. EBOV was not isolated from plasma samples with a Ct value of >35.5 or >12 days after onset of symptoms. EBOV was not isolated from plasma samples in which anti–EBOV nucleoprotein immunoglobulin G was detected. These data demonstrate the utility of interpreting qRT-PCR results in the context of the course of EBOV infection and associated serological responses for patient-management decisions. PMID:25941333

  6. Hologram quantitative structure-activity relationship and comparative molecular field analysis studies within a series of tricyclic phthalimide HIV-1 integrase inhibitors.

    PubMed

    Magalhães, Uiaran de Oliveira; Souza, Alessandra Mendonça Teles de; Albuquerque, Magaly Girão; Brito, Monique Araújo de; Bello, Murilo Lamim; Cabral, Lucio Mendes; Rodrigues, Carlos Rangel

    2013-01-01

    Acquired immunodeficiency syndrome is a public health problem worldwide caused by the Human immunodeficiency virus (HIV). Treatment with antiretroviral drugs is the best option for viral suppression, reducing morbidity and mortality. However, viral resistance in HIV-1 therapy has been reported. HIV-1 integrase (IN) is an essential enzyme for effective viral replication and an attractive target for the development of new inhibitors. In the study reported here, two- and three-dimensional quantitative structure-activity relationship (2D/3D-QSAR) studies, applying hologram quantitative structure-activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) methods, respectively, were performed on a series of tricyclic phthalimide HIV-1 IN inhibitors. The best HQSAR model (q (2) = 0.802, r (2) = 0.972) was obtained using atoms, bonds, and connectivity as the fragment distinction, a fragment size of 2-5 atoms, hologram length of 61 bins, and six components. The best CoMFA model (q (2) = 0.748, r (2) = 0.974) was obtained with alignment of all atoms of the tricyclic phthalimide moiety (alignment II). The HQSAR contribution map identified that the carbonyl-hydroxy-aromatic nitrogen motif made a positive contribution to the activity of the compounds. Furthermore, CoMFA contour maps suggested that bulky groups in meta and para positions in the phenyl ring would increase the biological activity of this class. The conclusions of this work may lead to a better understanding of HIV-1 IN inhibition and contribute to the design of new and more potent derivatives.

  7. Hologram quantitative structure–activity relationship and comparative molecular field analysis studies within a series of tricyclic phthalimide HIV-1 integrase inhibitors

    PubMed Central

    de Oliveira Magalhães, Uiaran; de Souza, Alessandra Mendonça Teles; Albuquerque, Magaly Girão; de Brito, Monique Araújo; Bello, Murilo Lamim; Cabral, Lucio Mendes; Rodrigues, Carlos Rangel

    2013-01-01

    Acquired immunodeficiency syndrome is a public health problem worldwide caused by the Human immunodeficiency virus (HIV). Treatment with antiretroviral drugs is the best option for viral suppression, reducing morbidity and mortality. However, viral resistance in HIV-1 therapy has been reported. HIV-1 integrase (IN) is an essential enzyme for effective viral replication and an attractive target for the development of new inhibitors. In the study reported here, two- and three-dimensional quantitative structure–activity relationship (2D/3D-QSAR) studies, applying hologram quantitative structure–activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) methods, respectively, were performed on a series of tricyclic phthalimide HIV-1 IN inhibitors. The best HQSAR model (q2 = 0.802, r2 = 0.972) was obtained using atoms, bonds, and connectivity as the fragment distinction, a fragment size of 2–5 atoms, hologram length of 61 bins, and six components. The best CoMFA model (q2 = 0.748, r2 = 0.974) was obtained with alignment of all atoms of the tricyclic phthalimide moiety (alignment II). The HQSAR contribution map identified that the carbonyl-hydroxy-aromatic nitrogen motif made a positive contribution to the activity of the compounds. Furthermore, CoMFA contour maps suggested that bulky groups in meta and para positions in the phenyl ring would increase the biological activity of this class. The conclusions of this work may lead to a better understanding of HIV-1 IN inhibition and contribute to the design of new and more potent derivatives. PMID:24039405

  8. A quantitative structure activity/dose response relationship for contact allergic potential of alkyl group transfer agents.

    PubMed

    Roberts, D W; Basketter, D A

    1990-11-01

    As part of the investigation of structure activity relationships in contact allergy, it has been shown that methyl transfer agents are capable of acting as skin sensitizers. This work has now been extended to a more general examination of alkyl transfer reactions. The modified single injection adjuvant test has been used to investigate the sensitization potential of C12, C16 and unsaturated C18 alkyl transfer agents. Dose responses to challenge and the patterns of cross-reactivity between these materials and methyl transfer agents have been studied. All alkyl transfer agents examined were potent sensitizers in the guinea pig. There was evidence of mutual cross-reactivity between all alkyl transfer agents examined (including methyl transfer agents). Analysis of the data in terms of a modified relative alkylation index showed evidence of an overload effect. The sensitization data has been accurately modelled using a mathematical equation. These results emphasize the possibilities for relating physicochemical parameters and skin sensitization potential. Further studies with alkyl transfer agents are in progress of amplify the observations and conclusions presented in this report. No in vitro model is available for the prediction of skin sensitization potential. Therefore an approach based on a model using physicochemical criteria is the most likely route to a reduced requirement for animal testing. PMID:1965716

  9. Quantitative Relationship between Cadmium Uptake and the Kinetics of Phytochelatin Induction by Cadmium in a Marine Diatom

    PubMed Central

    Wu, Yun; Guo, Zhiqiang; Zhang, Wei; Tan, Qiaoguo; Zhang, Li; Ge, Xinlei; Chen, Mindong

    2016-01-01

    Heavy metals activate the synthesis of phytochelatins (PCs), while the induced PCs might affect metal uptake via chelating intracellular free metals. However, the relationship of PCs to metal uptake is poorly understood. In this study, we examined the kinetics of cadmium (Cd) accumulation and the synthesis of PCs in a marine diatom, Thalassiosira weissflogii, under different irradiance levels. Irradiance alone could not change the concentrations of PCs in the Cd-free treatments, while higher irradiance accelerated the induction of intracellular PCs at the same [Cd2+] level. PC-SH (2 × PC2 + 3 × PC3 + 4 × PC4) was bound with Cd at a stoichiometric ratio of 2 to 49 in our short-term uptake experiments, indicating that PC induction is sufficient to serve as the first line of defense against Cd stress. A positive linear correlation between the induction rate of PCs and the Cd uptake rate was observed, while the ratio of the PC content to intracellular Cd varied greatly when the irradiance was increased several fold. Because metal uptake has been successfully used in predicting acute metal toxicity, our findings are helpful for understanding the role of PCs in metal detoxification and developing PCs as biomarkers for metal sensitivity. PMID:27779209

  10. Interspecies quantitative structure-activity relationships (QSARs) for eco-toxicity screening of chemicals: the role of physicochemical properties.

    PubMed

    Furuhama, A; Hasunuma, K; Aoki, Y

    2015-01-01

    In addition to molecular structure profiles, descriptors based on physicochemical properties are useful for explaining the eco-toxicities of chemicals. In a previous study we reported that a criterion based on the difference between the partition coefficient (log POW) and distribution coefficient (log D) values of chemicals enabled us to identify aromatic amines and phenols for which interspecies relationships with strong correlations could be developed for fish-daphnid and algal-daphnid toxicities. The chemicals that met the log D-based criterion were expected to have similar toxicity mechanisms (related to membrane penetration). Here, we investigated the applicability of log D-based criteria to the eco-toxicity of other kinds of chemicals, including aliphatic compounds. At pH 10, use of a log POW - log D > 0 criterion and omission of outliers resulted in the selection of more than 100 chemicals whose acute fish toxicities or algal growth inhibition toxicities were almost equal to their acute daphnid toxicities. The advantage of log D-based criteria is that they allow for simple, rapid screening and prioritizing of chemicals. However, inorganic molecules and chemicals containing certain structural elements cannot be evaluated, because calculated log D values are unavailable.

  11. Quantitative structure-retention relationships applied to development of liquid chromatography gradient-elution method for the separation of sartans.

    PubMed

    Golubović, Jelena; Protić, Ana; Otašević, Biljana; Zečević, Mira

    2016-04-01

    QSRR are mathematically derived relationships between the chromatographic parameters determined for a representative series of analytes in given separation systems and the molecular descriptors accounting for the structural differences among the investigated analytes. Artificial neural network is a technique of data analysis, which sets out to emulate the human brain's way of working. The aim of the present work was to optimize separation of six angiotensin receptor antagonists, so-called sartans: losartan, valsartan, irbesartan, telmisartan, candesartan cilexetil and eprosartan in a gradient-elution HPLC method. For this purpose, ANN as a mathematical tool was used for establishing a QSRR model based on molecular descriptors of sartans and varied instrumental conditions. The optimized model can be further used for prediction of an external congener of sartans and analysis of the influence of the analyte structure, represented through molecular descriptors, on retention behaviour. Molecular descriptors included in modelling were electrostatic, geometrical and quantum-chemical descriptors: connolly solvent excluded volume non-1,4 van der Waals energy, octanol/water distribution coefficient, polarizability, number of proton-donor sites and number of proton-acceptor sites. Varied instrumental conditions were gradient time, buffer pH and buffer molarity. High prediction ability of the optimized network enabled complete separation of the analytes within the run time of 15.5 min under following conditions: gradient time of 12.5 min, buffer pH of 3.95 and buffer molarity of 25 mM. Applied methodology showed the potential to predict retention behaviour of an external analyte with the properties within the training space. Connolly solvent excluded volume, polarizability and number of proton-acceptor sites appeared to be most influential paramateres on retention behaviour of the sartans.

  12. PROS1 genotype phenotype relationships in a large cohort of adults with suspicion of inherited quantitative protein S deficiency.

    PubMed

    Alhenc-Gelas, Martine; Plu-Bureau, Genevieve; Horellou, Marie Hélène; Rauch, Antoine; Suchon, Pierre

    2016-03-01

    Inherited protein S deficiency (PSD) is an established risk factor for venous thromboembolism (VTE). However, data are conflicting concerning risk of VTE associated with decreased free PS level (FPS) and information on PROS1 genotype-phenotype relationship is sparse. In a retrospective cohort of 579 patients with inherited type I/III deficiency suspicion, PROS1 genotyping was performed and the effect of genotype on FPS and on VTE risk was investigated. We found 116 (including 65 novel) detrimental mutations (DM) in 222 (type I/III in 194, type II in 28), PS Heerlen in 74, possibly non DM in 38 and no mutation in 245 subjects. Among DMs, type I/IIIDMs only were found in subjects with FPS< 30 %. Prevalence of type I/III DM decreased with increasing FPS level. Risk of VT associated with FPS level and genotype was studied in the 467 subjects with personal or family history of thrombosis. Only type I/IIIDM carriers presented with an increased risk of VTE [1.41 (95 %CI (1.05-1.89)] compared to subjects with no mutation. Among the group of type I/IIIDM heterozygotes and subjects with no mutation, the optimal FPS cut-off point for identifying subjects at increased VTE risk was searched for. We found that only subjects with FPS< 30 % and type I/IIIDM presented with an increased risk [1.48 (95 %CI 1.08-2.04)]. Our findings confirm the value of a cut-off FPS level for identifying subjects at increased VTE risk far below the lower limit of the normal range and suggest a place for PROS1 genotyping in PSD diagnosis strategy.

  13. RaptorX-Property: a web server for protein structure property prediction.

    PubMed

    Wang, Sheng; Li, Wei; Liu, Shiwang; Xu, Jinbo

    2016-07-01

    RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learning model DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC) and disorder regions (DISO). DeepCNF not only models complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent property labels. Our experimental results show that, tested on CASP10, CASP11 and the other benchmarks, this server can obtain ∼84% Q3 accuracy for 3-state SS, ∼72% Q8 accuracy for 8-state SS, ∼66% Q3 accuracy for 3-state solvent accessibility, and ∼0.89 area under the ROC curve (AUC) for disorder prediction.

  14. RaptorX-Property: a web server for protein structure property prediction

    PubMed Central

    Wang, Sheng; Li, Wei; Liu, Shiwang; Xu, Jinbo

    2016-01-01

    RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learning model DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC) and disorder regions (DISO). DeepCNF not only models complex sequence–structure relationship by a deep hierarchical architecture, but also interdependency between adjacent property labels. Our experimental results show that, tested on CASP10, CASP11 and the other benchmarks, this server can obtain ∼84% Q3 accuracy for 3-state SS, ∼72% Q8 accuracy for 8-state SS, ∼66% Q3 accuracy for 3-state solvent accessibility, and ∼0.89 area under the ROC curve (AUC) for disorder prediction. PMID:27112573

  15. RaptorX-Property: a web server for protein structure property prediction.

    PubMed

    Wang, Sheng; Li, Wei; Liu, Shiwang; Xu, Jinbo

    2016-07-01

    RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learning model DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC) and disorder regions (DISO). DeepCNF not only models complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent property labels. Our experimental results show that, tested on CASP10, CASP11 and the other benchmarks, this server can obtain ∼84% Q3 accuracy for 3-state SS, ∼72% Q8 accuracy for 8-state SS, ∼66% Q3 accuracy for 3-state solvent accessibility, and ∼0.89 area under the ROC curve (AUC) for disorder prediction. PMID:27112573

  16. Thermodynamic and structural properties of Bi-based liquid alloys

    NASA Astrophysics Data System (ADS)

    Yadav, S. K.; Jha, L. N.; Adhikari, D.

    2015-10-01

    Thermodynamic and microscopic structural properties of two Bi-based liquid alloys, such as In-Bi at 900 K and Tl-Bi at 750 K have been studied employing the regular associated solution model. We have estimated the mole fractions of the complexes and the free monomers assuming the existence of complexes In2 Bi in In-Bi melt and TlBi in Tl-Bi melt. The thermodynamic properties have been studied by computing the Gibbs free energy of mixing, enthalpy of mixing, entropy of mixing and activities of the monomers. The compositional contributions of the heat associated with the formation of complexes and the heat of mixing of the monomers to the net enthalpy change has also been studied. The structural properties of the liquid alloys have been studied by computing concentration fluctuation in the long-wavelength limit, chemical short-range order parameter and the ratio of mutual to intrinsic diffusion coefficients. For both of the alloy systems, the theoretical as well as the experimental values of SCC (0) are found to be lower than the corresponding ideal values over the whole composition range, indicating the hetero-coordinating nature of Bi-In and Bi-Tl alloy melts. All the interaction energy parameters are found to be negative and temperature dependent, and both the alloy systems are found to be weakly interacting.

  17. Structural properties of impact ices accreted on aircraft structures

    NASA Technical Reports Server (NTRS)

    Scavuzzo, R. J.; Chu, M. L.

    1987-01-01

    The structural properties of ice accretions formed on aircraft surfaces are studied. The overall objectives are to measure basic structural properties of impact ices and to develop finite element analytical procedures for use in the design of all deicing systems. The Icing Research Tunnel (IRT) was used to produce simulated natural ice accretion over a wide range of icing conditions. Two different test apparatus were used to measure each of the three basic mechanical properties: tensile, shear, and peeling. Data was obtained on both adhesive shear strength of impact ices and peeling forces for various icing conditions. The influences of various icing parameters such as tunnel air temperature and velocity, icing cloud drop size, material substrate, surface temperature at ice/material interface, and ice thickness were studied. A finite element analysis of the shear test apparatus was developed in order to gain more insight in the evaluation of the test data. A comparison with other investigators was made. The result shows that the adhesive shear strength of impact ice typically varies between 40 and 50 psi, with peak strength reaching 120 psi and is not dependent on the kind of substrate used, the thickness of accreted ice, and tunnel temperature below 4 C.

  18. Comparison of Serum HBsAg Quantitation by Four Immunoassays, and Relationships of HBsAg Level with HBV Replication and HBV Genotypes

    PubMed Central

    Tuaillon, Edouard; Mondain, Anne-Marie; Nagot, Nicolas; Ottomani, Laure; Kania, Dramane; Nogue, Erika; Rubbo, Pierre-Alain; Pageaux, Georges-Philippe; Van de Perre, Philippe; Ducos, Jacques

    2012-01-01

    Background The decline in hepatitis B virus surface antigen (HBsAg) may be an early predictor of the viral efficacy of Hepatitis B virus (HBV) therapy. The HBsAg levels obtained by different immunoassays now need comparing and the relationships between levels of HBsAg and HBV DNA alongside HBsAg and genotype must be evaluated. Methodology/Principal Findings HBsAg levels were compared among 80 patients using the Abbott Architect assay, a commercial immunoassay approved for HBsAg detection and quantitation, and three other assays derived from immunoassays approved for HBsAg detection (manufactured by Diasorin, Bio-Rad and Roche). Good correlation was found between the Abbot vs. Diasorin, Bio-Rad and Roche assays with narrow 95% limits of agreement and small mean differences: −0.06 to 0.11, −0.09 log10 IU/mL; −0.57 to 0.64, −0.04 log10 IU/mL; −0.09 to 0.45, −0.27 log10 IU/mL, respectively. These agreements were not affected by genotypes A or D. HBsAg was weakly correlated with HBV DNA, whatever the HBsAg assay used: Abbott, ρ = 0.36 p = 0.001, Diasorin ρ = 0.34, p = 0.002; Bio-Rad ρ = 0.37, p<0.001; or Roche ρ = 0.41, p<0.001. This relationship between levels of HBsAg and HBV DNA seemed to depend on genotypes. Whereas HBsAg (Abbott assay) tended to correlate with HBV DNA for genotype A (ρ = 0.44, p = 0.02), no such correlation was significant for genotypes D (ρ = 0.29, p = 0.15). Conclusion/Significance The quantitation of HBsAg in routine clinical samples is comparable between the reference assay and the adapted assays with acceptable accuracy limits, low levels of variability and minimum discrepancy. While HBsAg quantitation is not affected by HBV genotype, the observed association between levels of HBsAg and HBV DNA seems genotype dependent. PMID:22403628

  19. Quantitative analysis of relationships between irradiation parameters and the reproducibility of cyclotron-produced 99mTc yields

    NASA Astrophysics Data System (ADS)

    Tanguay, J.; Hou, X.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.

    2015-05-01

    Cyclotron production of 99mTc through the 100Mo(p,2n) 99mTc reaction channel is actively being investigated as an alternative to reactor-based 99Mo generation by nuclear fission of 235U. An exciting aspect of this approach is that it can be implemented using currently-existing cyclotron infrastructure to supplement, or potentially replace, conventional 99mTc production methods that are based on aging and increasingly unreliable nuclear reactors. Successful implementation will require consistent production of large quantities of high-radionuclidic-purity 99mTc. However, variations in proton beam currents and the thickness and isotopic composition of enriched 100Mo targets, in addition to other irradiation parameters, may degrade reproducibility of both radionuclidic purity and absolute 99mTc yields. The purpose of this article is to present a method for quantifying relationships between random variations in production parameters, including 100Mo target thicknesses and proton beam currents, and reproducibility of absolute 99mTc yields (defined as the end of bombardment (EOB) 99mTc activity). Using the concepts of linear error propagation and the theory of stochastic point processes, we derive a mathematical expression that quantifies the influence of variations in various irradiation parameters on yield reproducibility, quantified in terms of the coefficient of variation of the EOB 99mTc activity. The utility of the developed formalism is demonstrated with an example. We show that achieving less than 20% variability in 99mTc yields will require highly-reproducible target thicknesses and proton currents. These results are related to the service rate which is defined as the percentage of 99mTc production runs that meet the minimum daily requirement of one (or many) nuclear medicine departments. For example, we show that achieving service rates of 84.0%, 97.5% and 99.9% with 20% variations in target thicknesses requires producing on average 1.2, 1.5 and 1.9 times the

  20. Quantitative analysis of relationships between irradiation parameters and the reproducibility of cyclotron-produced (99m)Tc yields.

    PubMed

    Tanguay, J; Hou, X; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A

    2015-05-21

    Cyclotron production of (99m)Tc through the (100)Mo(p,2n) (99m)Tc reaction channel is actively being investigated as an alternative to reactor-based (99)Mo generation by nuclear fission of (235)U. An exciting aspect of this approach is that it can be implemented using currently-existing cyclotron infrastructure to supplement, or potentially replace, conventional (99m)Tc production methods that are based on aging and increasingly unreliable nuclear reactors. Successful implementation will require consistent production of large quantities of high-radionuclidic-purity (99m)Tc. However, variations in proton beam currents and the thickness and isotopic composition of enriched (100)Mo targets, in addition to other irradiation parameters, may degrade reproducibility of both radionuclidic purity and absolute (99m)Tc yields. The purpose of this article is to present a method for quantifying relationships between random variations in production parameters, including (100)Mo target thicknesses and proton beam currents, and reproducibility of absolute (99m)Tc yields (defined as the end of bombardment (EOB) (99m)Tc activity). Using the concepts of linear error propagation and the theory of stochastic point processes, we derive a mathematical expression that quantifies the influence of variations in various irradiation parameters on yield reproducibility, quantified in terms of the coefficient of variation of the EOB (99m)Tc activity. The utility of the developed formalism is demonstrated with an example. We show that achieving less than 20% variability in (99m)Tc yields will require highly-reproducible target thicknesses and proton currents. These results are related to the service rate which is defined as the percentage of (99m)Tc production runs that meet the minimum daily requirement of one (or many) nuclear medicine departments. For example, we show that achieving service rates of 84.0%, 97.5% and 99.9% with 20% variations in target thicknesses requires producing on average

  1. Paclitaxel-loaded polymeric microparticles: quantitative relationships between in vitro drug release rate and in vivo pharmacodynamics.

    PubMed

    Tsai, Max; Lu, Ze; Wientjes, M Guillaume; Au, Jessie L-S

    2013-12-28

    Intraperitoneal therapy (IP) has demonstrated survival advantages in patients with peritoneal cancers, but has not become a widely practiced standard-of-care in part due to local toxicity and sub-optimal drug delivery. Paclitaxel-loaded, polymeric microparticles were developed to overcome these limitations. The present study evaluated the effects of microparticle properties on paclitaxel release (extent and rate) and in vivo pharmacodynamics. In vitro paclitaxel release from microparticles with varying physical characteristics (i.e., particle size, copolymer viscosity and composition) was evaluated. A method was developed to simulate the dosing rate and cumulative dose released in the peritoneal cavity based on the in vitro release data. The relationship between the simulated drug delivery and treatment outcomes of seven microparticle compositions was studied in mice bearing IP human pancreatic tumors, and compared to that of the intravenous Cremophor micellar paclitaxel solution used off-label in previous IP studies. Paclitaxel release from polymeric microparticles in vitro was multi-phasic; release was greater and more rapid from microparticles with lower polymer viscosities and smaller diameters (e.g., viscosity of 0.17 vs. 0.67 dl/g and diameter of 5-6 vs. 50-60 μm). The simulated drug release in the peritoneal cavity linearly correlated with treatment efficacy in mice (r(2)>0.8, p<0.001). The smaller microparticles, which distribute more evenly in the peritoneal cavity compared to the large microparticles, showed greater dose efficiency. For single treatment, the microparticles demonstrated up to 2-times longer survival extension and 4-times higher dose efficiency, relative to the paclitaxel/Cremophor micellar solution. Upon repeated dosing, the paclitaxel/Cremophor micellar solution showed cumulative toxicity whereas the microparticle that yielded 2-times longer survival did not display cumulative toxicity. The efficacy of IP therapy depended on both

  2. Quantitative analysis of relationships between irradiation parameters and the reproducibility of cyclotron-produced (99m)Tc yields.

    PubMed

    Tanguay, J; Hou, X; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A

    2015-05-21

    Cyclotron production of (99m)Tc through the (100)Mo(p,2n) (99m)Tc reaction channel is actively being investigated as an alternative to reactor-based (99)Mo generation by nuclear fission of (235)U. An exciting aspect of this approach is that it can be implemented using currently-existing cyclotron infrastructure to supplement, or potentially replace, conventional (99m)Tc production methods that are based on aging and increasingly unreliable nuclear reactors. Successful implementation will require consistent production of large quantities of high-radionuclidic-purity (99m)Tc. However, variations in proton beam currents and the thickness and isotopic composition of enriched (100)Mo targets, in addition to other irradiation parameters, may degrade reproducibility of both radionuclidic purity and absolute (99m)Tc yields. The purpose of this article is to present a method for quantifying relationships between random variations in production parameters, including (100)Mo target thicknesses and proton beam currents, and reproducibility of absolute (99m)Tc yields (defined as the end of bombardment (EOB) (99m)Tc activity). Using the concepts of linear error propagation and the theory of stochastic point processes, we derive a mathematical expression that quantifies the influence of variations in various irradiation parameters on yield reproducibility, quantified in terms of the coefficient of variation of the EOB (99m)Tc activity. The utility of the developed formalism is demonstrated with an example. We show that achieving less than 20% variability in (99m)Tc yields will require highly-reproducible target thicknesses and proton currents. These results are related to the service rate which is defined as the percentage of (99m)Tc production runs that meet the minimum daily requirement of one (or many) nuclear medicine departments. For example, we show that achieving service rates of 84.0%, 97.5% and 99.9% with 20% variations in target thicknesses requires producing on average

  3. Quantitative structure-activity relationship study of P2X7 receptor inhibitors using combination of principal component analysis and artificial intelligence methods.

    PubMed

    Ahmadi, Mehdi; Shahlaei, Mohsen

    2015-01-01

    P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure-activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7-7-1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure-activity relationship model suggested is robust and satisfactory. PMID:26600858

  4. Quantitative structure-activity relationship study of P2X7 receptor inhibitors using combination of principal component analysis and artificial intelligence methods.

    PubMed

    Ahmadi, Mehdi; Shahlaei, Mohsen

    2015-01-01

    P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure-activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7-7-1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure-activity relationship model suggested is robust and satisfactory.

  5. Quantitative Structure-Activity Relationship Analysis of the Effect of Metoclopramide and Related Compounds on the Surface Ionization of Fumed Silica.

    PubMed

    Buyuktimkin, Tuba; Wurster, Dale Eric

    2015-08-01

    Potentiometric titration curves were generated for fumed silica with various concentrations of dissolved metoclopramide. The effects of various benzamide analogs of metoclopramide, which are positively charged in the titration medium and differ solely by their aromatic substituents, as well as lidocaine, which is also structurally analogous but is mainly in the unionized form, were also studied. At sufficiently high pH, pH 7.0 and above, the silica surface charge was independent of the metoclopramide concentration. A reasonable linear relationship with a positive slope was found between the logarithmic octanol-water partition coefficient (log P) values of the compounds and the negative surface charge determined at pH 7.0 and 7.2. These results can be attributed to specific adsorbate-surface interactions rather than concentration effects. The carbonyl oxygens of the benzamide structures most likely form hydrogen bonds with the neutral silanols. The use of positively charged triethylamine and ephedrine resulted in surface charge values that were the least negative in the aforementioned quantitative structure-activity relationship analyses. These results are consistent with ionic interactions between the positively charged aliphatic amine groups and the negatively charged surface silanols occurring simultaneously with the nonionic interactions.

  6. Toxicity in relation to mode of action for the nematode Caenorhabditis elegans: Acute-to-chronic ratios and quantitative structure-activity relationships.

    PubMed

    Ristau, Kai; Akgül, Yeliz; Bartel, Anna Sophie; Fremming, Jana; Müller, Marie-Theres; Reiher, Luise; Stapela, Frederike; Splett, Jan-Paul; Spann, Nicole

    2015-10-01

    Acute-to-chronic ratios (ACRs) and quantitative structure-activity relationships (QSARs) are of particular interest in chemical risk assessment. Previous studies focusing on the relationship between the size or variation of ACRs to substance classes and QSAR models were often based on data for standard test organisms, such as daphnids and fish. In the present study, acute and chronic toxicity tests were performed with the nematode Caenorhabditis elegans for a total of 11 chemicals covering 3 substance classes (nonpolar narcotics: 1-propanol, ethanol, methanol, 2-butoxyethanol; metals: copper, cadmium, zinc; and carbamates: methomyl, oxamyl, aldicarb, dioxacarb). The ACRs were variable, especially for the carbamates and metals, although there was a trend toward small and less variable ACRs for nonpolar narcotic substances. The octanol-water partition coefficient was a good predictor for explaining acute and chronic toxicity of nonpolar narcotic substances to C. elegans, but not for carbamates. Metal toxicity could be related to the covalent index χm2r. Overall, the results support earlier results from ACR and QSAR studies with standard freshwater test animals. As such C. elegans as a representative of small soil/sediment invertebrates would probably be protected by risk assessment strategies already in use. To increase the predictive power of ACRs and QSARs, further research should be expanded to other species and compounds and should also consider the target sites and toxicokinetics of chemicals.

  7. Potential antitumor agents. 36. Quantitative relationships between experimental antitumor activity, toxicity, and structure for the general class of 9-anilinoacridine antitumor agents

    SciTech Connect

    Denny, W.A.; Cain, B.F.; Atwell, G.J.; Hansch, C.; Panthananickal, A.; Leo, A.

    1982-03-01

    Quantitative relationships (QSAR) have been derived between antileukemic (L1210) activity and agent physicochemical properties for 509 tumor-active members of the general class of 9-anilinoacridines. One member of this class is the clinical agent m-AMSA (NSC 249992). Agent hydrophobicity proved a significant but not a dominant influence on in vivo potency. The electronic properties of substituent groups proved important, but the most significant effects on drug potency were shown by the steric influence of groups placed at various positions on the 9-anilinoacridine skeleton. The results are entirely consistent with the physiologically important step in the action of these compounds being their binding to double-stranded DNA by intercalation of the acridine chromophore between the base pairs and positioning of the anilino group in the minor groove, as previously suggested. An equation was also derived for the acute toxicities of 643 derivatives of 9-anilinoacridine. This equation took a somewhat similar form to the one modeling antileukemia potency, emphasizing the usual fairly close relationship between potency and acute toxicity for antitumor agents in general. This study demonstrated the power of QSAR techniques to structure very large amounts of biological data and to allow the extraction of useful information from them bearing on the possible site of action of the compounds concerned.

  8. Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints.

    PubMed

    Zhi, Wei; Ji, Guodong

    2014-11-01

    The present study explored treatment performance and nitrogen removal mechanisms of a novel tidal flow constructed wetland (TF CW) under C/N ratios ranging from two to 12. High and stable COD (83-95%), [Formula: see text] (63-80%), and TN (50-82%) removal efficiency were simultaneously achieved in our single-stage TF CW without costly aeration. Results showed that a C/N ratio exceeding six was required to achieve complete denitrification without [Formula: see text] and [Formula: see text] accumulation in the system. Molecular biological analyses revealed aerobic ammonia oxidation was the dominant [Formula: see text] removal pathway when the C/N ratio was less than or equal to six. However, when the C/N ratio was greater than six, anammox was notably enhanced, resulting in another primary [Formula: see text] removal pathway, in addition to the aerobic ammonia oxidation. Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes were established, and these relationships confirmed that different nitrogen transformation processes were coupled at the molecular level (functional genes), and collaboratively contributed to nitrogen removal in the TF CW. Specifically, [Formula: see text] transformation rates were collectively determined by amoA, nxrA, anammox, narG, nirS, nirK, and nosZ; and TN removal was influenced primarily by amoA and anammox.

  9. A systematic investigation of quaternary ammonium ions as asymmetric phase-transfer catalysts. Application of quantitative structure activity/selectivity relationships.

    PubMed

    Denmark, Scott E; Gould, Nathan D; Wolf, Larry M

    2011-06-01

    Although the synthetic utility of asymmetric phase-transfer catalysis continues to expand, the number of proven catalyst types and design criteria remains limited. At the origin of this scarcity is a lack in understanding of how catalyst structural features affect the rate and enantioselectivity of phase transfer catalyzed reactions. Described in this paper is the development of quantitative structure-activity relationships (QSAR) and -selectivity relationships (QSSR) for the alkylation of a protected glycine imine with libraries of quaternary ammonium ion catalysts. Catalyst descriptors including ammonium ion accessibility, interfacial adsorption affinity, and partition coefficient were found to correlate meaningfully with catalyst activity. The physical nature of the descriptors was rationalized through differing contributions of the interfacial and extraction mechanisms to the reaction under study. The variation in the observed enantioselectivity was rationalized employing a comparative molecular field analysis (CoMFA) using both the steric and electrostatic fields of the catalysts. A qualitative analysis of the developed model reveals preferred regions for catalyst binding to afford both configurations of the alkylated product.

  10. Quantitative structure–activity relationship study of P2X7 receptor inhibitors using combination of principal component analysis and artificial intelligence methods

    PubMed Central

    Ahmadi, Mehdi; Shahlaei, Mohsen

    2015-01-01

    P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure–activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7−7−1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure–activity relationship model suggested is robust and satisfactory. PMID:26600858

  11. Application of a quantitative structure retention relationship approach for the prediction of the two-dimensional gas chromatography retention times of polycyclic aromatic sulfur heterocycle compounds.

    PubMed

    Gieleciak, Rafal; Hager, Darcy; Heshka, Nicole E

    2016-03-11

    Information on the sulfur classes present in petroleum is a key factor in determining the value of refined products and processing behavior in the refinery. A large part of the sulfur present is included in polycyclic aromatic sulfur heterocycles (PASHs), which in turn are difficult to desulfurize. Furthermore, some PASHs are potentially more mutagenic and carcinogenic than polycyclic aromatic hydrocarbons, PAHs. All of this calls for improved methods for the identification and quantification of individual sulfur species. Recent advances in analytical techniques such as comprehensive two-dimensional gas chromatography (GC×GC) have enabled the identification of many individual sulfur species. However, full identification of individual components, particularly in virgin oil fractions, is still out of reach as standards for numerous compounds are unavailable. In this work, a method for accurately predicting retention times in GC×GC using a QSRR (quantitative structure retention relationship) method was very helpful for the identification of individual sulfur compounds. Retention times for 89 saturated, aromatic, and polyaromatic sulfur-containing heterocyclic compounds were determined using two-dimensional gas chromatography. These retention data were correlated with molecular descriptors generated with CODESSA software. Two independent QSRR relationships were derived for the primary as well as the secondary retention characteristics. The predictive ability of the relationships was tested by using both independent sets of compounds and a cross-validation technique. When the corresponding chemical standards are unavailable, the equations developed for predicting retention times can be used to identify unknown chromatographic peaks by matching their retention times with those of sulfur compounds of known molecular structure.

  12. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium

    SciTech Connect

    PaBlick, C.; Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.; Johnson, J.A.; Schweizer, S.

    2012-10-10

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl2) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu3+ is more strongly reduced to Eu2+, in particular, when doped as a chloride instead of fluoride compound. The Eu2+-to-Eu3+ doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu2+ fraction leads to a BaCl2 phase transition from hexagonal to orthorhombic structure at a lower temperature.

  13. Molecular structure-property correlations from optical nonlinearity and thermal-relaxation dynamics.

    PubMed

    Bhattacharyya, Indrajit; Priyadarshi, Shekhar; Goswami, Debabrata

    2009-02-01

    We apply ultrafast single beam Z-scan technique to measure saturation absorption coefficients and nonlinear-refraction coefficients of primary alcohols at 1560 nm. The nonlinear effects result from vibronic transitions and cubic nonlinear-refraction. To measure the pure total third-order nonlinear susceptibility, we removed thermal effects with a frequency optimized optical-chopper. Our measurements of thermal-relaxation dynamics of alcohols, from 1560 nm thermal lens pump and 780 nm probe experiments revealed faster and slower thermal-relaxation timescales, respectively, from conduction and convection. The faster timescale accurately predicts thermal-diffusivity, which decreases linearly with alcohol chain-lengths since thermal-relaxation is slower in heavier molecules. The relation between thermal-diffusivity and alcohol chain-length confirms structure-property relationship.

  14. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium

    SciTech Connect

    Passlick, C.; Mueller, O.; Luetzenkirchen-Hecht, D.; Frahm, R.; Johnson, J. A.; Schweizer, S.

    2011-12-01

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl{sub 2}) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu{sup 3+} is more strongly reduced to Eu{sup 2+}, in particular, when doped as a chloride instead of fluoride compound. The Eu{sup 2+}-to-Eu{sup 3+} doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu{sup 2+} fraction leads to a BaCl{sub 2} phase transition from hexagonal to orthorhombic structure at a lower temperature.

  15. Electronic and structural properties of ultrathin tungsten nanowires and nanotubes by density functional theory calculation

    SciTech Connect

    Sun, Shih-Jye; Lin, Ken-Huang; Li, Jia-Yun; Ju, Shin-Pon

    2014-10-07

    The simulated annealing basin-hopping method incorporating the penalty function was used to predict the lowest-energy structures for ultrathin tungsten nanowires and nanotubes of different sizes. These predicted structures indicate that tungsten one-dimensional structures at this small scale do not possess B.C.C. configuration as in bulk tungsten material. In order to analyze the relationship between multi-shell geometries and electronic transfer, the electronic and structural properties of tungsten wires and tubes including partial density of state and band structures which were determined and analyzed by quantum chemistry calculations. In addition, in order to understand the application feasibility of these nanowires and tubes on nano-devices such as field emitters or chemical catalysts, the electronic stability of these ultrathin tungsten nanowires was also investigated by density functional theory calculations.

  16. Studies on structural properties of clay magnesium ferrite nano composite

    SciTech Connect

    Kaur, Manpreet Singh, Mandeep; Jeet, Kiran Kaur, Rajdeep

    2015-08-28

    Magnesium ferrite-bentonite clay composite was prepared by sol-gel combustion method employing citric acid as complexing agent and fuel. The effect of clay on the structural properties was studied with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) Spectroscopy, Scanning electron microscopy (SEM), SEM- Energy dispersive Spectroscope (EDS) and BET surface area analyzer. Decrease in particle size and density was observed on addition of bentonite clay. The BET surface area of nano composite containing just 5 percent clay was 74.86 m{sup 2}/g. Whereas porosity increased from 40.5 per cent for the pure magnesium ferrite to 81.0 percent in the composite showing that nano-composite has potential application as an adsorbent.

  17. Vibrational and structural properties of tetramethyltin under pressure

    NASA Astrophysics Data System (ADS)

    Qin, Zhen-Xing; Chen, Xiao-Jia; Zhang, Chao; Tang, Ling-Yun; Zhong, Guo-Hua; Lin, Hai-Qing; Meng, Yue; Mao, Ho-Kwang

    2013-01-01

    The vibrational and structural properties of a hydrogen-rich group IVa hydride, Sn(CH3)4, have been investigated by combining Raman spectroscopy and synchrotron x-ray diffraction measurements at room temperature and at pressures up to 49.9 GPa. Both techniques allow the obtaining of complementary information on the high-pressure behaviors and yield consistent phase transitions at 0.9 GPa for the liquid to solid and 2.8, 10.4, 20.4, and 32.6 GPa for the solid to solid. The foregoing solid phases are identified to have the orthorhombic, tetragonal, monoclinic crystal structures with space groups of Pmmm for phase I, P4/mmm for phase II, P2/m for phase III, respectively. The phases IV and V coexist with phase III, resulting in complex analysis on the possible structures. These transitions suggest the variation in the inter- and intra-molecular bonding of this compound.

  18. Structural properties of bismuth-bearing semiconductor alloys

    NASA Technical Reports Server (NTRS)

    Berding, M. A.; Sher, A.; Chen, A.-B.; Miller, W. E.

    1988-01-01

    The structural properties of bismuth-bearing III-V semiconductor alloys InPBi, InAsBi, and InSbBi were studied theoretically. Bond energies, bond lengths, and strain coefficients were calculated for pure AlBi, GaBi, and InBi compounds and their alloys, and predictions were made for the mixing enthalpies, miscibility gaps, and critical metastable-to-stable material transition temperatures. Miscibility calculations indicate that InSbBi will be the most miscible, and the InPBi will be the the most difficult to mix. However, calculations of the hardness of the Bi compounds indicate that, once formed, the InPBi alloy will be harder than the other Bi alloys and substantially harder than the currently favored narrow-gap semiconductor HgCdTe.

  19. TECHNIQUES FOR THE STUDY OF THE STRUCTURAL PROPERTIES.

    SciTech Connect

    FERNANDEZ-GARCIA, M.; RODRIGUEZ, J.A.; MARTINEZ-ARIAS, A.; HANSON, J.C.

    2006-06-30

    The evolution of our understanding of the behavior of oxide nanostructures depends heavily on the structural information obtained from a wide range of physical methods traditionally used in solid state physics, surface science and inorganic chemistry. In this chapter, we describe several techniques that are useful for the characterization of the structural properties of oxide nanostructures: X-ray diffraction (XRD) and scattering, X-ray absorption fine structure (XAFS), Raman spectroscopy, transmission electron microscopy (TEM), scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The ultimate goal is to obtain information about the spatial arrangement of atoms in the nanostructures with precise interatomic distances and bond angles. This may not be possible for complex systems and one may get only partial information about the local geometry or morphology.

  20. Structural properties of silver doped hydroxyapatite and their biocompatibility.

    PubMed

    Ciobanu, C S; Iconaru, S L; Pasuk, I; Vasile, B S; Lupu, A R; Hermenean, A; Dinischiotu, A; Predoi, D

    2013-04-01

    The aim of this study was to obtain a novel hydroxyapatite-based material with high biocompatibility. The structural properties of the samples were well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The X-ray diffraction studies revealed the characteristic peaks of hydroxyapatite in each sample. Other phases or impurities were not observed. The scanning electron microscopy observations suggest that the doping components have no influence on the surface morphology of the samples, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O) and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) and X-ray Photoelectron Spectroscopy analyses. Nanocrystalline silver doped HAp stimulated viability and potentiated the activation of murine macrophages.

  1. IWGT report on quantitative approaches to genotoxicity risk assessment I. Methods and metrics for defining exposure-response relationships and points of departure (PoDs).

    PubMed

    MacGregor, James T; Frötschl, Roland; White, Paul A; Crump, Kenny S; Eastmond, David A; Fukushima, Shoji; Guérard, Melanie; Hayashi, Makoto; Soeteman-Hernández, Lya G; Kasamatsu, Toshio; Levy, Dan D; Morita, Takeshi; Müller, Lutz; Schoeny, Rita; Schuler, Maik J; Thybaud, Véronique; Johnson, George E

    2015-05-01

    This report summarizes the discussion, conclusions, and points of consensus of the IWGT Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (QWG) based on a meeting in Foz do Iguaçu, Brazil October 31-November 2, 2013. Topics addressed included (1) the need for quantitative dose-response analysis, (2) methods to analyze exposure-response relationships & derive point of departure (PoD) metrics, (3) points of departure (PoD) and mechanistic threshold considerations, (4) approaches to define exposure-related risks, (5) empirical relationships between genetic damage (mutation) and cancer, and (6) extrapolations across test systems and species. This report discusses the first three of these topics and a companion report discusses the latter three. The working group critically examined methods for determining point of departure metrics (PoDs) that could be used to estimate low-dose risk of genetic damage and from which extrapolation to acceptable exposure levels could be made using appropriate mode of action information and uncertainty factors. These included benchmark doses (BMDs) derived from fitting families of exponential models, the No Observed Genotoxic Effect Level (NOGEL), and "threshold" or breakpoint dose (BPD) levels derived from bilinear models when mechanistic data supported this approach. The QWG recognizes that scientific evidence suggests that thresholds below which genotoxic effects do not occur likely exist for both DNA-reactive and DNA-nonreactive substances, but notes that small increments of the spontaneous level cannot be unequivocally excluded either by experimental measurement or by mathematical modeling. Therefore, rather than debating the theoretical possibility of such low-dose effects, emphasis should be placed on determination of PoDs from which acceptable exposure levels can be determined by extrapolation using available mechanistic information and appropriate uncertainty factors. This approach places the focus on

  2. Exploring the quantitative relationship between metabolism and enzymatic phenotype by physiological modeling of glucose metabolism and lactate oxidation in solid tumors

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Vaupel, Peter; Ziegler, Sibylle I.; Shi, Kuangyu

    2015-03-01

    Molecular imaging using PET or hyperpolarized MRI can characterize tumor phenotypes by assessing the related metabolism of certain substrates. However, the interpretation of the substrate turnover in terms of a pathophysiological understanding is not straightforward and only semiquantitative. The metabolism of imaging probes is influenced by a number of factors, such as the microvascular structure or the expression of key enzymes. This study aims to use computational simulation to investigate the relationship between the metabolism behind molecular imaging and the underlying tumor phenotype. The study focused on the pathways of glucose metabolism and lactate oxidation in order to establish the quantitative relationship between the expression of several transporters (GLUT, MCT1 and MCT4), expression of the enzyme hexokinase (HK), microvasculature and the metabolism of glucose or lactate and the extracellular pH distribution. A computational model for a 2D tumor tissue phantom was constructed and the spatio-temporal evolution of related species (e.g. oxygen, glucose, lactate, protons, bicarbonate ions) was estimated by solving reaction-diffusion equations. The proposed model was tested by the verification of the simulation results using in vivo and in vitro literature data. The influences of different expression levels of GLUT, MCT1, MCT4, HK and microvessel distribution on substrate concentrations were analyzed. The major results are consistent with experimental data (e.g. GLUT is more influential to glycolytic flux than HK; extracellular pH is not correlated with MCT expressions) and provide theoretical interpretation of the co-influence of multiple factors of the tumor microenvironment. This computational simulation may assist the generation of hypotheses to bridge the discrepancy between tumor metabolism and the functions of transporters and enzymes. It has the potential to accelerate the development of multi-modal imaging strategies for assessment of tumor

  3. Chromatographic retention behaviour of monosubstituted benzene derivatives on porous graphitic carbon and octadecyl-bonded silica studied using molecular modelling and quantitative structure-retention relationships.

    PubMed

    De Matteis, Cristina I; Simpson, David A; Euerby, Melvin R; Shaw, P Nicholas; Barrett, David A

    2012-03-16

    The retention behaviour of a series of 28 monosubstituted benzenes, representing a diverse range of functional groups and substituent shape, were investigated using porous graphitic carbon (PGC) and octadecyl-bonded silica (ODS) stationary phases. For the majority of analytes retention on PGC was greater than on ODS, and in most cases this effect occurred at both pH 2.5 and 7.0. The main trends observed on PGC (in comparison with ODS) were: (i) similar or reduced retention of low polarity molecules such as the hydrocarbon and halogenated analytes; (ii) increased retention of conjugated analytes with extended planarity; (iii) increased retention of polar and charged species; and (iv) substantial increases in retention for selected polar and negatively charged analytes, including some ionised and unionised acid analytes. Poor retention of positively charged analytes was observed on both stationary phases. Molecular modelling studies have explored the geometry of π-π stacking interactions in retention on PGC and have highlighted the strong retention of large conjugated analytes, with extended planar conformations, which can interact with the graphite surface with cofacial geometry. Quantitative structure-retention relationships showed the importance of hydrophobic (π) and electronic factors (e.g. mean polarisability and LUMO energy) in retention on PGC, whilst retention on ODS was correlated to hydrophobicity (logP and π). PMID:22305358

  4. Application of Quantitative Structure–Activity Relationship Models of 5-HT1A Receptor Binding to Virtual Screening Identifies Novel and Potent 5-HT1A Ligands

    PubMed Central

    2015-01-01

    The 5-hydroxytryptamine 1A (5-HT1A) serotonin receptor has been an attractive target for treating mood and anxiety disorders such as schizophrenia. We have developed binary classification quantitative structure–activity relationship (QSAR) models of 5-HT1A receptor binding activity using data retrieved from the PDSP Ki database. The prediction accuracy of these models was estimated by external 5-fold cross-validation as well as using an additional validation set comprising 66 structurally distinct compounds from the World of Molecular Bioactivity database. These validated models were then used to mine three major types of chemical screening libraries, i.e., drug-like libraries, GPCR targeted libraries, and diversity libraries, to identify novel computational hits. The five best hits from each class of libraries were chosen for further experimental testing in radioligand binding assays, and nine of the 15 hits were confirmed to be active experimentally with binding affinity better than 10 μM. The most active compound, Lysergol, from the diversity library showed very high binding affinity (Ki) of 2.3 nM against 5-HT1A receptor. The novel 5-HT1A actives identified with the QSAR-based virtual screening approach could be potentially developed as novel anxiolytics or potential antischizophrenic drugs. PMID:24410373

  5. Performance comparison of partial least squares-related variable selection methods for quantitative structure retention relationships modelling of retention times in reversed-phase liquid chromatography.

    PubMed

    Talebi, Mohammad; Schuster, Georg; Shellie, Robert A; Szucs, Roman; Haddad, Paul R

    2015-12-11

    The relative performance of six multivariate data analysis methods derived from or combined with partial least squares (PLS) has been compared in the context of quantitative structure-retention relationships (QSRR). These methods include, GA (genetic algorithm)-PLS, Monte Carlo uninformative variable elimination (MC-UVE), competitive adaptive reweighted sampling (CARS), iteratively retaining informative variables (IRIV), variable iterative space shrinkage approach (VISSA) and PLS with automated backward selection of predictors (autoPLS). A set of 825 molecular descriptors was computed for 86 suspected sports doping compounds and used for predicting their gradient retention times in reversed-phase liquid chromatography (RPLC). The correlation between molecular descriptors selected by each technique and the retention time was established using the PLS method. All models derived from a selected subset of descriptors outperformed the reference PLS model derived from all descriptors, with very small demands of computational time and effort. A performance comparison indicated great diversity of these methods in selecting the most relevant molecular descriptors, ranging from 28 for CARS to 263 for MC-UVE. While VISSA provided the lowest degree of over-fitting for the training set, CARS demonstrated the best compromise between the prediction accuracy and the number of selected descriptors, with the prediction error of as low as 46s for the external test set. Only ten descriptors were found to be common for all models, with the characteristics of these descriptors being representative of the retention mechanism in RPLC.

  6. Drug interaction study of natural steroids from herbs specifically toward human UDP-glucuronosyltransferase (UGT) 1A4 and their quantitative structure activity relationship (QSAR) analysis for prediction.

    PubMed

    Xu, Min; Dong, Peipei; Tian, Xiangge; Wang, Chao; Huo, Xiaokui; Zhang, Baojing; Wu, Lijun; Deng, Sa; Ma, Xiaochi

    2016-08-01

    The wide application of herbal medicines and foods containing steroids has resulted in the high risk of herb-drug interactions (HDIs). The present study aims to evaluate the inhibition potential of 43 natural steroids from herb medicines toward human UDP- glucuronosyltransferases (UGTs). A remarkable structure-dependent inhibition toward UGT1A4 was observed in vitro. Some natural steroids such as gitogenin, tigogenin, and solasodine were found to be the novel selective inhibitors of UGT1A4, and did not inhibit the activities of major human CYP isoforms. To clarify the possibility of the in vivo interaction of common steroids and clinical drugs, the kinetic inhibition type and related kinetic parameters (Ki) were measured. The target compounds 2-6 and 15, competitively inhibited the UGT1A4-catalyzed trifluoperazine glucuronidation reaction, with Ki values of 0.6, 0.18, 1.1, 0.7, 0.8, and 12.3μM, respectively. And this inhibition of steroids towards UGT1A4 was also verified in human primary hepatocytes. Furthermore, a quantitative structure-activity relationship (QSAR) of steroids with inhibitory effects toward human UGT1A4 isoform was established using the computational methods. Our findings elucidate the potential for in vivo HDI effects of steroids in herbal medicine and foods, with the clinical dr ugs eliminated by UGT1A4, and reveal the vital pharamcophoric requirement of natural steroids for UGT1A4 inhibition activity. PMID:27208893

  7. Physicochemical explanation of peptide binding to HLA-A*0201 major histocompatibility complex: a three-dimensional quantitative structure-activity relationship study.

    PubMed

    Doytchinova, Irini A; Flower, Darren R

    2002-08-15

    A three-dimensional quantitative structure-activity relationship method for the prediction of peptide binding affinities to the MHC class I molecule HLA-A*0201 was developed by applying the CoMSIA technique on a set of 266 peptides. To increase the self consistency of the initial CoMSIA model, the poorly predicted peptides were excluded from the training set in a stepwise manner and then included in the study as a test set. The final model, based on 236 peptides and considering the steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond acceptor fields, had q2 = 0.683 and r2 = 0.891. The stability of this model was proven by cross-validations in two and five groups and by a bootstrap analysis of the non-cross-validated model. The residuals between the experimental pIC50 (-logIC50) values and those calculated by "leave-one-out" cross-validation were analyzed. According to the best model, 63.2% of the peptides were predicted with /residuals/ < or = 0.5 log unit; 29.3% with 1.0 < or = /residuals/ < 0.5; and 7.5% with /residuals/ > 1.0 log unit. The mean /residual/ value was 0.489. The coefficient contour maps identify the physicochemical property requirements at each position in the peptide molecule and suggest amino acid sequences for high-affinity binding to the HLA-A*0201 molecule. PMID:12112675

  8. Oxidation of substituted phenols in the environment: A QSAR analysis of rate constants for reaction with singlet oxygen. [Quantitative Structure-Activity Relationship

    SciTech Connect

    Tratnyek, P.G.; Holgne, J. , Duebendorf )

    1991-09-01

    Substituted phenols can be oxidized by singlet oxygen ({sup 1}O{sub 2}), which is formed in sunlit surface waters, and it has been suggested that this reaction may contribute to the environmental fate of phenolic substances. In aqueous solution, the observed rate of phenol disappearance is due to reaction of both the phenolate anion and the undissociated phenol. In order to quantify the effect of substituents on the rates of these reactions, second-order rate constants have been measured for both species for 22 substituted phenols by use of a model system containing the sensitizer rose bengal. Correlation analysis based on half-wave oxidation potentials, E{sub 1/2}, and on {sigma} constants reveals significant quantitative structure-activity relationships (QSARs) for both the undissociated phenols and the phenolate anions. Ortho- and multisubstituted phenols have been included in the correlations. These QSARs are consistent with the rate-limiting formation of a precursor complex with a small amount of charge-transfer character and can be used to predict additional rate constants for a wide range of environmentally significant substituted phenols.

  9. Docking-based three-dimensional quantitative structure-activity relationship (3D-QSAR) predicts binding affinities to aryl hydrocarbon receptor for polychlorinated dibenzodioxins, dibenzofurans, and biphenyls.

    PubMed

    Yuan, Jintao; Pu, Yuepu; Yin, Lihong

    2013-07-01

    Polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) cause toxic effects after binding to an intracellular cytosolic receptor called the aryl hydrocarbon receptor (AhR). Thymic atrophy, weight loss, immunotoxicity, acute lethality, and induction of cytochrome P4501A1 have all been correlated with the binding affinity to AhR. To study the key molecular features for determining binding affinity to AhR, a homology model of AhR ligand-binding domains was developed, a molecular docking approach was employed to obtain docking-based conformations of all molecules in the whole set, and 3-dimensional quantitative structure-activity relationship (3D-QSAR) methodology, namely, comparative molecular field analysis (CoMFA), was applied. A partial least square analysis was performed, and QSAR models were generated for a training set of 59 compounds. The generated QSAR model showed good internal and external statistical reliability, and in a comparison with other reported CoMFA models using different alignment methods, the docking-based CoMFA model showed some advantages.

  10. Drug interaction study of natural steroids from herbs specifically toward human UDP-glucuronosyltransferase (UGT) 1A4 and their quantitative structure activity relationship (QSAR) analysis for prediction.

    PubMed

    Xu, Min; Dong, Peipei; Tian, Xiangge; Wang, Chao; Huo, Xiaokui; Zhang, Baojing; Wu, Lijun; Deng, Sa; Ma, Xiaochi

    2016-08-01

    The wide application of herbal medicines and foods containing steroids has resulted in the high risk of herb-drug interactions (HDIs). The present study aims to evaluate the inhibition potential of 43 natural steroids from herb medicines toward human UDP- glucuronosyltransferases (UGTs). A remarkable structure-dependent inhibition toward UGT1A4 was observed in vitro. Some natural steroids such as gitogenin, tigogenin, and solasodine were found to be the novel selective inhibitors of UGT1A4, and did not inhibit the activities of major human CYP isoforms. To clarify the possibility of the in vivo interaction of common steroids and clinical drugs, the kinetic inhibition type and related kinetic parameters (Ki) were measured. The target compounds 2-6 and 15, competitively inhibited the UGT1A4-catalyzed trifluoperazine glucuronidation reaction, with Ki values of 0.6, 0.18, 1.1, 0.7, 0.8, and 12.3μM, respectively. And this inhibition of steroids towards UGT1A4 was also verified in human primary hepatocytes. Furthermore, a quantitative structure-activity relationship (QSAR) of steroids with inhibitory effects toward human UGT1A4 isoform was established using the computational methods. Our findings elucidate the potential for in vivo HDI effects of steroids in herbal medicine and foods, with the clinical dr ugs eliminated by UGT1A4, and reveal the vital pharamcophoric requirement of natural steroids for UGT1A4 inhibition activity.

  11. The use of quantitative structure-activity relationship models to develop optimized processes for the removal of tobacco host cell proteins during biopharmaceutical production.

    PubMed

    Buyel, J F; Woo, J A; Cramer, S M; Fischer, R

    2013-12-27

    The production of recombinant pharmaceutical proteins in plants benefits from the low cost of upstream production and the greater scalability of plants compared to fermenter-based systems. Now that manufacturing processes that comply with current good manufacturing practices have been developed, plants can compete with established platforms on equal terms. However, the costs of downstream processing remain high, in part because of the dedicated process steps required to remove plant-specific process-related impurities. We therefore investigated whether the ideal strategy for the chromatographic removal of tobacco host cell proteins can be predicted by quantitative structure-activity relationship (QSAR) modeling to reduce the process development time and overall costs. We identified more than 100 tobacco proteins by mass spectrometry and their structures were reconstructed from X-ray crystallography, nuclear magnetic resonance spectroscopy and/or homology modeling data. The resulting three-dimensional models were used to calculate protein descriptors, and significant descriptors were selected based on recently-published retention data for model proteins to develop QSAR models for protein retention on anion, cation and mixed-mode resins. The predicted protein retention profiles were compared with experimental results using crude tobacco protein extracts. Because of the generic nature of the method, it can easily be transferred to other expression systems such as mammalian cells. The quality of the models and potential improvements are discussed.

  12. Synthesis and quantitative structure-activity relationship (QSAR) study of novel 4-acyloxypodophyllotoxin derivatives modified in the A and C rings as insecticidal agents.

    PubMed

    He, Shuzhen; Shao, Yonghua; Fan, Lingling; Che, Zhiping; Xu, Hui; Zhi, Xiaoyan; Wang, Juanjuan; Yao, Xiaojun; Qu, Huan

    2013-01-23

    In continuation of our program aimed at the discovery and development of natural-product-based insecticidal agents, we have synthesized three series of novel 4-acyloxy compounds derived from podophyllotoxin modified in the A and C rings, which is isolated as the main secondary metabolite from the roots and rhizomes of Podophyllum hexandrum . Their insecticidal activity was preliminarily evaluated against the pre-third-instar larvae of Mythimna separata in vivo. Compound 9g displayed the best promising insecticidal activity. It revealed that cleavage of the 6,7-methylenedioxy group of podophyllotoxin will lead to a less active compound and that the C-4 position of podophyllotoxin was the important modification location. A quantitative structure-activity relationship (QSAR) model was developed by genetic algorithm combined with multiple linear regression (GA-MLR). For this model, the squared correlation coefficient (R(2)) is 0.914, the leave-one-out cross-validation correlation coefficient (Q(2)(LOO)) is 0.881, and the root-mean-square error (RMSE) is 0.024. Five descriptors, BEHm2, Mor14v, Wap, G1v, and RDF020e, are likely to influence the biological activity of these compounds. Among them, two important ones are BEHm2 and Mor14v. This study will pave the way for further design, structural modification, and development of podophyllotoxin derivatives as insecticidal agents.

  13. Application of quantitative structure-activity relationship models of 5-HT1A receptor binding to virtual screening identifies novel and potent 5-HT1A ligands.

    PubMed

    Luo, Man; Wang, Xiang Simon; Roth, Bryan L; Golbraikh, Alexander; Tropsha, Alexander

    2014-02-24

    The 5-hydroxytryptamine 1A (5-HT1A) serotonin receptor has been an attractive target for treating mood and anxiety disorders such as schizophrenia. We have developed binary classification quantitative structure-activity relationship (QSAR) models of 5-HT1A receptor binding activity using data retrieved from the PDSP Ki database. The prediction accuracy of these models was estimated by external 5-fold cross-validation as well as using an additional validation set comprising 66 structurally distinct compounds from the World of Molecular Bioactivity database. These validated models were then used to mine three major types of chemical screening libraries, i.e., drug-like libraries, GPCR targeted libraries, and diversity libraries, to identify novel computational hits. The five best hits from each class of libraries were chosen for further experimental testing in radioligand binding assays, and nine of the 15 hits were confirmed to be active experimentally with binding affinity better than 10 μM. The most active compound, Lysergol, from the diversity library showed very high binding affinity (Ki) of 2.3 nM against 5-HT1A receptor. The novel 5-HT1A actives identified with the QSAR-based virtual screening approach could be potentially developed as novel anxiolytics or potential antischizophrenic drugs.

  14. The use of quantitative structure-activity relationship models to develop optimized processes for the removal of tobacco host cell proteins during biopharmaceutical production.

    PubMed

    Buyel, J F; Woo, J A; Cramer, S M; Fischer, R

    2013-12-27

    The production of recombinant pharmaceutical proteins in plants benefits from the low cost of upstream production and the greater scalability of plants compared to fermenter-based systems. Now that manufacturing processes that comply with current good manufacturing practices have been developed, plants can compete with established platforms on equal terms. However, the costs of downstream processing remain high, in part because of the dedicated process steps required to remove plant-specific process-related impurities. We therefore investigated whether the ideal strategy for the chromatographic removal of tobacco host cell proteins can be predicted by quantitative structure-activity relationship (QSAR) modeling to reduce the process development time and overall costs. We identified more than 100 tobacco proteins by mass spectrometry and their structures were reconstructed from X-ray crystallography, nuclear magnetic resonance spectroscopy and/or homology modeling data. The resulting three-dimensional models were used to calculate protein descriptors, and significant descriptors were selected based on recently-published retention data for model proteins to develop QSAR models for protein retention on anion, cation and mixed-mode resins. The predicted protein retention profiles were compared with experimental results using crude tobacco protein extracts. Because of the generic nature of the method, it can easily be transferred to other expression systems such as mammalian cells. The quality of the models and potential improvements are discussed. PMID:24268820

  15. Quantitative structure-retention relationships applied to liquid chromatography gradient elution method for the determination of carbonyl-2,4-dinitrophenylhydrazone compounds.

    PubMed

    Cirera-Domènech, Elisenda; Estrada-Tejedor, Roger; Broto-Puig, Francesc; Teixidó, Jordi; Gassiot-Matas, Miquel; Comellas, Lluís; Lliberia, Josep Lluís; Méndez, Alberto; Paz-Estivill, Susanna; Delgado-Ortiz, Maria Rosa

    2013-02-01

    A usual method for the determination of aldehydes and ketones in different matrices consists of a derivatization with 2,4-dinitrophenylhydrazine (DNPH) followed by HPLC-UV analysis. In the present work, a HPLC-UV gradient elution method has been applied to the analysis of 13 aldehydes and ketones-DNPH in automotive emission samples. In addition to these 13 compounds-DNPH, several carbonyl-DNPH compounds (linear, ramified and cyclic, saturated and unsaturated compounds) have been analyzed by HPLC-UV. Quantitative structure-retention relationships (QSRR) methods have been applied to predict the logarithm of capacity factor (logk') of carbonyl-DNPH compounds. According to its physicochemical meaning, combinations of 2 and 3 molecular descriptors have been proposed in order to achieve higher correlation with logk'. Using linear and non-linear QSRR methodologies, the resulting prediction models allowed the screening of the most probable carbonyl-DNPH derivative candidates that correspond to unknown compounds detected in automotive emission samples. This information has been useful for their identification by UPLC(®)-MS/MS. In addition, the chromatographic retention of different carbonyl-DNPH compound families was studied using two HPLC isocratic methods working with two orthogonal stationary phases (octadecylpolyethoxysilane and cyanopropyl). Differences between the retention indexes obtained for each column were used for classifying carbonyl-DNPH into compounds families. PMID:23298845

  16. Synthesis and Quantitative Structure–Activity Relationship of Imidazotetrazine Prodrugs with Activity Independent of O6-Methylguanine-DNA-methyltransferase, DNA Mismatch Repair and p53

    PubMed Central

    Pletsas, Dimitrios; Garelnabi, Elrashied A.E.; Li, Li; Phillips, Roger M.; Wheelhouse, Richard T.

    2014-01-01

    The antitumor prodrug Temozolomide is compromised by its dependence for activity on DNA mismatch repair (MMR) and the repair of the chemosensitive DNA lesion, O6-methylguanine (O6-MeG), by O6-methylguanine-DNA-methyltransferase (EC 2.1.1.63, MGMT). Tumor response is also dependent on wild-type p53. Novel 3-(2-anilinoethyl)-substituted imidazotetrazines are reported that have activity independent of MGMT, MMR and p53. This is achieved through a switch of mechanism so that bioactivity derives from imidazotetrazine-generated arylaziridinium ions that principally modify guanine-N7 sites on DNA. Mono- and bi-functional analogs are reported and a quantitative structure-activity relationship (QSAR) study identified the p-tolyl-substituted bi-functional congener as optimized for potency, MGMT-independence and MMR-independence. NCI60 data show the tumor cell response is distinct from other imidazotetrazines and DNA-guanine-N7 active agents such as nitrogen mustards and cisplatin. The new imidazotetrazine compounds are promising agents for further development and their improved in vitro activity validates the principles on which they were designed. PMID:23895620

  17. Quantitative assessment of the relationship between radiant heat exposure and protective performance of multilayer thermal protective clothing during dry and wet conditions.

    PubMed

    Fu, M; Weng, W G; Yuan, H Y

    2014-07-15

    The beneficial effect of clothing on a person is important to the criteria for people exposure to radiant heat flux from fires. The thermal protective performance of multilayer thermal protective clothing exposed to low heat fluxes during dry and wet conditions was studied using two designed bench-scale test apparatus. The protective clothing with four fabric layers (outer shell, moisture barrier, thermal linear and inner layer) was exposed to six levels of thermal radiation (1, 2, 3, 5, 7 and 10kW/m(2)). Two kinds of the moisture barrier (PTFE and GoreTex) with different vapor permeability were compared. The outside and inside surface temperatures of each fabric layer were measured. The fitting analysis was used to quantitatively assess the relationship between the temperature of each layer during thermal exposure and the level of external heat flux. It is indicated that there is a linear correlation between the temperature of each layer and the radiant level. Therefore, a predicted equation is developed to calculate the thermal insulation of the multilayer clothing from the external heat flux. It can also provide some useful information on the beneficial effects of clothing for the exposure criteria of radiant heat flux from fire.

  18. Combined Toxic Effects of Polar and Nonpolar Chemicals on Human Hepatocytes (HepG2) Cells by Quantitative Property-Activity Relationship Modeling

    PubMed Central

    Kim, Ki-Woong; Won, Yong Lim; Park, Dong Jin; Kim, Young Sun; Jin, Eun Sil; Lee, Sung Kwang

    2016-01-01

    We determined the toxicity of mixtures of ethyl acetate (EA), isopropyl alcohol (IPA), methyl ethyl ketone (MEK), toluene (TOL) and xylene (XYL) with half-maximal effective concentration (EC50) values obtained using human hepatocytes cells. According to these data, quantitative property-activity relationships (QPAR) models were successfully proposed to predict the toxicity of mixtures by multiple linear regressions (MLR). The leave-one-out cross validation method was used to find the best subsets of descriptors in the learning methods. Significant differences in physico-chemical properties such as boiling point (BP), specific gravity (SG), Reid vapor pressure (rVP) and flash point (FP) were observed between the single substances and the mixtures. The EC50 of the mixture of EA and IPA was significantly lower than that of contained TOL and XYL. The mixture toxicity was related to the mixing ratio of MEK, TOL and XYL (MLR equation EC50 = 3.3081 − 2.5018 × TOL − 3.2595 × XYL − 12.6596 × MEK × XYL), as well as to BP, SG, VP and FP (MLR equation EC50 = 1.3424 + 6.2250 × FP − 7.1198 × SG × FP − 0.03013 × rVP × FP). These results suggest that QPAR-based models could accurately predict the toxicity of polar and nonpolar mixtures used in rotogravure printing industries.

  19. Quantitative Structure-Activity Relationship Analysis and a Combined Ligand-Based/Structure-Based Virtual Screening Study for Glycogen Synthase Kinase-3.

    PubMed

    Fu, Gang; Liu, Sheng; Nan, Xiaofei; Dale, Olivia R; Zhao, Zhendong; Chen, Yixin; Wilkins, Dawn E; Manly, Susan P; Cutler, Stephen J; Doerksen, Robert J

    2014-09-01

    Glycogen synthase kinase-3 (GSK-3) is a multifunctional serine/threonine protein kinase which regulates a wide range of cellular processes, involving various signalling pathways. GSK-3β has emerged as an important therapeutic target for diabetes and Alzheimer's disease. To identify structurally novel GSK-3β inhibitors, we performed virtual screening by implementing a combined ligand-based/structure-based approach, which included quantitative structure-activity relationship (QSAR) analysis and docking prediction. To integrate and analyze complex data sets from multiple experimental sources, we drafted and validated a hierarchical QSAR method, which adopts a two-level structure to take data heterogeneity into account. A collection of 728 GSK-3 inhibitors with diverse structural scaffolds was obtained from published papers that used different experimental assay protocols. Support vector machines and random forests were implemented with wrapper-based feature selection algorithms to construct predictive learning models. The best models for each single group of compounds were then used to build the final hierarchical QSAR model, with an overall R(2) of 0.752 for the 141 compounds in the test set. The compounds obtained from the virtual screening experiment were tested for GSK-3β inhibition. The bioassay results confirmed that 2 hit compounds are indeed GSK-3β inhibitors exhibiting sub-micromolar inhibitory activity, and therefore validated our combined ligand-based/structure-based approach as effective for virtual screening experiments. PMID:27486081

  20. Degradation mechanism of PCDDs initiated by OH radical in Photo-Fenton oxidation technology: quantum chemistry and quantitative structure-activity relationship.

    PubMed

    Sun, Xiaomin; Sun, Tingli; Zhang, Qingzhu; Wang, Wenxing

    2008-08-25

    A detailed understanding of the degradation mechanism of polychlorinated dibenzo-p-dioxins (PCDDs) is of great necessity. In wastewater treatment, an important degradation process of PCDDs ascribes to its reaction with the photo-Fenton reagent. In this paper, the reaction of 2,3,7,8-TeCDD with OH radicals has been studied using high level molecular orbital theory. The profile of the potential energy surface is constructed. A complete description of the possible degradation mechanism in solution is provided. Two degradation mechanisms are proposed: ring-opening and adducting mechanism, adducting and ring-opening mechanism. The main products obtained are 4,5-dichlorinate-o-dihydroxybenzene and 4,5-dichlorinate-o-quinone. The study on the quantitative structure-activity relationship of these PCDDs is performed. The structure-activity model has been constructed, in which three structural parameters, RO5-C12, RO5-C13 and QC14, are found to be positively correlated to the degradation activities. PMID:18554686

  1. The observation of AE events under uniaxial compression and the quantitative relationship between the anisotropy index and the main failure plane

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibo; Wang, Enyuan; Chen, Dong; Li, Xuelong; Li, Nan

    2016-11-01

    In this paper, the P-wave velocities in different directions of sandstone samples under uniaxial compression are measured. The results indicate that the changes in the P-wave velocity in different directions are almost the same. In the initial stage of loading, the P-wave velocity exhibits a rising trend due to compaction and closure of preexisting fissures. As the stress increase, preexisting fissures are closed but induced fractures are not yet generated. The sandstone samples become denser and more uniform. The P-wave velocity remains in a steady state at a high level. In the late stage of loading, the P-wave velocity drops significantly due to the expansion and breakthrough of induced fractures. The P-wave velocity anisotropy index ε is analyzed during the process of loading. It can be observed that the change in the degree of wave velocity anisotropy can be divided into three stages: the AB stage, the BC stage and the CD stage, with a changing trend from decline to incline. In the initial stage of loading, the preexisting fissures have a randomized distribution, and the change is large-scale and uniform. The difference in each spatial point decreases gradually, and synchronization increases gradually. Thus, the P-wave velocity anisotropy declines. As the stress increases gradually, with the expansion and breakthrough of induced fractures, the difference in each spatial point increases. Before failure of rock samples, the violent change region of the rock samples' internal structure is focused on a narrow two-dimensional zone, and the rock samples' structural change is obviously local. Therefore, the degree of velocity anisotropy rises after declining, and it also has good corresponding relation among the AE count, the location of AE events and the degree of wave velocity anisotropy. The projection plane of the main fracture plane on the axis plane is recorded as M plane. Based on the AFF equation, for the CD stage, we analyze the quantitative relationship

  2. Optical and structural properties of Al-ZnO nanocomposites.

    PubMed

    Lee, Geon Joon; Deshpande, Nishad Gopal; Lee, Young Pak; Cheong, Hyeonsik; Swami, Narasimha; Bhat, Jeddu Sadashiva

    2014-05-01

    The optical and structural properties of aluminium-doped zinc oxide (AZO) films were investigated by photoluminescence (PL) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy. Pure zinc oxide (ZnO) and AZO composite films were deposited using vacuum evaporation method. The films exhibited different morphologies and crystallinity depending on the Al-doping. The SEM micrographs showed that a granular and compact structure could be seen for the ZnO film, while a nanoleaf structure with relatively porous nature was observed for the AZO composite film. The XRD patterns indicated that the crystalline growth orientation would be significantly affected by addition of Al. Compared with pure ZnO, the XRD peak intensity of the AZO composite was stronger and the line-width was narrower. Two-probe resistivity measurements showed that the AZO composites could be used as transparent conducting materials. The PL spectra revealed that the PL intensities of the AZO composites were stronger than that of the pure ZnO. The PL enhancement might be ascribed to the surface plasmon resonance of metal nanoclusters within the composite. Another possible reason of the PL enhancement would be the metal-induced crystallization caused by doping Al to ZnO matrix.

  3. Nanostructured ferroelectrics: fabrication and structure-property relations.

    PubMed

    Han, Hee; Kim, Yunseok; Alexe, Marin; Hesse, Dietrich; Lee, Woo

    2011-10-25

    With the continued demand for ultrahigh density ferroelectric data storage applications, it is becoming increasingly important to scale the dimension of ferroelectrics down to the nanometer-scale region and to thoroughly understand the effects of miniaturization on the materials properties. Upon reduction of the physical dimension of the material, the change in physical properties associated with size reduction becomes extremely difficult to characterize and to understand because of a complicated interplay between structures, surface properties, strain effects from substrates, domain nucleation, and wall motions. In this Review, the recent progress in fabrication and structure-property relations of nanostructured ferroelectric oxides is summarized. Various fabrication approaches are reviewed, with special emphasis on a newly developed stencil-based method for fabricating ferroelectric nanocapacitors, and advantages and limitations of the processes are discussed. Stress-induced evolutions of domain structures upon reduction of the dimension of the material and their implications on the electrical properties are discussed in detail. Distinct domain nucleation, growth, and propagation behaviors in nanometer-scale ferroelectric capacitors are discussed and compared to those of micrometer-scale counterparts. The structural effect of ferroelectric nanocapacitors on the domain switching behavior and cross-talk between neighboring capacitors under external electric field is reviewed. PMID:21919083

  4. Dielectric and structural properties of ferroelectric betaine arsenate films

    NASA Astrophysics Data System (ADS)

    Balashova, E. V.; Krichevtsov, B. B.; Zaitseva, N. V.; Yurko, E. I.; Svinarev, F. B.

    2014-12-01

    Ferroelectric films of betaine arsenate and partially deuterated betaine arsenate have been grown by evaporation on LiNbO3, α-Al2O3, and NdGaO3 substrates with a preliminarily deposited structure of interdigitated electrodes, as well as on the Al/glass substrate. This paper presents the results of the examination of the block structure of the films in a polarizing microscope, the X-ray diffraction analysis of their crystal structure, and the investigation of the dielectric properties in a measuring field oriented both parallel and perpendicular to the plane of the film. The transition of the films to the ferroelectric state at T = T c is accompanied by anomalies of the capacitance of the structure, an increase in the dielectric loss, and the appearance of dielectric hysteresis loops. The growth of the films from a solution of betaine arsenate in a heavy water leads to an increase in the ferroelectric transition temperature from T c = 119 K in the films without deuterium to T c = 149 K, which corresponds to the degree of deuteration of approximately 60-70%. The dielectric and structural properties of the films are compared with those of the betaine arsenate single crystals and the previously studied films of betaine phosphite and glycine phosphite.

  5. Structural properties of bismuth-bearing semiconductor alloys

    NASA Technical Reports Server (NTRS)

    Berding, M. A.; Sher, A.; Chen, A. B.

    1986-01-01

    The structural properties of bismuth-bearing III-V semiconductor alloys are addressed. Because the Bi compounds are not known to form zincblende structures, only the anion-substituted alloys InPBi, InAsBi, and InSbBi are considered candidates as narrow-gap semiconductors. Miscibility calculations indicate that InSbBi will be the most miscible, and InPBi, with the large lattice mismatch of the constituents, will be the most difficult to mix. Calculations of the hardness of the Bi compounds indicate that, once formed, the InPBi alloy will be harder than the other Bi alloys, and substantially harder than the currently favored narrow-gap semiconductor HgCdTe. Thus, although InSbBi may be an easier material to prepare, InPBi promises to be a harder material. Growth of the Bi compounds will require high effective growth temperatures, probably attainable only through the use of nonequilibrium energy-assisted epitaxial growth techniques.

  6. Structural properties of particle deposits at heterogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Stojiljković, D.; Šćepanović, J. R.; Vrhovac, S. B.; Švrakić, N. M.

    2015-06-01

    The random sequential adsorption (RSA) approach is used to analyze adsorption of spherical particles of a fixed radius on nonuniform flat surfaces covered by rectangular cells. The configuration of the cells (heterogeneities) was produced by performing RSA simulations to a prescribed coverage fraction θ_0{(cell)} . Adsorption was assumed to occur if the particle (projected) center lies within a rectangular cell area, i.e. if sphere touches the cells. The jammed-state properties of the model were studied for different values of cell size α (comparable with the adsorbing particle size) and density θ_0{(cell)} . Numerical simulations were carried out to investigate adsorption kinetics, jamming coverage, and structure of coverings. Structural properties of the jammed-state coverings were analyzed in terms of the radial distribution function g(r) and distribution of the Delaunay ‘free’ volumes P(v). It was demonstrated that adsorption kinetics and the jamming coverage decreased significantly, at a fixed density θ_0{(cell)} , when the cell size α increased. The predictions following from our calculation suggest that the porosity (pore volumes) of deposited monolayer can be controlled by the size and shape of landing cells, and by anisotropy of the cell deposition procedure.

  7. Structure-Property Correlations in Microwave Joining of Inconel 718

    NASA Astrophysics Data System (ADS)

    Bansal, Amit; Sharma, Apurbba Kumar; Kumar, Pradeep; Das, Shantanu

    2015-09-01

    The butt joining of Inconel 718 plates at 981°C solution treated and aged (981STA) condition was carried out using the microwave hybrid heating technique with Inconel 718 powder as a filler material. The developed joints were free from any microfissures (cracks) and were metallurgically bonded through complete melting of the powder particles. The as-welded joints were subjected to postweld heat treatments, including direct-aged, 981STA and 1080STA. The microstructural features of the welded joints were investigated using a field emission-scanning electron microscope equipped with x-ray elemental analysis. Microhardness and room-temperature tensile properties of the welded joints were evaluated. The postweld heat-treated specimens exhibited higher microhardness and tensile strength than the as-welded specimens due to the formation of strengthening precipitates in the microstructure after postweld heat treatments. The microhardness of the fusion zone of the joint in 1080STA condition was higher than all welded conditions due to the complete dissolution of Laves phase after 1080STA treatment. However, the tensile strength of the welded specimen in 981STA condition was higher than all welded conditions. The tensile strength in 1080STA condition was lower than that in 981STA condition because of the grain coarsening that took place after 1080STA condition. The fractography of the fractured surfaces was carried out to determine the structure-property-fracture correlation.

  8. Structural Properties of Finite MoS2 Nanowires

    NASA Astrophysics Data System (ADS)

    Clark, Shaylyn; Salgado, Andres; Fernandez-Seivane, Lucas; Lopez-Lozano, Xochitl

    2015-03-01

    Molybdenum disulfide (MoS2) has been one of the most important catalysts used in refineries worldwide for hydrodesulfurization over the past century. In the last decade, and with the advent of nanotechnology, there has been a special interest in MoS2 nanostructures due to their high potential as novel nanocatalysts. The study of the properties of these systems is of fundamental interest for the experimental design of their catalytic activity and efficiency. In this work, we have performed ab initio density-functional calculations (DFT) to investigate the structural properties of finite MoS2 nanostrutures. All the models here presented were based on newly experimentally observed morphologies in MoS2 industrial catalysts using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images. We simulated STEM images of the theoretical models to compare it with the experimental ones. In contrast with infinite models, the finite models prefer a rippled/twisted structure morphology over the planar or helical ones. The rippled/twisted models appear to be structurally more stable.

  9. Predictions of Cleavability of Calpain Proteolysis by Quantitative Structure-Activity Relationship Analysis Using Newly Determined Cleavage Sites and Catalytic Efficiencies of an Oligopeptide Array*

    PubMed Central

    Shinkai-Ouchi, Fumiko; Koyama, Suguru; Ono, Yasuko; Hata, Shoji; Ojima, Koichi; Shindo, Mayumi; duVerle, David; Ueno, Mika; Kitamura, Fujiko; Doi, Naoko; Takigawa, Ichigaku; Mamitsuka, Hiroshi; Sorimachi, Hiroyuki

    2016-01-01

    Calpains are intracellular Ca2+-regulated cysteine proteases that are essential for various cellular functions. Mammalian conventional calpains (calpain-1 and calpain-2) modulate the structure and function of their substrates by limited proteolysis. Thus, it is critically important to determine the site(s) in proteins at which calpains cleave. However, the calpains' substrate specificity remains unclear, because the amino acid (aa) sequences around their cleavage sites are very diverse. To clarify calpains' substrate specificities, 84 20-mer oligopeptides, corresponding to P10-P10′ of reported cleavage site sequences, were proteolyzed by calpains, and the catalytic efficiencies (kcat/Km) were globally determined by LC/MS. This analysis revealed 483 cleavage site sequences, including 360 novel ones. The kcat/Kms for 119 sites ranged from 12.5–1,710 M−1s−1. Although most sites were cleaved by both calpain-1 and −2 with a similar kcat/Km, sequence comparisons revealed distinct aa preferences at P9-P7/P2/P5′. The aa compositions of the novel sites were not statistically different from those of previously reported sites as a whole, suggesting calpains have a strict implicit rule for sequence specificity, and that the limited proteolysis of intact substrates is because of substrates' higher-order structures. Cleavage position frequencies indicated that longer sequences N-terminal to the cleavage site (P-sites) were preferred for proteolysis over C-terminal (P′-sites). Quantitative structure-activity relationship (QSAR) analyses using partial least-squares regression and >1,300 aa descriptors achieved kcat/Km prediction with r = 0.834, and binary-QSAR modeling attained an 87.5% positive prediction value for 132 reported calpain cleavage sites independent of our model construction. These results outperformed previous calpain cleavage predictors, and revealed the importance of the P2, P3′, and P4′ sites, and P1-P2 cooperativity. Furthermore, using our

  10. Predictions of Cleavability of Calpain Proteolysis by Quantitative Structure-Activity Relationship Analysis Using Newly Determined Cleavage Sites and Catalytic Efficiencies of an Oligopeptide Array.

    PubMed

    Shinkai-Ouchi, Fumiko; Koyama, Suguru; Ono, Yasuko; Hata, Shoji; Ojima, Koichi; Shindo, Mayumi; duVerle, David; Ueno, Mika; Kitamura, Fujiko; Doi, Naoko; Takigawa, Ichigaku; Mamitsuka, Hiroshi; Sorimachi, Hiroyuki

    2016-04-01

    Calpains are intracellular Ca(2+)-regulated cysteine proteases that are essential for various cellular functions. Mammalian conventional calpains (calpain-1 and calpain-2) modulate the structure and function of their substrates by limited proteolysis. Thus, it is critically important to determine the site(s) in proteins at which calpains cleave. However, the calpains' substrate specificity remains unclear, because the amino acid (aa) sequences around their cleavage sites are very diverse. To clarify calpains' substrate specificities, 84 20-mer oligopeptides, corresponding to P10-P10' of reported cleavage site sequences, were proteolyzed by calpains, and the catalytic efficiencies (kcat/Km) were globally determined by LC/MS. This analysis revealed 483 cleavage site sequences, including 360 novel ones. Thekcat/Kms for 119 sites ranged from 12.5-1,710 M(-1)s(-1) Although most sites were cleaved by both calpain-1 and -2 with a similarkcat/Km, sequence comparisons revealed distinct aa preferences at P9-P7/P2/P5'. The aa compositions of the novel sites were not statistically different from those of previously reported sites as a whole, suggesting calpains have a strict implicit rule for sequence specificity, and that the limited proteolysis of intact substrates is because of substrates' higher-order structures. Cleavage position frequencies indicated that longer sequences N-terminal to the cleavage site (P-sites) were preferred for proteolysis over C-terminal (P'-sites). Quantitative structure-activity relationship (QSAR) analyses using partial least-squares regression and >1,300 aa descriptors achievedkcat/Kmprediction withr= 0.834, and binary-QSAR modeling attained an 87.5% positive prediction value for 132 reported calpain cleavage sites independent of our model construction. These results outperformed previous calpain cleavage predictors, and revealed the importance of the P2, P3', and P4' sites, and P1-P2 cooperativity. Furthermore, using our binary-QSAR model

  11. A chrysophyte-based quantitative reconstruction of winter severity from varved lake sediments in NE Poland during the past millennium and its